
Evaluation of Development Tools for

Domain-Specific Modeling Languages

Daniel Amyot, Hanna Farah, and Jean-François Roy

SITE, University of Ottawa, Ottawa, Canada
{damyot, hfarah, jroy}@site.uottawa.ca

Abstract. Creating and maintaining tools for domain-specific modeling
languages (DSML) demands time and efforts that often discourage po-
tential developers. However, several tools are now available that promise
to accelerate the development of DSML environments. In this paper, we
evaluate five such tools (GME, Tau G2, RSA, XMF-Mosaic, and Eclipse
with GEF and EMF) by observing how well they can be used to create
graphical editors for the Goal-oriented Requirement Language (GRL),
for which a simplified metamodel is provided. We discuss the evaluation
criteria, results, and lessons learned during the creation of GRL editors
with these technologies.

1 Introduction

Domain-specific modeling languages (DSML) are high-level languages specific
to a particular application or set of tasks. They are closer to the problem do-
main and concepts than general-purpose programming languages such as Java
or modeling languages such as UML. Many companies have such languages de-
veloped in-house to satisfy some of their specific modeling, scripting, or testing
needs. Improvements in productivity and comprehensibility are often cited as
benefits. Still, supporting a development environment for DSML with compilers,
(graphical) editors, translators, debuggers and other such tools is often onerous
and prevents the rapid adoption and use of DSML.

In the past decade, a strong interest in model-driven engineering has resulted
in various theories and technologies that support easier and faster development
of DSML environments. The purpose of this paper is to evaluate some of these
tool-supported technologies, namely the Generic Modeling Environment (GME),
Xactium’s XMF-Mosaic, the combination of the Eclipse Modeling Framework
(EMF) with the Graphical Editing Framework (GEF), and the UML profiling
capabilities of Telelogic Tau G2 and of Rational Software Architect (RSA). The
general context is one where we want to develop a graphical editor for an evolving
graphical modeling language defined by a metamodel. A common case study,
based on a simplified version of the Goal-oriented Requirement Language (GRL),
is used to assess the maturity of these technologies.

This paper is structured as follows. Section 2 describes our case study and
evaluation criteria. Each of the five tools is used in Section 3 to develop simple
GRL editors (with lessons learned), and then section 4 summarizes their main
strengths and weaknesses. We present our conclusions in section 5.

R. Gotzhein and R. Reed (Eds.): SAM 2006, LNCS 4320, pp. 183–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

184 D. Amyot, H. Farah, and J.-F. Roy

2 Evaluation Context

Our context is one where we are interested in approaches that can help develop
new DSML such as those found in ITU-T and OMG, together with early proto-
types for modeling environments. Accordingly, a representative metamodel for
such a language and a set of evaluation criteria are suggested to enable compar-
isons between the vari-ous approaches.

2.1 Simplified GRL Metamodel

Part of the proposal for ITU-T’s User Requirements Notation [9], the Goal-
Oriented Requirement Language (GRL) is used to specify and reason about
business or system goals, alternative means of achieving goals, and the rationale
for goals and alternatives. The notation is applicable to non-functional as well
as functional requirements. GRL has concepts for various intentional elements
including goals, softgoals, tasks, and beliefs. Various types of contributions link
these elements into AND-OR graphs used to evaluate strategies that best balance
the (often conflicting) goals stakeholders have in a system.

For the purpose of our evaluation, we have created a simple metamodel that
includes a subset of the language concepts (Figure 1). The classes and associ-
ations were structured to cover the most interesting element notations (named
nodes, links between nodes, links attached to links) and situations commonly

GRLModel
+ lastUpdate : Date

IntElement
+ name : String
+ description : String

GRLGraph
+ name : String
+ description : String1..*

+contains

1..*

0..*+composedOf 0..*

+partOf

Person
+ name : String
+ email : String0..*1..*

+belongsTo

0..*

+owns

1..*

Belief

0..1

0..*

+hasHolder 0..1

0..*

CriticalElement
+ criticality : Boolean

Goal Softgoal
0..1

0..*

+parent

0..1

+isComposedOf
0..*

Contribution
- type : ContributionType
- isCorrelation : Boolean

0..*+isExplainedBy 0..*

+hasContributor

+isContributorOf

GenericGoal
+hasContributee

+isContributeeOf

Task

0..*

0..1

+isComposedOf
0..*

+parent
0..1

Fig. 1. Simplified GRL metamodel

Evaluation of Development Tools for Domain-Specific Modeling Languages 185

found in metamodels (e.g., associations, generalizations, aggregations, typed at-
tributes, different multiplicities, and navigation). This metamodel is not meant
to be a realistic representation of GRL (this is outside the scope of this study).
A more complete discussion of the GRL elements and semantics can be found
in [1,15].

In terms of syntactical notation elements in the graphical representation, the
symbols corresponding to the metamodel in Figure 1 are summarized in Figure 2.

Contribution

Correlation

(b) GRL Links

?
Break Hurt Some- Unknown

Make Help Some+ Equal

(c) GRL Contributions Types

Goal

Softgoal

Belief

(a) GRL Elements

Task

Fig. 2. Graphical symbols for the selected GRL subset

2.2 Evaluation Criteria

Our study puts a particular emphasis on the following evaluation criteria, which
are most relevant in our context:

– Graphical completeness: Can we represent all the notation elements?
– Editor usability: Does the editor generated support undo/redo, load/save,

simple manipulation of notation elements and properties, etc.?
– Effort: How much time and effort is required to learn the approach and

produce DSML tools?
– Language evolution: How are older models handled when the language or

metamodel evolves?
– Integration with other languages: How can we support additional languages

(e.g., Use Case Maps in combination with GRL) or integrate with other
tools?

– Analysis capabilities: Can we easily analyze or transform models produced
with the graphical editor?

3 Evaluation of DSML Development Tools

In this section, we study five tools that support the development of DSML envi-
ronments. Our selection is based on the relative popularity or technical potential
of the tools, but many other tools could be studied as well (the DSM Forum dis-
cusses some of them [3], including the well-known MetaCase+ [12]).

186 D. Amyot, H. Farah, and J.-F. Roy

3.1 Generic Modeling Environment (GME)

The Generic Modeling Environment is a configurable framework developed at
Vanderbilt University and used to create domain-specific modeling environ-
ments [8]. Version 4.0 was used in our evaluation. Version 5.0 has been released
since then but the functionalities we used in our study have essentially remained
the same.

In GME, a DSML is described as a paradigm, which is essentially a meta-
model. GME comes with a plug-in (actually a DSML) that can be used to
describe paradigms with class diagrams. Figure 3 presents our GME paradigm
capturing our GRL metamodel.

GME’s meta-metamodel offers stereotyped concepts such as Atom (elemen-
tary object), Model (which can have inner parts and structures), Connection
(relationship between two objects within one model), Reference, Attribute, Set
(similar to a UML aggregation) and other FCO (first-class objects). Most of
the classes in our original GRL metamodel map directly to FCOs and Atoms in

Contribution
<<Atom>>

isCorrelation : bool
type : enum

BeliefContribution
<<Connection>>

ContributionDestination
<<Connection>>

SoftGoalSelf
<<Connection>>

TaskGoal
<<Connection>>

PersonRef
<<Reference>>

BeliefPerson
<<Connection>>

SoftGoal
<<Atom>>

Goal
<<Atom>>

GenericGoal
<<FCO>>

GraphPerson
<<Connection>>

Person
<<Atom>>

email : field
name : field

GRLGraph
<<Model>>

name : field
description : field

GRLModel
<<Model>>

lastUpdateDate : field

IntElement
<<FCO>>

name : field
description : field

Belief
<<Atom>>

ContributionSource
<<Connection>>

Task
<<Atom>>

CriticalElement
<<FCO>>

slevel : enum
criticality : bool

0..*

0..*

0..*

parent
0..1

isComposedOf 0..*

0..*

hasHolder 0..1

0..*

0..*

0..*

0..*

owns
1..*

isContributeeOf
0..*

isContributorOf
0..*

0..*

dst
0..*

src
0..1

isExplainedBy
0..*

hasContributee
1

hasContributor
1

0..*

0..*

belongsTo
0..*

composedOf 0..*

partOf

1..*

Fig. 3. GRL paradigm (metamodel) in GME

Evaluation of Development Tools for Domain-Specific Modeling Languages 187

the GME metamodel, but additional Connection classes are also required for the
original associations that are meant be manipulated (e.g., TaskGoal). Predefined
data types such as field, enum, and bool are also available. An Aspect can be used
to control the visibility of elements in the editor. OCL constraints can be added
to increase the precision of the paradigm and to enable syntactical validation of
user models in the target DSML editor.

GME supports the visual drawing of an object with a COM object called
decorator. This allows one to associate the GRL shapes and symbols of Figure 2
to their respective concept in the paradigm. Simple bitmaps can be used as
icons, but in this editor (implemented mainly by Y. Chu [2]) COM objects were
programmed in C++, with great efforts, to reproduce the symbols correctly
and have them automatically resized according to the length of the labels they
contain. GME also offers a higher-level C++ interface called Builder Object
Network, which is simpler to use than plain COM decorators but which is more
limited.

Once a paradigm is created (and the decorators defined), it can be registered
in GME and then used as an editor, as shown in Figure 4. The framework
provides many features for free, including loading/saving (binary and XML),
multiple undo/redo, drag and drop interface for the creation of model elements,
validation against the metamodel multiplicities and OCL constraints, printing,

Fig. 4. GRL editor with GME

188 D. Amyot, H. Farah, and J.-F. Roy

zooming, overviews, property views, etc. Multiple diagrams from the same model
can be viewed and edited at the same time (in different sub-windows). The
documentation is very good. However, we have found it difficult to associate
decorators to links (e.g., for GRL levels of contributions) and intermediate nodes
had to be defined, therefore hurting the usability of the editor. We could not
find a way to visualize GRL correlations properly either.

Evolving paradigms can preserve backward compatibility if elements, links
and references are added but not renamed or deleted (there is more robustness for
attributes). Multiple paradigm versions can be registered, allowing one to open
older files. Finally, it is possible to create our own analysis and transformation
functions (and interfaces to the model are provided), but at the cost of fairly
heavy C++ programming.

3.2 Telelogic Tau G2

Telelogic Tau G2 is a model-driven development environment [14] that supports
UML 2.0. It can also be tailored and customized to specific modeling domains
such as GRL via UML 2.0 profiles [13]. There are two ways of using profiles in
this environment:

– Stereotype Mechanism (SM): Stereotypes that extend basic UML elements
are used, and extensions include customizations of names, attributes, and
appearance. In this way, each GRL element can be implemented as a stereo-
type of a UML class. Although constructing a profile is relatively simple, the
created modeling environment still includes all the basic UML elements that
were extended. In essence, this does not lead to a real domain-specific envi-
ronment, just to the addition of new and more precise modeling elements.

– Metamodel Extension Mechanism (MEM): In addition to the functionality
of the previous SM category, this mechanism provides metamodel extensions
of non-basic UML element, such as class diagrams, by extending the UML
metamodel itself. GRL models can hence be represented as a metaclass ex-
tension of UML class diagrams. This mechanism is more powerful but is
more complex to implement. However, the resulting environment can be re-
stricted to a domain-specific modeling language, without being polluted by
other UML constructs.

Developing a MEM profile requires the creation or modification of dozens
of classes and diagrams, which are too complex to be presented here (suffice
it to say that most of the GRL concepts became extensions of the Class and
Association base metaclasses in UML). Advanced knowledge of the UML 2.0
metamodel itself is also required. In addition, the process demands many manual
steps inside and outside the modeling environment, for instance: installing the
TAU SDK with FIDebugger, creating the profile directory structure and then the
profile project in TAU, creating sub-packages for the metamodel profile, adding
the metamodel classes representing the core UML structure and then classes
representing the GRL customizations, and finally creating the TCL script that

Evaluation of Development Tools for Domain-Specific Modeling Languages 189

must accompany the profile. The SM approach is more straightforward, yet is it
still not trivial; Tau’s usability for creating and deploying profiles is still rather
weak (but improving with each new version).

Two GRL editors were created with Tau G2 2.4 using both profile approaches
(version 2.7 has been released since then). Figure 5 shows a GRL model example
created with our metamodel-extended profile.

Fig. 5. GRL editor based on a UML 2.0 profile with Tau G2

The MEM approach is superior to the SM approach in many ways. For in-
stance, the former enables one to customize diagram types as well as the user
interface itself. Using this mechanism, a custom GRL diagram type was created
along with a customized palette and model view, hence preventing one from mix-
ing elements from different notations. This palette can be used to create GRL

190 D. Amyot, H. Farah, and J.-F. Roy

elements in the model directly, whereas in the SM approach classes need to be
created and then their stereotype changed via menus.

Editors implemented with Tau G2’s profiles get many functionalities for free,
including loading/saving models, printing, multiple undo/redo, zooming, prop-
erty sheets, and some validation against the UML 2.0 metamodel. But the best
benefit is likely the integration to the rest of UML 2.0 models (possibly with
other profiles), something that is not available with GME.

There are however several limitations for the support of the graphical syntax:
the appearance of links cannot be customized in TAU (which prevents the visual-
ization of correlations, and more advanced types of GRL links not studied here)
and restrictions on end points (constraints) require the programming of Tau
agents in C++. Additionally, other GRL concepts like actor boundaries, which
encompass intentional elements and links, cannot be visualized either (this is
also the case for GME). Documentation on how to create profiles was lacking at
the time this study was done, but we acknowledge the help of Tau’s developers,
who provided guidance and answers.

3.3 Rational Software Architect (RSA)

IBM’s Rational Software Architect (version 6.0) is a UML 2.0 compliant
integrated software development environment, built on top of the Eclipse plat-
form [7]. Unlike Tau G2, RSA only provides the stereotype mechanism for defin-
ing profiles, which leads to less sophisticated editors than Tau’s.

Creating a profile for GRL in RSA is simpler than with Tau. A user needs
to create a UML profile project (so this is directly supported at the user inter-
face level), select metaclasses to be stereotyped, (optionally) specify icons and
images, and release the profile. In our example, GRL intentional elements are
stereotypes of the UML Class metaclass, and GRL links are stereotypes of the
UML Association metaclass or the Association Class metaclass. The actual GRL
diagram is simply a UML class diagram with the extra GRL stereotypes. For the
intentional elements, custom icons and shapes were used, but no such graphical
customization exists for link styles. For GRL contribution and correlation links,
Association Class links were used to enable the use of contribution types (see
Figure 6).

As with the previous tools, loading/saving, multiple undo/redo, zooming, and
property sheets are provided by the tool environment. This approach also ben-
efits from an integration to UML 2.0, metamodel and diagrams alike.

The usability of the GRL editor produced in RSA is rather weak. For in-
tentional elements (extensions of Class), the palette provides easy access by
clicking on the Stereotyped Class icon and then selecting the desired stereotype
from a list. However, for stereotypes that do not extend the UML Class meta-
class (such as GRL Correlation, which extended the Association Class metaclass)
these stereotypes have to be applied manually using the Properties view.

Other issues similar to the SM approach in Tau have been observed. RSA does
not support custom restrictions on the end points of UML links, and custom
diagram types cannot be created (and hence class diagram elements can get

Evaluation of Development Tools for Domain-Specific Modeling Languages 191

mixed to the GRL diagram, for instance multiplicities are shown by default, as
shown in the dashed circles in Figure 6). The user interface cannot be customized
directly via the profile, however RSA allows for customization via its Eclipse-
based Java API (but this was beyond the scope of this study).

Fig. 6. Example of GRL diagram produced using a UML 2.0 profile with RSA

3.4 XMF-Mosaic

Xactium XMF-Mosaic is an integrated, Eclipse-based, extensible development en-
vironment for domain-specific (modeling) languages [16]. Building on standards
such as MOF and OCL, it supports the definition of grammars and the generation
of parsers. It also supports domain model design with constraints, model transfor-
mations, and editor generation by providing the DSML metamodel to the Xtools
module. This tool also has a unique feature: concrete textual and graphical syn-
taxes can easily be provided and supported for the same language.

192 D. Amyot, H. Farah, and J.-F. Roy

Fig. 7. GRL editor with XMF-Mosaic

In XMF-Mosaic, the domain model (metamodel) is defined with a class dia-
gram in MOF/XCore, and OCL constraints can be added (via menus) to improve
its precision. The environment supports the creation of snapshots, which are es-
sentially object diagrams allowing one to test the metamodel and its constraints
at an early stage. This is useful in our context, where a new language is being
developed.

A graphical editor can be generated automatically from the domain model,
however this feature still contains many limitations and bugs. For instance, if
a superclass has an association with another class, an automatically generated
editor supports creating the link for the superclass but not for its subclasses.
An additional problem is that this approach generates visual items/nodes for
every class in the domain model (including link classes) as the tool has limited

Evaluation of Development Tools for Domain-Specific Modeling Languages 193

understanding of the semantics. Potential solutions include coding the necessary
elements manually, or generating the whole code first and deleting the parts cor-
responding to unnecessary elements (the first option was selected in our editor).

Different icons can be associated to classes in the palette by editing the
type.xmf file, and the shapes of the GRL elements in the model can also be
changed to bitmaps (see the example in Figure 7). For GRL beliefs, connecting
a node to an existing link seemed to be impossible and a workaround (involving
an invisible node) had to be used. Also, we could not find a way to modify link
ends beyond symbols used in class diagrams.

XMF-Mosaic provides good feedback during the development of the domain
model and of the editor. Additionally, the building process is incremental and
not everything needs to be recompiled upon modifications, which accelerates
the development of editors. The text console, which offers a different mode of
interaction, was well appreciated.

Although the approach suggested by this tool is very interesting in theory,
the early age of XMF-Mosaic (version 0.7 was used in this experiment) results
in several weaknesses. For instance, there is no undo/redo in the GRL editor
produced, and one cannot load/save models; this prevented us from evaluating
how well the evolution of metamodels is supported. Also, the OCL constraints
in the domain model are not transferred to the editor generated (and cannot be
used for validation). Documentation was severely lacking, but we acknowledge
the help of Xactium’s support team who answered many questions. We have
quickly looked at version 1.0 (released at the end of this study) and, although
the editor generation works better with an attempt at supporting the saving of
models, most problems cited here still remained.

3.5 Eclipse EMF+GEF

Eclipse is an open source and extensible Java-based platform that provides many
useful services for the creation of textual and graphical editors. Versions 3.0 and
3.1 were successively used, and now version 3.2 has been released. For building
graphical editors, two Eclipse plug-ins are especially relevant.

The Eclipse Modeling Framework (EMF) is a framework and code generation
facility for building tools and other applications based on a structured data
model [4]. From a metamodel specification described as an XML Schema or as a
class diagram in Rational Rose (such as the one in Figure 1), EMF provides tools
and runtime support to produce a set of Java classes for the metamodel, a set of
adapter classes that enable viewing and command-based editing of the model,
and a basic editor. The Graphical Editing Framework (GEF) is a framework that
allows developers to take an existing application model and quickly create a rich
graphical editor for it. It can easily be hooked to EMF metamodels [5].

Based on our experience in creating an Eclipse plug-in editor for the Use Case
Map notation called jUCMNav [11], which uses GEF and EMF, we decided to
add support for GRL to this tool. The metamodel was created as a class diagram
with Rational Rose, and then imported into Eclipse by EMF. This mechanism,
which we have found reliable and easy to use, generates EMF classes in Java

194 D. Amyot, H. Farah, and J.-F. Roy

Fig. 8. GRL editor with Eclipse, GEF and EMF

that can be connected to GEF-based GUIs. The only noticeable problem we have
observed with this code is that it does not enforce the minimum and maximum
multiplicities found in the metamodel. OCL is not supported either.

Much effort is required to learn EMF and GEF and to understand how they
are combined. Documentation (including tutorials and books) and useful dis-
cussion forums are however available. The quality of the resulting editor is very
high, especially from a usability viewpoint. The Eclipse platform, together with
EMF and GEF, offers several useful services that can be used with little effort:
loading/saving (in XMI), zooming, tool palettes, overviews, exporting to images,
offering extension points for other applications to access the models created, and
multi-platform support. However, much programming effort is required to imple-
ment the various shapes and connectors, multiple undo/redo, label editing, and
property sheets. The entire notation can be supported (see Figure 8), although
at this time our prototype does not support beliefs attached to contributions
(this proved to be difficult, like for all the other tools).

Once a basic editor is in place, adding new functionalities becomes efficient.
Also, adapting the editor to changes in the metamodel is fairly simple. If new
attributes, class, or associations are added to the metamodel, then the editor can
still open files created with the previous version. However, deleting or renaming
classes or attributes can lead to backward incompatibility problems.

Finally, it is important to note that such a plug-in enables the integration of
the editor with other modeling and programming tools offered for the Eclipse
platforms.

Evaluation of Development Tools for Domain-Specific Modeling Languages 195

4 Comparison Summary

Many items related to the evaluation criteria introduced in section 2.2 were
discussed in the section 3, and the current section provides a brief summary with
additional insights based on our experience with these tools. Table 1 provides a
quick overview of the strengths and weaknesses of each tool.

Table 1. Overview of comparison

GME Tau G2 RSA XMF-Mosaic Eclipse

Graphical Completeness Medium Low Very Low Low High

Editor Usability Medium Medium Low Low Very High

Effortlessness Medium Low High Low Very Low

Language Evolution High ? ? ? Medium

Integration Low High High Low High

Analysis / Transformation Medium Medium Low High Medium

– Graphical completeness: The Eclipse approach is the only one that allowed
reproducing the GRL notation with fidelity (including more advanced con-
cepts like actor boundaries). GME did well in general, except for a few re-
strictions. Both required substantial additional programming. RSA offered
the least flexibility for this criterion.

– Editor usability: The best usability is offered by the Eclipse editor (by far) in
terms of user experience, tool feedback, and overall number of features. All
tools except XMF-Mosaic support multiple undo/redo and loading/saving
of models. The manipulation of elements is somewhat awkward in RSA.

– Effort: All these tools require some effort for learning the technology and for
creating a DSML editor. The profile creation and usage mechanism in RSA
is likely the easiest one among the five studied here, followed by GME, and
Eclipse is definitely the worst.

– Language evolution: When the language metamodel evolves, Eclipse and
GME share many common characteristics regarding backward compatibility
(with files saved using the previous version). The time spent for fixing the
editor is small in GME and, again, fairly high in Eclipse (although the mod-
ifications are not difficult in our experience). This aspect was not tested in
XFM-Mosaic because models could not be saved and reloaded.

– Integration with other languages: Tau G2 and RSA both offer a direct integra-
tion with UML 2.0 as well as with other profiles. The Eclipse solution offers
a different integration via extension points and the simultaneous presence
of multiple plug-ins (some of which might be related to other languages).
Integration appears to be weak with XMF-Mosaic (although it has some
potential, being Eclipse-based) and similarly with GME, more isolated.

– Analysis capabilities: This aspect was not thoroughly studied in our exper-
iments. Such capabilities appear to be weak in RSA. Tau G2 supports the
concept of agents, which can be programmed (in C++ and possibly TCL) to
examine/transform models. GME offers interfaces (in COM/C++) to access

196 D. Amyot, H. Farah, and J.-F. Roy

and transform models. Eclipse/EMF provides Java interfaces to easily ac-
cess models, but transformations are manual. XMF-Mosaic is probably the
most promising environment in this category, with specific (and standard)
languages for analysis and transformations. Note also that the only envi-
ronment that generates editors where models are checked against the OCL
constraints in the metamodel is GME.

5 Conclusions

This paper compared five different tools for the generation of development envi-
ronments targeting domain-specific modeling languages. A particular emphasis
was put on the generation of graphical editors with a case study involving a
simple but representative subset of the Goal-oriented Requirement Language
whose abstract syntax is specified with a metamodel. Editors were created with
each tool, and our experiments helped us compare the approaches against cri-
teria such as graphical completeness, usability, development effort, handling of
language evolution, integration with other languages, and analysis capabilities.

For simple prototyping of modeling language editors, GME offers an interest-
ing balance between metamodel precision and validation, ease of editor genera-
tion, and usability of the editor. For serious, industrial-strength editors, Eclipse
(with EMF and GEF) appears to be the most viable (and multi-platform) so-
lution among those studied here, and this is in part why GRL tools such as
jUCMNav [11] and OpenOME [17] are headed this way. However, the develop-
ment effort will be proportional to the benefits. If the integration with UML 2.0
is a must, then Tau G2 and its metamodel extension mechanism for profiles has
several interesting benefits over RSA, which is currently limited to a stereotype
mechanism. XMF-Mosaic brings novel and promising ideas in the DSML area,
but at this time it still suffers from a lack of maturity.

To alleviate some of Eclipse’s weaknesses in terms of required development
efforts, a new plug-in called Graphical Modeling Framework (GMF) [6] attempts
to provide a generative component and runtime infrastructure for developing
graphical editors based on EMF and GEF. We plan to study GMF in the near
future. We also plan to continue the integration of GRL and UCM in jUCMNav,
and to improve its analysis and transformation features.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research
Council of Canada, through its programs of Strategic Grants and Discovery
Grants. The development of editors with GME and RSA/Tau was done respec-
tively by Yi Chu [2] and Nadir Janmohamed [10], whom we thank. We are
grateful to IBM, Telelogic, Vanderbilt University, and Xactium for providing
their tools and technical support for this study.

Evaluation of Development Tools for Domain-Specific Modeling Languages 197

References

1. Amyot, D. and Mussbacher, G: URN: Towards a New Standard for the Visual
Description of Requirements. In E. Sherratt (Ed.): Telecommunications and be-
yond: The Broader Applicability of SDL and MSC (SAM 2002). Lecture Notes in
Computer Science 2599, Springer 2003, 21–37.

2. Chu, Y.: Tool Support for the Goal-Oriented Requirement Language. M.C.S.
project report, University of Ottawa, August 2005.
http://www.site.uottawa.ca/ damyot/students/YiChuReportAndTool.zip

3. Domain-Specific Modeling Forum, http://www.dsmforum.org
4. Eclipse: Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/
5. Eclipse: Graphical Editing Framework (GEF), http://www.eclipse.org/gmf/
6. Eclipse: Graphical Modeling Framework (GMF), http://www.eclipse.org/gmf/
7. IBM: Rational Software Architect (RSA), 2005. http://www-306.ibm.com/

software/awdtools/architect/swarchitect/

8. Institute for Software Integrated Systems: The Generic Modeling Environment
(GME), 2004. http://www.isis.vanderbilt.edu/Projects/gme/

9. ITU-T: Recommendation Z.150, User Requirements Notation (URN) – Language
Requirements and Framework. Geneva, Switzerland, 2003.

10. Janmohamed, N: Expressing Goal-oriented Requirement Language in UML 2.0:
Examining the functionality of UML Profiles. CSI 4900 project report, Uni-
versity of Ottawa, April 2005. http://www.site.uottawa.ca/damyot/students/
NadirRep.zip

11. Kealey, J., Tremblay, E., Daigle, J.-P., McManus, J., Clift-Noël, O., and Amyot,
D.: jUCMNav: une nouvelle plateforme ouverte pour l’édition et l’analyse de
modèles UCM. 5ième colloque sur les Nouvelles TEchnnologies de la RÉpartition
(NOTERE’05), Gatineau, Canada, August 2005, 215–222.
http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/WebHome

12. MetaCase, MetaEdit+, http://www.metacase.com/mep/
13. OMG: Unified Modeling Language (UML), version 2.0, October 2004.

http://www.uml.org/#UML2.0

14. Telelogic AB: TAU G2, 2005. http://www.telelogic.com/products/tau/
15. URN Focus Group: Draft Rec. Z.151 – Goal-oriented Requirement Language

(GRL). Geneva, Switzerland, Sept. 2003.
16. Xactium: XMF-Mosaic Getting Started Guide, Version 1.0, July 2005.

http://www.xactium.com/

17. Yu, E.: OpenOME, an open-source requirements engineering tool, 2005.
http://www.cs.toronto.edu/km/openome

	Introduction
	Evaluation Context
	Simplified GRL Metamodel
	Evaluation Criteria

	Evaluation of DSML Development Tools
	Generic Modeling Environment (GME)
	Telelogic Tau G2
	Rational Software Architect (RSA)
	XMF-Mosaic
	Eclipse EMF+GEF

	Comparison Summary
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

