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Abstract. Expressive system modelling languages lead to language def-
initions that are long and hard to understand. Tool support for these
languages is hard to implement, and often only parts of the language are
supported. In this paper we introduce the concept of language profiles
as well-defined subsets of a language with formal syntax and semantics
as the basis for tool support. We outline two approaches to generate
language profiles for SDL from the complete formal semantics definition,
and provide a formalisation for a reduction-based approach, on which a
tool for this approach is based.

1 Introduction

In order to support a wide range of applications, system modelling languages are
often complex and expressive. The complexity of the languages leads to language
definitions that are long and hard to understand, and can limit their applicability
in domains for which specialised, tailor-made languages are preferred. Another
drawback is that tool support for complex languages usually covers only parts of
the language. For example, there is no tool that supports the whole of SDL-96
[1,2], and only a few of the language constructs introduced in SDL-2000 [3,4,5]
are supported.

Language profiles divide a language into a core language and a set of lan-
guage modules that can be used as language building blocks. The language core
represents a minimal subset of the language that a tool for the language should
implement. This core is a profile that can be extended by language modules,
yielding further language profiles that represent well-defined subsets of the lan-
guage which a tool provider can implement. Thus, using language profiles it is
possible to define sublanguages of a language that are of lesser complexity and
are tailor-made for certain application areas.

Formal semantics gives a precise definition of the language and eliminate
the ambiguities that come with an informal language definition. Operational
mathematical formalisms like Abstract State Machines [6,7] can be executed
and used to generate a compiler and runtime system [8], giving a reference for
tool developers. Defining language profiles, we focus on the formal semantics of
the language. Formal semantics allow us to formulate precise criteria for valid
language extension and reduction. SDL-2000 [3] is a language with a complete
formal semantics [9,10,11], defined using ASMs, which makes it well-suited for
the definition of language profiles.
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In this paper, we introduce language profiles of SDL (section 2). We define a
process for the generation of language profiles for SDL from a formal semantics
defined with Abstract State Machines. This process is based on the reduction
of the semantics by formally defined operations (section 3), and formalised and
implemented in an SDL-profile tool (section 4).

2 Language Profiles and Modules

2.1 Problem and Definition

SDL has become a sophisticated and complex language with many language
features. SDL-2000, the most recent version, has added several new language
constructs, for example composite states, exceptions, agents (a harmonisation
of the concepts of systems, blocks and processes) and textual notation of algo-
rithms. This results in a large and extensive language definition. In the formal
semantics of SDL-2000, the operational nature of ASMs and the extensive use of
modularisation lead to a readable formal semantics definition. However, due to
the complexity of the language, the formal semantics is large and requires sub-
stantial effort to be understood completely: the dynamic semantics of SDL-2000
consist of more than 3000 lines of ASM specification.

The problem of the complexity of SDL-2000 has been identified, and the
definition of simpler sublanguages of SDL has been proposed. One such language
is defined by the SDL Task Force as the simplest useful subset of SDL [12]. This
language is implemented by the Safire tool, and here is called Safire. Safire

focuses on the state machine aspect of SDL, and enhances it with functionality
needed for testing. However, although a formal semantics exists for SDL, none
is provided for Safire.

A sublanguage like Safire is a language profile. Tools for a language profile
can be developed faster, leading to less expensive tools and enabling code opti-
misations. Possible language profiles could also be derived from the supported
features of the code generators Cbasic and Cadvanced in Telelogic Tau.

Apart from being subsets of the complete language, language profiles can be
subsets of other language profiles, forming a hierarchy profiles. For SDL, we
have defined four language profiles. The smallest profile is Core, which con-
tains a minimal set of features. Static1 , Static2 and Dynamic extend Core, each
profile adding additional features to the preceding one, Dynamic being roughly
the equivalent of SDL-96. The subset relationships between different language
profiles are shown in Figure 1.

A language module encapsulates a language feature, defining its syntax, se-
mantics and dependencies to other language modules. Some language modules
of SDL are timers, exceptions, save, and inheritance. Figure 2 shows the (graph-
ical) syntax elements of the timer feature, ASM-Listing 1 parts of the formal
semantics of timers. ASM macro SetTimer describes the setting of a timer by
inserting a new timer instance into the schedule of the process. If a time t is
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Fig. 1. Superset Relationship between Language Profiles

given, the arrival is set to this time, otherwise the arrival is computed from the
current time and the standard duration defined for the timer. Signals in the
schedule are sorted by time of arrival. They are invisible to the process until the
current time is equal or greater than their time of arrival.

1 SetTimer(tm: Timer, vSeq: Value∗, t: [Time]) ≡
2 let tmi = mk−TimerInst(Self.self, tm, vSeq ) in
3 if t = undefined then
4 Self . inport .schedule := insert (tmi, now + tm.duration, delete(tmi,Self .

inport .schedule))
5 tmi. arrival := now + tm.duration
6 else
7 Self . inport .schedule := insert (tmi, t , delete (tmi,Self . inport .schedule))
8 tmi. arrival := t
9 endif

10 endlet

ASM-Listing 1. Setting SDL Timers

TIMER t;
RESET(t)SET(now+5, t)

Fig. 2. Syntactical Elements of the Timer Module

2.2 Approach for the Generation of Language Profiles

SDL-2000 is a language with formal semantics, and this property should be re-
tained for its sublanguages. However, it is not feasible to define a new formal
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semantics from scratch for every sublanguage, since it requires substantial effort
and can lead to inconsistencies between the language profiles. A sensible ap-
proach is to take the existing formal language definition, and to systematically
modify it to match a subset of the language. In principle, there are two ways to
achieve this goal:

– bottom-up: Given a modular structure of the formal language definition, i.e.
consisting of a core language and a hierarchy of language modules that can
be added to the core, the formal language definition for the language profile
is obtained by constructing it from the core and the modules corresponding
to the features contained in the language profile.

– top-down: Starting from the complete formal languagedefinition,we removeall
parts that correspond to features not contained in the subset of the language.

The bottom-up approach requires a modular language definition with a small
core language, language features encapsulated in language modules, and a way to
compose the language modules with the core and other modules, both syntacti-
cally and semantically. Feature interaction plays a crucial role with the bottom-up
approach, as language features like exceptions may interact with other language
features. This affects the order in which the language modules are composed. An-
other problem of the bottom-up approach is that it is very difficult to encapsulate
the formal semantics of a language module in a way that it can be easily composed
with a given language profile, while at the same time maintaining readability of the
formal semantics. For these reasons, we are choosing the top-down approach.

2.3 Consistency of Language Profiles

The goal is for a specification defined with a language profile to behave in the
same way with all supersets of the language profile. In order to accomplish this
goal, we need to assure consistency between the language profiles. Deriving the
profiles from a common language definition enables us to make statements about
consistency, because, unlike profiles defined from scratch, the derived profiles
share many common parts. With the bottom-up approach, we need to ensure
that adding modules does not interfere with existing specifications. With the
top-down approach, only parts of the language definition that do not apply to
features contained in the subset may be removed (that is, parts of the ASM
formalism that are not reached in the subset).

2.4 Derivation of Language Profiles with the Top-Down Approach

Reduction of the formal language definition consists of reduction of the formal
syntax and reduction of the formal semantics. The formal syntax is reduced
by deleting all syntax elements corresponding to features to be deleted from
both the concrete and abstract syntax. In order to remove a feature from the
formal semantics of SDL-2000, we start by identifying domains and functions
from the signature of the formal semantics definition. The signature consists of
names of domains, functions and relations of the ASM. We identify the parts of
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the signature that correspond to the feature to be removed. Several domains in
the formal semantics can be identified that correspond to a particular feature,
for example the domains Timer and TimerInst are used to specify the timer
feature of SDL. Furthermore, for each non-terminal in the abstract syntax, there
is a domain in the formal semantics definition. As the abstract grammar is
reduced, the respective domains can be removed, too.

1 Timer =def Identifier
2 TimerInst =defPId ×Timer ×Value∗
3 Set =defTimeLabel ×Timer ×ValueLabel ×ContinueLabel

4 Reset =defTimer ×ValueLabel ×ContinueLabel

ASM-Listing 2. Domains Corresponding to the Timer Feature

Reduction of the signature of the formal semantics definition affects the ASM-
rules of the definition, which have to be reduced accordingly. All occurrences of
removed functions and domains must be removed from the definition. This leads
to the removal of entire rule blocks, for example when the guard of an if-rule has
to be removed. The rules should be reduced as much as possible, in order to get
a concise formal semantics definition without any remaining parts of the removed
features. On the other hand, care must be taken that the removal only affects lan-
guage constructs that should be removed and no other language constructs are af-
fected. In cases where this is not possible, there is very likely a feature interaction,
which is either inherent to the language or was introduced in the formal semantics.
For example, procedures and composite states share common parts in the formal
semantics of SDL-2000, because their underlying concepts are very similar.

Fig. 3. Process of Feature Removal

A way to approach the removal of rules is to assign fixed default values to
the functions and domains to be removed, and then to remove unreachable parts
of the formal semantics accordingly. Possible default values for domains would
be the empty set, for partial functions the special ASM element undefined, for
boolean functions (predicates) it would be either true or false. For example,
the default value for the predicate Spontaneous would be false, so that the trig-
gering of a spontaneous transition during transition selection would never occur,
disabling spontaneous transitions entirely. Listing 3 shows the rule fragment that
defines how spontaneous transitions are triggered. Since the fixed default value
false is assigned to Spontaneous, the entire elseif -block of the rule fragment
can be removed. Consistency is guaranteed for specifications that do not use
spontaneous transitions, since it can be proven that mode selectSpontaneous has
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no effect in this case. That is, no updates are fired in this mode, except for
updates that set the agent mode functions to the previous mode.

1 monitored Spontaneous: Agent →Boolean (default False)
2

3 if Self .stateNodeChecked = undefined then
4 NextStateNodeToBeChecked

5 elseif Self.Spontaneous then

6 Self.agentMode4 := selectSpontaneous

7 else
8 ...
9 endif

ASM-Listing 3. Triggering Spontaneous Transitions

Assigning the default value false to Spontaneous disables spontaneous tran-
sitions, however, unreachable parts of the formal semantics of spontaneous tran-
sitions still remain in the formal semantics definition. In order to remove them, a
further reduction of the formal semantics definition is necessary. This reduction
includes, for example, guarded rule fragments that check for the agent mode
selectSpontaneous.

Table 1. Definition Size for Profiles

Profile Features Lines of Spec.

Core System, Block, Process, Channel 1500 lines
Simple Statemachines

Static1 Core +Timer, +Actions, +Data, . . . 1900 lines

Static2 Static1 +Services, +Inheritance, +Data 2240 lines
+Priority Input, +Continuous Signal, . . .

Safire 2280 lines

Dynamic Static2 +Procedures, +Dynamic Process 2570 lines
∼ SDL 96 Creation

SDL-2000 3130 lines

Table 1 shows the size of the reduced dynamic part of the formal semantics
of SDL for several language profiles of SDL-2000. Core, Static1 , Static2 and
Dynamic build a hierarchy of language profiles, starting from Core with mini-
mal features and going up to the dynamic subset, which roughly equals SDL’96.
The formal semantics of Safire is slightly larger than the second static sub-
set, though Static2 contains features not covered by Safire. However, Safire

contains procedures, which are not part of Static2 .

3 Formalisation

In this section, we introduce a formalisation of the process for the derivation of
language profiles with the top-down approach. The formalisation gives an exact
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definition of the removal process, leading to deterministic results. It provides
the foundation for tool support for the removal process. Finally, a formal defi-
nition is necessary in order to make precise statements about the consistency of
language profiles. Since the formal syntax definition can be easily defined in a
modular fashion, making reduction of the syntax straightforward, we focus on
the reduction of the formal semantics definition.

The formal semantics definition consists of two parts, the static semantics and
the dynamic semantics. The static semantics consists of well-formedness condi-
tions and transformation rules. Where languagemodules are removed, correspond-
ing well-formedness conditions and transformation rules have to be removed
accordingly. However, in this paper we focus on the dynamic semantics of SDL.

For the formal definition of the removal process, we are looking for a mathe-
matical formalism that is readable and easy to understand. Therefore, we have
decided to use a functional approach, defining functions that recursively map
the original formal semantics to the reduced formal semantics. These functions
are based on a concrete grammar for Abstract State Machines.

3.1 Formalisation Signature

To formalise the extraction, we define a function remove, which maps a term from
the grammar G of ASMs and a set of variables V - an initially empty set of lo-
cally undefined variables from the ASM formal semantics - to a reduced term from
the grammar G. Additionally, we introduce three mutually exclusive binary pred-
icates, namely undefined , true and false, that control the reduction. The profile
definition is given as a globally defined set of elements r from the signature of the
formal semantics definition, annotated by default values true and false for pred-
icates. This set represents the elements to be removed from the formal semantics
definition, and is therefore called the reduction profile. For all elements in the re-
duction profile, undefined (true or false for predicates) holds.

remover : G × V → G

undefinedr : G × V → Boolean

truer : G × V → Boolean

falser : G × V → Boolean

The remove function is defined on all elements of the grammar G. It is defined
recursively - a given term is mapped to a new term by applying the mapping
defined by remove to the subterms. In case the predicates undefined , true and
false do not hold, nothing more is done. This assures that remove corresponds
to the identical mapping if the signature of the formal semantics definition is
not reduced (that is, the reduction profile is empty). In other cases, subterms
can be replaced or omitted depending on which of the predicates hold.

Predicates true and false are explicitly defined on boolean and first-order logic
expressions. On all other elements of G, the predicates do not hold. Predicate
true(e, v) (false(e, v)) holds only if expression e always evaluates to true (false)
in any state of the ASM with reduced signature. These predicates are determined
using formal criteria and heuristics.
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Predicate undefined is defined on all expressions and domains. It holds on any
expression or domain that can not be reduced to a defined expression/domain. A
defined expression or domain contains only elements that are not in the reduction
profile r. For example, if undefined holds for expression e1 and expression e2,
undefined also holds for expression e1 ∨ e2.

3.2 Formal Reduction of ASM Rules

Rules specify transitions between states of the ASM. The basic rule is the update
rule, which updates a location of the state to a new value. All together, there
are seven kinds of rules for ASMs, for all of which we have formalised the reduc-
tion. Below, we show the formalisation of the reduction for two representative
rules.

The mapping of the if -rule (see below) depends on which predicate holds for
the guard exp of the rule. If the guard always evaluates to true (false), the
if -rule can be omitted, and removal continues with subrule R1 (R2). If the guard
is undefined, the rule is syntactically incorrect, and should not be reachable1. If
none of the predicates hold, the removal is applied recursively to the guard and
the subrules of the if -rule, leaving the rule itself intact.

remove(if exp then R1 else R2 endif, V) =
remove(R1,V) iff true(exp,V)
remove(R2,V) iff false(exp,V)
skip iff undefined(exp,V)
if remove(exp,V) then remove(R1,V) else
else remove(R2,V) endif

The extend-rule dynamically imports a fresh ASM element from the re-
serve (an infinite store of unused ASM elements), binding it to a variable x in
the context of the subrule R and including it in the ASM domain D. In case
the domain name D is undefined, i.e. has been removed from the ASM signa-
ture, the extend-rule can be omitted, since elements of domain D belong to a
removed feature. However, the subrule R might still contain parts not related
to this feature - although it would be better style to move these parts outside
the extend-rule. Therefore, the subrule is not omitted by default, but replaced
with its mapping by the remove function, including the now unbound variable x
in the set of locally undefined variables. This leads to all occurrences of x being
removed from the rule R.

remove(extend D with x R endextend, V) =
remove(R,V ∪ {x}) iff undefined(D,V)
extend D with x remove(R,V) endextend else

1 This is a proof obligation that we have to verify manually. However, so far this
has only occurred in very few cases, which were the result of errors in the reduction
profile.
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3.3 Formal Reduction of ASM Expressions

Expressions are terms over the signature of the formal semantics definition. Ad-
ditionally, ASMs include common mathematical structures like boolean algebra,
or natural numbers. Our formal reduction covers all operations defined in [13].
Below is an excerpt of the formal reduction of ASM expressions, covering boolean
and relational operators.

Boolean operators take boolean expressions as arguments, therefore the pred-
icates true, false and undefined apply. With binary boolean operators, we have
to consider sixteen different combinations of predicates holding for subexpres-
sions - four for each subexpression. In order to improve readability, we combine
the definitions of true, false, undefined and remove for boolean operators in a
four-valued truth table. Valid boolean expressions always evaluate to either true
or false. Therefore, it is undesirable that the predicate undefined holds for such
an expression. However, this can not be avoided in every case.

Table 2. Truth Table for Negation

¬e1 T F U -

F T U ¬e1

Table 3. Truth Table for Disjunction

e2

e1 ∨ T F U -

T T T T T
F T F F -
U T F U -
- T - - -

T Predicate true holds
F Predicate false holds
U Predicate undefined holds
- ¬T ∧ ¬F ∧ ¬U

We define truth tables for all boolean operators from the concrete syntax
of ASMs: negation (¬, see Table 2), disjunction (∨, see Table 3), conjunction
(∧), implication (→) and equivalence (↔). In order to ensure consistent results,
we derive the definition of conjunction, implication and equivalence from the
definitions of negation and disjunction.

A special relational operator is the element-of operator e1 ∈ e2, where e1

denotes an element and e2 denotes a set. It is important as it often appears in
the guard of if -statements. The expression e2, denoting a set, is interpreted as
the empty set if undefined holds. Therefore, false (true) holds for the element-of
(not element-of) expression if e2 is undefined. Likewise, an undefined expression
should not be an element of any set. Note that according to this definition,
undefined can not hold for an element-of expression.

In the same way as with the examples given above, the function remove
is formally defined for all elements of the concrete grammar of ASMs, and
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the predicates true, false and undefined are formally defined for the elements of
the grammar for which they apply. This gives us a complete formalisation of the
reduction process.

4 SDL-Profile Tool

Based on the formalisation provided in section 3, we have implemented an SDL-
profile tool in order to validate the reduction process, providing visible results.
The tool reads the formal semantics definition, performs the remove operation
based on a reduction profile, and outputs a reduced version of the formal se-
mantics. The reduction profile is a list of domain names, function names and
macro names that are removed from the ASM signature (or from the set of
rules, in the case of macro names), possibly defining default values. Figure 4
shows the sequence of steps performed during the removal, and the tools used for
each step.

Fig. 4. Toolchain of the SDL-Profiling Tool

4.1 Toolchain

Parser. The parser takes an ASM specification as input and creates an abstract
syntax tree representation of the specification as output. It is generated out of
definitions of the lexis, grammar and abstract syntax of Abstract State Machines,
as used in the formal semantics of SDL-2000. The definition of the abstract
syntax is translated by kimwitu++ [14] to a data structure for the abstract
syntax tree, using C++ classes. Scanner and parser are generated by flex and
bison, respectively. Apart from minor differences, the parser is identical to the
parser used in [8].

Normalisation. The normalisation step transforms the abstract syntax tree
to a pre-removal normal form. The transformation is specified by rewrite rules
on the abstract syntax tree. The rewrite rules are translated to C++ functions
by the kimwitu tool. The main function of the normalisation step is to split up
complicated abstract syntax rules, in order to make the definition of the remove
function easier. For example, during the normalisation step, extend-statements
containing a list of variables to be bound to new elements in a domain are
rewritten. The result is a set of nested extend-statements containing only one
variable each.

Extend(dom, ConsnameList(nhead,nrest), rul)
-> < normal: ExtendSingle(dom, nhead, Extend(dom, nrest, rul)) >;
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Remove. The remove step is the implementation of the removal formalised
in section 3. For each type of node (called phyla in kimwitu) in the abstract
syntax definition, a remove function is introduced. The remove function performs
removal for each term of the respective phylum, for example the terms Assign,
Choose, Extend, . . . for the rule phylum. It returns a term of the respective
phylum as result – for example the remove function for rules always returns a
term of type rule.

The remove functions for phyla follow a pattern. Formal arguments of the
function are a phylum and a set of casestrings (the locally undefined ASM
names). The return type is the same as the phylum used as formal argument,
ensuring the resulting term has the correct type in the context in which it oc-
curs. The outermost statement is a switch over all terms of the phylum, using
the kimwitu control structure with. For each term, the actions for removal are
defined separately.

For a term of a phylum, removal starts by checking conditions consisting of
the predicates true, false and undefined , as defined in the formalisation of the
removal process. If a condition evaluates to true, a modified term is returned,
calling remove recursively on the subterms of the term if necessary. For example,
for the rule term IfThenElse, if the predicate true holds for expression exp,
removal continues with the then-part, if the predicate false holds for expression
exp, removal continues with the else-part. If undefined holds for the expression
exp the rule term Skip is returned.

IfThenElse(exp, r1, r2): {
if (eval_true(exp,V)) { return remove(r1,V); };
if (eval_false(exp,V)) { return remove(r2,V); };
if (eval_undef(exp,V)) { return Skip(); };
return IfThenElse(remove(exp,V), remove(r1,V), remove(r2,V));

}

Cleanup. Removal starts at the root of the abstract syntax tree and works
towards the leaves, without any backtracking. Therefore, removal on a subtree
does not take the context of the subtree into account. However, the removal can
affect the context and make it obsolete. If the entire rule body of an extend-
statement is reduced to skip, the extend-statement itself could be removed. The
cleanup step transforms superfluous rules resulting from the removal step to a
post-removal normal form. The normal form is achieved by defining term rewrite
rules in kimwitu. Unlike removal, the rewrite rules apply anywhere where their
left hand side matches, and are applied as long as a match is found.

Cleanup performs the following modifications to the formal semantics:

– The rule skip is removed from parallel rule blocks.
– Rules with subrules are replaced with skip if all subrules of the rule are

skip-rules.
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– if -rules with identical subrules in the then- and else-part are replaced by
the subrule in the then-part.

– All local definitions of a rule macro with a skip-rule as rule-body are re-
moved. These definitions are not visible outside of the rule macro, and are
not referenced by the rule-body.

The cleanup step only removes trivial parts of the ASM specification. The
resulting specification is semantically equivalent to the specification before the
cleanup step.

Iteration. Given a completely defined reduction profile, only one run of the
SDL-profile tool is needed to generate a reduced formal semantics definition. In
case the reduction profile is incomplete, the SDL-profile tool can identify further
names in the signature that can be removed, and iterate the removal process.
For example, a function with a target domain that has been removed during
the previous removal step is included in the reduction profile of a subsequent
iteration.

Unparsing. Unparsing traverses the abstract syntax tree and outputs a string
representation of every node. The result is a textual representation of the formal
semantics tree in the original input format. Therefore, the output of the SDL-
profile tool can be used as the input for a subsequent run of the tool. It is
also possible to output the result as a latex document, for better readability. A
partial compilation of ASM rules to C++ exists as a third output format. This
compilation is still in an early development phase.

4.2 Results

Given a formal semantics definition in ASM and a reduction profile, the SDL-
profile tool generates a reduced formal semantics definition in the original format.
In order to validate the removal process, we compared the original semantics
definition with the reduced version. For this, we have used graphical diff-based
tools (for example, tkdiff) to highlight the differences between the versions. Using
the SDL-profile tool, we have created reduction profiles for several language
features, such as timers, exceptions, save, composite states and inheritance. We
have also created reduction profiles for language profiles like Safire, resulting
in a formal semantics definition that, with small modifications, matches that
language profile.

Listings 4 and 5 show the results of applying the SDL-profile tool on the for-
mal semantics definition for the macro SelectTransitionStartPahse, using
a reduction profile for exceptions. The reduction profile contains, besides other
function and macro names, the function name currentExceptionInst, which is
interpreted as undefined in the context below. Therefore, the predicate false
holds for the guard of the if -rule, and the first part of the if -statement is re-
moved.
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1 SelectTransitionStartPhase ≡
2 if (Self .currentExceptionInst �=undefined) then
3 Self .agentMode3 := selectException
4 Self .agentMode4 := startPhase
5 elseif (Self .currentStartNodes �= ∅) then
6 ...
7 else
8 ...
9 endif

ASM-Listing 4. Macro SelectTransitionStartPhase before Removal

1 SelectTransitionStartPhase ≡
2 if (Self .currentStartNodes �= ∅) then
3 ...
4 else
5 ...
6 endif

ASM-Listing 5. Macro SelectTransitionStartPhase after Removal

5 Related Work

A modular language definition as described in this paper can be found in the
language definition of UML [15]. The abstract syntax of UML is defined using a
meta-model approach, using classes to define language elements and packages to
group language elements into medium-grained units. The core of the language
is defined by the Kernel package, specifying basic elements of the language such
as packages, classes, associations and types. Each meta-model class/language
element has a description of its semantics in an informal way.

UML has a profile mechanism that allows metaclasses from existing metamod-
els to be extended and adapted, using stereotypes. Semantics and constraints
may be added as long as they don’t conflict with existing semantics and con-
straints. For example, the profile mechanism is used to define a UML profile for
SDL, enabling the use of UML 2.0 as a front-end for SDL-2000.

In [16], the concept of program slicing is extended to Abstract State Machines.
For an expressive class of ASMs, an algorithm for the computation of a minimal
slice of an ASM, given a slicing criterion, is presented. While the complexity of the
algorithmisacceptable intheaveragecase, theworstcasecomplexity isexponential.

ConTraST [17] is an SDL to C++ transpiler that generates a readable C++
representation of an SDL specification by preserving as much of the original
structure as possible. The generated C++ code is compiled together with a
runtime environment that is a C++ implementation of the formal semantics
defined in Z100.F3. ConTraST is based on the textual syntax of SDL-96, and
supports language profiles syntactically by allowing the deactivation of language
features. In particular, the language profiles Core, Static1 , Static2 and Dynamic
- as described in section 2 - are supported. In order to support language profiles



62 R. Grammes

semantically, we can use the results of the formally defined derivation of language
profiles from the complete formal semantics definition. Using the SDL-profile
tool, the translation from the reduced formal semantics definition into a C++
runtime environment can be performed semi-automatic. The resulting runtime
environment is smaller, leading to a more efficient execution.

6 Conclusions and Outlook

In this paper, we have introduced the concept of language profiles as well-defined
subsets of a language, leading to smaller, more understandable language defini-
tions. Tool support can be based on these language profiles, leading to faster tool
development and less expensive tools. Based on the smaller language definitions,
code optimisations can be performed when generating code from a specification.

We have argued for the importance of formal semantics for language defini-
tions, and the importance of deriving the formal semantics of language profiles
from a common formal semantics definition. This allows us to compare the for-
mal semantics of different language profiles, and to make assertions about the
consistency of language profiles.

To achieve deterministic results, we have formalised the process of deriving for-
mal semantics for language profiles from a complete formal semantics definition,
based on Abstract State Machines and applied to the formal semantics of SDL-
2000. This process is based on reducing the signature of the ASM, subsequently
leading to the reduction of parts of ASM-rules that become unreachable. We have
implemented this formally defined process in an SDL-profile tool, making it pos-
sible to validate the results of the reduction. This tool was used to create several
language profiles for SDL-2000, by removing language features from the formal
semantics definition, such as exceptions, timers, save and composite states.

Based on the formally defined process for the derivation of SDL language
profiles, we can define precise criteria for the consistency of language profiles.
However, currently the consistency has to be verified manually. Our future work
will focus on modifying the derivation process, so that as many automatic guar-
antees as possible can given for the consistency of the derived profiles.
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14. von Löwis, M., Piefel, M.: The Term Processor Kimwitu++. In Callaos, N.,
Harnandez-Encinas, L., Yetim, F., eds.: SCI 2002: The 6th World Multiconference
on Systemics, Cybernetics and Informatics, Orlando, USA (2002)

15. OMG Unified Modelling Language Specification: Version 2.0 (2003) www.uml.org.
16. Nowack, A.: Slicing Abstract State Machines. In Zimmermann, W., Thalheim, B.,

eds.: Abstract State Machines 2004 - Advances in Theory and Practice. Volume
3052 of LNCS., Wittenberg, Germany, Springer (2004) pp.186–201

17. Weber, C.: Entwurf und Implementierung eines konfigurierbaren SDL Transpilers
für eine C++ Laufzeitumgebung. Master’s thesis, University of Kaiserslautern,
Germany (2005)


	Introduction
	Language Profiles and Modules
	Problem and Definition
	Approach for the Generation of Language Profiles
	Consistency of Language Profiles
	Derivation of Language Profiles with the Top-Down Approach

	Formalisation
	Formalisation Signature
	Formal Reduction of ASM Rules
	Formal Reduction of ASM Expressions

	SDL-Profile Tool
	Toolchain
	Results

	Related Work
	Conclusions and Outlook


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




