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Preface

The workshop on System Analysis and Modeling (SAM), held every two years,
provides an open arena for participants from academia and industry to present
and discuss the most recent innovations, trends, experiences, and concerns in
the field of the ITU Specification and Description Language (SDL-2000), Mes-
sage Sequence Charts (MSC-2000), and related languages such as UML, ASN.1,
eODL, TTCN, and URN. It addresses modeling, specification, and analysis of
distributed systems, communication systems, and real-time systems.

The 2006 SAM workshop (SAM 2006) was held at the University of Kaisers-
lautern, Germany, from May 31 to June 2, 2006 (http://sam06.informatik.
uni-kl.de/). It was co-organized by the University of Kaiserslautern, the SDL
Forum Society, and the International Telecommunication Union (ITU-T). Avaya
Labs and Telelogic AB sponsored SAM 2006. The workshop was attended by
42 participants from 8 countries in Europe, North America, and Asia, from
academia and industry.

The program consisted of ten sessions, and featured exhibits and posters. The
Program Committee selected 17 papers based on a formal review for presenta-
tion and (subject to review) possible post-event publication. To emphasize the
workshop character, an explicit discussion round prepared and moderated by the
session chair was included in each session. After post-workshop revisions of the
papers under the guidance of experienced shepherds taking into account work-
shop feedback, a second reviewing round took place, which led to the selection of
14 papers for publication in this volume of Lecture Notes in Computer Science.

A special focus of SAM 2006 was on language profiles, as reflected in the title of
this volume. While design languages are getting richer, there is a strong interest
of tool providers and users of keeping them lean, and even of tailoring them to
a particular application domain. In standardization, this trend is reflected by
increasing the flexibility of language definitions, and by the concept of language
profile. In UML, for instance, it is possible to reduce and constrain the metamodel
defining the UML syntax, and to specialize language constructs. In this volume,
there are four papers on language profiles:

– The paper by Constantin Werner, Sebastian Kraatz, and Dieter Hogrefe
presents an approach to define a domain-specific UML language profile for
communicating systems. They start with a subset of UML, add static se-
mantic constraints, and then provide a mapping to SDL-2000. This way,
a formal semantics is given to the profile. The paper contributes to Z.109,
which defines a UML profile for SDL.

– The paper by Joachim Fischer, Andreas Prinz, Markus Scheidgen, and Merete
Tveit defines a UML profile for eODL, the extended Object Definition Lan-
guage of the ITU. This again is an example of how semantics can be given to
a subset of UML. Furthermore, the UML profile gives a graphical notation
to eODL.
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– The paper by Abdelouahed Gherbi and Ferhat Khendek proposes an exten-
sion of a UML language profile for schedulability, performance, and time
published by the OMG. The extension captures multicast communication.

– The paper by Rüdiger Grammes introduces SDL language profiles as well-
defined subsets of SDL that have a formal syntax and semantics. Based on the
existing semantics of SDL, which is defined using Abstract State Machines,
a formalized approach to automatically derive the semantics for given SDL
profiles is devised. This lays important foundations for a rigorous treatment
of language profiles.

Although most of the ITU languages (ASN.1, MSC, SDL, TTCN) have existed
for more than a decade, the languages and their use are still evolving as the
application domains are changing. For telecommunications, there is currently
activity in the services layers of the network, so that service layering and the
uses of XML in service descriptions are of interest. The papers in the workshop
treating subjects such as scenario merging, timed sequence charts and service
role composition may therefore see application in the development of future
products. Of course, effective development requires good tool support, and here
the trend is towards basing tools on MOF meta-models and merging UML and
support for languages like MSC and SDL, as seen in the papers in this volume.
In the case of MSC, there is very little to differentiate MSC from the sequence
diagrams of UML, and it is possible to foresee a single joint OMG/ITU profile
for the charts/diagrams in the future. In the case of SDL, to build executable
models, many of the issues left open in UML (semantic variation points) for
behavior descriptions have to be closed to get a well-defined behavior. There is
a trend (at least for real-time applications) to use the SDL semantics for state
machine diagrams, and there is renewed interest in SDL. At the time of writing,
proposals are being considered for revising the SDL language to reflect some of
these trends including the use of UML object modeling with implementation in
SDL.

The 2006 SAM workshop was a success, thanks to the dedicated work of
many people involved in the event: the local organization team, the Program
Committee, the reviewers, speakers, session chairs, exhibitors, and participants.
A volume such as this could not, of course, exist without the contributions of
the authors who are thanked for their work. We are especially grateful for the
sponsorship of Avaya Labs and Telelogic AB, and the support of the University
of Kaiserslautern. Finally, we hope you will enjoy reading our selection of papers
in this book and would like to see you at a future SDL Forum Society event (see
www.sdl-forum.org).

October 2006 Reinhard Gotzhein
Rick Reed
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– University of Kaiserslautern, Kaiserslautern, Germany



Table of Contents

Language Profiles

A UML Profile for Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Constantin Werner, Sebastian Kraatz, Dieter Hogrefe

Implementing the eODL Graphical Representation . . . . . . . . . . . . . . . . . . . . 19
Joachim Fischer, Andreas Prinz, Markus Scheidgen,
Merete S. Tveit

Distributed Real-Time Behavioral Requirements Modeling Using
Extended UML/SPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Abdelouahed Gherbi, Ferhat Khendek

Formal Operations for SDL Language Profiles . . . . . . . . . . . . . . . . . . . . . . . . 49
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A UML Profile for Communicating Systems  

Constantin Werner, Sebastian Kraatz, and Dieter Hogrefe 

Telematics Group, University of Göttingen, Lotzestrasse 16-18,  
37083 Göttingen, Germany 

{werner, hogrefe}@cs.uni-goettingen.de, sebastian@kraatz.name 

Abstract. This paper presents a UML 2 profile for communicating systems. It 
is driven by the experience of SDL and uses formal constraints for profile 
definition and mapping rules by means of OCL. It features language elements 
for high-level specification and description of Internet communication and 
signaling protocols where SDL is not optimally suited. Due to its support of 
several concrete notations, this profile is aligned to work with several UML 2 
compliant modeling tools. In addition, an implementation by an XSLT-based 
mapping from UML to behavioral and structural SDL specifications is 
available. The intention of the paper is to present the main work done which is 
defining an actual profile and mapping this to SDL. 

1   Introduction 

The Specification and Description Language (SDL) [1] is a formal language 
developed and maintained by International Telecommunication Union, 
Telecommunication Standardization Sector (ITU-T). It is targeted at the unambiguous 
specification and description of the behavior of reactive and distributed systems and 
focusing on the object and state machine view of systems. SDL is mainly used in the 
design phase, where an SDL specification consists of the system architecture and the 
behaviors of the different processes in the system. SDL specifications can range from 
abstract and possibly incomplete to concrete descriptions that can be simulated and 
validated automatically.  

Presently, the Unified Modeling Language (UML) [2] is a collection of several 
semi-formal standard notations and concepts for modeling software systems at 
different stages and views of the same system. In practice, UML is made more formal 
by binding semantic variations in the UML language and providing a more precise 
behavior either in a tool or a language profile. The lack of strong formality in non-
profiled UML is beneficial at the early stages of development. In later stages of 
simulation, validation and implementation, UML is too imprecise to fulfill this task, 
for which SDL is well suited.  

The goal of this work is to bridge the gap between the requirement and analysis 
phase, and the design phase by combining the strengths of UML and SDL. While 
UML features multiple viewpoints on the same system, informal object models and 
property model views, SDL offers detailed formalized object models with respect to 
execution semantics. It is argued that both languages can be combined so that the 
advantages of both languages could be used. This paper describes an approach for 
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generating full (behavioral and structural) SDL design specifications from a 
behavioral specification and architecture of the target system from a given UML 21 
model. For this purpose, a light-weight extension to the metamodel of the UML is 
defined – a UML profile. This UML Profile for Communicating Systems (UML CS) 
incorporates many features from SDL. However, this profile does not simply provide 
a one-to-one mapping: It provides an additional set of high-level modeling concepts 
especially for the Internet communication protocols. Some of them are not directly 
supported by SDL.  

In addition, a mapping implementation from a given UML model to a 
corresponding SDL system specification has been developed by an eXtensible 
Stylesheet Language Transformation (XSLT) to show feasibility and soundness of the 
profile’s concept. The profile coupled with the XSLT mapping enables the use of a 
number of UML modeling tools to specify system architectures and their behavior.  

The remainder of this paper is structured as follows: The following Section 2 
provides an overview of the related work. Section 3 outlines the new language features 
which have been identified for high-level Internet communication protocol engineering 
where SDL is cumbersome. In Section 4, the profile design is presented with the 
semantic description by means of the Object Constraint Language (OCL). Section 5 
briefly describes the XSLT-based mapping of a UML system specification using this 
profile to SDL. Section 6 provides a summary and an outlook for future work. 

2   Related Work 

The combined use of UML and SDL is not new. Proposals exist in other work to use 
UML and SDL together where the weaknesses of UML are overcome by the strengths 
of SDL. The current Z.109 recommendation [3] in force at the time of writing (mid-
2006) imports SDL into UML by making use of the extension mechanisms available 
in UML. The Z.109 standard maps several UML elements to a corresponding element 
in SDL. Thus, the UML profile for SDL that is described in Z.109 is a specialized 
subset of UML. However, the current Z.109 standard is referring to the previous 
UML 1.3 standard. A UML profile for SDL [4] is being developed as a revised version 
of Z.109 that is based on the UML 2 standard [2]. In addition, the European 
Telecommunications Standards Institute (ETSI) had a work item for a UML Profile 
for Communicating Systems [5] until 2005. It became a significant contribution to the 
ITU-T work and is now a joint work between both organizations. The ITU-T profile 
describes the semantics by means of informal mapping rules which is the main 
difference between the ITU-T work and the profile described in this paper. 
Furthermore, this profile comes with an XSLT-based implementation of the mapping 
rules which allow to check the validity of the mapping. In [6], an approach is 
presented for the syntactic and semantic alignment of SDL and UML for the 
upcoming harmonization of both languages. But it does not present a formal, 
complete mapping. A mapping from UML combined with Message Sequence Charts 
(MSC) to SDL is presented in [7]. A mapping from standard UML elements is used to 
                                                           
1  The profile has been developed based on the final adopted UML 2.0 Superstructure 

document. It is currently being updated to the new draft release of UML 2.1 [14], published 
in April 2006. 
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generate the SDL architecture and by adding the MSCs, it results in a complete SDL 
specification of a system. ObjecTime has introduced a methodology for describing 
real time systems using UML. In this approach, concepts from ROOM are introduced 
into UML via stereotypes. There is no attempt to map UML into SDL, but it is 
straightforward to map the ROOM UML elements into SDL. The approach of 
extending UML by stereotypes is also used for mapping SDL into UML. The 
Integrated Method (TIMe) uses UML for object modeling and MSC for showing the 
interactions between objects [12]. SDL is used to fully specify the system in terms of 
architecture and behavior. The TIMe method has loose mapping rules for going from 
UML to SDL which are based on the Z.109 recommendation. As such, the TIMe 
method requires designers to do the translation manually. This may lead to errors and 
inconsistencies.  

However, the above-mentioned approaches (except for the Z.109 revision) are 
based on previous versions of the UML and do not use the full potentials introduced 
with the UML 2. Tau2 G2 is a modeling tool which binds UML 2 semantic variation 
points so that UML 2 can be mapped to an execution model based on SDL. But this 
mapping is proprietary and based on an early metamodel of the UML 2. 

3   UML Profile for Communicating Systems 

SDL is the first language for specification, design and development of real time 
systems and in particular for telecommunication applications. The UML CS profile is 
mainly based on SDL. Many concepts have been re-used for this purpose: The agent 
concept for structuring a system design, behavioral specification using 
communicating extended finite state machines, data types and several object-oriented 
mechanisms like inheritance and encapsulation. However, it is argued that SDL is not 
optimally suited for current and upcoming communication protocol engineering for 
packet switched networks. Packet switched networks like the Internet or mobile 
wireless access networks demand new methodologies when modeling protocols. This 
includes modeling of communication path route change, robustness to message losses, 
roaming with handover as well as the specification of communication protocols for 
multi-hop overlay networks and multi-hop signaling. 

3.1   Profile Features 

Current developments towards all-IP networks underline the expectations that IP 
network communication protocol modeling will gain much more attention in the 
coming years. Therefore, it is necessary to add new features to the language to ease 
the development of IP based networks and communication protocol models. With the 
recent experience gained in modeling multi-hop Internet signaling protocols, some 
shortcomings in SDL are identified below which render some features of the Internet 
hard to formalize. This especially applies to robustness testing of communication 
protocols and to the specification and validation of multi-hop signaling protocols. By 
a thorough analysis of an Internet signaling protocol specification in [8], the following 
features have been identified to be necessary and useful to be added to UML CS 
                                                           
2 http://www.telelogic.com/products/tau/ 
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profile to allow exhaustive IP-based communication protocol specification and 
analysis while abstracting from nonrelevant details: 

Randomness: For robustness analysis of communication protocols it is important to 
examine a communication protocol’s ability to deal with occasional packet losses. It 
is cumbersome to model packet loss probability in the Internet by the nondeterminism 
features of SDL, but it can be approximately modeled using certain specific 
distribution functions. Unfortunately, SDL does not offer direct random functionality 
– except for the none spontaneous transition and the any nondeterministic decision. 
Some SDL tools offer a proprietary support for randomly generated values by 
including several libraries to SDL. Therefore, a random function is introduced to the 
UML CS profile which allows receiving pseudo-randomized values. Random 
operation calls are currently mapped to SDL by using tool specific library functions. 

Input from/via: While SDL provides explicit addressing of signals for output, there is 
no corresponding construct for the reception of a signal available in SDL. The 
reception of a signal via a specific gate cannot be constrained. The reception of a 
signal from a specific process is possible if the SDL state machine variable sender is 
evaluated. This variable is updated when signal has been consumed with the process 
id of the process which has sent the signal. A modified signal receive event trigger is 
introduced into this profile with the optional attributes from and via. A signal can only 
trigger a transition if the process identification matches the sender or the signal is 
received on a specific port. Notice that the sender’s address or port is evaluated before 
the signal is consumed while evaluating the sender variable is only possible after 
consumption of the signal. This is helpful if only ports (network interfaces) are 
relevant for message passing or addressing. One might think of a network bridge 
where it is only necessary to know on which side the message has been received from. 
The input from/via cannot be mapped to SDL while preserving the semantics. 
However, as an imperfect work-around, it is currently mapped to a signal input with a 
following decision that may discard the signal and return to the previous state if the 
consumed signal does not originate from the specified agent or gate. 

Dynamic ports: Recent studies in the modeling and robustness analysis of multi-hop 
Internet signaling protocols have shown that SDL is not well suited to create certain 
network topologies, e.g. [8,9]. IP network topologies require the free placement and 
interconnection of router nodes in-between the signaling path. Multiple routes from the 
network initiator downstream to the network recipient are necessary for the study of the 
robustness of signaling protocols. Such a model has already been developed in [8] where 
considerable efforts have been undertaken to circumvent the shortcomings of SDL. To 
create multiple hop network topologies, a typed intermediate node (e.g. a router) is 
required. In SDL, a typed agent has predefined gates which enforce matching 
connections to other agents. This limits the amount of network topologies which can be 
created without creating dummy instances of agents. Dynamic ports allow agents to 
specify their amount varying from instance to instance. The mapping to SDL creates a 
new agent type for each new amount of attached dynamic ports to an agent instance. 
Each dynamic port instance (addressed by an index) is substituted by an arbitrary gate 
name. In particular, multiple dynamic ports connected to the same agent can lead to a 
considerable high amount of different agent types with different number of defined gates.  
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Soft States: During the last decade, a group of protocols have been designed using soft 
state for state maintenance. In contrast to hard state, a soft state itself expires if no 
periodical refreshes are received. Soft state protocols are expected to have lower 
protocol complexity in state maintenance operations especially with extreme network 
situations. Examples of soft state based Internet protocols are the Resource 
Reservation Protocol (RSVP), Next Steps in Signaling (NSIS) suite, and Session 
Initiation Protocol (SIP). Because researchers argue that soft state protocols are a 
highly attractive concept for Internet communication and signaling protocols, it has 
been decided to add soft state management concepts to this profile. Soft states can be 
defined using timers or state types with context parameters in SDL-2000. 
Nevertheless, a more native and intuitive integration with a sufficient high-level view 
which abstracts from unnecessary details will increase the acceptance of this profile 
for Internet communication protocol modeling. Instead, this allows a direct mapping 
from UML CS to SDL using equivalent constructs with states and timers. Soft states 
are mapped to states in SDL with an implicitly defined and initialized timer. If the 
state is re-entered, all defined timers for this state are re-started. As soft states may 
depend on multiple concurrent timers, the appropriate amount of required timers is 
determined beforehand. 

Besides of the new features discussed, several complex language features of SDL-
2000 are deliberately not supported by the profile (currently). In particular, this 
includes exceptions, templates (context parameters), state aggregation, state types and 
virtual types. One reason for this is one of the profile’s design goals. That is – in spite 
that it is based on clarity and formal semantics of SDL – to enable mappings to other 
formal description techniques. As it is not sure whether these languages support 
exceptions, state types and other SDL constructs, these complex language features are 
currently left out. It is argued that they can also be substituted by core language 
features, for instance the replacement of exceptions by special dedicated signals. 

3.2   Concept of the Profile 

The profile provides structural modeling elements similar to SDL: package, system, 
block and process agents. System design decomposition is supported by defining 
nested agents within another agent. A block or process can be contained within 
another system or block. A process can only be contained within another process. 
Each of the agents may define constants, signals and operation while agent variables 
and timers may only be defined in a process. UML visibility modifiers (public, 
package, protected, private) are available and are checked by constraints prior to a 
mapping to SDL. Virtuality of types is currently not supported; that is, object entities 
(such as operations) cannot be overwritten or overloaded. The composite structure 
instantiates the agents including multiplicities and specifies the communication paths 
by means of connectors (channels) and interfaces for signals and remote procedure 
calls. For each agent, a composite structure is defined that specifies the interaction 
points (ports) between all nested agents and their environment. Single generalization 
is supported for all types, however, redefinition is not allowed. It is only allowed to 
define new, additional properties for a type. 

Processes are agents modeled by active classes which execute a defined behavior 
after instantiation. The behavior of processes is described by means of state machines. 
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All other behavior, such as methods and transition effects, can either be defined by 
state machines or activities. As an exception, data type operators can only be defined 
by activities because in UML CS, an activity must not wait for triggers. As the 
concrete representation can vary in modeling tools, the profile supports describing 
behavior via stereotyped activities, textual notation, referenced state machines or 
nested activities associated to a state machine transition.  

Figure 1 shows a simple UML CS process ppong. The behavior of the process (the 
classifierBehavior) is defined by the state machine pingpong. The state machine is 
associated with the activity sendSig1 through the effect of the first transition. The 
signal sig1 is defined in the class diagram of the process ppong. When the state 
machine initializes, it calls the activity sendSig1. This activity sends the signal sig1 to 
an unspecified target, finishes its execution and returns to its caller. The state machine 
enters the state waitResp. Then it waits for the trigger sig1, which is raised by a signal 
reception event of sig1 (sent from another process not shown here). If this trigger is 
raised, the state machine terminates. This process can be successfully mapped to an 
equivalent SDL description. Notice that the control flow within a state machine is 
defined by a transition, while in an activity there is a controlFlow stereotype.  

<<stateMachine>>
pingpong

<<state>>
waitResp

<<transition>>sig1

/sendSig1
<<transition>>

The pingpong state 
machine defines the 
classifierBehavior of 
the ppong process. 

 

Fig. 1. Simple UML CS Process (left), its behavior definition by a state machine (center) and 
the invoked activity (right) 

The controlFlow stereotype is explicitly required to constrain any attempts to 
define concurrency which is a capability of UML activities. However, concurrency 
within a UML CS state machine (and its invoked activities) is not supported.  

Besides the provision of elements for specifying and describing structure and 
behavior of a system, the profile also contains stereotypes for defining data types with 
their signature, implementation (semantics) and inheritance for both value and object 
types. Predefined SDL data types like Natural and Character are provided as well as 
the composite types struct and union (the SDL choice). 

3.3   Applying the UML Profiling Mechanism 

The primary design goal of this profile is to include many features from SDL-2000 
but to omit language elements that are rarely used or very complex to use. This profile 
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intends to be applicable to several UML tools that support the UML 2 with 
compliance level 3 and diagram storage in XMI 2.1 [13]. This is not an easy task as 
UML only specifies the abstract syntax and only gives recommendations for concrete 
notational style. As most tools deviate in the implementation of the concrete syntax, 
this profile proposes several alternative graphical, textual and architectural notations. 
In summary, this profile features a combination of SDL, some extension points for 
enabling a mapping to other formal description techniques and high-level language 
concepts for communication protocol engineering for the Internet with UML 2 
modeling tools. 

The profile comprises about 50 stereotypes and is available for download at [10]. A 
stereotype extends a metaclass of the UML metamodel. It defines a name, possibly 
attributes (tag definition), constraints and concretizes the syntax and semantics.  

The following Table 1 gives an example of a stereotype definition extending the 
UML metaclass Signal. 

Table 1. Stereotype Definition of a «signal» 

UML NODE TYPE UML NOTATION REFERENCE
Signal

<<signal>>
sampleSignal

13.3.23 Signal  

UML CS STEREOTYPE UML METACLASS TAGGED VALUES

priority: Integer = 0 «signal» Signal (from Communications) 
sender: Pid 

OCL CONSTRAINTS INFORMAL CONSTRAINTS

context Signal 
inv: self.general->size()<=1 
inv: self.extension_signal.priority>=0 and  
 self.extension_signal.priority<256 
inv: self.ownedOperation->isEmpty() 
inv: self.extension_signal. 

The optional priority attribute defines 
a possible precedence of this signal. 
A higher value specifies a higher 
priority. 

 sender.isReadOnly 

The tagged value sender represents 
the sender process identification that 
has executed the output action 
sending this signal.  

This stereotype signal recommends a concrete notation for this model element, 
which is shown in the cell labeled UML Notation. It adds some tag definition and 
tagged values shown in the cell labeled Tagged Values: priority which is of type 
Integer and a sender which is of type Pid (this data type is defined within the profile). 
In addition, constraints are defined that give some semantic restrictions on this model 
element, shown in the cell OCL Constraints. Multiple inheritance is not supported for 
a signal. The specified priority value must be specified within the (arbitrarily) chosen 
range of 0 to 255. The tag definition sender is set as being read only and can be 
evaluated in the receiving process. In addition, some Informal Constraints are given 
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that explain some of the constraints in English language for clarity. In summary, the 
development process of the profile comprises the following steps: 

• Analysis of SDL with respect to shortcomings for communication protocol 
engineering in packet switched networks, 

• Definition of a UML profile the unambiguous specification and description of 
Internet protocols, 

• Providing a semantics by specifying a mapping to SDL-2000 by means of OCL, 
• Providing a proof-of-concept implementation mapping to SDL. 

4   Defining the Semantics of UML CS 

The semantics of the UML CS profile is specified by means of the Object Constraint 
Language (OCL) [11]. The OCL is a side-effect free, formal specification language 
built on simple set theory and predicate logic especially designed to specify constraint 
expressions easily. The stereotypes of the UML profile define invariant constraints 
that add static semantics to the metamodel. Furthermore, a translational semantics is 
given by the specification of a translational mapping to SDL-2000: OCL constraints 
are used to validate that the mapping from UML CS models to SDL-2000 has been 
done so that it conforms to the semantics. This formalism is very beneficial for the 
tool-supported validation of a correct mapping. In the following, the concept of OCL-
based mapping is explained. Due to limited space, not all details of the mapping and 
type conversion can be described. 

During the SDL-2000 compilation process, a SDL specification is successively 
transformed into an abstract syntax tree, namely AS1 defined in Z.100 main body. This 
AS1 is the result of parsing and checking by well-formed conditions of the SDL program. 
AS1 abstracts away from additional but non-essential expressions like delimiters, 
keywords, graphical elements, spaces and so on, focusing only on the relevant informat-
ion. Furthermore, complex language constructs are decomposed into core concepts. 

4.1   Overview 

The assumption is that a UML model is actually mapped to SDL. The compilation of 
this SDL model results in an (internal) abstract syntax tree according to the definition 
in Z.100. To validate that the mapping from UML to SDL is correct, the model 
defined in the UML repository and the system defined in the AS1 of SDL are 
compared and cross-checked if they fulfill and match specific properties. This 
comparison must always evaluate that the given constraints are fulfilled. Otherwise, 
the mapping is considered invalid. There are two prerequisites for such a comparison: 
First, for the comparison of values, both data types must be type compatible. 
Therefore, before constraints can be applied between both models, the types have to 
be aligned first. Second, each composite object in both the UML repository and the 
AS1 tree must be uniquely addressable – in other words, repository and syntax tree 
must be navigable. For a specification language, the obvious choice for UML-based 
models is OCL as it is part of the UML standard. OCL supports navigation of the 
UML metamodel. Therefore, the abstract grammar has to be mapped to a MOF-
compliant metamodel. 
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The following Figure 2 pictorially outlines the mapping concept: As above-
mentioned, it is assumed that there exists an actual mapping function Mapping from 
UML to AS1 and a type conversion from AS1 to MOF data types. After the mapping 
of an UML element, the correct mapping is verified by post-constraints specified in 
OCL. Therefore, the function Mapping maps a UML model (e.g. given in XMI 
representation) to a SDL system. It is not defined how this is achieved concretely. The 
post-constraints only check whether both composite objects (the object in the UML 
repository and the object in the AS1) are equivalent after the mapping or not. OCL is 
a declarative language and cannot alter the system state. 

 

Fig. 2. Mapping Specification by OCL  

There are OCL expressions specified that constrain the invariant variables or 
associations of the UML elements that apply to the stereotyped classes.  

To specify the mapping by the function Mapping, only the post-operation 
conditions of the mapping are shown. For clarity, the SDL mapping constraints relate 
to the abstract syntax (abstract grammar) definition of SDL and the UML stereotypes 
attributes and associations. In addition, the OCL constraints only apply if a UML 
model is mapped that has the required stereotype applied. All constraints given must 
be preceded by an implication expression as the constraint is always in the context of 
the Mapping function. For example, the correct OCL constraint expression for the 
name attribute mapping for the state class stereotyped with «state» is the following 

 
context Mapping(sdl: SDL-specification, uml: Classifier, co: NamedElement, 
e: NamedElement) 
post: isStereotypedBy(e, state) implies co.name=e.name 

 
where sdl is the root object of the SDL specification, uml is the system or package 
class object, co is the composite object of the SDL AS1 tree that is to be validated 
against the Element e defined within the uml Classifier. The definition of the 
operation isStereotypedBy is  

 
isStereotypedBy(e: Element, s: Stereotype) : Boolean; 
post: result = e.extension->exists(e | e.type=s) 
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As this applies to all following mapping rules, the context and post-constraint part has 
been omitted in all constraints. The abstract syntax of SDL can be regarded as a 
named composite object or tree defining a set of sub-components.  

4.2   Type Mapping from SDL AS1 to MOF 

For each core concept of SDL, the SDL AS1 defines a composite object. For example, 
the abstract syntax for Channel-path is: 

 
 Channel-path :: Originating-gate 
    Destination-gate 
    Signal-identifier-set 
 

This defines the domain for the composite object (a tree) named Channel-path. 
This object consists of three sub components, which address two gates and a set of 
signal identifiers. This defines the signals that can be conveyed between the two 
gates. These components in turn might be trees. An object might also be of some 
elementary (non-composite) domains: non-negative Integers (Nat), quotations, and 
tokens: 
 
 Number-of-instances :: Nat [Nat] 
 
Number-of-instances denotes a composite domain containing one mandatory natural 
(Nat) value and one optional natural ([Nat]) denoting respectively the initial number 
and the optional maximum number of instances. A Nat is mapped to a non-negative 
Integer value. 
 
 convert: Nat -> Integer 

context convert(nat: Nat) : Integer 
post: result >=0 

 
Quotation objects are represented as any bold face sequence of uppercase letters and 
digits.  

 
 Channel-definition :: Channel-name 
     [NODELAY] 
     Channel-path-set 
 
A channel may be delaying or not. This is denoted by an optional quotation 
NODELAY. This quotation is mapped to a String that is associated with the 
respective compound object. If no composite object is defined in the AS, the name of 
the String is constructed with the first name of its containing composite object name 
with suffix -kind. For example, the name of the String containing the Quotation object 
NODELAY for a Channel-definition would be Channel-kind. 

 
convert: Quotation -> String 
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Token denotes the domain of tokens. This domain can be considered to consist of a 
potentially infinite set of distinct atomic objects for which no representation is 
required. 
 
 Name :: Token 
 
A name consists of an atomic object such that any Name can be distinguished from 
any other name. A Token is mapped to a String. 

 
convert: Token -> String 

 
The abstract syntax uses the postfix operator -set yielding a set (unordered collection 
of distinct objects). 

 
 Agent-graph :: Agent-start-node State-node-set 
 
In this example, an Agent-graph consists of an Agent-start-node and a set of State-
nodes. A –set of the abstract syntax is mapped to a Set.  

 
convert: -set -> Set 

 
UML Constraints are specified by means of a ValueSpecification. The 
ValueSpecification of a constraint is mapped to a String. 

 
convert: Constraint -> String 
context convert(c: Constraint): String 
post: result = c.specification.stringValue() 

 
During translation from the concrete SDL syntax to an executable system, there are 

several transformation steps applied (the concrete steps are not described here; it is 
referred to the appendices of Z.100 [1]). As noted, the abstract syntax AS1 is a 
composite object tree and defines an SDL-specification as root. From this, the tree is 
traversed by means of the defined objects within the system description. 

It is assumed that each object within this tree can be constrained by means of OCL. 
This is pictorially presented in Figure 3. Dotted lines mean (implicit) type conversion. 
Underlined expressions denote OCL constraint specifications applied to the object 
tree. The given constraints in Figure 3 are only exemplary. The type mapping 
specification has been described in the previous section, which provides a mapping to 
OCL compliant types. However, a concrete mapping is not provided; instead, it is 
assumed that such a mapping is already available so that all constraint qualifiers are 
valid (if the type compliance would fail, none of the constraint qualifiers is satisfied 
and the mapping is considered invalid).  

The type mapping is not only being provided on leaf, elementary objects. Objects 
defining a set are implicitly mapped to an OCL Set, which is shown at the Package-
definition-set object in Figure 3. The Set itself contains the set of Package-definitions, 
which itself decomposes into several objects. 
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Fig. 3. OCL Constraints on AS1 Composite Object Tree 

If the resolution path down to the tree leaf is unambiguous, it is assumed that 
derived attributes with appropriate types are available. For instance, although the 
Agent-name is resolved into a Token, it is assumed that this is also done implicitly at 
parent objects. Therefore, the correct navigation through such a composite tree would 
be Agent-name.Name.Token=”Agent1”. However, the shorthand notation Agent-
name=”Agent1” is also allowed. Nevertheless, OCL constraints require some 
navigation on the composite objects. This is briefly illustrated in the following.  

4.3 Example - Mapping the SDL AS1 for Channel Definition to MOF 

The abstract grammar of a channel definition in Z.100 main body is 
 

Channel-definition :: Channel-name 
     [NODELAY] 
     Channel-path-set 

Channel-path  :: Originating-gate 
     Destination-gate 
     Signal-identifier-set 

Originating-gate  = Gate-identifier 
Destination-gate  = Gate-identifier 
Gate-identifier  = Identifier 
Channel-name  = Name 

 
The mapping should map the following excerpt of the composite object tree of the 

AS1 to a metamodel that is type compatible and navigable. This abstract grammar is 
mapped to a metamodel shown in Figure 4. 

Note that this is only an excerpt, as the associations of the metaclass Qualifier are 
not shown. In this example, -set is mapped to multiplicities 1..2 as specified by the 
constraints written in the associated abstract grammar text. If a -set is unconstrained, 
its multiplicities are 0..*. Optional components are mapped to multiplicities 0..1. 
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Fig. 4. Abstract Grammar mapped to Metamodel 

However, quotation objects like NODELAY are currently mapped to a quotation 
enumeration array with 0..* multiplicity. It is assumed that all quotations are part of 
this array. If the quotation does not apply (e.g. a channel that does not have the 
quotation NODELAY), the quotation attribute is empty. 

Additionally, it is presumed that derived attributes are available in each class 
object, e.g. the excerpted abstract syntax for the channel name is  
 

Channel-definition :: Channel-name 
Channel-name  = Name 
Name   ::  Token 

 
To verify if the Channel-name is given, the correct navigation would be Channel-
definition::Channel-name.Name.Token<>””. However, as the composite object tree 
resolution path is unique and unambiguous, the expression Channel-
definition::Channel-name<>”” is also considered valid. 

4.4   Adding Mapping and Constraints to SDL AS1 

Each UML CS element that does not have a concrete textual representation has a 
mapping described. That is, when a UML CS stereotyped modeling element is to be 
mapped, a set of qualifiers is specified to assert which values are assigned to the 
corresponding SDL abstract syntax of an element. Therefore, the semantics and 
definitions of the various modeling elements are derived from the SDL construct. AS1 
mapping rules, which are not constrained by an OCL expression, may have an 
optional assigned value. For instance, the state start node of a state machine may have 
a name assigned or not. To improve clarity, the OCL constraints, UML metaclasses 
and stereotyped attributes are underlined. UML CS model elements with a concrete 
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textual notation are not included in this mapping as the syntax is derived from SDL 
[1]. Note that within the diagram in Figure 3, an operation with the navigation such as 
self.part.upper() shown in Figure 3, is only valid when a context is specified. For 
clarity, the context is denoted by the stereotype name which is labeled as the heading. 
Thus, the navigation is always originating from the specified stereotype. 

As the model repository of the UML tool is non-navigable, the following is 
expressed informally. 

 
SDL-specification             ::  [Agent-definition] = “Agent of kind system in model repository” 
 Package-definition-set = “All packages in the model repository” 
 

The following is an exemplary mapping specification of the extended metaclass 
Package by the stereotype package. The following constraints provide information 
which attributes of the model element map to the appropriate objects in the AS1 of 
SDL. This reads as follows: If a model element extended with the stereotype package 
is found, there shall be a Package-definition with its inner objects fulfilling the 
specified constraints. 

 
package 
Package-definition :: Package-name = package.name 
  Package-definition-set = package.nestedPackage 
  Data-type-definition-set =  
   package.packagedElement->select(e |  
   isStereotypedBy(e,dataType) 
  Syntype-definition-set = package.packagedElement-> 
   select(e | isStereotypedBy(e,constant)) 
  Signal-definition-set =  
   package.packagedElement->select(e |  
   isStereotypedBy(e,signal)) 
  Exception-definition-set -> isEmpty() 
 Agent-type-definition-set =  
  package.base_Package.packagedElement-> 
  select(a | isStereotypedBy(a,block)-> 
  union(package.base_Package.packagedElement -> 
  select(a | isStereotypedBy(a,process))-> 
  union(package.base_Package.packagedElement -> 
  select(a | isStereotypedBy(a,system)) 
  Composite-state-type-definition-set =  
   package.packagedElement ->select(s | 
   isStereotypedBy(s, state))->select(s | s.isComposite) 
  Procedure-definition-set =  
   package.packagedElement ->  
   select(s | isStereotypedBy(s, operation)) 
 

Another example of mapping specification of a system agent is shown. There are 
some stereotypes referenced which are out of the scope of this paper. The following 
example reads as follows: If a model element extended with the stereotype system is 
found, there shall be an Agent-type-definition with its inner objects satisfying the 
specified constraints: 
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system 
Agent-type-definition               :: Agent-type-name = system base_Class.name 
 Agent-kind = ”SYSTEM” 
 [ Agent-type-identifier ] =  
  system.base_Class.superClass[0].qualifiedName 
 Agent-formal-parameter*-> isEmpty() 
 Data-type-definition-set =  
  system.base_Class.nestedClassifiers-> 
  select(d | d.isStereotypedBy(d,value))-> 
  union(system.base_Class.nestedClassifiers -> 
  select(d | d.isStereotypedBy(d,object)) 
 Syntype-definition-set = system. base_Class.ownedAttribute 
  -> select(d | d.isStereotypedBy(d,constant)) 
 Signal-definition-set = system. base_Class.nestedClassifier 
  ->select(s | isStereotypedBy(s,signal)) 
 Timer-definition-set = system.base_Class.nestedClassifier-> 
  select(t | isStereotypedBy(t,timer)) 
 Exception-definition-set -> isEmpty() 
 Variable-definition-set =  
  system.base_Class.ownedAttribute-> 
  select(d | d.isStereotypedBy(d,value))-> 
  union(system.base_Class.ownedAttribute-> 
  select(d | d.isStereotypedBy(d,object)) 
 Agent-type-definition-set =  
  system.base_Class. nestedClassifier-> 
  select(a | isStereotypedBy(a,block)-> 
  union(system.base_Class. nestedClassifier-> 
  select(a | isStereotypedBy(a,process)) 
 Composite-state-type-definition-set -> isEmpty() 
 Procedure-definition-set =  
  system.base_Class.ownedOperation 
 Agent-definition-set = system.base_Class.part 
 Gate-definition-set = system.base.Class.ownedPort 
 Channel-definition-set =  
  system.base_Class.ownedConnector 
 [ State-machine-definition ] -> isEmpty() 

5   Example of an Implementation: An XSLT-Based Approach 

Besides of the informal semantics description and the OCL constraints, an XSLT 
stylesheet is available as a concrete example of an implementation. This XSLT style-
sheet maps a UML CS model to a textual SDL system specification. This XSLT 
stylesheet based mapping relies on the specification of the OCL constraints described 
in the previous Section 4.4.  

Currently, there is no UML tool on the market which is compliant to the UML 2 
compliance level 3. Therefore, the XSLT requires a slightly adapted profile definition 
which adds lacking tagged values (attributes) and constructs to the UML tool’s 
metaclasses. 
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The XSLT stylesheet parses an XML document containing an UML 2 diagram 
structure described in an XML Metadata Interchange format (XMI). The output of the 
parsed stylesheet is a valid SDL/PR which can be used for prototyping purposes in 
any SDL modeling application. By using XSLT, the original XML document tree is 
browsed and translated into its equivalent SDL representation. 

 

Fig. 5. Using XSLT principle 

The XSLT stylesheet contains of a declarative collection of templates. A template 
is called when a matching tree item is found, adding the specified content within the 
template to the result output. XSLT uses the XPath language to browse the source 
tree, while providing additional functions to add flexibility to XSLT. Several XSLT 
processors like Xalan3 or Saxon4 are available for the mapping process. Figure 5 
provides an overview on the transformation process. 

XPath and XSLT belong to the eXtensible Stylesheet Language (XSL) family of 
languages that describe how files encoded in the XML standard can be transformed. 

After a general source tree compatibility check, the document is parsed starting 
from the initial node. The path of the process is followed by resolving the appropriate 
transitions. Activities are converted to procedures, high-level model elements are 
converted to a predefined set of SDL statements. Parts of the stylesheet are included 
from additional files to retain clearness and flexibility of the mapper. 

6   Conclusions and Future Work 

This paper describes a UML Profile for Communicating Systems [10] for generating 
full behavioral and structural SDL design specification from a behavioral specification 
and architecture of the target system by means of a UML 2 model. The profile is driven 
by the concept and expressiveness of SDL-2000. Moreover, it features new high-level 
elements for communicating protocol engineering for packet switched networks.  

                                                           
3 http://xalan.apache.org/ 
4 http://saxon.sourceforge.net/ 
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The model uses the OCL as a formal language for providing constraints on the 
stereotypes. It also gives mapping rules by means of OCL which are used to bind a 
mapping from extended UML model elements to corresponding SDL elements in 
their abstract syntax notation. 

As a proof-of-concept, an XMI based mapping by means of an XSLT stylesheet is 
available. This allows specification and description by means of (many) UML 2 
compliant modeling tools. The modeling tool used is MagicDraw 115. It allows direct 
access to the model repository as well as XMI 2.1 support. However, it also lacks 
some packages and concrete representations of the final UML 2 Superstructure 
required by this profile which requires some minor tool specific adaptations of the 
profile’s stereotypes.  

While the XSLT approach has shown the soundness of the profile’s concept, it is 
cumbersome for complex mappings. In the future, it is intended to replace this 
approach by Java-Document Object Model. In addition, future work includes a 
mapping from UML models with this profile applied to another formal description 
technique.  
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Abstract. eODL is the ITU component description language. Its cur-
rent status is that it is defined textually and there are several trans-
formations into other languages. There are also ideas about a graphical
representation for eODL. In this article we present a graphical represen-
tation for some of the eODL language elements and discuss how such a
graphical representation can be implemented using a high-level formal
description language in comparison with a UML profile.

1 Introduction

The advantages of graphically described models of structure and behaviour op-
posed to textual representations are undisputed in many application domains.
Nevertheless graphical modelling languages will only gain broad user acceptance
if appropriate tools become available. Besides presenting the models, these tools
should allow easy processing and transformation of the models. Because of the
significant expenditure for the development of such editors, the search for efficient
production methods is relevant in practice. Starting from a meta-model-based
definition of a modelling language, support of the construction of such editors
appears to be possible even if the concrete syntax form varies.

This contribution presents two possibilities for the construction of graphical
editors for a special meta-model-based language, whose graphic syntax is not
specified yet and must therefore be specified first. We consider the ITU-T lan-
guage eODL [1], whose standard specifies a meta-model together with a textual
syntax. The starting point of the graphical syntax proposed here is a set of not-
standardized graphic symbols for eODL model elements, which were introduced
informally in an eODL tutorial [2]. Further suggestions have been taken from
SDL [3] and UML [4,5].

The two mentioned possibilities of editor construction are mainly suitable for
languages based on MOF [6] or similar meta-models (see figure 1). eODL is de-
fined by such a meta-model. The first approach (section 3) uses an XMF case
tool, for which the existing MOF based meta-model has initially to be trans-
formed into an XCORE based model. This is not a difficult task because the

R. Gotzhein and R. Reed (Eds.): SAM 2006, LNCS 4320, pp. 19–33, 2006.
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Fig. 1. Approaches of Graphical Editor Constructions

source and target models are almost identical. The concrete notation can be
chosen freely with this approach. The procedure for doing so will be demon-
strated for eODL based on some sample model elements.

The second approach (section 4) uses an UML CASE tool with UML profile
support as the editor. By definition of a UML profile for eODL, the UML CASE
tool gets restricted to the syntax of a reduced UML. This approach would be
general, if the case tool had permitted the definition of specific icons. Since
available UML tools do not (yet) offer such a functionality, the syntax remains
restricted to the utilization of build-in UML stereotypes.

Both approaches will be explained using the well known dining philosophers
example. An eODL model for the dining philosophers example in a concrete
textual syntax can be found in the eODL tutorial [2].

2 The eODL Language

2.1 eODL Basics

The language eODL has its origin in the TINA-C work [7], where a description
for supporting the management of distributed objects in their whole lifecycle was
required. To do so, concepts and interfaces were proposed whose operations have
to be provided on each node of the respective distributed computing platform.
These object lifecycle operations which have to be offered to local and remote
applications are essential for compliance and interoperability.

By the standardisation work of ITU-T the TINA concepts were expanded to
support the lifecycle of software components from the perspectives of four dif-
ferent but related views: the computational, implementation, deployment, and
target environment view. Each view is connected with a specific modelling goal
expressed by dedicated abstraction concepts. Computational object types with
(operational, stream, signal) interfaces and ports (taken from TINA and ODP
[8]) are the main computational view concepts used to model distributed software
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components abstractly in terms of their potential interfaces. Artefacts as abstrac-
tions of concrete programming language contexts and their relations to interfaces
form the implementation view. The deployment view describes software entities
(software components) in binary representation and the computational entities
realized by them. The target environment view provides modelling concepts of a
physical network onto which the deployment of the software components shall be
made. The important advantage of eODL is the technological independence of
the component description from the component platform finally used. Public do-
main tools are made available for mapping (platform independent) eODL models
to their corresponding technology units of CCM [9] and netCCM ([10], [11]).

2.2 eODL Meta-model

It is common to say that a language has three types of features: the structure,
a concrete representation and semantics.

– The structure of a language describes the concepts in the language and how
they are related to each other. The following two notations are commonly
used to define the abstract structure of a language: an abstract syntax and
associated rules (as used in [3]), or as a MOF meta-model.

– The concrete representation specifies how the concepts in a language are
actually represented. There are two different types of concrete representation:
textual and graphical.

– The semantics of a language says something about the meaning of the
concepts in the language.

This section will give an overview of the structure of eODL, while section 3 and
4 will present two different ways of representing the language graphically.

In the ITU-T Recommendation Z.130 [1], which specifies eODL, the definition
of the structure is based on a meta-model, rather than a more traditional abstract
syntax approach. The Recommendation says that ”One advantage of the meta-
model approach is to allow use of MOF related tools to support the automation
of model transitions between the different software development phases. Another
benefit is the ability to instantiate concrete models from the meta-model, which
can be represented by existing languages, so an integration of different design
approaches can be achieved.”

Fig. 2 shows a small excerpt of the eODL meta-model. Since the entire eODL
meta-model is quite large, we will only present the concepts that will be used in
the examples later in this article.

The concept of COType (Computational Object type) comes from the Com-
putational view and is used to specify the functional decomposition of a system.
Instances of a COType are autonomous interacting entities, which encapsulate
state and behaviour. COs interact with their environment via interfaces which
are specified using the InterfaceDef. In order to introduce data types, opera-
tions, exceptions and interface types as modelling concepts in eODL, the eODL
meta-model is also based on the meta-model of CORBA-IDL. The classes In-
terfaceDef, Container and Contained are all from the IDL meta-model [12]. A
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Fig. 2. Excerpt of the eODL Meta-model

COType may support or require an InterfaceDef. To support an interface type
means that the COs of that COType provide interfaces of that interface type.
To require an interface type means that COs of that COType use interfaces of
that interface type. A COType is an instance of the class COTypeDef in the
meta-model. The labels supports and requires identify the association between
the COTypeDef and InterfaceDef. An InterfaceDef has an association to the
class PortDef. A port is a named interaction port, where either a reference of a
supported interface of a CO can be obtained or a reference of a used interface
can be registered at runtime. The concepts ProvidePortDef and UsePortDef are
used to model ports of a COType which are either used by the environment to
obtain a reference to an interface (provide port) or to store a reference to an
interface based on name (use port). The class PortDef inherits from the class
Contained, meaning that a COTypeDef instance may contain provided and used
port definitions. A provided and a used port definition are always associated to
an interface definition.

The concept of assembly is used to model software systems by specifying the
COTypes which are involved in the system and to model the initial configuration
of the system. The initial configuration is the configuration which is established
at the start of the execution time of the software system, and consists of initial
COs and their initial connections. In the meta-model, the assembly is repre-
sented by the class AssemblyDef from the deployment view. The COTypes are
associated with the introduction of an association between the metaclasses As-
semblyDef and COTypeDef. To model initial COs, the meta-model contains the
class COSetDef, which defines the creation of an arbitrary number of instances
of the associated COTypeDef. A COSetDef is contained in an AssemblyDef. To
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model initial connections, the meta-model contains the class ConnectionDef. A
connection is then established between ports of of the participating COs by ex-
changing interface references. These references are obtained from a CO where
the COType has a provided port definition and is transferred to a CO whose
type has a used port definition. In the meta-model, a ConnectionDef consists
of a set of ConnectionEndPoints. A ConnectionEndPoint is associated with a
PortDef of a COTypeDef and a COSetDef.

3 eODL Graphics in XMF

XMF-Mosaic from Xactium is a platform for building tailored tools that should
provide high level automation, modelling and programming support for specific
development processes, languages and application domains. The tool is imple-
menting a layered executable meta-modelling framework called XMF that pro-
vides semantically rich meta-modelling facilities for the design of languages. This
way, the Mosaic platform is realizing the Language Driven Development (LDD)
process presented by Xactium in [13]. LDD is a model-driven development tech-
nology based on MDA [14] standards, and it involves adopting a unified and
semantically rich approach to describe languages. A key feature of the approach
is the possibility to describe all aspects of a language in a platform-independent
way, including their concrete syntax and semantics. The idea is that these lan-
guage definitions should be rich enough to generate tools that can provide all the
necessary support for use of the languages, such as syntax-aware editors, GUI’s,
compilers and interpreters.

XMF provides a collection of classes that form the basis of all XMF-Mosaic
defined tools. These classes form the kernel of XMF and are called XCORE.
XCORE is a MOF-like meta-meta-modelling language, and it is reflexive, i.e.
all XCORE classes are instances of XCORE classes. XMF provides an extensive
language for describing language properties called XOCL (eXtensible Object
Command Language). XOCL is built from XCORE and it provides a language
for manipulating XCORE objects. In addition to XCORE, XMF provides a
collection of languages and tools defined in XOCL. These include the following
notations.

– OCL [15] is used to define the rules that relate the domain concepts (static
constraints).

– XOCL is used to describe the behaviour of the language.
– XTools is used to specify the concrete graphical syntax of a language and to

model user interfaces.
– XBNF is used to define the concrete textual syntax of a language and to

build textual parsers.
– XMAP is used for model to model transformations.

The XTools are most important in this context and will be described in more
detail in the following sections.
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3.1 Specifying the Graphical Representation

The structure forms the fundament when specifying a language in XMF-Mosaic.
In the context of XMF; the structure is called the domain model. The structure
defines the (structural) concepts and their relation to each other. In this case
the structure is the meta-model for eODL described in section 2. While the
meta-model describes the concepts in a language, the concrete representation
says something about how these concepts are represented. There are two main
types of concrete representation: textual, where the instances of the meta-model
are represented as text, and graphical, where the instances are represented as
graphical diagram elements. The concrete graphical representation is the one we
are discussing in this paper.

When specifying the concrete graphical representation of a language, we would
like to say something about what the structure of a diagram in that language
could look like. An important question in that context is: how to represent the
graphical information? One way of doing this is by attaching the information
about the concrete representation directly to the eODL meta-model. Another
way is to describe a meta-model of the concrete representation and then match
this with the eODL meta-model. Figure 3 shows Xactiums meta-model of how
to handle the graphical representation. This model is in fact a mix of how to
represent a diagram graphically and how to match it with the eODL meta-model.
In addition, it covers an interchange aspect.

According to this meta-model, a diagram has a graph, which in turn has Nodes
and Edges. A Node is displayed as a collection of one or more Display elements.
In this meta-model, there are six different types of display elements defined:

Edge
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arrowhead_source : String
lineStyle : String
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filename : String
width : int
height : int

Text

text : String
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Fig. 3. A Diagram Meta-Model from XTools
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Fig. 4. The Diagram Meta-Model Specialiced for eODL

Box, Ellipse, Line, Text, Image, and Group. All Display elements have attributes
which specify their position. Both Ellipse and Box can act as a container of other
display elements. This means that a node could be represented as e.g. a Box with
Text inside or as an Ellipse with an Image inside.

A Node has a number of Attachment Ports that are used to define where a
Node could be connected to an Edge. A Node without any Attachment Ports
cannot be connected to an Edge. An Edge has a source and a target Node. The
model contains statements about the line style to an Edge, which defines how
the Edge should be drawn, e.g. solid line or dashed line. If the Edge has any
arrows, this is also specified here, by arrowhead target and arrowhead source.
The Labels of an Edge are text fields that could be attached to the start, the
middle, or the end of the Edge.

The general diagram meta-model in figure 3, is related to the eODL meta-
model in figure 4. This connection is used later in the assembly model presented
in figure 5. In figure 4, the used concepts from the eODL meta-model (see. figure
2) are brought together with the necessary metaclasses from the diagram meta-
model. The relationships between the concepts from these two types of meta-
models are represented using inheritance. For example, the concept COSetDef is
a Node, and is graphically displayed as a Box and some Text. A ConnectionDef
is an Edge, and as figure 3 points out, an Edge is associated with a source
node and a target node. In this case, the ProvidedPortDef is the source and the
UsePortDef is the target.

One of the biggest problem with Xactium’s diagram meta-model is the ab-
straction level, which is too low when it comes to specifying the logical relations
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Fig. 5. An eODL Assembly Model from XMF

between the graphical components and describing the actual, graphical structure
of the diagram. In this concrete representation, (physical) coordinates (x and y)
are used extensively to specify the Nodes and Display Elements placed in the
Diagram, but there is no possibility to describe the relationships between Nodes
or Display Elements in an explicit way. Possible relationships to be expressed are
inside, above, leftOf, touching etc. For example in eODL it would be desirable to
express that a COSetDef is displayed as a Box with some Text inside. Figure 4
specifies that a COSetDef is displayed as a Box and some Text but says nothing
about the explicit placement of these display elements according to each other.

The outcome of this specialiced diagram meta-model (figure 4) is an editor
that can be used to create an assembly model (see figure 5). The model contains
four node types: assembly, CO set, provide port and use port, and one edge type:
connection. The assembly Dinner is represented as Box inside another Box. The
innermost box has less height than the outermost. Inside the outermost box
there is also some text telling the name of the assembly. The assembly contains
a number of CO Sets with ports, and connections between the provided ports and
the used ports. A CO Set is graphically represented by a Box with Text inside,
while the used ports and the provided ports are represented by an Image. The
provided port also has a text label. The connections are edges placed between the
ports, and the line style of the edge are ”dashed line”. Neither the source nor
the target of the edge have arrows.
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Fig. 6. An eODL Model Declaring Interface Types and CO Types

3.2 Some More Examples from the eODL Editor

When specifying the graphical syntax of eODL in XMF-Mosaic, we are at the
same time building a graphical user-interface for a model editor for eODL di-
agrams. Figure 6 and 7 are showing some screenshots from the eODL diagram
editor. The XTools are used to specify the graphical representation of the com-
ponents in the language, but also provide support for specifying what the tool
and menu bar in the editor should look like. It is additionally possible to describe
the events that the user raises when creating nodes and edges in a diagram, and
also when editing the display elements (see figure 6).

4 eODL Graphics as UML Profile

4.1 Profiling in UML

The Unified Modeling Language (UML, [4,5]) is a universal modelling language;
it uses multiple modelling paradigms and several diagram types to model all as-
pects of a computer based system in all stages of its development. Thereby, UML
allows to express the system under investigation in platform independent or plat-
form dependent models. Based on this broad conception, the UML recommenda-
tion deliberately supplies only very loose semantics and flexible notations. The
UML semantics, described in English text, is in some points open for interpreta-
tion, in others it explicitly offers different semantics, defined through semantic
variation points, and UML’s graphical syntax provides many notational options.
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Fig. 7. An eODL Software Component Model

To define a modelling language with concrete specific semantics and nota-
tions, tailored for the use in a specific domain, UML offers the extension mecha-
nism profiles [4]. UML profiles allow language extensions that formally specialise
UML’s language structure (meta-model) and informally clarify its semantics and
notations. But UML profiles restrict extensions of UML to specialisations of al-
ready existing UML language concepts. Thus every model developed under a
specific profile is still a UML model. This guarantees that such models can be
constructed and used with existing UML tools.

A UML profile serves two general purposes: (1) it can provide a notation and
tool support for this notation; (2) it can provide more precise semantics for UML
by applying the specific semantics of the concrete notation as specialization to
UML.

The language eODL has neither a concrete graphical notation nor tool support
for it. But it has precise semantics and there are tools [16] that implement this
semantics. ITU-T languages such as SDL, MSC, and eODL cover aspects or views
that are also covered by UML. But the ITU-T languages provide more formal
semantics and they are tailored for modelling systems in the specific domain of
telecommunication.

In this section we want to present our experiences with developing a UML
profile for eODL. In section 4.2 we describe the process of aligning the concepts of
both languages. We will introduce some typical differences between the concepts
of the two languages and explain how to capture those differences in a UML
profile in section 4.3. Finally, we will visualize a part of the philosophers example
as a UML model using this profile and discuss the results according to notations
and language semantics in section 4.4.
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4.2 Aligning the eODL Meta-model and the UML Meta-model

To develop a UML profile for an existing language, the concepts of that lan-
guage have to be aligned with UML’s concepts. For each language concept, the
most specific UML concept that still generalises the original language concept
has to be identified. The specialities of the language concepts must be mod-
elled in stereotypes, expressed using formal constraints, tagged values, as well
as additional notations and semantics.

The structure of UML concepts is modelled in UML’s meta-model. The con-
cepts of eODL are also modelled in a meta-model, as presented in section 2.2.
The presence of the two meta-models makes it possible to define a precise profile
for eODL. To find an appropriate UML concept for each eODL concept, we com-
pared both meta-models with each other. For each eODL concept, i.e. for each
class in the meta-model, we identify concepts in UML with similar semantics
and compare the adjacent structure of the eODL concept class (associations,
attributes, etc.) with those of the UML meta-classes. In the ideal case, we will
find identical structures, where all associations, attribute, etc. have the same
properties, except for different names. But this ideal is rare. In the next section
we will provide some examples of structural differences in the meta-models, and
we will find strategies to solve those problems.

4.3 Rendering the Differences Between eODL and UML in a Profile

Figure 8 depicts three examples from the meta-models of eODL and UML, show-
ing the concepts (port, computational objects, and assemblies) on both sides.
The first example regards the port concept; in this simple case eODL and UML
are almost equivalent, except that the two concrete descendants of PortDef are
rendered in the UML attribute isService. A corresponding stereotype PortDef
must only constrain redefinedPort to be empty (there is no explicit port redef-
inition in eODL) and isBehavior to be false (this is what matches the eODL
semantics best). The properties required and provided derive from Port ’s type
and isService. Therefore, InterfaceDef must be mapped to Type. The derivation
from required and provided can be reversed, so that for each UML model, the
analogous eODL model can be derived and eODL semantics can be applied to
the UML model.

In the second example, showing the interfaces of computational objects, the re-
quires and supports interfaces of computational object definitions seem to match
with UML’s required and provided interfaces, but they have different seman-
tics. The set of provided interfaces in UML derives from all interfaces that are
provided by the components ports, its realizing classifiers, and the explicitly
modelled realizedInterfaces ; where only the latter represents the obvious eODL
counterpart. The same holds for required interfaces that should be modelled with
usedInterfaces to match the eODL semantics.

The last example shows the composition of computational object sets in as-
semblies. This very specific eODL relationship has only a quite abstract equiv-
alent in UML. Computational objects have to be modelled as properties, as
structural features of a classifier (assembly); the initial instances attribute can
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Fig. 8. Examples from the meta-models of eODL and UML

be modelled with the property’s multiplicity. Only concrete concepts qualify as
base classes for stereotypes, thus a concrete UML classifier has to be chosen.
Both class and component are such classifiers, but only component is appropri-
ate, because only it can contain connectors to connect different computational
objects. The relation between AssemplyDef and COTypeDef has no concrete
counterpart in UML, and is indeed not exactly necessary, because it could be
derived from the computational objects contained in an AssemplyDef. To model
the relation in UML, one has to use the usage relationship; this is a very abstract
relation between two model elements that does not really match the specific
eODL semantics.

4.4 Examination of the Results of the Philosophers Example

The previous section has shown that the eODL and UML concepts sometimes
match very well and sometimes require more complex stereotypes, but basically
eODL can be expressed in UML by restricting UML’s concept space and se-
mantics according to the rules for defining UML profiles. Furthermore, a UML
specification can easily be mapped to an eODL specification using the eODL
profile, whereby this mapping reflects the eODL semantics upon UML.
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Fig. 9. An eODL model in UML using the eODL profile – Computational object types
and assembly

Fig. 10. More model elements in the eODL profile – Interfaces and software components

The other important point, besides semantics, is notation; can eODL be sat-
isfyingly expressed in UML diagrams? Figure 9 shows an example that covers
the concepts that we introduced by the meta-model; figure 10 shows diagram
elements for other eODL concepts. Wherever eODL and UML concepts are very
similar (e.g. eODL computational object definitions and UML components), the
notation is very clean, and due to eODL bonds to the UML notation is almost
identical to the notation introduced in section 3. The usage of more abstract
UML concepts, on the other hand, requires a lot of stereotypes and results in
diagrams that do not comply with typical UML practices. The uses depen-
dency, for example, would probably never be used that way in a pure UML
specification.
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Finally we consider UML tool support. In the quest for a UML profile that
leads to specifications that resemble the original notation, the profile engineer
tends to utilize the whole spectrum of possible UML notational options and
even wants to introduce own notations (theoretically allowed in UML profiles).
But UML tools seldomly support every UML notation or even custom profile
notations. So it is hard to write a good profile, in particular when one wants to
be independent of a specific UML tool.

5 Conclusion

We have shown two ways of representing eODL graphically: an explicit high-level
description of the graphics in terms of XMF and the use of a UML profile. Both
of them are connected to the eODL meta-model and both describe the same
language.

As the diagrams show, there is a strong similarity of the profile diagrams
with UML. This is acceptable for some parts of eODL, that are similar to cor-
responding UML descriptions. For parts of eODL, that do not have a UML
correspondence, this similarity is annoying.

For the XMF version, there is a high-learning curve to be taken before mean-
ingful graphical descriptions can be generated. However, the end result is very
appealing.

In summary, the result with XMF is more suitable than with UML profiles.
Moreover, the concept of XMF is more powerful, because it allows arbitrary
structures to be displayed. Profiles do only allow to constrain the existing UML
concepts. The language used by XMF for displaying the graphical structure of
eODL has a semantics and could be used as a description language for graphical
specification languages (e.g. SDL and MSC).

Our experiments confirm that in both approaches a meta-model-based lan-
guage definition allows a more efficient development of graphical editors. This is
not surprising, considering the success of model driven development in general.
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Abstract. Distributed real-time systems call for expressive modeling
languages to capture and express their functional and nonfunctional
requirements at early stages of the development process. The UML pro-
file for Schedulability, Performance and Time (UML/SPT) is an object-
oriented real-time modeling language. UML/SPT has been designed using
the built-in extension mechanisms of UML, which makes it flexible and
customizable. In this paper, we propose an extension for UML/SPT to
capture multicast communications. We define a metamodel that encapsu-
lates the main concepts involved in multicast communications, we show its
relationship to UML/SPT domain model, and we introduce new stereo-
types corresponding to these concepts. We illustrate the extension with
the modeling of the Reliable Multicast Transport Protocol (RMTP2). Fi-
nally, we compare our approach to extend UML/SPT for multicast com-
munications with an extension for MSC having the same purpose.

1 Introduction

The Unified Modeling Language (UML) [14] is widely accepted as the defacto
standard specification and modeling language of software. It is a graphical,
object-oriented modeling language that uses a variety of diagrams to describe dif-
ferent aspects of the software: its structure, dynamic behavior and deployment.
The abstract syntax of the different UML modeling elements is defined using a
metamodel [14]. In addition, UML can be adapted/specialized to a variety of
domains. This can be achieved by means of its built-in extension mechanisms.

Particularly, UML is aimed to be effectively used for the design and analysis
of real-time software. Indeed, several UML profiles for real-time systems [5] have
been proposed as a result of active research in the academia in addition to the
standardization activities at the OMG. For instance, the OMG standardized
profile for Schedulability, Performance and Time [12], hereafter referred to as
UML/SPT, is a UML-based modeling language that allows for capturing and
analyzing the real-time requirements and designs. UML/SPT is, however, based
on UML 1.4 and presents many drawbacks pointed out in different research
papers and experiments. UML/SPT is, nowadays, undergoing a major revamp
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that will lead to MARTE [13]. The objective is to inline UML/SPT with UML
2.0 and to handle many of the weaknesses of UML/SPT pointed out in various
research works.

In order to model the behavioral requirements of distributed real-time
systems, we need expressive, flexible and customizable specification languages.
Message Sequence Charts (MSC) is a well-established specification language for
high-level behavioral requirements modeling. It is extensively used in the telecom-
munication software engineering. MSC has evolved through its successive versions
to enable the expression of time constraints, object orientation, data, and scenario
composition [9]. However, the extensibility of MSC is hindered by a lengthy stan-
dardization process. This led to ad-hoc extensions (e.g., [10], [17], [18]) that need
to go through the standardization process before being accepted and effective. On
the other hand, UML/SPT is designed leveraging the UML built-in extensibil-
ity mechanisms to capture the concepts necessary for the modeling of resource,
concurrency and time. UML/SPT inherits this extensibility allowing for simple
and natural extensions. This is illustrated in this paper with an UML/SPT exten-
sion enabling for the modeling of multicast communications, which are required
to model multicast protocols such as RMTP2 [15].

The main goal of this paper is to demonstrate the easiness of extending
UML/SPT in comparison to languages such as MSC. Its main contribution is
an extension of UML/SPT for modeling multicast communications. In order to
achieve this, we introduce a metamodel capturing the main concepts involved in
multicast communications along with their corresponding stereotypes. We model
the main requirements of the RMTP2 protocol using this extended version of
UML/SPT. Finally, we compare this extension and modeling exercises with the
ones performed and conducted in [8] using MSC.

This paper is structured as follows. Section 2 presents the main features of
UML/SPT. We introduce the extension for UML/SPT for multicast communi-
cations modeling in Section 3. The application of the extended UML/SPT is
illustrated in Section 4 with the modeling of RMTP2 protocol requirements. In
Section 5, we compare the extension and modeling exercises using UML/SPT
with the ones presented in the literature using MSC. In Section 6, we discuss
the related work. We conclude in Section 7.

2 UML Profile for Real-Time Systems

UML/SPT [12] is a UML framework to model resources and quality of ser-
vice; time concept and time-related mechanisms; and concurrency. UML/SPT
provides also models for schedulability and performance analysis. The end-user
perceives UML/SPT as a set of stereotypes and tagged values used to annotate
the UML design models with quantitative information. This enables for predict-
ing key properties at early stages of the software development process, using
quantitative analysis (schedulability and performance analysis).

The structure of the UML/SPT profile, illustrated in Figure 1, is composed of
a number of sub-profiles. The core of the profile represents the General Resource
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Model framework, and it is further partitioned into three sub-profiles: RTre-
sourceModeling for the basic concepts of resource and quality of service; RTcon-
currencyModeling for concurrency modeling; and RTtimeModeling for the time
concept and time-related mechanisms. Furthermore, UML/SPT is composed of
extensible analysis sub-profiles, including: PAprofile for the performance analysis
modeling and SAprofile for the real-time schedulability analysis modeling.

At the top of UML/SPT lays an abstract definition of the resource and qual-
ity of service concepts. These are refined and extended progressively while going
down the profile’s structure to find the concepts of time and concurrency. These
represent a modeling framework that is extended further to define the concepts
required for schedulability and performance analysis. Several research works in
the literature (e.g., [3], [6], [16]) take advantage of UML/SPT extensibility either
to add modeling capabilities or enable other model analysis. In this paper, we
show how to extend UML/SPT to enable the modeling of multicast communi-
cations and use it to model the requirements of RMTP2 protocol.

<<profile>>
RTresourceModeling

<<profile>>
RTConcurrencyModeling

<<profile>>
RTtimeModeling

<<import>> <<import>>

General resource Modeling Framework

<<profile>>
SAProfile

<<profile>>
RSAprofile

<<profile>>
PAProfile

<<import>> <<import>>

Analysis Model

<<import>>

<<import>>

Fig. 1. The Structure of UML/SPT Profile

For each of the aforementioned sub-profiles, UML/SPT provides a domain
model encapsulating the main concepts and a set of associated stereotypes that
a developer uses to annotate UML models. Hereafter, we illustrate only the fea-
tures needed in this paper. For an exhaustive presentation of UML/SPT domain
models and the associated stereotypes, the reader is referred to [12].

We have used mainly the time-related mechanisms for modeling the RMTP2
protocol behavioral requirements. The domain model defined in UML/SPT to
encapsulate the time-related mechanisms is illustrated in Figure 2. The corre-
sponding stereotypes allow for expressing time values (e.g., �RTtime�), times
constraints (e.g., �RTdelay�, �RTinterval�) and time-related mechanisms
such as a timer �RTtimer�. UML/SPT provides also stereotypes to model
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timer-related operations: creating a new timer �RTnewTimer�, setting a timer
�RTset�, stoping a timer �RTpause� and unsetting a timer �RTreset�.
The timeout generated by a timer is stereotyped �RTtimeout�. Finally, timer
periodicity is modeled using the tag RTperiodic and its duration is modeled
with the tag RTDuration. A subset of these stereotypes is used in the RMTP2
protocol requirements model presented in Section 4.

Resource Instance
(from CoreResourceInstance)

Statbility
Drift
skew

Set(time:TimeValue)
Get():Timevalue
Reset()
Start()
Pause()

TimingMechanism

TimedEvent
(from TimedEvents)

origin

1

isPeriodic: Boolean

Timer
Clock

TimeValue
(from TimeModel)

+ currentValue

+ maximalValue

1

1

0..n

0..n

TimeInterval
(from TimeModel)

0..n

+ resolution1

0..n

+r
ef

re
nc

eC
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ck

1

TimeValue
(from TimeModel)

Timeout
(from TimeEvents)

clockInterrupt
(from TimeEvents)

+duration

0..n 1

+timeStamp 1..n

1

0..n+generatedTimeout+generatedInterrupts 0..n

1

0..n+offset 11+accuracy

0..n

Fig. 2. UML/SPT Time-related Mechanisms Domain Model

3 Multicast Communication Extension for UML/SPT

The extension presented here allows to model multicast communications, which
are important for communication protocols such as the protocol RMTP2. In
order to do so, we present a metamodel capturing the main concepts in multicast
communications. The package encapsulating this metamodel and its relationship
with the structure of UML/SPT profile are illustrated in Figure 4.

ResourceInstance
(from CoreResourceModel)

ActiveResourcePassiveResourceUnprotectedResourceProtectedResource

CommunicationResourceProcessorDevice

purposeKind

activenessKindprotectionKind

Fig. 3. UML/SPT Resource Type Domain Model
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<<profile>>
RTresourceModeling

<<profile>>
RTConcurrencyModeling

<<profile>>
RTtimeModeling

<<import>>
<<import>>

General resource Modeling Framework

<<profile>>
MulticastPkg

<<import>>

Fig. 4. Multicast Extension Package

ActiveResource
(From ResourceType)

MulticastResource
Message

(From SD)

target

*

ActionExecution
(From Dynamic Usage 

Model)

Joingroup LeaveGroup

receiver* receiver*

Fig. 5. Multicast Extension Metamodel

Table 1. Multicast Communication Extension Stereotypes

Stereotype UML Model Element

�Multicast� Object

�Joingroup� Message, Stimilus

�Leavegroup� Message, Stimilus

A multicasting resource is a specialization of the ActiveResource concept.
The latter is defined in UML/SPT resource type domain model, illustrated in
Figure 3, as an autonomous and concurrent entity able to generate stimuli inde-
pendently. The multicasting resource is composed of a dynamic group of mem-
bers. Each message targeting a multicasting resource is implicitly forwarded to
all the group members by the multicasting resource. The configuration of this
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group is dynamic where the members could join and leave at will using Joingroup
and LeaveGroup actions, derived from ActionExecution. The latter is defined in
the dynamic usage model of UML/SPT. Figure 5 illustrates this metamodel
extension and how it is linked to UML/SPT domain model.

The metaclasses Joingroup and Leavegroup represent respectively the actions
of joining and leaving a multicasting resource. A specification of Joingroup meta-
classe semantics should ensure that an entity joining a multicasting resource does
not belong to it before the action is executed and that it does after the action
is executed. Reciprocally, for Leavegroup, it should specify that an entity does
no more belong to a multicasting resource after the execution of the action of
leaving it. Such a specification could use executionHost, which is the role of the
instance in its association with the executionAction as defined in the Causality
Model Package domain model of UML/SPT, to identify the leaving member.

For each message targeting a multicasting resource corresponds a message
having the same signature and that is sent to all the members of this multicas-
ting resource. To specify this, the UML modeling elements related to message
exchange such as message, sendEvent, receiveEvent, and lifeline, defined in the
UML sequence diagram metamodel [14], might be used.

We introduce three new stereotypes as illustrated in Table 1. They correspond
to the main concepts introduced in our extension, and that are used to annotate
UML models to express multicast communication requirements such as joining
a multicast group, leaving a multicast group, and/or sending a message to a
multicast group. The example illustrated in Figure 6 shows a UML sequence
diagram annotated using these stereotypes. According to the semantics of our
extension, the message M1 will be received by both A and B since they both
joined the multicast group, but M2 will be received by B only because A has
left the multicast group.

A

<<JoinGroup>>

B

SD Example

<<Multicast>>
G

<<JoinGroup>>

C

M1
<<LeaveGroup>>

M2

Fig. 6. UML/SPT Multicast Extension Example

4 Application: RMTP2 Behavioral Requirement
Modeling

The main features of RMTP2 [11], [15] are guaranteed reliability, high through-
put, and low end-to-end delay regardless of the underlying network. RMTP2’s
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reliability is achieved through acknowledgments, but the network congestion
that would be caused by a growing number of direct ACKs is avoided using a
tree-based organization of the network.

The sender node, the top of the global multicast tree that spans all the re-
ceivers, multicasts the data on the data channel. The receivers are grouped into
local regions with a special control node. The control node could be: (1) an
aggregate node which maintains the receivers membership, and aggregates the
acknowledgements from the receivers to the sender and forward missing packets;
(2) a designated receiver node which keeps a copy of the data and retransmits
it to the subtree below. Eventually, the acknowledgments are aggregated at the
top level control node, which retransmits them to the sender node.

We have used the extended version of UML/SPT to model the main re-
quirements of the protocol RMTP2. We have used the UML sequence dia-
grams for the basic interactions. The latter are composed using UML interaction
overview diagrams, and the real-time requirements are captured using the ex-
tended UML/SPT profile. In the following, we present the UML/SPT models
for heartbeat packets, parent failure detection and join algorithm behavioral
requirements of RMTP2.

S

TN

AN

RN RNRN

DR

RN RN

ACK

ACK S: Sender
TN: Top Node
AN: Aggregator Node
DR: Designated Receiver
RN: Receiver Node

Fig. 7. RMTP2 Tree Structure

4.1 Heartbeat Packets

The nodes cooperate to maintain the multicast tree integrity. Parent nodes send
periodic heartbeat messages to notify their liveliness to the child nodes. This
enables the child nodes to detect the parent failure and join another parent. This
requirement calls for periodicity and multicast communication modeling. We use
a periodic timer modeled using the stereotype �RTTimer� from the time sub-
profile of UML/SPT to model periodicity and our �Multicast� stereotype to
model multicast communication. Figure 8 illustrates how this requirement could
be described using UML Sequences Diagrams and UML/SPT stereotypes.
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Control Node

<<RTTimer>>
<<CRConcurrent>>

Children

<<Multicast>>{RTPeriodic, 
RTDuration=$Thb}

<<RTTimeout>>
HeartBeat

SD HeartBeat

<<RTTimer>>
T_Heartbeat Control Node

<<RTSet>> {RTTimePar=$Thb}

SD SetHeartBeatTimer

T_Heartbeat

<<CRConcurrent>>

Fig. 8. Heartbeat Packets Requirement Model

4.2 Parent Failure Detection

If a child node does not receive his parent heartbeat for a time interval specified
by F ∗ Thb, where F is a failure threshold constant, a parent failure is de-
tected. Figure 9 illustrates the different scenarios modeling this requirement and
Figure 10 is a UML overview interaction diagram composing these scenarios.

<<RTTimer>>
T_Heartbeatresponse Child Node

<<RTSet>> {RTTimePar=$F*$Thb}

SD SetHeartBeatTimer

<<RTTimer>>
T_Heartbeatresponse Child Node

<<RTTimeout>>

SD THBTimeout

Parent Failed

<<RTTimer>>
T_Heartbeatresponse Child Node

<<RTReset>> 

Control Node

Heartbeat

SD HeartbeatReceived

<<CRConcurrent>> <<CRConcurrent>>

<<CRConcurrent>> <<CRConcurrent>>

Fig. 9. Parent Failure Requirement Scenarios

4.3 Join Algorithm

A receiver node must join a multicast tree in order to be able to send acknowledg-
ments or ask for retransmissions. The receiver node sends a Joinstream packet
to its parent node and waits a period of time of T joinresponse for the response.
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Ref

RefRef

SetHeartbeatTimer

HeartBeatreceived THBTimeout

Fig. 10. Parent failure Requirement Model

<<RTTimer>>
T_Join Node

<<RTSet>> 
{RTTimePar=$T_Joinresponse}

SD Join

Parent<<CRConcurrent>>

JoinStream

<<CRConcurrent>>
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T_Jack := constant

<<RTTimer>>
T_Join Node

<<RTReset>> 

SD Confirm

Parent<<CRConcurrent>>

JoinConfirm

<<CRConcurrent>>

<<RTTimer>>
T_Join Node

<<RTReset>> 

Parent<<CRConcurrent>>

JoinAck

<<CRConcurrent>>

T_Jack:=T_Jack*2

<<RTTimer>>
T

<<RTSet>> {RTDuration=$T_Jack}

<<RTTimeout>>

JoinStream
<<RTSet>> 

{RTDuration=$Joinresponse}

SD JoinAck

<<RTTimer>>
T_Join Node

<<RTTimeout>> 

<<CRConcurrent>>

Nbfailures++

Node
<<CRConcurrent>>

Unreachable 
Parent

OPT [Nbfailures=RJoin]

SD Can_Not_ReachSD JoinFail

<<RTTimer>>
T_Join Node Parent

<<CRConcurrent>>

JoinStream
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{RTDuration=$Joinresponse}

<<CRConcurrent>>

OPT [NbFailures<Rjoin]

SD RetryJoin

<<RTTimer>>
T_Join Node Parent

<<CRConcurrent>>

NbFailures:=0

JoinStream

<<RTSet>> 
{RTDuration=$Joinresponse}

<<CRConcurrent>>

SD RJoinExceeded

OPT [NbFailures=Rjoin]

Fig. 11. Scenarios for Tree Connection

This is specified with the UML/SPT annotated sequence diagram SD Join in
Figure 11. The parent node sends as response either a JoinConfirm packet or a
JoinAck in the case where it cannot handle the request immediately. The behav-
ior of the receiver node in both cases is specified respectively in the SD Confirm



Distributed Real-Time Behavioral Requirements Modeling 43

Ref

Joinack

Ref

Join

Ref

JoinFail

Ref

JoinFail

Ref
Confirm

Ref Ref

Ref

Ref
Ref

JoinFail

RetryJoin
Can_Not_reach

RejoinExceeded RetryJoin

Fig. 12. Tree Connection Requirement Model

and SD JoinAck in Figure 11. If no response is received upon receiving a T join
timeout, the receiver node retransmits the JoinStream request (SD JoinFail)
in Figure 11. This is repeated for a maximum of RJoin times before reporting
parent unreachable error (SD Can Not Reach) in Figure 11. In the case where
a receiver node receives an JoinAck from its parent node, it keeps transmitting
JoinStream requests with waiting times growing exponentially. This is modeled
with the sequence diagram (SD JoinAck) as illustrated in Figure 11. The whole
join connection algorithm is specified by composing the different scenarios using
a UML interaction overview diagram as illustrated in Figure 12.

5 UML/SPT-Based vs. MSC-Based RMTP2
Requirement Modeling

We compare the extension and modeling exercises using UML/SPT with the
ones presented in [8] using MSC. The main criteria used for this comparison are:
the language built-in constructs, the time-related mechanisms, the multicast
communication extension, the extension approach, and the notation used for
the extension. This comparison is shown in Table 2 and can be summarized as
follows:

– Language built-in constructs: MSC and UML are comparable in terms of
expressiveness to model behavioral requirements [7]. Both languages provide
constructs allowing for the expression of control flow, basic scenarios and
their composition. In [8], bMSCs have been used to model the basic scenarios
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and HMSC have been used to compose them. We have used simple UML
sequence diagrams for basic scenarios and interaction overview diagrams to
compose them expressing more complex behavior as in the join algorithm
requirement.

– Time-related mechanisms: MSC-2000 allows for expressing time con-
straints as well as time-related mechanisms such as timers. UML/SPT is
probably more expressive in this regard. It is easier, for instance, to express
periodicity, which is useful for periodic behavioral requirement such as the
heartbeat packet requirement of RMTP2. With UML/SPT, periodicity can
be modeled using a periodic timer (using the �RTtimer� with the tag
value RTperiodic). With MSC, this can be modeled, as this was emphasized
in [8], using either a time interval inside a loop or a loop composition of two
basics MSC using an HMSC. On the other hand, the instance delay concept
introduced in [18] can also be used to express process periodicity in general.

– Concurrency: RMTP2 behavior involves the interaction of concurrent com-
municating entities. These are modeled in [8] by MSC instances which are
implicitly concurrent. UML/SPT, on the other hand, allows a more explicit
modeling of concurrency. We have used the �CRConcurrent� stereotype
to identify the concurrent entities.

– Multicast communication extension: Both MSC and UML/SPT needed
to be extended to model multicast communication.

– Approach: In [8], a formal semantics has been proposed for the multicast
communication extension. We have defined our extension through a meta-
model and an informal definition of the introduced concepts’ semantics.

– The extension notation: In [8], an MSC instance representing a multicast
group is indicated by a simple note attached to the instance. We have pro-
posed new stereotypes to model multicast communications. Stereotyping is
UML’s standard way to introduce new and specific modeling elements.

6 Related Work

MSCs have been extensively used to capture the high-level behavioral require-
ments in telecommunication software engineering. In addition to the official ex-
tensions of MSC through its successive versions MSC’92, MSC’96 and MSC’2000,
many other extensions have been proposed in the literature including [10], [17],
[18]. In particular, Hélouët presented in [8] an MSC-based model for the require-
ments of the RMTP2 protocol. In order to model multicast communication,
Hélouët proposed an extension of his semantics for MSC. For this extension as
well as the aforementioned ones to be effective, they should be integrated to the
standard.

Our proposal for an extension of UML/SPT is inspired by Hélouët’s extension
for MSC. It is, however, easier and more natural because of the built-in extensi-
bility mechanisms provided by UML. Moreover, the UML/SPT model presented
in this paper takes advantage of the time concept and time-related mechanisms
offered by UML/SPT profile. For instance, expressing periodicity, which is nec-
essary to model the heartbeat requirement, is simply modeled using a periodic
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timer �RTTimer� {RTperiodic, RTDuration=value} such as in the basic sce-
nario SD Heartbeat in Figure 8, while this called for either the introduction of a
non standard notation and a loop or an HMSC loop composition in [8].

Several other proposals of extensions to UML/SPT using UML extensibility
mechanisms have been presented in the literature. Cortellessa et al. presented
in [3] a similar approach to extend UML/SPT to represent the concepts used in
the reliability analysis domain. A metamodel for these concepts was presented
and their relationship to UML/SPT domain model was illustrated. A set of new
stereotypes was introduced as well. Rodrigues et al. defined in [16] a profile for
reliability analysis. It is also an approach to bridge the gap between UML/SPT
models and MSC enabling early reliability prediction. Addouche et al. presented
in [1] a UML profile called DAMRTS aiming at adding stochastic and prob-
abilistic information to real-time systems models to enable their dependability
analysis. This profile is an extension for UML/SPT, but neither its domain model
was extended nor new stereotypes were presented.

7 Summary and Perspective

UML is becoming the standard notation for the description of software mod-
els. It is also adapted to various domains through its profiling mechanisms. In
particular, UML/SPT is used to express real-time models and quantitative anal-
ysis models, such as models for performance and schedulability. We motivated
and presented an extension for UML/SPT profile enabling multicast commu-
nications modeling. Specifically, we have presented a metamodel encapsulating
the main concepts involved in multicast communications and provided the cor-
responding UML stereotypes. We illustrated the application of this extension
with the modeling of the main behavioral requirements of RMTP2 protocol. We
have used the UML sequence diagrams to express the basics scenarios and the
UML interaction overview diagrams to compose those scenarios. The extended
version of UML/SPT has been used to model the time-related mechanisms, con-
currency and multicast communication requirements of this protocol. Finally,
we have contrasted this exercise with the extension of MSC for the modeling of
RMTP2 [8].

As proof of concept, the proposed extension is being implemented in a general
setup that consists of a tool chain including an implementation of the General
Resource Framework extended with our proposed multicasting sub-package as
depicted in Figure 4 and the schedulability analysis sub-profile (SAProfile). The
tool is an Eclipse plug-in leveraging the Eclipse Modeling Framework (EMF)
plug-in [2]. In addition, the tool chain includes an implementation of a schedu-
lability analysis technique as another Eclipse plug-in. This will allow for the
analysis of the UML models annotated with the UML/SPT stereotypes. The
derivation of the schedulability analysis task models from UML/SPT models is
an implementation of the model transformation presented in [4].

There is an interesting issue, related to the metamodel-based approach to ex-
tend UML and its profiles, that needs further investigation. Indeed, the concepts
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required for a certain domain could be expressed in different manners leading
to different metamodels. For instance, two different metamodels have been pro-
posed in [3] and [16] for the reliability prediction domain and used to extend
UML/SPT domain model. It would be interesting to assess the consistency be-
tween the extended profiles.
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Abstract. Expressive system modelling languages lead to language def-
initions that are long and hard to understand. Tool support for these
languages is hard to implement, and often only parts of the language are
supported. In this paper we introduce the concept of language profiles
as well-defined subsets of a language with formal syntax and semantics
as the basis for tool support. We outline two approaches to generate
language profiles for SDL from the complete formal semantics definition,
and provide a formalisation for a reduction-based approach, on which a
tool for this approach is based.

1 Introduction

In order to support a wide range of applications, system modelling languages are
often complex and expressive. The complexity of the languages leads to language
definitions that are long and hard to understand, and can limit their applicability
in domains for which specialised, tailor-made languages are preferred. Another
drawback is that tool support for complex languages usually covers only parts of
the language. For example, there is no tool that supports the whole of SDL-96
[1,2], and only a few of the language constructs introduced in SDL-2000 [3,4,5]
are supported.

Language profiles divide a language into a core language and a set of lan-
guage modules that can be used as language building blocks. The language core
represents a minimal subset of the language that a tool for the language should
implement. This core is a profile that can be extended by language modules,
yielding further language profiles that represent well-defined subsets of the lan-
guage which a tool provider can implement. Thus, using language profiles it is
possible to define sublanguages of a language that are of lesser complexity and
are tailor-made for certain application areas.

Formal semantics gives a precise definition of the language and eliminate
the ambiguities that come with an informal language definition. Operational
mathematical formalisms like Abstract State Machines [6,7] can be executed
and used to generate a compiler and runtime system [8], giving a reference for
tool developers. Defining language profiles, we focus on the formal semantics of
the language. Formal semantics allow us to formulate precise criteria for valid
language extension and reduction. SDL-2000 [3] is a language with a complete
formal semantics [9,10,11], defined using ASMs, which makes it well-suited for
the definition of language profiles.
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In this paper, we introduce language profiles of SDL (section 2). We define a
process for the generation of language profiles for SDL from a formal semantics
defined with Abstract State Machines. This process is based on the reduction
of the semantics by formally defined operations (section 3), and formalised and
implemented in an SDL-profile tool (section 4).

2 Language Profiles and Modules

2.1 Problem and Definition

SDL has become a sophisticated and complex language with many language
features. SDL-2000, the most recent version, has added several new language
constructs, for example composite states, exceptions, agents (a harmonisation
of the concepts of systems, blocks and processes) and textual notation of algo-
rithms. This results in a large and extensive language definition. In the formal
semantics of SDL-2000, the operational nature of ASMs and the extensive use of
modularisation lead to a readable formal semantics definition. However, due to
the complexity of the language, the formal semantics is large and requires sub-
stantial effort to be understood completely: the dynamic semantics of SDL-2000
consist of more than 3000 lines of ASM specification.

The problem of the complexity of SDL-2000 has been identified, and the
definition of simpler sublanguages of SDL has been proposed. One such language
is defined by the SDL Task Force as the simplest useful subset of SDL [12]. This
language is implemented by the Safire tool, and here is called Safire. Safire
focuses on the state machine aspect of SDL, and enhances it with functionality
needed for testing. However, although a formal semantics exists for SDL, none
is provided for Safire.

A sublanguage like Safire is a language profile. Tools for a language profile
can be developed faster, leading to less expensive tools and enabling code opti-
misations. Possible language profiles could also be derived from the supported
features of the code generators Cbasic and Cadvanced in Telelogic Tau.

Apart from being subsets of the complete language, language profiles can be
subsets of other language profiles, forming a hierarchy profiles. For SDL, we
have defined four language profiles. The smallest profile is Core, which con-
tains a minimal set of features. Static1 , Static2 and Dynamic extend Core, each
profile adding additional features to the preceding one, Dynamic being roughly
the equivalent of SDL-96. The subset relationships between different language
profiles are shown in Figure 1.

A language module encapsulates a language feature, defining its syntax, se-
mantics and dependencies to other language modules. Some language modules
of SDL are timers, exceptions, save, and inheritance. Figure 2 shows the (graph-
ical) syntax elements of the timer feature, ASM-Listing 1 parts of the formal
semantics of timers. ASM macro SetTimer describes the setting of a timer by
inserting a new timer instance into the schedule of the process. If a time t is
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Fig. 1. Superset Relationship between Language Profiles

given, the arrival is set to this time, otherwise the arrival is computed from the
current time and the standard duration defined for the timer. Signals in the
schedule are sorted by time of arrival. They are invisible to the process until the
current time is equal or greater than their time of arrival.

1 SetTimer(tm: Timer, vSeq: Value∗, t: [Time]) ≡
2 let tmi = mk−TimerInst(Self.self, tm, vSeq ) in
3 if t = undefined then
4 Self . inport .schedule := insert (tmi, now + tm.duration, delete(tmi,Self .

inport .schedule))
5 tmi. arrival := now + tm.duration
6 else
7 Self . inport .schedule := insert (tmi, t , delete (tmi,Self . inport .schedule))
8 tmi. arrival := t
9 endif

10 endlet

ASM-Listing 1. Setting SDL Timers

TIMER t;
RESET(t)SET(now+5, t)

Fig. 2. Syntactical Elements of the Timer Module

2.2 Approach for the Generation of Language Profiles

SDL-2000 is a language with formal semantics, and this property should be re-
tained for its sublanguages. However, it is not feasible to define a new formal
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semantics from scratch for every sublanguage, since it requires substantial effort
and can lead to inconsistencies between the language profiles. A sensible ap-
proach is to take the existing formal language definition, and to systematically
modify it to match a subset of the language. In principle, there are two ways to
achieve this goal:

– bottom-up: Given a modular structure of the formal language definition, i.e.
consisting of a core language and a hierarchy of language modules that can
be added to the core, the formal language definition for the language profile
is obtained by constructing it from the core and the modules corresponding
to the features contained in the language profile.

– top-down: Starting fromthe complete formal languagedefinition,we removeall
parts that correspond to features not contained in the subset of the language.

The bottom-up approach requires a modular language definition with a small
core language, language features encapsulated in language modules, and a way to
compose the language modules with the core and other modules, both syntacti-
cally and semantically. Feature interaction plays a crucial role with the bottom-up
approach, as language features like exceptions may interact with other language
features. This affects the order in which the language modules are composed. An-
other problem of the bottom-up approach is that it is very difficult to encapsulate
the formal semantics of a language module in a way that it can be easily composed
with a given language profile, while at the same time maintaining readability of the
formal semantics. For these reasons, we are choosing the top-down approach.

2.3 Consistency of Language Profiles

The goal is for a specification defined with a language profile to behave in the
same way with all supersets of the language profile. In order to accomplish this
goal, we need to assure consistency between the language profiles. Deriving the
profiles from a common language definition enables us to make statements about
consistency, because, unlike profiles defined from scratch, the derived profiles
share many common parts. With the bottom-up approach, we need to ensure
that adding modules does not interfere with existing specifications. With the
top-down approach, only parts of the language definition that do not apply to
features contained in the subset may be removed (that is, parts of the ASM
formalism that are not reached in the subset).

2.4 Derivation of Language Profiles with the Top-Down Approach

Reduction of the formal language definition consists of reduction of the formal
syntax and reduction of the formal semantics. The formal syntax is reduced
by deleting all syntax elements corresponding to features to be deleted from
both the concrete and abstract syntax. In order to remove a feature from the
formal semantics of SDL-2000, we start by identifying domains and functions
from the signature of the formal semantics definition. The signature consists of
names of domains, functions and relations of the ASM. We identify the parts of
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the signature that correspond to the feature to be removed. Several domains in
the formal semantics can be identified that correspond to a particular feature,
for example the domains Timer and TimerInst are used to specify the timer
feature of SDL. Furthermore, for each non-terminal in the abstract syntax, there
is a domain in the formal semantics definition. As the abstract grammar is
reduced, the respective domains can be removed, too.

1 Timer =def Identifier
2 TimerInst =defPId ×Timer ×Value∗
3 Set =defTimeLabel ×Timer ×ValueLabel ×ContinueLabel
4 Reset =defTimer ×ValueLabel ×ContinueLabel

ASM-Listing 2. Domains Corresponding to the Timer Feature

Reduction of the signature of the formal semantics definition affects the ASM-
rules of the definition, which have to be reduced accordingly. All occurrences of
removed functions and domains must be removed from the definition. This leads
to the removal of entire rule blocks, for example when the guard of an if-rule has
to be removed. The rules should be reduced as much as possible, in order to get
a concise formal semantics definition without any remaining parts of the removed
features. On the other hand, care must be taken that the removal only affects lan-
guage constructs that should be removed and no other language constructs are af-
fected. In cases where this is not possible, there is very likely a feature interaction,
which is either inherent to the language or was introduced in the formal semantics.
For example, procedures and composite states share common parts in the formal
semantics of SDL-2000, because their underlying concepts are very similar.

Fig. 3. Process of Feature Removal

A way to approach the removal of rules is to assign fixed default values to
the functions and domains to be removed, and then to remove unreachable parts
of the formal semantics accordingly. Possible default values for domains would
be the empty set, for partial functions the special ASM element undefined, for
boolean functions (predicates) it would be either true or false. For example,
the default value for the predicate Spontaneous would be false, so that the trig-
gering of a spontaneous transition during transition selection would never occur,
disabling spontaneous transitions entirely. Listing 3 shows the rule fragment that
defines how spontaneous transitions are triggered. Since the fixed default value
false is assigned to Spontaneous, the entire elseif -block of the rule fragment
can be removed. Consistency is guaranteed for specifications that do not use
spontaneous transitions, since it can be proven that mode selectSpontaneous has
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no effect in this case. That is, no updates are fired in this mode, except for
updates that set the agent mode functions to the previous mode.

1 monitored Spontaneous: Agent →Boolean (default False)
2

3 if Self .stateNodeChecked = undefined then
4 NextStateNodeToBeChecked
5 elseif Self.Spontaneous then

6 Self.agentMode4 := selectSpontaneous

7 else
8 ...
9 endif

ASM-Listing 3. Triggering Spontaneous Transitions

Assigning the default value false to Spontaneous disables spontaneous tran-
sitions, however, unreachable parts of the formal semantics of spontaneous tran-
sitions still remain in the formal semantics definition. In order to remove them, a
further reduction of the formal semantics definition is necessary. This reduction
includes, for example, guarded rule fragments that check for the agent mode
selectSpontaneous.

Table 1. Definition Size for Profiles

Profile Features Lines of Spec.

Core System, Block, Process, Channel 1500 lines
Simple Statemachines

Static1 Core +Timer, +Actions, +Data, . . . 1900 lines

Static2 Static1 +Services, +Inheritance, +Data 2240 lines
+Priority Input, +Continuous Signal, . . .

Safire 2280 lines

Dynamic Static2 +Procedures, +Dynamic Process 2570 lines
∼ SDL 96 Creation

SDL-2000 3130 lines

Table 1 shows the size of the reduced dynamic part of the formal semantics
of SDL for several language profiles of SDL-2000. Core, Static1 , Static2 and
Dynamic build a hierarchy of language profiles, starting from Core with mini-
mal features and going up to the dynamic subset, which roughly equals SDL’96.
The formal semantics of Safire is slightly larger than the second static sub-
set, though Static2 contains features not covered by Safire. However, Safire
contains procedures, which are not part of Static2 .

3 Formalisation

In this section, we introduce a formalisation of the process for the derivation of
language profiles with the top-down approach. The formalisation gives an exact
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definition of the removal process, leading to deterministic results. It provides
the foundation for tool support for the removal process. Finally, a formal defi-
nition is necessary in order to make precise statements about the consistency of
language profiles. Since the formal syntax definition can be easily defined in a
modular fashion, making reduction of the syntax straightforward, we focus on
the reduction of the formal semantics definition.

The formal semantics definition consists of two parts, the static semantics and
the dynamic semantics. The static semantics consists of well-formedness condi-
tions and transformation rules. Where languagemodules are removed, correspond-
ing well-formedness conditions and transformation rules have to be removed
accordingly. However, in this paper we focus on the dynamic semantics of SDL.

For the formal definition of the removal process, we are looking for a mathe-
matical formalism that is readable and easy to understand. Therefore, we have
decided to use a functional approach, defining functions that recursively map
the original formal semantics to the reduced formal semantics. These functions
are based on a concrete grammar for Abstract State Machines.

3.1 Formalisation Signature

To formalise the extraction, we define a function remove, which maps a term from
the grammar G of ASMs and a set of variables V - an initially empty set of lo-
cally undefined variables from the ASM formal semantics - to a reduced term from
the grammar G. Additionally, we introduce three mutually exclusive binary pred-
icates, namely undefined , true and false, that control the reduction. The profile
definition is given as a globally defined set of elements r from the signature of the
formal semantics definition, annotated by default values true and false for pred-
icates. This set represents the elements to be removed from the formal semantics
definition, and is therefore called the reduction profile. For all elements in the re-
duction profile, undefined (true or false for predicates) holds.

remover : G × V → G

undefinedr : G × V → Boolean

truer : G × V → Boolean

falser : G × V → Boolean

The remove function is defined on all elements of the grammar G. It is defined
recursively - a given term is mapped to a new term by applying the mapping
defined by remove to the subterms. In case the predicates undefined , true and
false do not hold, nothing more is done. This assures that remove corresponds
to the identical mapping if the signature of the formal semantics definition is
not reduced (that is, the reduction profile is empty). In other cases, subterms
can be replaced or omitted depending on which of the predicates hold.

Predicates true and false are explicitly defined on boolean and first-order logic
expressions. On all other elements of G, the predicates do not hold. Predicate
true(e, v) (false(e, v)) holds only if expression e always evaluates to true (false)
in any state of the ASM with reduced signature. These predicates are determined
using formal criteria and heuristics.
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Predicate undefined is defined on all expressions and domains. It holds on any
expression or domain that can not be reduced to a defined expression/domain. A
defined expression or domain contains only elements that are not in the reduction
profile r. For example, if undefined holds for expression e1 and expression e2,
undefined also holds for expression e1 ∨ e2.

3.2 Formal Reduction of ASM Rules

Rules specify transitions between states of the ASM. The basic rule is the update
rule, which updates a location of the state to a new value. All together, there
are seven kinds of rules for ASMs, for all of which we have formalised the reduc-
tion. Below, we show the formalisation of the reduction for two representative
rules.

The mapping of the if -rule (see below) depends on which predicate holds for
the guard exp of the rule. If the guard always evaluates to true (false), the
if -rule can be omitted, and removal continues with subrule R1 (R2). If the guard
is undefined, the rule is syntactically incorrect, and should not be reachable1. If
none of the predicates hold, the removal is applied recursively to the guard and
the subrules of the if -rule, leaving the rule itself intact.

remove(if exp then R1 else R2 endif, V) =
remove(R1,V) iff true(exp,V)
remove(R2,V) iff false(exp,V)
skip iff undefined(exp,V)
if remove(exp,V) then remove(R1,V) else
else remove(R2,V) endif

The extend-rule dynamically imports a fresh ASM element from the re-
serve (an infinite store of unused ASM elements), binding it to a variable x in
the context of the subrule R and including it in the ASM domain D. In case
the domain name D is undefined, i.e. has been removed from the ASM signa-
ture, the extend-rule can be omitted, since elements of domain D belong to a
removed feature. However, the subrule R might still contain parts not related
to this feature - although it would be better style to move these parts outside
the extend-rule. Therefore, the subrule is not omitted by default, but replaced
with its mapping by the remove function, including the now unbound variable x
in the set of locally undefined variables. This leads to all occurrences of x being
removed from the rule R.

remove(extend D with x R endextend, V) =
remove(R,V ∪ {x}) iff undefined(D,V)
extend D with x remove(R,V) endextend else

1 This is a proof obligation that we have to verify manually. However, so far this
has only occurred in very few cases, which were the result of errors in the reduction
profile.
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3.3 Formal Reduction of ASM Expressions

Expressions are terms over the signature of the formal semantics definition. Ad-
ditionally, ASMs include common mathematical structures like boolean algebra,
or natural numbers. Our formal reduction covers all operations defined in [13].
Below is an excerpt of the formal reduction of ASM expressions, covering boolean
and relational operators.

Boolean operators take boolean expressions as arguments, therefore the pred-
icates true, false and undefined apply. With binary boolean operators, we have
to consider sixteen different combinations of predicates holding for subexpres-
sions - four for each subexpression. In order to improve readability, we combine
the definitions of true, false, undefined and remove for boolean operators in a
four-valued truth table. Valid boolean expressions always evaluate to either true
or false. Therefore, it is undesirable that the predicate undefined holds for such
an expression. However, this can not be avoided in every case.

Table 2. Truth Table for Negation

¬e1 T F U -

F T U ¬e1

Table 3. Truth Table for Disjunction

e2

e1 ∨ T F U -

T T T T T
F T F F -
U T F U -
- T - - -

T Predicate true holds
F Predicate false holds
U Predicate undefined holds
- ¬T ∧ ¬F ∧ ¬U

We define truth tables for all boolean operators from the concrete syntax
of ASMs: negation (¬, see Table 2), disjunction (∨, see Table 3), conjunction
(∧), implication (→) and equivalence (↔). In order to ensure consistent results,
we derive the definition of conjunction, implication and equivalence from the
definitions of negation and disjunction.

A special relational operator is the element-of operator e1 ∈ e2, where e1

denotes an element and e2 denotes a set. It is important as it often appears in
the guard of if -statements. The expression e2, denoting a set, is interpreted as
the empty set if undefined holds. Therefore, false (true) holds for the element-of
(not element-of) expression if e2 is undefined. Likewise, an undefined expression
should not be an element of any set. Note that according to this definition,
undefined can not hold for an element-of expression.

In the same way as with the examples given above, the function remove
is formally defined for all elements of the concrete grammar of ASMs, and
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the predicates true, false and undefined are formally defined for the elements of
the grammar for which they apply. This gives us a complete formalisation of the
reduction process.

4 SDL-Profile Tool

Based on the formalisation provided in section 3, we have implemented an SDL-
profile tool in order to validate the reduction process, providing visible results.
The tool reads the formal semantics definition, performs the remove operation
based on a reduction profile, and outputs a reduced version of the formal se-
mantics. The reduction profile is a list of domain names, function names and
macro names that are removed from the ASM signature (or from the set of
rules, in the case of macro names), possibly defining default values. Figure 4
shows the sequence of steps performed during the removal, and the tools used for
each step.

Fig. 4. Toolchain of the SDL-Profiling Tool

4.1 Toolchain

Parser. The parser takes an ASM specification as input and creates an abstract
syntax tree representation of the specification as output. It is generated out of
definitions of the lexis, grammar and abstract syntax of Abstract State Machines,
as used in the formal semantics of SDL-2000. The definition of the abstract
syntax is translated by kimwitu++ [14] to a data structure for the abstract
syntax tree, using C++ classes. Scanner and parser are generated by flex and
bison, respectively. Apart from minor differences, the parser is identical to the
parser used in [8].

Normalisation. The normalisation step transforms the abstract syntax tree
to a pre-removal normal form. The transformation is specified by rewrite rules
on the abstract syntax tree. The rewrite rules are translated to C++ functions
by the kimwitu tool. The main function of the normalisation step is to split up
complicated abstract syntax rules, in order to make the definition of the remove
function easier. For example, during the normalisation step, extend-statements
containing a list of variables to be bound to new elements in a domain are
rewritten. The result is a set of nested extend-statements containing only one
variable each.

Extend(dom, ConsnameList(nhead,nrest), rul)
-> < normal: ExtendSingle(dom, nhead, Extend(dom, nrest, rul)) >;
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Remove. The remove step is the implementation of the removal formalised
in section 3. For each type of node (called phyla in kimwitu) in the abstract
syntax definition, a remove function is introduced. The remove function performs
removal for each term of the respective phylum, for example the terms Assign,
Choose, Extend, . . . for the rule phylum. It returns a term of the respective
phylum as result – for example the remove function for rules always returns a
term of type rule.

The remove functions for phyla follow a pattern. Formal arguments of the
function are a phylum and a set of casestrings (the locally undefined ASM
names). The return type is the same as the phylum used as formal argument,
ensuring the resulting term has the correct type in the context in which it oc-
curs. The outermost statement is a switch over all terms of the phylum, using
the kimwitu control structure with. For each term, the actions for removal are
defined separately.

For a term of a phylum, removal starts by checking conditions consisting of
the predicates true, false and undefined , as defined in the formalisation of the
removal process. If a condition evaluates to true, a modified term is returned,
calling remove recursively on the subterms of the term if necessary. For example,
for the rule term IfThenElse, if the predicate true holds for expression exp,
removal continues with the then-part, if the predicate false holds for expression
exp, removal continues with the else-part. If undefined holds for the expression
exp the rule term Skip is returned.

IfThenElse(exp, r1, r2): {
if (eval_true(exp,V)) { return remove(r1,V); };
if (eval_false(exp,V)) { return remove(r2,V); };
if (eval_undef(exp,V)) { return Skip(); };
return IfThenElse(remove(exp,V), remove(r1,V), remove(r2,V));

}

Cleanup. Removal starts at the root of the abstract syntax tree and works
towards the leaves, without any backtracking. Therefore, removal on a subtree
does not take the context of the subtree into account. However, the removal can
affect the context and make it obsolete. If the entire rule body of an extend-
statement is reduced to skip, the extend-statement itself could be removed. The
cleanup step transforms superfluous rules resulting from the removal step to a
post-removal normal form. The normal form is achieved by defining term rewrite
rules in kimwitu. Unlike removal, the rewrite rules apply anywhere where their
left hand side matches, and are applied as long as a match is found.

Cleanup performs the following modifications to the formal semantics:

– The rule skip is removed from parallel rule blocks.
– Rules with subrules are replaced with skip if all subrules of the rule are

skip-rules.



60 R. Grammes

– if -rules with identical subrules in the then- and else-part are replaced by
the subrule in the then-part.

– All local definitions of a rule macro with a skip-rule as rule-body are re-
moved. These definitions are not visible outside of the rule macro, and are
not referenced by the rule-body.

The cleanup step only removes trivial parts of the ASM specification. The
resulting specification is semantically equivalent to the specification before the
cleanup step.

Iteration. Given a completely defined reduction profile, only one run of the
SDL-profile tool is needed to generate a reduced formal semantics definition. In
case the reduction profile is incomplete, the SDL-profile tool can identify further
names in the signature that can be removed, and iterate the removal process.
For example, a function with a target domain that has been removed during
the previous removal step is included in the reduction profile of a subsequent
iteration.

Unparsing. Unparsing traverses the abstract syntax tree and outputs a string
representation of every node. The result is a textual representation of the formal
semantics tree in the original input format. Therefore, the output of the SDL-
profile tool can be used as the input for a subsequent run of the tool. It is
also possible to output the result as a latex document, for better readability. A
partial compilation of ASM rules to C++ exists as a third output format. This
compilation is still in an early development phase.

4.2 Results

Given a formal semantics definition in ASM and a reduction profile, the SDL-
profile tool generates a reduced formal semantics definition in the original format.
In order to validate the removal process, we compared the original semantics
definition with the reduced version. For this, we have used graphical diff-based
tools (for example, tkdiff) to highlight the differences between the versions. Using
the SDL-profile tool, we have created reduction profiles for several language
features, such as timers, exceptions, save, composite states and inheritance. We
have also created reduction profiles for language profiles like Safire, resulting
in a formal semantics definition that, with small modifications, matches that
language profile.

Listings 4 and 5 show the results of applying the SDL-profile tool on the for-
mal semantics definition for the macro SelectTransitionStartPahse, using
a reduction profile for exceptions. The reduction profile contains, besides other
function and macro names, the function name currentExceptionInst, which is
interpreted as undefined in the context below. Therefore, the predicate false
holds for the guard of the if -rule, and the first part of the if -statement is re-
moved.
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1 SelectTransitionStartPhase ≡
2 if (Self .currentExceptionInst 	=undefined) then
3 Self .agentMode3 := selectException
4 Self .agentMode4 := startPhase
5 elseif (Self .currentStartNodes 	= ∅) then
6 ...
7 else
8 ...
9 endif

ASM-Listing 4. Macro SelectTransitionStartPhase before Removal

1 SelectTransitionStartPhase ≡
2 if (Self .currentStartNodes 	= ∅) then
3 ...
4 else
5 ...
6 endif

ASM-Listing 5. Macro SelectTransitionStartPhase after Removal

5 Related Work

A modular language definition as described in this paper can be found in the
language definition of UML [15]. The abstract syntax of UML is defined using a
meta-model approach, using classes to define language elements and packages to
group language elements into medium-grained units. The core of the language
is defined by the Kernel package, specifying basic elements of the language such
as packages, classes, associations and types. Each meta-model class/language
element has a description of its semantics in an informal way.

UML has a profile mechanism that allows metaclasses from existing metamod-
els to be extended and adapted, using stereotypes. Semantics and constraints
may be added as long as they don’t conflict with existing semantics and con-
straints. For example, the profile mechanism is used to define a UML profile for
SDL, enabling the use of UML 2.0 as a front-end for SDL-2000.

In [16], the concept of program slicing is extended to Abstract State Machines.
For an expressive class of ASMs, an algorithm for the computation of a minimal
slice of an ASM, given a slicing criterion, is presented. While the complexity of the
algorithmisacceptable intheaveragecase, theworstcasecomplexity isexponential.

ConTraST [17] is an SDL to C++ transpiler that generates a readable C++
representation of an SDL specification by preserving as much of the original
structure as possible. The generated C++ code is compiled together with a
runtime environment that is a C++ implementation of the formal semantics
defined in Z100.F3. ConTraST is based on the textual syntax of SDL-96, and
supports language profiles syntactically by allowing the deactivation of language
features. In particular, the language profiles Core, Static1 , Static2 and Dynamic
- as described in section 2 - are supported. In order to support language profiles
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semantically, we can use the results of the formally defined derivation of language
profiles from the complete formal semantics definition. Using the SDL-profile
tool, the translation from the reduced formal semantics definition into a C++
runtime environment can be performed semi-automatic. The resulting runtime
environment is smaller, leading to a more efficient execution.

6 Conclusions and Outlook

In this paper, we have introduced the concept of language profiles as well-defined
subsets of a language, leading to smaller, more understandable language defini-
tions. Tool support can be based on these language profiles, leading to faster tool
development and less expensive tools. Based on the smaller language definitions,
code optimisations can be performed when generating code from a specification.

We have argued for the importance of formal semantics for language defini-
tions, and the importance of deriving the formal semantics of language profiles
from a common formal semantics definition. This allows us to compare the for-
mal semantics of different language profiles, and to make assertions about the
consistency of language profiles.

To achieve deterministic results, we have formalised the process of deriving for-
mal semantics for language profiles from a complete formal semantics definition,
based on Abstract State Machines and applied to the formal semantics of SDL-
2000. This process is based on reducing the signature of the ASM, subsequently
leading to the reduction of parts of ASM-rules that become unreachable. We have
implemented this formally defined process in an SDL-profile tool, making it pos-
sible to validate the results of the reduction. This tool was used to create several
language profiles for SDL-2000, by removing language features from the formal
semantics definition, such as exceptions, timers, save and composite states.

Based on the formally defined process for the derivation of SDL language
profiles, we can define precise criteria for the consistency of language profiles.
However, currently the consistency has to be verified manually. Our future work
will focus on modifying the derivation process, so that as many automatic guar-
antees as possible can given for the consistency of the derived profiles.
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Abstract. The design of distributed systems requirements often ends
with a collection of redundant use cases or scenarios, each of which illus-
trating a peculiar functionality or a typical execution of the system. The
actual behavior of the system under design can be considered as a super-
position of all use cases. However, current scenario languages do not pro-
pose such superposition mechanism. An operator for Message Sequence
Charts defined as a sum of MSCs was proposed recently. However, the
designer must provide explicitly the common parts in operands (called
the interface) to compute a sum. This paper proposes an automatic con-
struction of this interface based on a heuristic search.

1 Introduction

Scenarios are a popular formalism describing runs of distributed systems. They
often appear in protocol descriptions or as illustrations of a system’s use. They are
also proposed to design use cases in the UML standard. Several scenario languages
have been proposed:MessageSequence charts [4], Live Sequence Charts [2], UML’s
sequence diagrams [9]. MSCs, LSCs and sequence diagrams represent scenarios
as compositions of basic diagrams which are more or less finite chronograms. A
natural formal representation of these basic diagrams is labeled partial orders. In
addition to the basic diagrams, all notations propose several composition opera-
tors such as sequence, iteration, alternative, etc. These extensions are available
in MSCs since 1996 [11], and came later for sequence diagrams in UML 2.0 [9].
However, even a high-level description is not sufficient to capture all the behaviors
of a system. Of course scenarios cannot be considered as a programming language,
and their role is not to be exhaustive. Scenarios should rather be considered as an
abstraction of a system’s behavior, attached to a particular functionality, or to a
particular point of view (the user’s view of the system, for example). As a conse-
quence, the requirement phase in design often ends with a collection of different
scenarios describing the system from different points of view, hence with some sim-
ilarities (see [3] for an example of scenario collection for the same system). The be-
havior of the system under study is not a parallel composition of these descriptions.
It is not either an alternative or a sequence, but rather a superposition of scenarios.

R. Gotzhein and R. Reed (Eds.): SAM 2006, LNCS 4320, pp. 64–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Superposition is an usual preoccupation for telecommunication services composi-
tion. Superposition operators have already been proposed for parallel programs
by [1], or for other formalisms such as automata (see for example [6,12]). Let us
illustrate the expected outcome of a superposition operator for basic Message Se-
quence Charts (or bMSCs). A bMSC is roughly speaking a chronogram, depicting
communications an actions of a set of processes. Figure 1 shows several examples
of bMSCS. BMSC M1 describes an exchange of three messages m1,m2 and m3, in
this order. M2 depicts the exchange of two messages m1 and m3, but specifies that
an internal action a must take place on instance A between the sending of m1 and
m2. The desired result is the bMSC M3, that can be considered as a “sum” of M1

and M2. Note that as M1 and M2 do not specify any ordering between the sending
of m2 and action a, these two events are kept unordered in the sum, and appear in
a coregion.

a

BA A BA B

a

m1

m2

m3

+ =

bMSC M1 bMSC M2 bMSC M3

m2

m1

m3
m3

m1

Fig. 1. Superposition of two scenarios

If all scenarios obtained after the requirement phase are seen as partial views of
an actual behavior, then a composition of two abstractions should be a more con-
crete scenario that refines both views. A superposition operator for MSCs called
amalgamated sum was proposed in [7]. To sum two bMSCs, the common part (also
called interface) of the operands have to be defined. The result of the sum is an
union of both scenarios where the common part is not duplicated. The main draw-
back so far is that the identical parts in operands have to be explicitly given before
composition. Automating the product is not always possible, as there is more than
one possible interface and amalgamated sum hence requires some directives from
an user. In this work, we investigate how to compute efficiently the best possible
interfaces between two bMSCs to reduce the work of end users. Note that [7] also
defines a superposition operator for HMSCs, but this is out of the scope of this
work. The paper is organized as follows: Section 2 recalls some usual notations on
scenarios and defines the notion of amalgamated sum of bMSCs. Section 3 defines
the notion of common part of two bMSCs and highlights some of their proper-
ties. Section 4 shows how the search for an interface can be brought back to an
heuristic search algorithm. Section 5 shows an example of automatic composition
of bMSCs, and section 6 concludes this work. Due to lack of space, proofs of propo-
sitions are not included in this paper. They can however be found in a preliminary
version of this work available on the first author’s web page.
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2 Scenarios

Message Sequence Charts is a scenario formalism standardized by ITU [4]. It is
composed of two description levels. At the lowest level, basic Message Sequence
Charts (bMSCs for short) define interactions among objects called instances.
BMSCs can be considered as a formal definition of chronograms. In a bMSCs, in-
teractions among instances are performed using asynchronous communications.
The second level of this formalism is called High-level Message Sequence Charts
[11], and allows for the definition of more elaborated descriptions containing
iterations, and alternatives. In this section, we will only consider bMSCs and
their amalgamated sum. Formally, bMSCs can be considered as labeled partial
orders [5] and can be defined as follows:

Definition 1. A bMSC is a tuple B = (E,≤, A, I, α, φ, m), where:

– E = ES ∪ ER ∪ EA is a set of events that can be partitioned into a set of
message sendings, a set of message receptions, and a set of atomic actions.

– ≤ is a preorder on E, i.e a transitive and reflexive relation
– A is a set of action names,
– I is a set of instances,
– α : E −→ A is a mapping that associates a label to each event.
– φ : E −→ I is a mapping that associates an instance name to each event.

φ(e) will sometimes be called the locality of e.
– m : ES −→ ER is a mapping that associates a message reception to each

message sending.

Note that ≤ is not necessarily a partial order, i.e. from our definition, a
bMSC may not describe a valid execution of a system. When ≤ is a partial
order, we will say that B is well-formed. Let us also define the empty bMSC
Bε = (Eε,≤ε, Aε, Iε, αε, φε, mε) such that Eε = ∅.
Figure 2 shows an example of bMSC. Three instances Sender, Medium, and
Receiver exchange messages Data, ack, and info. An atomic action action is per-
formed by instance Sender. Note that the ordering on an instance lifeline is not

bMSC example

ack

data

info
action

receiversender medium

e5
e7

e1
e4

e2

e3
e6

Fig. 2. An example of bMSC
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necessarily a total order. This is symbolized by a dashed part called a coregion on
the lifeline. In our example, the sending of messages info and ack are unordered.

For a given bMSC B, we will denote by ↓ (e) = {e′ ∈ E | e′ ≤ e} the
causal past of event e in B. Similarly, we will define the future of an event by
↑ (e) = {e′ ∈ E | e ≤ e′}. A well-formed bMSC describes a set of executions,
each of which is a linearization of its partial ordering (i.e an execution of a
bMSC B = (E,≤, A, I, α, φ, m) is a word w = e1 . . . e|E| such that any event of
E appears exactly once in w, and furthermore, for all ei, ei+k in w, ei+k � ei).
The set of linearizations of a bMSC will be denoted by Lin(B). For a given
linearization w ∈ Lin(B), w[i] will denote the ith event of word w.

The usual operators proposed for Message Sequence Charts are sequential
composition, parallel composition, alternative and iteration. As already men-
tioned, these operators do not allow superposition as described in Figure 1. In
a recent paper, [7] has proposed an operator called amalgamated sum, that al-
lows for this kind of composition. In this sum, the common part between two
bMSCs B1 and B2 is defined by another bMSC called the interface, that is re-
lated to B1 and B2 by bMSC morphisms. Roughly speaking, a bMSC morphism
f : BI −→ B from an interface BI to a bMSC B exists if and only if BI is
“contained” in B, and describes how BI is injected in B.

Definition 2. Let B1 = (E1,≤1, A1, I1, α1, φ1, m1),
B2 = (E2,≤2, A2, I2, α2, φ2, m2) be two bMSCs. A morphism from B1 to B2 is
a triple f = (f1, f2, f3), where:

– f1 : E1 −→ E2 is an injective function from E1 to E2.
– f2 : A1 −→ A2 is an injective mapping from A1 to A2.
– f3 : I1 −→ I2 is an injective mapping from I1 to I2.

Furthermore, the morphisms should satisfy the following properties:

i) ∀e, e′ ∈ E1, e ≤1 e′ ⇒ f1(e) ≤2 f1(e′) : the ordering among events is
preserved by the morphism.

ii) ∀e, e′ ∈ E1, m(e) = e′ ⇒ m(f1(e)) = f1(e′) : messages are preserved by the
morphisms

iii) ∀e1 ∈ E1, e2 ∈ E2 such that e2 = f(e1), ∃e′2 ∈ E2, m(e2) = e′2 =⇒ ∃e′1 ∈ E1

such that m(e1) = e′1 ∧ f(e′1) = e′2 and ∃e′2 ∈ E2, m(e′2) = e2 =⇒ ∃e′1 ∈ E1

such that m(e′1) = e1 ∧ f(e′1) = e′2. This condition means that messages
are mapped integrally by bMSC morphisms, and that we cannot associate a
single event with a message sending or reception.

iv) f3 ◦ φ1 = φ2 ◦ f1: this property means that the locality of events is coherent:
two events located on the same instance in B1 will be located on the same
instance in B2.

v) f2 ◦ α = α′ ◦ f1 : this property means that the labeling of events remains
coherent through morphisms. The images of two events with identical label
are events with identical labels.

Note that in this definition, nothing forces labeling or locality to be similar
in B1 and B2. Figure 3 shows two examples of bMSC morphisms. Consider
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eI4
eI2f1

f3

action evt2

evt6
evt3

ack

bMSC B1

data

X Y

evt4
evt1

bMSC Interface

data

sender medium

eI3
eI1

ack eI4
eI2

bMSC B2
sender

e1

e6

receiver

e4

ack

data

medium

e2

e3

e5

info

bMSC Interface

data

sender medium

eI3
eI1

ack

f3=id

Fig. 3. Two example morphisms

the leftmost morphism. Event morphism is represented as a plain arrow and
instance morphism as a dashed arrow. For the sake of clarity, labels morphism
is not represented, but is obvious on this example. bMSC Interface can clearly
be injected in bMSC B1. Each event of Interface has an image in B1, messages
and order are preserved. Instances Sender and Medium are renamed by the
instance mapping into X and Y .

Definition 3 (Amalgamated Sum of Two Sets). Let I, J and K be three
finite sets. Let f : I → J and g : I → K be two injective maps. The amalgamated
sum Jf+gK is defined as Jf+gK =

(
J\f(I)

) ⊎(
K\g(I)

)⊎
I. The amalgamated

sum yields two injections f̃ : J → J f +g K and g̃ : K → J f +g K defined as
follows:{

∀i ∈ f(I), f̃(i) = f−1(i)
∀i ∈ J \ f(I), f̃(i) = i

{
∀i ∈ g(I), g̃(i) = g−1(i)
∀i ∈ K \ g(I), g̃(i) = i

Amalgamated sum of sets is a disjoint union of these sets where events that are
identified through the interface are not duplicated. It will be used to amalgamate
sets of instances, events or actions of two bMSCs.

Definition 4. Let B1,B2, BI be three bMSCS and let f : BI −→ B1 and g :
BI −→ B2 be two bMSC morphisms. The amalgamated sum of B1 and B2 with
respect to interface BI and morphisms f and g is denoted B1 f +g B2, and is
defined as B1 f +g B2 = (E,≤, A, I, α, φ, m), where:
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– E = E1 f1 +g1 E2

– ≤ is the preorder relation obtained by transitive closure of f̃1(≤1)∪ g̃1(≤2) ;
– A = A1 f2 +g2 A2

– I = I1 f3 +g3 I2

– ∀e ∈ E, α(e)=

⎧⎨
⎩

α1(e) if e ∈ E1\f1(EI)
α2(e) if e ∈ E2\f2(EI)
α0(e) otherwise

, φ(e)=

⎧⎨
⎩

φ1(e) if e ∈ E1\f1(EI)
φ2(e) if e ∈ E2\f2(EI)
φ0(e) otherwise

– m = f̃1(m1) ∪ g̃1(m2)

Using the two morphisms of Figure 3, the amalgamated sum between bMSCs
B1 and B2 with bMSC Interface produces the bMSC of Figure 2. Note that ≤
is not always acyclic, even when B1 and B2 are well-formed bMSCs. We will say
that an amalgamated sum is well-formed whenever ≤ is a partial order relation
(transitive, reflexive, antisymmetric). Figure 4 shows an example of amalgamated
sum for which the orderings between actions a and b defined by M1 and M2 are
inconsistent. The result produces a bMSC that is not well-formed.

Fig. 4. An amalgamated sum that is not well-formed

Proposition 1. Let B1, B2, BI , be three bMSCs and f : BI −→ B1, g : BI −→
B2 be two bMSC morphisms. Let us denote by Pf,g : E1 −→ E2 the partial
bijective function that pairs events of E1 and E2, i.e. Pf,g(e1) = e2 iff ∃ei ∈
BI , f(ei) = e1 and g(ei) = e2. The following propositions are equivalent:

1. B1 f +g B2 is well-formed

2. ∀e1 ∈ f(BI), ↑ (e1) ∩ P−1
f,g

(
↓

(
Pf,g(e1)

))
= {e1}

3. ∀e2 ∈ g(BI), ↑ (e2) ∩ Pf,g

(
↓

(
P−1

f,g(e2)
))

= {e2}

a b

b

ab
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m2

eb

ea

M1 f +g M2

M1 M2

B

e′b

B

m1m2

g1

f1

m1

M0

A A B

e′a

A B
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From this proposition, we know that checking for well-formedness of an amalga-
mated sum resumes to finding connected components in ≤2 ∪ ≤2 ∪P∪P−1. This
can be done in polynomial time using Tarjan’s algorithm [13]. Note however that
the complexity of finding a valid interface from a pair of bMSCs is due to the
number of possible interfaces more than to the complexity of checking whether
B1 f +g B2 is well-formed.

Fig. 5. Two solutions to merge bMSCs of Figure 4

3 Common Part

Intuitively, in an amalgamated sum, the interface bMSC BI represents the com-
mon part of B1 and B2. The amalgamated sum merges B1 and B2 without
duplicating the common part. The sum considers that two events that are the
image of a single event of the interface through morphisms are identical. These
events do not need to have identical labels nor be located on the same instance.
Note however that this should often be the case, especially when labeling and
location of events is the only information available. When an amalgamated sum
is not well formed, it means that operands do not agree of the respective orders
of common events. Then either some events that were identified in the interface
should not be considered as identical, or the two descriptions are not compatible
and should not be composed. To resolve this inconsistency, an user can either
withdraw some events that cause the ordering relation in the sum to be cyclic
from the morphims definitions, or redesign one of the composed scenarios to
obtain a well-formed sum.

If we consider again the example of Figure 4, considering a′s and b’s as com-
mon events in both views produces an ill-formed bMSC. However, if we chose to
consider only a′s or only b′s as common events, then there is a way to compose
M1 and M2 to obtain a well-formed behavior, as depicted in Figure 5. Note that
well formedness could be used to define a notion of coherence: if we try to match
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all occurrences of events with similar label and similar rank on an instance, and
obtain an ill-formed bMSC, then we can consider that the composed bMSCs are
inconsistent.

For a well-formed amalgamated sum B1 f +g B2, we will often call the triple
(BI , f, g) the common part of B1 and B2. The empty common part Cε is a
common part such that BI = Bε.

Automating the amalgamated sum resumes to finding common parts for a pair
of bMSCs B1, B2. Note however that the design of an interface for a couple of
bMSCs canbe a difficult task. In our definition, nothing forces the interfaced events
to have the same label, nor to be located on the same instance. The only restric-
tion in the general case is that the bMSC morphisms should be injective. That
is, an interface can have up to the size of the smallest operand of the sum. Kleit-
man and Rotschild gave a bound for the number of partial orders of size n which
is in O

(
2

n2
4 . 3n

2 .ln(n)
)

[8]. Note however that the number of interfaces of size n de-
scribing the behavior of l instances (without considering labeling, that may yeld
an infinite number of different bMSCs) is much lower, as it is in ln (everytime you
add an event, it can be located on l instances, and ordering does not matter as it
can be deduced from the ordering in B1, B2). Anyway, this number remains too
big to consider searching exhaustively the whole set of interfaces and morphisms:
if m is the size of the minimal operand (and M the size of the largest operand) for
an amalgamated sum, the number of possible interfaces is Σ

i∈1..m
li, and the worst

number of possible common parts is hence in Σ
i∈1..m

li. m!
(m−i)! .

M !
(M−i)! . A sensible re-

striction of the amalgamated sum is to consider that when two events in B1 and B2

are the image of a single event in the interface, then they are located on the same in-
stance and have identical labels, i.e. ∀e1 ∈ E1, e2 ∈ E2, when ∃e ∈ EI , f1(e) = e1

and g1(e) = e2 we have φ(e1) = φ(e2) and α(e1) = α(e2). With this restriction
in mind, the interface can be built using the same labels and the same instances
as the summed operands (i.e. AI ⊆ A1 ∩ A2 and II ⊆ I1 ∩ I2). Hence, if we call
K = |α−1(A1 ∩ A2) ∩ φ−1(I1 ∩ I2)|, the number of possible interfaces becomes

Σ
i∈1..K

li. m!
(m−i)! .

M !
(M−i)! . So, from now, we will consider that in any bMSC morphism

f = (f1, f2, f3), f2 = id and f3 = id. But even with this restriction, the number
of common parts remains huge.

Now, we have to remind that the main justification of amalgamated sum is
to exploit redundancy in different views. Hence a common part with a large
interface can be considered as better than the empty common part Cε, but also
as any smaller interface. The notion of extension of a common part formalizes
this intuition, and provides a structure to the set of common parts.

Definition 5. Let C = (BI , f, g) be a common part for a pair of bMSCs B1, B2.
We will say that C′ = (B′

I , f
′, g′) is an extension of C and write C � C′ if and

only if:

– (B′
I , f

′, g′) is a common part of B1, B2 – EI ⊆ E′
I

– ∀e ∈ EI , f
′(e) = f(e) and g′(e) = g(e)
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We will say that (B′
I , f

′, g′) is a sequential extension of (BI , f, g) when no
event of E′

I \ EI (respectively f ′(E′
I \ EI) and g′(E′

I \ EI)) is located in the
causal past of EI (respectively f(EI) and g(EI)).

For a common part C, let us denote by Ext(C) the set of extensions of C and
by SExt(C) the set of sequential extensions of C. These extension sets contain
a set of maximal elements Ĉ and C such that Ext(Ĉ) = Ĉ and SExt(C) = C.

Proposition 2. For any pair of bMSCs B1, B2, Ĉε ⊆ Cε.

This proposition gives the intuition for an efficient and incremental search for
interfaces. The set of common parts is in fact the search space that has to be
explored to produce the best interfaces. (Ext(Cε),�) and (SExt(Cε),�) form
two lower semi-lattices. However, the size of SExt(Cε) is lower than the size
of Ext(Cε). Furthermore, the maximal elements in the lattice of extensions are
also maximal elements in the lattice of sequential extensions, i.e. no optimal
solution is lost. This means that the best maximal common part can be built
incrementally (and more efficiently) by exploration of a linearization of one of the
operands. Let us clarify this intuition with the example bMSCs of figure 6. The
semi-lattices of common parts extensions and sequential extensions for this pair
of bMSCs are represented in Figure 7. The table in Figure 7 describes how events
are matched in each common part: common part C1 identifies two events e1 and
e′1, C2 identifies e2 and e′2, C3 e3 and e′3, etc. We know that e1 ≤ e2 ≤ e4 ≤ e3,
and furthermore, no common part may contain at the same time e2 and e4.
Note also that events associated to messages m, n, o and t, u, v never appear in a
common part (one cannot find events with similar labels). The leftmost graph in
Figure 7 shows the Hasse diagram of the extension semi-lattice: vertices represent
common parts, and an arrow between two vertices Ci, Cj indicates that Ci � Cj .

Maximal elements in this semi-lattice are depicted by squares. The rightmost
graph represents the semi-lattice of sequential extensions. Note that due to the
ordering among events, some edges do not appear anymore in the diagram.
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Fig. 6. A pair of bMSCs



Automating Scenario Merging 73

Hence, some common parts (such as C3, C6, and C7) become maximal w.r.t the
sequential extension relation. However, they are not maximal w.r.t extension,
and most of them will be ignored during the heuristic search.

Cε

C1 C2 C3 C4

C6 C7C5
C8

C9 C10

C11 C12

Cε

C1 C2 C3 C4

C6 C7C5
C8

C9 C10

C11 C12

C13 C13

C1 : P({e1}) = {e′1} C7 : P({e1, e3}) = {e′1, e′3}
C2 : P({e2}) = {e′2} C8 : P({e1, e4}) = {e′1, e′4}
C3 : P({e3}) = {e′3} C9 : P({e3, e4}) = {e′3, e′4}
C4 : P({e4}) = {e′4} C10 : P({e4, e5}) = {e′4, e′5}
C5 : P({e1, e2}) = {e′1, e′2} C11 : P({e1, e2, e3}) = {e′1, e′2, e′3}
C6 : P({e2, e3}) = {e′2, e′3} C12 : P({e1, e3, e4}) = {e′1, e′3, e′4}

C13 : P({e5}) = {e′5}

Fig. 7. Semi lattices of extensions and sequential extensions

4 Automation of MSC Sums

According to [10], performance of heuristic search depends on two criterions: a
good representation and organization of the search space, and a good evaluation
function for a place in this search space. For each place of the search space,
we have to be able to compute a set of successors, and chose to explore the
more promising among them (w.r.t. the evaluation function). The semi-lattice of
sequential extensions is smaller than the lattice of extensions. Furthermore, the
maximal elements w.r.t extension are the same in both lattices, and the extension
relation guarantees that we are progressing toward a better solution. Hence the
lattice of sequential extensions can be considered as a good organization of the
search space. A good way to explore the lattice of sequential extensions of a pair
of bMSCs B1, B2 is to study events of the smallest operand according to the
causal ordering (i.e. chose a peculiar linearization). For each event e, we have to
find a similar event e′ in the other operand (same label and same instance), and
make sure that after identifying e and e′, the amalgamated sum of B1 and B2

is still well-formed.
In the sequel, we will denote by B ◦ {e} the bMSC obtained by sequential

concatenation of B and an event e, and slightly abusing the morphisms notation,
we will denote by f ′ = f ∪ {(e, e′)} the morphism f ′ defined on dom(f) ∪ {e}
such that : f ′(x) =

{
f(x) if x �= e
e′ otherwise
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Proposition 3. Let C = (B, f, g) be a common part of B1, B2, let e be an
atomic action of E1\ ↓ f(EB) and e′ be an atomic action of E2\ ↓ g(EB) such
that φ(e) = φ(e′) and α(e) = α(e′). Let ei be a freshly created event such that
φ(ei) = φ(e) and α(ei) = α(e). Then, C′ = (B ◦ {ei}, f ∪ {(ei, e)}, g ∪ {(ei, e

′)})
is a sequential extension of C.

This property shows that atomic actions can be easily paired as long as they
do not appear in the past of an already matched event. Hence, searching for a
paired event for an atomic action resumes to finding this event in the future of
already matched events.

Proposition 4. Let C = (B, f, g) be a common part of B1, B2, and let e be an
event of E1\ ↓ f(EB) and e′ be an event of E2\ ↓ g(EB) such that φ1(e) =
φ2(e′) and α1(e) = α2(e′). If e is a message sending, then there is an extension
C′ = (B′, f ′, g′) of C containing e and m(e) iff:

– ∃e′ ∈ E2\ ↓ g(EB) such that φ(e) = φ(e′) and α(e) = α(e′).
– ∃e′′ ∈ E2\ ↓ g(EB) such that φ(m(e)) = φ(e′′) and α(m(e)) = α(e′′).
– m(e′) = e′′

– P−1
f ′,g′(↓ (e′′)) ∩ Pf ′,g′ ↑ (e) = e

This proposition means that if we try to build a common part by exploring a
linearization of one of the operands and matching its events one after another,
then we cannot conclude immediately that a message sending will appear in a
common part, and we have to study its reception before concluding. Figure 8
shows a situation where events e1 and e′1 cannot be identified through an interface
when e2 and e′2 have already been matched.

X Y

X Y

ei
e′i

e1
e2

n

e′2
m(e′2)

e′1

X Y

m

m(e′1)
m(e2) m(e1)

m n

Fig. 8. Matching messages

These properties show how to explore the semi-lattice of sequential extensions,
following a linearization. However, we may still explore the complete search
space, and we need a way to discriminate common parts which extensions cannot
be among the best ones to avoid exploring the whole lattice. This can be done
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through the definition of a quality criterion to guide the exploration and abandon
hopeless interfaces. Of course, to fit the properties of extensions and their lattices,
quality should be a function of the size of a common parts.

Definition 6. The quality of a common part is Q(BI , f, g) = |BI |
min(|B1|,|B2|) .

With the definition of a quality criterion, the search for the best common
parts can be defined as the construction of the set CBest = arg max{Q(BI) |
∃(BI , f, g) common part of B1, B2}. The notion of quality is useful to help find-
ing the best common parts, but also to quantify the coherence of two bMSCs. A
pair of bMSCs which best common parts have a high quality can be considered
as very coherent.

Proposition 5. Let B1, B2 be two bMSCs, and let CBest be the best common
parts found w.r.t quality Then CBest ⊆ Cε.

Note however that this property only holds when the quality of an interface is
a function of its size. The main idea is to avoid searching the whole space of
possible common parts by pruning systematically parts of the lattice for which
the best reachable sequential extensions will have a lower quality than the best
quality already computed. And of course, we must take this decision without
exploring the abandoned part. We adopt a classical approach in operational
research: common parts are built sequentially and incrementally. The exploration
is guided by the quality that must be maximized on all maximal common parts,
and by an heuristic, that gives an upper approximation of the maximal quality
reachable from a common part. For a detailed survey on heuristics, interested
readers may consult [10].

The estimated quality EQ(C) = qs(C) + h(C) of an common part C is an
over approximation of the quality of any extension of C. It is defined as the sum
of two functions: a fixed value qs(C), the quality of C ( i.e. the number of events
matched for sure so far in C and in any extension of C), and an heuristic h(C)
that is an over approximation of the number of events that can still be matched
in an extension of C. At each step, we chose to extend the part that has the best
estimated quality.

The heuristic should satisfy two main principles :

– when a common part C is maximal, then h(I) = 0.
– For any extension C′ of a common part C, qs(C′) + h(C′) ≤ qs(C) + h(C)

The first requirement means that when no extension is possible for a common
part C, then the estimated quality which is also the best quality reachable should
be the actual quality of C. The second requirement means that the heuristic
should always provide an over-approximation of the quality that may be achieved
from a common part. This way, we can be sure that a path leading to a solution
is never forgotten due to underestimation of the reachable maximal quality.
Hence, the problem of automating the amalgamated sum is brought back to
an exploration of a subset of common parts such that if a common part C′ is
explored after a common part C, then EQ(C′) ≥ EQ(C).
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During the exploration we will study events one after another in a lineariza-
tion of the smallest operand. To keep track of the events explored so far, we just
need to recall an integer n. However, we cannot be sure that a message sending
will be eventually matched in the maximal extension reachable from the state of
our research. Hence, we will keep some events as matched for sure in an interface
BI , with associated morphisms f and g, and we will also memorize temporary
events in another potential interface B′

I , with associated morphisms f ′ and g′.
During the exploration, we will compute an estimated quality associated to an
exploration state rather that to a common part (in a state, some potential solu-
tions have already been ruled out). For a pair of bMSCS B1, B2, and in a given
state s = (n, BI , B

′
I , f, g, f ′, g′), we will have EQ(s) = qs(s) + h(s), where:

qs(n, BI , B
′
I , f, g, f ′, g′) =

|BI |
min(|B1|, |B2|)

,

and

h(n, BI , B
′
I , f, g, f ′, g′) =

|B′
I | +

∣∣∣∣∣∣
⎧⎨
⎩

e ∈ E1 \ ↓ (f(BI) ∪ f(B′
I)) |

∃e′ ∈ E2\ ↓ (g(BI) ∪ g′(B′
I)),

α(e) = α(e′) ∧ φ(e) = φ(e′)

⎫⎬
⎭

∣∣∣∣∣∣
min(|B1|, |B2|)

Here, function qs describes the ratio between the number of event matched in a
state and the size of bMSCs. Function h gives the ratio between events that may
still be matched in an exploration state and the size of bMSCs. Obviously, the
estimated quality of common part can only decrease with sequential extension.
Hence, if we have a maximal sequential extension C ∈ Cε, and an extension C′

such that Q(C) ≥ EQ(C′), then for any sequential extension C′′ of C′, Q(C) ≥
EQ(C′′). This means that we do not have to explore successors of some states,
as we already know (using the evaluation function) that the quality of their
sequential extensions will be lower than a local maxima that was previously
discovered. This also holds for exploration states.

From previous results, the exploration algorithm is rather straightforward: start
from the empty common part, and find its best extensions. The heuristic is used
to avoid exploring common parts for which we already know a better extension
of Cε. Extensions are computed as follows: events are studied one after another.
For each event, we can decide to match it or not, hence creating two exploration
paths. For atomic actions, events can be matched without the risk to create a cyclic
preorder in the sum B1 f +g B2. Whether a sending can be matched depends on
the future extensions, hence these matching are just potential. A reception must
be matched if the corresponding sending is matched and if it does not create a cycle
in the preorder relation of the amalgamated sum.

The complete exploration algorithms are described by algorithms 1 and 2 next
pages. Note that the algorithm does not exactly explore the set of extensions,
as when a message sending is under study, we have to guess whether it should
be matched or not (this guess is depicted by B′

I). Note also that the heuristic
allows to rule out automatically some parts of the search space. For the example
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of Figure 6, the linearization among events is e1.e2.!m.?m.e4.!n.?n.e3.!o.?o.e5,
and the set of extensions explored would be Cε, C1, C2, C4, C5, C6, C7, C8, C11,
C12, C13. The best common parts computed by the algorithm are C11 and C12.

5 Example

Let us show on a concrete example how amalgamated sum can be used to com-
pose services. Figure 9 presents an example of a cartography service built over
an SOA architecture. In this kind of architecture, a service is described as an
orchestration of basic services that are designed independently. The expected
behavior is thus a combination of the individual basic services behaviors.

BMSC UserServiceInteraction (USI) describes the behavior expected by an
user. BMSC ServiceDirectoryInteraction (SDI) describes the service from the
directory provider’s point of view: when an user asks for a map, the service calls
the directory provider to obtain the destination address. BMSC ServiceLocali−
zationInteraction (SLI) describes the relation between the service and the lo-
calization provider: when an user asks for a map and the destination address

Algorithm 1 BestCommonParts(B1, B2)
1: Chose a linearization w ∈ Lin(B1)
2: T = {(0, ∅, ∅, fε, gε, fε, gε)}
3: Best = {}
4: fbest = 0
5: while T 	= ∅ do
6: select t ∈ T such that ∀t′ ∈ T, qs(t′) + h(t′) ≤ qs(t) + h(t)
7: T = T \ {t}
8: Succ = Successors(t, w)
9: for all s ∈ Succ do

10: if s is a leaf then
11: if qs(s) ≥ fbest then
12: fbest = qs(s)
13: Best = {s′ ∈ Best ∪ {s} | qs(s′) ≥ fbest}
14: end if
15: else
16: T = T ∪ {s}
17: end if
18: end for
19: T = {t ∈ T |qs(t) + h(t) ≥ fbest}
20: end while
21: CBest = ∅
22: for all (n, EI , E′

I , f, g, f ′, g′) ∈ Best do
23: B = (EI , {(e, e′) | f(e) ≤1 f(e′)∧g(e) ≤2 g(e′)}, φ(EI), α(EI), α1 ◦f, φ1 ◦f, m1 ◦

f)
24: CBest = CBest ∪ {(B, f, g)}
25: end for
26: return (CBest)
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Algorithm 2. Successor
(
(n, I, I ′, f, g, f ′, g′), w

)
), where

– n number of events studied so far in the linearization of B1

– EI events of the interface computed so far
– E′

I events that may appear in the maximal interface reachable from current state
(essentially sending events).

– f : EI −→ E1 morphism from I to E1

– g : EI −→ E2 morphism from I to E2

– f ′ : E′
I −→ E1 potential morphism from I ′ to E1

– g′ : E′
I −→ E2 potential morphism from I ′ to E2

1: Succ = ∅; choose e1 = w[n+1]

2: if e1 is an atomic action then
3: Succ := Succ ∪ {(n + 1, EI , E

′
I , f, g, f ′, g′)} /* e1 may not be matched */

4: Match = {e2 ∈ E2\ ↓ (g(EI)∪g′(E′
I)) such that φ(e′) = φ(e2) and α(e2) = α(e′)

and ↑ (e1) ∩ P−1
f,g ↓ (Pf,g(e1)) = e1}

5: for all e2 ∈ Match do
6: Create a new event ei

7: Succ := Succ ∪ {n + 1, EI ∪ {ei}, E′
I , f ∪ {(ei, e1)}, g ∪ {(ei, e2)}, f ′, g′)}

8: end for
9: end if

10: if e1 is a message sending then
11: Succ := Succ ∪ {(n + 1, EI , E

′
I , f, g, f ′, g′)} /* e1 may not be matched */

12: Match = {e2 ∈ E2\ ↓ (g(EI)∪g′(E′
I)) such that φ(e′) = φ(e2) and α(e2) = α(e′)

and ↑ (e1) ∩ P−1
f,g ↓ (Pf,g(e1)) = e1}

13: for all e2 ∈ Match do
14: Create a new event ei

15: Succ := Succ ∪ {(n + 1, EI , E
′
I ∪ {ei}, f, g, f ′ ∪ {(ei, e1)}, g′ ∪ {(ei, e2)})}

16: end for
17: end if
18: if e1 is a reception then
19: if m−1(e1) 	∈ dom(f ′) then
20: /* The corresponding sending was not matched: e1 must not be matched */
21: Succ := Succ ∪ {(n + 1, EI , E

′
I , f, g, f ′, g′)}

22: else
23: ei = f ′−1

(m−1(e1))
24: /* ei represents the sending of message received in e1 in the interface */
25: e2 = m(g′(ei))
26: if pairing e1, e2 does not create cycles in the sum then
27: create a new event e′i

28: Succ := Succ ∪

n + 1, EI ∪ {e1, e2}
f ∪ {(ei, f ′(ei))} ∪ {(e′i, e1)},
g ∪ {(ei, g′(ei))} ∪ {(e′i, e2)},
f ′ \ {(ei, f ′(ei))},
g′ ∪ {(ei, g′(ei))}

29: else

30: Succ := Succ ∪ n + 1, EI , E
′
I , f, g, f ′ \ {(ei, f ′(ei))}, g′ ∪ {(ei, g′(ei))}

31: end if
32: end if
33: end if
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User Service
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bMSC UserServiceInteraction

bMSC ServiceLocalizationInteraction

Localization

address

getAddress
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Compute
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TO

Map
Compute

TO

Address
Search

Fig. 9. A complete example

has been found, the service asks the localization provider for the user’s location.
Finally, the last bMSC ServiceMapProviderInteraction (SMPI) describes the
service as seen by the Map Provider: when the destination address and the user
location are found, the service asks for a map.

All these bMSCs can be automatically composed to obtain a single behavior,
that refines the UserServiceInteraction. The bMSC provided in Figure 10 can be
computed as the amalgamated sum ((USI f1+g1 SDI) f2+g2 SLI) f3+g3 SMPI.
Note that in this example, the best common parts are unique, and hence do
not require interaction with an user. This may not always be the case, and the
integration order for bMSCs may also influence the final result.

6 Conclusion

We have proposed an algorithm to compute efficiently the common parts of two
bMSCs. This should facilitate the use of amalgamated sum to merge scenarios.
Several other merging operator were proposed in previous works. The operator
proposed in [6] merges two automata. The final result is an automaton that ac-
cepts the languages of both specifications. The operator proposed in [12] is very
similar, and starts from a set of timed automata. These automata are merged
as long as they agree on played sequences of events and on time constraints.
The operators defined in [6,12] can be seen as products of scenarios. The major
difference between a product and a sum is that as soon as both specifications
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Fig. 10. Automatic composition of bMSCs of Figure 9

disagree on which event should be fired, the product provides no way to consider
that other events of the specification are common. An amalgamated sum consid-
ers common events located at arbitrary places in a bMSC. The only requirement
for merging is that the respective order on common events must be the same
in both operands. Hence, two scenarios mays start with different sequences of
events, and eventually agree on the rest of the description. Furthermore, events
with identical label may not be considered as common if the result of a sum is
ill-formed. For the example of Figure 4, a product would provide a specification
that can play either M1 or M2. Amalgamated sum provides another interpreta-
tion that allows to consider events labeled by a or events labeled by b as common.
Indeed, the amalgamated sum and the product are of different nature: the former
considers merging of two different view of the same behavior, while the latter
merges different behaviors of a specification.

The common part construction method proposed in this paper is an heuristic
search. At the end of the algorithm, the result may not be unique. The final
choice of which interface to chose to compose the bMSCs can be left to the
end-user, or we may assume that the sum of two bMSCs produces a set of new
bMSCS and consider all results as valid. Another possible solution is to add
new quality criteria to discriminates solutions. However, we believe that in most
cases the number of possible choices should remain small. We have shown that
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in the worst case, the number of possible solutions that have to be searched is
really huge ( Σ

i∈1..K
li. m!

(m−i)! .
M !

(M−i)! ). The heuristic proposed does not guarantee

that the complete search space is not explored. We may hence still have an
exponential number of states to explore, and an exponential time complexity.
Note however that the exploration of the semi-lattice only needs to recall the
best solutions, and never memorizes at the same time a solution and one of its
ancestors. The space complexity of heuristic search should then be a function of
the width of the lattice (which vary with each example). Note also that as soon
as a large enough number of events are successfully paired, all solutions that
embed fewer events located at the end of composed scenarios have lower quality.
Hence, they will probably not be considered during exploration. Furthermore,
operational research algorithms have shown good average complexities. Tests
on small examples gave a quasi instantaneous answer. Of course, additional
case studies are needed, but after the first tests we think that the automatic
composition problem should be feasible in practice. A possible extension of this
work is to consider similar automation for HMSCs.
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Abstract. Existing notations for expressing time constraints in high-
level message sequence charts (HMSC) may cause ambiguity when used
with HMSC compositions such as alternative and iteration. To overcome
such limitation, we propose timed high-level message sequence charts
(THMSC) which include an unambiguous subset of time constraints
and timed edges as a new complementary notation. THMSC is effective
in accurately specifying popular requirement patterns such as watch-
dog timers and periodic tasks. We present the formal semantics and
demonstrate the effectiveness of THMSC using a real-world example that
formalizes timing requirements for Korea Multi-Purpose Satellite
(KOMPSAT) software.

1 Introduction

Message sequence charts (MSC) describe scenarios in terms of message exchanges
and local actions. In order to support specification of large and complex real-
time systems, MSC standard [10] includes HMSC and time constraints. However,
current notation for time constraints has limitations in that formal semantics
are not fully defined. In particular, when used with HMSC compositions such
as alternative or iteration, ambiguities arise. As time constraints for HMSC are
essential when specifying requirements for real-time systems such as periodic
tasks, watchdogs, and time triggered actions. Thus, ambiguity must be resolved
in order to avoid misunderstanding and enable automated analysis such as time
consistency [5,23].

In this paper, we propose timed high-level message sequence charts (or THMSC
in short) which includes unambiguous subset of time constraints and timed edges
as a new complementary notation for specifying timing requirements. The formal
semantics of THMSC is defined using labeled partially ordered set. To avoid am-
biguities which will be presented in section 2, the subset accepts constraints only
between strongly and consistently ordered pairs which we formalized.
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Timed edges are directed time constraints between two consecutive MSCs.
They can be safely harmonized with the proposed subset as well as HMSC com-
positions such as alternatives and loops. Moreover, timed edges permit us to
specify essential features of embedded systems such as watchdogs and periodic
tasks intuitively.

We applied THMSC to specify scenarios for timing requirements of KOMP-
SAT software. In this case study, our notation concisely and intuitively captured
various types of requirements. Current notations are only partially capable of
expressing such requirements and often result in complex scenarios.

This paper is organized as follows: Section 2 briefly reviews basics of MSC
and issues on time constraints for HMSC. Section 3 proposes THMSC, our main
contribution, and Section 4 demonstrates the usefulness and effectiveness of it
using KOMPSAT case study. The formal semantics of THMSC is given in Section
5 and further issues are discussed in Section 6. Section 7 presents related works,
and Section 8 concludes the paper.

2 Message Sequence Charts

In this section, we briefly explain the syntax and semantics of MSC and HMSC
with focus on time-related constructors (e.g. timers and time constraints) and
present some examples demonstrating ambiguity of time constraints for HMSC.
While the standard [10] provides both of visual and textural notations for each
description type, this paper uses the visual notation.

2.1 Message Sequence Charts

Figure 1(a) shows a simple MSC specification. Vertical lines (P1 and P2 ) and
horizontal arrows (m1 and m2 ) denote instances (or processes) of a system and
message exchanges among them, respectively. Rectangles stand for local actions
(lat). In each instance, events (message sending, receiving, and local actions)
occur sequentially from top to bottom. For example, P2 receives m1, performs
local action lat, and then sends m2. We will use ‘!m’ to denote the event sending
message m, and ‘?m’ for receiving.

The MSC standard includes timers and time constraints as notations to spec-
ify timing requirements. In Figure 1(a), the symbol denotes that a timer T
is set to 2 time units, and the corresponding timeout event is consumed at the
symbol after 2 time units.

The MSC standard introduced additional notations, time constraints, to spec-
ify a relative time between two events and an absolute time of an event. A time
constraint is labeled with an interval representing quantitative timing require-
ments. A label for an absolute time is prefixed by the symbol ‘@’. Figure 1(a)
shows that event !m1 must occur at one time unit after startup (@[1,1]), and it
takes up to six time units from !m1 to ?m2 of the process P1 ([0,6]). We use
the term ‘untimed MSC’ if an MSC contains neither timers nor time constraints;
otherwise, ‘timed MSC’ will be used.
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P1 P2

m1

@[1,1]

[0,6]

T,2

lat

T
m2

msc Scenario 1

(a) An example MSC

[0,6]

[1,1]

[2, ) 

!m1 ?m1

set(T)

lat

timeout(T)

!m2?m2

(b) Timed lposet for the MSC

Fig. 1. A message sequence chart and its timed lposet

Many papers defined formal semantics of untimed and timed MSC using pro-
cess algebra [19], automata [15], partial order [11,2,24], and petri-net [9]. This
paper uses timed lposet [24], a timing extension of labeled partially ordered set
(lposet) [20].

There are two classes of partial order among MSC events. That is, events of
an instance must occur in the downward order and every message sending event
must precede the corresponding receipt. The sequences of events accepted by an
untimed MSC must satisfy these partial orders, and they are representable using
a lposet [11]. Timed lposet extends lposet to have an additional timing function
T for time constraints. The timed lposet for an MSC is formally defined as
follows. In the definition, two special events � and ⊥ denote the start and the
end of a system, respectively.

Definition 1 (Timed lposet). Let L be a set of labels. Timed lposet for a MSC
is a tuple M = (V, <, λ, T ), where

– V is a set of events including two special events � and ⊥,
– <: V × V is a reflexive, anti-symmetric, and transitive order on V ,
– λ : V → L is a labeling function, and
– T : V × V → I is a timing function that maps two events to their relative

time interval, where I : 2R denotes all possible intervals.

Figure 1(b) depicts the partial order < and the timing function T for Figure
1(a) as solid lines and dashed lines, respectively. Note that the absolute time
constraint @[1, 1] is represented as the relative time constraint [1, 1] between �
and !m1. All ordered pairs in Figure 1(b) are assumed to have time constraints
[0,∞) if constraints are not depicted explicitly. An untimed MSC is a timed
MSC that all ordered pairs of events have time constraints [0,∞).

2.2 High-Level Message Sequence Charts

An HMSC is a tuple H = (Q = N ∪ P, E,R, C) which consists of nodes (N),
parallel frames (P ) and edges (E : Q×Q). Nodes refer to other MSCs (M), and
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edges imply execution flows among nodes. Relation R : Q → 2M maps nodes
to lposets for their reference MSCs and parallel frames to HMSCs. Two types
of special nodes, � and � ({�, �} ∈ N), represent the start and the end of
HMSC. They are defined as special timed lposets: � = (V = {�}, <= ∅, λ(�) =
start, T = ∅), and �= (V = {⊥}, <= ∅, λ(⊥) = end, T = ∅).

M1

M2 M3

M4 M5 

[13,15]

MSC H1

(a) An HMSC example

[2,5]

M6

M7

M8 M9 

[1,2]

MSC H2

(b) Ambiguous time constraints

Fig. 2. High-level message sequence charts and ambiguous time constraints

Figure 2(a) shows an HMSC. A split edge indicates alternatives (M2 and M3),
whereas a cycle expresses a repetition (M1 and M3). A parallel frame denotes
concurrent execution of contained HMSCs (M4 and M5). Execution of an HMSC
begins with the start node (�), and performs MSC indicated by nodes along
edges. The execution is finished when an end node (�) is encountered. Note
that execution may not be terminated if a chart includes a repetition. Formally,
a possible execution (or a run) of an HMSC H = (Q, E,R, C) is q1q2 · · · qn or
q1q2 · · · such that ∀i ∈ N : qi ∈ Q

∧
(qi, qi+1) ∈ E

∧
q1 = �

∧
qn =�. MSC

language is a set of all possible runs.
Time constraints are also specifiable in HMSC with the same notation for

MSC. The MSC standard gives example HMSCs containing time constraints
such as Figure 2(a). In this example, it takes [13, 15] time units from the start
of M1 to the end of M2. We use a notation Q+ = {q, q | q ∈ Q} to distinguish
the start and the end of nodes Q. Thus, time constraints C : Q+ ×Q+ → I maps
node pairs to intervals. For example, the constraint in Figure 2(a) is represented
as C(M1, M2) = [13, 15].

Unfortunately, the formal semantics of time constraints for HMSCs is not fully
defined in that time constraints mixed with HMSC compositions may result in
ambiguity. For example, M8 and M9 in Figure 2(b) can interleave in an arbi-
trary order. As a result, the time constraint [1, 2] in the parallel frame becomes
ambiguous, since two different interpretations are possible: a constraint from the
start of M8 to the end of M9 or from the end of M9 to the start of M8. This
ambiguity stems from that a time constraint, which is an undirected notation,
is used with two independent MSCs having undefined precedence.
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Besides, the time constraint [2, 5] in Figure 2(b) can be interpreted as various
meanings, although an explicit dependency exists between M6 and M7. Let
Mi denotes the i-th iteration of scenario M . Possible interpretations include a
constraint from the start of M63 to the end of M73 and one from the end of
M72 to the start of M63. Actually, for any i and j, every time constraint [2, 5]
between the start of M6i and the end of M7j is represented as the same form.
This ambiguity stems from that the current notation cannot distinguish iteration
numbers.

3 Timed High-Level Message Sequence Charts

To resolve the ambiguity of time constraints, we restrict the use of time con-
straints in HMSC to unambiguous cases (section 3.1) and propose a complemen-
tary notation timed edges, directed time constraints between two consecutive
MSCs (section 3.2). We termed this variant of HMSC as Timed High-Level Mes-
sage Sequence Charts, or THMSC in short.

3.1 A Safe Subset of Time Constraints

Before we restrict the use of time constraints, we present some preliminaries.
As we mentioned, an HMSC contains many runs. We define that two nodes
are ordered if there exists a run containing both nodes. Even if two nodes are
ordered, a unique prior node may not be determined: neither two nodes D2 nor
D3 in Figure 3(c) precedes the other, because both types of runs D1D2D3· · ·
and D4D3D2· · · are possible.

[2,8]

B1

B2 B3

B4

B5 B6

[1,3]

HMSC H3

(a) HMSC H3

[2,5]

C1

C2 C4

C3

[3,4]

HMSC H4

(b) HMSC H4

[2,7]

D1

D2 D4

D3

HMSC H5

(c) HMSC H5

Fig. 3. Ordered Nodes

Thus, we refine the notion of ordered nodes: two nodes are consistently ordered
if they are ordered and one node must precede the other; otherwise the nodes are
inconsistently ordered. In an HMSC H = (Q, E,R, C), let Πtype1, Πtype2 ⊆ L(H)
be two sets of possible runs that Πtype1 = � · · · p · · · q · · · (�) and Πtype2 =
� · · · q · · · p · · · (�). The notion of consistently ordered nodes is formally defined
as follows.
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Definition 2 (Consistently Ordered). Two nodes p, q ∈ Q are ordered if
(Πtype1 ∪ Πtype2) �= ∅. An ordered pair p and q is consistently ordered if
(Πtype1 = ∅ ∧ Πtype2 �= ∅)

∨
(Πtype1 �= ∅ ∧ Πtype2 = ∅).

On the other hand, ordered pairs can be categorized into two classes according
to whether a run contains only one of the two nodes. That is, two ordered nodes
are strongly ordered if both or none of them occur in all possible runs; otherwise
weakly ordered.

Definition 3 (Strongly Ordered). Two ordered nodes p and q are strongly
ordered if (Πtype1∪Πtype2∪Πtype3) = L(H), where Πtype3 = { π ∈ L(H) | π =
�q1q2 · · · (�)

∧
∀i ∈ N : qi �= p ∧ qi �= q }.

Note that the notions of consistently ordered and strongly ordered are indepen-
dent, and all combinations are possible. Figure 3 shows weakly and inconsistently
(B5 and B6 ), weakly and consistently (B1 and B2 ), strongly and inconsistently
(D2 and D3 ), and strongly and consistently (B1 and B4 ) ordered pairs.

THMSC accepts time constraints only between consistently and strongly or-
dered pairs, which are termed as well-formed time constraints. The reason is
that time constraints between unordered, weakly ordered, and inconsistently
ordered nodes are responsible for ambiguity. For example, the time constraint
[1, 3] between B2 and B3 in Figure 3(a) is a representative case prohibited by
THMSC, because B2 and B3 are unordered and mutually exclusive. Time con-
straint [2, 7] in Figure 3(c) is ambiguous as mentioned in section 2, since D2 and
D3 are inconsistently ordered.

Time constraint [3, 4] between C2 and C4 in Figure 3(b) is also disallowed
by THMSC because they are weakly ordered. We argue that prohibition of this
case is more recommendable for the following reasons: this type of constraints
may lead to a misunderstanding that the subsequent node must be executed to
fulfill a constraint. For example, C4 may not be executed if the loop of C2 and
C3 iterates infinitely.

We particularly regard C2 and C3 as a strongly and consistently ordered pair.
Obviously, they are strongly ordered, but the order is unclear because of the loop.
All appearing pairs of C2 and C3 are, however, consistently ordered, supposing
an infinite linearization of the loop. That is, C2i and C3i are consistently ordered
for all positive integer i. THMSC interprets the time constraint [2, 3] as a set of
constraints between C2 and C3 whose iteration number is identical.

3.2 Timed Edges in THMSC

The restriction of time constraints in THMSC is imperative to prevent the ambi-
guities. However, some timing requirements for the embedded systems are hard
to specify only with the restricted notations. Thus, we propose a complementary
new notation, timed edges, which can be used with the conventional composi-
tions of HMSC safely and to describe many timing requirements for real-time
systems intuitively.

The syntax of timed edges uses dashed arrows labeled with intervals, distin-
guished from normal edges of HMSC depicted as solid arrows. We introduce two
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[2,6]

M

M'

(a) es-edge

[2,6]

M

M'

(b) ss-edge

[2s,5s][1s,4s]

UpdateAccount

SMS EMAIL

(c) Parallel composition

[0s,5s) [5s,5s]

ID

PASSWORD CANCEL

[1s,2s]

(d) Alternative and loop

Fig. 4. Timed edges and THMSC Compositions

types of timed edges having different scopes: a typical dashed arrow denotes a
timing requirement between the end of the source node and the start of the tar-
get (Figure 4(a)), whereas a split-tailed dashed arrow (Figure 4(b)) represents
a requirement between the start of the source and the start of the target. We
termed the former es-edge and the latter ss-edge. An unlabeled timed edge is an
instantaneous timed edge with interval [0, 0] oppositely to an unlabeled normal
edges having interval [0,∞) implicitly.

Differently from time constraints, timed edges can be safely used with the
HMSC compositions, namely, parallel composition, alternative composition, and
iteration.

Parallel composition of HMSC is effective in describing requirements for in-
dependent tasks. For example, suppose an ATM system that sends a confirming
message by email [2, 5] seconds later (EMAIL in Figure 4(c)) and by SMS [1, 4]
seconds later (SMS ) if an account is updated (UpdateAccount). If sending email
and SMS are independent, a parallel composition containing two scenariosEMAIL
and SMS can be used as depicted in Figure 4(c); two timing requirements for SMS
and EMAIL, [1s, 4s] and [2s, 5s] are specified using two timed edges connected to
the start nodes. Because an unlabeled timed edge is instantaneous, the completion
of UpdateAccount immediately initiates the parallel frame triggering two indepen-
dent scenarios SMS and EMAIL with different timing requirements.

A requirement, “ATM gets an ID card (ID in Figure 4(d)) and then waits 5 sec-
onds until the user enters a password (PASSWORD). If the user does not enter any
password within 5 seconds, ATMcancels the process (CANCEL)”, can be described
with twoalternative scenariosPASSWORD andCANCELas shown inFigure 4(d).
In the example, the time constraints [0s, 5s) and [5s, 5s] are used as conditions to
decide which scenario will be selected. Note that nondeterminism may occurs if
intervals of two timed edges overlap and this can be analyzed statically.

In Figure 4(d), the timed edge [1s, 2s] represents a requirement “ID card
can be reentered [1s, 2s] seconds after the cancellation.” without any ambiguity.
The time constraint [5s, 5s], moreover, is assigned in the loop safely without
modification.
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4 Formalization of KOMPSAT Software Requirements
Specification

We use KOMPSAT software requirements specification [12] to demonstrate the
usability of THMSC. KOMPSAT was developed by Korean Aerospace Research
Institute with TRW Inc. We categorize 80 time related requirements of KOMP-
SAT into several groups according to their patterns. This section presents THM-
SCs for three representative types of requirements in different groups.

Before we proceed the demonstration in detail, we assume the followings to
describe patterns rigorously. An instantaneous action is represented as an event
using symbols e, e′, e1, e2, · · · , en. Tasks consumes some time to complete a goal
or sub-goal and τ, τ ′, τ1, τ2, · · · , τn are used for them. Symbols τs

i and τe
i are the

start and the end time of τi, respectively. A time function tm : E �→ T maps an
event to its occurrence time.

ECU_SOH

[250ms,250ms]

(a) Periodic task

ECU
wakeup

RDU
wakeup

[110s,110s]

(b) Time Triggered Task

Reset
Watchdog

[0ms,350ms]

(c) Watchdog

Fig. 5. KOMPSAT THMSC Scenarios

Periodic Tasks. Because KOMPSAT software is executed in a periodic manner,
there exist many requirements related to periodic tasks. We define periodic tasks
more rigorously as follows: time slots appear regularly with a given duration d,
and periodic tasks are executed within the time slots. Let τ ′ be a periodic task
and τ be a time slot with a duration d. Requirements for a periodic task have
the following pattern:

∀i : τs
i ≤ τ ′s

i ≤ τ ′e
i ≤ τe

i ∧ τs
i+1 = τe

i = τs
i + d

This constraint implies that a task can be executed at any moment within the
time slots. The following is a representative KOMPSAT requirement related to
periodic tasks.

The software shall:
a. read SOH info. from the ECU component via the 1553B bus.
b. read SOH info. from the ECU once every 250ms.
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To describe a periodic task, we specify both time slots and the task as scenarios:
the time slots can be regarded as a task that repeats periodically and has sub-
tasks. The parallel frame, depicted in Figure 5(a), describes the time slot and the
timed edge enforce the time slot to repeat every [250ms, 250ms]. This example
is hard to specify with the current notation because it cannot express a timing
requirement between two consecutive iterations as mentioned in section 2.

Time Triggered Tasks. The KOMPSAT software includes time triggered tasks
that start after a certain delay from different tasks. Let τ1 and τ2 be tasks and
δ ∈ I be a time interval. Task τ2 is a time triggered task of τ1 if they are
constrained by the following timing requirements.

τs
2 = τs

1 + δ ∨ τs
2 = τe

1 + δ

In the following requirements, the OBC component reads two wakeup-clue
messages from both components RDU and ECU, and then executes other tasks.
The OBC must wait 110 seconds without concerning the receipts of messages.

A. During the 110 second wait of step A, the OBC shall perform steps
1 and 2 below.

1. read the RDU processor wakeup clues message.
2. read the ECU processor wakeup clues message.

B. If both messages of step A were successfully read, proceed with step
below.· · ·

In Figure 5(b), we specified step A as a HMSC component (parallel frame) and
used timed edge [110s, 110s] to express that it waits 110 seconds from the its start.

Watchdog Timers. Watchdog timer is a popular component of real-time sys-
tems to check the normal functionality. KOMPSAT also has the following re-
quirement related to the watchdog timer.

During all phases of initialization, the software shall reset the watchdog
timer at least once every 350 msec.

The requirement means that time intervals between any two consecutive reset
signals do not exceed 350ms as the following constraint.

∀i.tm(reseti+1) ≤ tm(reseti) + 350ms

Figure 5(c) shows the corresponding THMSC, which is similar to the pattern of
periodic tasks. However, this scenario can reset the watchdog timer irregularly
unless it exceeds 350ms from the previous update.

5 Formal Semantics of THMSC

This section presents the formal semantics of THMSC. The semantics of a node
in THMSC were defined as a lposet in section 2. Because a run of a HMSC
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is a sequence of nodes, it can be defined as sequential compositions of lposets
for the involving nodes. Analogously, we define timed sequential composition for
timed edges in order to define a run of a THMSC. In this setting, language of a
THMSC is a set of these runs.

5.1 Sequential Composition

An edge of HMSC means that its source and target nodes are sequentially com-
posed. That is, execution of the source node must precede that of the target.
A sequential composition can be interpreted in two different ways according to
the enforced partial order [6]. A synchronous sequential composition enforces
that all instances of the source MSC have to be completely finished before the
system enters the next MSC. An asynchronous sequential composition allows
that an instance of the target MSC can start its execution only if all events
of the corresponding instance in the previous MSC are completed. In this case,
the other instances of the previous chart may not be finished. In Figure 6, ?a
should precede !b when we interpret the edge between M1 and M2 as the syn-
chronous manner, while !b can precede ?a in the asynchronous interpretation. In
this paper, all edges are assumed to be synchronous sequential compositions.

P1 P2

T,2
a

msc M1

P1 P2

@[0,20]

b

T

msc M2

(a) M1 and M2

!a

?a

set(T,2)

(b) Lposet of M1

[0,20]

!b
?b

timeout(T)

(c) Lposet of M2

[2, )

[0,20]

!a

?a

!b

?b

timeout(T)

set(T,2)

(d) M1 ◦ M2

Fig. 6. Sequential Composition with Timers

Let p = (Vp, <p, λp, Tp) and q = (Vq, <q, λq, Tq) be two lposets such that
Vp ∩ Vq = {�,⊥} and p ◦ q = (V, <, λ, T ) be the sequential composition of p
and q. Trivially, V and λ are Vp ∪Vq and λp ∪ λq respectively. Note that Vp ∪ Vq

preserves the uniqueness of � and ⊥, because they are common events.
Sequential composition introduces new ordered pairs <p◦q between the end of

p and the start of q, namely, <p◦q= {(a, b) | (a,⊥) ∈<p ∧(�, b) ∈<q}. Therefore,
the order becomes <=<p ∪ <q ∪ <p◦q.
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Time constraints of p and q are preserved by the sequential composition.
However, timers may introduce additional time constraints during the composi-
tion. The sequential composition of M1 and M2 in Figure 6 introduces a time
constraints [2,∞) owing to timer T . Thus, T of p ◦ q is defined as follows.

– T = Tp ∪ Tq ∪ Ttimer , where Ttimer = Tset/timeout ∪ Tset/reset ∪ Treset/timeout

such that
• Tset/timeout = {( (e, e′), [n,∞) ) | (e, e′) ∈ Vp ×Vq ∧ λ(e) = set(i, Ti, n)∧

λ(e′) = timeout(i, Ti)}
• Tset/reset = {( (e, e′), [0, n) ) | (e, e′) ∈ Vp × Vq ∧ λ(e) = set(i, Ti, n) ∧

λ(e′) = reset(i, Ti, n)}
• Treset/timeout ={( (e, e′), [n,∞) ) | (e, e′) ∈ Vp×Vq∧λ(e)=reset(i, Ti, n)∧

λ(e′) = timeout(i, Ti)}

In the previous definition, set(i, Ti, n) stands for a set-timer event that assigns
the time value n to the timer variable Ti of the instance i. We can interpret
reset(i, Ti, n) and timeout(i, Ti) in the same way. Figure 6(d) shows the resulting
partial orders and timing function of M1 ◦ M2.

5.2 Timed Sequential Composition

We formalize a timed edge as a timed sequential composition. Timed edges of
THMSC can refer only two points of a node, i.e. the start and the end of a node.
Rigorously, the start and end of a node are a set of the first and last events.
Note that an MSC has several start and end events because events in the MSC
are not totally ordered but partially ordered. For example, the starting events
of M1 in Figure 6(a) are !a and set(P2, T, 2).

The start and the end events of a MSC M = (V, <, λ, T ) are formally minimal
and maximal events with respect to the ordering relation <. We represent the
first events as pre(M) and the last events as post(M), respectively.

A timed edge is also a sequential composition except that it compels pairs
of two events to occur within a given duration. Such durations of timed edges
are also denotable as elements of timing function T of the composed lposets.

[1,3]

[2,6]

M1

M2

(a) THMSC1

[2, )

[1,3]

[1,3]
[2,6]

[0,20]

[2,6]

!a

?a

!b ?b

timeout(T)

set(T,2)

(b) Lposet of THMSC1

Fig. 7. THMSC with Time Constraints
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Figure 7(b) shows the partial order and the time constraints with respect to
THMSC1 in Figure 7(a). The time constraint [2, 6] is depicted as dashed arrows
between the starting events of M1 (!a and set(P2, T, 2)) and the starting event
of M2 (!b) in the sequentially composed lposet.

Timed sequential composition ◦i∈I is an extension of the sequential composi-
tion ◦ of HMSC considering a time interval i. Timed edges are formally defined
as the follows. In the definition, N is the set of event pairs for each type of
timed edges. Each element of the set is mapped to the time interval i given in
the timed edge.

Definition 4 (Timed Sequential Composition). Let p = (Vp, <p, λp, Tp)
and q = (Vq, <q, λq, Tq) be two timed lposets, and p ◦ q = (V, <, λ, T ) be the
sequentially composed lposet. Timed sequential compositions p ◦ss

i∈I
q and

p ◦es
i∈I

q are lposets (V, <, λ, T ′) such that

– T ′ = T ∪ {(r, i)|r ∈ N}, where
• N = {(a, b)|a ∈ pre(p) ∧ b ∈ pre(q)} for ss-edge (p ◦ss

i∈I
q).

• N = {(a, b)|a ∈ post(p) ∧ b ∈ pre(q)} for es-edge (p ◦es
i∈I

q).

5.3 Formal Semantics of THMSC

We extend HMSC to THMSC as follows. A THMSC TH is a tuple TH =
(Q, E,R, T , TE), where TE : E → {normal, es, ss} × I maps an edge into its
type (normal, es-, or ss-timed edge) and the others are identical to those of
HMSC. Let Π of a THMSC TH be the set of finite runs and Π∗ be the set of
infinite runs. The language of a THMSC TH , L(TH), is the union of Π and Π∗.

In THMSC, no time constraints can be specified among events belong to
different components of parallel frames. Thus, if sub-charts are two lposets
TH1 = (Q1, E1,R1, T1, T 1

E) and TH2 = (Q2, E2,R2, T2, T 2
E), a parallel com-

position of TH1 and TH2 becomes a lposet TH1||TH2 = (Q = Q1 ∪ Q2, E =
E1∪E2,R = R1∪R2, T = T1∪T2, TE = T 1

E ∪T 2
E ). Therefore, every node can be

regarded as a lposet, and a behavior corresponding to a run r = q0q1q2 · · · (qn)
of a THMSC TH = (Q, E,R, T , TE) becomes q0 ◦? q1 ◦? q2 ◦? · · · (◦?qn), where

qi ◦? qj =

⎧⎪⎨
⎪⎩

qi ◦ qj if TE((qi, qj)) = (normal, [0,∞))
qi ◦es

k qj if TE((qi, qj)) = (es, k)
qi ◦ss

k qj if TE((qi, qj)) = (ss, k)

5.4 Time Consistency of Finite Paths

To improve reliability of real-time systems, rigorous analysis is essential. It is also
a main usability of formal specification such as THMSC. Several studies have
focused on application of MSC to real-time system specification and analysis of
various aspects such as time consistency [23], performance evaluation [16], and
task scheduling based on schedulability analysis [21].
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Time consistency of THMSC is a question whether a system is implementable
performing scenarios without any violation of time constraints of THMSC. Anal-
ysis techniques of time consistency for MSC have been already proposed [5,17,23].
Time consistency of finite timed lposets is analyzable with the negative cost cy-
cle algorithms analogous to the previous techniques [5,2]. Since the semantics of
THMSC is a set of lposets if it is finite, this technique remains applicable. The
finite timed lposet is time consistent if the timing graph has no negative cost
cycle as proven in [5,2].

6 Discussion

6.1 Experimental Results

Table 1 shows the formalization result of KOMPSAT software. Among 61 time-
related requirements, 45 requirements could be specified with THMSC. However,
the remaining 16 requirements needed additional notations for timed exception
and time variables.

Table 1. Formalization results of KOMPSAT software

Type Example N# Notes

Definition a minor cycle is 0.250 seconds 6 Constants

Duration perform items A and B within 64msec 3 Time constraints

Time Triggered start X at the beginning of every minor frame 3 THMSC

Watchdog reset Watchdog timer at least once every 350ms 8 THMSC

Periodic Task distribute the current OBT once each second 25 THMSC

Exceptions If 24h elapse without a code being received ... 4 Timed exception

Clock variable Time tags for stored commands 12 Time variable

A timed exception is a preemptive time constraint. Currently, the violation
of time constraint is detected by time consistency. Suppose a case that an al-
ternative scenario describes exception handling to be executed if a scenario fails
completion within a duration. Such behavior requires the notion of preemption.
Time consistency alone is insufficient in that every run of consistent scenarios
must include all events of the involving scenarios.

On the other hand, KOMPSAT software has some requirements related to
real world time. Examples include scheduled tasks that need a way to transmit
time values with messages. While the MSC standard includes time marks to
save occurring time of an event, they are insufficient in that a time value being
transmitted may be for a future event.

6.2 Implementability of THMSC

Each implemented process must decide its behavior deterministically according
to the context of related scenarios. H. Ben-Abdallah and S. Leue presented the
notion of non-local choice [5]. The idea is that deadlock can be occurred if a
process cannot determine its next behavior deterministically only with locally
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available information. R. Alur, K. Etessami and M. Yannakakis formalized the
realizability problem which address a question whether a scenario can be im-
plemented in a distributed environment where local information is invisible to
others [1]. Since time constraints are not local information, a process may not
determine its behavior related to a time constraint.

init

choice1 choice2

(a) HMSC

P1 P2

[0,10s]
a

c

msc choice1

P1 P2

(10s,∞)
a

d

msc choice2

(b) deterministic case

P1 P2 P3

[0,10s]

a

b
c

msc choice1’

P1 P2 P3

(10s, ∞)

a

b
d

msc choice2’

(c) nondeterministic case

Fig. 8. Alternative Scenario

Figure 8(b) shows alternative scenarios. Difference between scenarios choice1
and choice2 is that process P2 responses differently according to the amount of
time between events sending and receiving message a. Although P2 receives the
same message a, it can determine the response, c or d, deterministically if the
sending time is transfered with the message. The reason is that P2 knows how
long it takes to transmit message a. Note that this case can be regarded as a
local choice if one distinguishes a message according to its sending time.

On the other hand, process P2 in Figure 8(c) cannot determine how it re-
sponses, since only process P3 can decide whether time to exchange message a
and b meets the time constraint [0, 10s] or not. That is, the time to exchange
two messages is determined when P3 receives message b. Process P2, however,
cannot get any information from P3.

Each process is implemented independently so that they do not share any
local informations without message exchanges. Thus, satisfaction of a time con-
straint should be shared through message exchanges among the related processes.
Without this, a process which does not know whether the constraint is satisfied
cannot behave deterministically.
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In [24], T. Zheng, F. Khendek, and L. Helouët also addressed a similar prob-
lem with time constraints between two independent events. The standard allows
time constraints to be used only between causally related events as “relative
timing uses pairs of events - preceding and subsequent events, where the preced-
ing event enables (directly or indirectly, i.e. via some intermediate events) the
subsequent event.” However, as demonstrated in Figure 8, some scenarios may
not be implementable even when the constraints are causally related.

6.3 Asynchronous Sequential Composition

Our semantics of THMSC is based on the synchronous sequential composition,
which is a special case of the asynchronous composition. Because the asyn-
chronous composition is more expressive, our semantics can be extended for
it. Two possible approaches are possible. First, one can define only the resulting
partial order asynchronously. Figure 9(a) shows the resulting lposet for asyn-
chronous composition of Figure 7(a). In Figure 9(a), partial order < is defined
as asynchronous composition, but timing function T has no difference with the
synchronous composition in Figure 7(b).

[2,6]

[2, )

[1,3]

[0,20]

[2,6]
!a

?a

!b

?b

timeout(T)

set(T,2)

[1,3]

(a) Asynchronous composition 1

[2,6]

[2, )

[1,3]

[0,20]

[2,6]
!a

?a

!b

?b

timeout(T)

set(T,2)

(b) Asynchronous composition 2

Fig. 9. Asynchronous timed sequential compositions of Figure 7(a)

Alternatively, one can define not only partial order < asynchronously, but
also timing function T differently as Figure 9(b) where time constraints and
timed edges are bound to each process locally. For example, timed edge [2, 6]
restricts the occurrence of events set(T, 2) and ?b instead of events set(T, 2) and
!b, because ?b is the first event of process P2 in M2.

7 Related Works

Time constraints for MSC were explored in different works. R. Alur, G. Holz-
mann, and D. Peled proposed the semantics of MSC using partially ordered set
and also presented timed semantics and time consistency problem [2]. H. Ben-
Abdallah and S. Leue addressed analysis issues on time constraints in MSC [5].
These approaches mainly focused on basic message sequence charts.
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P. Maigat and L. Helouët proposed partial order and (max,+) automaton
based semantics and analysis for timed MSC considering HMSC and composi-
tions [18]. P. Lucas proposed an approach using timed automata for timed MSC.
T. Zheng, F. Khendek, and L. Helouët used timed lposet for the formal seman-
tics [24]. This work also addressed various composition of MSCs including inline
expressions and high-level message sequence charts.

However, these works did not consider time constraint at the inter-scenario
level, although they presented cases that different scenarios are related by a
timer. Timing function for a timer is determined when an execution encounter
timer operations. Thus, constraint events can be bound dynamically. Thus, timer
does not introduce ambiguity such as time constraint in a loop.

On the other hand, M. Belachew and R. K. Shyamasundar proposed MSC+
[4], an extension of MSC for reactive systems. In the work, they generalized
HMSC with the notion of preemption. However, they did not conver timing
aspects related to the proposed features.

8 Conclusion

In this paper, we defined THMSC which includes a safe subset of HMSC and
timed edges as a new notation. The formalization of requirements for KOMPSAT
software demonstrated that THMSC is simple but effective in description of
many timing requirements for real-time systems. Especially, our notation was
useful to specify periodic tasks and time triggered tasks, which are popular
patten of timing requirements for real-time systems but hard to specify with the
current standard notations.

As future works, expressiveness of THMSC can be extended to include timed
exception. Timed exception are useful to describe scenarios for error handling
routines. We plan to rigorously define the implementability problem of time
constraints and to develop an algorithm to synthesize a design for implementable
THMSC. Because time constraints are not implementable entities, they must
transformed into timer operations that satisfy the original constraints. We expect
that this technique give a help to construct design for realtime systems more
conveniently and effectively.

Acknowledgment. The authors thank Ho Jung Bang for helpful comments on
the revision. We also thank anonymous reviewers for their valuable comments
and suggestions.
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Abstract. Scenario-driven requirement specifications are widely used to capture
and represent functional requirements. Use Case Maps are being standardized
as part of the User Requirements Notation (URN), the most recent addition to
ITU-T’s family of languages. UCM models focus on the description of func-
tional requirements and high-level designs at early stages of the development
process. How a system is executed over time and how this may affect its correct-
ness and performance, however, are introduced later in the development process
which may require considerable changes in design or even worse at the require-
ment analysis level. We believe that timing aspects must be integrated into the
system model, and this must be done already at an early stage of development.
This paper introduces an approach to describe timing constraints in Use Case
Maps specifications. We present a formal semantics of Timed UCM in terms of
Clocked Transition Systems (CTS). We illustrate our approach using an example
of a simplified wireless system.

Keywords: Use Case Maps, User Requirements Notation, timing aspects, perfor-
mance, timed UCM, Clocked Transition Systems.

1 Introduction

In the early stages of common development processes, system functionalities are de-
fined in terms of informal requirements and visual descriptions. Scenario-driven ap-
proaches, although often semiformal, are widely accepted because of their intuitive syn-
tax and semantics. These approaches focus mainly on the description of system func-
tionalities and little attention has been given so far to modeling time and performance
aspects. These timing and performance issues are often overlooked during the initial
system design. They are typically regarded as separate behaviour issues and therefore
described in separate models. In recent years there has been a growing interest in inte-
grating these aspects into a unified framework. This integration was mainly driven by
the fact that time, performance, and behaviors are tightly related in embedded real-time
systems, affecting directly both, functional and non-functional requirements.

Use Case Maps (UCMs) [15], a scenario based language that has gained
momentum in recent years within the software requirements and specification commu-
nity, has been successfully used in describing real-time systems, with a particular focus
on telecommunication system and services[3,4,7,19]. Use Case Maps (UCMs), part of
a new proposal to ITU-T for a User Requirements Notation (URN) [14], can be applied
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to capture and integrate functional requirements in terms of causal scenarios represent-
ing behavioral aspects at a higher level of abstraction, and to provide the stakeholders
with guidance and reasoning about the system-wide architecture and behavior. UCM is
not intended to replace UML, but rather complement it and help to bridge the modeling
gap between requirements (use cases) and design (system components and behavior).

UCM abstract syntax and static semantics are informally defined in document Z.152
[15]. In a recent work, we have proposed an operational semantics for the UCM lan-
guage based on Multi-Agent Abstract State Machines [10]. This ASM model provides
a concise semantics of UCM functional constructs and describes precisely the control
semantics. Another formalization attempt was presented in [5] where UCM constructs
are translated into the formal language LOTOS.

The original UCM notation presented in [15] does not describe semantics involv-
ing time, allowing for different interpretations of timing information, such as the time
needed for a transition or a responsibility to complete. To date, these issues remain
unexplored.

In this work, we extend the Use Case Maps notation with timing information. We
define a formal syntax and semantics of timed UCM models based on Clocked Tran-
sition Systems [18]. Clocked Transition Systems were introduced as a formal notation
to model the behavior of real-time systems. Its definition provides a simple way to an-
notate state-transitions graphs with timing constraints using finitely many real-valued
clock variables. The goal of our semantics is to support the execution and the analysis
of timed UCM specifications. This paper is part of the ongoing research towards using
UCM to describe, simulate, and verify real-time systems.

In an attempt to make this paper self-contained, we include some of the core back-
ground information relevant to this research. In the next section, we provide an overview
of the un-timed Use Case Maps notation along with an example that is used through-
out the paper. In Section 3, we present the syntax of timed UCM. Section 4 provides
the formal semantics of Timed UCM in terms of Clocked Transition Systems (CTS).
Section 5 presents the state of the art in describing timing semantics for modeling lan-
guages. Finally, Section 6 concludes with a brief discussion and future work.

2 Use Case Maps

The Use Case Maps notation [15] is a high level scenario based modeling technique,
used to specify functional requirements and high-level designs for various reactive and
distributed systems. A UCM model depicts scenarios as causal flows of responsibili-
ties (e.g. operation, action, task, function, etc.) that can be superimposed on underlying
structures of components. Components are generic and can represent software enti-
ties (objects, processes, databases, servers, etc.) as well as non-software entities (e.g.
actors or hardware). These relationships are said to be causal because they involve con-
currency, partial ordering of activities, and they link causes (e.g., preconditions and
triggering events) to effects (e.g. post-conditions and resulting events).With the UCM
notation, scenarios are expressed above the level of messages exchanged between com-
ponents, hence, they are not necessarily bound to a specific underlying structure (such
UCMs are called Unbound UCMs). One of the strengths of UCMs is their ability to
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Fig. 1. Root Map for the simplified Wireless System

integrate a number of scenarios together (in a map-like diagram), and to reason about
the architecture and its behavior over a set of scenarios.

Figure 1 illustrates some of the basic UCM concepts using a modified version of a
simplified wireless system that was initially introduced in [2]. The root map in Figure 1
describes a scenario where a mobile station initiates a call then proceeds with a handoff.
Filled circles represent start points, which capture preconditions and triggering events
(for instance the start of a communication StartCom). End points capturing resulting
events and post-conditions are illustrated with bars perpendicular to causal paths (for
instance EndCom). Paths can fork as alternatives (OR-fork) and may also join (OR-
join). Alternative branches can be guarded by conditions, shown between square brack-
ets. A condition needs to be true for the guarded path to be followed. In Figure 2, after
tuning to a new channel the signal quality might be better or worse. When it is better,
the user profile is updated (UpdProfile) and the scenario may continue. Otherwise, the
mobile station will tune to the previous channel(TunePrevChan). Concurrency and par-
tial ordering of responsibilities and events are supported in UCMs through the use of
AND-fork and AND-join. While an OR-join simply indicates overlapping of scenarios
that share common paths, an AND-join is a synchronization between two or more paths
which must all have been visited for the rest of the scenario to progress.

The diamond symbols are called stubs and are used as containers for sub-maps,
which are then referred to as plug-in maps. Any map can be a plug-in. The hand-off
UCM in Figure 2 is in fact a plug-in for stub Handoff. A hand-off check is triggered
(GoHO) to determine whether a new channel would result in a better communication
quality. Stubs have identifiable input and output segments (IN1, OUT1,. . . ) connected
to start points and end points in the plug-in. This binding relation is also made visual in
the plug-in, where the connections to the parent stub are shown between curly brackets.
Binding relationship ensure that paths flow from parent maps to sub-maps, and back
to parent maps. While static stubs contain only one plug-in map (e.g HandOff ), dy-
namic stubs (drawn with dashed diamonds e.g. Update) contain many plug-ins whose
selection can be determined at run time according to a selection policy local to the stub.

Note: hi in Figure 1 represent the hyper-edges connecting different UCM constructs
(see Section 3 for more details).

After having authenticated the call originator and updated its location record in the
same database (UpdateHLoc), the system needs also to update the visiting databases
if a mobile user enters or leaves a visiting area. This can be expressed by using two
alternative plug-ins for stub Update (Figure 3). The first plug-in is selected when the
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mobile user is in the same area as before, and the visiting profile is updated if this
area is not the home area. The second plug-in is selected when the mobile user has
entered a different area. Different activities (deletion and creation of visitor profiles are
required to handle the various situations where the old and new areas are the home area
or visiting areas (i.e. home→visiting, visiting→home, Visiting→other Visiting). After
the allocation of the necessary resources (GetRes), the call is answered and the two
parties can start communicating (Talking). Upon disconnection (Disconnect), allocated
resources are released (RelRes) and the communication is terminated.

Fig. 2. Plug-in for the HandOff Stub

(a) Plug-in Update same Area

(b) Plug-in Update different Area

Fig. 3. Plug-ins for the Update Dynamic Stub

The set of global variables for the UCM map are: OK ( call authenticated or not),
Area ( homeArea or VisArea), OldArea ( OldAreaHome or OldAreaVis), NewArea (
NewAreaHome or NewAreaVis) and Quality ( better or worse). Different values of
these variables are placed on the UCM guards to describe different scenarios’alternatives.
A more detailed discussion on the wireless system can be found in [2].

In order to provide a formal semantics to Timed Use Case Maps, we extend the
definition of Use Case Maps provided in [10] and [11] to include additional timing
information.

3 Syntax of Timed Use Case Maps

We define a UCM as follows:

Definition 1 (Use Case Maps). We assume that a timed UCM is denoted by a 8-tuple
(D, H, λ, C, GVar, Bc, S, Bs) where:
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– D is the UCM domain, composed of sets of typed elements. D= SP ∪ EP ∪ R ∪ AF
∪ AJ ∪ OF ∪ OJ ∪ Tm ∪ ST. Where SP is the set of Start Points, EP is the set of
End Points, R is the set of Responsibilities, AF is the set of AND-Fork, AJ is the set
of AND-Join, OF is the set of OR-Fork, OJ is the set of OR-Join, Tm is the set of
Timers, and ST is the set of Stubs.

– H is the set of hyper-edges connecting UCM constructs to each other
– λ is a transition relation defined as:λ=D×H×D
– C is the set of components (C = ∅ for unbound UCM)
– GVar is the set of global variables.
– Bc is a component binding relation defined as Bc =D×C. Bc specifies which ele-

ment of D is associated with which component of C. Bc is empty for unbound UCM.
– S is a plug-in binding relation defined as S = ST×RS×GVar.
– Bs is a stub binding relation and is defined as Bs =ST×{IN/OUT}×{SP/EP}.

Bs specifies how the start and end points of the plug-in map would be connected to
the path segments going into or out of the stub.

Before defining the timed syntax of different UCM constructs, we introduce the fol-
lowing definitions and assumptions:

– MClock(Master Clock). The passing of time is modelled by a master clock that
increases the global time and adjusts all local clocks accordingly. UCM constructs
may be labeled with a time constraint in the following form ’MClock= τ ’ repre-
senting a delay in their execution. In such a case, the construct should be enabled τ
time units after starting the UCM execution (i.e., MClock = 0).

– δ. Represents the master clock tick, which refers to the smallest time unit used to
track system evolution over time. Only a tick advances time and it also defines the
granularity of the master clock.

– Duration. Denotes the time it takes to carry out an execution of a responsibility.
In general, time is only consumed by responsibilities. The absence of a duration
value for a responsibility is expressed by the symbol ⊥. Control constructs, such
as OR-fork, are instantaneous (Duration = 0). However, time may elapse in any
UCM construct if its execution is delayed. For instance, if the master clock displays
’MClock=2δ’, The execution of a UCM construct labeled with a time constraint
’MClock= 4δ’ should be delayed by 2δ. Responsibility with undefined duration(i.e.,
Duration = ⊥) may cause a system deadlock. To avoid such situation, we assume
that a responsibility with undefined duration takes one clock tick to complete.

– Time may elapse in AND-Join constructs, where incoming flows should synchro-
nize (time passes by while waiting for all incoming hyperedges to be enabled).

– We assume that transitions are urgent and instantaneous: Transitions are processed
as soon as they are enabled allowing for a maximal progress. Therefore, transitions
can be considered as eager according to the definition of urgency introduced in [6].

Definition 2. [Timed UCM Constructs]

– Start Points are of the form SP(PreCondition-set, TriggerringEvent-set, SPLabel,
in, out, T) where the parameter PreConditions-set is a list of conditions that must
be satisfied in order for the scenario to be enabled (if no precondition is specified,
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then by default it is set to true). The parameter TriggeringEvents-set is a list that
provides the set of events that can initiate the scenario along a path. One event
is sufficient for triggering the scenario. The parameter SPLabel denotes the label
of the start point. A start point should not have an incoming edge except when
connected to an end point (called a waiting place). In such a situation, we use the
parameter in ∈ H to represent the connection with an end point. The parameter out
∈ H is the (unique) outgoing hyperedge. T is optional and it introduces a delay in
the start point triggering. ’T = τ ’ means that the start point is triggered at ’MClock
= τ ’.

– End Points are of the form EP(PostCondition-set, ResultingEvent-set, EPLabel, in,
out) where the parameter PostConditions-set is a list of conditions that must be sat-
isfied once the scenario is completed. The parameter ResultingEvent-set is a list that
gives the set of events that result from the completion of the scenario path. The pa-
rameter EPLabel denotes the label of the end point; the parameter in ∈ H is the
(unique) incoming hyperedge. End points have no target hyperedge except when
connected to a start point (i.e. a waiting place). In such a case, out ∈ H represents
such connection. End points cannot be delayed.

– Responsibilities are of the form Resp(in, Res, out, duration, T) where in ∈ H is the
incoming hyperedge, Res is the activity to be executed, and out ∈ H is the outgoing
hyperedge. A responsibility is connected to only one source hyperedge and to one
target hyperedge. ’duration’ is the time taken by the responsibility to complete its
execution. Similarly to the start point T is used to specify the delay before the start
of execution of the responsibility.

– OR-Forks are of the form OR-Fork(in, [Condi]i≤n, [outi]i≤n, T) where in denotes
the incoming hyperedge, [Condi]i≤n is a finite sequence of Boolean expressions,
and [outi]i≤n is a sequence of outgoing hyperedges. Parameter T denotes a possible
delay.

– OR-Joins are of the form OR-Join({ini}i≤n, out, T) where {ini}i≤n denotes the
incoming hyperedges and, out is the outgoing hyperedge. Parameter T denotes a
possible delay.

– AND-Forks are of the form AND-Fork(in, {outi}i≤n, T) where in denotes the in-
coming hyperedge, and {outi}i≤n is a sequence of outgoing hyperedges. Parameter
T denotes an optional delay.

– AND-Joins are of the form AND-Join({ini}i≤n, out, T) where {ini}i≤n denotes
the incoming hyperedges, and out is the outgoing hyperedge. Parameter T denotes
an optional delay.

– Timers are of the form Timer(in, TriggerringEvent-set, out, out timeout, T). The
synchronous timer, as defined in [15], is very similar to a basic OR-Fork rule with
only two disjoint branches. The parameter TriggeringEvents-set is the list that con-
tains the set of events that can trigger the continuation path (i.e. represented by out)
and the parameter out timeout ∈ H denotes the timeout path. For timers, T defines
the timer’s expiration time.

– Stubs have the form Stub({entryi}i≤n , {exitj}j≤m, isDynamic, [Condk]k≤l ,
[plugink]k≤l) where {entryi}i≤n and {exitj}j≤m denote respectively the set of
the stub entry and exit points. isDynamic indicates whether the stub is dynamic or
static. Dynamic stubs may contain multiple plug-ins, [plugink]k≤l whose selection
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can be determined at run-time according to a selection-policy specified by the se-
quence of Boolean expressions [Condk]k≤l.

We have added the modelling of timing as an orthogonal feature to the untimed
UCM syntax presented in [10]. The untimed syntax is restored simply by removing the
duration of responsibilities and the delay of execution of different constructs.

Example: The plugin of the HandOff stub of Figure 4 can be described as follows:
plug-in-HandOff=(D, H, λ, C, GVar, Bc, S, Bs).

e1

e5

e2 e7

e6

e3

e4

Fig. 4. Timed plug-in for stub HandOff

Where:

– D = {GoHO, TuneNewChan, OR-F-SigQual, TunePrevChan, UpdProfile, OR-J-
HO, Continue}

– H = {e1, e2, e3, e4, e5, e6, e7}
– λ = {(GoHO, e1, TuneNewChan),(TuneNewChan, e2, OR-f-SigQual),(OR-F-

SigQual, e3, TunePrevChan),(OR-F-SigQual, e4, UpdProfile),(TunePrevChan, e5,
OR-J-HO), (UpdProfile, e6, OR-J-HO),(OR-J-HO, e7, Continue)}

– GVar = {Quality}; C = ∅; Bc = ∅; S= ∅; Bs = ∅

Start point GoHO in Figure 4 should be triggered at ’MClock=10’. Responsibili-
ties TuneNewChan and TunePrevChan take 1 clock tick to complete, while UpdProfile
takes 2 clock ticks to complete. In this example, responsibilities should start immedi-
ately without delaying. They are considered as eager responsibilities according to the
definition of urgency introduced in [6].

Definition 3 (Access functions)

We define the following access functions:

1. Enables: D→ Hn. Given a UCM construct Constr ∈ D, enables provides the set of
hyper-edges that the construct enables after it completes its execution. For instance
enables(Resp(in, Res, out, duration, T))={out}. Outgoing hyper-edges may be as-
sociated with guard conditions (i.e., OR-fork and dynamic stubs). Function enables
evaluates the guards and chooses the outgoing hyperedge associated with the true
condition.

2. Triggered:→Dn. Gives the set of constructs that should be triggered at the present
time. For instance, in Figure 4 at time MClock=10, start point GoHO may be trig-
gered.

3. Incoming: D → Hn. Given a UCM construct, incoming provides the set of hyper-
edges directly leading to the construct. For instance, Incoming(OR-Join({ini}i≤n,
out, T))= {ini}i≤n.
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4. Target: H → D. Gives the subsequent construct directly connected to a given hy-
peredge.

5. Delay: D →N. Gives the delay associated with the UCM construct. For instance
Delay(Resp(in, Res, out, duration, T))= T.

6. Type: D→{SP, EP, AJ, AF, OJ, OF, Tm, ST} specifies the type of a UCM construct.

Note: For the sake of clarity, functions enables, target and delay could be applied to a
sequence of elements of the specified types and produce a sequence of elements of the
resulting types. For instance, target([h1,h2])=[d1,d2] where constructs d1 and d2 are
respectively the targets of hyperedges h1 and h2.

4 Formal Semantics of Timed Use Case Maps

Defining a solid UCM time semantics is an initial step towards defining a new version
of UCM that can be used for simulation and verification of timed models. Our ultimate
goal is to use UCM to build system models that combine functional, architectural and
temporal aspects of real-time systems, and then apply the resulting models to check the
correctness of these systems.

In this section, we define the formal semantics of timed UCM models in terms of
Clocked Transition Systems (CTS) [18]. The original CTS definition introduced in [18]
assumes many finitely real-valued clocks. However, models of real time have been clas-
sified in the literature as either dense time or discrete time depending on whether the
time of occurrence of an event is expressed as a real number or approximated by an
integer. In our proposed semantics, we consider a discrete time model to be divided into
clock ticks indexed by natural numbers. The elapsed time between the events is mea-
sured in terms of ticks of a global digital clock which is increased by one with every
single tick. This time model corresponds to the fictitious-clock model from [1] or the
digital-clock model from [12].

Formally a Clocked Transition System (CTS): Φ= (V, σinit, →) consists of:

– V = (H-taken, C-active, H-enabled, C-timers, T-trigger, MClock). Where:
• H-Taken represents the set of already traversed hyper-edges.
• C-active represents a sequence of UCM constructs currently executing.
• H-enabled represents a sequence of enabled hyper-edges (i.e. to be traversed

during the next transition) associated with the sequence of active constructs in
C-active.

• C-timers represents a sequence of timers (i.e., clocks) associated with the ac-
tive constructs C-active. C-timers monitor the remained executing time of ac-
tive constructs. C-timers is initialized with the duration of execution of every
construct in C-active.
Note: Timers in C-timers cannot go below zero.

• T-trigger represents the sequence of time constraints (or delays) associated
with the sequence of active constructs C-active. T-trigger values correspond
to the parameter T defined in the constructs’ signatures (see Definition 2).

• MClock is the Master Clock.



Timed Use Case Maps 107

– σinit: Represents the initial state. It is required that for the initial state MClock = 0.
– →: A finite set of transitions. Each transition is a function →⊆Σ(V)×Σ(V) map-

ping each state s∈Σ into a set of successors states s′∈Σ. Instead of writing (σ,σ′)
∈→, we write σ→σ′. Informally, states are assignments of values to variables,
called valuations. A valuation maps a variable to a value. A transition from one
state to another represents that some variables are assigned a different value, i.e.,
the valuation changes.

A run of Φ is an infinite sequence of valuations, π = σ0σ1. . . satisfying:

– Initiation : σ0 |= σinit

– Consecution: For each i=0,1,. . . the valuation σi+1 is a → successor of σi, i.e, σi→
σi+1.

A computation of Φ is a run satisfying:

– Time divergence: The sequence σ0(MClock) σ1(MClock) . . . grows beyond any
bound. That is, as i increases, the value of MClock at σi increases beyond any
bound.

We assume that the run-to completion principle applies to the execution of a con-
struct. The execution of a UCM construct cannot be interrupted until it is completed.

We distinguish two types of transition relations →:

1. Configuration Transitions: When a Configuration Transitions is taken, the system
configuration defined by the three sequences: H-taken, C-active and H-enabled is
updated to indicate which transition has just been taken.
(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)→(H-taken′, C-active′,
H-enabled′, C-timers′, T-trigger′, MClock′).
Where(H-taken′ �=H-taken)∧(C-active′ �=C-active)∧ (H-enabled′ �=H-enabled)∧(C-
timers′=C-timers-δ)∧ (T-trigger′ �=T-trigger) ∧ (MClock′=MClock+δ).
A configuration transition is executed upon the expiration of one or many of ele-
ments of C-timers (i.e., ∃ t ∈ C-timers such that, t=0) or when the delay associated
with a construct elapses (i.e., MClock≥T)).

2. Time Transitions: When a time transition is taken, then the only variables that
change are the global time MClock (which is incremented by a clock tick (δ)),
and the timers∈C-timers which are decremented by a clock tick (δ). However, the
system configuration remains unchanged.
(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)→(H-taken′, C-active′,
H-enabled′, C-timers′, T-trigger′, MClock′)
Where (H-taken′=H-taken)∧(C-active′=C-active)∧(H-enabled′=H-enabled) ∧ (T-
trigger′=T-trigger) ∧ (C-timers′=C-timer-δ)∧ (MClock′=MClock+δ)
Time transitions are executed when none of the timers is about to expire (i.e., ∀t
∈C-timers such that, t>0) and none of the constructs is about to start execution
(i.e., MClock < T).

In order to establish binding relationship between C-active, H-enabled and C-timers,
we define the following correspondance functions: Atimers:C-timers→C-active; and
Htimers: C-timers→H-enabled. For instance, let C-active=[a1, a2, a3];H-enabled=[h1,
h2, h3] and C-timers=[t1, t2, t3], Atimers(t1)=a1 and Htimers(t2)=h2.
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(a) Interleaving Semantics (b) True-Concurrency

Fig. 5. Concurrency Semantics

4.1 Concurrency Model and Time Evolution

The UCM construct AND-Fork allows many paths to execute concurrently. Considering
the assumption of run to completion introduced earlier, different scenarios may behave
either in:

– Interleaving Semantics. At any given time t, only one responsibility may be exe-
cuting.
Or

– True concurrency Semantics. At any given time t, more than one responsibility
may be executing.

We assume that in presence of UCM components, concurrent paths bounded to the
same component are sharing also the same component resources(for instance same
CPU). Therefore, these concurrent paths must behave in interleaving semantics. Fig-
ure 5(a) illustrates a UCM with two parallel paths bounded to one component. At any
time, no more than one responsibility should be active. However, the choice of which
responsibility goes first is non deterministic in this case. Adding timing constraints may
eliminate non determinism (i.e., if responsibilities a and b have different values in T-
trigger).

Parallel paths bounded to different components may behave either according to inter-
leaving semantics or to true concurrency semantics. Figure 5(b) illustrates two parallel
paths allocated to two different components. Responsibilities a and b can be executed
in true-concurrency model, since they are enabled at the same time and they don’t share
the same resources. However, the decision to go with either semantics depends on the
real mapping of components to different nodes on a network or to different CPUs, where
true concurrency can be achieved.

Note: We assume interleaving concurrency model for unbound UCMs.

In what follows we provide the detailed semantic rules for both concurrency models.
The top part of a rule is either a boolean condition that must be true or a computation
of a set/subset/variable. For the sake of simplicity, we consider only unfolded UCMs,
where all stubs in the root map were already replaced with their corresponding plug-in
maps.

4.2 Step Semantics for Interleaving Model

The choice of an interleaving semantics reduces the size of the CTS Variables. Indeed,
allowing only one construct to be executed in a given configuration, reduces the set of
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used variables. Therefore, sequences C-active and C-timers are reduced to one element
since only one variable per sequence is necessary to track the configuration evolution.

Initial State: σinit is defined with the following valuation: (H-taken=∅, C-active =∅,
H-enabled:=enables(triggered), C-timers=0, T-trigger=∅, MClock=0). Start points were
not included in C-active to avoid carrying more than one active construct.

Configuration Transition. Rules 1 and 2 illustrate the configuration transition. As
stated earlier in Section 3, time may elapse in AND-join constructs (waiting for all in-
coming hyperedges to be synchronized). To reflect this fact, we distinguish two cases:
a case where no extra delay is involved (Rule 1) and a case where there is an implicit
extra delay involved (Rule 2).

Rule 1. Configuration Transition: case type(C-active) �=AJ

(C-timers=0) ∧ type(C-active) �=AJ
h:={Select any e ∈ H-enabled, such that, delay(target(e)≤ MClock }

if h=∅ then { C-active′:=∅ ; H-taken′:=H-taken; H-enabled′:=H-enabled }
else {C-active′:=target(h)

H-enabled′:=H-enabled ∪ target(C-active′)-{h}
H-taken′:=H-taken ∪ {h}}

MClock′:=MClock + δ
C-timers′:=duration(C-active′)
T-trigger′:= delay(C-active′)

(H-taken, C-active, H-enabled, C-timers, T-trigger,MClock)→(H-taken′, C-active′,
H-enabled′,C-timers′,T-trigger′, MClock′)

Rule 2. Configuration Transition case type(C-active)=AJ

(C-timers=0) ∧ type(C-active)=AJ
Incoming(C-active) ⊆ H-taken, such that h:={any e∈H-enabled, such that,

delay(target(e)≤ MClock }}
Incoming(C-active) �⊆ H-taken, such that, h:={any e ∈ H-enabled, such that

e �∈enables(C-active)}
if h=∅ then { C-active′:=∅; H-taken′:=H-taken; H-enabled′:=H-enabled }

else {C-active′:= target(h)
H-enabled′:= H-enabled ∪ target(C-active′)-{h}

H-taken′:= H-taken ∪ {h}}
MClock′:= MClock + δ

C-timers′:= duration(C-active′)
T-trigger′:= delay(C-active′)

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)→(H-taken′, C-active′,
H-enabled′, C-timers′, T-trigger′, MClock′)

When multiple hyperedges are enabled at a transition, one hyperedge is chosen in a
non-deterministic way. Consequently, multiple runs (or timed traces) can be generated
from the same UCM scenario.
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Time Transition. Rule 3 shows the time transition.

Rule 3. Time Transition

(C-timers�=0)
MClock′:=MClock+δ ; C-timers′:=C-timers-δ

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)→(H-taken, C-active,
H-enabled, C-timers′, T-trigger, MClock′)

4.3 Step Semantics for True Concurrency Model

Contrary to the interleaving semantics, C-active,C-timers and T-trigger may have more
than one element in presence of concurrent paths. Indeed, C-active contains UCM con-
structs that are being executed concurrently. C-timers and T-trigger contain their re-
spective sequence of timers and sequence of time delays.

Initial State: σinit is defined with the following valuation: (H-taken=∅, C-active =∅,
H-enabled:=enables(triggered), C-timers=∅, T-trigger=∅, MClock=0).

Configuration Transition. Rules 4 and 5 show the configuration transition. As stated
in the previous section we devise a special rule for AND-join.

Rule 4. Configuration Transition: case ∀constr ∈ C-active, type(constr) �=AJ

let expire ⊆ C-timers such that expire �=∅ and ∀t∈expire, t=0
∃constr ∈ C-active such that delay(constr)≤ MClock

C-active′:= C-active - Atimers(expire) ∪ target(Htimers(expire))
H-enabled′:= H-enabled - Htimers(expire) ∪ enables(target(Htimers(expire)))

H-taken′:= H-taken ∪ Htimers(expire)
MClock′:= MClock + δ

∀t∈C-timers such that t>0, C-timers′:= (C-timers- δ)- expire ∪
duration(target(Htimers(expire)))

T-trigger′:= delay(C-active′)

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)→(H-taken′, C-active′,
H-enabled′, C-timers′, T-trigger′, MClock′)

Rule 5. Configuration Transition case ∃constr ∈ C-active, type(constr)=AJ

let expire ⊆ C-timers such that expire �=∅ and ∀t∈expire, t=0
let AJ-active⊆C-active / ∀ aj∈AJ-active, type(aj)=AJ and Incoming(aj) ⊆ H-taken

C-active′:= C-active - Atimers(expire) ∪ target(Htimers(expire))
∪target(enables(AJ-active))

H-enabled′:= H-enabled - Htimers(expire) ∪ enables(target(Htimers(expire)))∪
enables(target(enables(AJ-active)))

H-taken′:= H-taken ∪ Htimers(expire)∪ enables(AJ-active)
MClock′:= MClock + δ
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∀t∈C-timers such that t>0, C-timers′:= (C-timers- δ)- expire ∪
duration(target(Htimers(expire)))∪ duration(target(enables(AJ-active)))

T-trigger′:= delay(C-active′)

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)→(H-taken′, C-active′,
H-enabled′, C-timers′, T-trigger′, MClock′)

Time Transition. Rule 6 shows the time transition.

Rule 6. Time Transition

∀t∈C-timers / t�=0
MClock′:=MClock+δ ; C-timers′:=C-timers-δ

(H-taken, C-active, H-enabled, C-timers, T-trigger, MClock)→(H-taken, C-active,
H-enabled, C-timers′, T-trigger, MClock′)

Note that the runs in the true concurrency semantics model have less states compared
to the same runs in the interleaving semantics.

4.4 Applying Timed Semantics to the Simplified Wireless System

Due to space constraints, we limit ourselves to a partial run of the UCM introduced in
Figure 1.

H − taken C − active H − enables C − timers T − trigger MClock

{} [] [h1] [] [] 0
{h1} [ChkAuth] [h2] [1] [⊥] 1
{h1} [ChkAuth] [h2] [0] [⊥] 2

{h1, h2} [OR-F-Auth] [h3] [0] [⊥] 3
{h1, h2, h3} [LogReject] [h4] [2] [⊥] 4
{h1, h2, h3} [LogReject] [h4] [1] [⊥] 5
{h1, h2, h3} [LogReject] [h4] [0] [⊥] 6

{h1, h2, h3, h4} [Reject] [] [0] [⊥] 7

Fig. 6. Partial Execution

We have chosen a scenario, where the call originator is not authenticated, resulting
in a call rejection (i.e., OK=false). We assume also duration(ChkAuth)=1 while dura-
tion(LogReject)=2 and δ=1. Figure 6 illustrates the corresponding run.

To illustrate the concurrency model semantics, we present another partial run of
the UCM of Figure 1 starting from the AND-Fork construct. The scenario starts at
MClock=9 to allow the start point GoHO to be enabled at MClock=10. Variable Qual-
ity is initialized to better and responsibilities talking and UpdProfile have respectively
5 and 2 as durations. The duration of the remaining responsibilities is fixed to 1. Only
new elements of H-taken are shown in Figure 7.
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H − taken C − active H − enables C − timers T − trigger MClock

{h1..h8} [AF-Root] [h9,h11] [] [⊥] 9
{h9, h11} [GoHO, GetRes] [e1,h12] [0,1] [10,⊥] 10

{e1} [tuneNewChan,GetRes] [e2,h12] [1,0] [⊥,⊥] 11
{h12} [tuneNewChan,Answer] [e2,h13] [0,1] [⊥,⊥] 12
{e2} [OR-F-SigQual,Answer] [e4,h13] [0,0] [⊥,⊥] 13

{h13, e4} [UpdProfile,talking] [e6,h14] [2,5] [⊥,⊥] 14
{} [UpdProfile,talking] [e6,h14] [1,4] [⊥,⊥] 15
{} [UpdProfile,talking] [e6,h14] [0,3] [⊥,⊥] 16

{e6} [OR-J-HO,talking] [e7,h14] [0,2] [⊥,⊥] 17
{e7} [Continue,talking] [h10,h14] [0,1] [⊥,⊥] 18

{h10} [AJ-Root,talking] [h15,h14] [0,0] [⊥,⊥] 19
{h14} [AJ-Root] [h15] [0] [⊥] 20
{h15} [Disconnect] [h16] [1] [⊥] 21

{} [Disconnect] [h16] [0] [⊥] 22
{h16} [RelRes] [h17] [1] [⊥] 23

{} [RelRes] [h17] [0] [⊥] 24
{h17} [EndCom] [] [0] [⊥] 25

Fig. 7. Partial Execution: True Concurrency

5 Related Work

In this section, we discuss work related to the notion of time and its support in other
modeling languages. The research in this area has taken several directions. One direc-
tion consists on focusing on the enhancement of current modeling languages by adding
new constructs. UML Real-Time profile [20] uses this approach and adds features for
describing a variety of aspects used to model real-time systems, such as timing, re-
sources, performance, schedulability, etc. The current standard UML 2.0 [22] pays more
attention to time related aspects than the previous UML version [21]. Indeed, timers and
time related types, are present in UML 2.0. In the context of SDL [13], an ITU standard
formal description language described in Z.100 document, each action takes an indeter-
minate time to execute, and that a process stays an unfixed amount of time in a certain
state before taking the next fireable transition. This choice may be practical for code
generation, in the sense that actual implementations of the system conform to it. How-
ever, for simulation purposes, it might be unreasonable since we need to consider all
possible combinations of execution times, timer expirations and timers consumptions.
Existing simulation tools consider that actions take 0 time to execute allowing for a high
degree of determinism. Our timed UCM semantics, primarily used for simulation pur-
poses, provide a fixed duration to actions (may be relaxed in the future by providing only
an upper bound). A valid model of the interpretation of an SDL system is a complete
interleaving of different processes at the level of all actions that cannot be transformed
into a list of actions (possibly containing implicit states). While using this notion of
atomic actions, our proposed semantics consider both concurrency modes: interleaving
and true concurrency. The selection of either mode is based on architectural choices.
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Another research direction is the combination of an existing modeling notation with
another formal description technique to provide better handling of timing aspects. The
semantics presented in this paper is comparable to the one presented in [8] where Eshuis
presented a formal semantics of UML activity diagrams in terms of clocked transition
systems (CTS). However, no distinction between concurrency modes is discusses. The
authors in [17] translated UML models with timed properties (e.g. guarded timeouts,
transitions dependent on other transition times, etc.) into first-order temporal logic with
time support. Knapp et al. [16] used timed state machines for describing a model, and
collaboration diagrams with time constraints to describe system properties. In [9] the
authors used OCL 2.0 [23] to describe real-time constraints specifications.

6 Conclusion

In this paper, we have presented an extension to the Use Case Maps language that intro-
duces timing information for modeling real-time systems. We have provided a concise
formal operational semantics for timed UCM based on Clocked Transition Systems.
However, our approach does not consider checking the consistency of the time con-
straints in the model. In fact, when using true concurrency semantics, one has to ensure
that concurrent responsibilities are not updating the same global variables. This can be
achieved through a data flow analysis.

As part of our ongoing work, we are investigating the possible extension of our timed
UCM syntax and semantics by adding new timed UCM constructs such as asynchronous
timers, as well as offering the possibility to describe new time constraints.

As part of our future work, we will investigate the possible use of our timed seman-
tics to check the correctness and the consistency of timed UCM specifications.
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Abstract. We use SDL and UML 2.0 state machines for behavior mod-
eling of communication control software for telecommunication services.
To ensure consistent designs we want to identify when a signal sent is not
consumed and when a state machine waits indefinitely for a signal that
never arrives. One approach to ensure such consistency is to derive in-
terface contracts for each port from the properties of the state machine
and use the contracts to check consistency. In this paper we describe
how Calculus for Communicating Systems (CCS) [1] and stuck-free con-
formance [2] can be used as a formal fundament for this consistency
checking. Interface descriptions should be comprehensible without hav-
ing to learn process algebra. Therefore we introduce a graphical notation
for both the port contracts and for the interaction made possible across
the interface of two state machines.

1 Introduction

Our approach to incremental development and analysis is based on the concept
of interface projections [3]. Interface projections are used to derive behavioral
contracts for the ports from the state machines and their properties. In this pro-
cess we hide as much as possible of the internals of the state machine (timers,
save, choice and data) and the effects of communication on hidden interfaces.
By hiding we mean that we abstract from the details of the state machine im-
plementation in a way that preserves a description of the behavior that must be
exercised at each port of the state machine in order for every transition to have
a possibility of triggering. This description also states which signals the envi-
ronment must be ready to receive at the same port. To understand the concept
of hidden interfaces, consider a state machine with multiple ports allowing it
to communicate with multiple other state machines. If we consider the behav-
ioral properties of one port at a time, the remaining ports will be considered as
hidden interfaces. These hidden interfaces may or may not affect the behavioral
properties of the interface currently visible.

As an example, consider the state machines A, B, C and D in Fig. 1 (their
exact behavior is given in Sect. 4.1). Analyzing the interface that state machine
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Fig. 1. State machines, queues and interface contracts given per-port

B has towards C, that is BC, the communication between B and A occurring
across the interfaces BA and AB will be considered hidden. In this example we
want to check that the interaction between B and C is consistent by checking the
interface contracts BC and CB alone. The challenge is then to ensure that BC
and CB correctly encompass the effects of dependencies on the hidden interfaces
and the crossing of signals due to concurrent initiatives. A concurrent initiative
occurs when A and C concurrently can send a signal to B. In order to model
this situation the queue QB must be sufficiently long so that neither A nor C
blocks while trying to send a signal to B. Note that we use the port concept to
encompass SDL gates and that SDL channels may have delay. In the examples
given in this paper we assume that one queue is sufficient to correctly represent
the interleaving made possible by both the input queues and the channels.

To make these interface contracts we build on the results from [4]. We seek
to define an underlying formal basis for the existing results based on process
algebra. By doing so we hope to build confidence in the correctness of the exist-
ing consistency checking algorithms and enhance our understanding of interface
behavior. We use the concept of stuck-free CCS processes as presented in [2] that
formalizes the property that a process is stuck waiting for a message that never
arrives or that a process attempts to send a message that is never consumed.
To our knowledge stuck-free conformance has not been applied specifically to
analysis of SDL models or models using UML 2.0 “in the SDL tradition”.

The interface contracts we describe in this paper are currently derived from
existing state machine designs and may not be suitable for an early phase of the
collaboration design. For this we recommend an approach such as the CoSDL
[5] collaboration specification language. Later in the design process, contracts
with stuck-free semantics could possibly be derived from the collaborations, that
each state machine participating in the collaboration must adhere to.

We begin this paper by giving a short introduction to the concepts of role-
based service modeling in Sect. 2. Sect. 3 proceeds with a short introduction to
CCS and stuck-free conformance adapted to an SDL-like context. In Sect. 4 we
present our approach to translate SDL or (restricted) UML 2.0 state machine
models into process algebraic agent expressions that are used to create the in-
terface contracts. Sect. 5 presents a hypothetical service example and shows its
derived interface contracts. In Sect. 6 we introduce a graphical representation
for the interface contracts where CCS internal execution steps (τ) giving rise to
nondeterminism in the collaboration are depicted using the SDL signal none. By
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attempting to compose two such contracts we check if two state machines can
communicate without signal discarding and identify when a state machine may
wait indefinitely for a signal that never arrive.

2 Role-Based Service Modeling

Development of control logic for advanced telecom services puts challenges on the
developer in handling complex behavior and interactions. Making this process
as manageable as possible we apply the principles of role-based modeling [6]. In
this methodology we typically represent external entities in the environment of
the system as active objects (agents) inside the system (called environment mir-
roring). This simplifies comprehension of system structure. We want these active
objects, whose behavior is modeled using state machines to be as independent
as possible, having manageable dependencies thereby supporting incremental
development.

Service execution is typically performed by a collaboration among active ob-
jects or agents that are dynamically linked. “. . . the same system agent often
participates in several collaborations. Thus, the state machine of an agent needs
to be split off between these different collaborations, which leads us to the concept
of collaboration roles.” [7]. In an open service system, new service agents may
be added and removed from a system dynamically. It is therefore essential that
validation can be performed incrementally and to some extent dynamically. This
paper explores how stuck-free conformance can be used to analyze the interaction
between these collaboration roles.

Our system components are typically modeled as SDL composite states or
as UML 2.0 submachines. The examples given in this paper assume that these
principles are applied, allowing the validation to be restricted to structures of
state machines participating in a collaboration rather than the entire system.
To achieve such manageable dependencies between the state machines we must
adhere to certain design constraints. To be able to apply stuck-free conformance
to consistency checking of our components we require the following design con-
straint to be followed.

Design Constraint: For the parts of the state machine encompassed by the
interface contract we require that: Every signal sent must always eventually
be consumed and not be discarded. No transition can deterministically stay
untriggered.

3 CCS and Stuck-Free Conformance Applied to SDL

3.1 Short Introduction to CCS

CCS is a process algebra developed by Robin Milner [1]. It allows modeling of
interacting processes and reasoning about their behavior and structural compo-
sition using a small but expressive set of operators. Concurrency in standard
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CCS has interleaving semantics in that actions performed in parallel will inter-
leave in multiple ways. The act of communication between two agents is modeled
as a synchronous handshake where both the sender and receiver must be ready
to synchronize for the communication to take place. This means that CCS ab-
stracts away from the fact that there may be an “active” sender-part and a
“passive” receiver-part. However, in the application of CCS co-label is normally
used to denote sending actions and label (no “overline”) to denote receiving
actions. It is also common to denote sending by “ ! ” and reception by “ ? ”.

Communication between two processes can only occur on oppositely labeled
action pairs (label and co-label). If one process is ready to communicate on
action “a” then it may communicate with some other process that is ready to
synchronize on “ a ”. This is quite different from the semantics of SDL, but
we shall later see that despite this difference it allows us to analyze interesting
aspects of SDL models. Indeed, because of this difference we are able to precisely
capture interleaving and its effect on the interface contracts.

Behavior and structural composition is modeled in CCS using the operators
prefix “ . ”, choice “ + ”, parallel composition “ | ”and restriction “ \ ”. Using
the prefix operator an action can be bound to a process. P

∆= a.Q means that
process P is defined by a process that can perform an action a and continue by
the definition of process Q. P

∆= a.Q + b.R means that P may either perform
an a action and proceed as Q or perform a b action and proceed as R. The
operator “ | ” allows for composition of multiple parallel processes. Composition
P | Q enables communication between P and Q (and with their environment).
Restricting some actions to only allow internal communication (and not with the
environment of the processes) is achieved using the “ \ ” operator. For example,
processes (a.b.0 | a.c.0)\a can only proceed by first performing an internal syn-
chronization on a. This is called a τ -transition: (a.b.0 | a.c.0)\a τ−→ (b.0 | c.0)\a.

3.2 Applying the Theory to SDL State Machines and Port
Contracts

This section will be weak in formal definitions so the reader must refer to the
original papers for details. At the heart of stuck-free conformance theory [2] lies
the distinction between external and internal choice. This distinction allows us
to conceptually differentiate between the actions under control of a component
from the actions under control of the component’s environment. We want to make
this distinction in the port contracts outlined in the introduction. By doing so
we can express what acts of communication the component internally chooses to
perform with the consequence that the environment must be ready to handle the
effect of the choice. This internal choice may be dependent on communication
on hidden interfaces. The same contracts must also express what actions the
component allows the environment to decide.

This difference is expressed in CCS by τ -transitions. Given CCS processes P
and Q, then τ.P + τ.Q denotes internal choice. The difference between a.P + b.Q
and τ.a.P +τ.b.Q is fundamental. For a.P +b.Q it is the environment of the process
that chooses to synchronize on a or b whereas for τ.a.P + τ.b.Q the process makes
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an internal choice, not under control of the environment, to transition to either
a.P or b.Q. When composing two processes it is a possibility that the composite
system gets stuck on an action. Assume a composition P | Q having an action a
restricted in scope to only allow communication between P and Q. Informally,
the system P | Q can then get stuck on a if a is a residual action that one of the
processes wants to synchronize on but cannot do so because the connected process
never becomes ready to synchronize on an oppositely labeled action.

Consider Fig. 2. Starting with the two leftmost state machines A and B we
assume that they communicate using the signal set {c, d} and that A receives
the signals {a, b} on a distinct port from some other state machine. From the
perspective of B, A will receive {a, b} on a hidden interface and B will have no
control over whether A chooses to send c or d. B will regard this as an internal
choice of A and be ready to “handle” both eventualities.

The rightmost composition in Fig. 2 is different in that C may receive the
signals {e, f} on yet another distinct interface towards some other state machine.
In this case the reception of {e, f} will occur on an interface hidden to A. E.g. if
C receives e only c will allow it to make progress to state C3. We can see that
B in the leftmost composition will never discard signal c or d while C in the
rightmost composition, from the perspective of A, nondeterministically chooses
to consume or discard c and d.
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The transition graphs and agent definitions underneath the state machines do
not directly represent the behavior of the state machines. Instead they represent
the interface between the state machines detailing how the environment of a
specific port must behave in order for the composite system to behave according
to the design constraint in Sect. 2. We can immediately see that C, from the
perspective of A, is erroneous because it presents the reception of c or d as an
internal choice. A on the other hand, is allowed to present the sending of c or d
as an internal choice. This is in line with our understanding that when a state
machine is in a state where it can receive two different signals it will allow the
environment to choose which signal to send.

Performing a reachability analysis on the composition of the left and right
interface definitions in Fig. 2 we can see that the leftmost is stuck-free while the
rightmost is not. It is important to understand that we would detect that the
rightmost system is erroneous before we attempt to compose the contracts by
the fact that one of the contracts presents reception as an internal choice.

3.3 Stuck-Free Conformance

A number of process equivalences have been introduced for CCS. Yet, it is the
authors’ impression that the novel results of stuck-free conformance in [2] adds
another level of practical applicability, making CCS better suited to describe
interfaces and their properties. People familiar with CCS will know the theory
of observational equivalence (bisimulation) and the initially somewhat confus-
ing concept of the ability of an experimenter to “observe” certain τ -transitions.
Stuck-free conformance is a novel refinement relation making the comprehension
of τ -transitions easier from a practical point of view. With stuck-free confor-
mance we think of the τ -transitions in an interface description as information
conveying how a component may fail to promise to be able to synchronize on a
specific action. If this failure to promise to always be able to synchronize on a
specific action is unacceptable by the environment of the component, we know
that the composition is erroneous.

Consider an environment E, a contract C and an implementation I. Stuck-
free conformance ensures that if E | C is stuck-free and I ≤ C (I is a stuck-free
conformance preserving refinement of C) then E | I is also stuck-free. Stuck-free
conformance is proven to be a precongruence relation. That is I ≤ S implies
C[I] ≤ C[S], where C ranges over all CCS contexts. This property may be
utilized in multiple ways. First, we may be given some contract and the task
to make a conformant implementation that does not get stuck in a specific
environment. Secondly, we may derive a contract from some implementation we
have, using the contract to find out if our implementation is stuck-free in a given
environment. Or equally useful, we may have an implementation I1, add some
new functionality (e.g. communication on a new interface) and get I2. Having
made sure that the changes made to I1 preserves conformance, we can be sure
that I2 can replace I1.
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4 Making and Composing Interface Contracts

4.1 An Example with Concurrent Initiatives

The complexity in utilizing stuck-free conformance for consistency analysis of
SDL models appears to be mostly related to the queued communication in SDL
and the fact that the state machines may have multiple interfaces. In order to
incrementally analyze composition, we typically do not want to make an interface
contract for the complete state machine but rather for each of its interfaces. The
examples presented here will therefore mostly focus on conflicting initiatives and
signal interleaving. A short overview of how other SDL state machine constructs
can be mapped to process algebra is given in Sect. 4.4.

Assume an agent having one input queue concurrently receiving inputs from
two other agents. Then the receiving agent cannot know in which order the sig-
nals will arrive (that is, be ready for consumption from the input queue). We call
call this concurrent initiatives and it typically occur in systems where active ob-
jects communicate asynchronously. Here “Initiatives may be taken independently
and simultaneously and lead to conflicts that must be resolved.” [8].

Given a system designed to handle each opportunity for interleaving, its exe-
cution may still present nondeterminism on a specific interface. The reason being
that the environment of a specific port has no control over how its inputs inter-
leave with inputs received on the hidden interfaces. Seeking robust designs, we
typically want to handle this nondeterminism and that the interface contracts
reflect this uncertainty correctly. Interface contracts in the presence of queues
are hard to understand because the environment of a specific port is not only
the adjacent state machine but also the adjacent state machine’s input queue. In
this situation we must make sure that the interface contracts can capture how
the messages are allowed to interleave across the interface of one port when each
side concurrently can make an output.
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Consider the state machines in Fig. 3 being connected as defined in Fig. 1.
This example is given because it shows how concurrent initiatives are reflected
in the interface contracts. By taking the queues into consideration we are able
to model how inputs to the state machine may interleave and the situation that
signal a from B is en route to C while signal b from C is en route to B. Recall
from Fig. 1 that AB, BA, BC, CB, CD and DC are interface contracts and that
QB and QC are input queues. Seen from C the inputs from A to QB will occur
on a hidden interface. From the perspective of A and C the consumption B
performs from its input queue QB (that is the reading actions {b′, c′, f ′}) is
hidden (see Fig. 1). That is, A and C cannot interrupt B’s consumption from
its input queue.

4.2 Translating the State Machine Model to CCS

Recall that the interface contracts should detail how the environment of a specific
port must behave in order for the state machine owning the port to execute
according to the design constraint in Sect. 2. In this description a distinction is
made between the acts of communication the environment can decide and what
actions the component internally decides to perform. The internal choices may be
dependent on communication on a hidden interface. Interleaving of inputs may
result in internal nondeterminism in the component because the environment
of a port cannot control if its input signal is consumed before or after a signal
received on a hidden interface.

In order to identify this internal nondeterminism arising from the interleaving
we translate the state machines from our models into CCS agents that perform
reading actions on the input queues (and outputs to the input queues of other
state machines). Given the input signal set of the state machines and assuming
that we can determine the queue length required for nonblocking operation we
automatically generate CCS queue agents (QB and QC in Fig. 1). The follow-
ing approach is not very optimal nor universally applicable to include designs
where delaying channels adds additional complexity to the handling of interleav-
ing. This is our first attempt to understand and handle interleaving within the
framework of stuck-free conformance.

Let us consider how the state machine B in Fig. 3 can be translated into a
process algebraic representation that allows us to find the interface contract BC.
This representation reflects how B consumes from its input queue QB and either
triggers a transition or discards the inputs and provides outputs on interfaces
towards the queues of other state machines. “In SDL input signals which are not
expected at an SDL-state are discarded implicitly. In process algebra this has to
be made explicit.” [9]. We take the same approach in order to make a process
algebraic representation of the state machine where signal discarding can be
detected. The reason being that we want to prevent inputs to the state machine
that will be discarded. This is a result of the design constraint in Sect. 2.

In the examples given in this paper we have used Concurrency Work Bench
[10] to apply the CCS expansion law (Proposition 5, chapter 3.3 in [1]) to the
agent definitions. Fig. 4 shows the agent definitions given to CWB for state
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agent B0 = f’.‘a.B1 + b’.‘d.B2 + c’.DI;
agent B1 = f’.DI + b’.‘e.B5 + c’.B3;
agent B2 = f’.B4 + b’.DI + c’.DI;
agent DI = 0;
agent Always_f = ‘f.Always_f;

agent BC = ((B0 | QB)\{f’,b’,c’} | Always_f)\{f};

agent QB = f.QB_f + b.QB_b + c.QB_c;
agent QB_f = ‘f’.QB + f.QB_ff + b.QB_fb + c.QB_fc;
agent QB_b = ‘b’.QB + f.QB_bf + b.QB_bb + c.QB_bc;
agent QB_c = ‘c’.QB + f.QB_cf + b.QB_cb + c.QB_cc;

agent B3 = 0;
agent B4 = 0;
agent B5 = 0;
agent QB_ff = ‘f’.QB_f;
agent QB_bf = ‘b’.QB_f;
agent QB_cf = ‘c’.QB_f;
agent QB_fb = ‘f’.QB_b;
agent QB_bb = ‘b’.QB_b;
agent QB_cb = ‘c’.QB_b;
agent QB_fc = ‘f’.QB_c;
agent QB_bc = ‘b’.QB_c;
agent QB_cc = ‘c’.QB_c;

Fig. 4. CWB representation of state machine and queue

machine B and its input queue. Here {b′, c′, f ′} represent reading operations on
the queue while {a, d, e} represent sending actions. Notice that a sending action
in the textual format in Fig. 4 is denoted ‘a. What we want to identify is the
queue states allowed if the state machine shall execute without discarding inputs
and have a possibility of reaching every exit point. The allowed interleaving
of input signals is found by identifying the queue contents and the input and
output operations allowed on the queue in each of these states. It is important
to understand that by modeling a queue of length two, we do not restrict one
of the actual queues in the execution platform to have the exact same length.
We only model the queue length required to ensure nonblocking operation of the
state machines assuming that the execution platform has equal or longer queues.
This simplification cannot in general be made for any SDL system but appears
to be sound for the design of our service roles.

For the interface contract BC the collaboration between B and A is considered
hidden. In fact, when making the contract BC we may not know the exact
implementation of A. The only thing we know about A is that it should have
the properties allowing the A-B collaboration to be stuck-free. Indeed, before any
A implementation is allowed to be connected to B we assume that the AB and
BA contracts are validated to be stuck-free. In order to ensure that B does not
get stuck waiting for a message that never arrives from A without knowing the
specific implementation of A, we use the agent Always f . This agent is always
ready to provide inputs to QB from the input signal set of the BA interface
(here that is {f}). Some of these input signals will be discarded by B. However,
the resulting “undesirable” buffer states can be identified.

Our initial approach to identify the “allowed” states of the input queue is to
recursively apply the CCS expansion law to the state machine representation and
its queue. The resulting transition graph will represent both desirable and unde-
sirable queue states. By traversing this transition graph we are able to identify the
inputs that will be discarded. Having identified the inputs that will be discarded,
we can remove the input from the agent representing desired interface behavior.
Applying the expansion law to an agent representing all possible queue states also
has the effect that the resulting transition graph has inputs that could not have
been made because they can only occur after specific outputs. By looking at Fig. 3
we can see that input of c can only occur after an output of a. This property can be
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determined by examining state machine B alone. These illegal inputs must also be
removed from the transition graph in order to find desired queue states. We also
assume that the input queues are initially empty and that no more inputs will be
accepted once an exit point is reached.

For large input sets and long queue lengths we obviously get a large state space
and are therefore looking for more efficient algorithms. We are working on a more
efficient algorithm that directly from the SDL or UML model can determine the
allowed contents of the input queue when the state machines execute according
to the design constraint in Sect. 2.

4.3 Reducing and Composing the Interface Agents

Fig. 5 shows a visualization in (1) and (2) of the result from having identified
what states the input queues can have as input signals interleave. The directed
transition graphs (1) and (2) have nodes representing different combinations of
state machine and queue states. For each node the contents of the input queue
is given in the brackets. The edges identify both internal (τ) and external visible
actions. The τ -actions represents communication on the hidden interfaces and
non-discarded consumption from the queue. For each τ -transition where the
action pair responsible for the synchronization can be identified we write τa,
where a identifies the action pair. The visible actions are the actions defined by
the input and output set of the interface.

The transition graphs (1) and (2) contain more information than needed to
describe the difference between actions under the control of the component from
actions under the control of the environment. A reduction preserving stuck-free
conformance preserves this information and allows (1) to be reduced to (3) and
(2) to be reduced to (4). In the transition graphs (3) and (4) we have abstracted
away a lot of details about the reading actions on the queues and communication
on the hidden interfaces. We are left with two transition graphs explicitly showing
input-output interleaving and the component’s internal nondeterminism from
the perspective of the port’s environment.

To check that B and C can collaborate according to the design constraint in
Sect. 2, we compose the contracts BC0 (3) and CB0 (4) and internalize all their ac-
tions before applying the expansion law to get the transition graph (5). This tran-
sition graph represents the stuck-free collaboration across the BC-CB interface.

Some may desire an informal argument why the remaining τ -transition in
(3) and (4) cannot be reduced. Considered from CB, BC will never refuse to
receive an input b. However, due to uncontrollable interleaving of input b with
input f , BC may nondeterministically refuse to give the output d. In BC we can
also see how input b interleaves with output a. Informally we can think of the
remaining τ -transitions as information that cannot be reduced. This information
is needed to convey how the component may fail to promise to always be able
to synchronize on a specific action.

The same approach can be applied to find BA and CD. The BA contract
has a single f transition while CD has a single g transition. Because we re-
quire the state machine to be stuck-free on each of its interfaces there will be
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Fig. 5. Reduction of interface agents and creation of a collaboration agent

dependencies between the collaborations on the different ports. E.g. B cannot
be stuck-free towards C if it is stuck towards A. This allow us to analyze de-
pendencies among the collaborations on multiple ports and how multiple state
machines have interdependencies in order for the design constraint in Sect. 2 to
be fulfilled.

4.4 SDL State Machine Constructs

So far we have focused on concurrent initiatives and signal interleaving consid-
ering only a very limited subset of SDL. In this section we will therefore give a
short overview on how we intend to utilize already existing results in order to
make interface contracts for state machines with save, choice and timers.

In order to make a contract for a state machine that can save signals on the
input port we require that every signal saved is always eventually consumed and
not discarded. The requirements for when an SDL state machine with save can be
transformed into an equivalent FSM without save is given a formal treatment in
[11]. Fig. 6 (a) from [11] shows an example where this transformation is straight
forward.
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In the interface contracts we intend to abstract data-values and consider de-
cisions as nondeterministic. This is the same approach as taken in [9] (Fig. 6
(b) and (d)). However, when there are dependencies between choices and the
environment can observe that there are dependencies between certain outputs
we cannot consider a choice as nondeterministic. This will need further inves-
tigation. By modeling a choice as nondeterministic the intent is to force the
design of the connected state machine not make assumptions about which signal
it will receive based on signal parameters in messages it sends.

Timers are treated similar to communication on hidden interfaces. They rep-
resent hidden signals not under control of the environment of a specific port. We
intend to take the same approach to handling models with timers as presented in
[12]: “The timers can be abstracted away after a simple check that each set timer
has a “timer expired” event associated with it. [. . . ] We abstract from the value of
the timer, replacing it by a CWB action tau which can be non-deterministically
chosen as an input.” From our perspective a timer is only different from an input
signal from a state machine connected to a hidden interface in that a timeout
signal from a stopped timer is removed from the input queue.

5 Application of the Theory to an Example Service

Let us apply the theory to a simplified telecom service design. Fig. 7 shows four
collaborating agents where the state machine design is given for two of them. This
is similar to the design provided in [13]. The sensible usage scenarios for the two
agents have been identified and marked by the dashed lines. We can see that they
may provide messaging functionality, calling functionality or both features. We
do allow an initiator -agent without or not utilizing its messaging functionality
to be connected to a contacted -agent having messaging functionality. What we
do not want is incompatible agents being connected. The result may be that one
agent sends a message the other agent cannot consume or that two agents wait
indefinitely for the other to send a message. In this situation we would want
to differentiate between the features of the agents because the different features
have different dependencies across the interfaces of the agent.
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Assume that user A is capable of requesting the messaging functionality but not
the calling functionality of initiator. Then initiator would not request the calling
functionality of contacted. In order to identify such dependencies we make mul-
tiple contracts for the interfaces, one for each feature or sensible usage scenario.
Fig. 8 shows the different interface contracts for each port of the example service in
Fig. 7. Each of these transition graphs represent behavior that must be stuck-free
executable on a specific interface in order for the parts of the state machine encom-
passed by the contract to behave according to the design constraint in Sect. 2.

Start by considering the contract initiator-contacted produced for the messag-
ing feature. Our informal understanding of this contract should be as follows. If
only the messaging feature is invoked in initiator then the environment of the
initiator-contacted port should be able to receive and consume a msg signal. There-
after the contract allows for the input of signals received or rej msg to be an ex-
ternal choice. By external choice we do not mean that the environment is free to
never send the signal rej msg. Indeed, if the environment is not capable of sending
rej msg we would want to detect this inconsistency. Instead the contract conveys
the information that the environment may nondeterministically choose between
sending received and rej msg. Indeed, contract contacted-initiator has this selec-
tion as an internal choice and the composition of these two contracts is stuck-free.

The reader may wonder whether the τ -transitions in the contracts are some-
what redundant because sending actions will always be internal choices and
receiving actions will always be external choices. This observation is correct for
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Fig. 8. Multiple interface contracts for the different features

collaborations without inconsistencies and interleaving. However, because we
want to detect design errors by analyzing the contracts and correctly capture
interleaving we cannot ignore the τ -transitions. Indeed, they will allow us to
detect errors. If a contract presents the reception of two signals as an internal
choice we know that the component owning the contract is erroneous. No en-
vironment of such a port will be able to provide inputs without the receiving
component nondeterministically discarding the input signals. The only exception
to this rule would be if the environment has a second path via another port to
the component presenting the “receiving nondeterminism”. If the environment
via the second path either could observe or control the outcome of the internal
choice it would be able to give input signals on a port having “receiving non-
determinism” and still avoid nondeterministic discarding. This is called second
order errors in [4].

6 A Graphical Notation for Contracts and Their
Composition

The transition graphs in Fig. 8 depicting CCS agents may not be very visually ap-
pealing to a designer accustomed to SDL or UML. Also, we cannot require that de-
velopers must comprehend the concept of τ -transitions in CCS in order to analyze
the composition of state machines. We are therefore experimenting with a more
SDL-like notation for such interface contracts where the nondeterminism captured
by τ in CCS is depicted using the nondeterministic SDL signal none. The designer
should be able to check that two adversary contracts are stuck-free by mere vi-
sual inspection. In order to present an example of the graphical notation depicting
signal interleaving we have chosen the two contracts in the center of Fig. 8.
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In Fig. 9 we have repeated the contracts initiator-contacted and contacted-
initiator for the calling feature as (1) and (2). To check that the two contracts
are stuck-free we can perform a reachability analysis resulting in the transition
graph (3). This transition graph represents the stuck-free collaboration across the
contacted-initiator interface. In making an SDL-like notation for the interface
agents we have to take into account that the interleaving explicit in CCS is “in-
visible” in SDL. The reason is that when we consider an SDL state machine we
imagine that it has a sufficiently large input buffer such that inputs provided to the
state machine are not blocked. In the transition graphs (1) and (2) we can see that
the interleaving of disc A and disc B is explicit (marked by dashed transitions).
In the SDL-like notation (4) and (5) this interleaving is implicit and presented in
a more intuitive way. For example, in (4) it is implicit that the state machine can
receive and consume disc B despite the sending of disc A. Also, keep in mind that
because the communication is queued, a reception symbol in the contract does not
represent immediate consumption but rather an “ability to consume”.

In Fig. 10 we have given a more comprehensible representation of the collabo-
ration agent. This is made by matching the sending and receiving actions of the
two interface contracts. Because a consistent communication across an interface
involves a sending action and a receiving action we have represented the syn-
chronization as a combined sending and receiving symbol. If we cannot match
a sending action to a corresponding receiving action it indicates that a signal
may be discarded. On the other hand, if a receiving action cannot be matched
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to a sending action it means that the state machine may wait for an input signal
that never arrives. The reception of signal none in the collaboration agent means
that some internal steps are taken by one of the agents (e.g. communication on
a hidden interface) resulting in nondeterministic branching in the collaboration
agent. Keep in mind that communication on a hidden interface does not always
gives rise to nondeterminism in the collaboration (such communication is hid-
den in the interface contract). Also, take notice of the fact that the entry and
exit points in this specific collaboration agent represent pairs of entry and exit
points in the interface agents. The choice symbol with any as argument is used
to attempt to capture the nondeterministic aspect of signal interleaving. This
usage of a choice symbol does not have SDL semantics, it is merely added as
“syntactic sugar” to make comprehension of the collaboration easier.

7 Related Work

Interface contracts as presented in this paper is related to the work on using
collaborations for compositional service specification of reactive systems. For
SDL systems we can use the CoSDL [5] language to specify the all possible
interaction scenarios between collaborating agents. How UML 2.0 collaborations
and collaboration uses can model feature composition for the type of systems
addressed by this paper is explored in [14].
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8 Further Work

We will continue work on the application of stuck-free conformance and es-
pecially how it practically can be used to guide refinement. We are typically
interested in how we can add communication on a new interface without affect-
ing the existing interfaces and dependencies. Another challenge is to examine
existing approaches to collaboration design and how interface contracts based
on stuck-free semantics can be derived from the collaboration specifications.

A number of algorithms and optimizations are required for the ideas presented
to be applicable in practice. First we need more efficient ways to identify signal
interleaving and the queues effect on the interface contracts. Secondly we need
an algorithm that can determine if a contract presents reception nondeterminism
(e.g. the reception of two signals is an internal choice). To identify such nonde-
terminism in input queued agents we may be able build on the results in [15].
This includes testing for input-confluence in the interface contracts to ensure
that an output never precludes an input action (but merely allow various inter-
leavings of input and output to occur). We also want to use the identification
of stuckness in the collaboration to automatically pinpoint the inconsistency in
the model.

9 Conclusions

In this paper we have given an outline of how stuck-free conformance for CCS can
be applied to consistency analysis of service components modeled as SDL-like
state machines. Specifically we have considered state machines allowing input
interleaving on multiple interfaces where the interface contracts are given on a
per-port basis. By explicitly modeling the queues we are able to incrementally
analyze dependencies between pairs of state machines. Further we have given a
graphical representation of these interface contracts using an SDL-like notation.
Ideas have been presented on how to deal with multiple features and how theses
features or usage scenarios may have dependencies across several interfaces. A
graphical representation of interface collaboration agents based on the transition
graph resulting from applying the CCS expansion law to two adversary interface
contracts has been presented.
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Abstract. To produce accurate performance assessments of SDL mod-
els by simulation, all resources influencing system performance must be
simulated together. Existing performance simulators usually support the
simulation of a single resource only. One way to achieve support of mul-
tiple resources is the extension of existing simulators. In this paper, we
present a different solution that can be realized with a relatively small
effort. The core of the solution is a simulator interconnection framework
for the performance simulation of SDL models. With this framework,
existing simulators for different resources can be integrated. We show
how the framework has been used to integrate ns-2 (network simula-
tion), Avrora (hardware simulation), and a simulator extension for SDL
models. Several performance simulations of a Mica network scenario pro-
vide evidence for the additional accuracy achieved with the integrated
simulator.

1 Introduction

Model-Driven Development (MDD) approaches [1] enable developers to specify
systems on an abstract level, thus facilitating reuse of models across multiple
platforms. While this is very convenient for the developer, there is a considerable
risk that a model does not behave as expected on the target platform due to
resource constraints. To reduce this risk, we propose performance simulations
that predict the performance of the system in execution to identify these resource
constraints.

In this paper, we focus on communication systems, and on SDL, the Specifi-
cation and Description Language [2], as design language for specifying models of
communication systems. Our objective is to identify resource bottlenecks that
may affect the behavior of SDL models when deployed on real hardware, and to
also identify resource bottlenecks that interact and, resulting from this, affect
each other. To capture all of these effects during simulations, it is necessary to
simulate all relevant resources together, and with a sufficient level of accuracy.

While simulators for certain individual resources are available, it turns out
that there is a lack of simulators that are able of simulating several resources
together. Especially with increasing system complexity and increasing hetero-
geneity, a need for the joint simulation of several different aspects becomes
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apparent. This is especially true when simulating mobile ad-hoc networks, which
are affected by various resource bottlenecks, e.g. processing power, bandwidth
and energy.

For the accurate simulation of resource bottlenecks that affect each other, it is
essential to simulate them together, i.e. in one simulation scenario. Our solution
to this problem is a framework for simulator interconnection supporting the per-
formance simulation of SDL systems. By interconnecting specialized simulators,
it is possible to create system simulators out of simulator components with a
well defined interface.

In this paper, we present such a framework, its instantiation and results of per-
formance simulations thus providing evidence for the feasibility of our approach.

The remaining part of this paper is structured as follows: Section 2 gives an
overview of related work on performance simulations, with a focus on of SDL sys-
tems. Section 3 presents our simulator interconnection framework. Section 4 de-
scribes PartsSim, an instantiation of the simulator interconnection framework.
Section 5 presents simulation results that prove the feasibility of our approach.
Section 6 draws conclusions and points out areas of future research.

2 Related Work

There is a large body of work on performance simulation in general. In this
section, we first survey a selection of simulators for single resources and SDL
models. Then, we summarize previous work on simulator interconnection.

2.1 Performance Simulators for Single Resources

To assess the performance of communication networks, the following specialized
simulators are available:

• The network simulator ns-2 [7] is a widely known simulator in the network
research community. Its widespread use and the large number of available
components originate from the fact that this simulator is publicly available.
The simulation model of ns-2 is an event-driven model, networks are simu-
lated on packet level. Being a specialized network simulator, ns-2 accurately
simulates protocols, MAC layers, mobility, and propagation models.

• Like ns-2, GloMoSim [10] uses an event-driven model and simulates a net-
work on packet level. All simulated application functionality must be im-
plemented within the GloMoSim library. There is no support for resource
bottlenecks other than the network.

• While using a simulation model similar to ns-2 and GloMoSim, OpNet [9]
uses a slightly different methodology for specifying the behavior of simu-
lated nodes. OpNet specifies the network nodes as a set of hierarchical state
machines that make up the simulated behavior of a network node.

GloMoSim, ns-2 and OpNet have the same basic characteristics: They concen-
trate on the accurate performance simulation of networks by simulating network
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propagation, MAC layers, protocols, and the timing of the network. They also
have the same main shortcomings. First, the application and protocol behav-
ior must be implemented directly in the simulator by using a simulator specific
methodology. Second, they simulate network resources only; i.e. they do not take
other resources such as a node’s processing power or energy resources into ac-
count. Having to implement the simulated code in the simulator is problematic
because code must be developed twice, once for simulation and once for the tar-
get platform. This lowers the credibility of simulations significantly, because the
two code bases may contain different defects and shortcomings.

Another class of specialized simulators is the class of platform simulators. Plat-
form simulators provide an accurate model of a given hardware platform. They
support loading the same binaries that are loaded on real hardware. To assess the
performance of a program running on this platform, the binaries are executed un-
der the control of the simulator, yielding an accurate timing behavior.

• The atemu simulator [11] simulates the Mica platform, which is based on the
AVR microcontroller. Its goal is to simulate the complete hardware including
radio transmissions. However, only one type of radio transmitter is imple-
mented, and there are no studies concerning the accuracy of the simulation
of radio transmissions available. Also, there is only one radio propagation
model, and no mobility models are implemented.

• Avrora [5] is a Java-based simulator of the Mica2 platform. Its main concerns
are simulation of a program’s behavior including the accurate simulation of
a node’s hardware and timing as well as the energy consumption by network
nodes. The simulation of radio transmissions is implemented, but compared
to specialized network simulators its simulation capabilities are severely lim-
ited, especially with respect to the simulation of different communication
hardware, propagation and mobility models.

Both platform simulators have significant shortcomings: They are able to sim-
ulate one or a small set of platforms accurately, but the simulation of radio
transmissions lacks the accuracy and flexibility of specialized network simulators.
Additionally, to extend them with new simulated hardware, like new transceiver
chips, an enormous effort is necessary, because the complete hardware interface
of the added hardware must be recreated. Since hardware is normally accessed
through a hardware abstraction layer, a more abstract interface would be suffi-
cient for most simulations, especially for the simulation of models.

2.2 Performance Simulators for SDL Models

The following simulators are capable of simulating the performance of SDL models:

• ns+SDL, the network simulator for SDL systems [3], is an extension to the
ns-2 [7] that added the capability of loading SDL models as nodes into the
simulated network. Thus, it is possible to directly simulate SDL models with-
out having to re-implement them as ns-2 classes in C++. It has been shown
that simulation accuracy is increased compared to a pure SDL simulation,
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because of the added network simulator. However, ns+SDL is not able to
simulate accurate processor timing or memory constraints.

• The University of Aachen developed a tool environment for performance sim-
ulations of SDL systems [8]. SDL systems are compiled to C++ code which
can then be linked with the performance evaluation class library SPEETCL.
SPEETCL contains components that support basic network simulations like
several error models, traffic generators and components for random number
generation.

• Telelogic TAU [13] supports only rudimentary performance simulations. Al-
though closed SDL systems can be simulated by using SDL modeled media,
the simulation of advanced network and platform resources like network band-
width, radio propagation or processor and interrupt timing is not supported.

2.3 Performance Simulator Interconnection

Simulator interconnection has been addressed in the following work:

• The Fraunhofer Institute for integrated circuits has created a simulator cou-
pling infrastructure for a different application domain that aims at connect-
ing User Mode Linux systems and VHDL simulations to the ns-2 [4]. This
simulator facilitates using external behavior in ns-2 simulations, by loading
native applications into a User Mode Linux process, and by using ModelSim
or Mathlab/Simulink for simulating the application behavior.

• UMLSim [12] is a simulator that uses User Mode Linux to load simulated
applications. One User Mode Linux is loaded per simulated node. Being
restricted to TCP/IP, and due to the huge memory footprint that every
User Mode Linux task requires, this approach is not feasible for simulations
with a large number of simulated nodes. An interesting fact is, although
the User Mode Linux kernels are not connected to a network simulator,
that this approach theoretically enables a stepwise execution of applications
within the simulator, so processor timing could be simulated to some extent.
However, only the simulation of Linux nodes, with the simulated platform
being the same as the host platform, is possible with UMLSim.

3 The Interconnection Framework

The accurate performance simulation of a specific scenario requires the joint
simulation of different resources. To solve this problem, we have decided to cre-
ate a simulator interconnection framework for the systematic interconnection of
specialized, event-driven simulator components. Each simulation component is
simulating one specific aspect of the simulated system. By turning already exist-
ing simulators that concentrate on specific aspects of the simulated system into
simulation components, it is possible to reuse these simulators. Our framework
ensures that the simulation components interoperate in a defined manner and
produce credible simulation results.
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3.1 Resource Bottlenecks and Further Influencing Factors

For the simulation of distributed embedded systems, we identified the following
resource bottlenecks that may affect the outcome of simulations:

• Peripheral devices
All peripheral devices may affect the timing of the simulated model - the
most evident resource bottlenecks are communication links and networks.
The impact of simulated communication networks as a resource bottleneck to
simulations has already been addressed in [3]. In that paper, we have shown
the increased simulation accuracy when a network simulator was added to
the simulation of a SDL model.

• Hardware platform
Another constraint that becomes evident is the hardware platform, the sim-
ulated SDL system and its runtime environment will run on. Depending on
the resource requirements of the simulated system, memory constraints or
the hardware timing will affect system performance.

• Energy
Mobile nodes are usually affected by energy constraints as they are bat-
tery powered. Especially when communication layers that adapt to energy
resources are developed, an accurate simulation of spent and remaining en-
ergy is important.

Furthermore, there are additional influencing factors that also affect the out-
come of performance simulations significantly:

• Network topology and mobility
The network topology affects network connectivity. The position of every
node determines the number of hops that is required for reaching a node,
and whether the node can be used as a router or not.

• Simulated SDL model
The objective of simulation is to evaluate the performance of a given SDL
model (and probably its runtime environment) in a particular resource sit-
uation. This can be done either with the goal of creating an SDL model
that provides good performance with a given hardware, or with the goal of
finding hardware that performs well with a given SDL model. For creating
credible simulation results, it is important to execute the same SDL models
in simulations that will be executed in real systems after deployment. So
re-implementing systems into network simulators is out of question.

3.2 Framework Structure

For the development of the simulator interconnection framework, it is crucial
to have all simulators working together in the same simulation scenario. Since
resource bottlenecks like hardware timing and the network may interact with
each other, it is important to capture these interactions also in simulations.
This requires the specialized simulators to interact with each other during the
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Fig. 1. Structure of the simulator interconnection framework

simulation. The interfaces between the simulator components are language in-
dependent and message based, so that simulators, which are implemented in
different programming languages or that are running on different machines can
also be integrated.

The simulator interconnection framework consists of three groups of logical
components that serve different purposes: Simulating resource bottlenecks, sim-
ulating other influencing factors, and core simulator components. The structure
of the framework is shown in Fig. 1. The following core components are part of
the framework:

• Simulation control
The control component is the core component of the simulation that creates
all other simulator components and triggers their simulation steps.

• Event scheduler
The scheduler component ensures that all simulation events are being pro-
cessed in the correct order.

• Network node
The network node component represents one simulated node, consisting of
platform resources and SDL system. Different nodes can have different re-
sources, so it is possible to have multiple specialized simulators, for example
for peripheral devices (i.e. the simulated network) or for the hardware plat-
form in one simulation scenario that are connected to the node component.

All specification components can be realized by different simulators, however,
it is also possible to have multiple components realized by the same simulator.
The realizations should be independent of each other and should only communi-
cate by using the defined interfaces between the specification components. This
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Fig. 2. Artifacts that make up a simulation component

is important in scenarios where multiple specialized simulators should be used
together to simulate multiple node types with different hardware.

3.3 Integration of Simulator Components

Simulator components consist of the simulator itself and on a well defined in-
terface. To convert a specialized simulator into a simulation component, the
following main steps are performed: First, the scheduler of the specialized simu-
lator must be replaced to use an external scheduler. Second, an interface to the
simulation framework must be developed. Therefore, the relevant well defined
interfaces must be implemented. Fig. 2 shows the artifacts that make up a sim-
ulation component, whose are, besides the specialized simulator, the interface of
the component and a replacement of the components scheduler.

A set of Message Sequence Charts (MSC’s) and High-Level Message Sequence
Charts (HMSC’s) define one interface. The use of HMSC’s enables us to specify
interface semantics while MSC’s specify always one message scenario.

Interfaces of the simulation framework can be grouped into specialized in-
terfaces and generic interfaces. Specialized interfaces are only relevant for one
type of simulation components while generic interfaces are relevant for all simu-
lation components. Specialized interfaces exist currently for simulation compo-
nents that simulate energy supplies, network platforms and hardware platforms.
Generic interfaces handle the scheduling of simulation timers, the simulation
time and generic acknowledgments and error messages.

Integrating specialized hardware into the simulation. Depending on the
type of simulated hardware, the predefined interfaces have to be enriched by
specialized coordination messages. For example, while the NodeDevice TX and
NodeDevice RX messages are sufficient for a basic network interface, the integra-
tion of specialized transceiver chip simulator components requires a more sophis-
ticated interface. This can be achieved by using the generic messages as frames
for more specific messages, as illustrated in Fig. 3. Here, the specific message for
a transceiver chip is encapsulated in a generic NodeDevice TX message. This
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Fig. 3. Hardware specific message encapsulated in a basic message

way, simulation components that simulate complex hardware like transceiver
chips can be integrated into the simulation framework without having to extend
the framework API with device-specific messages.
Integrating specialized hardware. In Section 2, we have addressed two
different methodologies for integrating simulated applications into simulations.
Either this is done by re-implementing the simulated application into the simu-
lators, or by loading binaries for the real platform into the simulator. To fulfill
our requirements, we require a hybrid approach.

On the one hand, it is imperative that the simulated SDL models are not
changed for simulations, so the interface between the models and the hardware
must not be changed to support simulations. This also holds for the simulation
of specific hardware, whose messages are framed within the defined generic mes-
sages between simulators. On the other hand, it is not feasible to simulate the
complete interface for every simulated piece of hardware. Doing so would lead
to an enormous effort when new platform simulators are developed or when new
hardware devices should be integrated into the simulation, because the interface
to a simulated hardware has to be provided by the platform simulator that ex-
ecutes the model while the implementation of the simulated hardware would be
provided by a specialized simulator. This would result in unwanted dependencies
between platform simulators and specialized simulators, for example simulators
for network devices.

Our solution to this problem is to integrate the simulator support in the run-
time platform SEnF (SDL Environment Framework) for SDL systems. This way,
the SDL system can use the same interface to the runtime platform for inter-
acting with hardware, regardless of whether it is being executed on real or on
simulated hardware. It is straightforward to integrate new hardware and plat-
forms into simulations, because only the platform dependent SEnF drivers must
be developed. The simulator is supported as a target platform in SEnF, such as
any other target platform (see Fig. 4).

The simulated platform is integrated as a new hardware platform, so only
a part of the hardware abstraction layer of SEnF for the simulated platform(s)
needs to be changed. The platform simulator uses a virtual device for connecting
the simulated peripheral devices to the hardware abstraction layer of the SEnF.

The hardware dependent timing of the drivers for the original hardware can be
added to the simulation by the drivers for the simulated hardware, depending on
the simulated platform. This way, the simulation of hardware-dependent timing
can be preserved. Additionally, creating hardware devices that exist only in
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Fig. 4. Hardware Abstraction Layers (HAL)

simulations like a comprehensive logging device is much more simple when a
simulator specific hardware abstraction layer is used, since no low-level interface
to the simulated hardware must be developed in that case.

4 Instantiation of the Interconnection Framework

We have instantiated the interconnection framework to create PartsSim. The
core components EventScheduler and SimulationControl have been created out
of ns-2 components and are part of the simulator interconnection framework, as
well as the NetworkNode component. These components form the basic struc-
ture of every interconnected simulator.

Other simulators are integrated as simulation components. Currently, as shown
in Fig. 1, the following types of simulation components are supported: Network-
Topology, HardwarePlatform, SimulatedDevices and EnergySupply.

In PartsSim, a topology simulation component that is based on the network
topology of ns-2 is used. PartsSim simulates two types of nodes, the MicaZ
nodes that are manufactured by Crossbow Industries [6] and generic nodes who
do not have any computational resources. All types of nodes may be mixed
within the same simulation scenario. In simulations, where only generic nodes
are simulated, the simulation results are comparable to the results from ns+SDL.

The simulation component that simulates the MicaZ hardware platform is
the Avrora simulation component, a simulation component that was created out
of the Avrora simulator. One of the simulated devices is the CC2420 wireless
transceiver chip. In this instantiation, the component that simulates the CC2420
transceiver chip is a simulation component that has been created out of an ns-2
component - however, it is also possible to implement simulated devices indepen-
dent from ns-2. The simulation of an energy supply is currently not implemented
in PartsSim, so there are no limitations with respect to available energy.
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The resulting simulator is capable of accurately simulating the MicaZ platform,
including hardware interrupts, processor timing and the wireless transceiver chip.

5 Performance Simulation Studies

The simulation studies presented in this section illustrate different levels of accu-
racy between different simulator configurations. The simulated scenario captures
a number of resource bottlenecks like platform timing, network delay, and net-
work collisions.

Fig. 5. Basic simulation scenario

The simulation scenario consists of three nodes (see Fig. 5). All nodes use wire-
less transmissions and are in transmitting range of each other. The master node
is responsible for synchronizing the client nodes, using a beacon frame sent every
8ms. Transmission slots of the two clients start 2 ms and 4 ms after the beacon
was received, respectively. The two clients resume listening for the beacon 4 ms
and 3 ms after their own transmission, respectively. The simulation of this simple
scenario is performed using three different simulators: TAU as a pure SDL simu-
lator, ns+SDL that additionally simulates network performance, and PartsSim,
the simulator that was created out of simulation components, namely ns+SDL
and Avrora by instantiating the simulator interconnection framework. The simu-
lation results of ns+SDL and PartsSim are compared to real measurements.

5.1 Simulation Results with the TAU SDL Simulator

For the simulation with the TAU SDL simulator, we have specified a global SDL
model by instantiating nodes and connecting them by SDL channels. As the TAU
SDL simulator does not consider resource bottlenecks, the SDL timers are the
only sources of delays. The delay between transmission start of the master node’s
beacon frame and the transmission start of corresponding data frames is 2 ms
and 4 ms, respectively, depending on the slot used by the client node (See Fig. 6).
This means that in the simulation, packets are transmitted on schedule, with no
further propagation or reception delays. With no resources being simulated, this
is the expected timing behavior.
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Fig. 6. Time between beacon transmission and reception of data packets with SDL
simulator

5.2 Simulation Results with ns+SDL

For the simulation with the ns+SDL simulator, we have instantiated a dis-
tributed simulation scenario, consisting of three nodes, each simulating an SDL
model. In this configuration, the network characteristics including transmission
ranges, network delay, and frame collisions are incorporated. Due to the syn-
chronized medium access in the given scenario, no collisions can occur. Also, all
nodes are within range of each other. Thus, the additional effect that shows up
in the simulation is the (constant) transmission delay, which is about 0.45 ms per
frame. This is also the only additional source of delay to the SDL timers, since
no platform delays are simulated by ns+SDL. Fig. 7 shows that the simulated
network delay is very accurate, compared to real measurements.

In Fig. 7, there is a small jitter visible in the measured network delay that can-
not be seen in the simulated network delay. This results from the measurements
being taken from a real platform that has a limited timer resolution and suffers
also from platform jitter. The simulator, in this configuration, is not capable
of simulating this jitter. The network delay originates from the radio propa-
gation, from the time required for transmitting the data with a given network
bandwidth, and from delays within the transceiver chip.

Fig. 8 shows the delays between beacon transmission and reception of the
client’s data packets in the simulated scenario. As expected, the additional ef-
fect of the simulated transmission delay shows up in the simulation, delaying the
transmission of data frames by 0.45 ms. The same results can be obtained by run-
ning this simulation scenario in PartsSim when using the generic node platform.
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Fig. 7. Sources of delay with ns+SDL

Fig. 8. Sources of delay with ns+SDL

5.3 Simulation Results with PartsSim

The third simulation is run using PartsSim, with the same scenario as before.
In addition to ns+SDL, PartsSim considers the MicaZ hardware platform. The
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Fig. 9. Sources of delay with partssim

binary code generated from the SDL model is now executed under timing control
of the simulator, which produces additional delays for reacting to hardware inter-
rupts and for processing sending and reception of frames. Although this is a very
complex simulation, its results are still very comparable to real world measure-
ments. Fig. 9 shows a comparison of the time required for sending SDL-Signals
from and to the SDL-Environment on a single network node. The measured
time is the time that is required for sending a SDL-Signal from within the SDL-
System to a device driver in the SDL-Environment, or for sending a SDL-Signal
from the device driver to the SDL-System, respectively. As it can be seen, both
values are almost identical, with the exception of jitter. It can also be seen, that
it takes much more time to receive a SDL-Signal from the SDL-Environment
than it takes to send a signal to the SDL-Environment.

As it can be seen, PartsSim is not able to only simulate platform delay, but
it provides also an accurate simulation of the delay jitter. The timing behavior
of this scenario is shown in Fig. 10. In addition to the network delay, there is a
platform delay of about 1.5 ms per frame as well as a considerable jitter. Fig. 10
reveals timing problems that can only be detected if all resource bottlenecks
are simulated together. First, transmission is delayed by about 2 ms w. r. t. to
the assigned data slot. Second, due to internal jitter, the second client does not
always receive the beacon frame while listening. In these cases, it interprets the
data frame of the first client as beacon frame, and synchronizes to this event.
This causes an additional transmission delay of 4 ms w. r. t. the corresponding
beacon transmission. When missing the next data frame of the first client, the
second client is resynchronized to the beacon period, however, by losing one data
slot.
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Fig. 10. Sources of delay with partssim2

With more simulated resources, the simulation time in the above simple sce-
nario increases substantially. The simulation with TAU runs for about 2 sec, the
ns+SDL simulation takes about 10 sec, and the simulation time with PartsSim
is 2:07 min. As already pointed out, the purpose of the above simulations is to
show the additional accuracy that is gained by simulating several resources to-
gether. From the results of the simulation with PartsSim, we can conclude that
there are timing problems caused by resource bottlenecks. From the scenario,
it is obvious how these problems can be avoided. However, without an accurate
performance simulation, it would be difficult to predict this timing behavior even
for this simple scenario.

6 Conclusion and Future Work

In this paper, we have presented a simulator interconnection framework. With
this framework, existing simulators for different resources can be interconnected
with a modest effort. Simulators obtained by applying the framework consist
of simulation components, which can be created from scratch, or by modifying
already existing simulators to provide the necessary interfaces. This enables de-
velopers to interconnect simulators by combining existing simulator components
to simulate models with the level of accuracy that is necessary to produce cred-
ible simulation results.

By applying the framework, we have obtained PartsSim, which integrates ns-
2 (main control and network simulation), Avrora (hardware simulation) and a
simulator extension for SDL models. The simulations with PartsSim produced
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accurate results. All relevant factors of the simulated scenario were captured and
the increased accuracy over existing simulators has been shown.

Although our focus was on simulating SDL models, some platform simula-
tion components are able to simulate other native software systems. Integrating
the support for miscellaneous software systems is an interesting area for future
work. Future work also includes the integration of mechanisms that speed up
simulations, especially when realistic platforms and native software systems are
included in simulation scenarios.
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Abstract. Experience with the development and maintenance of test
suites has shown that the Testing and Test Control Notation (TTCN-3)
provides very good concepts for adequate test specification. However, ex-
perience has also demonstrated that during either the migration of legacy
test suites to TTCN-3, or the development of large TTCN-3 test speci-
fications, users have found it is difficult to construct TTCN-3 tests that
are concise with respect to readability, usability, and maintainability.
To address these issues, this paper investigates refactoring and metrics
for TTCN-3. Refactoring restructures a test suite systematically without
changing its behaviour. Complementary metrics are used to assess the
quality of TTCN-3 test suites. For automation, a tool called TRex has
been developed that supports refactoring and metrics for TTCN-3.

1 Introduction

The maintenance and migration of legacy test suites is an important issue for
industry. For example, within Motorola test suites developed with a high cou-
pling between value and behaviour specification can lead to a large maintenance
burden [1]. A single change to a data type can result in the need to change many
tests. The Testing and Test Control Notation (TTCN-3) [2,3] contains concepts
that can alleviate such issues, such as templates. However, experience has demon-
strated that it is not always obvious how to use such concepts in a manner that
can maximise the readability, usability, and maintainability of TTCN-3. In ad-
dition, Motorola teams have encountered problems migrating their test suites
to TTCN-3. In doing so, they develop tools that perform simple translations
of legacy test suites to TTCN-3. This can often result in non-optimal TTCN-3
code. For example, the conversion of a legacy test suite for a UMTS based com-
ponent to TTCN-3 resulted in 60,000 lines of code, which then leads to another
maintenance burden.

To this end, Motorola has collaborated with the University of Göttingen to de-
velop a tool, called TRex, for assessing attributes and subsequent restructuring of
a TTCN-3 test suite. The current aims for TRex are to: (1) enable the assessment
of a TTCN-3 test suite with respect to lessons learnt from experience, (2) pro-
vide a means of detecting opportunities to avoid any issues, and (3) a means for
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restructuring TTCN-3 test suites to improve them with respect to any existing
issues. The actual restructuring is performed by applying refactorings. For soft-
ware development, refactoring [4] is a proven means to restructure software with
the aim of improving its quality. We suggest to apply refactoring also to TTCN-3
test suites.

This paper is structured as follows: In the next chapter, foundations on refac-
toring and a survey on related work are presented. Chapter 3 contains the main
contribution of this paper; our catalogue of 49 refactorings for TTCN-3. In Chap-
ter 4 we give an overview of our activities into automating the application of
these refactorings using our TRex tool; making an assessment of TTCN-3 test
suites based on metrics we have defined and employing a rule based approach to
derive applicable refactorings. Finally, we conclude with a summary and outlook.

2 Foundations

Refactoring is defined as “a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its observ-
able behavior” [5]. This means refactoring is a remedy against software ageing [6].
While refactoring can be regarded as “cleaning up source code”, it is more sys-
tematical and thus less error prone than arbitrary code clean-up, because each
refactoring provides a checklist of small and simple transformation steps. Due to
the simplicity of the steps, the effects of the changes are predictable. Sometimes,
steps even appear to be awkward, but in fact such steps help to figure out the
consequences of a refactoring as soon as possible and maintain the correctness
of software not only before and after, but even within a refactoring.

The essence of most refactorings is independent from a specific programming
language. However, a number of refactorings make use of particular constructs
of a programming language, or of a programming paradigm in general, and are
thus only applicable to source code written in this language.

Examples for simple refactorings are: renaming a variable to give it a more
meaningful name, encapsulating fields of a class by replacing direct field ac-
cesses by calls to corresponding getter and setter accessor methods, or extract-
ing a group of statements and moving it into a separate function. More complex
refactorings are often based on simpler refactorings. For example, converting a
procedural design into an object-oriented design requires to convert record types
into data classes, to encapsulate the public fields of the data classes, and to ex-
tract and move statements from procedures into methods of the data classes.

Even though refactoring has a long tradition in the evolutionary software
development community around Smalltalk, the first detailed written work on
refactoring was the PhD thesis of Opdyke [7] who treats refactoring of C++
source code. Refactoring has finally been popularised by Fowler and his book
“Refactoring” [5] which contains a catalogue of 72 refactorings which are appli-
cable to Java source code.
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2.1 Related Work

Existing work on refactoring deals mainly with the refactoring of source code
and little is known on the refactoring of test specifications. Probably the most
frequent refactoring of tests occurs in agile software development processes: for
example, in the Extreme Programming approach [8], the implementation and
the unit test suite, which is realised using the same programming language as
the implementation (e.g. the JUnit framework [9] for unit testing Java imple-
mentations), are both subject of refactoring. However, only one publication is
known which treats refactoring of unit tests on their own: van Deursen et al. [10]
suggest to automate also the creation of external resources, to check equality of
two Java objects not by comparing the results of their toString() methods, but
to implement and use the more robust equals() method instead, and to provide
an explanatory message when a test fails. While the latter refactoring is also
applicable to TTCN-3, the other refactorings are specific to unit testing which
is not the primary target of TTCN-3.

Concerning TTCN-3 and its predecessor, the Tree and Tabular Combined
Notation (TTCN-2) [11], three publications [12,13,14] deal with transformations
which can be regarded as refactoring. Schmitt [12] and Wu-Hen-Chang et al. [13]
propose solutions for the automatic restructuring of test data descriptions. Even
though different approaches are chosen and Schmitt treats the constraints of
TTCN-2, whereas Wu-Hen-Chang et al. deal with TTCN-3 templates, both ap-
ply semantics preserving operations to the test data description. In fact, these
operations are refactorings. They are based on the concepts which are available
in both test languages to specialise, parametrise, and reference test data descrip-
tions. Deiß [14] improves the TTCN-3 code generated by an automated conver-
sion of a TTCN-2 test suite by applying some refactoring-like transformations.
For example, TTCN-3 altsteps which only contain an else branch starting with
a send statement, are transformed into a more appropriate TTCN-3 function.

2.2 Validating the Equivalence of Tests

Opdyke [7] and Fowler [5] address the problem of how to ensure that a refactor-
ing does not change the observable behaviour of the modified software. While
Opdyke assumes that an automated tool performs the actual refactoring by ap-
plying transformation steps which are proven to be behaviour preserving, Fowler
suggests a manual approach which is applicable if no such tool exists. Each en-
try in his refactoring catalogue provides so called mechanics : concise, systematic
step-by-step instructions for humans of how to carry out the refactoring. To val-
idate that refactoring did not change the observable behaviour, Fowler presumes
that an adequate suite of automated tests exists. If the implementation passes
that test suite before and after the refactoring, it is assumed that its observable
behaviour was not affected by the refactoring.

When refactoring tests manually, van Deursen et al. [10] suggest running the
test suite which is subject of a refactoring against the same implementation
before and after the refactoring; checking that the same verdict is returned in
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both cases. However, this is not sufficient since not all paths of the test suite
may be executed. Instead, bisimulation [15] of both the original and refactored
test suites is required to validate their equivalence, i.e. that they yield the same
verdict for the same behaviours of an implementation.

3 A Refactoring Catalogue for TTCN-3

The presentation of our refactorings for TTCN-3 is inspired by Fowler’s refac-
toring catalogue for Java [5]. Hence, we use the same fixed format for describing
our refactorings: each refactoring is described by its name, a summary, a motiva-
tion, mechanics, and an example. The name of a refactoring is always written in
slanted type. The mechanics section contains systematic checklist-like instruc-
tions of how to perform the refactoring. In that section, we use the term “source”
to refer to the code which is addressed by a refactoring and thus usually removed
or simplified and the term “target” to refer to code which is created as a result of
a refactoring. The example section illustrates the refactoring by showing TTCN-3
core notation excerpts before and after the refactoring is applied.

The mechanics sections provided in this refactoring catalogue can be exploited
in two ways: the refactorings can be applied manually or automated by building
a tool based on the experience distilled in the step-by-step instructions. Since
manual refactoring is error prone, the mechanics also contain the “compile” and
“validate” instructions. The compile step is used to check whether syntax and
static semantics of the test case are still valid. The validate step means to start
the bisimulation process to validate that the original and refactored test suite
still behave equivalently. To detect possible mistakes during refactoring as soon
as possible, compile and validate steps are suggested as soon and as often as
they are applicable. As discussed in Section 2.2, we suggest to automate the
application of refactorings using our TRex tool which is described in Section 4.

We have divided our refactoring catalogue into refactorings for test behaviour,
refactorings for data descriptions, and refactorings which improve the overall
structure of a test suite. This classification is used in sections 3.1 and 3.2.

3.1 Language Independent Refactorings Applicable to TTCN-3

We investigated which of the 72 refactorings from Fowler [5] are also relevant
for TTCN-3. Even though these refactorings were intended for Java, some of
them are language independent or can be reinterpreted in a way that they are
applicable to TTCN-3. For their reinterpretation, it is necessary to replace the
notion of Java methods by TTCN-3 functions or testcases. While TTCN-3 is
not an object-oriented language, some of the Java refactorings are nevertheless
applicable if the notion of Java classes and fields is replaced by TTCN-3 com-
ponent types and variables, constants, timer, and ports local to a component
respectively. Furthermore, whenever Fowler’s mechanics instruct to “test” the
refactored implementation, the refactored test suite needs to be validated.

Under these circumstances, we found that 28 refactorings are applicable to
TTCN-3. Where necessary, we have changed the name of these refactorings to
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reflect their reinterpretation for TTCN-3. In this case, the original name used
by Fowler is given in square brackets. The list of these refactorings is as follows:

Refactorings for Test Behaviour

– Consolidate Conditional Expression,
– Consolidate Duplicate Conditional Fragments,
– Decompose Conditional,
– Extract Function [Extract Method],
– Introduce Assertion,
– Introduce Explaining Variable,
– Inline Function [Inline Method],
– Inline Temp,
– Remove Assignments to Parameters,
– Remove Control Flag ,
– Replace Nested Conditional with Guard Clauses,
– Replace Temp with Query ,
– Separate Query From Modifier,
– Split Temporary Variable,
– Substitute Algorithm.

Refactorings for Improving the Overall Structure of a Test Suite

– Add Parameter,
– Extract Extended Component [Extract Subclass],
– Extract Parent Component [Extract Superclass],
– Introduce Local Port/Variable/Constant/Timer [Introduce Local Extension],
– Introduce Record Type Parameter [Introduce Parameter Object],
– Parametrise Testcase/Function/Altstep [Parameterize Method],
– Pull Up Port/Variable/Constant/Timer [Pull Up Field],
– Push Down Port/Variable/Constant/Timer [Push Down Field],
– Replace Magic Number with Symbolic Constant,
– Remove Parameter,
– Rename [Rename Method]1,
– Replace Parameter with Explicit Functions [Replace Parameter with Explicit

Methods],
– Replace Parameter with Function [Replace Parameter with Method].

No refactorings which are solely suitable for data description can be obtained
by reinterpreting Fowler’s refactorings, since data description relates mainly to
the notion of TTCN-3 templates which do not exist in Java. However, some
of Fowler’s refactorings like Inline Method or Add and Remove Parameter are
quite generic and may also be reinterpreted for TTCN-3 templates. Where the
mechanics of these refactorings differs significantly when applied to templates,
we have considered them as TTCN-3 specific refactorings and describe them in
the next section.
1 Note that while Fowler refers only to renaming a method, not only the corresponding

TTCN-3 constructs testcase and function qualify for renaming, but also variables,
types, templates, constants, ports, timer, components, modules, groups and altsteps
are reasonable subjects of the Rename refactoring.
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3.2 TTCN-3 Specific Refactorings

In addition to the language independent refactorings, restructuring of TTCN-3
test suites can be leveraged by considering language constructs which are specific
to TTCN-3. Currently, our refactorings take advantage of TTCN-3 altsteps, tem-
plates, grouping, modules and importing from modules, components, restricted
sub-types, logging, and creating concurrent test cases.

Those refactorings which refer to templates and to adding an explanatory
log message include some of the known transformations surveyed in Section 2.1.
However, we go beyond the existing work by being more extensive and by pro-
viding for each refactoring detailed step-by-step instructions and examples for
their application.

Until now, we identified 21 TTCN-3 specific refactorings. The summaries of
these refactorings are as follows:

Refactorings for Test Behaviour

– Extract Altstep: One or more alternative branches of an alt statement occur
several times in a test suite and are thus moved into an altstep on its own.

– Split Altstep: Altsteps that contain branches which are not closely related
to each other are split to maximise reuse potential.

– Replace Altstep with Default: Altsteps that are referenced in more than one
alt statement are removed from the alt statements and activated as default
altsteps.

– Add Explanatory Log: Add a log statement to explain why a testcase
aborted or a non-pass verdict was assigned.

– Distribute Test: Transform a non-concurrent test case into a distributed
concurrent test case.

Refactorings for Improving the Overall Structure of a Test Suite

– Extract Module / Move Declarations to Another Module: Move parts of
a module into a newly created module or into another existing module to
improve structure and reusability.

– Group Fragments: Add additional structure to a module by putting code
fragments into groups.

– Restrict Imports: Restrict import statements to obtain smaller inter-module
interfaces and less processing load for TTCN-3 tools.

– Prefix Imported Declarations: Prefix imported declarations to avoid possible
name clashes.

– Parametrise Module: Parametrise modules to specify environment specific
parameters at tool level.

– Move Module Constant to Component: A declaration of a constant at module
level used exclusively in the context of a single component is moved into the
component declaration.

– Move Local Variable/Constant/Timer to Component: A local variable, con-
stant, or timer is moved to a component when used in different functions,
testcases, or altsteps which run on the same component.
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– Move Component Variable/Constant/Timer to Local Scope: A component
variable, constant, or timer is moved to a local scope when only used in a
single function, testcase, or altstep.

– Generalise Runs On: Relax runs on specification by using a more general
component type.

Refactorings for Data Descriptions

– Inline Template: A template that is used only once is inlined.
– Extract Template: Inlined templates that are used more than once are ex-

tracted into a template definition and referenced.
– Replace Template with Modified Template: Templates of structured or list

type with similar content values that differ only by a few fields are simplified
by using modified templates.

– Parametrise Template: Several templates of the same type, which merely use
different field values, are replaced by a single parametrised template.

– Inline Template Parameter: A formal parameter of a template which is al-
ways given the same actual value is inlined.

– Decompose Template: Complex template declarations are decomposed into
smaller templates using references.

– Subtype Basic Types: Range constrained subtypes are used instead of basic
types in order to more easily detect code flaws.

In the following, we will focus on refactorings for data descriptions, since most
of the maintenance problems at Motorola were related to the use of templates. To
give an impression of how our TTCN-3 refactoring catalogue looks, we present
two refactorings in detail: Inline Template Parameter and Parametrise Template.
Please refer to our complete TTCN-3 refactoring catalogue [16] for a detailed
description of all refactorings.

3.2.1 Parametrise Template
Summary: Several templates of the same type, which merely use different field
values, are replaced by a single parametrised template.

Motivation: Occasionally, there are several template declarations of the same
type which are basically similar, but vary in values at the same fields. These tem-
plate declarations are candidates for parametrisation. Instead of keeping all of
them, they are replaced with a single template declaration where the variations
are handled by template parameters. Such a change removes code duplication,
improves reusability, and increases flexibility. If the template declarations are
similar, but the values vary in different fields, the Replace Template with Mod-
ified Template refactoring may be a better choice.

Mechanics
– Create the parametrised target template signature. It is of the same type

as the source templates. Introduce a parameter for each field in which the
source template values differ. The target template declaration’s name should
reflect the meaning of the non-parametrised values.
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– Copy one source template body to the parametrised target template decla-
ration and replace the varying parts with their newly introduced template
parameters.

– Compile.
– Repeat the following steps for all references to the source template

declarations:
• Replace the source template reference with a reference to the

parametrised target template. As parameter values, use the field val-
ues from the originally referenced template declaration corresponding to
the parametrised values in the target template.

• Compile and validate.
– Remove the source template declarations from the code. They should not be

referenced anymore.
– Compile and validate.

Example: Listing 1.1 shows the unrefactored example. The source template
declarations firstTemplate (lines 6–9) and secondTemplate (lines 11–14) differ
only in the values of ipAddress.

Listing 1.1. Parametrise Template (Unrefactored)

1 type record ExampleType {
2 boolean ipv6,
3 charstring ipAddress
4 }
5
6 template ExampleType firstTemplate := {
7 ipv6 := false,
8 ipAddress := ”127.0.0.1”
9 }

10
11 template ExampleType secondTemplate := {
12 ipv6 := false,
13 ipAddress := ”134.72.13.2”
14 }
15
16 testcase exampleTestCase() runs on ExampleComponent {
17 pt.send( firstTemplate );
18 pt.receive( secondTemplate );
19 }

Listing 1.2. Parametrise Template (Refactored)

1 type record ExampleType {
2 boolean ipv6,
3 charstring ipAddress
4 }
5
6 template ExampleType parametrisedTemplate( charstring addressParameter ) := {
7 ipv6 := false,
8 ipAddress := addressParameter
9 }

10
11 testcase exampleTestCase() runs on ExampleComponent {
12 pt.send( parametrisedTemplate( ”127.0.0.1” ) );
13 pt.receive( parametrisedTemplate( ”134.72.13.2” ) );
14 }
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The resulting code after applying Parametrise Template is shown in List-
ing 1.2. A new target template declaration parametrisedTemplate (lines 6–9) is
created which has a parameter for the varying ipAddress field in the source tem-
plate declarations. The references to firstTemplate (Line 12) and secondTemplate
(Line 13) are replaced with parametrisedTemplate and their corresponding IP
addresses as parameters.

3.2.2 Inline Template Parameter
Summary: A formal parameter of a template which is always given the same
actual value is inlined.

Motivation: Templates are typically parametrised to avoid multiple template
declarations that differ only in a few values. However, as test suites grow and
change over time, the usage of its templates may change as well. As a result,
there may be situations when all references to a parametrised template have one
or more actual parameters with the same values. This can also happen when the
test engineer is overly eager: he parametrises templates as he thinks it might be
useful, but it later turns out to be unnecessary. In any case, there are template
references with unneeded parameters creating code clutter and more complexity
than useful. Thus, the template parameter should be inlined and removed from
all references.

Mechanics

– Verify that all template references to the parametrised source template dec-
laration have a common actual parameter value. The parameter with the
common actual parameter values is the source parameter. Record the com-
mon value.
• If you have more than one common actual parameter value in all refer-

ences, it is easier to inline them together. Therefore, perform each step
that concerns the source parameters for each source parameter at once.

– Copy the source template declaration and give the copied declaration a tem-
porary name. It is the target template declaration.

– In the target template declaration body, replace each reference to the source
parameter with the value noted in the first step. In the target template
declaration signature, remove the parameter corresponding to the source
parameter.

– Compile.
– Rename the name of the target template declaration using the name of the

source template declaration.
– Find all references to the target template declaration. Remove the source

parameter from the actual parameter list of each reference.
– Remove the source template declaration.
– Compile and validate.
– Consider usage of the Rename refactoring to improve the target template

declaration name.
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Example: Listing 1.3 contains the parametrised template exampleTemplate in
lines 6–9. All references to this template use the same actual parameter value
(lines 12 and 13). Hence, the corresponding parameter addressParameter in Line 6
is inlined.

Listing 1.3. Inline Template Parameter (Unrefactored)

1 type record ExampleType {
2 boolean ipv6,
3 charstring ipAddress
4 }
5
6 template ExampleType exampleTemplate( charstring addressParameter ) := {
7 ipv6 := false,
8 ipAddress := addressParameter
9 }

10
11 testcase exampleTestCase() runs on ExampleComponent {
12 pt.send( exampleTemplate( ”127.0.0.1” ) );
13 pt.receive( exampleTemplate( ”127.0.0.1” ) );
14 }

After applying the Inline Template Parameter refactoring (Listing 1.4), the
string value ”127.0.0.1” is inlined into the template body of exampleTemplate
(Line 8), the corresponding formal parameter of the template (Line 6) and the
corresponding actual parameter of each reference to exampleTemplate (lines 12
and 13) are removed.

Listing 1.4. Inline Template Parameter (Refactored)

1 type record ExampleType {
2 boolean ipv6,
3 charstring ipAddress
4 }
5
6 template ExampleType exampleTemplate := {
7 ipv6 := false,
8 ipAddress := ”127.0.0.1”
9 }

10
11 testcase exampleTestCase() runs on ExampleComponent {
12 pt.send( exampleTemplate );
13 pt.receive( exampleTemplate );
14 }

4 Automation of TTCN-3 Refactoring

In the following we describe how the restructuring of TTCN-3 test suites can be
automated. To locate inappropriate usage of TTCN-3 we use so called bad smells
or code smells, a kind of anti-pattern [17]. Examples for code smells include
duplicated code, overly long testcases, or templates which are never referenced.
Some of them can only be detected by pattern recognition, but some of them
may also be detected by calculating metrics. We have started with a metrics-
based approach (Section 4.1) which is also suitable for a general assessment of
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TTCN-3 test suites. Based on these metrics we provide rules of when to apply
which refactoring. Our TRex tool (Section 4.2) calculates these metrics, applies
the rules to suggest appropriate refactorings, and automatically performs the
individual steps of a refactoring.

4.1 TTCN-3 Metrics

According to Fenton et al. [18], the term software metrics embraces all activities
which involve software measurement. Software measurement can be classified
into measures for properties or attributes of processes, resources, and products.
For each class, internal and external attributes can be distinguished. External
attributes refer to how a process, resource, or product relates to its environment;
internal attributes are properties of a process, resource, or product on its own,
i.e. separate from any interactions with its environment. Hence, to measure ex-
ternal attributes of a product, execution of the product is required, whereas for
measuring internal attributes, static analysis is sufficient. Since we are interested
in properties like readability or maintainability of a TTCN-3 specification, we
consider only internal product metrics in the remainder.

Internal product metrics can be structured into size and structural metrics.
Size metrics measure properties of the number of usage of programming or spec-
ification language constructs. Well-known size metrics are the Halstead metrics
[19], e.g. number of operators, number of operands, or program volume. Structural
metrics analyse the structure of a program or specification. The most popular
examples are the McCabe complexity metrics [20]. They are based on the con-
trol flow graph of a program and measure properties of this graph, such as the
cyclomatic number. Object-oriented metrics [21] are also structural since they
measure relationships between classes or methods. A popular example of such
metrics is the Chidamber & Kemerer metrics suite [22] which measures properties
of inheritance relationships like depth of inheritance tree, or coupling properties
like coupling between objects or lack of cohesion in methods.

Vega et al. [23] list some metrics which they suggest to apply to TTCN-3
tests suites. However, it is not clear how these metrics can be interpreted to
assess the actual quality of test suites. To avoid this problem, our development
of TTCN-3 metrics was guided by the Goal Question Metric (GQM) approach
from Basili et al. [24]: First the goals to achieve were specified (e.g. Goal 1:
“Improve maintainability of TTCN-3 source code”; Goal 2: “Improve readability
of TTCN-3 source code”). Then, for each goal a set of meaningful questions was
derived that characterises it (e.g. for Goal 1: “Are many changes to test behaviour
required if values inside of test data change?”; for Goal 2: “Are unnecessary
indirections used?” and “Are there any unused definitions?”). Finally, one or
more metrics were defined to gather quantitative data which gives answers to
each question (e.g. some coupling metrics for answering the question of Goal 1;
counting the number of references for answering the questions of Goal 2).

Based on the above goals and questions, we started to investigate metrics to
assess the quality of TTCN-3 test suites in terms of maintainability and read-
ability. For this, we want to use (and possibly adapt) the well-known previously
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mentioned metrics, but also define new TTCN-3 specific metrics. In a first step,
we implemented some basic size metrics and one coupling metric in the TRex
tool. These are:

– Number of non-comment lines of TTCN-3 source code.
– Number of test cases, including Number of references2 to each test case.
– Number of functions, including Number of references to each function.
– Number of altsteps, including Number of references to each altstep.
– Number of port types, including Number of references to each port type.
– Number of component types, including Number of references to each compo-

nent type.
– Number of data type definitions, including Number of references to each data

type.
– Number of template definitions, including Number of references to each tem-

plate and Number of parametrised templates.
– Template coupling, which will be computed as follows:

Template coupling :=

n∑
i=1

score(stmt(i))

n

Where stmt is the sequence of behaviour statements referencing templates
in a test suite, n is the number of statements in stmt, and stmt(i) denotes
the ith statement in stmt. score(stmt(i)) is defined as follows3:

score(stmt(i)) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if stmt(i) references a template without parameters,

e.g. MyPort.send(MyTemplateRef)

or uses wildcards only, e.g. MyPort.send(MyType:?)

2, if stmt(i) references a template with parameters,

e.g. MyPort.send(MyTemplateRef(1, ”a”))

3, if stmt(i) uses an inline template,

e.g. MyPort.receive(MyType:{n:=1, s:=”a”})

Template coupling measures the dependence of test behaviour and test data
in the form of template definitions, i.e. whether a change of test data requires
changing test behaviour and vice versa. The value range is between 1 (i.e. be-
haviour statements refer only to template definitions or use wildcards) and 3 (i.e.
behaviour statements only use inline templates). For the interpretation of such
a coupling score appropriate boundary values are required. These may depend
on the actual usage of the test suite. For example, for good maintainability a
decoupling of test data and test behaviour (i.e. the template coupling score is
close to 1) might be advantageous and for optimal readability most templates
may be inline templates (i.e. the template coupling score will be close to 3).

2 Since we consider only internal product metrics, we only measure the number of
references obtained by static analysis. In contrast, the dynamic number of references
would count how often a definition is actually referenced during test execution.

3 Non-equidistant values might be used to give different weights to the different cases.
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With appropriate boundary values for the different metrics, we want to iden-
tify places in TTCN-3 specifications which need refactoring. At the moment we
have a rough idea of suitable values and have started to analyse real-world test
suites to further improve our estimates. Some metrics may even allow an entirely
automatic refactoring to take place.

We have found some rules that obviously help to improve the quality of
TTCN-3 test suites with respect to template definitions. Most of these rules
can be directly related to metrics and refactorings:

Rule 1: A template definition which is not referenced (Metric value: Number of
References to the Template = 0 ) should be removed.

Rule 2: A template definition which is only referenced once (Metric value: Num-
ber of References to the Template = 1 ) should be inlined and its def-
inition should be removed (Application of Inline Template refactoring
which, for parametrised templates, includes the inlining of parameters.)

Rule 3: If a user wants to achieve “optimal readability” (i.e. maximise the Tem-
plate Coupling Score), a template definition which is referenced multiple
times (Metric value: Number of References to the Template > 1 ) should
be inlined and its definition should be removed (Application of Inline
Template refactoring).

Rule 4: If a user wants to achieve “good maintainability” (i.e. a Template Cou-
pling Score close to 1), a template definition without parameters which
is referenced multiple times (Metric value: Number of References to the
Template > 1 ) should not be altered.

Rule 5: A template definition in which all fields receive their values by means
of parameters should be inlined and its definition removed (Application
of Inline Template refactoring).

Rule 6: Unused parameters of a template definition (e.g. parameters which are
not used in assignments) should be removed altering the template defi-
nition (Application of Remove Parameter refactoring).

Rule 7: For a template definition which is referenced multiple times and which
has formal parameters that do not adhere to Rules 5 or 6 the following
rules apply:

(a) If all instantiations of a template are the same, i.e. all formal pa-
rameters are given the same values, then the formal parameters are
removed and the assigned elements are defined explicitly (Applica-
tion of Inline Template Parameter refactoring).

(b) If instantiations of a template vary, i.e. all formal parameters are
given different values, formal parameters account for the values of
50% or more of the fields within the template definition and the
user wants “optimal readability”, then the template shall be in-
lined and its definition be removed (Application of Inline Template
refactoring).

Rule 8: If the user aims for “good maintainability” and two or more template
definitions exist for the same type, then the following rules could apply:
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(a) If template values only differ for the same template fields and these
differing fields account for a certain percentage (assume 30%) of
the overall fields for the template definition then the templates
can be reduced to a single parametrised definition (Application of
Parametrise Template refactoring).

(b) If template values differ for different template fields, then we cur-
rently do nothing as the user would have to choose which field to
parametrise upon.

The rules presented above can only give an impression of how metrics can
steer the refactoring process. We are currently refining the rules and defining new
rules for the refactoring of test behaviour and the TTCN-3 module structure.
This includes the definition of further metrics to underpin the rules, analysis
of the influence of the rule ordering, and the investigation of options such as
“good maintainability or “optimal readability” which are informally mentioned
above. (E.g. using inline templates optimises readability only up to a certain
size of template, or the fact that parametrised templates promote reuse, but not
necessarily maintainability or readability.)

4.2 Tool Support

We have implemented a first version of TRex, the TTCN-3 Refactoring and
Metrics tool. Based on the rules defined in the previous section, refactorings are
suggested automatically by TRex and the user is given the option to apply them
to one or more template or reference. Otherwise the user needs to identify the
places where a refactoring is to be applied. In some cases, additional information
needs to be provided, e.g. the desired new name for the Rename refactoring. In
any case, all further steps are then performed automatically. This significantly
reduces the risk of changing the behaviour of a test suite. Automated refactoring
has been successfully applied to source code of implementation languages, e.g.
using the Java Development Tools of the Eclipse platform [25].

(3) Quality Assessment (2) Automated Refactorings

(1) Static Analysis

Eclipse Platform
User

Interface
Resource

Management
Text

Editor
Language

Toolkit
...

TTCN-3
Core

Notation

ANTLR
Lexing,
Parsing

Refactoring 
Processor

Refactored
TTCN-3

Core
Notation

Transformed 
Subtree of the
Syntax Tree

Pretty Printer

Change 
Weaver

Syntax Tree /
Symbol Table

Metrics

Rule-Based Refactoring Suggestions

Fig. 1. The TRex Tool Chain
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(a) TTCN-3 Metrics View (b) Quick Fix Suggestion

(c) Refactoring Preview

Fig. 2. TRex Screenshots

The TRex tool analyses data flow and inspects declarations, references, and
scopes of TTCN-3 language constructs. As shown in Figure 1, TRex is imple-
mented as a plug-in for the Eclipse platform which provides infrastructure for
user interfaces, handling of workspace resources, text editing, and a language
toolkit for basic language independent support of semantic preserving workspace
transformations. For building up the syntax tree for a test suite we use ‘ANother
Tool for Language Recognition’ (ANTLR) [26], a parser generator which supports
lexing, parsing, and syntax tree creation and traversal (Block (1) of Figure 1).

The actual refactoring is performed on the basis of the syntax tree4, the sym-
bol table, and the TTCN-3 core notation. As shown in Block (2) of Figure 1,
a refactoring processor calculates the changes necessary for transforming the
source code. This can be done directly on the source code based on the in-
formation obtained from the syntax tree and the symbol table, otherwise an
intermediate subtree transformation step is necessary. In this step, one or more
4 An alternative approach is to build up a TTCN-3 meta model [27] representation of

a TTCN-3 test suite and to use this representation instead of the syntax tree.
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syntax subtrees are transformed and the corresponding core notation is obtained
by a TTCN-3 pretty printer. These changes are weaved into the original TTCN-3
core notation using a programmatic text editor (which is provided by the Eclipse
platform). The original formatting is therefore mostly preserved.

In Block (3) of Figure 1, the metrics are built up, based on the list in Sec-
tion 4.1, by traversing the syntax tree and counting the number of basic elements
and their references, whilst also processing each communication statement to
generate the Template Coupling score. During this traversal we also apply the
rules for detecting suitable areas for refactorisation to every template. From this
we generate a table for the ‘Problems’ view of TRex, listing each detection as
a warning, with one or more appropriate refactorings supplied as ‘Quick Fix’
options for the user to apply automatically.

Figure 2 shows screenshots of the metrics view, an automatic metrics-based
‘Quick Fix’ refactoring suggestion, and a refactoring wizard providing a preview
of a refactoring. Currently, TRex supports those refactorings which we consider
most important to improve the quality of Motorola’s test suites: Inline Template,
Inline Template Parameter, Parametrise Template, and Rename. In addition to
refactoring and metrics, TRex provides state of the art editing functionality for
TTCN-3 test suites. TRex is released as open source software under the Eclipse
Public License (EPL). More detailed information on TRex is available at its
website [28] and in further publications [29].

5 Summary and Outlook

We presented a catalogue of 49 refactorings which can be used to restructure ex-
isting TTCN-3 test suites without changing their observable behaviour. The aim
of our refactorings is to improve readability, extensibility, modularity, reusability,
complexity, maintainability, and efficiency of test suites. Each of our refactor-
ings provides detailed step-by-step instructions on how to perform the actual
transformations and is accompanied by TTCN-3 examples which illustrate their
application. In this paper, we gave an overview of our TTCN-3 refactoring cat-
alogue and presented some examples from the full version [16]. Furthermore, we
outlined an initial set of metrics to assess the quality of test suites and described
how they can be used to automate the refactoring process.

We implemented the TRex tool, which calculates metrics, makes suggestions
for applying refactorings, and automatically performs the specific steps of a
refactoring. TRex is already proving to be a very useful environment for the
editing, assessment, and restructuring of TTCN-3 test suites.

Currently we are working on a case study to obtain boundary values for our
metrics and to demonstrate the benefits of our refactorings on a large scale. We
already applied TRex to a test suite for the Session Initiation Protocol (SIP) [30]
and TRex automatically identified 10 unused definitions and 22 templates which
could be parametrised and merged. By applying only a few related automatically
suggested refactorings, TRex was able to reduce the size of the data description
module of this test suite by about 7% in terms of lines of code.
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We have just started to study complexity metrics [31] and pattern-based code
smells. Future research aims at extending our rules of when to apply which
refactoring. We also plan to implement tool support for the validation of manual
refactoring by providing a TTCN-3 bisimulation tool which allows the equiva-
lence of TTCN-3 test suites to be checked.

Finally, we believe that refactoring would also be beneficial for e.g. UML 2.0
Testing Profile (U2TP) [32] test specifications or Specification and Description
Language (SDL) [33] specifications, as well as for language migration, e.g. be-
tween different versions of TTCN-3.
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Abstract. Despite the increasing need of formal methods, people in the
industry still hesitate to use them for product development because they
are not sure of success with that novel approach in their own situation.
In order to encourage those people we show our experience of designing a
radio resource control protocol for ETRI’s 3G evolution systems in SDL
with two different approaches: pure-SDL and hybrid-SDL approaches.
From our design and verification results, we make an empirical evaluation
of those two approaches in several aspects and suggest a simple guideline
for selecting an appropriate approach according to the situation.

1 Introduction

Since several formal description techniques were developed and standardized to
help developing a reliable network system, a lot of work has been done to de-
sign, implement, and verify communication protocols with formal methods[1,2,3].
Among those languages the Specification and Description Language (SDL)[4]
showed a remarkable success owing to the continual refinement of its syntax
and powerful development tools such as Telelogic Tau[5]. Those tools provide
integrated environments for the design and implementation of a distributed sys-
tem with automated verification features such as trigger-based simulation and
reachability-analysis-based validation. The reliability of a product is a major
goal of the industry however it normally costs very much. Therefore the exis-
tence of powerful SDL tools encouraged the industry to use formal methods for
the development of network products.

However, a lot of system development engineers still stick to traditional de-
velopment methods with general programming languages such as C language
because most of them are afraid that formal development methods will greatly
increase their works in developing a real-world large and complex network sys-
tem. In addition the development of current large network systems generally in-
volves many working groups of cooperating engineers, each of which is in charge
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of developing a part of the whole system. Therefore, the decision to change the
development method usually requires the agreement of all those engineers. That
can be a practical barrier for a formal method to become popular in the industry.

Cellular communication systems evolved from the present third generation (3G)
system, usually called the third generation evolution (3GE) or the long-term evo-
lution (LTE) cellular systems, may be a good example of such a real-world large
and complex system. Such a new communication system, however, is based on the
previous system so usually uses quite a few features of the previous system. This
means there are many of the existing components or libraries can be used in a new
system with a little modification. Naturally they want to use them to reduce the
cost and the risk of developing a whole system newly. Hence it may be very difficult
to design such a system with a new language and a new tool.

We designed a radio resource control protocol between the User Equipment
(UE) and the Universal Mobile Telecommunications System (UMTS) Terrestrial
Radio Access Network (UTRAN) for a 3GE cellular system of Electronics and
Telecommunications Research Institute (ETRI) with an SDL and C combined
approach, which we call hybrid-SDL approach. This work was done as a collab-
orative project with ETRI in order to construct a prototype UTRAN for a 3GE
system with other protocol implementations. The protocol was named Radio
Resource Control Plus (RRCP) and is based on the specification of the third
Generation Partnership Project (3GPP) release 6[6]. RRCP is the core protocol
of UTRAN and is the most complex so we used SDL for producing a functionally
correct implementation. Actually the hybrid-SDL approach was a reasonable so-
lution because all the other protocols of that prototype UTRAN were decided
to be implemented in C and the data structure and libraries constructed in C
must be shared with all the protocols.

In this paper we describe design issues in modeling RRCP with the hybrid-
SDL approach. In order to evaluate that design we modeled the same protocol
again mostly in the SDL world. This approach we call pure-SDL approach. We
evaluate those approaches by comparing the two designs and their verification
results. After identifying the strength and weakness of those approaches, we
present a simple guideline for selecting an appropriate design approach to develop
real-world network systems for various situations.

Section 2 summarizes several related works that designed UMTS protocols in
SDL. The target system, ETRI’s 3GE-2005 system and the motivation of this work
are briefly explained in section 3. In section 4 we explain two design approaches,
pure-SDL and hybrid-SDL approaches, in detail. Section 5 explains overall design
issues and some design details of our SDL system. Then the process and results of
verification and target porting are presented in section 6. Section 7 evaluates those
design approaches and suggests a simple guideline to decide an appropriate one in
a certain situation. Finally we conclude this paper in section 8.

2 Related Works: Designing UMTS Protocols in SDL

The UMTS is the 3G cellular communication system that is currently serviced
mostly in European countries. The 3GPP generally updates standard documents
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several times every year. So the UMTS protocols are good targets for the imple-
mentation with formal languages for automatic verification. There have been a
couple of case studies that designed UMTS protocols in SDL, some of which we
briefly introduce as follows.

P.J. Song et al. designed Wide-band Code Division Multiple Access (WCDMA)
radio interface protocols based on the 3GPP Release 99 specification in SDL[7].
The design goal was to verify UE protocolswith Tau Simulator in the SDL environ-
ment. Hence the design of WCDMA protocols focused on the UE side of the sys-
tem. Modeling each block in SDL did not follow the standard structure of its cor-
responding protocol specified in the 3GPP requirements. The UE side protocols
were designed fully in SDL including the Abstract Syntax Notation One (ASN.1)
encoding and decoding. But that SDL design had not been ported to a specific tar-
get system. It could be free from additional C coding because it is a stand-alone
system in the SDL environment only and the performance was not the main de-
sign issue. The functional behavior of the SDL design was verified successfully by
simulating that design with Tau Simulator. Afterwards another team of ETRI de-
signed a beyond-3G (B3G) system based on the 3GPP Release 5 specification[8].
They implemented a radio control protocol for the access network side, which is
called ‘RC’, and it corresponds to Radio Resource Control (RRC) in the 3GPP
specification. They used SDL for modeling the system but most of the functional
behaviors were implemented in inline C-code and external C libraries because one
of the main goals was a porting of the system to a real platform, the VxWorks
system[9]. Accordingly not much effort had been done in the SDL design and its
verification.

R.J. Skehill et al. at the University of Limerick developed distributed UMTS
signalling layers in SDL to construct a testbed for the Information Technologies
Programme (IST) Advanced Radio Resource management fOr Wireless Service
(ARROWS) project[10]. They used the so-called SDL Object Modeling Tech-
niques (SOMT) for the effective system design, which is now a general formal
design technique using SDL and its tool. Two UMTS signalling protocols, RRC
and Radio Access Network Application Part (RANAP), and Non-Access Stra-
tum (NAS) drivers for UE and the Core Network (CN) were designed together
in an SDL system for the verification of UMTS upper signalling layers. After
the simulation and reachability analysis for the whole system with Tau, each
protocol was integrated independently into Linux. They focused on signalling
functions when modeling each protocol in SDL but technical solutions for fast
implementation or good performance seem to be not considered seriously.

J. Colás et al. at the University of Málaga designed UMTS protocol layers
for the radio access interface in SDL with object oriented design techniques sup-
ported by SDL-2000[11]. They wanted to follow the structure division suggested
by the specifications unless they found more appropriate solutions. They espe-
cially tried to make the design have a good reusability because communication
protocols maintain many similarities along the evolution path of the systems.
They were interested in the quality of SDL design and used various object ori-
ented syntax of SDL-2000. As a consequence, their design seems to be structured
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well: very refined and optimized. Such a sophisticated design, meanwhile, may
have low readability due to its unfamiliar syntax especially to novices of the
language. In [12] they ported the layer 2 protocols to Windows 2000 and Linux
to measure their efficiency with regard to the data transmission rate.

3 ETRI’s 3GE-2005 System

In order to develop a reliable and ultimate 3GE system with an incremental
approach, each year ETRI makes an interim design for the final system, imple-
ments, and verifies with in-house testing. The 3GE system developed in 2005
is called 3GE-2005 system and it is based on the specification of 3GPP release
6 as indicated before. This system is composed of three subsystems: the ac-
cess system subsystem (ASS), the UE subsystem (UES), and the CN subsystem
(CNS). Figure 1 shows the structure of ETRI’s 3GE-2005 system focusing on
the ASS.

RFS

AMS

AMCS

RDCS

RRCS

MSCS

SNIS

Fig. 1. The structure of ETRI’s 3GE-2005 system emphasizing the ASS

The ASS contains the Evolved Radio Network Controller (E-RNC), the
Evolved Serving Node (E-SN), the Access system Modem baseband Subsystem
(AMS), and the Radio Frequency Subsystem (RFS). The target protocol of this
paper, RRCP is for both the RRC subsystem (RRCS) in E-RNC and the peer
part in the UES. The RRCS in E-RNC provides the functions and services of the
existing RRC and RANAP including MBMS services, such as signalling for call
processing, the radio resources management in the ASS, the radio resource con-
trol of a UE, the coordination between the E-RNC and the E-SN, and the message
routing between the E-SN NAS and the UE NAS.
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The 3GE-2005 system was designed with a general top-down approach. The
team designed the structure of ASS by analyzing the requirements of that system,
decided the order of message exchanges between modules in the subsystems with
Message Sequence Charts (MSC) for each functional process, designed the data
structures for messages, local databases, and interfaces, and finally implemented
functions of each module. When implementing and verifying modules of the
system they used a traditional implementation method with C language except
one module, RRCS. Because RRCS is the most complex part in the system,
they wanted to use SDL in designing RRCS for obtaining a functionally correct
implementation with formal verification techniques supported by SDL tools. In
order to make the most use of powerful verification techniques of an SDL tool,
however, not only RRCS but other modules in ASS and in UES must be included
in the SDL world. For this reason they designed an SDL system for the whole
system including both ASS and UES. Design issues of those additional modules
are discussed in section 5.1. Note that the main goal of that SDL system is to
make a functionally correct RRCS implementation. Figure 2 shows the top-level
structure of that SDL system which contains a UTRAN block and three UE
blocks for functional testing of RRCS at the multiple-UE’s condition. It also
contains additional three blocks: two for testers and one for emulating broadcast
transmission by air.

4 Two Design Approaches: Pure-SDL and Hybrid-SDL

The pure-SDL approach tries to only use SDL and other languages directly
supported by an SDL tool in designing a system for the maximal formality.
Figure 3 shows the flow of constructing a program by Telelogic Tau with the
pure-SDL approach. It tries to use no external C libraries and no external C-
code including header files except environment functions.

On the contrary the hybrid-SDL approach freely uses external C-code and
header files according to the given situation. The flow of constructing a program
by Tau with the hybrid-SDL approach used in our work is shown in Figure 4.
Note that we used ASN1C compiler[13] instead of ASN.1 utilities of Tau because
the data structure in C produced by ASN1C had to be shared with developers
in charge of other parts of ASS. The source code produced by ASN1C consist of
type definitions and encode/decode functions. ASN1C also provides a run-time
library required to use those encode/decode functions.

As described in the introduction, the hybrid-SDL approach is a reasonable
solution in the situation such that data structures or libraries written in C are
used in common. In addition, system developers that are not used to designing
in SDL are likely to give a preference to this approach when he has to use SDL.
In this situation this approach will probably take less time in designing than
the pure-SDL approach. Furthermore they need not stick to SDL tools; they
can use other tools or libraries freely for better performance. However we can
expect that the power of the SDL tool in use may be limited and that there
may be some potential problems in the implementation due to the integration
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Fig. 2. The top-level structure of the SDL system designed

of heterogeneous modules. We examine the strong and weak points of those two
approaches in detail from the results of design and verification in Section 7.

5 Designing the SDL System

This section describes design issues of the SDL system shown in Figure 2. Some
points for the overall design are explained and then a part of design details
follows with the hybrid-SDL and pure-SDL approaches.

5.1 Overall Design

Recall that the design goal of our SDL system is to build a functionally correct
RRCS implementation. In order to satisfy that goal we drew up the global design
as follows. First, block division and channel structure of the system were designed
according to the specification suggested by the 3GPP standards for the sake
of high readability and reliability. We modified the structure division only we
identified where it was really necessary to make changes for better performance.
Figure 5 shows the top-level design of block type UTRAN. Block RRCP is for
the target protocol that corresponds to RRCS, and block HMAC stands for
higher Medium Access Control (MAC) and includes the protocols, Radio Link
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Fig. 3. The flow of constructing a program by Tau with the pure-SDL approach

Control (RLC), Packet Data Convergence Protocol (PDCP), and Radio Packet
Tunneling Block (RPTB). The channel structure between RRCP and HMAC,
and between HMAC and MAC also follows the specification of service access
points (SAP) and logical channels of the standards.

The SDL design of the target protocol, RRCP in UTRAN is shown in
Figure 6. According to the standards, RRCP includes four entities for its func-
tional behavior, Dedicated Control Function Entity (DCFE), Broadcast Con-
trol Function Entity (BCFE), Paging and notification Control Function Entity
(PNFE), and Shared Control Function Entity (SCFE). Transfer Mode Entity
(TME) and Routing Function Entity (RFE) handles the mapping and routing
of messages between different entities respectively. We added Control Routing
Function Entity (CRFE) for the routing of lower layer configuration messages
between some function entities in RRCP, DCFE, BCFE, and PNFE, and lower
layer protocols because those functional entities exchange several pairs of those
configuration messages with each of low layers.

The second point of the overall design is for the lower layers, HMAC, MAC,
and PHY. Actually the porting of those protocols to a real platform is the work
of other team who did not use SDL so we did not have to implement complete
functions of those layers. For protocols inside HMAC: RLC, PDCP, and RTB, we
designed their structure according to the standard specifications. Those protocols
manage messages with a separate process for each connection according to the
transmission mode, e.g. acknowledged mode (AM) or unacknowledged mode
(UM). However we left out detailed massage manipulation functions such as
segmentation and reassembly, or ciphering for their future completion for direct
targeting from SDL designs. For the remaining lower layers, MAC and PHY, we
implemented the minimum functions required to pass messages correctly and to
exchange controlling messages with RRCP according to the specifications. The
modeling effort of those additional blocks took much less time, compared with
that of RRCP, because they don’t have much detailed processing to do.
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Fig. 4. The flow of constructing a program by Tau with the hybrid-SDL approach

The SDL system shown in Figure 2 contains two tester blocks for UE’s and
UTRAN respectively. The main goal of these tester blocks is to send appro-
priate triggering or response messages for testing UE’s and UTRAN. Block
UTRAN Tester also includes a NAS simulator for UTRAN because NAS exists
not in UTRAN but in CN. It exchanges RANAP and MBMS session manage-
ment messages with RRCP according to the specification. Block VRBN indicat-
ing virtual radio broadcast network is used to broadcast messages from UTRAN
to all UE entities because Tau does not support broadcast transmission with the
phrase ‘VIA ALL’.

Finally, we tried to use simple syntax instead of complex object-oriented fea-
tures supported by SDL-2000 for simplicity and reliability except some block
types for increasing reusability. Note that a major advantage of SDL is that it
is easy to learn, read and write, especially for beginners, owing to its intuitive
diagram and simple grammar. At first we wanted to use some object-oriented
syntax for reusability and systematization such as state aggregation but we had
to tiresomely check if Tau supports those syntax. The available version of Tau,
4.6.3, unfortunately, did not support many of SDL-2000 features. For the fea-
tures that are required but not supported by SDL such as pointers we could
use the special packages or libraries offered by Tau. Those were very useful for
complicated function implementation but their incompleteness also became the
problems for modeling.

5.2 Design Details for Message Handling

We skip the detailed design of each block and process on account of the limited
space. Note that we tried to increase the readability and scalability of our design
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Fig. 5. The top-level design of block type UTRAN

and we regretted that we could not use composite states in our design because
they are not supported by Tau. In this section we describe only a part of design
for RRCS message handling with the hybrid-SDL and pure-SDL approaches.

With the hybrid-SDL approach, we used the ASN1C compiler to handle the
RRCP definition in ASN.1 which was obtained from a slight modification of the
standard RRC definition[6]. ASN1C generated some C header files for the data
structure and some C functions for encoding and decoding of the data in class
definition, protocol data unit (PDU) definition, and information elements from
the RRCP definition. These functions provide application programming interfaces
(API) to handle RRCP messages. Figure 7 shows how RRCP handles a message for
radio resource management when it sends and receives that message respectively.
When sending such a message, RRCP initializes the message contents, encodes
them in ASN.1, constructs the message, and finally sends it. Receiving process of
a radio resource management message is in the opposite order; RRCP decodes the
ASN.1-encoded part, extracts the message type, controls radio control procedure,
and finally stores the message contents in its local database.

In order to process messages efficiently, we created C libraries, ‘make’, ‘pack’,
‘unpack’, and ‘store’ for making message contents out of information elements
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Fig. 6. The top-level design of block type RRCP

stored in the local database, for encoding them in ASN.1, for decoding the
message contents encoded in ASN.1, and finally for storing information ele-
ments required for call and MBMS processing in the local databases. For exam-
ple, the function fnRrcp make msgInitialDirectTransfer() fills up the con-
tents of ‘Initial Direct Transfer’ message with appropriate values and the data
from information elements stored in the database named ‘callInfo’ for the given
condition. In addition, we created another C library, ‘utility’ for extra func-
tions to process some miscellaneous work, e.g. fnRrcp initialize mbmsInfo()
to initialize the database named ‘mbmsInfo’.

With the pure-SDL approach, the built-in ASN.1 utilities of Tau are used to
handle the data in ASN.1. The data structures in the RRCP specification in ASN.1
were transformed automatically in SDL by those utilities. Local databases were
also transformed in SDL. Instead of C libraries we created the corresponding SDL
procedure for each function included in those libraries. We also used inline C cod-
ing supported by Tau where the modeling is difficult with SDL syntax only.

6 Verification of the Design

In order to verify the design of RRCP, we used simulation, validation with reach-
ability analysis, and testing on target. We used both SDL models designed with
the hybrid-SDL and the pure-SDL approaches. Figure 8 shows the verification
process we used.

First, we checked the functional consistency of the design with the test sce-
nario in MSC by Simulator UI of Tau at both single-UE and multiple-UE’s con-
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Fig. 7. Message handling procedure of RRCP for radio resource management messages

ditions. That test scenario was designed to check if the functional behavior of
the SDL model matches the design requirements of RRCS in normal situations.
During the simulation at the single-UE condition, there was neither mismatching
of logic flows nor semantic errors in SDL design for either model. Verification
of the design at multiple-UE’s condition is necessary to check if the resource
management functions of RRCP in UTRAN handle each of the UE’s without
any problem. In addition, the system may do wrong actions due to some signal
racing problems caused by the messages sent by multiple UE’s. Those errors are
usually due to the incorrectness or incompleteness of the design that cannot be
easily identified during the simulation at the single-UE condition. Fortunately
there was no error found during that simulation for either SDL model.

Next, we made a couple of reachability analyses of the design with Validator
UI of Tau for the multiple-UE’s condition. We skipped validation for single-UE
condition from the experience with simulation. Validation of the whole system
requires a lot of time and memory due to its huge size and high complexity
so we decided to decrease the scope of validation to the ‘attach’ process only.
We used two reachability analysis techniques supported by Validator UI, bit-
state and tree walk explorations. In case of the model designed with the hybrid-
SDL approach, we unfortunately failed to obtain the result due to unexpected
run-time errors. Those errors say that the program failed to read the value at
a specific location of system memory. From several experiments to clear the
cause, we found they are related to the libraries generated by ASN1C compiler.
Thorough exploration of the global state of the system might cause a memory
crash due to imperfect integration with C libraries that cannot be found in
ordinary situation. With the model designed with the pure-SDL approach, we
had not experienced any run-time errors. During that validation, we found some
weaknesses of the design that can produce errors in very exceptional situations
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such as extremely long transmission delay of a specific message which may cause
the signal racing problem. Owing to that validation we could obtain a more
reliable implementation by eliminating those weaknesses.

After verifying the design by simulation and validation, we ported each RRCP
module in UE and in UTRAN to the Linux platform by completing the envi-
ronment functions required for the target integration. The socket interface was
used for the communication with other modules. Before system testing between
UE and UTRAN, preliminary testing between two Linux-ported RRCP mod-
ules was performed to increase the possibility of its successful operation during
the final system testing. In system testing, only the RRCP module for UTRAN
was used to generate a UTRAN instance; UE instances were created from the
SDL model designed by other team. The goal of this testing was to verify the
inter-operability of UE entities and the UTRAN implementation developed by
different teams; the efficiency of implementations was out of interest this time.
Fortunately the testing on target was successful; there were no particular errors
except a couple of trivial ones due to some configuration problems. We note that
the testing on target was performed entirely by ETRI.

7 Comparative Evaluation of Two Approaches

From the result of design and verification, we evaluate the two design approaches
in various aspects and suggest a simple guideline for selecting an appropriate one
according to specific conditions.
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First, we would like to show the development time of our SDL system with
two approaches in Table 1. Each number in parentheses indicates the number of
members involved. Our team was composed of 6 engineers; two were SDL experts,
another had some experience with SDL, and the others had no experience with
SDL. All members were good at C programming except one. Actually we could
not start designing with two approaches at the same time due to our tight
schedule. First we designed with the hybrid-SDL approach and then with the
pure-SDL approach because we had some C-code of the previous system that
was a basis for the target system. Therefore Table 1 is not a fair comparison; it
just shows our result.

Table 1. The development time of our SDL system with two approaches

Hybrid-SDL approach Pure-SDL approach

Training 2 weeks (4) 1 week (3)
Implementing libraries 2 months (4) 1.5 month1 (3)
Modeling SDL system2 3 months (4) 1 month3 (3)

Verification 2 weeks (1) 3 weeks4 (1)

Notes 1. We could save some time owing to the experience with the hybrid-SDL
approach. 2. This includes debugging of the system. 3. We could use a
lot of SDL-code written by the hybrid-SDL approach. 4. This includes validation
time as well as simulation time.

After the development we discussed the strong and weak points of two ap-
proaches. We agreed that those points depend on the technical experience and
expertness of an engineer. Also the development condition is a significant fac-
tor to give preference to one approach. Our members who were C experts but
SDL novices said they preferred the hybrid-SDL approach because they could
use C-code in complex functions of the system. To the other members, however,
the pure-SDL approach was easier because they can use ASN.1 data structures
directly in the SDL system without troublesome conversion. According to the
time for learning design skills related to SDL and Tau, two approaches have
both pros and cons. The hybrid-SDL approach required some time for learning
how to connect the SDL system to external libraries, while it took some time to
learn SDL syntax and Tau-specific features with the pure-SDL approach. The
modeling speed of two approaches, according to our experience, depends on the
engineers; the hybrid-SDL approach would be faster for engineers who are C
experts but SDL novices, and the pure-SDL approach faster for others. As for
the frequency of errors made in design and the time for correcting them, we
agreed the pure-SDL approach is much better thanks to its integrated develop-
ment environment. Table 2 summarizes differences between them noticed from
our experiences.

According to the time required for verification and the application execution
time, comparing with the pure-SDL approach, the hybrid-SDL approach took
less time in performing ‘analysis ’and ‘make’. That was mainly because the source
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Table 2. Noticeable differences between two approaches related to the development

Hybrid-SDL approach Pure-SDL approach

Learning issues connecting SDL to C Tau-specific functions
Modeling speed faster to C experts/SDL novices faster to the others1

Frequency of errors more fewer
Debugging time longer shorter

Note 1. the engineers who are C novices or SDL experts

Table 3. The strength and weakness of two approaches

Hybrid-SDL approach Pure-SDL approach

· can use the exiting libraries · efficient/integrated design environment
· may be easier to C experts · higher readability and manageability

Strength · can easily collaborate with other · larger verification scope
team using data structures in C · higher reliability of the implementation

· direct use of ASN.1 data structures

· extra source management required · higher dependency of SDL tools
Weakness · some coding may be overlapped · expertise on SDL/tools required

· careful integration required · SDL-only coding can be difficult
· external tools may be used occasionally

Table 4. A simple guideline for selecting an appropriate design approach

Situation Recommendation

· when a lot of existing C-code and libraries can be used
· when collaborating with other team using C is required Hybrid-SDL
· when most members are SDL beginners and time is limited approach
· when complicated data processing is often required1

· when a new system is entirely designed
· when readability and reusability of code is important Pure-SDL
· when reliability of the implementation is the first priority approach
· when there is enough time for learning SDL and its tools

Note 1. C coding is easier for complicated data processing such as complex pointer
manipulations.

conversion from ASN.1 to SDL is performed each time in analysis with the pure-
SDL approach. With respect to the simulation time the pure-SDL approach
took more time because the simulator shows more detailed simulation results
with the pure-SDL approach. In validation, as we described before, we could not
compare two approaches due to the failures happened during validation with
the hybrid-SDL approach. Fortunately no errors happened during execution of
the implementations. The execution time will depend on the optimization of the
code and the characteristics of libraries used in each approach. We narrowed
down the scope of comparison to the execution time of the attach process in
order to find out the cause of difference. In several experiments, two approaches
did not show a significant difference in execution time. This result show that
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the performance of Tau with its built-in functionalities is good enough to be
used in the development of real-world network systems. In order to evaluate the
performance of the generated software exactly, however, more detailed analysis
and experiments are required.

According to our discussion, we draw the strength and weakness of the two
approaches as shown in Table 3. Table 4 is a simple guideline to developers in
the industry for the selection of an appropriate design approach. We note that it
was generated from our experiences and accepting this guideline as a general one
requires more experiments and experience. In addition, actually our division of
the design approach is rather idealistic because the pure-SDL approach is very
strict and difficult to follow completely. With a right understanding of the two
approaches, however, you can find a good compromise between them appropriate
for your situation.

8 Conclusions

Lately the industry has taken a great interest in the reliability of products to win
in the fiercely competitive market and formal approaches to the development of
a product are now coming into their sight. Especially in the telecommunication
area, more and more successful stories have been reported enough to encourage
the industry. However people in the industry still seem to hesitate to apply
formal methods in development because they usually don’t know well how to
start with a new approach and how to migrate from the existing approach.
Sometimes they want to use a formal approach partly in a specific condition as
a trial. But they usually don’t have enough information that will be direct help
to their development.

This paper showed an experience in the development of a network proto-
col, RRCP for ETRI’s 3GE systems, with two different design approaches: the
hybrid-SDL and the pure-SDL approaches. We also draw the strength and weak-
ness of those two approaches in several aspects from our experience and present
a simple guideline for the selection. Actually the hybrid-SDL approach can be a
practical solution when you migrate from the traditional approach with C lan-
guage or when you have to share the data structure or C libraries with other
team. But you should be careful in using external tools or writing external C-
code to obtain a reliable implementation because imperfect integration of SDL
and C code may cause unexpected run-time errors. The pure-SDL approach gives
higher readability, reliability, manageability, and verification capability than the
hybrid-SDL approach in general and you can easily handle all sources in the inte-
grated environment provided by the SDL tool. Hence the pure-SDL approach is
recommended when you start to design a new system entirely. You can also find
a good compromise between the two approaches which is appropriate for your
situation. To derive detailed criteria to decide design methods for various situa-
tions, further systematical analysis of design approaches should be performed.
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The International Telecommunication Union (ITU) Telecommunication stan-
dardization sector (ITU-T) now has an objective to integrate its standard lan-
guages such as SDL, MSC, and ASN.1 using Unified Modeling Language (UML)
2[14] as a framework and defining UML 2 profiles for those languages[15]. Owing
to the enhanced features of version 2 such as formal syntax added and powerful
commercial tools supporting UML 2, UML seems ready to be an excellent tool
in the formal development of a general system. In order to encourage the indus-
try to come into this formal world, we hope for a lot of practical experiences in
various situations with UML also.
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Abstract. Creating and maintaining tools for domain-specific modeling
languages (DSML) demands time and efforts that often discourage po-
tential developers. However, several tools are now available that promise
to accelerate the development of DSML environments. In this paper, we
evaluate five such tools (GME, Tau G2, RSA, XMF-Mosaic, and Eclipse
with GEF and EMF) by observing how well they can be used to create
graphical editors for the Goal-oriented Requirement Language (GRL),
for which a simplified metamodel is provided. We discuss the evaluation
criteria, results, and lessons learned during the creation of GRL editors
with these technologies.

1 Introduction

Domain-specific modeling languages (DSML) are high-level languages specific
to a particular application or set of tasks. They are closer to the problem do-
main and concepts than general-purpose programming languages such as Java
or modeling languages such as UML. Many companies have such languages de-
veloped in-house to satisfy some of their specific modeling, scripting, or testing
needs. Improvements in productivity and comprehensibility are often cited as
benefits. Still, supporting a development environment for DSML with compilers,
(graphical) editors, translators, debuggers and other such tools is often onerous
and prevents the rapid adoption and use of DSML.

In the past decade, a strong interest in model-driven engineering has resulted
in various theories and technologies that support easier and faster development
of DSML environments. The purpose of this paper is to evaluate some of these
tool-supported technologies, namely the Generic Modeling Environment (GME),
Xactium’s XMF-Mosaic, the combination of the Eclipse Modeling Framework
(EMF) with the Graphical Editing Framework (GEF), and the UML profiling
capabilities of Telelogic Tau G2 and of Rational Software Architect (RSA). The
general context is one where we want to develop a graphical editor for an evolving
graphical modeling language defined by a metamodel. A common case study,
based on a simplified version of the Goal-oriented Requirement Language (GRL),
is used to assess the maturity of these technologies.

This paper is structured as follows. Section 2 describes our case study and
evaluation criteria. Each of the five tools is used in Section 3 to develop simple
GRL editors (with lessons learned), and then section 4 summarizes their main
strengths and weaknesses. We present our conclusions in section 5.

R. Gotzhein and R. Reed (Eds.): SAM 2006, LNCS 4320, pp. 183–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Evaluation Context

Our context is one where we are interested in approaches that can help develop
new DSML such as those found in ITU-T and OMG, together with early proto-
types for modeling environments. Accordingly, a representative metamodel for
such a language and a set of evaluation criteria are suggested to enable compar-
isons between the vari-ous approaches.

2.1 Simplified GRL Metamodel

Part of the proposal for ITU-T’s User Requirements Notation [9], the Goal-
Oriented Requirement Language (GRL) is used to specify and reason about
business or system goals, alternative means of achieving goals, and the rationale
for goals and alternatives. The notation is applicable to non-functional as well
as functional requirements. GRL has concepts for various intentional elements
including goals, softgoals, tasks, and beliefs. Various types of contributions link
these elements into AND-OR graphs used to evaluate strategies that best balance
the (often conflicting) goals stakeholders have in a system.

For the purpose of our evaluation, we have created a simple metamodel that
includes a subset of the language concepts (Figure 1). The classes and associ-
ations were structured to cover the most interesting element notations (named
nodes, links between nodes, links attached to links) and situations commonly

GRLModel
+ lastUpdate : Date

IntElement
+ name : String
+ description : String

GRLGraph
+ name : String
+ description : String1..*

+contains

1..*

0..*+composedOf 0..*

+partOf

Person
+ name : String
+ email : String0..*1..*

+belongsTo

0..*

+owns

1..*

Belief

0..1

0..*

+hasHolder 0..1

0..*

CriticalElement
+ criticality : Boolean

Goal Softgoal
0..1

0..*

+parent

0..1

+isComposedOf
0..*

Contribution
- type : ContributionType
- isCorrelation : Boolean

0..*+isExplainedBy 0..*

+hasContributor

+isContributorOf

GenericGoal
+hasContributee

+isContributeeOf

Task

0..*

0..1

+isComposedOf
0..*

+parent
0..1

Fig. 1. Simplified GRL metamodel
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found in metamodels (e.g., associations, generalizations, aggregations, typed at-
tributes, different multiplicities, and navigation). This metamodel is not meant
to be a realistic representation of GRL (this is outside the scope of this study).
A more complete discussion of the GRL elements and semantics can be found
in [1,15].

In terms of syntactical notation elements in the graphical representation, the
symbols corresponding to the metamodel in Figure 1 are summarized in Figure 2.

Contribution

Correlation

(b) GRL Links

?
Break Hurt Some- Unknown

Make Help Some+ Equal

(c) GRL Contributions Types 

Goal  

Softgoal

Belief

(a) GRL Elements

Task  

Fig. 2. Graphical symbols for the selected GRL subset

2.2 Evaluation Criteria

Our study puts a particular emphasis on the following evaluation criteria, which
are most relevant in our context:

– Graphical completeness: Can we represent all the notation elements?
– Editor usability: Does the editor generated support undo/redo, load/save,

simple manipulation of notation elements and properties, etc.?
– Effort: How much time and effort is required to learn the approach and

produce DSML tools?
– Language evolution: How are older models handled when the language or

metamodel evolves?
– Integration with other languages: How can we support additional languages

(e.g., Use Case Maps in combination with GRL) or integrate with other
tools?

– Analysis capabilities: Can we easily analyze or transform models produced
with the graphical editor?

3 Evaluation of DSML Development Tools

In this section, we study five tools that support the development of DSML envi-
ronments. Our selection is based on the relative popularity or technical potential
of the tools, but many other tools could be studied as well (the DSM Forum dis-
cusses some of them [3], including the well-known MetaCase+ [12]).
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3.1 Generic Modeling Environment (GME)

The Generic Modeling Environment is a configurable framework developed at
Vanderbilt University and used to create domain-specific modeling environ-
ments [8]. Version 4.0 was used in our evaluation. Version 5.0 has been released
since then but the functionalities we used in our study have essentially remained
the same.

In GME, a DSML is described as a paradigm, which is essentially a meta-
model. GME comes with a plug-in (actually a DSML) that can be used to
describe paradigms with class diagrams. Figure 3 presents our GME paradigm
capturing our GRL metamodel.

GME’s meta-metamodel offers stereotyped concepts such as Atom (elemen-
tary object), Model (which can have inner parts and structures), Connection
(relationship between two objects within one model), Reference, Attribute, Set
(similar to a UML aggregation) and other FCO (first-class objects). Most of
the classes in our original GRL metamodel map directly to FCOs and Atoms in

Contribution
<<Atom>>

isCorrelation : bool
type : enum

BeliefContribution
<<Connection>>

ContributionDestination
<<Connection>>

SoftGoalSelf
<<Connection>>

TaskGoal
<<Connection>>

PersonRef
<<Reference>>

BeliefPerson
<<Connection>>

SoftGoal
<<Atom>>

Goal
<<Atom>>

GenericGoal
<<FCO>>

GraphPerson
<<Connection>>

Person
<<Atom>>

email : field
name : field

GRLGraph
<<Model>>

name : field
description : field

GRLModel
<<Model>>

lastUpdateDate : field

IntElement
<<FCO>>

name : field
description : field

Belief
<<Atom>>

ContributionSource
<<Connection>>

Task
<<Atom>>

CriticalElement
<<FCO>>

slevel : enum
criticality : bool

0..*

0..*

0..*

parent
0..1

isComposedOf 0..*

0..*

hasHolder 0..1

0..*

0..*

0..*

0..*

owns
1..*

isContributeeOf
0..*

isContributorOf
0..*

0..*

dst
0..*

src
0..1

isExplainedBy
0..*

hasContributee
1

hasContributor
1

0..*

0..*

belongsTo
0..*

composedOf 0..*

partOf

1..*

Fig. 3. GRL paradigm (metamodel) in GME
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the GME metamodel, but additional Connection classes are also required for the
original associations that are meant be manipulated (e.g., TaskGoal). Predefined
data types such as field, enum, and bool are also available. An Aspect can be used
to control the visibility of elements in the editor. OCL constraints can be added
to increase the precision of the paradigm and to enable syntactical validation of
user models in the target DSML editor.

GME supports the visual drawing of an object with a COM object called
decorator. This allows one to associate the GRL shapes and symbols of Figure 2
to their respective concept in the paradigm. Simple bitmaps can be used as
icons, but in this editor (implemented mainly by Y. Chu [2]) COM objects were
programmed in C++, with great efforts, to reproduce the symbols correctly
and have them automatically resized according to the length of the labels they
contain. GME also offers a higher-level C++ interface called Builder Object
Network, which is simpler to use than plain COM decorators but which is more
limited.

Once a paradigm is created (and the decorators defined), it can be registered
in GME and then used as an editor, as shown in Figure 4. The framework
provides many features for free, including loading/saving (binary and XML),
multiple undo/redo, drag and drop interface for the creation of model elements,
validation against the metamodel multiplicities and OCL constraints, printing,

Fig. 4. GRL editor with GME
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zooming, overviews, property views, etc. Multiple diagrams from the same model
can be viewed and edited at the same time (in different sub-windows). The
documentation is very good. However, we have found it difficult to associate
decorators to links (e.g., for GRL levels of contributions) and intermediate nodes
had to be defined, therefore hurting the usability of the editor. We could not
find a way to visualize GRL correlations properly either.

Evolving paradigms can preserve backward compatibility if elements, links
and references are added but not renamed or deleted (there is more robustness for
attributes). Multiple paradigm versions can be registered, allowing one to open
older files. Finally, it is possible to create our own analysis and transformation
functions (and interfaces to the model are provided), but at the cost of fairly
heavy C++ programming.

3.2 Telelogic Tau G2

Telelogic Tau G2 is a model-driven development environment [14] that supports
UML 2.0. It can also be tailored and customized to specific modeling domains
such as GRL via UML 2.0 profiles [13]. There are two ways of using profiles in
this environment:

– Stereotype Mechanism (SM): Stereotypes that extend basic UML elements
are used, and extensions include customizations of names, attributes, and
appearance. In this way, each GRL element can be implemented as a stereo-
type of a UML class. Although constructing a profile is relatively simple, the
created modeling environment still includes all the basic UML elements that
were extended. In essence, this does not lead to a real domain-specific envi-
ronment, just to the addition of new and more precise modeling elements.

– Metamodel Extension Mechanism (MEM): In addition to the functionality
of the previous SM category, this mechanism provides metamodel extensions
of non-basic UML element, such as class diagrams, by extending the UML
metamodel itself. GRL models can hence be represented as a metaclass ex-
tension of UML class diagrams. This mechanism is more powerful but is
more complex to implement. However, the resulting environment can be re-
stricted to a domain-specific modeling language, without being polluted by
other UML constructs.

Developing a MEM profile requires the creation or modification of dozens
of classes and diagrams, which are too complex to be presented here (suffice
it to say that most of the GRL concepts became extensions of the Class and
Association base metaclasses in UML). Advanced knowledge of the UML 2.0
metamodel itself is also required. In addition, the process demands many manual
steps inside and outside the modeling environment, for instance: installing the
TAU SDK with FIDebugger, creating the profile directory structure and then the
profile project in TAU, creating sub-packages for the metamodel profile, adding
the metamodel classes representing the core UML structure and then classes
representing the GRL customizations, and finally creating the TCL script that
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must accompany the profile. The SM approach is more straightforward, yet is it
still not trivial; Tau’s usability for creating and deploying profiles is still rather
weak (but improving with each new version).

Two GRL editors were created with Tau G2 2.4 using both profile approaches
(version 2.7 has been released since then). Figure 5 shows a GRL model example
created with our metamodel-extended profile.

 

Fig. 5. GRL editor based on a UML 2.0 profile with Tau G2

The MEM approach is superior to the SM approach in many ways. For in-
stance, the former enables one to customize diagram types as well as the user
interface itself. Using this mechanism, a custom GRL diagram type was created
along with a customized palette and model view, hence preventing one from mix-
ing elements from different notations. This palette can be used to create GRL
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elements in the model directly, whereas in the SM approach classes need to be
created and then their stereotype changed via menus.

Editors implemented with Tau G2’s profiles get many functionalities for free,
including loading/saving models, printing, multiple undo/redo, zooming, prop-
erty sheets, and some validation against the UML 2.0 metamodel. But the best
benefit is likely the integration to the rest of UML 2.0 models (possibly with
other profiles), something that is not available with GME.

There are however several limitations for the support of the graphical syntax:
the appearance of links cannot be customized in TAU (which prevents the visual-
ization of correlations, and more advanced types of GRL links not studied here)
and restrictions on end points (constraints) require the programming of Tau
agents in C++. Additionally, other GRL concepts like actor boundaries, which
encompass intentional elements and links, cannot be visualized either (this is
also the case for GME). Documentation on how to create profiles was lacking at
the time this study was done, but we acknowledge the help of Tau’s developers,
who provided guidance and answers.

3.3 Rational Software Architect (RSA)

IBM’s Rational Software Architect (version 6.0) is a UML 2.0 compliant
integrated software development environment, built on top of the Eclipse plat-
form [7]. Unlike Tau G2, RSA only provides the stereotype mechanism for defin-
ing profiles, which leads to less sophisticated editors than Tau’s.

Creating a profile for GRL in RSA is simpler than with Tau. A user needs
to create a UML profile project (so this is directly supported at the user inter-
face level), select metaclasses to be stereotyped, (optionally) specify icons and
images, and release the profile. In our example, GRL intentional elements are
stereotypes of the UML Class metaclass, and GRL links are stereotypes of the
UML Association metaclass or the Association Class metaclass. The actual GRL
diagram is simply a UML class diagram with the extra GRL stereotypes. For the
intentional elements, custom icons and shapes were used, but no such graphical
customization exists for link styles. For GRL contribution and correlation links,
Association Class links were used to enable the use of contribution types (see
Figure 6).

As with the previous tools, loading/saving, multiple undo/redo, zooming, and
property sheets are provided by the tool environment. This approach also ben-
efits from an integration to UML 2.0, metamodel and diagrams alike.

The usability of the GRL editor produced in RSA is rather weak. For in-
tentional elements (extensions of Class), the palette provides easy access by
clicking on the Stereotyped Class icon and then selecting the desired stereotype
from a list. However, for stereotypes that do not extend the UML Class meta-
class (such as GRL Correlation, which extended the Association Class metaclass)
these stereotypes have to be applied manually using the Properties view.

Other issues similar to the SM approach in Tau have been observed. RSA does
not support custom restrictions on the end points of UML links, and custom
diagram types cannot be created (and hence class diagram elements can get
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mixed to the GRL diagram, for instance multiplicities are shown by default, as
shown in the dashed circles in Figure 6). The user interface cannot be customized
directly via the profile, however RSA allows for customization via its Eclipse-
based Java API (but this was beyond the scope of this study).

Fig. 6. Example of GRL diagram produced using a UML 2.0 profile with RSA

3.4 XMF-Mosaic

Xactium XMF-Mosaic is an integrated, Eclipse-based, extensible development en-
vironment for domain-specific (modeling) languages [16]. Building on standards
such as MOF and OCL, it supports the definition of grammars and the generation
of parsers. It also supports domain model design with constraints, model transfor-
mations, and editor generation by providing the DSML metamodel to the Xtools
module. This tool also has a unique feature: concrete textual and graphical syn-
taxes can easily be provided and supported for the same language.
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Fig. 7. GRL editor with XMF-Mosaic

In XMF-Mosaic, the domain model (metamodel) is defined with a class dia-
gram in MOF/XCore, and OCL constraints can be added (via menus) to improve
its precision. The environment supports the creation of snapshots, which are es-
sentially object diagrams allowing one to test the metamodel and its constraints
at an early stage. This is useful in our context, where a new language is being
developed.

A graphical editor can be generated automatically from the domain model,
however this feature still contains many limitations and bugs. For instance, if
a superclass has an association with another class, an automatically generated
editor supports creating the link for the superclass but not for its subclasses.
An additional problem is that this approach generates visual items/nodes for
every class in the domain model (including link classes) as the tool has limited
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understanding of the semantics. Potential solutions include coding the necessary
elements manually, or generating the whole code first and deleting the parts cor-
responding to unnecessary elements (the first option was selected in our editor).

Different icons can be associated to classes in the palette by editing the
type.xmf file, and the shapes of the GRL elements in the model can also be
changed to bitmaps (see the example in Figure 7). For GRL beliefs, connecting
a node to an existing link seemed to be impossible and a workaround (involving
an invisible node) had to be used. Also, we could not find a way to modify link
ends beyond symbols used in class diagrams.

XMF-Mosaic provides good feedback during the development of the domain
model and of the editor. Additionally, the building process is incremental and
not everything needs to be recompiled upon modifications, which accelerates
the development of editors. The text console, which offers a different mode of
interaction, was well appreciated.

Although the approach suggested by this tool is very interesting in theory,
the early age of XMF-Mosaic (version 0.7 was used in this experiment) results
in several weaknesses. For instance, there is no undo/redo in the GRL editor
produced, and one cannot load/save models; this prevented us from evaluating
how well the evolution of metamodels is supported. Also, the OCL constraints
in the domain model are not transferred to the editor generated (and cannot be
used for validation). Documentation was severely lacking, but we acknowledge
the help of Xactium’s support team who answered many questions. We have
quickly looked at version 1.0 (released at the end of this study) and, although
the editor generation works better with an attempt at supporting the saving of
models, most problems cited here still remained.

3.5 Eclipse EMF+GEF

Eclipse is an open source and extensible Java-based platform that provides many
useful services for the creation of textual and graphical editors. Versions 3.0 and
3.1 were successively used, and now version 3.2 has been released. For building
graphical editors, two Eclipse plug-ins are especially relevant.

The Eclipse Modeling Framework (EMF) is a framework and code generation
facility for building tools and other applications based on a structured data
model [4]. From a metamodel specification described as an XML Schema or as a
class diagram in Rational Rose (such as the one in Figure 1), EMF provides tools
and runtime support to produce a set of Java classes for the metamodel, a set of
adapter classes that enable viewing and command-based editing of the model,
and a basic editor. The Graphical Editing Framework (GEF) is a framework that
allows developers to take an existing application model and quickly create a rich
graphical editor for it. It can easily be hooked to EMF metamodels [5].

Based on our experience in creating an Eclipse plug-in editor for the Use Case
Map notation called jUCMNav [11], which uses GEF and EMF, we decided to
add support for GRL to this tool. The metamodel was created as a class diagram
with Rational Rose, and then imported into Eclipse by EMF. This mechanism,
which we have found reliable and easy to use, generates EMF classes in Java
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Fig. 8. GRL editor with Eclipse, GEF and EMF

that can be connected to GEF-based GUIs. The only noticeable problem we have
observed with this code is that it does not enforce the minimum and maximum
multiplicities found in the metamodel. OCL is not supported either.

Much effort is required to learn EMF and GEF and to understand how they
are combined. Documentation (including tutorials and books) and useful dis-
cussion forums are however available. The quality of the resulting editor is very
high, especially from a usability viewpoint. The Eclipse platform, together with
EMF and GEF, offers several useful services that can be used with little effort:
loading/saving (in XMI), zooming, tool palettes, overviews, exporting to images,
offering extension points for other applications to access the models created, and
multi-platform support. However, much programming effort is required to imple-
ment the various shapes and connectors, multiple undo/redo, label editing, and
property sheets. The entire notation can be supported (see Figure 8), although
at this time our prototype does not support beliefs attached to contributions
(this proved to be difficult, like for all the other tools).

Once a basic editor is in place, adding new functionalities becomes efficient.
Also, adapting the editor to changes in the metamodel is fairly simple. If new
attributes, class, or associations are added to the metamodel, then the editor can
still open files created with the previous version. However, deleting or renaming
classes or attributes can lead to backward incompatibility problems.

Finally, it is important to note that such a plug-in enables the integration of
the editor with other modeling and programming tools offered for the Eclipse
platforms.
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4 Comparison Summary

Many items related to the evaluation criteria introduced in section 2.2 were
discussed in the section 3, and the current section provides a brief summary with
additional insights based on our experience with these tools. Table 1 provides a
quick overview of the strengths and weaknesses of each tool.

Table 1. Overview of comparison

GME Tau G2 RSA XMF-Mosaic Eclipse

Graphical Completeness Medium Low Very Low Low High

Editor Usability Medium Medium Low Low Very High

Effortlessness Medium Low High Low Very Low

Language Evolution High ? ? ? Medium

Integration Low High High Low High

Analysis / Transformation Medium Medium Low High Medium

– Graphical completeness: The Eclipse approach is the only one that allowed
reproducing the GRL notation with fidelity (including more advanced con-
cepts like actor boundaries). GME did well in general, except for a few re-
strictions. Both required substantial additional programming. RSA offered
the least flexibility for this criterion.

– Editor usability: The best usability is offered by the Eclipse editor (by far) in
terms of user experience, tool feedback, and overall number of features. All
tools except XMF-Mosaic support multiple undo/redo and loading/saving
of models. The manipulation of elements is somewhat awkward in RSA.

– Effort: All these tools require some effort for learning the technology and for
creating a DSML editor. The profile creation and usage mechanism in RSA
is likely the easiest one among the five studied here, followed by GME, and
Eclipse is definitely the worst.

– Language evolution: When the language metamodel evolves, Eclipse and
GME share many common characteristics regarding backward compatibility
(with files saved using the previous version). The time spent for fixing the
editor is small in GME and, again, fairly high in Eclipse (although the mod-
ifications are not difficult in our experience). This aspect was not tested in
XFM-Mosaic because models could not be saved and reloaded.

– Integration with other languages: Tau G2 and RSA both offer a direct integra-
tion with UML 2.0 as well as with other profiles. The Eclipse solution offers
a different integration via extension points and the simultaneous presence
of multiple plug-ins (some of which might be related to other languages).
Integration appears to be weak with XMF-Mosaic (although it has some
potential, being Eclipse-based) and similarly with GME, more isolated.

– Analysis capabilities: This aspect was not thoroughly studied in our exper-
iments. Such capabilities appear to be weak in RSA. Tau G2 supports the
concept of agents, which can be programmed (in C++ and possibly TCL) to
examine/transform models. GME offers interfaces (in COM/C++) to access
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and transform models. Eclipse/EMF provides Java interfaces to easily ac-
cess models, but transformations are manual. XMF-Mosaic is probably the
most promising environment in this category, with specific (and standard)
languages for analysis and transformations. Note also that the only envi-
ronment that generates editors where models are checked against the OCL
constraints in the metamodel is GME.

5 Conclusions

This paper compared five different tools for the generation of development envi-
ronments targeting domain-specific modeling languages. A particular emphasis
was put on the generation of graphical editors with a case study involving a
simple but representative subset of the Goal-oriented Requirement Language
whose abstract syntax is specified with a metamodel. Editors were created with
each tool, and our experiments helped us compare the approaches against cri-
teria such as graphical completeness, usability, development effort, handling of
language evolution, integration with other languages, and analysis capabilities.

For simple prototyping of modeling language editors, GME offers an interest-
ing balance between metamodel precision and validation, ease of editor genera-
tion, and usability of the editor. For serious, industrial-strength editors, Eclipse
(with EMF and GEF) appears to be the most viable (and multi-platform) so-
lution among those studied here, and this is in part why GRL tools such as
jUCMNav [11] and OpenOME [17] are headed this way. However, the develop-
ment effort will be proportional to the benefits. If the integration with UML 2.0
is a must, then Tau G2 and its metamodel extension mechanism for profiles has
several interesting benefits over RSA, which is currently limited to a stereotype
mechanism. XMF-Mosaic brings novel and promising ideas in the DSML area,
but at this time it still suffers from a lack of maturity.

To alleviate some of Eclipse’s weaknesses in terms of required development
efforts, a new plug-in called Graphical Modeling Framework (GMF) [6] attempts
to provide a generative component and runtime infrastructure for developing
graphical editors based on EMF and GEF. We plan to study GMF in the near
future. We also plan to continue the integration of GRL and UCM in jUCMNav,
and to improve its analysis and transformation features.
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D.: jUCMNav: une nouvelle plateforme ouverte pour l’édition et l’analyse de
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Abstract. The User Requirements Notation (URN) combines the Goal-
oriented Requirement Language (GRL) with the Use Case Map (UCM)
scenario notation. Although tools exist in isolation for both views, they
are currently not meant to work together, hence preventing one to ex-
ploit URN to its fullest extent. This paper presents jUCMNav, a new
Eclipse-based tool that supports both UCM and GRL in an integrated
way. jUCMNav supports links between the two languages that can be
exploited during analysis. An overview of the current editing and anal-
ysis capabilities is given, with a particular emphasis on the new concept
of GRL strategies, which simplify the evaluation of GRL models. The
extensibility of the tool is also discussed.

1 Introduction

The User Requirement Notation (URN) [1,8] enables the modeling and analysis
of user and system requirements at a high level of abstraction. It combines
two complementary views: the Goal-oriented Requirement Language (GRL) for
modeling goals, (non-functional) requirements, alternatives, and rationales [16],
and the Use Case Map (UCM) notation for operational scenarios superimposed
onto architectural components [17]. An overview of URN’s concrete syntax is
given in Appendix A, and a simple URN model is introduced in Section 2.

Tools exist in isolation for each individual view. The UCMNav tool [12] sup-
ports the various applications of the UCM notation via an X11-based graphical
editor and transformation procedures to various target languages (including Mes-
sage Sequence Charts). UCMNav however suffers from usability and maintain-
ability issues and only the scenario-oriented view of URN is supported, not GRL.
For creating and analysing GRL models, the best solution currently available is
OpenOME [18]. This visual editor supports multiple goal and agent languages
(including GRL, the NFR framework, and i*) and can be integrated to different
development environments (Protégé and Eclipse). However, as it does not cover
scenario languages, URN is again only partially supported.

This paper introduces jUCMNav, a new open-source tool for editing and
analysing URN models. This tool is a plug-in for Eclipse, an extensible Java-
based development platform. jUCMNav was first developed to support the UCM
notation [9], but GRL was recently added to achieve complete coverage of URN.

R. Gotzhein and R. Reed (Eds.): SAM 2006, LNCS 4320, pp. 198–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Towards Integrated Tool Support for the User Requirements Notation 199

This tool enables the creation of links between elements of both views, hence pro-
ducing an original and highly desirable integration. A particular emphasis was
put on producing a usable and maintainable tool to support transformations and
explore extensions to the notation.

In this paper, our goal is to provide an overview of jUCMNav and of its
capabilities, as this is the first tool that supports the URN notation in its entirety.
A simple URN model is first introduced in Section 2. Section 3 gives an overview
of jUCMNav’s architecture and metamodel while Section 4 presents the editing
capabilities of the tool. Section 5 describes analysis capabilities, with a particular
emphasis on the new concept of strategies, which support multiple evaluations of
GRL models in a simple way. In Section 7, we give an overview of the extensibility
of the tool, and then we conclude with a discussion of ongoing development work.

2 A Simple URN Model

This section includes a brief example that illustrates part of the URN notation
and some of its typical uses. The interested reader can access more comprehensive
tutorial material online1.

The context is the following. Since security has become an important objective
in a company that develops Web-based applications, the company is considering
improving how to access these applications securely. Different stakeholders may
have different concerns related to that new feature. For instance, management
is interested in minimal costs, users desire a system that is easy to use, and
company shareholders want to see a good return on their investments. Also,
alternative means of authentication (e.g., passwords, cardkeys, or biometric in-
formation) can lead to different impacts on how well security is achieved, and at
what cost.

In GRL, softgoals (clouds) are used to express qualitative and non-functional
concerns such as security and performance, whereas goals (ellipses) are used
to denote functional concerns. Tasks (hexagons) usually represent element of
solutions used to achieve goals. All these types of intentional elements can be
decomposed as AND/OR graphs, and they can also contribute to each other
at various degrees, positively or negatively. An example GRL model capturing
some of the aspects of our example is shown in Figure 1.

Stakeholders can be captured as actors (dashed circles), which can include
intentional elements of interest (see Figure 2). Actors may depend on each other
to achieve goals or tasks, or for resources to be produced. One such dependency
is depicted in our example: shareholders depend on users for a high utilization
of the system. The ease of use on one side can hence influence the return on the
investment on the other side.

Some aspects of requirements are more operational or architectural in nature
and are better represented as scenarios. The UCM view models scenarios as
causal sequences of responsibilities (crosses on a path). Scenarios evolve from
1 Please see http://jucmnav.softwareengineering.ca/twiki/bin/view/ProjetSEG/ and

http://www.UseCaseMaps.org for tutorials, tools, and demonstrations.
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Fig. 1. Simple GRL diagram with decompositions and contributions

start points (filled circles), representing pre-conditions or triggering events, to
end points (bars), representing post-conditions or resulting events. The various
scenario elements can be bound to actors and architectural components (rect-
angles). Paths can be forked and joined using alternatives and concurrency. An
AND-Fork is used in Figure 3 to split the path into two concurrent paths. Com-
plex maps can be decomposed in sub-maps. Stubs (diamonds) are containers for
such sub-maps, called plug-ins. Start/end points in the plug-in can be bound to
input/output segments of the stubs, hence ensuring continuity of the scenarios
across multiple map levels.

URN models can help answer many analysis questions at that level, such as:

– How are the top-level goals affected by a given selection of alternatives? For
instance, each of the alternative authentication task could have side-effects
(called correlations in GRL) on other goals in the system, e.g. cost. The best
trade-off can hence be searched by studying multiple combinations, which
we will call strategies in Section 5.1.

– How best can we satisfy the goals of the various stakeholders?
– What is the most suitable component architecture to support the scenarios

while achieving a good global trade-off?
– If some selected GRL tasks and goals describe operations or activities, are

they supported by scenarios in the UCM model?
– Are the scenarios documented the ones stakeholders really want?
– What happens to the scenarios when objectives change, and vice-versa?

However, to answer such questions and help automating the analysis process,
the elements of the two views need to be linked explicitly. This is one of the
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Fig. 2. Simple GRL diagram with actors and dependencies

Fig. 3. Simple UCM diagram (map)

main motivations behind the creation of the jUCMNav tool. To enable this
support, we created a metamodel for GRL and linked it to the UCM part. We also
created implementation metamodels to generalize and reuse the implementation
mechanisms already present in jUCMNav’s UCM editor. These are explained in
the next section.

3 jUCMNav Architecture and Metamodels

Based on a Model-View-Controller (MVC) architecture, jUCMNav makes exten-
sive use of two complementary Eclipse plug-ins: the Graphical Editing Frame-
work (GEF) [5] and the Eclipse Modeling Framework (EMF) [4]. GEF provides
rich reusable components and a flexible infrastructure for creating graphical ed-
itors (MVC’s view and controller). EMF handles the model part of MVC with
a set of Java classes generated automatically from a metamodel (e.g. URN’s)
commonly expressed with UML class diagrams. EMF also provides the serializa-
tion of models in XMI, hence automating the saving/loading of models. Changes
to the metamodel are automatically replicated in the implementation with min-
imal coding effort. However, we observed that several types of changes (e.g.,
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deleting/renaming an attribute or a class) can break backward compatibility of
the XMI files produced [3].

We have developed two distinct metamodels in order to split the core URN con-
cepts from the additions required to capture graphical layout information as well
as elements and attributes that have no semantic impact. Thus, we separated the
abstract syntax from the internal representation of the concrete graphical syntax.

The abstract metamodel defines the concepts of both URN views. For the
GRL sub-notation, the abstract syntax metamodel in Figure 4 defines basic GRL-
Graphs, which contain intentional elements (softgoal, goal, resource and task),
beliefs, actors, and links (contribution, decomposition and dependency). For the
UCM sub-notation (not shown here), the metamodel defines concepts such as
UCMmaps, which contain component references, path nodes, and node connec-
tions. Different sub-types of path nodes exist, such as start and end points, re-
sponsibility references, AND/OR forks and joins, waiting places, and timers. The
complete metamodel also includes classes and associations describing component
and responsibility definitions, performance annotations, and scenario definitions.

IntentionalElementType

Softgoal
Goal
Task
Ressource

<<enumeration>>

Belief

author : String

IntentionalElementRef

criticality : Criticality = None
priority : Priority = None

IntentionalE lement

type : IntentionalElementType
decompositionType : DecompositionType = And

0..*

1

-refs 0..*

-def 1

ElementLink

LinkRef

1

0..*

-link 1

-refs
0..*

BeliefLink

ActorActorRef

0..1
0..* -parent

0..1

-children
0..*

1
0.. *

-contDef

1-contRefs0.. *GRLGraph 0..*

1

-contRefs

0..*-diagram

1

Connection

0..*

1

-connections
0..*

-diagram
1

GRLNode

0.. *

1

-nodes
0.. *

-diagram

1
0..1

0.. *

-contRef
0..1

-nodes

0.. *

1

0..*

-source
1-succ

0..*
0..*

1

-pred
0..*

-target
1

Priority

High
Medium
Low
None

<<enumeration>>

DecompositionType
And
Or

<<enumeration>>

Crit icality

High
Medium
Low
None

<<enumeration>>

ContributionType

Make
Help
SomePositive
Unknown
SomeNegative
Hurt
Break

<<enumeration>>

Decomposition
Contribution

contribution : ContributionType = Unknown
correlation : boolean = false

Dependency

Fig. 4. Main elements of the abstract URN/GRL metamodel

From this abstract syntax metamodel, we developed an implementation meta-
model and used it to generate Java code via EMF. In jUCMNav, URN’s imple-
mentation metamodel is composed of nearly 100 classes.

We transformed the abstract syntax metamodel to an implementation meta-
model in two steps. First, we created packages for GRL and UCM, and added a
URNcore package that defines concepts common to GRL and UCM, including a
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generic URNmodelElement class, which is a superclass of most of the URN con-
ceptual classes. Also, amongst the most important elements in this package are
the interfaces that define the common traits between both URN sub-languages,
such as diagrams, nodes, connections, containers, and container references. A
container is an element that can contain nodes whereas references allow for mul-
tiple instances of a container in the same URN model. These generalizations
enable the simplification and standardization of the editors for both notations.

The second step of the metamodel refactoring was the addition of (visual)
attributes and classes for the implementation of our concrete syntax. Attributes
are elements such as position (x, y), size (height, width), color, and informal
descriptions. These changes are mainly located in the interfaces of the URNcore
package. We also added classes in both of the notations to support link routing
in URN diagrams.

Figure 5 shows how the basic GRL notation implements the URN abstract
interfaces. For instance, the ActorRef class implements the IURNContainerRef
interface. Note that all the classes, attributes, and associations from the abstract
syntax metamodel are preserved in this implementation metamodel.

Contribution

- contribution : ContributionType = Unknown
- correlation : boolean = false

Actor

ActorRef

IURNContainer

- lineColor : String
- fillColor : String
- filled : boolean = false

(from URNcore)

<<Interface>>

IURNNode

- x : int
- y : int

(from URNcore)

<<Interface>>

IURNContainerRef

- x : int
- y : int
- width : int
- height : int
- fixed : boolean = false

(from URNcore)

<<Interface>>
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<<Interface>>
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Belief

- author : String

IntentionalElementRef

- criticality : Criticality = None
- priority : Priority = None

IntentionalElement

- type : IntentionalElementType
- decompositionType : DecompositionType = And
- lineColor : String
- fillColor : String
- filled : boolean = false
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-refs 0..*
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ElementLink
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1
0..*

-link1

-refs
0..*
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- x : int
- y : int
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Fig. 5. Main elements of the implementation URN/GRL metamodel

The new LinkRefBendpoint class has been added to support link routing. This
class defines the position in a graph where its associated link should be routed.
This package also includes the analysis attributes of the GRL model, i.e. eval-
uations and strategies, which will be further explored in Section 5. The same
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UCMspec
(from UCM)

GRLspec
(from GRL)

URNdefinition
(from URNcore)

URNspec

- name : String
- description : String
- author : String
- created : String
- modified : String
- specVersion : String
- urnVersion : String
- nextGlobalID : String

0..1
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1
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0..*
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1
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Fig. 6. Links in the URN package of the implementation metamodel

interfaces are reused in GRL and UCM. For instance, GRL nodes and UCM
path nodes both implement the IURNNode interface, as they both have a loca-
tion and can be moved, connected together, and bound to a IURNContainerRef
container (i.e., an ActorRef in GRL and a ComponentRef in UCM). Most of the
editing operations performed on the nodes, links, and components hence become
common to GRL models and UCM models.

To complete the integration of the two notations, we also added a top-level
package named URN (Figure 6) that includes URN definitions, GRL specifica-
tions, and UCM specifications. In addition, the URNlink class (also part of the
abstract syntax) allows one to define relationships between any pair of URN
model elements. This important capability will be explored in greater detail in
Section 5.3.

4 jUCMNav Editor Capabilities

Our new URN tool supports editing both the Use Case Map notation (Figure 7)
and the Goal-Oriented Requirements Language (Figure 8).

The core path elements are supported: start points, end points, responsibil-
ities, stubs, waiting places, timers, and forks/joins (both alternative and con-
current paths). Furthermore, various component types (actor, agent, process,
and team) are available, as is binding a component or path element to a parent
component. The more unconventional elements, such as timestamps, dynamic re-
sponsibilities, and dynamic components have not yet been integrated, but their
addition should be straightforward. jUCMNav only allows the creation of syn-
tactically valid UCM models, even taking into consideration implicit loops. Not
only is the creation and manipulation more intuitive than other UCM/GRL
tools, but the deletion mechanisms are richer, more robust, and less restrictive.

The GRL editor supports most of the constructs defined in the draft standard
[16]. The intentional elements supported are goals, softgoals, tasks, and resources.
These elements can have multiple references to simplify the creation and visual-
ization of complex model via multiple diagrams. These references can be bound to
actors, influencing the result of some analysis features offered in the tool.
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Fig. 7. UCM view in jUCMNav

In contrast with previous GRL tools and for a better integration with its UCM
counterpart, the actor’s boundary (dashed circle) is not optional and has many
commonalities with UCM components in its implementation and behaviour.
Beliefs are also available in the application; however they are used mainly to
document rationales in the graphical view of the model when linked to inten-
tional elements (without affecting analysis). Finally, the links supported include
AND/OR decompositions, contributions, correlations, and dependencies, with
their respective attributes, annotations, and graphical representations.

In addition to conventional dropdown and contextual menus, the new editor
infrastructure offers a good user experience thanks to drag and drop editing,
group manipulation and especially unlimited undos and redos. Furthermore,
taking advantage of the standard Eclipse views, jUCMNav features an outline
(hierarchical and graphical), a properties view, and a resource view. These views
can be moved, closed, or maximized. Both GRL and UCM diagram editors use
the same Eclipse-based user interface metaphors. Images can also be exported
in various formats.

A new feature in jUCMNav that is available to both notations is an optional
auto-layout mechanism, which relies on Graphviz [13] to position the diagram
elements. Although imperfect, the presence of this feature is necessary in the
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Cardkey

Biometrics

Fig. 8. GRL view with strategy analysis in jUCMNav

context of automated reverse/round-trip requirements engineering. A tool that
generates UCM/GRL models from design artifacts such as code, execution traces,
requirements, or textual use cases hence does not require manual positioning of
the elements.

The auto-layout mechanism is also used in jUCMNav’s catalogues, which are
repositories of reusable GRL models or patterns often used to describe common
model elements and relationships related to security, performance, and other
non-functional aspects. Using the import/export facilities integrated in Eclipse,
this feature allows one to export a model’s intentional element definitions and
links to an XML file. Modellers can then reuse patterns from such catalogues to
kick-start new URN models or add elements to existing ones. The import creates
the GRL definitions and links in the new model and builds a new GRL diagram
representing the pattern.

5 New Analysis Capabilities for URN Models

5.1 GRL Strategies

By providing access to a complete URN model, jUCMNav can offer novel analysis
mechanisms. In order to more easily analyze GRL models and find what selection
of alternatives can lead to the best trade-off amongst the often conflicting goals
of the stakeholders, we developed the concept of GRL strategies, which are user-
defined sets of initial evaluations on a GRL graph (Figure 9). These evaluations
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are satisfaction levels initially assigned to some of the intentional elements in
the model (often the leaves of the graph), which are then propagated to the
top-level intentional elements through the various links. Evaluations are used to
determine how well goals in a model are achieved in a given context.

URNmodelElement

IntentionalElement

type : IntentionalElementType
decompositionType : DecompositionType = And

Evaluation

evaluation : int = 0
1 0..*

-intElements

1

-evals

0..*

StrategiesGroupGRLspec

0..*

1

-intElements
0..*

-grlspec
1

1 0..*

-grlspec

1

-groups

0..*

EvaluationStrategy

author : String

0..*

1

-evaluations
0..*

-strategies 1

0..*

1

-strategies0..*

-group
11

0..*

-grlspec1

-strategies

0..*

Fig. 9. Evaluation strategies metamodel

In jUCMNav, strategies can be created, grouped, modified, evaluated, and
deleted through the Strategies View. Once a strategy is selected (e.g., Password
strategy in Figure 8), the user can access and modify the initial satisfaction level
of an intentional element by using the Properties View.

In GRL, satisfaction levels for intentional elements are shown graphically us-
ing a qualitative scale (satisfied, weakly satisfied, weakly denied, and denied).
During jUCMNav’s requirement elicitation phase, we realized that some users
were interested in having a quantitative interpretation of satisfaction levels in a
strategy. We have hence implemented an equivalent but more granular represen-
tation using numerical values between -100 (denied) and +100 (satisfied). These
values are used to display feedback on the affected intentional elements. Both
the numerical value and the corresponding qualitative symbol can be used. In
addition, element references are color-coded with shades varying from red (-100)
to green (+100).

Once a value is entered in a strategy, the propagation algorithm is applied
immediately and the user can see the result on the fly. Users can also change the
evaluation value of any node in the model, not only the leaf nodes.

The evaluation algorithm, inspired from [1,7], has been implemented with an
automatic conflict resolution mechanism that does not require user involvement.
Evaluations depend on the various links (decomposition, contribution, and de-
pendency) between the intentional elements. An evaluation is first calculated
from the Decomposition links, as a standard AND/OR graph. For AND and OR
decompositions, the results correspond respectively to the minimal and maximal
evaluations of the source nodes. In our metamodel (Figure 4), the decomposition
type is an attribute of the target IntentionalElement node, which causes a node
to be decomposed by only one type of decomposition.
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The propagation algorithm then evaluates the Contribution links. For each
contribution x of a target element with N input contributions, the satisfaction
level of the source element and the contribution level are used as described in
Algorithm 1. The contribution level, LEVx, is given a numerical value between
-1 and 1 according to the contribution type on the link (1 for make, 0.5 for help,
-1 for break, etc.). The satisfaction level, NEV ALx, is normalized to a value
between 0 (denied) and 100 (satisfied). The normalized evaluation is multiplied
by the contribution level. The results of each of the contributions are added and
normalized to provide the total contribution, TCON , between -100 and 100.

The normalized evaluation is calculated using the Tolerance attribute, which
is set to 0 by default but can be modified by the jUCMNav user. It defines the
range of values that are considered satisfied (or denied). For example, with a
tolerance of 10, evaluations between 90 and 100 are considered fully satisfied
and evaluations between -90 to -100 are considered fully denied. If there are no
make/break contributions, then the result is normalized to weakly satisfied or
weakly denied (100± (1+Tolerance)) and is added to the decomposition value.

Algorithm 1: Contribution evaluation

TCON =
N∑

x=1

NEV ALx × LEVx

if ((TCON ≥ (100 − Tolerance)) and (LEVx=1..n �= 1))
then

TCON = 100 − (1 + Tolerance)
else

if ((TCON ≤ (−100 + Tolerance)) and (LEVx=1..n �= −1))
then

TCON = −100 + (1 + Tolerance)
endif

endif

When jUCMNav’s strategy view is used (see Figure 8), elements with an initial
value in the selected strategy are indicated with the * annotation. Figure 10
shows the evaluation of a given strategy on the GRL diagram of Figure 1, and
its impact on Security and Performance.

Finally, the Dependency links are evaluated. The minimal value among the
dependees is compared with the current evaluation of the source node. The
resulting evaluation corresponds to the minimum value of those two evaluations.
The rationale is that an intentional element cannot have a higher value than
those it depends on. Figure 11 shows a case where an element A depends on two
other elements, B and D, which depend on elements C and E respectively. By
default, evaluations are set to 0. Element C does not influence the evaluation of
B because it is greater than the default evaluation. However, element E is less
than the default evaluation of element D, which causes D’s evaluation to become
-30. This is in turn propagated to element A.
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Fig. 10. Evaluation of a GRL model

Fig. 11. Dependencies evaluations

The implementation of this algorithm has been done in a generic and open way
using the strategy design pattern [6] (not to be confused with GRL strategies),
which offers the possibility to easily implement other propagation and evalua-
tion algorithms. To implement such an extension, the developer makes use of the
provided Eclipse extension point, which includes methods to calculate the eval-
uations of one node based on its decomposition, dependency, and contribution
links, as well as methods to specify how the evaluations should be propagated
in the model. This means that several variants of this algorithm, with different
tolerances and logic, could be supported by jUCMNav.
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Fig. 12. GRL diagram annotated with links and actor evaluations

5.2 Actor Evaluation

Our tool also offers a novel analysis label for actors in order to help visualize ne-
gotiations between stakeholders and assess the global satisfaction level of actors
for a given strategy. This actor label is a value between -100 and 100 computed
from the criticality and priority attributes of its intentional elements references.
For a given actor, the evaluation algorithm iterates through its list of bound in-
tentional elements. For both priority and criticality, it multiplies the evaluation
of each element by the corresponding factor (by default, 1.5 for high, 1.0 for
medium, 0.5 for low and 0 for none), and computes the average per bound in-
tentional element. Finally, it sums up both evaluations and normalizes the result
between -100 and 100. A simple example is shown in Figure 12, which illustrates
part of a more complex model that includes Figure 10 and the strategy discussed
in the previous section. The selection of the CardKey alternative that led to a
good security now also leads to high costs that will dissatisfy management.

5.3 URN Links

The integration of UCM and GRL views in the same tool allows for the creation
of various types of traceability links between elements of both notations, as shown
in Figure 6. These links can be used to measure the impact of a modification
to any evolving GRL/UCM diagram on the other aspects of the model. They
can also improve consistency between the URN views. For instance, links can
be defined between GRL intentional elements or actors as source, and UCM
responsibilities, components, or maps as target. In this case, when the user selects
a strategy, the satisfaction level of the source GRL element is also displayed
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on the target UCM element at the other end of the link (if any). Using this
approach, one can evaluate the impact of a goal strategy on the operational and
architectural aspects of the model.

The partial URN model in Figure 13 extends the simple scenario of Figure 3
to one that authenticates the user and then processes the request over encrypted
channels if the request and the user are valid. This diagram is part of the same
URN model as Figure 10 and Figure 12. In this model, URN links were created
from the GRL Encryption task to the UCM Encryption and Decryption compo-
nents, as well as to the UCM Encrypt and Decrypt responsibilities. Other URN
links are set between the User actor in GRL and the User component in UCM,
as well as between the Authentication tasks (Cardkey, Password, Biometric) and
each of the corresponding UCM plug-in maps (bound to the Authenticate stub
but not shown here).

The triangles in this figure and the previous ones are not part of the URN
notation. They indicate the presence of URN links, and the evaluation results
from the corresponding GRL elements are displayed between curly brackets. For
instance, the Encryption UCM component shows the degree of satisfaction of
the linked Encryption GRL task. Feedback is updated automatically as other
strategies are selected.

Fig. 13. UCM diagram annotated with links and actor evaluations

6 Extensibility of the Tool

jUCMNav can be extended with new algorithms for evaluating strategies in a
GRL graph, as discussed in Section 5.1. Taking advantage of Eclipse’s component
model, the tool also offers other extension opportunities.

As suggested previously, URN models can be generated from other artefacts.
A specific example is the automatic generation of UCM models from textual
use cases defined in a structured natural language. Textual use cases are inher-
ently ambiguous, and completeness and consistency are often hard to analyze.
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Tools already exist to extract domain models, scenarios, and finite state ma-
chines from textual use cases to help facilitate this analysis (e.g., UCEd, a use
case editor [15]). We recently demonstrated the usefulness of jUCMNav exten-
sion points with a complementary plug-in that generates graphical UCM models
(with automatic layout) from validated UCEd project files [11].

jUCMNav’s extension points, which provide access to the URN model under
design, were also used in a plug-in that enables the import and synchronization of
URN models in a requirements management system, namely Telelogic DOORS.
jUCMNav can export URN models (i.e., UCM and GRL views) via script files in
the DOORS eXtensible Language (DXL). URN elements can be linked to other
requirements in DOORS and both views can be kept synchronized as they evolve
(e.g., by re-importing the modified URN model) [10]. Figure 14 shows one of the
views, corresponding to a UCM diagram, as seen from DOORS.

Fig. 14. URN model in Telelogic DOORS

7 Conclusions and Future Work

The development of jUCMNav allowed us to validate many of the existing URN
concepts recently expressed with a metamodel. This is the first tool that sup-
ports both URN views in a uniform and unified way, thanks in part to the
generalization done at the level of the implementation metamodel, which eased
the addition of the GRL editor by reusing much of the code developed for the
original UCM editor. This open platform also allowed us to prototype and to
explore new URN concepts related to GRL strategies, propagation algorithms,
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and catalogues, as well as various useful links and connections between GRL
and UCM. Strategies and links for URN models contribute greatly to answer-
ing the types of questions mentioned in Section 2. Extension points were added
and exercised for the creation of various functionalities such as use case import,
integration with a requirements management system, image export, catalogue
export, and support for multiple GRL evaluation algorithms.

In the near future, the missing UCM notation elements will be added. Also,
jUCMNav will be extended to support scenario definitions enabling dynamic
analysis and transformations to MSCs, UML, and test goals [2], as well as an
export mechanism to the Core Scenario Model for performance modelling [19]. A
simple data model compatible with SDL is being added, and UCM scenarios will
be defined with a user interface similarly to GRL strategies. We will also add an
import filter for the old UCMNav file format, for backward compatibility.

The integration of GRL and UCM in one tool opens the door to many new
possibilities. We plan to add better analysis capabilities in jUCMNav that will
measure the impact of strategic decisions on the scenario and architectural as-
pects of the model. This will be possible by building dynamic views of the UCMs.
For example, operational choices for goals, realized through tasks, have an in-
fluence on the system architecture. We will modify the UCM views depending
of the operational choices made in the GRL strategy. The main contribution
of this feature would be to visualize impact of goals and non-functional choices
through scenarios. We will also work on further URNlink types and on improving
the modeling and analysis process with such links.
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Annex A: Overview of the User Requirements Notation
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Abstract. ConTraST is a configurable C++ code generator that pro-
vides a mapping of SDL specifications in SDL/PR to an object oriented
C++ representation. The transformation from one high level language
to another allows the configuration of supported language features, giv-
ing the name: a configurable transpiler. The intention is to obtain the
object oriented structure and thereby increase the readability and trace-
ability of the generated code. This code is compiled together with an
SDL runtime environment, which was derived by manually transforming
the formal semantics of SDL-2000 standard Z.100 F.3 into C++ preserv-
ing both structure and behavior. This provides a continuous traceability
from the SDL specification to the executing system including its runtime
environment.

1 Introduction

Over the past 30 years, SDL has been evolving to a fairly complex descrip-
tion language offering a multitude of different object oriented features. But not
all features are necessarily required to specify SDL systems, and especially in
embedded systems, the resulting waste of resources should be avoided. With
SDL-2000 [1] a formal semantics based on Abstract State Machines (ASM) was
introduced, eliminating the ambiguities that come with the informal language
definition. Additionally, the precise mathematical formalisms of ASMs, which
are used to describe the formal semantics, provide a rigorous basis for compilers
and runtime environments.

In this paper, we present a runtime environment derived from the formal se-
mantics of SDL-2000. We have defined language profiles to divide SDL into a core
language and a set of language modules to augment this core with welldefined
language features. Thus, we have defined a subset of the SDL-2000 language
representing the language coverage of SDL-96. The transformation of ASM into
C++ was performed manually.

SDL is supported by several commercial tools. We use the generated SDL/PR
to transpile it to C++ with our developed tool ConTraST. This transformation
retains the specified system structure and generates understandable code that
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is similar to the SDL/PR syntax. This, together with the runtime environment,
provides a continuous traceability from the SDL specification to the executing
system including its runtime environment.

In Section 2, we introduce the transpiler ConTraST, which generates C++ code
from given SDL specifications. Section 3 describes the developed SDL runtime en-
vironment derived from the formal semantics of SDL-2000. A short introduction
to ASMs is given, and the accomplished mapping to C++ is explained. In Section
4, we address some related work and finally draw conclusions in Section 5.

2 The SDL Transpiler

ConTraST [3] (Configurable Transpiler for SDL to C++ Translation) is based
on the SDL-96 grammar provided by ITU recommendation Z.100 [2], comple-
mented by some required variations for compatibility and conflict avoidance.
The decision for SDL-96 was taken due to leak of tool support for SDL-2000.

SDL-96 is a powerful and comprehensive language, which offers a large variety
of different features. In most SDL systems, the majority of them are not required,
especially if the executing platform has resource limitations. For this, we have
divided SDL-96 into four coherent language profiles (see [4]):

– Core: The minimum language coverage to provide communicating Mealy
machines. This contains primarily systems, blocks, processes, channels, sig-
nals and simple transitions.

– Static1: Extension with common language features within processes cover-
ing, e.g., timers, decisions, tasks, and basic data types.

– Static2: Language extension with services, inheritance and all other transi-
tion triggers, e.g. priority input and enabling conditions.

– Dynamic: Covers those language features which make use of dynamic mem-
ory or extension to the state tree during runtime, e.g. procedures, creation
of instances, and complex data types.

ConTraST supports the configuration of an entire language profile as well as
the usage of individual language features and warns the user when an illegal
construct is used. The defined language coverage is used during code generation,
but also allows the definition of SDL language profiles, which can be used to
systematically derive an individual runtime environment from the formal SDL
semantics [4].

The transformation of an SDL specification into a C++ representation is done
in six steps:

– Step 1: A syntax analysis of the specification in SDL/PR is performed
using the established gnu tools flex and bison. From the derived information,
an object oriented syntax tree is generated, which builds the base for the
following steps.

– Step 2: The syntax tree is transformed by e.g. removing references and
transforming processes into process types and instances. This step imple-
ments the static analysis and transformation described in the Z.100 F2.
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– Step 3: All SDL expressions are transformed to an object oriented format
by changing the order of tokens (e.g. length(str) → str.length())

– Step 4: An analysis is performed to determine potential for possible opti-
mizations or further transformations.

– Step 5: The resulting syntax tree is used for the code generation. Separate
files are generated for each system and package.

– Step 6: A system file (main) and a makefile for compilation on different
platforms is generated.

Fig. 1. A transition

The challenge in transformation is to exploit
and retain the given object oriented structure of
SDL/PR allowing a successive traceability from
an SDL specification to its C++ representation.
This is achieved by inheritance of C++ classes,
each representing one specific SDL-96 object.
Most of these objects such as plain data types or
signals can be described by simple classes with
parameters, while processes with corresponding
types are represented by the use of template
classes. Thereby, a complete SDL system specifi-
cation can be transformed to an object oriented
C++ representation. A hierarchical composition
of classes is used to implement the visibility of
definitions and variables, which also allows the
application of identifiers with scope information.

1 void ::SAM06::b::Demo::Transition1::fire(SDLInstance∗ owner, SignalInst∗ signal)
2 {
3 Demo∗ VAR = (Demo∗)context;
4 switch (offset) {
5 case 0:
6 LeaveStateNode(1);
7 break;
8 case 1:
9 VAR−>number = ((::SAM06::b::Signal::Signal1∗)signal)−>Param1;

10 delete signal ;
11 VAR−>value = ::SAM06::b::Demo::Calc(owner, VAR−>number).Call();
12 Output( (new ::SAM06::b::Signal::Signal1(VAR−>value))−>To(”P1”) );
13 NextState(DASH);
14 break;
15 default: break;
16 }
17 };

Listing 1. Transformation of transition with ConTraST

The generated code of ConTraST in Listing 1 shows the transformation of the
given transition of Figure 1. In C++, this transition is represented by a method
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Transition1 ::fire() within the given context, where Demo, b and SAM06 are the
surrounding process, block and system. The prefix of the method fire() represents
the scope and the first parameter of the method gives a pointer to the surround-
ing owner (in this case the process Demo) in order to access local variables
during execution. The second parameter represents the SDL signal triggering
the transition. The execution of transitions can be interrupted as shown in line
7 to execute required actions of the Z.100 F3, in this case the LeaveStateNode
macro. The usage of switch/case constructs (line 4) permits the continuation of
transition execution. The used variable offset is a private variable of the class
transition. This mechanism enables the interruption of transitions after every
behavior primitive and the continuation at any other position within the agent’s
program. If required, the transpiler adds information during code generation to
set the variable offset in order to indicate the next behavior primitive for the
runtime environment. It therefore replaces the continue label of the Z.100 F3
and enables e.g. the usage of connectors.

Line 9 shows the assignment of signal parameters to local variables, followed
by deallocation of the signal memory. In line 11, a new instance of the procedure
Calc with its parameter number is allocated. The procedure call is performed
by the execution of the method Call(). According to Z.100 F.3 the procedure
call requires the extension of the state graph, which is achieved in several steps
(call of the macro CreateProcedure). These required steps are controlled by
the runtime environment, the execution of the procedure with possible states
and the termination with an optional return value. Therefore, the procedure call
must be implemented as an intermediate execution, while all other agents can
still be executed.

Line 12 represents the Output of a signal Signal1 with the parameter value.
The optional constraints to the signal (Via and To) are assigned by the call of cor-
responding methods. The next line completes the transition with a NextState()
call, which instructs the runtime environment to enter the new state by the call
of the EvalEnterStateNode macro.

case 1:

9 yAssF SDL Integer(yVarP−>z002 number, ((yPDef z02 Signal1 ∗)ySVarP)−>
Param1, XASS AR ASS FR);

11 ALLOC PROCEDURE(z000 Calc, yPrdN z000 Calc, sizeof(yVDef z000 Calc))
PROCEDURE ALLOC ERROR
yAssF SDL Integer(((yVDef z000 Calc ∗)PROC DATA PTR)−>z0000 x,

yVarP−>z002 number, XASS MR ASS NF);
((yVDef z000 Calc ∗)PROC DATA PTR)−>z0001 y =

&yVarP−>xPrdCallRes1 SDL Integer;
CALL PROCEDURE(z000 Calc, yPrdN z000 Calc, 0, 2)
PROCEDURE ALLOC ERROR END
XAFTER VALUE RET PRDCALL(2)

yAssF SDL Integer(yVarP−>z003 value, yVarP−>xPrdCallRes1 SDL Integer,
XASS MR ASS FR);
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12 ALLOC SIGNAL PAR(Signal1, ySigN z02 Signal1,
TO PROCESS(P1, yPrsN z01 P1), yPDef z02 Signal1)

SIGNAL ALLOC ERROR
yAssF SDL Integer(((yPDef z02 Signal1 ∗)OUTSIGNAL DATA PTR)−>

Param1, yVarP−>z003 value, XASS MR ASS NF);
SDL 2OUTPUT(xDefaultPrioSignal, (xIdNode ∗)0, Signal1, ySigN z02 Signal1,

TO PROCESS(P1, yPrsN z01 P1), sizeof(yPDef z02 Signal1), ”Signal1”)
SIGNAL ALLOC ERROR END

13 SDL DASH NEXTSTATE

Listing 2. Transformation of transition with Telelogic Cadvanced

Listing 2 shows the generated C code of Tau 4.6 [10] for the transition from
Figure 1 with line numbers corresponding to Listing 1 (code for debugging has
been removed). The generated macros in principle allow the developer to influ-
ence the behavior (tight integration). But with automatically numbered variables
and already applied optimizations, the code is difficult to understand and differs
significantly from the original SDL specification.

3 SDL Runtime Environment

3.1 Abstract State Machines

Abstract State Machines are based on many-sorted first-order structures, called
states. A state consists of a signature containing sorts (also called domains),
function names and relational names, together with an interpretation of those
names. A state can be viewed as a memory that maps locations to values.

Rules describe the dynamic behavior of Abstract State Machines, by updating
locations in the memory. An important feature of ASMs is the parallel execution
of rules. Based on the current state, an update set, that is a set of memory
locations including the new values for these locations, is computed from these
rules. The new state is obtained from the previous state by applying all updates
in the update set at the same time. In order to execute rules sequentially, agent
modes are defined in the state of the ASM. Rule fragments can be guarded so
that hey only apply in their respective agent modes.

3.2 Mapping ASM to C++

The most widely used programming language in the telecommunications domain
is C, and therefore, it is not surprising that most tool chains for SDL generate C
code. In 1992, object oriented features were included in SDL, and with the latest
recommendation (SDL-2000), this development continued. As a consequence, we
have chosen C++ as the object oriented implementation language for SDL.

The focus for the development of an SDL runtime environment was the dy-
namic semantics of SDL, which is described in the Z.100 Annex F3. Other parts
such as the data semantics, necessary transformation, or ASN.1 coder were added
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as considered necessary. For a systematic transformation from ASM to C++, we
have applied the following rules.

Domains. In ASM describe types of elements, which are mapped to C++
classes. This also allows the definition of derived domains by the use of in-
heritance of classes. The following example points out this procedure.

SignalInst =def PlainSignalInst ∪ TimerInst

is represented in C++ as:

class PlainSignalInst : public SignalInst {
...

};
class TimerInst : public SignalInst {

...
};

The resulting behavior in C++ corresponds to the definition in ASM, since an el-
ement of SignalInst may be an element of a PlainSignalInst or TimerInst
and all functions or macros defined on SignalInst can also be applied to the
inherited classes.

Controlled functions. In ASM are represented by member variables of classes.
Again the definition on multiple domains as shown in the following example can
be expressed by inheritance of classes in C++.

controlled owner : Agent ∪ StateNode ∪ Link → [AGENT ]

In C++, the classes Agent, StateNode and Link inherit from one class
which contains owner as a member variable. All variables can store the special
value undefined, which can be used as keyword in the ASM. It is also used to
express an optional value, as in this example the optional return value from the
domain Agent.

All ASM macros are transformed to methods of classes. This assignment of
methods to classes is possible, since either it is implicitly given by the description,
or one of the macro parameters is an object on which an operation is performed.
The following example ForwardSignal shows this transformation in line 5 of
Listing 3. The macro Delete is only defined on the domain Gate. Therefore,
the method is implemented within the class Gate, and the second parameter g
is redundant and can be removed.

The described transformations were performed manually to a subset of Z.100
F3. This subset is a language profile, which covers all language features of SDL-
2000 that are necessary to support the execution of SDL-96 specifications. Cur-
rently, we are working on an automatic transformation of Z.100 F.3 or any
language profile to this C++ representation.

The following example shows an excerpt from the ITU Recommendation Z.100
F.3 (2.1.1.3), the macro ForwardSignal, which is used to transport signals
through an SDL system:
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ForwardSignal ≡1

if Self.from.queue �= empty then2

let si = Self.from.queue.head in3

if Applicable(si.signalType,si.toArg,si.viaArg,Self.from,Self ) then4

Delete(si,Self.from)5

Insert(si,now+Self.delay,Self.to)6

si.viaArg := si.viaArg \7

{ Self.from.gateAS1.nodeAS1ToId,8

Self.channelAS1.nodeAS1ToId }9

endif10

endlet11

endif12

Listing 3. Excerpt from the Z.100 F.3 - Forward Signal

The resulting transformation to C++ retains the given structure by mapping
all ASM macro calls onto corresponding C++ method calls. By the definition
of more keywords, e.g., empty or self, it is possible to build an even more alike
representation. However, this has been avoided to preserve the readability for
C++ developers.

1 bool Link::ForwardSignal(void) {
2 if ( this−>from−>queue()−>empty()==false ) {
3 SignalInst∗ si = this−>from−>queue()−>head();
4 if (Applicable(si−>signalType(),si−>toArg,si−>viaArg,this−>from,this)) {
5 this−>from−>Delete(si);
6 this−>to−>Insert(si,this−>delay);
7 si−>viaArg.erase(this−>from−>Gate name);
8 si−>viaArg.erase(this−>Agent name);
9 return true;

10 }
11 }
12 return false;
13 }

Listing 4. Forward Signal transformed into C++

This example illustrates the straight transformation of an excerpt from the
SDL recommendation to a C++ implementation. Most differences are simple
rewrite rules from the ASM syntax to the C++ notation. Some operations as
shown in line 7-9 were modified to achieve a higher performance, since the con-
struction of a tuple for removal requires a memory allocation, which can be
avoided by fragmentation of these operations into two calls. Because the name
of links are given by the channel name, in line 8 the name of the link can be
used for simplification.

Another important difference is the return value, which is added to this
method in order to support an optimized execution of agents. The macro For-
wardSignal is part of the program of a link agent, which forwards signals from
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one gate to another, if a signal is available. The return value of the method in-
dicates whether the agent was able to perform the desired action. In case there
is no signal, ForwardSignal returns false to inform the scheduler that no rea-
sonable action can be performed until the state of the from-queue has changed.
This optional optimization has been implemented, but will not be presented in
this paper.

Figure 2 shows an excerpt from the ConTraST SDL runtime environment in
C++ as an UML diagram. ASMRuntime controls the execution of all Agents
within a given system by executing their program. Without any optimizations,
the execution is performed in a sequential order. The three active components in
SDL, SdlAgent, SdlAgentSet, and Link, specialize the class Agent and im-
plement the virtual method program() in order to execute their assigned program.

Fig. 2. Architecture of the ConTraST runtime environment and the abstract syntax

SdlAgent defines the two virtual functions CreateAllChannels and Cre-
ateSubStructure, which are completed by inheritance of ConTraST to define
the architecture of a given system. These methods are used during the recursive
initialization of an SDL system within the macro InitAgent.
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The classes inheriting from SdlAgent, SdlAgentSet, and Link define an
abstract syntax, which is used by the transpiler to generate the code for a given
SDL specification. In Figure 2, SDLProcess and SDLProcessType are shown as
placeholders for systems, blocks and processes of SDL-96.

The combination of a given SDL-96 system transformed by ConTraST with
runtime environment is given in the next step. The behavior of any process in
SDL-96 is described by SDLProcessType. All instances of a given process type
are managed by an SDL process, which represents a container of instances with
a constraint to the actual number of instances. Therefore, SDLProcess inherits
its functionality from SdlAgentSet, whose role in SDL-2000 is a container
managing all instances of SdlAgents within its scope. SdlAgent and SdlA-
gentSet both contain state graphs describing the behavior of an SDL system,
but since SdlAgentSet is the surrounding container and has no behavior in
SDL-96, the behavior of SDL-96 processes is described in the state graph of
SdlAgent. Thus, SDLProcessType specializes the class SdlAgent.

In SDL-96, services are used to partition the behavior of processes into mul-
tiple state machines, which are executed in an interleaved manner and share the
same input queue. One particular advantage is the possibility to share common
data between state machines. Services were removed in SDL-2000, but a compa-
rable replacement was given by state aggregation. Therefore services are mapped
to state partitions with one composite state, which reflects all known semantic
properties from services in SDL-96.

3.3 Challenges

The SDL-2000 recommendation Z.100 Annex F gives a precise definition of the
SDL behavior, but does not consider an actual implementation. One important
aspect is the memory management of the mathematical formalism. Abstract
State Machines have access to an unlimited reserve of elements. Fresh elements
from the reserve can be imported with the extend-statement, extending a do-
main of the Abstract State Machine. However, since efficiency is not a primary
concern of the formal semantics definition, deallocation of these elements is not
explicitly described. Implementing the formal semantics, we must handle the
allocation of memory when importing new elements, as well as the deallocation
of memory for all unreferenced elements.

ASMs offer powerful constructs such as choose and take, which permits the
selection of an element constrained by an expression of propositional or first-
order logic. The following example is taken from the DeliverSignal macro, which
shows the problem:

choose sa: sa ∈ SdlAgent ∧ sa.owner = Self ∧ sa.self = si.toArg

Here, an element from the domain SdlAgent has to be chosen, which is the
addressed receiver of the given signal si and whose owner (the surrounding agent)
is the current executing agent. The main problem for imperative programming
languages is to select an element of the given type SdlAgent without having a
reference to this object. Our solution for this example is shown below:
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sa = agents.choose(si−>toArg);
if (sa != undefined) { ...

Each agent keeps track of the elements within its scope. This is the same mech-
anism that AsmL [9] implements to allow the usage of e.g. choose.

In this example, we must examine the list agents in order to find objects of
the domain SdlAgent. This also assures the second constraint that the own-
ing agent is Self. The last term concerning the receiver is then handled by the
operation choose() to filter all elements according to the given expression. Addi-
tionally, the returned value must be checked, since the following rules must only
be evaluated if the choose has returned an element.

Another specific characteristic of the ASM is the parallel execution of rules
leading to a new state. The transformation of this into a sequential program-
ming language must therefore analyze all rules for any dependencies. So far,
dependencies have only been found in very few cases.

The definition of the dynamic behavior of SDL is based on the elementary data
types such as sets and sequences with their corresponding operations as described
in [5]. The foundation for the development of an SDL runtime environment
therefore was the implementation of template classes describing the required
data types and operations. Other data types used by the runtime environment,
e.g., Duration or PId, were also implemented as classes with a mapping to
plain data types.

3.4 Execution

ConTraST generates, from a given SDL system specification, all required C++
source files and a makefile with references to the runtime environment. The
source files already include a main function and the runtime environment con-
tains a scheduler to execute all instantiated agents, which is by default in a
sequential order. This execution may be influenced by numerous optional pa-
rameters to the compiler. For instance, an uninterrupted execution of a transi-
tion can be set (e.g., for debug purposes) or an optimized scheduling for agents
without signals in their queues can be performed.

The complete execution is performed within one single thread, which guar-
antees the best portability among platforms, especially in case of embedded
systems and micro controllers. The code may be compiled by various programs
(e.g. Visual C++, Borland Compilers, gcc), and the executables were tested on
Windows and Linux platforms. The execution has a deterministic behavior, ex-
cept when using an ANY construct or when a real time clock is used for Now(),
because all non-deterministic operations in the ASM (e.g. choose) always return
the same result. Thus, one of all possible traces of an SDL system is actually
executed.

If required, an SdlAgent representing the SDL environment is automati-
cally generated to allow the interaction with the environment (e.g. hardware
drivers). The implementation of the environment interface has been modelled
on the Telelogic environment functions [10]. Figure 3 shows an SDL description
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of the implemented behavior of the environment agent which calls the func-
tion InitEnv() to provide an opportunity for the environment to initialize its
resources. For every signal from the SDL system, the function OutEnv() is ex-
ecuted with the signal as parameter. Sending of signals to the SDL system is
achieved by the use of a continuous signal that calls the environment function
InEnv().

/* InitEnv() */

idle

*

/* OutEnv() */

-

true

/* InEnv() */

-

Fig. 3. SdlAgent for the en-
vironment

The compatibility with Telelogic Tau allows the
reuse of the already existing SDL Environment
Framework [6], which provides access to several
hardware drivers, communication technolgies, and
operating system functions. This enabled us to spec-
ify systems with SDL, simulate the behavior within
SDL, generate MSCs, but also build a target exe-
cutable for various platforms with access to hard-
ware. This executable may be also debugged by the
use of a textual output displaying all required infor-
mation. This covers the executing agent, the current
state, fired transition, any behavior primitives, but
also actions within the ASM program. Another pos-
sibility is to connect the executable to the MSC ed-
itor of Telelogic [10] and generate an MSC diagram
of an actual execution. An additional benefit can
be taken by ns+SDL[7], a network simulator usable with ConTraST. This en-
ables us to use SDL design specifications as basis for the simulation of multi-hop
networks, and assures the same code base as for the production code.

4 Related Work

For SDL code generation, exist already some mostly commercial tools. Most of
them generate plain C code, as the code generators Cadvanced and Cmicro of
Telelogic tau [10]. Cinderella offers with Slipper [11] a code generator for C and
also provides with SITE an implementation in C++. Other tools assign a special
subject such as the Pragmadev Real Time Developer Studio [12], which covers
real time subjects. All of them combine the aspect that the runtime environment
is an adapted realisation of the SDL behavior.

Another interesting approach for SDL is the development of a compiler [8]
producing a program that is then executed by the use of AsmL [9]. This solution
enables automatic translation of the formal definition.

In our experience, that debugging of implemented SDL system is a fundamen-
tal part and parcel of our work with SDL. In recent years, we have identified
various errors in runtime environments and ASN.1 code generators of commer-
cial tools, but also had to handle different problems with the connection to the
computer hardware. Therefore, a continuous traceability from a specified SDL
system to the generated code and the implemented runtime environment gives
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the opportunity to fully understand the execution of SDL and improves the
ability to locate errors in the implementation.

5 Conclusions

Development of ConTraST began in March 2005. The transpiler ConTraST and
the associated runtime environment were tested in an educational context at
the end of 2005. At this time, still major problems during code generation were
detected, which have been corrected in the current version.

Additionally, some discrepancies between the formal and the concrete seman-
tics of SDL have been identified during development of the runtime environment.
For instance, during initialization of SDL systems, the loss of signals has been
observed, which was corrected in coordination with the developers of the SDL
formal semantics. Other major problems occurred during the implementation of
the procedure calls, where return values and recursive calls of procedures pointed
out new errors in the formal semantics. Thus, the development of ConTraST has
provided valuable feedback.

The transformation of SDL/PR to C++ always attempts to obtain all object
oriented features, by mapping them to corresponding constructs of the target
language, e.g. in case of scope information, visibility of variables and the usage of
templates to implement parameterized SdlAgentSet. But the most interesting
object oriented features of SDL, such as inheritance of objects, are still work
in progress. While the implementation of virtual transitions is a rather simple
venture, the realization of inheritance of e.g. processes will require more effort,
since here static transformations of transitions are involved.

Today, ConTraST is used as an alternative to commercial tools in our group.
Selected projects such as AdaI1 and several student projects are used to examine
the language coverage and to identify possible errors. Since all major issues for
practical usage such as the implementation of data types and a BER encoding have
been done, ConTraST and its runtime environment show an increasing usage.

As soon as usable graphical editors for the specification of SDL-2000 systems
are available, the runtime environment may be extended by the use of language
profiles to provide the execution of SDL-2000 systems. At this time, the auto-
matic implementation of a C++ runtime environment, according to given lan-
guage profiles, is a further research topic. This will pave the way for validation
or prove of the correctness of the runtime environment.

In addition to the extension of the language coverage, studies about the execu-
tion performance have been done. With some applied optimizations, ConTraST
did not show serious differences in execution time compared to the commercial
tools. However, there still remain further possibilities to optimize the generated
code. Another interesting objective is the multi-threaded implementation and
the parallel execution of SDL systems by the usage of multiple CPUs. Here, the
synchronization of the signal queues must be guaranteed.
1 Thanks to Alexander Geraldy to support the development of ConTraST by his ex-

amples and tests.
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