
Towards Integrated Tool Support for the User

Requirements Notation

Jean-François Roy, Jason Kealey, and Daniel Amyot

SITE, University of Ottawa, Canada
{jroy, jkeal036, damyot}@site.uottawa.ca

Abstract. The User Requirements Notation (URN) combines the Goal-
oriented Requirement Language (GRL) with the Use Case Map (UCM)
scenario notation. Although tools exist in isolation for both views, they
are currently not meant to work together, hence preventing one to ex-
ploit URN to its fullest extent. This paper presents jUCMNav, a new
Eclipse-based tool that supports both UCM and GRL in an integrated
way. jUCMNav supports links between the two languages that can be
exploited during analysis. An overview of the current editing and anal-
ysis capabilities is given, with a particular emphasis on the new concept
of GRL strategies, which simplify the evaluation of GRL models. The
extensibility of the tool is also discussed.

1 Introduction

The User Requirement Notation (URN) [1,8] enables the modeling and analysis
of user and system requirements at a high level of abstraction. It combines
two complementary views: the Goal-oriented Requirement Language (GRL) for
modeling goals, (non-functional) requirements, alternatives, and rationales [16],
and the Use Case Map (UCM) notation for operational scenarios superimposed
onto architectural components [17]. An overview of URN’s concrete syntax is
given in Appendix A, and a simple URN model is introduced in Section 2.

Tools exist in isolation for each individual view. The UCMNav tool [12] sup-
ports the various applications of the UCM notation via an X11-based graphical
editor and transformation procedures to various target languages (including Mes-
sage Sequence Charts). UCMNav however suffers from usability and maintain-
ability issues and only the scenario-oriented view of URN is supported, not GRL.
For creating and analysing GRL models, the best solution currently available is
OpenOME [18]. This visual editor supports multiple goal and agent languages
(including GRL, the NFR framework, and i*) and can be integrated to different
development environments (Protégé and Eclipse). However, as it does not cover
scenario languages, URN is again only partially supported.

This paper introduces jUCMNav, a new open-source tool for editing and
analysing URN models. This tool is a plug-in for Eclipse, an extensible Java-
based development platform. jUCMNav was first developed to support the UCM
notation [9], but GRL was recently added to achieve complete coverage of URN.

R. Gotzhein and R. Reed (Eds.): SAM 2006, LNCS 4320, pp. 198–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Integrated Tool Support for the User Requirements Notation 199

This tool enables the creation of links between elements of both views, hence pro-
ducing an original and highly desirable integration. A particular emphasis was
put on producing a usable and maintainable tool to support transformations and
explore extensions to the notation.

In this paper, our goal is to provide an overview of jUCMNav and of its
capabilities, as this is the first tool that supports the URN notation in its entirety.
A simple URN model is first introduced in Section 2. Section 3 gives an overview
of jUCMNav’s architecture and metamodel while Section 4 presents the editing
capabilities of the tool. Section 5 describes analysis capabilities, with a particular
emphasis on the new concept of strategies, which support multiple evaluations of
GRL models in a simple way. In Section 7, we give an overview of the extensibility
of the tool, and then we conclude with a discussion of ongoing development work.

2 A Simple URN Model

This section includes a brief example that illustrates part of the URN notation
and some of its typical uses. The interested reader can access more comprehensive
tutorial material online1.

The context is the following. Since security has become an important objective
in a company that develops Web-based applications, the company is considering
improving how to access these applications securely. Different stakeholders may
have different concerns related to that new feature. For instance, management
is interested in minimal costs, users desire a system that is easy to use, and
company shareholders want to see a good return on their investments. Also,
alternative means of authentication (e.g., passwords, cardkeys, or biometric in-
formation) can lead to different impacts on how well security is achieved, and at
what cost.

In GRL, softgoals (clouds) are used to express qualitative and non-functional
concerns such as security and performance, whereas goals (ellipses) are used
to denote functional concerns. Tasks (hexagons) usually represent element of
solutions used to achieve goals. All these types of intentional elements can be
decomposed as AND/OR graphs, and they can also contribute to each other
at various degrees, positively or negatively. An example GRL model capturing
some of the aspects of our example is shown in Figure 1.

Stakeholders can be captured as actors (dashed circles), which can include
intentional elements of interest (see Figure 2). Actors may depend on each other
to achieve goals or tasks, or for resources to be produced. One such dependency
is depicted in our example: shareholders depend on users for a high utilization
of the system. The ease of use on one side can hence influence the return on the
investment on the other side.

Some aspects of requirements are more operational or architectural in nature
and are better represented as scenarios. The UCM view models scenarios as
causal sequences of responsibilities (crosses on a path). Scenarios evolve from
1 Please see http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/ and

http://www.UseCaseMaps.org for tutorials, tools, and demonstrations.

200 J.-F. Roy, J. Kealey, and D. Amyot

Fig. 1. Simple GRL diagram with decompositions and contributions

start points (filled circles), representing pre-conditions or triggering events, to
end points (bars), representing post-conditions or resulting events. The various
scenario elements can be bound to actors and architectural components (rect-
angles). Paths can be forked and joined using alternatives and concurrency. An
AND-Fork is used in Figure 3 to split the path into two concurrent paths. Com-
plex maps can be decomposed in sub-maps. Stubs (diamonds) are containers for
such sub-maps, called plug-ins. Start/end points in the plug-in can be bound to
input/output segments of the stubs, hence ensuring continuity of the scenarios
across multiple map levels.

URN models can help answer many analysis questions at that level, such as:

– How are the top-level goals affected by a given selection of alternatives? For
instance, each of the alternative authentication task could have side-effects
(called correlations in GRL) on other goals in the system, e.g. cost. The best
trade-off can hence be searched by studying multiple combinations, which
we will call strategies in Section 5.1.

– How best can we satisfy the goals of the various stakeholders?
– What is the most suitable component architecture to support the scenarios

while achieving a good global trade-off?
– If some selected GRL tasks and goals describe operations or activities, are

they supported by scenarios in the UCM model?
– Are the scenarios documented the ones stakeholders really want?
– What happens to the scenarios when objectives change, and vice-versa?

However, to answer such questions and help automating the analysis process,
the elements of the two views need to be linked explicitly. This is one of the

Towards Integrated Tool Support for the User Requirements Notation 201

Fig. 2. Simple GRL diagram with actors and dependencies

Fig. 3. Simple UCM diagram (map)

main motivations behind the creation of the jUCMNav tool. To enable this
support, we created a metamodel for GRL and linked it to the UCM part. We also
created implementation metamodels to generalize and reuse the implementation
mechanisms already present in jUCMNav’s UCM editor. These are explained in
the next section.

3 jUCMNav Architecture and Metamodels

Based on a Model-View-Controller (MVC) architecture, jUCMNav makes exten-
sive use of two complementary Eclipse plug-ins: the Graphical Editing Frame-
work (GEF) [5] and the Eclipse Modeling Framework (EMF) [4]. GEF provides
rich reusable components and a flexible infrastructure for creating graphical ed-
itors (MVC’s view and controller). EMF handles the model part of MVC with
a set of Java classes generated automatically from a metamodel (e.g. URN’s)
commonly expressed with UML class diagrams. EMF also provides the serializa-
tion of models in XMI, hence automating the saving/loading of models. Changes
to the metamodel are automatically replicated in the implementation with min-
imal coding effort. However, we observed that several types of changes (e.g.,

202 J.-F. Roy, J. Kealey, and D. Amyot

deleting/renaming an attribute or a class) can break backward compatibility of
the XMI files produced [3].

We have developed two distinct metamodels in order to split the core URN con-
cepts from the additions required to capture graphical layout information as well
as elements and attributes that have no semantic impact. Thus, we separated the
abstract syntax from the internal representation of the concrete graphical syntax.

The abstract metamodel defines the concepts of both URN views. For the
GRL sub-notation, the abstract syntax metamodel in Figure 4 defines basic GRL-
Graphs, which contain intentional elements (softgoal, goal, resource and task),
beliefs, actors, and links (contribution, decomposition and dependency). For the
UCM sub-notation (not shown here), the metamodel defines concepts such as
UCMmaps, which contain component references, path nodes, and node connec-
tions. Different sub-types of path nodes exist, such as start and end points, re-
sponsibility references, AND/OR forks and joins, waiting places, and timers. The
complete metamodel also includes classes and associations describing component
and responsibility definitions, performance annotations, and scenario definitions.

IntentionalElementType

Softgoal
Goal
Task
Ressource

<<enumeration>>

Belief

author : String

IntentionalElementRef

criticality : Criticality = None
priority : Priority = None

IntentionalE lement

type : IntentionalElementType
decompositionType : DecompositionType = And

0..*

1

-refs 0..*

-def 1

ElementLink

LinkRef

1

0..*

-link 1

-refs
0..*

BeliefLink

ActorActorRef

0..1
0..* -parent

0..1

-children
0..*

1
0.. *

-contDef

1-contRefs0.. *GRLGraph 0..*

1

-contRefs

0..*-diagram

1

Connection

0..*

1

-connections
0..*

-diagram
1

GRLNode

0.. *

1

-nodes
0.. *

-diagram

1
0..1

0.. *

-contRef
0..1

-nodes

0.. *

1

0..*

-source
1-succ

0..*
0..*

1

-pred
0..*

-target
1

Priority

High
Medium
Low
None

<<enumeration>>

DecompositionType
And
Or

<<enumeration>>

Crit icality

High
Medium
Low
None

<<enumeration>>

ContributionType

Make
Help
SomePositive
Unknown
SomeNegative
Hurt
Break

<<enumeration>>

Decomposition
Contribution

contribution : ContributionType = Unknown
correlation : boolean = false

Dependency

Fig. 4. Main elements of the abstract URN/GRL metamodel

From this abstract syntax metamodel, we developed an implementation meta-
model and used it to generate Java code via EMF. In jUCMNav, URN’s imple-
mentation metamodel is composed of nearly 100 classes.

We transformed the abstract syntax metamodel to an implementation meta-
model in two steps. First, we created packages for GRL and UCM, and added a
URNcore package that defines concepts common to GRL and UCM, including a

Towards Integrated Tool Support for the User Requirements Notation 203

generic URNmodelElement class, which is a superclass of most of the URN con-
ceptual classes. Also, amongst the most important elements in this package are
the interfaces that define the common traits between both URN sub-languages,
such as diagrams, nodes, connections, containers, and container references. A
container is an element that can contain nodes whereas references allow for mul-
tiple instances of a container in the same URN model. These generalizations
enable the simplification and standardization of the editors for both notations.

The second step of the metamodel refactoring was the addition of (visual)
attributes and classes for the implementation of our concrete syntax. Attributes
are elements such as position (x, y), size (height, width), color, and informal
descriptions. These changes are mainly located in the interfaces of the URNcore
package. We also added classes in both of the notations to support link routing
in URN diagrams.

Figure 5 shows how the basic GRL notation implements the URN abstract
interfaces. For instance, the ActorRef class implements the IURNContainerRef
interface. Note that all the classes, attributes, and associations from the abstract
syntax metamodel are preserved in this implementation metamodel.

Contribution

- contribution : ContributionType = Unknown
- correlation : boolean = false

Actor

ActorRef

IURNContainer

- lineColor : String
- fillColor : String
- filled : boolean = false

(from URNcore)

<<Interface>>

IURNNode

- x : int
- y : int

(from URNcore)

<<Interface>>

IURNContainerRef

- x : int
- y : int
- width : int
- height : int
- fixed : boolean = false

(from URNcore)

<<Interface>>

1

0..* -contDef

1-contRefs

0..*

0..1

0..*

-parent

0..1

-children
0..*0..1

0..*

-contRef
0..1

-nodes
0..*

IURNConnection
(from URNcore)

<<Interface>>

1

0..*
-source

1

-succ
0..*

0..*

1
-pred

0..*

-target

1

IURNDiagram
(from URNcore)

<<Interface>>

0..*

1

-nodes
0..*

-diagram1

0..*

1 -contRefs

0..*-diagram

1

0..*

1
-connections 0..*

-diagram
1

GRLNode

Belief

- author : String

IntentionalElementRef

- criticality : Criticality = None
- priority : Priority = None

IntentionalElement

- type : IntentionalElementType
- decompositionType : DecompositionType = And
- lineColor : String
- fillColor : String
- filled : boolean = false

0..*

1

-refs 0..*

-def 1

ElementLink

LinkRef

1
0..*

-link1

-refs
0..*

LinkRefBendpoint

- x : int
- y : int

1

0..*-linkref

1 -bendpoints

0..*

GRLGraph

BeliefLink

Dependency Decomposition

Priority

- High
- Medium
- Low
- None

<<enumeration>>

DecompositionType

- And
- Or

<<enumeration>>

Criticality

- High
- Medium
- Low
- None

<<enumeration>>

ContributionType

- Make
- Help
- SomePositive
- Unknown
- SomeNegative
- Hurt
- Break

<<enumeration>>

IntentionalElementTy
pe

- Softgoal
- Goal
- Task
- Ressource

<<enumeration>>

Fig. 5. Main elements of the implementation URN/GRL metamodel

The new LinkRefBendpoint class has been added to support link routing. This
class defines the position in a graph where its associated link should be routed.
This package also includes the analysis attributes of the GRL model, i.e. eval-
uations and strategies, which will be further explored in Section 5. The same

204 J.-F. Roy, J. Kealey, and D. Amyot

UCMspec
(from UCM)

GRLspec
(from GRL)

URNdefinition
(from URNcore)

URNspec

- name : String
- description : String
- author : String
- created : String
- modified : String
- specVersion : String
- urnVersion : String
- nextGlobalID : String

0..1

1

-ucmspec0..1

-urnspec1

0..1

1

-grlspec0..1

-urnspec1

1

1

-urndef 1

-urnspec
1

URNmodelElement

- id : String
- name : String
- description : String

(from URNcore)

URNlink

0..*
1

-urnLinks
0..*

-urnspec

1
0..*

1

-fromLinks
0..*

-fromElem 1 1

0..*

-toElem
1

-toLinks
0..*

Fig. 6. Links in the URN package of the implementation metamodel

interfaces are reused in GRL and UCM. For instance, GRL nodes and UCM
path nodes both implement the IURNNode interface, as they both have a loca-
tion and can be moved, connected together, and bound to a IURNContainerRef
container (i.e., an ActorRef in GRL and a ComponentRef in UCM). Most of the
editing operations performed on the nodes, links, and components hence become
common to GRL models and UCM models.

To complete the integration of the two notations, we also added a top-level
package named URN (Figure 6) that includes URN definitions, GRL specifica-
tions, and UCM specifications. In addition, the URNlink class (also part of the
abstract syntax) allows one to define relationships between any pair of URN
model elements. This important capability will be explored in greater detail in
Section 5.3.

4 jUCMNav Editor Capabilities

Our new URN tool supports editing both the Use Case Map notation (Figure 7)
and the Goal-Oriented Requirements Language (Figure 8).

The core path elements are supported: start points, end points, responsibil-
ities, stubs, waiting places, timers, and forks/joins (both alternative and con-
current paths). Furthermore, various component types (actor, agent, process,
and team) are available, as is binding a component or path element to a parent
component. The more unconventional elements, such as timestamps, dynamic re-
sponsibilities, and dynamic components have not yet been integrated, but their
addition should be straightforward. jUCMNav only allows the creation of syn-
tactically valid UCM models, even taking into consideration implicit loops. Not
only is the creation and manipulation more intuitive than other UCM/GRL
tools, but the deletion mechanisms are richer, more robust, and less restrictive.

The GRL editor supports most of the constructs defined in the draft standard
[16]. The intentional elements supported are goals, softgoals, tasks, and resources.
These elements can have multiple references to simplify the creation and visual-
ization of complex model via multiple diagrams. These references can be bound to
actors, influencing the result of some analysis features offered in the tool.

Towards Integrated Tool Support for the User Requirements Notation 205

Fig. 7. UCM view in jUCMNav

In contrast with previous GRL tools and for a better integration with its UCM
counterpart, the actor’s boundary (dashed circle) is not optional and has many
commonalities with UCM components in its implementation and behaviour.
Beliefs are also available in the application; however they are used mainly to
document rationales in the graphical view of the model when linked to inten-
tional elements (without affecting analysis). Finally, the links supported include
AND/OR decompositions, contributions, correlations, and dependencies, with
their respective attributes, annotations, and graphical representations.

In addition to conventional dropdown and contextual menus, the new editor
infrastructure offers a good user experience thanks to drag and drop editing,
group manipulation and especially unlimited undos and redos. Furthermore,
taking advantage of the standard Eclipse views, jUCMNav features an outline
(hierarchical and graphical), a properties view, and a resource view. These views
can be moved, closed, or maximized. Both GRL and UCM diagram editors use
the same Eclipse-based user interface metaphors. Images can also be exported
in various formats.

A new feature in jUCMNav that is available to both notations is an optional
auto-layout mechanism, which relies on Graphviz [13] to position the diagram
elements. Although imperfect, the presence of this feature is necessary in the

206 J.-F. Roy, J. Kealey, and D. Amyot

Cardkey

Biometrics

Fig. 8. GRL view with strategy analysis in jUCMNav

context of automated reverse/round-trip requirements engineering. A tool that
generates UCM/GRL models from design artifacts such as code, execution traces,
requirements, or textual use cases hence does not require manual positioning of
the elements.

The auto-layout mechanism is also used in jUCMNav’s catalogues, which are
repositories of reusable GRL models or patterns often used to describe common
model elements and relationships related to security, performance, and other
non-functional aspects. Using the import/export facilities integrated in Eclipse,
this feature allows one to export a model’s intentional element definitions and
links to an XML file. Modellers can then reuse patterns from such catalogues to
kick-start new URN models or add elements to existing ones. The import creates
the GRL definitions and links in the new model and builds a new GRL diagram
representing the pattern.

5 New Analysis Capabilities for URN Models

5.1 GRL Strategies

By providing access to a complete URN model, jUCMNav can offer novel analysis
mechanisms. In order to more easily analyze GRL models and find what selection
of alternatives can lead to the best trade-off amongst the often conflicting goals
of the stakeholders, we developed the concept of GRL strategies, which are user-
defined sets of initial evaluations on a GRL graph (Figure 9). These evaluations

Towards Integrated Tool Support for the User Requirements Notation 207

are satisfaction levels initially assigned to some of the intentional elements in
the model (often the leaves of the graph), which are then propagated to the
top-level intentional elements through the various links. Evaluations are used to
determine how well goals in a model are achieved in a given context.

URNmodelElement

IntentionalElement

type : IntentionalElementType
decompositionType : DecompositionType = And

Evaluation

evaluation : int = 0
1 0..*

-intElements

1

-evals

0..*

StrategiesGroupGRLspec

0..*

1

-intElements
0..*

-grlspec
1

1 0..*

-grlspec

1

-groups

0..*

EvaluationStrategy

author : String

0..*

1

-evaluations
0..*

-strategies 1

0..*

1

-strategies0..*

-group
11

0..*

-grlspec1

-strategies

0..*

Fig. 9. Evaluation strategies metamodel

In jUCMNav, strategies can be created, grouped, modified, evaluated, and
deleted through the Strategies View. Once a strategy is selected (e.g., Password
strategy in Figure 8), the user can access and modify the initial satisfaction level
of an intentional element by using the Properties View.

In GRL, satisfaction levels for intentional elements are shown graphically us-
ing a qualitative scale (satisfied, weakly satisfied, weakly denied, and denied).
During jUCMNav’s requirement elicitation phase, we realized that some users
were interested in having a quantitative interpretation of satisfaction levels in a
strategy. We have hence implemented an equivalent but more granular represen-
tation using numerical values between -100 (denied) and +100 (satisfied). These
values are used to display feedback on the affected intentional elements. Both
the numerical value and the corresponding qualitative symbol can be used. In
addition, element references are color-coded with shades varying from red (-100)
to green (+100).

Once a value is entered in a strategy, the propagation algorithm is applied
immediately and the user can see the result on the fly. Users can also change the
evaluation value of any node in the model, not only the leaf nodes.

The evaluation algorithm, inspired from [1,7], has been implemented with an
automatic conflict resolution mechanism that does not require user involvement.
Evaluations depend on the various links (decomposition, contribution, and de-
pendency) between the intentional elements. An evaluation is first calculated
from the Decomposition links, as a standard AND/OR graph. For AND and OR
decompositions, the results correspond respectively to the minimal and maximal
evaluations of the source nodes. In our metamodel (Figure 4), the decomposition
type is an attribute of the target IntentionalElement node, which causes a node
to be decomposed by only one type of decomposition.

208 J.-F. Roy, J. Kealey, and D. Amyot

The propagation algorithm then evaluates the Contribution links. For each
contribution x of a target element with N input contributions, the satisfaction
level of the source element and the contribution level are used as described in
Algorithm 1. The contribution level, LEVx, is given a numerical value between
-1 and 1 according to the contribution type on the link (1 for make, 0.5 for help,
-1 for break, etc.). The satisfaction level, NEV ALx, is normalized to a value
between 0 (denied) and 100 (satisfied). The normalized evaluation is multiplied
by the contribution level. The results of each of the contributions are added and
normalized to provide the total contribution, TCON , between -100 and 100.

The normalized evaluation is calculated using the Tolerance attribute, which
is set to 0 by default but can be modified by the jUCMNav user. It defines the
range of values that are considered satisfied (or denied). For example, with a
tolerance of 10, evaluations between 90 and 100 are considered fully satisfied
and evaluations between -90 to -100 are considered fully denied. If there are no
make/break contributions, then the result is normalized to weakly satisfied or
weakly denied (100± (1+Tolerance)) and is added to the decomposition value.

Algorithm 1: Contribution evaluation

TCON =
N∑

x=1

NEV ALx × LEVx

if ((TCON ≥ (100 − Tolerance)) and (LEVx=1..n �= 1))
then

TCON = 100 − (1 + Tolerance)
else

if ((TCON ≤ (−100 + Tolerance)) and (LEVx=1..n �= −1))
then

TCON = −100 + (1 + Tolerance)
endif

endif

When jUCMNav’s strategy view is used (see Figure 8), elements with an initial
value in the selected strategy are indicated with the * annotation. Figure 10
shows the evaluation of a given strategy on the GRL diagram of Figure 1, and
its impact on Security and Performance.

Finally, the Dependency links are evaluated. The minimal value among the
dependees is compared with the current evaluation of the source node. The
resulting evaluation corresponds to the minimum value of those two evaluations.
The rationale is that an intentional element cannot have a higher value than
those it depends on. Figure 11 shows a case where an element A depends on two
other elements, B and D, which depend on elements C and E respectively. By
default, evaluations are set to 0. Element C does not influence the evaluation of
B because it is greater than the default evaluation. However, element E is less
than the default evaluation of element D, which causes D’s evaluation to become
-30. This is in turn propagated to element A.

Towards Integrated Tool Support for the User Requirements Notation 209

Fig. 10. Evaluation of a GRL model

Fig. 11. Dependencies evaluations

The implementation of this algorithm has been done in a generic and open way
using the strategy design pattern [6] (not to be confused with GRL strategies),
which offers the possibility to easily implement other propagation and evalua-
tion algorithms. To implement such an extension, the developer makes use of the
provided Eclipse extension point, which includes methods to calculate the eval-
uations of one node based on its decomposition, dependency, and contribution
links, as well as methods to specify how the evaluations should be propagated
in the model. This means that several variants of this algorithm, with different
tolerances and logic, could be supported by jUCMNav.

210 J.-F. Roy, J. Kealey, and D. Amyot

Fig. 12. GRL diagram annotated with links and actor evaluations

5.2 Actor Evaluation

Our tool also offers a novel analysis label for actors in order to help visualize ne-
gotiations between stakeholders and assess the global satisfaction level of actors
for a given strategy. This actor label is a value between -100 and 100 computed
from the criticality and priority attributes of its intentional elements references.
For a given actor, the evaluation algorithm iterates through its list of bound in-
tentional elements. For both priority and criticality, it multiplies the evaluation
of each element by the corresponding factor (by default, 1.5 for high, 1.0 for
medium, 0.5 for low and 0 for none), and computes the average per bound in-
tentional element. Finally, it sums up both evaluations and normalizes the result
between -100 and 100. A simple example is shown in Figure 12, which illustrates
part of a more complex model that includes Figure 10 and the strategy discussed
in the previous section. The selection of the CardKey alternative that led to a
good security now also leads to high costs that will dissatisfy management.

5.3 URN Links

The integration of UCM and GRL views in the same tool allows for the creation
of various types of traceability links between elements of both notations, as shown
in Figure 6. These links can be used to measure the impact of a modification
to any evolving GRL/UCM diagram on the other aspects of the model. They
can also improve consistency between the URN views. For instance, links can
be defined between GRL intentional elements or actors as source, and UCM
responsibilities, components, or maps as target. In this case, when the user selects
a strategy, the satisfaction level of the source GRL element is also displayed

Towards Integrated Tool Support for the User Requirements Notation 211

on the target UCM element at the other end of the link (if any). Using this
approach, one can evaluate the impact of a goal strategy on the operational and
architectural aspects of the model.

The partial URN model in Figure 13 extends the simple scenario of Figure 3
to one that authenticates the user and then processes the request over encrypted
channels if the request and the user are valid. This diagram is part of the same
URN model as Figure 10 and Figure 12. In this model, URN links were created
from the GRL Encryption task to the UCM Encryption and Decryption compo-
nents, as well as to the UCM Encrypt and Decrypt responsibilities. Other URN
links are set between the User actor in GRL and the User component in UCM,
as well as between the Authentication tasks (Cardkey, Password, Biometric) and
each of the corresponding UCM plug-in maps (bound to the Authenticate stub
but not shown here).

The triangles in this figure and the previous ones are not part of the URN
notation. They indicate the presence of URN links, and the evaluation results
from the corresponding GRL elements are displayed between curly brackets. For
instance, the Encryption UCM component shows the degree of satisfaction of
the linked Encryption GRL task. Feedback is updated automatically as other
strategies are selected.

Fig. 13. UCM diagram annotated with links and actor evaluations

6 Extensibility of the Tool

jUCMNav can be extended with new algorithms for evaluating strategies in a
GRL graph, as discussed in Section 5.1. Taking advantage of Eclipse’s component
model, the tool also offers other extension opportunities.

As suggested previously, URN models can be generated from other artefacts.
A specific example is the automatic generation of UCM models from textual
use cases defined in a structured natural language. Textual use cases are inher-
ently ambiguous, and completeness and consistency are often hard to analyze.

212 J.-F. Roy, J. Kealey, and D. Amyot

Tools already exist to extract domain models, scenarios, and finite state ma-
chines from textual use cases to help facilitate this analysis (e.g., UCEd, a use
case editor [15]). We recently demonstrated the usefulness of jUCMNav exten-
sion points with a complementary plug-in that generates graphical UCM models
(with automatic layout) from validated UCEd project files [11].

jUCMNav’s extension points, which provide access to the URN model under
design, were also used in a plug-in that enables the import and synchronization of
URN models in a requirements management system, namely Telelogic DOORS.
jUCMNav can export URN models (i.e., UCM and GRL views) via script files in
the DOORS eXtensible Language (DXL). URN elements can be linked to other
requirements in DOORS and both views can be kept synchronized as they evolve
(e.g., by re-importing the modified URN model) [10]. Figure 14 shows one of the
views, corresponding to a UCM diagram, as seen from DOORS.

Fig. 14. URN model in Telelogic DOORS

7 Conclusions and Future Work

The development of jUCMNav allowed us to validate many of the existing URN
concepts recently expressed with a metamodel. This is the first tool that sup-
ports both URN views in a uniform and unified way, thanks in part to the
generalization done at the level of the implementation metamodel, which eased
the addition of the GRL editor by reusing much of the code developed for the
original UCM editor. This open platform also allowed us to prototype and to
explore new URN concepts related to GRL strategies, propagation algorithms,

Towards Integrated Tool Support for the User Requirements Notation 213

and catalogues, as well as various useful links and connections between GRL
and UCM. Strategies and links for URN models contribute greatly to answer-
ing the types of questions mentioned in Section 2. Extension points were added
and exercised for the creation of various functionalities such as use case import,
integration with a requirements management system, image export, catalogue
export, and support for multiple GRL evaluation algorithms.

In the near future, the missing UCM notation elements will be added. Also,
jUCMNav will be extended to support scenario definitions enabling dynamic
analysis and transformations to MSCs, UML, and test goals [2], as well as an
export mechanism to the Core Scenario Model for performance modelling [19]. A
simple data model compatible with SDL is being added, and UCM scenarios will
be defined with a user interface similarly to GRL strategies. We will also add an
import filter for the old UCMNav file format, for backward compatibility.

The integration of GRL and UCM in one tool opens the door to many new
possibilities. We plan to add better analysis capabilities in jUCMNav that will
measure the impact of strategic decisions on the scenario and architectural as-
pects of the model. This will be possible by building dynamic views of the UCMs.
For example, operational choices for goals, realized through tasks, have an in-
fluence on the system architecture. We will modify the UCM views depending
of the operational choices made in the GRL strategy. The main contribution
of this feature would be to visualize impact of goals and non-functional choices
through scenarios. We will also work on further URNlink types and on improving
the modeling and analysis process with such links.

Acknowledgments

This research was supported by NSERC, through its programs of Strategic
Grants, Discovery Grants, and Postgraduate Scholarships. We are grateful to
E. Tremblay, J.-P. Daigle, J. McManus, Y. Kim, J. Sincennes, and G. Muss-
bacher for various contributions to the tool. We also thank A. Prinz and the
anonymous reviewers for their comments on the workshop version of this paper.

References

1. Amyot, D. and Mussbacher, G: URN: Towards a New Standard for the Visual
Description of Requirements. In E. Sherratt (Ed.): Telecommunications and be-
yond: The Broader Applicability of SDL and MSC (SAM 2002). Lecture Notes in
Computer Science 2599, Springer 2003, 21–37.

2. Amyot, D., Cho, D.Y., He X., and He, Y.: Generating Scenarios from Use Case Map
Specifications. Third International Conference on Quality Software (QSIC’03), Dal-
las, USA, November 2003, 108-115.

3. Amyot, D., Farah, H., and Roy, J.-F.: Evaluation of Development Tools for Domain-
Specific Modeling Languages. Fifth Workshop on System Analysis and Modelling
(SAM06), Kaiserslautern, Germany, May 2006. LNCS 4320, Springer, 183-197.

4. Eclipse: Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/
5. Eclipse: Graphical Editing Framework (GEF), http://www.eclipse.org/gmf/

214 J.-F. Roy, J. Kealey, and D. Amyot

6. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.M.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, USA, 1995.

7. Giorgini, O., Mylopoulos, J. and Sebastiani, R.: Goal-Oriented Requirements Anal-
ysis and Reasoning in the Tropos Methodology. Engineering Applications of Arti-
ficial Intelligence, 18(2):159–171, March 2005.

8. ITU-T: Recommendation Z.150, User Requirements Notation (URN) – Language
Requirements and Framework. Geneva, Switzerland, 2003.

9. Kealey, J., Tremblay, E., Daigle, J.-P., McManus, J., Clift-Noël, O., and Amyot,
D.: jUCMNav: une nouvelle plateforme ouverte pour l’édition et l’analyse de
modèles UCM. 5ième colloque sur les Nouvelles TEchnnologies de la RÉpartition
(NOTERE’05), Gatineau, Canada, August 2005, 215–222.
http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/WebHome

10. Kealey, J., Kim, Y., Amyot, D., and Mussbacher, G.: Integrating an Eclipse-Based
Scenario Modeling Environment with a Requirements Management System. 2006
IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE’06), Ot-
tawa, Canada.

11. Kealey, J. and Amyot, D.: Towards the Automated Conversion of Natural-
Language Use Cases to Graphical Use Case Maps. 2006 IEEE Canadian Conf.
on Electrical and Computer Engineering (CCECE’06), Ottawa, Canada.

12. Miga, A.: Application of Use Case Maps to System Design with Tool Support.
M.Eng. thesis, Dept. of Systems and Computer Engineering, Carleton University,
Ottawa. October 1998. http://www.UseCaseMaps.org/tools/ucmnav/

13. North, S., et al.: Graphviz, 2005. http://www.graphviz.org/
14. OMG: Unified Modeling Language (UML), version 2.0, October 2004.

http://www.uml.org/#UML2.0

15. Somé, S.: An Environment for Use Cases based Requirements Engineering. Formal
demonstration. 12th IEEE Int. Requirements Engineering Conf. (RE04), Japan,
September 2004. http://sourceforge.net/projects/uced/

16. URN Focus Group: Draft Rec. Z.151 – Goal-oriented Requirement Language
(GRL). Geneva, Switzerland, Sept. 2003.

17. URN Focus Group: Draft Rec. Z.152 – Use Case Map Notation (UCM). Geneva,
Switzerland, Sept. 2003.

18. Yu, E.: OpenOME, an open-source requirements engineering tool, 2005.
http://www.cs.toronto.edu/km/openome

19. Zeng, Y.X.: Transforming Use Case Maps to the Core Scenario Model Represen-
tation. M.Sc. thesis, SITE, University of Ottawa, Canada, June 2005.

Towards Integrated Tool Support for the User Requirements Notation 215

Annex A: Overview of the User Requirements Notation

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

(b) GRL Satisfaction Levels

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

Satisficed

Weakly Satisficed

Undecided

Weakly Denied

Denied

Conflict

(b) GRL Satisfaction Levels

Dependency

Contribution

Correlation

Means-end

Decomposition

(d) GRL Links

Dependency

Contribution

Correlation

Means-end

Decomposition

DependencyDependency

ContributionContribution

CorrelationCorrelation

Means-endMeans-end

DecompositionDecomposition

(d) GRL Links

?
Break Hurt Some- Unknown

Make Help Some+ Equal

(e) GRL Contributions Types

?
Break Hurt Some- Unknown

Make Help Some+ Equal

??
Break Hurt Some- Unknown

Make Help Some+ Equal

(e) GRL Contributions Types

OR

AND

(c) Link Composition
OROR

ANDAND

(c) Link Composition

Goal

Softgoal

Belief

Actor

Actor
Boundary

Resource

(a) GRL Elements

Task

Goal

SoftgoalSoftgoal

BeliefBelief

ActorActor

Actor
Boundary

Actor
Boundary

Resource

(a) GRL Elements

Task

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork
& Guarding
Conditions

…
…

…
…

OR-Join

…
…

…
… …
…

…
…

AND-JoinAND-Fork

(b) UCM Forks and Joins

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork
& Guarding
Conditions

…
…

…
…

OR-Join

…
…

…
…

[C1]
[C2]

[C3]

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork
& Guarding
Conditions

…
…

…
… …
…

…
…

OR-Join

…
…

…
… …
…

…
…

AND-JoinAND-Fork

…
…

…
……
…

…
… …
…

…
… …
…

…
…

AND-JoinAND-Fork

(b) UCM Forks and Joins

Start
Point

End
Point

Path

… …
… … Responsibility

Direction Arrow

… … Timestamp Point

Failure Point… …
Shared Responsibility… …

(a) UCM Path Elements

Start
Point

End
Point

Path

… …… …
… …… …… … Responsibility

Direction Arrow

… …… …… … Timestamp Point

Failure Point… …… …… …
Shared Responsibility… …… …… …

(a) UCM Path Elements

(c) UCM (Generic) Component(c) UCM (Generic) Component

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Timer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
Path

(e) UCM Waiting Places and Timers

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Waiting Place

Trigger
Path
(asynchronous)

Waiting
Path

Continuation
Path

Timer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
PathTimer

Timer
Release
(synchronous)

Waiting
Path

Continuation
Path

Timeout
Path

(e) UCM Waiting Places and Timers

… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …
S{IN1} E{OUT1}

(d) UCM Stubs and Plug-ins
Plug-in Map

… …IN1 OUT1… …… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …IN1 OUT1… …… …
S{IN1} E{OUT1}S{IN1} E{OUT1}

(d) UCM Stubs and Plug-ins
Plug-in Map

Fig. 15. Summary of the GRL and of (a subset of) the UCM concrete notations

	Introduction
	A Simple URN Model
	jUCMNav Architecture and Metamodels
	jUCMNav Editor Capabilities
	New Analysis Capabilities for URN Models
	GRL Strategies
	Actor Evaluation
	URN Links

	Extensibility of the Tool
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

