
SDL Design of a Radio Resource Control

Protocol for 3G Evolution Systems with Two
Different Approaches

Tae-Hyong Kim1, Jae-Woo Kim1, Qi-Ping Yang1, Jae-Hyoung Lee1,
Soon-Gi Park2, and Yeun-Seung Shin2

1 School of Computer and Software Engineering,
Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701 Korea

{taehyong, eva0191, saintwind, zzeng09}@kumoh.ac.kr
2 Mobile Telecommunication Research Laboratory,

Electronics and Telecommunications Research Institute, Daejeon, 305-350 Korea
{yoyo, shinys}@etri.re.kr

Abstract. Despite the increasing need of formal methods, people in the
industry still hesitate to use them for product development because they
are not sure of success with that novel approach in their own situation.
In order to encourage those people we show our experience of designing a
radio resource control protocol for ETRI’s 3G evolution systems in SDL
with two different approaches: pure-SDL and hybrid-SDL approaches.
From our design and verification results, we make an empirical evaluation
of those two approaches in several aspects and suggest a simple guideline
for selecting an appropriate approach according to the situation.

1 Introduction

Since several formal description techniques were developed and standardized to
help developing a reliable network system, a lot of work has been done to de-
sign, implement, and verify communication protocols with formal methods[1,2,3].
Among those languages the Specification and Description Language (SDL)[4]
showed a remarkable success owing to the continual refinement of its syntax
and powerful development tools such as Telelogic Tau[5]. Those tools provide
integrated environments for the design and implementation of a distributed sys-
tem with automated verification features such as trigger-based simulation and
reachability-analysis-based validation. The reliability of a product is a major
goal of the industry however it normally costs very much. Therefore the exis-
tence of powerful SDL tools encouraged the industry to use formal methods for
the development of network products.

However, a lot of system development engineers still stick to traditional de-
velopment methods with general programming languages such as C language
because most of them are afraid that formal development methods will greatly
increase their works in developing a real-world large and complex network sys-
tem. In addition the development of current large network systems generally in-
volves many working groups of cooperating engineers, each of which is in charge

R. Gotzhein and R. Reed (Eds.): SAM 2006, LNCS 4320, pp. 166–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SDL Design of a Radio Resource Control Protocol for 3GE Systems 167

of developing a part of the whole system. Therefore, the decision to change the
development method usually requires the agreement of all those engineers. That
can be a practical barrier for a formal method to become popular in the industry.

Cellular communication systems evolved from the present third generation (3G)
system, usually called the third generation evolution (3GE) or the long-term evo-
lution (LTE) cellular systems, may be a good example of such a real-world large
and complex system. Such a new communication system, however, is based on the
previous system so usually uses quite a few features of the previous system. This
means there are many of the existing components or libraries can be used in a new
system with a little modification. Naturally they want to use them to reduce the
cost and the risk of developing a whole system newly. Hence it may be very difficult
to design such a system with a new language and a new tool.

We designed a radio resource control protocol between the User Equipment
(UE) and the Universal Mobile Telecommunications System (UMTS) Terrestrial
Radio Access Network (UTRAN) for a 3GE cellular system of Electronics and
Telecommunications Research Institute (ETRI) with an SDL and C combined
approach, which we call hybrid-SDL approach. This work was done as a collab-
orative project with ETRI in order to construct a prototype UTRAN for a 3GE
system with other protocol implementations. The protocol was named Radio
Resource Control Plus (RRCP) and is based on the specification of the third
Generation Partnership Project (3GPP) release 6[6]. RRCP is the core protocol
of UTRAN and is the most complex so we used SDL for producing a functionally
correct implementation. Actually the hybrid-SDL approach was a reasonable so-
lution because all the other protocols of that prototype UTRAN were decided
to be implemented in C and the data structure and libraries constructed in C
must be shared with all the protocols.

In this paper we describe design issues in modeling RRCP with the hybrid-
SDL approach. In order to evaluate that design we modeled the same protocol
again mostly in the SDL world. This approach we call pure-SDL approach. We
evaluate those approaches by comparing the two designs and their verification
results. After identifying the strength and weakness of those approaches, we
present a simple guideline for selecting an appropriate design approach to develop
real-world network systems for various situations.

Section 2 summarizes several related works that designed UMTS protocols in
SDL. The target system, ETRI’s 3GE-2005 system and the motivation of this work
are briefly explained in section 3. In section 4 we explain two design approaches,
pure-SDL and hybrid-SDL approaches, in detail. Section 5 explains overall design
issues and some design details of our SDL system. Then the process and results of
verification and target porting are presented in section 6. Section 7 evaluates those
design approaches and suggests a simple guideline to decide an appropriate one in
a certain situation. Finally we conclude this paper in section 8.

2 Related Works: Designing UMTS Protocols in SDL

The UMTS is the 3G cellular communication system that is currently serviced
mostly in European countries. The 3GPP generally updates standard documents

168 T.-H. Kim et al.

several times every year. So the UMTS protocols are good targets for the imple-
mentation with formal languages for automatic verification. There have been a
couple of case studies that designed UMTS protocols in SDL, some of which we
briefly introduce as follows.

P.J. Song et al. designed Wide-band Code Division Multiple Access (WCDMA)
radio interface protocols based on the 3GPP Release 99 specification in SDL[7].
The design goal was to verify UE protocolswith Tau Simulator in the SDL environ-
ment. Hence the design of WCDMA protocols focused on the UE side of the sys-
tem. Modeling each block in SDL did not follow the standard structure of its cor-
responding protocol specified in the 3GPP requirements. The UE side protocols
were designed fully in SDL including the Abstract Syntax Notation One (ASN.1)
encoding and decoding. But that SDL design had not been ported to a specific tar-
get system. It could be free from additional C coding because it is a stand-alone
system in the SDL environment only and the performance was not the main de-
sign issue. The functional behavior of the SDL design was verified successfully by
simulating that design with Tau Simulator. Afterwards another team of ETRI de-
signed a beyond-3G (B3G) system based on the 3GPP Release 5 specification[8].
They implemented a radio control protocol for the access network side, which is
called ‘RC’, and it corresponds to Radio Resource Control (RRC) in the 3GPP
specification. They used SDL for modeling the system but most of the functional
behaviors were implemented in inline C-code and external C libraries because one
of the main goals was a porting of the system to a real platform, the VxWorks
system[9]. Accordingly not much effort had been done in the SDL design and its
verification.

R.J. Skehill et al. at the University of Limerick developed distributed UMTS
signalling layers in SDL to construct a testbed for the Information Technologies
Programme (IST) Advanced Radio Resource management fOr Wireless Service
(ARROWS) project[10]. They used the so-called SDL Object Modeling Tech-
niques (SOMT) for the effective system design, which is now a general formal
design technique using SDL and its tool. Two UMTS signalling protocols, RRC
and Radio Access Network Application Part (RANAP), and Non-Access Stra-
tum (NAS) drivers for UE and the Core Network (CN) were designed together
in an SDL system for the verification of UMTS upper signalling layers. After
the simulation and reachability analysis for the whole system with Tau, each
protocol was integrated independently into Linux. They focused on signalling
functions when modeling each protocol in SDL but technical solutions for fast
implementation or good performance seem to be not considered seriously.

J. Colás et al. at the University of Málaga designed UMTS protocol layers
for the radio access interface in SDL with object oriented design techniques sup-
ported by SDL-2000[11]. They wanted to follow the structure division suggested
by the specifications unless they found more appropriate solutions. They espe-
cially tried to make the design have a good reusability because communication
protocols maintain many similarities along the evolution path of the systems.
They were interested in the quality of SDL design and used various object ori-
ented syntax of SDL-2000. As a consequence, their design seems to be structured

SDL Design of a Radio Resource Control Protocol for 3GE Systems 169

well: very refined and optimized. Such a sophisticated design, meanwhile, may
have low readability due to its unfamiliar syntax especially to novices of the
language. In [12] they ported the layer 2 protocols to Windows 2000 and Linux
to measure their efficiency with regard to the data transmission rate.

3 ETRI’s 3GE-2005 System

In order to develop a reliable and ultimate 3GE system with an incremental
approach, each year ETRI makes an interim design for the final system, imple-
ments, and verifies with in-house testing. The 3GE system developed in 2005
is called 3GE-2005 system and it is based on the specification of 3GPP release
6 as indicated before. This system is composed of three subsystems: the ac-
cess system subsystem (ASS), the UE subsystem (UES), and the CN subsystem
(CNS). Figure 1 shows the structure of ETRI’s 3GE-2005 system focusing on
the ASS.

RFS

AMS

AMCS

RDCS

RRCS

MSCS

SNIS

Fig. 1. The structure of ETRI’s 3GE-2005 system emphasizing the ASS

The ASS contains the Evolved Radio Network Controller (E-RNC), the
Evolved Serving Node (E-SN), the Access system Modem baseband Subsystem
(AMS), and the Radio Frequency Subsystem (RFS). The target protocol of this
paper, RRCP is for both the RRC subsystem (RRCS) in E-RNC and the peer
part in the UES. The RRCS in E-RNC provides the functions and services of the
existing RRC and RANAP including MBMS services, such as signalling for call
processing, the radio resources management in the ASS, the radio resource con-
trol of a UE, the coordination between the E-RNC and the E-SN, and the message
routing between the E-SN NAS and the UE NAS.

170 T.-H. Kim et al.

The 3GE-2005 system was designed with a general top-down approach. The
team designed the structure of ASS by analyzing the requirements of that system,
decided the order of message exchanges between modules in the subsystems with
Message Sequence Charts (MSC) for each functional process, designed the data
structures for messages, local databases, and interfaces, and finally implemented
functions of each module. When implementing and verifying modules of the
system they used a traditional implementation method with C language except
one module, RRCS. Because RRCS is the most complex part in the system,
they wanted to use SDL in designing RRCS for obtaining a functionally correct
implementation with formal verification techniques supported by SDL tools. In
order to make the most use of powerful verification techniques of an SDL tool,
however, not only RRCS but other modules in ASS and in UES must be included
in the SDL world. For this reason they designed an SDL system for the whole
system including both ASS and UES. Design issues of those additional modules
are discussed in section 5.1. Note that the main goal of that SDL system is to
make a functionally correct RRCS implementation. Figure 2 shows the top-level
structure of that SDL system which contains a UTRAN block and three UE
blocks for functional testing of RRCS at the multiple-UE’s condition. It also
contains additional three blocks: two for testers and one for emulating broadcast
transmission by air.

4 Two Design Approaches: Pure-SDL and Hybrid-SDL

The pure-SDL approach tries to only use SDL and other languages directly
supported by an SDL tool in designing a system for the maximal formality.
Figure 3 shows the flow of constructing a program by Telelogic Tau with the
pure-SDL approach. It tries to use no external C libraries and no external C-
code including header files except environment functions.

On the contrary the hybrid-SDL approach freely uses external C-code and
header files according to the given situation. The flow of constructing a program
by Tau with the hybrid-SDL approach used in our work is shown in Figure 4.
Note that we used ASN1C compiler[13] instead of ASN.1 utilities of Tau because
the data structure in C produced by ASN1C had to be shared with developers
in charge of other parts of ASS. The source code produced by ASN1C consist of
type definitions and encode/decode functions. ASN1C also provides a run-time
library required to use those encode/decode functions.

As described in the introduction, the hybrid-SDL approach is a reasonable
solution in the situation such that data structures or libraries written in C are
used in common. In addition, system developers that are not used to designing
in SDL are likely to give a preference to this approach when he has to use SDL.
In this situation this approach will probably take less time in designing than
the pure-SDL approach. Furthermore they need not stick to SDL tools; they
can use other tools or libraries freely for better performance. However we can
expect that the power of the SDL tool in use may be limited and that there
may be some potential problems in the implementation due to the integration

SDL Design of a Radio Resource Control Protocol for 3GE Systems 171

Fig. 2. The top-level structure of the SDL system designed

of heterogeneous modules. We examine the strong and weak points of those two
approaches in detail from the results of design and verification in Section 7.

5 Designing the SDL System

This section describes design issues of the SDL system shown in Figure 2. Some
points for the overall design are explained and then a part of design details
follows with the hybrid-SDL and pure-SDL approaches.

5.1 Overall Design

Recall that the design goal of our SDL system is to build a functionally correct
RRCS implementation. In order to satisfy that goal we drew up the global design
as follows. First, block division and channel structure of the system were designed
according to the specification suggested by the 3GPP standards for the sake
of high readability and reliability. We modified the structure division only we
identified where it was really necessary to make changes for better performance.
Figure 5 shows the top-level design of block type UTRAN. Block RRCP is for
the target protocol that corresponds to RRCS, and block HMAC stands for
higher Medium Access Control (MAC) and includes the protocols, Radio Link

172 T.-H. Kim et al.

SDL C

C

Env. func

SDL kernel

C advanced

/Cbasic

ASN.1

Utilities

Simulation

Validation

Ext.

Compiler

Ext.

Compiler

Ext.

Compiler

Ext.

Compiler

Ext.

Linker

Tau World

Application

Ext.

Linker

Skeleton

Generator

ASN.1

ASN.1

Utilities

Fig. 3. The flow of constructing a program by Tau with the pure-SDL approach

Control (RLC), Packet Data Convergence Protocol (PDCP), and Radio Packet
Tunneling Block (RPTB). The channel structure between RRCP and HMAC,
and between HMAC and MAC also follows the specification of service access
points (SAP) and logical channels of the standards.

The SDL design of the target protocol, RRCP in UTRAN is shown in
Figure 6. According to the standards, RRCP includes four entities for its func-
tional behavior, Dedicated Control Function Entity (DCFE), Broadcast Con-
trol Function Entity (BCFE), Paging and notification Control Function Entity
(PNFE), and Shared Control Function Entity (SCFE). Transfer Mode Entity
(TME) and Routing Function Entity (RFE) handles the mapping and routing
of messages between different entities respectively. We added Control Routing
Function Entity (CRFE) for the routing of lower layer configuration messages
between some function entities in RRCP, DCFE, BCFE, and PNFE, and lower
layer protocols because those functional entities exchange several pairs of those
configuration messages with each of low layers.

The second point of the overall design is for the lower layers, HMAC, MAC,
and PHY. Actually the porting of those protocols to a real platform is the work
of other team who did not use SDL so we did not have to implement complete
functions of those layers. For protocols inside HMAC: RLC, PDCP, and RTB, we
designed their structure according to the standard specifications. Those protocols
manage messages with a separate process for each connection according to the
transmission mode, e.g. acknowledged mode (AM) or unacknowledged mode
(UM). However we left out detailed massage manipulation functions such as
segmentation and reassembly, or ciphering for their future completion for direct
targeting from SDL designs. For the remaining lower layers, MAC and PHY, we
implemented the minimum functions required to pass messages correctly and to
exchange controlling messages with RRCP according to the specifications. The
modeling effort of those additional blocks took much less time, compared with
that of RRCP, because they don’t have much detailed processing to do.

SDL Design of a Radio Resource Control Protocol for 3GE Systems 173

SDL (C)

ASN.1

C

RT Lib(C)

Env. func

SDL kernel

C advanced

/Cbasic

ASN1C

Simulation

Validation

Ext.

Compiler

Ext.

Compiler

Ext.

Compiler

Ext.

Linker

Tau World

Application

Ext.

Linker

C headers

Ext.

Compiler

CPP2SDL

Skeleton

Generator

C functions

Ext.

Compiler

ASN1C

ASN1C

Fig. 4. The flow of constructing a program by Tau with the hybrid-SDL approach

The SDL system shown in Figure 2 contains two tester blocks for UE’s and
UTRAN respectively. The main goal of these tester blocks is to send appro-
priate triggering or response messages for testing UE’s and UTRAN. Block
UTRAN Tester also includes a NAS simulator for UTRAN because NAS exists
not in UTRAN but in CN. It exchanges RANAP and MBMS session manage-
ment messages with RRCP according to the specification. Block VRBN indicat-
ing virtual radio broadcast network is used to broadcast messages from UTRAN
to all UE entities because Tau does not support broadcast transmission with the
phrase ‘VIA ALL’.

Finally, we tried to use simple syntax instead of complex object-oriented fea-
tures supported by SDL-2000 for simplicity and reliability except some block
types for increasing reusability. Note that a major advantage of SDL is that it
is easy to learn, read and write, especially for beginners, owing to its intuitive
diagram and simple grammar. At first we wanted to use some object-oriented
syntax for reusability and systematization such as state aggregation but we had
to tiresomely check if Tau supports those syntax. The available version of Tau,
4.6.3, unfortunately, did not support many of SDL-2000 features. For the fea-
tures that are required but not supported by SDL such as pointers we could
use the special packages or libraries offered by Tau. Those were very useful for
complicated function implementation but their incompleteness also became the
problems for modeling.

5.2 Design Details for Message Handling

We skip the detailed design of each block and process on account of the limited
space. Note that we tried to increase the readability and scalability of our design

174 T.-H. Kim et al.

Fig. 5. The top-level design of block type UTRAN

and we regretted that we could not use composite states in our design because
they are not supported by Tau. In this section we describe only a part of design
for RRCS message handling with the hybrid-SDL and pure-SDL approaches.

With the hybrid-SDL approach, we used the ASN1C compiler to handle the
RRCP definition in ASN.1 which was obtained from a slight modification of the
standard RRC definition[6]. ASN1C generated some C header files for the data
structure and some C functions for encoding and decoding of the data in class
definition, protocol data unit (PDU) definition, and information elements from
the RRCP definition. These functions provide application programming interfaces
(API) to handle RRCP messages. Figure 7 shows how RRCP handles a message for
radio resource management when it sends and receives that message respectively.
When sending such a message, RRCP initializes the message contents, encodes
them in ASN.1, constructs the message, and finally sends it. Receiving process of
a radio resource management message is in the opposite order; RRCP decodes the
ASN.1-encoded part, extracts the message type, controls radio control procedure,
and finally stores the message contents in its local database.

In order to process messages efficiently, we created C libraries, ‘make’, ‘pack’,
‘unpack’, and ‘store’ for making message contents out of information elements

SDL Design of a Radio Resource Control Protocol for 3GE Systems 175

Fig. 6. The top-level design of block type RRCP

stored in the local database, for encoding them in ASN.1, for decoding the
message contents encoded in ASN.1, and finally for storing information ele-
ments required for call and MBMS processing in the local databases. For exam-
ple, the function fnRrcp make msgInitialDirectTransfer() fills up the con-
tents of ‘Initial Direct Transfer’ message with appropriate values and the data
from information elements stored in the database named ‘callInfo’ for the given
condition. In addition, we created another C library, ‘utility’ for extra func-
tions to process some miscellaneous work, e.g. fnRrcp initialize mbmsInfo()
to initialize the database named ‘mbmsInfo’.

With the pure-SDL approach, the built-in ASN.1 utilities of Tau are used to
handle the data in ASN.1. The data structures in the RRCP specification in ASN.1
were transformed automatically in SDL by those utilities. Local databases were
also transformed in SDL. Instead of C libraries we created the corresponding SDL
procedure for each function included in those libraries. We also used inline C cod-
ing supported by Tau where the modeling is difficult with SDL syntax only.

6 Verification of the Design

In order to verify the design of RRCP, we used simulation, validation with reach-
ability analysis, and testing on target. We used both SDL models designed with
the hybrid-SDL and the pure-SDL approaches. Figure 8 shows the verification
process we used.

First, we checked the functional consistency of the design with the test sce-
nario in MSC by Simulator UI of Tau at both single-UE and multiple-UE’s con-

176 T.-H. Kim et al.

RRCP Msg Tx Function

Msg Contents
Initialization

ASN.1 Encoding

Construct Msg

Send Msg To UE

RRCP Msg Rx Function

ASN.1 Decoding

Extract Msg Type

RC Procedure Control

Store Msg Contents

Fig. 7. Message handling procedure of RRCP for radio resource management messages

ditions. That test scenario was designed to check if the functional behavior of
the SDL model matches the design requirements of RRCS in normal situations.
During the simulation at the single-UE condition, there was neither mismatching
of logic flows nor semantic errors in SDL design for either model. Verification
of the design at multiple-UE’s condition is necessary to check if the resource
management functions of RRCP in UTRAN handle each of the UE’s without
any problem. In addition, the system may do wrong actions due to some signal
racing problems caused by the messages sent by multiple UE’s. Those errors are
usually due to the incorrectness or incompleteness of the design that cannot be
easily identified during the simulation at the single-UE condition. Fortunately
there was no error found during that simulation for either SDL model.

Next, we made a couple of reachability analyses of the design with Validator
UI of Tau for the multiple-UE’s condition. We skipped validation for single-UE
condition from the experience with simulation. Validation of the whole system
requires a lot of time and memory due to its huge size and high complexity
so we decided to decrease the scope of validation to the ‘attach’ process only.
We used two reachability analysis techniques supported by Validator UI, bit-
state and tree walk explorations. In case of the model designed with the hybrid-
SDL approach, we unfortunately failed to obtain the result due to unexpected
run-time errors. Those errors say that the program failed to read the value at
a specific location of system memory. From several experiments to clear the
cause, we found they are related to the libraries generated by ASN1C compiler.
Thorough exploration of the global state of the system might cause a memory
crash due to imperfect integration with C libraries that cannot be found in
ordinary situation. With the model designed with the pure-SDL approach, we
had not experienced any run-time errors. During that validation, we found some
weaknesses of the design that can produce errors in very exceptional situations

SDL Design of a Radio Resource Control Protocol for 3GE Systems 177

Simulation with one UE
(the whole system)

Simulation with 3 UE’s
(the whole system)

Simulator UI

Simulator UI

Validation with 3 UE’s
(the whole system)

Simulator UI

RRCP Testing on target
(RRCP-UE to RRCP-UTRAN)

Target Porting with Env Funcs

System Testing on target
(UE to UTRAN)

Fig. 8. The verification process

such as extremely long transmission delay of a specific message which may cause
the signal racing problem. Owing to that validation we could obtain a more
reliable implementation by eliminating those weaknesses.

After verifying the design by simulation and validation, we ported each RRCP
module in UE and in UTRAN to the Linux platform by completing the envi-
ronment functions required for the target integration. The socket interface was
used for the communication with other modules. Before system testing between
UE and UTRAN, preliminary testing between two Linux-ported RRCP mod-
ules was performed to increase the possibility of its successful operation during
the final system testing. In system testing, only the RRCP module for UTRAN
was used to generate a UTRAN instance; UE instances were created from the
SDL model designed by other team. The goal of this testing was to verify the
inter-operability of UE entities and the UTRAN implementation developed by
different teams; the efficiency of implementations was out of interest this time.
Fortunately the testing on target was successful; there were no particular errors
except a couple of trivial ones due to some configuration problems. We note that
the testing on target was performed entirely by ETRI.

7 Comparative Evaluation of Two Approaches

From the result of design and verification, we evaluate the two design approaches
in various aspects and suggest a simple guideline for selecting an appropriate one
according to specific conditions.

178 T.-H. Kim et al.

First, we would like to show the development time of our SDL system with
two approaches in Table 1. Each number in parentheses indicates the number of
members involved. Our team was composed of 6 engineers; two were SDL experts,
another had some experience with SDL, and the others had no experience with
SDL. All members were good at C programming except one. Actually we could
not start designing with two approaches at the same time due to our tight
schedule. First we designed with the hybrid-SDL approach and then with the
pure-SDL approach because we had some C-code of the previous system that
was a basis for the target system. Therefore Table 1 is not a fair comparison; it
just shows our result.

Table 1. The development time of our SDL system with two approaches

Hybrid-SDL approach Pure-SDL approach

Training 2 weeks (4) 1 week (3)
Implementing libraries 2 months (4) 1.5 month1 (3)
Modeling SDL system2 3 months (4) 1 month3 (3)

Verification 2 weeks (1) 3 weeks4 (1)

Notes 1. We could save some time owing to the experience with the hybrid-SDL
approach. 2. This includes debugging of the system. 3. We could use a
lot of SDL-code written by the hybrid-SDL approach. 4. This includes validation
time as well as simulation time.

After the development we discussed the strong and weak points of two ap-
proaches. We agreed that those points depend on the technical experience and
expertness of an engineer. Also the development condition is a significant fac-
tor to give preference to one approach. Our members who were C experts but
SDL novices said they preferred the hybrid-SDL approach because they could
use C-code in complex functions of the system. To the other members, however,
the pure-SDL approach was easier because they can use ASN.1 data structures
directly in the SDL system without troublesome conversion. According to the
time for learning design skills related to SDL and Tau, two approaches have
both pros and cons. The hybrid-SDL approach required some time for learning
how to connect the SDL system to external libraries, while it took some time to
learn SDL syntax and Tau-specific features with the pure-SDL approach. The
modeling speed of two approaches, according to our experience, depends on the
engineers; the hybrid-SDL approach would be faster for engineers who are C
experts but SDL novices, and the pure-SDL approach faster for others. As for
the frequency of errors made in design and the time for correcting them, we
agreed the pure-SDL approach is much better thanks to its integrated develop-
ment environment. Table 2 summarizes differences between them noticed from
our experiences.

According to the time required for verification and the application execution
time, comparing with the pure-SDL approach, the hybrid-SDL approach took
less time in performing ‘analysis ’and ‘make’. That was mainly because the source

SDL Design of a Radio Resource Control Protocol for 3GE Systems 179

Table 2. Noticeable differences between two approaches related to the development

Hybrid-SDL approach Pure-SDL approach

Learning issues connecting SDL to C Tau-specific functions
Modeling speed faster to C experts/SDL novices faster to the others1

Frequency of errors more fewer
Debugging time longer shorter

Note 1. the engineers who are C novices or SDL experts

Table 3. The strength and weakness of two approaches

Hybrid-SDL approach Pure-SDL approach

· can use the exiting libraries · efficient/integrated design environment
· may be easier to C experts · higher readability and manageability

Strength · can easily collaborate with other · larger verification scope
team using data structures in C · higher reliability of the implementation

· direct use of ASN.1 data structures

· extra source management required · higher dependency of SDL tools
Weakness · some coding may be overlapped · expertise on SDL/tools required

· careful integration required · SDL-only coding can be difficult
· external tools may be used occasionally

Table 4. A simple guideline for selecting an appropriate design approach

Situation Recommendation

· when a lot of existing C-code and libraries can be used
· when collaborating with other team using C is required Hybrid-SDL
· when most members are SDL beginners and time is limited approach
· when complicated data processing is often required1

· when a new system is entirely designed
· when readability and reusability of code is important Pure-SDL
· when reliability of the implementation is the first priority approach
· when there is enough time for learning SDL and its tools

Note 1. C coding is easier for complicated data processing such as complex pointer
manipulations.

conversion from ASN.1 to SDL is performed each time in analysis with the pure-
SDL approach. With respect to the simulation time the pure-SDL approach
took more time because the simulator shows more detailed simulation results
with the pure-SDL approach. In validation, as we described before, we could not
compare two approaches due to the failures happened during validation with
the hybrid-SDL approach. Fortunately no errors happened during execution of
the implementations. The execution time will depend on the optimization of the
code and the characteristics of libraries used in each approach. We narrowed
down the scope of comparison to the execution time of the attach process in
order to find out the cause of difference. In several experiments, two approaches
did not show a significant difference in execution time. This result show that

180 T.-H. Kim et al.

the performance of Tau with its built-in functionalities is good enough to be
used in the development of real-world network systems. In order to evaluate the
performance of the generated software exactly, however, more detailed analysis
and experiments are required.

According to our discussion, we draw the strength and weakness of the two
approaches as shown in Table 3. Table 4 is a simple guideline to developers in
the industry for the selection of an appropriate design approach. We note that it
was generated from our experiences and accepting this guideline as a general one
requires more experiments and experience. In addition, actually our division of
the design approach is rather idealistic because the pure-SDL approach is very
strict and difficult to follow completely. With a right understanding of the two
approaches, however, you can find a good compromise between them appropriate
for your situation.

8 Conclusions

Lately the industry has taken a great interest in the reliability of products to win
in the fiercely competitive market and formal approaches to the development of
a product are now coming into their sight. Especially in the telecommunication
area, more and more successful stories have been reported enough to encourage
the industry. However people in the industry still seem to hesitate to apply
formal methods in development because they usually don’t know well how to
start with a new approach and how to migrate from the existing approach.
Sometimes they want to use a formal approach partly in a specific condition as
a trial. But they usually don’t have enough information that will be direct help
to their development.

This paper showed an experience in the development of a network proto-
col, RRCP for ETRI’s 3GE systems, with two different design approaches: the
hybrid-SDL and the pure-SDL approaches. We also draw the strength and weak-
ness of those two approaches in several aspects from our experience and present
a simple guideline for the selection. Actually the hybrid-SDL approach can be a
practical solution when you migrate from the traditional approach with C lan-
guage or when you have to share the data structure or C libraries with other
team. But you should be careful in using external tools or writing external C-
code to obtain a reliable implementation because imperfect integration of SDL
and C code may cause unexpected run-time errors. The pure-SDL approach gives
higher readability, reliability, manageability, and verification capability than the
hybrid-SDL approach in general and you can easily handle all sources in the inte-
grated environment provided by the SDL tool. Hence the pure-SDL approach is
recommended when you start to design a new system entirely. You can also find
a good compromise between the two approaches which is appropriate for your
situation. To derive detailed criteria to decide design methods for various situa-
tions, further systematical analysis of design approaches should be performed.

SDL Design of a Radio Resource Control Protocol for 3GE Systems 181

The International Telecommunication Union (ITU) Telecommunication stan-
dardization sector (ITU-T) now has an objective to integrate its standard lan-
guages such as SDL, MSC, and ASN.1 using Unified Modeling Language (UML)
2[14] as a framework and defining UML 2 profiles for those languages[15]. Owing
to the enhanced features of version 2 such as formal syntax added and powerful
commercial tools supporting UML 2, UML seems ready to be an excellent tool
in the formal development of a general system. In order to encourage the indus-
try to come into this formal world, we hope for a lot of practical experiences in
various situations with UML also.

Acknowledgements

This paper was supported in 2005 by Research Fund, Kumoh National Institute
of Technology and Electronics and Telecommunications Research Institute. We
also thank Dr. Daniel Amyot and the anonymous reviewers for their valuable
comments.

References

1. P.R. James, M. Endler, and M.-C. Gaudel, Development of an atomic-broadcast
protocol using LOTOS. Software - Practice & Experience, Vol. 29, Issue 8, pp.699–
719, John Wiley & Sons, Inc. 1999.

2. P. Amer, A. Sethi, M. Fecko, and M. Uyar, Formal design and testing of army com-
munication protocols based on Estelle. Proc. of the 1st ARL/ATIRP Conference,
College Park, pp.107–114, 1997.

3. B. Hatim, M. O. Droma, Telecommunication software development using SDL-
92: practical experience. The 2nd IEEE Int’l Conf. on Engineering of Complex
Computer Systems (ICECCS’96), pp.273–277, 1996.

4. ITU, Recommendation Z.100, Specification and Description Language (SDL). ITU,
Geneva, 1999.

5. Telelogic AB Inc., Telelogic TAU Generation 1 SDL Suite Ver.4.6, 2005. See
http://www.telelogic.com.

6. 3GPP, Radio Resource Control (RRC) protocol specification. 3GPP TS 25.331
V.6.5.0, 2005.

7. P.J. Song, M.H. Noh, and D.H. Kim, Design and Implementation of W-CDMA
Radio Interface Protocols Using SDL Development Environment. CIC 2002, LNCS
2524, pp.442-452, Sringer, 2003.

8. ETRI, HMm, Technical Specification Radio Access Research Team, ‘Radio Control
(RC)’. HMm SPC-0310-250.200, 2004.

9. Wind River Systems Inc., Wind River Platform for Network Equipment, VxWorks
Edition. See http://www.windriver.com.

10. R.J., Skehill, I. Rics, and S. McGrath, SDL System Development of Distributed
UMTS Signalling Layers. 2nd Annual ICT Information Technology and Telecom-
munications, 2002.

11. J. Colás, J.M.Perez, J.Poncela, and J.T. Entrambasaguas, Implementation of
UMTS Protocol Layers for the Radio Access Interface. SAM 2002, LNCS 2599,
pp.74-89, Sringer, 2003.

182 T.-H. Kim et al.

12. V. Morillo-Velarde, J. Colás, J. Poncela, B. Soret, and J.T. Entrambasaguas,
UMTS Protocol Development using Formal Languages. Proc. of the IASTED
Int’l Conf. on Communication Systems and Networks, pp.274–279, 2004.
Entrambasaguas Proceeding IASTED Communication Systems and Networks,
Spain, 2004

13. Objective Systems Inc., ASN1C - ASN.1 to C/C++ Compiler, Ver.5.3, 2002. See
http://www.obj-sys.com.

14. Object Management Group, The Unified Modelling Language Version 2.0, 2004.
See http://www.uml.org.

15. Rick Reed, The chairman’s report. The Annual Meeting of the SDL Forum Society,
2005.

	Introduction
	Related Works: Designing UMTS Protocols in SDL
	ETRI's 3GE-2005 System
	Two Design Approaches: Pure-SDL and Hybrid-SDL
	Designing the SDL System
	Overall Design
	Design Details for Message Handling

	Verification of the Design
	Comparative Evaluation of Two Approaches
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

