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Preface 

The Indian Conference on Computer Vision, Graphics and Image Processing 
(ICVGIP) is a forum bringing together researchers and practitioners in these related 
areas, coming from national and international academic institutes, from government 
research and development laboratories, and from industry. ICVGIP has been held 
biannually since its inception in 1998, attracting more participants every year, 
including international participants. 

The proceedings of ICVGIP 2006, published in Springer's series Lecture Notes in 
Computer Science, comprise 85 papers that were selected for presentation from 284 
papers, which were submitted from all over the world. Twenty-nine papers were oral 
presentations, and 56 papers were presented as posters. For the first time in ICVGIP, 
the review process was double-blind as common in the major international 
conferences. Each submitted paper was assigned at least three reviewers who are 
experts in the relevant area.  It was difficult to select such a few papers, as there were 
many other deserving, but those could not be accommodated. 

The support of the reviewers has been crucial, and we thank them for their valuable 
efforts and the time devoted for the conference. We would like to thank the team of 
IIIT Hyderabad, who developed and provided the online conference management 
software, which was used for ICVGIP 2006. Parag Kumar Chaudhuri of IIT Delhi 
helped greatly in the entire process and logistics, from the Call for Papers to the 
preparation of the proceedings. Siddharth Srinivasan, a MTech student at IIT Delhi, 
also contributed in the logistics. We would also like to thank the support of our 
sponsors, especially M/S Adobe India, M/S IBM India Research Lab, M/S Google 
India, M/S Yahoo! India Research and Development, M/S Tata Consultancy Services 
Ltd, and M/S HPL India. 

We have no doubt that ICVGIP 2006 was another step towards making ICVGIP an 
important worldwide event to showcase research and development in the areas of 
computer vision, graphics and image processing. 

 
Prem Kalra 

Shmuel Peleg 
(Program Chairs) 
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Edge Model Based High Resolution Image

Generation�

Malay Kumar Nema1, Subrata Rakshit1, and Subhasis Chaudhuri2

1 Centre for Artificial Intelligence and Robotics, Bangalore
2 VIP Lab, Department of Electrical Engineering, IIT Bombay, Mumbai

Abstract. The present paper proposes a new method for high
resolution image generation from a single image. Generation of high
resolution (HR) images from lower resolution image(s) is achieved by
either reconstruction-based methods or by learning-based methods. Re-
construction based methods use multiple images of the same scene to
gather the extra information needed for the HR. The learning-based
methods rely on the learning of characteristics of a specific image set
to inject the extra information for HR generation. The proposed method
is a variation of this strategy. It uses a generative model for sharp edges
in images as well as descriptive models for edge representation. This prior
information is injected using the Symmetric Residue Pyramid scheme.
The advantages of this scheme are that it generates sharp edges with no
ringing artefacts in the HR and that the models are universal enough to
allow usage on wide variety of images without requirement of training
and/or adaptation. Results have been generated and compared to actual
high resolution images.

Index terms: Super-Resolution, edge modelling, Laplacian pyramids.

1 Introduction

Generation of high resolution (HR) images from low resolution (LR) images have
been attempted through reconstruction based approaches and learning based ap-
proaches. Reconstruction based approaches require multiple images. They make
use of subpixel shifts between images to pool in the extra information needed to
create the HR image. Methods employed include sub-pixel registration, nonuni-
form interpolation [1][2] and frequency domain approaches [3][4]. An exhaustive
list of methods can be found in [5], [6]. Learning based approaches build a relation
between LR and HR images, based on the imaging process and/or description
of corresponding edges between LR and HR. Multiresolution based mehods are
a natural choice for this problem. The multiresolution representations seperate
the information in images by frequency. The generation of HR is essentially the
problem of generating the missing (hypothetical) level(-1) subband. Solutions
have been proposed based on zoom [7][8], wavelet [9] and contourlet [10] coef-
ficients. A detailed discussion can be obtained from [11]. The problem may be

� This work is supported by DRDO through project CAR-008.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 M.K. Nema, S. Rakshit, and S. Chaudhuri

decomposed into three parts: (i) formulating a model for predicting edges in HR
based on edges in LR (ii) using the model for calculating the high frequency
components to be added and (iii) injecting those (postulated) components in a
manner consistent with the known lower frequency components as given in the
LR image. This paper presents a new method for each of these, based on Lapla-
cian pyramids and their variations. Laplacian pyramids [12] are chosen for the
multiresolution representation as they provide the simplest and most regular rep-
resentation of edges in the subbands. There is a single, non-directional subband
at each level, unlike the three subbands for 2D wavelets. The 4/3 redundancy
also leads to more regular structures in the subband.

Our model for predicting edges in the HR image is based on the observation
that edges arising due to occlusion remain sharp at every resolution. Edges aris-
ing due to shading and surface patterns should become blurred when resolution
is increased. Conversely, the majority of the sharp edges in an image may be
assumed to be occlusion edges. For generating an HR image, these sharp edges
must be identified in the LR and their sharpness must be restored in the HR
image. Simple interpolation will blur all edges while increasing feature sizes.
Our HR generation is limited to the objective of preserving sharpness of edges
which are sharp in LR. (A single image method cannot, in any case, introduce
new edges and features into the HR image.) The Laplacian pyramid, like all
other multiresolution representations, creates a hierarchy of subbands encoding
edges of decreasing sharpness. Thus the first subband, designated L0, captures
all the sharp edges in the image. This paper presents methods for interpolating
L−1 from L0, restoring the sharpness of the edge representations and ensuring
consistency between this modified L−1 and the given LR image.

The current work makes use of two recent results related to Laplacian pyra-
mids. It has been shown that Laplacian subbands can be represented using edge
model elements [13]. (Note that these are descriptive models describing the pat-
terns corresponding to edges of various sharpness and geometry, as opposed to
the generative model for edges discussed earlier.) A model-based description is
convenient for altering the sharpness of selected edges without affecting the res-
olution or frequency content of the image as a whole. Another result of relevance
to the present work is the extension of Burt’s Laplacian pyramids called Symmet-
ric Residue pyramids [14] (SRP). It addresses the issue of consistency between
pyramid subbands and the nature of independent information at each level. The
methods given there are used in the present work to initially postulate an L−1

from given L0 and then, after selective edge sharpening, to ensure consistency
between modified L−1 and L0.

The paper is organised as follows. We provide relevant details of edge mod-
elling of Laplacian subbands in Section 2. Subsequently we briefly review SRP in
Section 3. Section 4 discusses generation of L−1 using edge-model representation,
including effect of subsampling on the modelling process. Section 4 ends with
the algorithm for generation of L−1. Section 5 provides results and performance
evaluation and the paper concludes in Section 6.
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2 Edge-Modelling

For purposes of interpolation for HR, we need a mechanism to model the domi-
nant, sharp edges in the L0 subband. As such, it is important to have a repre-
sentation that is edge based rather than pixel or frequency based since it will
allow edge specific modifications. As the SRP based interpolation (see Sec 3)
can fill in the mid- and lower-frequency components later, the MSE of the mod-
elling process is not that critical. The Laplacian subband edge-modelling process
described in [13] provides such a model. The modelling elements shown in the
Figure 1 are the ones which are called Primitive Set(PS)-28.

(a) The 14 elements based on sharp edges (b)The 14 elements based on smoother edges

Fig. 1. The PS28 primitive set elements. The 7 × 7 elements, scaled for display.

The PS-28 elements are defined as 7 × 7 images. The PS is chosen to be
a set of sharp and blur edge elements as represented in Laplacian subbands.
Due to its band-pass nature, only edges of certain thickness can be dominant
in any subband. As mentioned in [13], the problem simplifies if one opts for
the task of selecting 7 × 7 blocks that can be represented using individual PS
elements (the modelling approach) instead of representing arbitrary 7×7 blocks
as a superposition of a given set (projection onto basis approach). Denote the PS
elements as pi and the block to be modelled as x. For computing a representation
using a basis set, the procedure would be to compute a set of coefficients, αi, to
best represent any given x. For edge modelling in [13], the procedure adopted
is to take each element pi and see which part of the image it can best model.
Various model fit criteria are used to determine in which order the Laplacian gets
modelled by the various model elements. The objective is to find an x, model
element pi and associated scalar α that minimises

J =
‖(x− α.pi)‖

‖(x)‖ . (1)

The edge-model element for a particular location was picked on the basis of
energy and modelling error. For each 7× 7 block extracted from the Laplacian
image, the following were computed. The energy of the extract determines the
amount of signal present. Laplacians, like all subbands, are zero-mean and sparse.
The energy is concentrated in only a few areas. Only blocks having energy above
a threshold were considered for modelling. The threshold was initially set high
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and reduced with each iteration till it reached a lower cut off. This cut off de-
termined the termination of the iterative process, as errors below this threshold
were not modelled further. Only blocks whose energy crosses the current thresh-
old, were considered for modelling by elements of the primitive set. A sample
result of the accuracy of modelling process is shown in Figure 2. It is seen that
the modelling of Laplacian subbands can be done to a reasonable accuracy.

a b c d

Fig. 2. Demonstration of modelling accuracy: (a) Clown image, (b) Laplacian of Clown
image, (c) Modelled Laplacian (d) Modelling error

3 Symmetric Residue Pyramids

Symmetric Residue Pyramids [14] were proposed as an extension to Burt Lapla-
cian pyramids. Initial aim of the SRP was to achieve better signal compaction. It
makes use of the fact that the Laplacian subband at the level i, Li and gaussian
subband at next level i+1, Gi+1 are related due to the redundancy in the Lapla-
cian pyramids. The set of all possible Li can be divided into equal sized cosets
corresponding to each possible Gi+1. The process of generating an acceptable Li

given a Gi starts with an initial guess, which may even be a blank (zero) image.
An iterative process is deployed to get one of the acceptable Li: (exp is the
expand/interpolation operation, ss is subsampling and lpf is low-pass filtering)

1. Li[0] = Initial guess (may even be 0 image)
2. Gi[k] = exp(Gi+1) + Li[k] (usual pyramid reconstruction)
3. Li[k + 1] = Gi[k]− exp(ss(lpf(Gi[k])))

The above process can be used to guess Li to within an element in the correct
coset. The reconstruction process only needs the difference between this element
and the actual Li, denoted as SLi. The SRP is defined by SLi, i = 0...n, Gn+1.
Decomposition of Lena image using Burt Laplacian pyramid and SRP is shown
in Figure 3(a) and 3(b) respectively.

The above processes are of relevance to the current work for two reasons. The
iterative scheme, initialzed with a blank L−1, is a good way of interpolating
an L−1 from L0. It is certainly better than simple interpolation (essentially
L−1 = exp(L0)). More importantly, it highlights the need for, and the method of
utilization, of additional information. The SRP subbands show that the missing
information is with regards to high frequency informaion about the sharp edges.
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(a) Burt Laplacian Pyramid (b) Symmetric Residue Pyramid

Fig. 3. Decompositions of Lena image

This is just the kind of information that could be provided by the edge model
based interpolation or sharpenning of a Laplacian. Moreover, any information
fed as a prior (L−1[0]), can be considered as an addition of two components:
one that is part of the L−1 coset corresponding to G0 and one that is not. The
former constitutes the part of the prior that is consistent with the LR and latter
the inconsistent part. Once the iteration process is run, the latter is eliminated.
This is of importance because it means that our generation of the prior need not
be very accurate. A certain amount of error correction can be performed.

Having reviewed the necessary building blocks, the generation of L−1 is ad-
dressed next.

4 Generation of L−1 Using Edge-Model Representation

Given the edge-model based representation of the Laplacian subbands, it is in-
tuitive to use direct method of placing them at calculated position in 2X (2
times) to get L−1. We have done experiments which reveal that the modelling
of subsampled images does suffer from errors while modelling any of the even or
odd location. The even or odd location depends on the choice of pixels in sub-
sampling process. The error becomes prominent when a 2X Laplacian image i.e.
L−1 is generated using the description. Though the error could be suppressed by
a choice of higher energy threshold for modelling, it would affect the modelling
accuracy at the L0 level itself. This is shown in Figure 4. The image consists
of four 64 × 64 blocks. The left top pixel of the boxes is placed at even-even
(block at left top), odd-even (block at right top), even-odd (box at bottom left),
and odd-odd (block at bottom right) locations. Figure 4(d) shows the modelling
error at LR only. It is clearly visible that the modelling error is more in case of
the blocks placed at the location where one of the starting positions happens to
be odd. The bottom right block suffers the most as it is placed at the odd-odd
location.

The image formation process can be assumed to be modelled by the expres-
sion [15][16] y = DBMx + n. Here M is a warp matrix, B represent a blur
matrix and D is a subsampling matrix, and n is noise vector. y and x are the
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a b c d

e f g

Fig. 4. Subsampling and grid positions. Top: (a) Low resolution (LR) image (b) L0 of
LR (c) Modelled L0 of LR. (d) modelling error. Modelling errors after subsampling are
more for odd grid positions. Bottom: (e) Original (HR) image (f) True L0 of HR image
(g) Estimate of HR’s L0, based on modelling description of L0 of LR. The interpolation
error also depends on position.

LR and HR respectively. D breaks the equivalence between even and odd grid
points in the HR image. In the above example the modelling elements generated
happened to be the ones which correspond to edges at even positions, i.e., the
positive peak corresponds to even row or column location in the image. It is not
desirable to circumvent this problem by incorporating modelling elements for
both even and odd location edges. It doubles the number of elements from PS-
28 to PS-56 and increases the complexity of the modelling process. In practise,
this approach does not lead to reduction in modelling error. For the specific case
of interpolation and edge sharpening, an indirect solution is devised based on
post-interpolation modelling.

4.1 Dealing with Modelling Error Due to Subsampling

Our final objective is to define an L−1 based on some model reconstruction. As
such a model for L0 itself is not a necessity. One solution is to interpolate L0

to L̂−1 before performing the edge modelling. The quality of the interpolation
method is clearly important. In our case we have used the symmetric residue
process to get the L̂i−1, as explained earlier. After interpolation, we generate
the edge-model description of the interpolated image’s Laplacian subband. The
variation in edge patterns due to even-odd positions is attenuated because the
equivalence between various grid points gets restored when they are upsampled.
As edge representation gets blurred during interpolation, the model is dominated
by the elements corresponding to the thicker edges. These modelling elements
are now replaced by sharp edge modelling elements. By doing so we undo the
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(a) (b) (c)

Fig. 5. Generation of sharp edges by post-interpolation model switch. (a) L−1 by
interpolating L0 has thick edges. (b) L−1 obtained from edge-model description of L0

has errors (cf Fig 4 g). (c) L−1 obtained by modelling the left image and switching
model elements before reconstruction has sharp edges with no ringing artefacts.

blurring caused by interpolation and restore the sharpness of edges at 2X also.
The effect is shown in the Figure 5.

4.2 L−1 Generation Algorithm

The process of generating HR images from LR images, as developed in previous
sections, is summarized here. The standard pyramid notations are used: initial
image is G0, its first subband is L0, the HR image is denoted G−1 and its first
subband is L−1. Edges in Laplacians refer to the their representations as coupled
positive-negetive linear structures.

1. Given a G0 (LR image), generate L̂−1 using the iterative process used in
SRP with the null prior (0 image). This gives an estimate of L−1 with edges
at correct locations but with wrong widths.

2. Generate an edge model description of L̂−1.
3. Switch the blur elements to corresponding sharp elements and reconstruct

to get L̃i−1. This version of L−1 should have sharp edges but may not have
lower frequency details due to modelling errors.

4. Using G0 (LR image), again generate L−1 using the iterative process used
in SRP, but with L̃−1 as the prior.

5. Genrate the HR image as G−1 = exp(G0) + L−1.

The above algorithm uses the SRP and Laplacian edge modelling processes
in a way that allows them to complement each other. The SRP based interpo-
lation is able to insert the correct mid- and low-frequency components in L̂−1,
consistent with G0. However, it can neither insert nor alter any high-frequency
components (π/2 . . . π). This leads to blurring of sharp edges. By invoking the
assumption that sharp edges arise due to occlusion, we proceed to sharpen all
edges in the image that are sharp enough to be in L0. This is done by modelling
the initial estimate (L̂−1) and replacing thick edge models with sharp edge mod-
els. This revised estimate, L̃−1, has high frequencies injected at the right places.
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In order to minimize any errors introduced by the model-switch process, it is
regularized by once again passing through the SRP process.

5 Results

In order to evaluate the proposed method, its performance was tested on a diverse
set of five images and compared with the results for bicubic interpolation. The
representative set is shown in Figure 6, consisting of an artificial image, a texture
dominated image, a linear edge dominated image and two portraits. The available
images were taken as true HR (THR) and the LR images were generated using
blurring and subsampling of these images. The HR images generated from the
LR for the proposed and bicubic methods were compared to the THR. The result
is shown in Figure 7. The HR images generated by the proposed method has
sharper edges. An analysis of the errors indicate that the proposed method does
best for isolated edges. In regions having dense edges (as in Barbara texture
regions), the errors are largest. This is mainly due to Laplacian edge modelling
limitations. However, the errors are no larger than for bicubic interpolation.
Thus the modelling step does not introduce instabilities at these regions.

a b c d e

Fig. 6. Representative set (a) Box (b) Barbara (c) Building (d) Apoorva (e) Lena

5.1 Numerical Evaluation

Aside from visual inspection, it is desirable to have a numerical evaluation of
performance. In the present case, availbility of ground truth allows for computa-
tion of error based SNR metrics. However, the standard SNR for images would
be dominated by the energy present in low frequencies. In order to emphasize
the accuracy of the finer details for HR generation, modified measures are used.
We have defined HF PSNR (High Frequency Proportional Signal to Noise Ratio)
where we consider only the HF noise and a proportional amount of the signal
power (as actual HF signal is often very small and peak HF power unrealistic).
The HF PSNR is thus defined as

HF PSNR = 10 log

[
NA×

∑
|FTorig[i, j]|2∑̂

|FTest[i, j]− FTorig[i, j]|2

]
(2)

where
∑

is summation over all components,∑̂
is summation over the HF components [0.25π, π],

NA = fraction of spectral components summed over in the denominator,
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a b c d

a b c d

a b c d

a b c d

a b c d

Fig. 7. Comparative results (selected areas magnified for display) : (a) Output of Bicu-
bic interpolation (b) Output of our method (c) Error in bicubic interpolation, (d) Error
in our method. Dynamic range of residual images are stretched to suit display.
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Table 1. The HF PSNR and L−1PSNR values for the representative image set. The
calculation is done for SRP based method, our method and bicubic interpolation. The
HF PSNR is calculated over 0.25π to π.

image HF PSNR HF PSNR HF PSNR L−1 PSNR L−1 PSNR L−1 PSNR
for bicubic for SRP for our method for bicubic for SRP for our method

Box 19.11 33.65 36.13 30.98 44.20 46.11
Barbara 24.16 25.76 25.52 33.45 34.46 34.22
Building 24.86 26.58 26.64 32.20 33.42 33.52
Apoorva 34.95 34.94 34.66 37.41 37.20 37.05
Lena 30.68 31.84 31.45 34.17 34.87 34.50

a b c

Fig. 8. Sharpening of edges (a) Original image (b) Bicubic interpolated (c) Proposed
method. Note that some edges have been rendered even sharper than in the original
HR image (marked by ovals). This happens due to our underlying model that all sharp
edges are occlusion edges that should be rendered as step edges. These enhancements
are visually acceptable though they degrade the SNR measures.

FTest[i, j] = Fourier Transform of the generated HR image and
FTorig[i, j] = Fourier Transform of the original HR image.

The HF-PSNR considers all high frequencies, whether or not they play a role
in defining edges. Conversely, it ignores the role played by lower frequency com-
ponents in edges. As the generation of HR was critically dependent on generation
of the L−1, we define L−1-PSNR 1 where the PSNR is computed on the L−1

image rather than the G−1 image.

L−1PSNR = 10 log
[
(2B − 1)2

MSEL−1

]
. (3)

where MSEL−1 is mean squared error defined for L−1 subband as

MSEL−1 =
1

m× n

∑
m

∑
n

(L−1[m,n]− ˜L−1[m,n])2. (4)

1 For consistency with earlier sections, we continue to refer to the THR and HR as
G−1 and the corresponding Laplacian level as L−1.



Edge Model Based High Resolution Image Generation 11

The HF PSNR and L−1-PSNR values calculated for the sample set is given
in Table 1. In addition to bicubic, we have also compared the proposed method
to interpolation by SRP using the 0 prior.

In Table 1 it is observed that the proposed method gives good results for
all types of images, but its comparative advantage varies from image to im-
age. For images with sharp straight edges (Box, Building) it is the best. For
soft images (Apoorva) it scores less, though the output looks sharp in Figure 7.
This discrepency is explained on detailed examination of the errors. The true
high resolution image itself may not have perfectly sharp edges due to optics or
processing. The proposed method makes them sharp by opting for the model ele-
ment change. This is shown in Figure 8. While such sharpenning may be visually
acceptable (or even be desirable), they degrade THR based SNR measures.

6 Conclusion and Future Work

A method of achieving HR image from a single LR image has been proposed.
It is based on a generic generative edge model that removes the requirement for
any training set and makes the method widely applicable. It exploits the model
based description of Laplacian subbands and the Symmetric Residue pyramid
techniques to generate a putative Laplacian subband corresponding to the de-
sired HR image. The results of this method are good. At some places the edges
are rendered sharper than in the original HR image. As no ringing artefacts are
created by this over-compensation, it is not a major concern as far as Super-
Resolution is concerned. Other errors are introduced due to modelling failures.
Both the modelling and the SRP processes may need to be optimized for this
method. Future direction of work will also focus on using this single image ap-
proach in association with reconstruction-based approaches to exploit multiple
LR images optimally.
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Abstract. Photographs are often used as input to image processing and
computer vision tasks. Prints from the same negative may vary in inten-
sity values due, in part, to the liberal use of dodging and burning in pho-
tography. Measurements which are invariant to these transformations can
be used to extract information from photographs which is not sensitive
to certain alterations in the development process. These measurements
are explored through the construction of a differential geometry which is
itself invariant to linear dodging and burning.

1 Introduction

Photographs are often used as test data in the computer vision literature. Prop-
erties of these photographs ranging from “Gaussian curvature” to edges, to sta-
tistical characterizations of the intensity values are commonly used to extract
interpretations. In some cases, the method of acquisition of these photographs
plays a central role. This is certainly the case in some of the work on the three-
dimensional reconstruction of photographed scenes which is based on projective
geometry (e.g. [1]). In other work, the mechanism by which the photograph is
captured plays less of a role. It is sometimes overshadowed by the identification
of features which are thought to be relevant to biological visual systems (e.g. [2]).
Whether the camera optics are modeled or not, most approaches to computer
vision ignore the variability of the prints resulting from identical scenes and
optics. This observation also holds for digital photographs since their creation
process closely mirrors that of photographs printed from film.

In this article we examine the process by which a black and white photograph
is developed. This is followed by the construction of a geometry which is invariant
to dodging and burning. We use this geometry to develop a set of invariant
measures and illustrate their use in an example segmentation task.

1.1 Film

The active part of black and white film is an emulsion. It contains a uniform
distribution of silver halide crystals suspended in a gelatin. Upon exposure to
sufficient light, a small part of the crystal becomes reduced to metallic silver.
The choice of a particular silver halide, such as silver bromide or silver iodide,
together with the choice of gelatin determines the film’s response to light. The
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film development process reduces crystals which have been sufficiently exposed
to light entirely into metallic silver which makes the negative visibly dark in
areas. The silver halide crystals do not store an intensity value. Their state is
almost binary. Thus grey tones are represented by different densities of metallic
silver simply referred to as the density on the film.

During the development process, the film is placed in a developer liquid. The
developer reacts with the crystals which were hit by light. Crystals which have
absorbed less light tend to react slower thus the amount of time that the film
spends in the developer influences how dark the negative will be. This will in turn
influence how bright the print will be. The term exposure is used to represent
how affected the film is by the oncoming light. The exposure of a region on the
negative is given by the product the average light intensity hitting that region
and the amount of time during which the light has hit it, also known as the
exposure time:

E = T × I. (1)

1.2 Printing

A photograph is printed by projecting a light through the negative onto photo
paper and then developing the paper. The process by which photo paper captures
information about the light hitting it is quite similar to that for the film. Here,
as with the film, there are choices to be made about the chemical makeup of the
light capturing membrane which will have profound effects on the final product.
One of the key differences between photo paper and film is the number of stops.
An average sheet of photo paper has no more than five stops of sensitivity to light
intensity compared to the 15 stops which some negatives can represent. Thus
film can record a range of intensities which is around 215 greater than photo
paper. There is therefore a decision to be made about what intensity range will
be expressed on the photo paper. This decision will affect the contrast of the
produced print as well as what information will be clearly represented in the
printing.

Denser regions of the negative will absorb more of the light projected onto
the negative than areas where there are few metallic silver spots. However, the
spots are never so tightly packed that no light will pass at all. Every part of the
photo paper will therefore be hit by light. Thus increasing exposure time will
increase the exposure of the entire photo paper proportionally to the density
of the relevant region on the negative. This process does not simply change the
contrast of the photograph, it alters what information will be present in the final
print. Since denser regions of the negative allow less light through, it takes longer
for a sufficient amount of light to cross those regions to represent photograph
details than it does for bright regions. Thus, the simplest way to display this
information is to increase the exposure time of the photo paper. However, this in
turn can saturate the dark regions of the print where light flows freely through
the negative. This demonstrates that the way in which various densities on the
print relate to each other and to the negative is not fixed. Figure 1(a) illustrates
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this. Increasing the exposure time of the negative on the photo paper by a factor
of k is equivalent to shifting the chemical reduction function to the left by ln(k).
This follows directly from Equation 1.

(a) Reduction function (b) Discretized reduction
function

(c) Two discretized reduc-
tion functions

Fig. 1. Figure (a) shows an example chemical reduction function which specifies how
exposure through the negative affects the density on the photo paper. The numbers in
the graph only serve to show that the grid is regularly spaced and the standard direction
of increasing values. Figure (b) adds bins representing a regular discretization of the
photo paper density. The vertical lines represent the borders of the bins. Notice that
the induced discretization of log exposures is not necessarily regular and depends on
the reduction function. The example reduction function illustrates how exposure values
are better captured in the mid-exposure range. Figure (c) demonstrates how a different
choice of reduction function can change how exposure information is encoded.

1.3 Dodging and Burning

The previous section discussed the process by which a print is made directly from
a negative. Dodging and burning are two commonly used techniques used during
the printing of photographs which alter the exposure time of specific regions
of the final print. Dodging involves completely blocking light from contacting
certain regions of the photo paper for a portion of the exposure time. Burning
involves doing a complete exposure followed by another exposure during which
the light is restricted to contacting only a particular region of the photo paper.
The process is often carried out using pieces of cardboard to block out the light.
For dodging, the cardboard is affixed to a thin rigid rod so that it may be held
over any part of the photograph.

For esthetic reasons, the dodging and burning tools must be kept in motion
during their use. This allows the exposure times to vary “smoothly” between the
regions being worked on and the rest of the photograph. Without the motion, the
silhouette of the tool being used would become visible on the print. As indicated
in [3] and in [4], photographers feel that they can apply these techniques liberally
on photographs, especially when significant motion is used. Adams claims that
most photographs can benefit from some dodging or burning [3]. Further, it is
clear that he does not present these alterations as tools to change the subject,
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but rather as tools to accentuate particular properties of the subject. Thus in
processing photographs, we must be aware of the possibility that such transfor-
mations may have been applied and that they may be hard to detect or reverse.
Figure 2 shows an extreme case of burning.

(a) Original photograph (b) Transformed photograph

Fig. 2. Figure (a) shows a portion of the original photograph. Figure (b) shows the
same photograph once burning has been applied. The burning is simulated using Adobe
Photoshoptm.

Dodging and burning selectively alter the exposure times of regions of the
print. Their effect can therefore be explained using the standard notions of pho-
tographic development explored in §1.1 and §1.2. In particular, recall that chang-
ing exposure time is equivalent to shifting the chemical reduction function along
the log exposure axis. This implies that dodging and burning can be seen as
shifting the reduction function locally as long as every part of the print has a
non-zero exposure time. In fact, assuming that when in motion the dodging or
burning tool moves linearly and that the tool is close enough to the print so that
the penumbra of the tool is not significant, this observation completely deter-
mines the impact of the techniques on the print. For example, a region which was
hidden from exposure for exactly half the development time would have the same
final development as if the chemical reduction function was shifted by − ln(2)
for that region and there had been no dodging at all. Further, since dodging
restricts the exposure time and burning increases it, the only difference between
them is that burning shifts the reduction function to the left while dodging shifts
it to the right.

2 Greyscale Photograph Geometry

As Florack argues in [5], we should not impose a topology or geometry directly
on the space of photographs. Rather than impose properties on physical en-
tities, we should instead impose them on the space of measurements and on
measurement results. The measurements which we are interested in can be pa-
rameterized by their location, log-width and orientation. The log-width of a
measurement distinguishes between the various scalings of a measurement while
the orientation parameter destinguishes between its possible rotations. The set
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of measurements and results for a given photograph is therefore a subset of the
space I = M × U which we call the image space and where M = R

2 × R × S1

is the measurement space and S1 is the one dimensional sphere. The space U
contains all possible measurement results. A point in image space corresponds
to a value being returned by a measurement at a given location, log-width and
orientation. Throughout the rest of this article, we will refer to the set of image
space points corresponding to a particular photograph as its image, or simply
an image if the photograph is not specified.

Since M is a four-dimensional space and the measurement values are a function
of points in M, we can assume that an image is a four-dimensional differential
manifold in I. Now that images have a manifold structure, we can define a geom-
etry for these images based on the relationships between the components of their
ambient space. We will begin by establishing a geometry on the measurement
space M and then proceed to extend it to the full image space I.

2.1 Geometry of the Measurement Space

In the Riemannian geometry of a Euclidean space a (perhaps arbitrary) unit
length is chosen. The notions of length and curvature are dependent on the cho-
sen unit length in this situation. Our situation differs in that each measurement
views its width as being of unit length. Thus if the locations of two measure-
ments remain the same but their widths double, then their perceived distance
will halve.

The measurement space with a fixed width, M
w, looks like Euclidean space

with the standard circle principal bundle. This has the effect of rotating the
orientation values along with the location plane. Given the observations from
this and the previous paragraph, we can define a Riemannian metric on M

w as
〈 , 〉(x,θ) = g1 dx

1⊗dx1+g2 dx2⊗dx2. Since distances are inversely proportional
to width as expressed above, the gi coefficients must be 1/w2. Thus we get the
following metric for M

w

〈 , 〉(x,θ) =
dx1 ⊗ dx1 + dx2 ⊗ dx2

w2
. (2)

The orientation circle and location parameters are closely related since the
orientation circle represents the direction in which the measurement is taken. So
any curve in measurement space must have its orientations and location tangents
aligned. This can be achieved by creating a sub-Riemannian geometry defined by
a distribution on M

w using the following cotangent equation and then restricting
curves to travel along this distribution:

Ω = dx2 − tan θdx1 = 0. (3)

So far the proposed geometry is invariant to scaling of the visual signal since
scaling the signal also scales measurements proportionally. However, in the full
measurement space, width is allowed to vary. Since the width of a measurement
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can be seen as a length from another measurement’s point of view, the measure-
ment space metric must include a term to take into account variation in width
which itself must be inversely proportional to current width:

〈 , 〉(x,θ) =
dx1 ⊗ dx1 + dx2 ⊗ dx2 + dw ⊗ dw

w2
. (4)

This makes the measurement space fully invariant to scaling as well as to rotation
and translation. The distribution defined for M

w can be used unchanged in M

to represent the relationship between location and orientation.
The constructed metric is well known as the metric for the upper-half plane

model of three-dimensional hyperbolic geometry [6].

2.2 Geometry of the Image Space

Much as was the case for orientation, we cannot introduce measurement values
into the metric. To do so would be to establish intrinsic location related prop-
erties in measurement values. The measurements we choose will be based on
brightness information. We will therefore start by defining the measurements to
collect average brightness over a unit disc. Let’s call these measurements bx,θ,w.
We will examine how these measurements interact with a set of simple photo-
graphic transformations so as to derive better values to use when defining base
measurements.

The image space Ib for this measurement can be expressed by adding a bright-
ness line B = R to the measurement space: Ib = M × B. The argument for
excluding measurement values from the metric applies to brightness. However,
excluding brightness from the metric does not exclude it from the geometrical
description. On the contrary, it defines I geometrically up to acceptable trans-
formations of the brightness line. We choose to include the linear dodging trans-
formation, assuming linear reduction functions, introduced earlier along with
varying exposure time in the set of transformations under which image content
is invariant,

u← u+ a1x+ a2y + tu, (5)

where a1, a2 and tv are arbitrary constants, the last one representing a trans-
lation of v. In this equation, u is a coordinate for the brightness line. We have
chosen this transformation since it is a basic image correction transformation.
As desired, a difference of brightness values at two distinct measurement points
is meaningless (i.e. not invariant to the transformation group).

Our analysis bears some resemblance to that of Koenderink and van Doorn’s [4].
Our motivation is quite different. Most significantly, since measurements were
not explicitly considered in [4] the notions of measurement width and orientation
were not developed. In our work these ideas turn out to be key for the devel-
opment of a methodology for hierarchical decomposition (moving from coarse
measurement sizes to finer ones), which is the focus of §3. We note that in the
context of metrics for greyscale photographs there is also related work by Eberly
and his colleagues [7].



Greyscale Photograph Geometry Informed by Dodging and Burning 19

2.3 Invariant Measurements

It is clear from the previous section that average brightness is not an invari-
ant measurement to the photographic transformations which we have discussed.
There are many possible invariant measurements. In this section we focus on
perhaps the simplest, a measurement type which is based on best fit planes.

For a given measurement point v = (x1, x2, θ, w), the associated measurement
value for our example is a best fit plane pv for the brightness of the photograph
over a disk d described by location (x1, x2) and radius w. The fit minimizes the
average integral of (B(x, y)−p(x, y))2 over d, where B represents the brightness
values while p represents the plane. The plane is recorded using three parameters.
The first two are the slopes of the plane along orthonormal axes ut and un where
ut is in line with θ and ut forms a right-handed frame with un. The last parameter
is simply the brightness value of the plane over point (x, y). Thus the space of
measurement values U is composed of these planes p and for convenience we
define functions mt,mn, b : I → R which return the ut-slope, un-slope and
elevation at a given image point respectively.

The plane parameters described above are clearly invariant to rotation and
translation of the Euclidean plane. However, they are not invariant to transfor-
mations such as linear dodging or scaling. When a linear dodging is applied to
a visual signal, it leaves the values collected by dmt and dmn along a curve in-
variant. The changes in plane elevations given by db, however, are not invariant
to this subgroup of transformations as we have seen when examining average
brightness measures. There we saw that though differences in brightness values
were preserved along a brightness line, they are not preserved when taken across
brightness lines. We can use this to define an invariant value given below, which
is one way of representing how much the plane is increasing in height as you
move along a curve:

Ωb = du−m
√
dx2

1 + dx2
2.

When a photograph is scaled by a scale factor s, all the slopes at corresponding
points are scaled by 1

s and all the corresponding measurement widths are scaled
by s. Therefore

Ωt = w · dmt and Ωn = w · dmn

are invariant under scaling of curves in I. The values of du−m
√
dx2

1 + dx2
2 are

also invariant for the same reasons. Thus we get three invariant values which
represent the changes in slope and elevation of the planes along a given curve.
In the next section, we use these measurements and relations to develop an
algorithm for region grouping.

This concludes our construction of the geometric model and of our basic set
of invariant measurements. This model can be used to create other measurement
classes which are invariant to the photographic transformations covered in this
paper. Further, expressions based on the values which are computed using the
presented measurements can themselves be used as input into standard image
processing algorithms. In the next section, we examine the properties which are
represented in the model through an example task of segmentation.
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3 Example Task

So as to illustrate aspects of the image space geometry, we define a näıve seg-
mentation process based on the invariant measurements presented in §2.3. Al-
gorithms 1 and 2 describe the two steps of the process in pseudo-code. First
the invariant measurements are estimated so as to produce an image for the in-
put photograph. The image manifold is collapsed into two-dimensional surfaces.
Then the grouping algorithm segments the image points into separate surfaces
based on local affinity. Note that the widths referred to in the algorithms are
not scales as in [8] put simply widths of measurement discs. The presented al-
gorithms are provided for the sole purpose of examining the structures created
using the invariant measurements.

Figure 3(c) illustrates the level of detail collected at different measurement
widths. Each layer image shows the averaging of approximation discs which
have been kept after running the measurement algorithm. These layers can be

Algorithm 1. Measurement Algorithm
for w = max width down to 1 do

for q a pixel in the photograph do
d ← the disk of radius w centered at q
pd ← plane fit to intensity over d
f(q,w) ← the mean squared error of the fit

end for
end for
for w = max width down to 1 do

for q a pixel in the photograph do

if
f(q,w)

w
> ε

or
f(q,w)

w
>

f(q,w+1)
w

or
f(q,w)

w
>

f(q,w−1)
w

then
delete pd

end if
end for

end for
for w = 1 to max width do

for q a pixel in the photograph do
for v ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} where the components represent directions
x1, x2 and w resp. do

Δb(q, w) ← Ω′
b(v)

Δt(q, w) ← Ω′
t(v)

Δn(q, w) ← Ω′
n(v)

end for
end for

end for

This defines a discretized three-dimensional manifold in I which depends on parameter
ε. For our experiments, we set ε = 0.1. We use symbols Δ′

· instead of Δ· to indicate
that difference equations are used to approximate the infinitesimal measurements.
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Algorithm 2. Grouping Algorithm
for w = 1 to max radius do

for q a pixel in the photograph do
for v ∈ γ : γ ∈ {−1, 0, 1}3 do

for i ∈ {1, 2, 3} do
if vi = −1 then

qi ← qi − 1
end if

end for
v = (|v1|, |v2|, |v3|)
At location q with width w in direction v:
if max (Δb, kΔt, kΔn) < δw then

(q1, q2, d) is adjacent to (q1, q2, d) + γ
end if

end for
end for

end for

This produces a grouping across measurement points which is dependent on parameters
k and δ given the output from the measurement algorithm. For our experiments, we
set k = 1 and δ = 0.5.

recombined by simply drawing one over the other, from greatest width to small-
est. Pixels for which there is no measurement in a given layer are left unaltered
when the layer is drawn. This is shown in Figure 3(d).The important thing to
note is that structures in the photographs appear at reasonable widths. For
example the trunk of the tree appears around widths of 10 pixels but is not
present around widths of 20 pixels. Figure 4 shows that in fact the layers pre-
sented in Figure 3 form two-dimensional surfaces. The results of applying the
näıve grouping algorithm, shown in Figure 5(b), show that structural informa-
tion about the photograph can easily be extracted from the image structure.
Figures 5(a) and 5(b) confirm that the measurements are indeed unchanged by
the application of a Adobe Photoshoptm burning effect. Finally, Shi and Malik’s
graph-cut based algorithm [9] is applied on the original photograph and on the
transformed photograph to show that this popular approach to segmentation is
sensitive to dodging and burning transformations when intensity value measure-
ments are used as inputs. This sensitivity can be problematic if the information
from the original negative is being sought rather than information about the
particular print being examined.

4 Conclusion

We have introduced a geometry which is invariant to certain forms of burning and
dodging. We then used this geometry to create invariant measurements which
represent information which would not change given a different development
process.
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(a) Photograph (b) Error

(c) Layers

(d) Combined layers

Fig. 3. (a): The original photograph. (b): The difference between the original photo-
graph and the photograph reconstructed from the layers. (c): From left to right, the
measurement size layers with widths 20, 10, 4 and 1 pixels, respectively. (d): From left
to right, the reconstructed photographs for measurement size layers with widths down
to 20, 10, 4 and 1 pixels, respectively.

Fig. 4. Two of the surfaces obtained by the grouping algorithm, corresponding to the
trunk of the tree and the region to its lower right. These surfaces are manifolds in 3D,
which could in fact overlap when viewed from any fixed viewing direction.
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(a) (b)

Fig. 5. These illustrations demonstrate that the presented approach is in fact invariant
to the defined photographic transformations. (a): Left Column: from top to bottom,
the original photograph and its layers with widths 10 and 4 pixels. Right Column: from
top to bottom, the original photograph with a linear dodging transformation applied
to it and its layers with widths 10 and 4 pixels. In fact the average grading is not
represented in the image structure and both photographs are identically represented,
as invariance to linear dodging requires. (b): Left Column: from top to bottom, the
original photograph, our grouping and the grouping from [9]. Right Column: from
top to bottom, the original photograph with a linear dodging transformation applied,
our grouping of the transformed photograph and the grouping generated by [9]. The
source code from http://www.cis.upenn.edu/∼jshi with default parameters was used
to compute the results of the algorithm presented in [9].

The presented algorithm used properties of best-fit planes to represent a pho-
tograph. There are many more possibilities for measurements which would fit
this framework. Further, the photograph representation presented in this pa-
per could be combined with existing vision algorithms for such tasks as ob-
ject recognition within photographs for which we do not know the development
process.
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Abstract. In this paper, a super-resolution algorithm tailored to en-
hance license plate numbers of moving vehicles in real traffic videos is
proposed. The algorithm uses the information available from multiple,
sub-pixel shifted, and noisy low-resolution observations to reconstruct
a high-resolution image of the number plate. The image to be super-
resolved is modeled as a Markov random field and is estimated from the
low-resolution observations by a graduated non-convexity optimization
procedure. To preserve edges in the reconstructed number plate for better
readability, a discontinuity adaptive regularizer is proposed. Experimen-
tal results are given on several real traffic sequences to demonstrate the
edge preserving capability of the proposed method and its robustness to
potential errors in motion and blur estimates. The method is computa-
tionally efficient as all operations are implemented locally in the image
domain.

1 Introduction

Intelligent Transport Systems (ITS) that combine electronics, information, com-
munication, and network technologies are being increasingly used to address
traffic problems in developed as well as developing countries [1]. One of the im-
portant goals of ITS is to decipher the identity of vehicles to enable monitoring
of offenses and crimes on public routes. If a low-resolution video surveillance
system captures an untoward incident on the road, a post-facto analysis of the
stored video may be required. However, due to image degradation, information
about the identity of the vehicles involved in the incident may not be easily
derivable. For improving the readability of license plate text, a method is sug-
gested in [2] that enhances only the character pixels while de-emphasizing the
background pixels. Cui et al. [3] have presented a multi-frame-based binariza-
tion scheme for the extraction and enhancement of characters in license plates.
Sato et al. [4] present a sub-pixel interpolation-based video text enhancement
scheme. But interpolation cannot restore the high frequency components lost
during sampling.

The video quality degrades due to various reasons such as motion blur, dis-
tance to camera, and noise. Cost considerations also dictate the resolution of

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 25–34, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



26 K.V. Suresh and A.N. Rajagopalan

surveillance cameras. Super-resolution is a process in which a high-resolution
(HR) image is constructed from a set of sub-pixel shifted low-resolution (LR)
images. Fundamentally, the task involves dealiasing and deblurring [5]. For the
problem on hand, since there is relative motion between the camera and the ve-
hicle, one can use sub-pixel motion information for enhancing the text in traffic
videos. In [6], a Bayesian super-resolution algorithm based on the simultaneous
autoregressive model developed for text image sequences is used to enhance li-
cense plates. In [7], a method for generating an HR slow-motion sequence from
compressed video is suggested, in which an area of interest such as the license
plate is slowed down and super-resolved. Miravet and Rodriguez [8] use neural
networks to perform super-resolution of license plates. A learning-based frame-
work has been proposed in [9] for zooming the digits in a license plate.

In this paper, our aim is to propose a super-resolution algorithm suitable for
enhancing license plate text in real traffic videos. This is a challenging problem
for several reasons. The distance of the camera to the vehicle is typically large
rendering it difficult for even humans to decipher the text. The low-resolution
images are quite noisy, and blurred. Motion and blur estimates derived from
such degraded images will not be correct. It is well-known fact that the per-
formance of super-resolution algorithms is good only when these parameters
are known accurately. The high-resolution license plate image is modeled as a
Markov Random Field (MRF) and a maximum a posteriori (MAP) estimate of
the super-resolved image is obtained, given the low-quality observations. The
purpose behind modeling by MRF which is a statistical characterization is to
lend robustness to errors in motion and blur estimates during the reconstruction
process. Since our objective is to improve readability of the license plate text,
we propose a discontinuity adaptive MRF (DAMRF) prior in which the degree
of interaction between pixels across edges is adjusted adaptively. Because this
prior is non-convex, we use Graduated Non-Convexity (GNC) which is a deter-
ministic annealing algorithm for performing optimization. All matrix operations
are implemented as local image operations for computational speed-up. The per-
formance of the proposed method is found to be quite good when tested on real
traffic video sequences.

2 Problem Formulation

The relation between a lexicographically ordered low-resolution observation and
the original high-resolution image can be expressed in matrix formulation as

yr = DHrWrx+ nr, 1 ≤ r ≤ m (1)

Here, x is the original HR image of dimension N1N2 x 1, yr is the rth LR image
of dimension M1M2 x 1, D is a down-sampling matrix of dimension M1M2 x
N1N2. Matrix Hr is the camera defocus blur matrix, and Wr is the geometric
warping matrix for the rth frame. Each of these matrices is of dimension N1N2

x N1N2. The term nr is the noise in the rth frame. We assume that there are m
number of LR observations i.e., 1 ≤ r ≤ m.
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Solving for x in Eq. (1) given the observations yr is an ill-posed inverse prob-
lem. Because the blur operator may exhibit zeros in the frequency domain ren-
dering the process non-invertible. At high frequencies, there will be excessive
noise amplification since the transfer function of the blurring operator is low-
pass in nature. Moreover, the presence of noise in the observation process can
result in an observation sequence which is inconsistent with any scene. Hence,
it is important to use a priori information about x that will reduce the space
of solutions which conforms to the observed data. The Bayesian MAP formula-
tion allows for incorporation of prior knowledge about x to improve robustness
during the reconstruction process.

The MAP estimate of the super-resolved image x given m low-resolution im-
ages is given by

x̂ = arg max
x
{P (x|y1, · · · ym)} (2)

Using Bayes’ rule and taking the logarithm of the posterior probability, the MAP
estimate of x is given by

x̂ = argmax
x
{log[P (y1, · · · ym|x)] + logP (x)} (3)

We need to specify the prior image density P (x) and the conditional density
P (y1, · · · ym|x). Using the observation model in Eq. (1) and the fact that the
noise fields are statistically independent of X and as well as each other, we have

P (y1, · · · ym|x) =
1

(2πσ2)m
M1M2

2

exp

{
−

m∑
r=1

||yr −DHrWrx||2

2σ2

}
(4)

where σ2 is the variance of the observation noise.
Using Eq. (4) in Eq. (3) and neglecting constant terms, the MAP estimate

can be equivalently written as

x̂ = arg min
x

{
m∑

r=1

||yr −DHrWrx||2

2σ2
− logP (x)

}
(5)

3 Discontinuity Adaptive MRF (DAMRF) Prior

We model the super-resolved image to be estimated as a Markov random field
because it provides a foundation for the characterization of contextual con-
straints and the densities of the probability distributions of interacting features in
images.

MRF theory helps in analyzing the spatial dependencies of physical phenom-
ena. LetF be a random field over anN xN lattice of sitesL = (i, j) : 1 ≤ i, j ≤ N .
The random field F is said to be an MRF on L with respect to a neighborhood
system η if
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1. P (F = f) > 0, ∀f ∈ F
2. P [Fi,j = fi,j |Fk,l = fk,l, ∀(k, l) �= (i, j)] =

P [Fi,j = fi,j |Fk,l = fk,l, (k, l) ∈ ηi,j ]

where ηi,j is the neighborhood of the site (i, j) and F denotes the configura-
tion space. It is natural to expect that the image intensity at a pixel will not
depend on the image data outside its neighborhood when the image data on its
neighborhood are given. MRF image models even with first order neighborhood
system are known to be powerful.

The practical use of MRF models can be largely ascribed to the equivalence
between MRFs and Gibbs Random Field (GRF) established by Hammersely
and Clifford [10]. The theorem states that F is an MRF on L with respect to
neighborhood η if and only if F is a Gibbs random field on L. i.e.,

P [F = f ] =
1
Z

exp{−U(f)} (6)

where Z is the partition function given by Z =
∑

f exp{−U(f)} and U(f) is the
energy function which is given by

U(f) =
∑
c∈C

Vc(f) (7)

Here, c is called the clique of the pair (L, η) which is a subset of sites in L in
which all pairs of sites are mutual neighbors. The set C is the set of all cliques.
Since we model the HR image X as an MRF, we can write

P [X = x] =
1
Z

exp{−U(x)} (8)

where
U(x) =

∑
c∈C

Vc(x) (9)

The choice of the clique potential Vc(x) is crucial as it embeds important prior
information about the image to be reconstructed. The prior model can be chosen
as ∑

c∈C

Vc(x) =
∑
c∈C

g(dcx)

where dcx is a local spatial activity measure of the image and has a small value
in smooth regions and a large value at edges. A common choice for the prior
model is a Gauss-Markov random field model [11] which has the form

g(n) = n2

However, this image model can result in a blurred estimate of the super-resolved
license plate, particularly along edges due to over-smoothing. Geman and Geman
[10] introduced the concept of line fields which helps in preserving edges. But
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the use of line fields makes the energy function non-differentiable. Schultz et al.
[12] have used a discontinuity preserving model of the form

g(n) =
{
n2, |n| ≤ T
2T (|n| − T ) + T 2, |n| > T

where T is the threshold parameter separating the quadratic and linear regions.
The threshold which is dependent on factors like image content and noise has
to be appropriately tuned for every new case. This threshold when fixed at low
values lets in noise and at high values penalizes weak edges.

To improve the readability of the license plate, we propose to use a discontinu-
ity adaptive MRF (DAMRF) model in which the degree of interaction between
pixels across edges is adjusted adaptively in order to preserve discontinuities. A
necessary condition for any regularization model to be adaptive to discontinuities
[13] is

lim
n→∞

|g′(n)| = lim
n→∞

|2nh(n)| = C (10)

where n is the difference between neighboring pixel values and C ∈ [0,∞) is a
constant. We propose to choose g(n) as

g(n) = γ − γe−n2/γ (11)

Fig. 1 shows the function defined by Eq. (11). It is convex in the band
Bγ =

(
−
√
γ/2,
√
γ/2
)

and non-convex outside. The DA function allows the
smoothing strength to increase monotonically as n increases within the band Bγ

thus smoothing out noise. Outside this band, smoothing decreases as n increases
thereby preserving the discontinuities.

Using the DA prior function and assuming a first-order neighborhood for
MRF, we can write∑

c∈C

Vc(x) =
N1∑
i=1

N2∑
j=1

4 ∗ γ − γ exp{−[x(i, j)− x(i, j − 1)]2/γ}

−γ exp{−[x(i, j)− x(i, j + 1)]2/γ} − γ exp{−[x(i, j)− x(i− 1, j)]2/γ}
−γ exp{−[x(i, j)− x(i+ 1, j)]2/γ} (12)

Using Eqs. (12), (9), and (8) in Eq. (5) and finding the gradient at the nth

iteration, we get

grad(n) =
1
σ2

m∑
r=1

WT
r Hr

TDT (DHrWrx− yr) + λG(n) (13)

where λ is the regularization parameter and the gradient at (k, l) is given by

G(n)(k, l) = 2[x(i, j)− x(i, j − 1)] exp{−[x(i, j)− x(i, j − 1)]2/γ}+
2[x(i, j)− x(i, j + 1)] exp{−[x(i, j)− x(i, j + 1)]2/γ}+
2[x(i, j)− x(i− 1, j)] exp{−[x(i, j)− x(i− 1, j)]2/γ}+

2[x(i, j)− x(i+ 1, j)] exp{−[x(i, j)− x(i+ 1, j)]2/γ} (14)
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n→ 0 

γ
 

−Bγ 
Bγ 

g(n)↑ 

Fig. 1. A discontinuity adaptive function

4 Optimization Using Graduated Non-convexity

The DA function is non-convex and annealing can be used to overcome the
problem of local minima. There are two types of annealing: deterministic and
stochastic. We use a deterministic annealing method called Graduated Non-
Convexity (GNC) algorithm for optimization [13]. The idea of GNC is to start
with a strictly convex cost function by choosing a large value for γ and to find
a unique minimum using gradient descent in the first phase. This value is then
used as the initial value for the next phase of minimization with a smaller γ.
These steps are repeated by lowering the value of γ until convergence. It finds a
good solution with much less computational cost.

Algorithm. Super-resolution using GNC

Require: Observations {Yi}, blur kernels, and motion parameters.
1: Calculate X(0) as the average of the bilinearly up-sampled and aligned images.
2: Choose a convex γ(0) = 2v, where v is the maximum value of the gradient along

the x and y directions in the initial estimate X(0).
3: n = 0
4: Do a. Update X(n) using X(n+1) = X(n) − α grad(n)

b. Set n = n + 1;
c. If (norm(X(n) − X(n−1)) < ε) set γ(n)=max [γtarget, kγ(n−1)];

UNTIL (norm(X(n) − X(n−1)) < ε) and (γ(n) = γtarget);

5: Set X̂ = X(n)

where α is the step size, ε is a constant for testing convergence, and k is a factor
that takes γ(n) slowly towards γtarget.

Calculation of the gradient in Eq. (13) involves operations on large matrices
which can be computationally very intensive. The matrices Wr, Hr, and D, and
their transposes are implemented using only simple local image operations as
follows thereby yielding a considerable speed-up.
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– D is implemented by averaging q2 pixels in the higher dimension to calculate
each pixel in the lower dimension where q is the resolution factor.

– Hr is implemented by convolving the image with the respective blur kernels.
– Wr is implemented by warping the image using bilinear interpolation.
– DT is implemented by spreading equally the intensity value in the lower

dimension to the q2 pixels in the higher dimension.
– HT

r is implemented by convolution of the image with the flipped kernel.
i.e., if h(i, j) is the imaging blur kernel, then the flipped kernel ĥ satisfies
ĥ(i, j) = h(−i,−j), ∀(i, j).

– WT
r is implemented by backward warping if Wr is implemented by forward

warping.

Note that for implementation of matrix D in image domain, we need (q2− 1)
additions and one multiplication (by 1

q2 ) whereas DT needs one multiplication
(by 1

q2 ) to calculate each pixel. The warping operation is typically performed
using bilinear interpolation. Each pixel value in the warped image is calculated
from its four neighboring pixels using the interpolation coefficients. Hence to
implement matrices Wr and WT

r in image domain, we need 7 additions and 8
multiplications (except at the borders) to determine each pixel. The number of
computations for blurring an image depends on the size of the blur kernel. If
we denote the kernel size as bl size, then we need bl size2 multiplications and
(bl size2 − 1) additions to compute each pixel.

The overall computational advantage that can be derived by implementing
the proposed algorithm using local image domain operations instead of large
matrix multiplications is given in Table 1. The table gives comparisons for im-
plementation of D, Hr, Wr, and their transposes. We assume the dimension of
the HR image to be N ×N and that of the LR image to be M ×M . The blur
kernel size is denoted by bl size and q is the resolution factor. Note that, there
is a substantial gain in implementing using local image operations.

Table 1. Computations required for Wr, Hr, D, and their transposes

Operation Matrix domain computations Image domain computations

Wr, W T
r N2 × N2 multiplications N2 × 8 multiplications

N2 × (N2 − 1) additions N2 × 7 additions

Hr, HT
r N2 × N2 multiplications N2 × bl size2 multiplications

N2 × (N2 − 1) additions N2 × (bl size2 − 1) additions

D M2 × N2 multiplications M2 × 1 multiplications
M2 × (N2 − 1) additions M2 × (q2 − 1) additions

DT N2 × M2 multiplications M2 × 1 multiplications
N2 × (M2 − 1) additions -Nil-

5 Experimental Results

In this section, we demonstrate the performance of the proposed method for
super-resolving license plates and also compare it with other techniques. In our
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experiments, we considered resolution improvement by a factor of 2. The values
chosen for the various parameters were λ = 0.005, γ(0) = 300, γtarget = 10,
k = 0.95, and α = 6. We considered real data for testing our method. For this
purpose, video frames (25 frames/second) of a busy traffic way were captured
using a SONY handycam. The data was gathered from a flyover of height about
20 feet. The viewing angle of the camera relative to the ground was about 45o.
The movement of vehicles was away from the camera. Because we use successive
frames, scaling is negligible and is ignored. Since the vehicles were moving away
from the camera and roughly along a straight line there was no rotation. Our
objective is to go beyond the resolution of the camera to enhance the license
plate region by using the motion information in the captured observations.

In the first example, the license plate (of size 16× 58 pixels) of a moving car
was cropped from four consecutive frames of the traffic video and these low-
quality frames are shown in Figs. 2(a)-2(d). The sub-pixel motion corresponding
to LR frames was computed using [14]. The resultant motion estimates were fed
as input to different super-resolution techniques, namely the LS method [15],
the GMRF method [11], the HMRF method [12], and the proposed method.
Note that these motion estimates are not accurate since they are computed
from noisy, and aliased observations. The assumption of Gaussian PSF for the
camera defocus blur is also an approximation. Results corresponding to each
of the above methods is shown in Fig. 2. The reconstructed image using the
LS technique (Fig. 2(e)) is poor as it is very sensitive to errors in motion and
blur estimates. The output of the GMRF algorithm (Fig. 2(f)) is quite blurred
and some of the numbers are not at all discernible. HMRF performs relatively
better (Fig. 2(g)) but some of the numbers are not easily readable. For example,
the second digit ‘3’ can be confused with ‘9’ while the last digit ‘4’ can be
misinterpreted as ‘6’. In comparison, the proposed DAMRF algorithm yields the
best result with distinctly defined edges as shown in Fig. 2(h). The license plate
number (K 8354) can be read clearly without any ambiguity.

In the next example, the license plate of another car was cropped from four
consecutive frames (Figs. 3(a)-3(d)). Note that the visual quality of these plates
is very poor. The output corresponding to different super-resolution methods is
given in Figs. 3(e)-3(h). We again observe that the reconstructed image using
DAMRF is significantly better compared to existing methods. The text on the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a)-(d) Cropped license plates. Super-resolved image using (e) LS, (f) GMRF,
(g) HMRF, and (h) DAMRF.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. (a)-(d) Cropped license plates. Super-resolved image using (e) LS, (f) GMRF,
(g) HMRF, and (h) DAMRF.

(a) (b) (c) (d) (e)

Fig. 4. (a)–(d) Low resolution observations. (e) Super-resolved images using the pro-
posed method.

license plate comes out clearly in the super-resolved image using the proposed
method.

In Fig. 4 we have given results corresponding to the license plates of some more
cars. Note that in all the cases, the readability of the number plate improves sig-
nificantly after performing super-resolution on the captured video frames using
the proposed method.

6 Conclusions

A robust super-resolution algorithm using a discontinuity adaptive prior is pro-
posed to enhance the license plate text of moving vehicles. The algorithm fuses
the information available from multiple observations of a vehicle to obtain a
high quality license plate image. The high-resolution image is modeled as an
MRF and is estimated using graduated non-convexity. The effectiveness of the
proposed method was demonstrated on many real traffic video sequences. The
proposed DAMRF method is robust to errors in motion and blur estimates and
preserves the edges in the reconstructed license plate text.
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Abstract. This article is concerned with new strategies with which
explicit time-stepping procedures of PDE-based restoration models con-
verge with a similar efficiency to implicit algorithms. Conventional ex-
plicit algorithms often require hundreds of iterations to converge. In order
to overcome the difficulty and to further improve image quality, the arti-
cle introduces new spatially variable constraint term and timestep size,
as a method of nonflat time evolution (MONTE). It has been verified
that the explicit time-stepping scheme incorporating MONTE converges
in only 4-15 iterations for all restoration examples we have tested. It has
proved more effective than the additive operator splitting (AOS) method
in both computation time and image quality (measured in PSNR), for
most cases. Since the explicit MONTE procedure is efficient in computer
memory, requiring only twice the image size, it can be applied particu-
larly for huge data sets with a great efficiency in computer memory as
well.

1 Introduction

Partial differential equation (PDE)-based image processing has been a popular
tool for image restoration, since the first anisotropic diffusion model by Perona
and Malik in 1990 [1]. A considerable amount of research has been carried out
for the theoretical and computational understanding of various models; see e.g.,
[2,3,4,5,6,7,8,9] and [10,11,12]. It is now well understood that by choosing proper
energy functionals in variational formulation and scaling their stationary Euler-
Lagrange equations by appropriate factors, the resulting evolutionary models
can restore important image features relatively well.

However, most of conventional PDE-based restoration models tend either to
converge to a piecewise constant image or to lose fine structures of the given im-
age, particularly unless they are both incorporating appropriate parameters and
discretized by suitable numerical schemes. Although these results are important
for understanding the current diffusion-like models, the resultant signals may
not be desired in applications where the preservation of both slow transitions
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and fine structures is important. More advanced models are yet to be devel-
oped, along with effective strategies for the choice of appropriate parameters
and numerical schemes.

It is often the case that conventional explicit algorithms for solving PDE-
based restoration models require hundreds of iterations to converge. This article
introduces numerical strategies for the selection of spatially variable constraint
parameter and timestep size, as a method of nonflat time evolution (MONTE),
with which explicit procedures can converge fast and restore images in a com-
parable quality with implicit algorithms. In MONTE, the constraint parameter
is selected larger on fast transitions, which in turn can suppress undesired dis-
sipation effectively there; the timestep size is set reversely proportional to the
sum of the diffusion coefficient and the constraint parameter, which makes the
explicit procedure stable. Note that the MONTE solution must be defined on a
nonflat time surface.

The new strategies have been implemented, incorporating an anisotropic dif-
fusion spatial scheme, for both additive operator splitting (AOS) method [13]
and the explicit algorithm. The explicit algorithm incorporating MONTE turns
out to converge in 4-15 iterations for all restoration examples we have tested.
Furthermore, it has often restored better images (measured in PSNR) than the
AOS algorithm. Since the new explicit MONTE procedure is efficient in com-
puter memory, requiring only twice the image size, it can be applied, particularly
for huge data sets (e.g., 3D images), with a great efficiency in both convergence
and computer memory.

An outline of the paper is as follows. In the next section, we briefly review
PDE-based restoration models and their linearized time-stepping methods, fol-
lowed by an anisotropic diffusion spatial scheme. Section 3 contains new numer-
ical strategies for variable constraint parameters, variable timestep sizes, and
their applications to the explicit time-stepping method. In Section 4, we present
numerical results to show efficiency (in computation time) and effectiveness (in
the preservation of important image features) of the explicit MONTE procedure.
Section 5 conclude our developments and experiments.

2 Preliminaries

This section reviews briefly PDE-based restoration models and their linearized
time-stepping procedures, followed by an anisotropic diffusion spatial scheme.

2.1 PDE-Based Restoration Models

Let u0 be an observed image of the form

u0 = u+ v, (1)

where u is the desired image and v denotes a mean-zero noise of variance σ2.
Then, popular PDE-based restoration models can be written in the following
general form:
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∂u

∂t
+ S(u) = R(u0 − u), (2)

where S is a (nonlinear) diffusion operator and R denotes a nonnegative con-
straint term. For example, the Perona-Malik (PM) model [1], the total variation
(TV) model [8], the improved TV (ITV) model [6,11], and the convex-concave
anisotropic diffusion (CCAD) model [4,5] can be specified as follows:

S(u) = −∇ · (c(|∇u|)∇u), R = 0, (PM)
S(u) = −κ1(u), R = λ, (TV)
S(u) = −|∇u|κ1(u), R = λ |∇u|, (ITV)
S(u) = −|∇u|q κq(u), R = β |u0 − u|, (CCAD)

(3)

where λ, β ≥ 0, 0 ≤ q < 2, and

c(x) = (1 + x2/K2)−1, κq(u) = ∇ ·
( ∇u
|∇u|q

)
,

for some K > 0.
The PM and TV models tend to converge to a piecewise constant image; such

a phenomenon is called the staircasing effect. To suppress the staircasing effect,
Marquina and Osher [6] suggested the ITV model, a scaling of the TV model
by a factor of |∇u|. Since |∇u| vanishes only on flat regions, its steady state is
analytically the same as that of the TV model. The ITV model turns out to
reduce the staircasing effect successfully; however, it is yet to be improved for
a better preservation of fine structures. The CCAD model is a non-variational
generalization of the ITV model and can be implemented as a stable numerical
algorithm for q ≥ 0; see [5] for details.

Note that the image is originally time-independent; the time in (2) has been
introduced in order to deal with the corresponding steady-state PDEs conve-
niently. Thus the time is an artificial variable and can be considered as an algo-
rithmic parameter for the solution, the restored image.

2.2 Linearized Time-Stepping Procedures

Let Δtn be the nth timestep size and tn =
∑n

i=1 Δt
i, n ≥ 1, with t0 = 0.

Define un = u(·, tn), n ≥ 0, with u0 = u0. Given u0, · · · , un−1, we will try to
compute un by linearized time-stepping procedures. For � = 1, 2, let Sn−1

� be
diffusion matrices approximating directional operators of the diffusion term S;
for example, for the CCAD model,

Sn−1
� um ≈ −|∇un−1|q ∂x�

( ∂x�
um

|∇un−1|q
)
, m = n− 1, n. (4)

(See Section 2.3 below for details of an anisotropic diffusion spatial scheme.)
Define An−1 = An−1

1 +An−1
2 , where

An−1
� = Sn−1

� +
1
2
Rn, � = 1, 2. (5)



38 S. Kim and S.-H. Kwon

Here Rn is an evaluation of the constraint term R for the nth time level, of
which an effective strategy will be considered in Section 3.1. Then, a linearized
θ-method for (2) can be formulated as follows: for 0 ≤ θ ≤ 1,

un − un−1

Δtn
+ An−1 [θun + (1− θ)un−1)] = Rnu0. (6)

For θ = 0, the θ-method computes un explicitly; when Δtn is constant spa-
tially, it must be sufficiently small in order for the algorithm to be stable. On
the other hand, for θ > 0, one can solve the linear system (6) by applying an
iterative algebraic solver or the alternating direction implicit (ADI) procedure
[14,15,4].

Although the algebraic system (6) is often solved implicitly (θ = 1/2 or 1)
in the literature, the explicit procedure (θ = 0) is still popular, due to simplic-
ity in implementation and efficiency in computer memory. However, it requires
to choose Δtn sufficiently small for stability and therefore converges in a huge
number of iterations, which is its major disadvantage. In Section 3.2, we will
study a strategy for the choice of spatially variable Δtn, i.e., Δtn = Δtn(x);
with which the explicit procedure can converge quickly, e.g., in about 10 itera-
tions. In Section 4, the new explicit algorithm will be compared with the AOS
method:

un,k − un−1

Δtn
+ 2An−1

k un,k = Rnu0, k = 1, 2,

un = (un,1 + un,2)/2,
(7)

which holds the maximum principle independently of the timestep size and in-
volves a splitting error of O(Δt); see [13].

2.3 An Anisotropic Diffusion Spatial Scheme

For a completeness of the article, this subsection presents an anisotropic diffusion
scheme for Sn−1

� utilized in (4), which was first introduced in [16]. We will
show the construction of Sn−1

1 ; the analogue can be applied to obtain Sn−1
2 . Let

D un−1
i−1/2,j be a finite difference approximation of |∇un−1| evaluated at xi−1/2,j ,

the mid point of xi−1,j and xi,j . For example, a second-order scheme reads

D un−1
i−1/2,j =

(
(un−1

i,j − un−1
i−1,j)

2

+
[1
2

(un−1
i−1,j+1 + un−1

i,j+1

2
−
un−1

i−1,j−1 + un−1
i,j−1

2

)]2)1/2

.

(8)

Define

dn−1
ij,W = [(D un−1

i−1/2,j)
2 + ε2]q/2, dn−1

ij,E = dn−1
i+1,j,W , (9)

where ε is a positive constant (small) introduced to prevent dn−1
ij,W from approach-

ing zero. Then the differential operators in (4), � = 1, can be approximated as
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−∂x1

( ∂x1u
m

|∇un−1|q
)
≈ − 1

dn−1
ij,W

um
i−1,j

+
( 1
dn−1

ij,W

+
1

dn−1
ij,E

)
um

i,j −
1

dn−1
ij,E

um
i+1,j ,

|∇un−1|q ≈
2 dn−1

ij,W · dn−1
ij,E

dn−1
ij,W + dn−1

ij,E

.

(10)

Note that the last approximation is the harmonic average of dn−1
ij,W and dn−1

ij,E

and first-order accurate. It follows from (4) and (10) that the three consecutive
non-zero elements of the matrix Sn−1

1 corresponding to the pixel xij read

[Sn−1
1 ]ij = (−sn−1

ij,W , 2, −sn−1
ij,E ), (11)

where

sn−1
ij,W =

2 dn−1
ij,E

dn−1
ij,W + dn−1

ij,E

, sn−1
ij,E =

2 dn−1
ij,W

dn−1
ij,W + dn−1

ij,E

. (12)

Note that sn−1
ij,W +sn−1

ij,E = 2. The above anisotropic diffusion numerical scheme has
been successfully applied for image zooming of arbitrary magnification factors
[17,16] and a simultaneous denoising and edge enhancement [5].

3 The Method of Nonflat Time Evolution (MONTE)

In this section, we will introduce an effective variable constraint parameter and
an explicit scheme incorporating variable timestep size Δtn = Δtn(x).

3.1 Constraint Parameters

For most PDE-based models, the constraint parameter has been chosen as con-
stant, due to simplicity. However, constant constraint parameters can often be
ineffective in the preservation of interesting image features such as edges and
textures, because the diffusion operator may introduce an extra dissipation on
fast transitions.

In order to overcome the difficulty, one consider a variable constraint param-
eter as follows: Multiply the stationary part of (2) by (u0 − u) and average the
resulting equation locally to obtain

R(x) ≈ 1
σ2
x

1
|Ωx|

∫
Ωx

(u0 − u)S(u) dx,

where Ωx is a neighborhood of x (e.g., the window of (3× 3) pixels centered at
x) and σ2

x denotes the local noise variance measured over Ωx. Then, the right
side of the above equation can be approximated as

R(x) ≈ 1
σ2
x

‖u0 − u‖x · ‖S(u)‖x, (13)
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where ‖g‖x denotes a local average |g| over Ωx. The constraint parameter in
(13) is proportional to both the absolute residual |u0 − u| and the diffusion
magnitude |S(u)|, which may effectively suppress the extra dissipation arising
on fast transitions. Note that the local noise variance σ2

x must be estimated
appropriately; see [18] for an effective estimation of σ2

x.
Let the neighborhood Ωx be chosen to include a single pixel x. Then the

constraint parameter in (13) related to a pixel (i, j) in the nth time level can be
formulated as

Rn
ij = η1 · |u0,ij − un−1

ij | · |(Sn−1un−1)ij |, (14)

where η1 is nonnegative constant and Sn−1 = Sn−1
1 + Sn−1

2 .

3.2 An Explicit Nonflat Time-Stepping Procedure

For θ = 0, the θ-method (6) can be rewritten as

un = (1−Δtn Sn−1)un−1 +ΔtnRn(u0 − un−1). (15)

Let the diffusion matrix Sn−1 incorporate a five-point stencil, i.e.,

[Sn−1un−1]ij = sn−1
ij,C un−1

ij − sn−1
ij,W un−1

i−1,j

−sn−1
ij,E un−1

i+1,j − sn−1
ij,S un−1

i,j−1 − sn−1
ij,N un−1

i,j+1,
(16)

where sn−1
ij,W , sn−1

ij,E , s
n−1
ij,S , s

n−1
ij,N ≥ 0 and sn−1

ij,C := sn−1
ij,W + sn−1

ij,E + sn−1
ij,S + sn−1

ij,N . For
the diffusion matrix Sn−1

1 in (11) and its analogue Sn−1
2 , we have sn−1

ij,C = 4.
When (16) and (14) are adopted respectively for the diffusion and constraint

terms, the explicit procedure (15) can be written as

un
ij = [1−Δtn (sn−1

ij,C +Rn
ij)]u

n−1
ij

+Δtn (sn−1
ij,W un−1

i−1,j + sn−1
ij,E un−1

i+1,j

+sn−1
ij,S un−1

i,j−1 + sn−1
ij,N un−1

i,j+1) +Δtn Rn
ij u0,ij .

(17)

The above iteration is stable when all coefficients in the right side are nonnega-
tive. Thus the stability condition for (17) reads

Δtn ≤ 1
sn−1

ij,C +Rn
ij

. (18)

A common practice for the choice of Δtn is

Δtn = min
ij

1
sn−1

ij,C +Rn
ij

. (19)

Recall that Rn
ij is proportional to both the absolute residual and the diffusion

magnitude, while sn−1
ij,C is a multiple of the diffusion coefficient. Thus the timestep

size Δtn in (19) has been chosen as a constant, in order for the algorithm (17)
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not to introduce nonphysical oscillations (instability) on regions of the fastest
transition. However, this choice can slow down evolution of the solution on other
regions, particularly on slow transitions. This is why conventional explicit meth-
ods have often required hundreds of iterations to converge.

As an alternative to (19), this article considers the following variable timestep
size Δtn = Δtn(x):

Δtnij =
1

sn−1
ij,C +Rn

ij

. (20)

The above choice of a variable timestep size deserves the following remarks:

• On slow transitions, the constraint parameter Rn
ij approaches zero and there-

fore a larger timestep must be set, which in turn makes the algorithm work
faster in image restoration.

• Since PDE-based models often incorporate an extra (faster) diffusion on fast
transitions, the choice in (20) can serve as a modulator which tries to equalize
the speed of diffusion over the image domain.

• The computed solution un resides on a nonflat time surface, which causes no
difficulties. Note that the time in PDE-based denoising models of interests
has been introduced, as an artificial variable, in order to enhance convenience
in numerical simulation. The variable timestep size in (20) can be viewed
as a variable parameter of the algorithm (15) which is introduced to solve
steady-state problems of the form

S(u) = R(u0 − u).

Here we have chosen Δtn to enhance efficiency in algorithmic convergence.
We will see in Section 4 that the choice is also effective in quality of image
restoration.

• With (20), the algorithm (17) can be rewritten as

un
ij =

1
sn−1

ij,C +Rn
ij

(
sn−1

ij,W un−1
i−1,j + sn−1

ij,E un−1
i+1,j

+sn−1
ij,S un−1

i,j−1 + sn−1
ij,N un−1

i,j+1 +Rn
ij u0,ij

)
,

(21)

which is an average of u0,ij and four neighboring pixel values of un−1; the
weights are computed anisotropically, incorporating all the pixel values of
un−1 on the (3× 3) window centered at (i, j), as presented in Section 2.3.

4 Numerical Experiments

In this section, we verify effectiveness of the explicit MONTE procedure, com-
paring with the AOS method (7). Both algorithms incorporates the same spatial
schemes in Section 2.3 and the same constraint parameter in Section 3.1. The
explicit MONTE procedure utilizes the variable timestep size (20), while the
AOS method is provided with the constant timestep size which experimentally
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Fig. 1. Sample images: Lenna, Elaine, and Zebra

Table 1. A PSNR analysis: comparison between the AOS and the explicit MONTE

Noise AOS Explicit MONTE

Image PSNR Δt Iter PSNR Etime Iter PSNR Etime

Lenna 27.27 0.44 6 32.14 0.47 4 32.83 0.32
21.25 0.41 12 28.83 0.92 7 29.48 0.56
16.81 0.42 15 26.22 1.20 9 26.95 0.72

Elaine 27.28 0.43 7 31.51 0.53 4 31.91 0.40
16.82 0.41 19 27.34 1.40 9 27.50 0.89

Zebra 24.78 0.15 7 28.03 0.57 6 28.06 0.67
16.82 0.15 15 23.01 1.28 11 23.34 1.22

results in the best PSNR among all constant timestep sizes. A personal computer
of 2.66 GHz Celeron processor is utilized for the computation; the elapsed time
(Etime) is the real time in second.

The input images are scaled by 1/255 to have values between 0 and 1. Most
algorithm parameters are chosen heuristically for the algorithms to perform their
best. We set ε = 0.01 in (9); the iterations are stopped when maxij |un

ij−un−1
ij | ≤

0.01. The ITV model [6] is selected for the numerical experiment. For simplicity
and a fair comparison, we have utilized the true value of noise variance σ2 for
the parameter η1 in (14): η1 = 0.4/σ2. This choice of the parameter has been
verified to be most effective (among all constant η1) for both algorithms. See
[18] for an effective estimation of σ2

x.
The algorithms have been tested various synthetic and natural images. Here

we will present numerical results, obtained with the sample images in Figure 1.
Table 1 contains a PSNR analysis, comparing performances of the AOS and

explicit procedures applied to the sample images. The variable Δt is the best
constant timestep size we have experimentally found for the AOS, which tends to
become small for texture images such as Zebra. As one can see from the table, the
explicit MONTE can restore images better than the AOS method measured in
PSNR for all cases. It should be noticed that the explicit scheme (17) converges
in 4-11 iterations, while the AOS algorithm requires more iterations. Such a
fast convergence for the explicit algorithm is due to the MONTE, the variable
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(a) (b) (c)

Fig. 2. Lenna image: (a) a noisy image (PSNR=21.25) and restored images by (b) the
AOS method (PSNR=28.83) and (c) the explicit procedure (PSNR=29.48)

constraint term (14) and the variable timestep size (20), which tries to equalize
the speed of diffusion over the image domain.

Figure 2 depicts a noisy image of Lenna (PSNR=21.25) and its restored images
by the two algorithms. The AOS and explicit iterations converge in 12 and 7
iterations, respectively, as shown in Table 1. As one can see from the figure, image
details are preserved satisfactorily by the AOS, while the new explicit method
has resulted in a better restored image. The MONTE has proved efficient in
computation time and effective in the preservation of interesting image features.

The explicit MONTE procedure has converged in 4-15 iterations for all tested
cases (including those not presented in this article). One should notice that
the explicit procedure is efficient in computer memory, requiring only twice the
image size.

5 Conclusions

Conventional explicit algorithms for solving PDE-based restoration models of-
ten require hundreds of iterations to converge. In this article, we have intro-
duced strategies for spatially variable constraint parameter and timestep size,
as a method of nonflat time evolution (MONTE). The explicit MONTE has
been compared with the additive operator splitting (AOS) method to prove its
efficiency and effectiveness. It has been numerically verified that the explicit
MONTE procedure converges in only 4-15 iterations for all tested cases of image
denoising. The new explicit method has converged faster and produced better
restored images (measured in PSNR) than the AOS algorithm, for most cases.
Since the explicit MONTE procedure is efficient in computer memory, requiring
only twice the image size, it can be applied particularly for huge data sets (e.g.,
3D images) with a great efficiency in computer memory.
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Decimation Estimation and Super-Resolution

Using Zoomed Observations
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Abstract. We propose a technique for super-resolving an image from
several observations taken at different camera zooms. From the set of
these images, a super-resolved image of the entire scene (least zoomed) is
obtained at the resolution of the most zoomed one. We model the super-
resolution image as a Markov Random Field (MRF). The cost function
is derived using a Maximum a posteriori (MAP) estimation method and
is optimized by using gradient descent technique. The novelty of our ap-
proach is that the decimation (aliasing) matrix is obtained from the given
observations themselves. Results are illustrated with real data captured
using a zoom camera. Application of our technique to multiresolution
fusion in remotely sensed images is shown.

1 Introduction

In many of the imaging applications, images with high spatial resolution are
desired and often required. The spatial resolution can be increased by using
high density sensor for capturing the image. However, this is not possible as there
exist a limit on pixel size. The resolution enhancement from a single observation
using image interpolation is of limited application because of the aliasing present
in the low resolution image. Super-resolution refers to the process of producing
a high spatial resolution image from several low-resolution observations. When
one captures the images with different zoom settings, the amount of aliasing is
different in differently zoomed observations. This is because the least zoomed
entire area of the scene is represented by a very limited number of pixels, i.e.,
it is sampled with a very low sampling rate and the most zoomed image with
a higher sampling frequency. Therefore, larger scene coverage will have lower
resolution with more aliasing effect. By varying the zoom level, one observes the
scene at different levels of aliasing and blurring. Thus, one can use zoom as a
cue for generating high-resolution images at the lesser zoomed area of a scene.

The super-resolution idea was first proposed by Tsai and Huang [1] using
frequency domain approach and employing motion as a cue. In [2], the authors
use a Maximum a posteriori framework for jointly estimating the registration pa-
rameters and the high-resolution image for severely aliased observations. A MAP
estimator with Huber-MRF prior is described by Schultz and Stevenson in [3].
Lin and Shum determine the fundamental limits of reconstruction-based super-
resolution algorithms using the motion cue and obtain the magnification limits

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 45–57, 2006.
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from the conditioning analysis of the coefficient matrix [4]. Capel and Zisserman
[5] have proposed a technique for automated mosaicing with super-resolution
zoom by fusing information from several views of a planar surface in order to
estimate its texture. The authors in [6] integrate the tasks of super-resolution
and recognition by directly computing a maximum likelihood parameter vector
in high-resolution tensor space for face recognition.

Most of the methods of super-resolution proposed in literature use motion cue
for estimating high resolution image. This requires registration of images with
sub-pixel accuracy. The non-redundant information can also be obtained by us-
ing different camera parameters or different lighting conditions while capturing
the scene. The authors in [7] describe an MAP-MRF based super-resolution
technique using blur cue. They recover both the high-resolution scene intensity
and the depth fields simultaneously using the defocus cue. The authors in [8]
recover the super-resolution intensity field from a sequence of zoomed observa-
tions. The resolution of entire scene is obtained at the resolution of the most
zoomed observed image which consists of only a portion of the actual scene. For
more details refer to [9].

In this paper, we obtain super-resolution by using zoom as a cue. We model
the super-resolution image as an MRF and assume that the high resolution image
at the most zoom setting is super-resolved. In our image formation model, we
learn the decimation (aliasing) matrix from the most zoomed observation and
use MAP-MRF formulation to obtain super-resolved image for the entire scene.
We are also assuming that the images are registered while zooming. However
after registering the images we need to estimate the aliasing accurately so that
the model fits well. It may be interesting to see that our approach generates a
super-resolved image of the entire scene, although only a part of the observed
scene has multiple observations.

2 Image Formation Model

The zoom based super-resolution problem can be cast in a restoration frame-
work. There are p observed images Yi, i = 1 to p, each captured with different
zoom settings and are of size M1 ×M2 pixels each. Fig. 1 illustrates the block
schematic of how the low-resolution observations of a scene at different zoom
settings are related to the high-resolution image. Here we consider that the most
zoomed observed image of the scene Yp (p = 3) has the highest spatial resolution.
We are assuming that there is no rotation about the optical axis between the ob-
served images taken at different zooms. Since different zoom settings give rise to
different resolutions, the least zoomed scene corresponding to entire scene needs
to be upsampled to the size of (q1q2 . . . qp−1) × (M1 ×M2) pixels (= N1 × N2

pixels), where q1, q2, . . . , qp−1 are the corresponding zoom factors between two
successively observed images of the scene Y1Y2, Y2Y3, . . ., Yp−1Yp respectively.
Given Yp, the remaining (p−1) observed images are then modeled as decimated
and noisy versions of this single high-resolution image of the appropriate region
in the scene. The most zoomed observed image will have no decimation. The low
resolution image observation model is shown in Fig. 2.
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Fig. 1. Illustration of observations at different zoom levels, Y1 corresponds to the least
zoomed and Y3 to the most zoomed images. Here z is the high resolution image of the
scene.

Fig. 2. Low-resolution image formation model for three different zoom levels. View
cropping block just crops the relevant part of the high resolution image Z as the field
of view shrinks with zooming.

Let ym represent the lexicographically ordered vector of size M1M2×1, which
contains the pixels from differently zoomed images Ym and z be the super-
resolved image. The observed images can be modeled as

ym = DmCm(z− zαm) + nm, m = 1, · · · , p, (1)

where D is the decimation matrix which takes care of aliasing present while
zooming. The subscript m in D denotes that the amount of decimation depends
on the amount of zoom for mth observation, size of which depends on the zoom
factor. For an integer zoom factor of q, the decimation matrix D consists of
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q2 non-zero elements along each row at appropriate locations. The procedure
for estimating the decimation matrix is described in section 3. Cm is a cropping
operator with zαm = z(x−αmx , y−αmy) and αm = (αmx , αmy) representing the
lateral shift of the optical shift during zooming process for the mth observation.
The cropping operation is analogous to a characteristic function which crop outs
the �q1q2 . . . qm−1N1� × �q1q2 . . . qm−1N2� pixel area from the high resolution
image z at an appropriate position. nm is the i.i.d noise vector with zero mean
and variance σ2

n. It is of the size, M1M2 × 1. The multivariate noise probability
density is given by

P (nm) =
1

(2πσ2
n)

M1M2
2

e
− 1

2σ2
n
nT

mnm
. (2)

Our problem is to estimate z given yms, which is an ill-posed inverse problem.
It may be mentioned here that the observations captured are not blurred. In
other words, we assume identity matrix for blur.

3 Estimation of Decimation (Aliasing) Matrix

The general model for super-resolution based on motion cue is [10],

y = DHWz + n, (3)

where W is a warping matrix, H is a blur matrix, D is a decimation matrix
and n is a noise vector. Here the decimation model to obtain the aliased pixel
intensities from the high resolution pixels has the form [3]

D =
1
q2

⎛⎜⎜⎝
1 1 . . . 1 0

1 1 . . . 1

0 1 1 . . . 1

⎞⎟⎟⎠ . (4)

As an example, consider an observation of size 2×2. For the decimation factor
of q = 2, the size of z becomes 4 × 4. z can be represented as lexicographically
ordered vector having 16 elements. The Decimation matrix D is of size 4 × 16
and it can be expressed with reordering of z as

D =
1
4

⎛⎜⎜⎝
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎞⎟⎟⎠ . (5)

In other words the aliased pixel intensity at a location (i, j) of a low resolution
image for a zoom factor of q = 2 is given by

y(i, j) =
1
4
z(2i, 2j)+

1
4
z(2i, 2j+1)+

1
4
z(2i+1, 2j)+

1
4
z(2i+1, 2j+1)+n(i, j). (6)
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Here (2i, 2j), (2i, 2j+1), (2i+1, 2j) and (2i+1, 2j+1) are corresponding 4 (q2)
pixel locations in the higher resolution image and n(i, j) is the noise at the pixel
(i, j).

The decimation matrix in Eq. (4) indicates that a low resolution pixel intensity
y(i, j) is obtained by averaging the intensities of q2 pixels corresponding to the
same scene in the high resolution image and adding noise intensity n(i, j) (refer
to Eq.(1)). In other words, all q2 high resolution intensities are weighted equally
by 1

q2 (1
4 for q = 2) to obtain the distorted or aliased pixel. This decimation

model simulates the integration of light intensity that falls on the high resolution
detector. This assumes that the entire area of a pixel acts as the light sensing
area and there is no space in the pixel area for wiring or insulation. In other
words, fill factor for the CCD array is unity. However, in practice, the observed
intensity at a pixel captured due to low resolution sampling depends on various
factors such as camera gain, illumination condition, zoom factor, noise etc. Hence
the aliased low resolution pixel intensity of an image point is not always equally
weighted sum of the high resolution intensities. Since we capture the images at
different resolutions using zoom camera and the most zoomed image is assumed
to be alias free, we estimate the weights from the most zoomed region. These
weights are obtained by considering the most zoomed image and corresponding
portion in the lesser zoomed images. We estimate 4 weights for a zoom factor of
2 and 16 for a zoom factor of 4. The estimated weight vectors are then used in
Eq.(1) for forming D matrix to get the observation model. It may be noted that
for a given zoom factor, we are not estimating different weights for each location.
Since the average brightness of each observation varies due to AGC of camera,
we used mean correction to maintain average brightness of the captured images
approximately the same and use these observations for the D matrix estimation
as well as for experimentation. Mean correction for Y2 is obtained by subtracting
it’s mean from each of its pixel and adding the mean of corresponding portion
in Y1. Similarly, for Y3, it is obtained by subtracting from each pixel, its mean
and adding the mean of corresponding portion in Y1. (Refer to Fig.1.)

The decimation matrix of the form shown in Eq.(4), can now be modified as,

D =

⎛⎜⎜⎝
a1 a2 . . . aq2 0

a1 a2 . . . aq2

0 a1 a2 . . . aq2

⎞⎟⎟⎠ , (7)

where |ai| ≤ 1, i = 1, 2, . . . q2. The Decimation matrix D for the considered
example of 2× 2 observation can be expressed with reordering of z as

D =

⎛⎜⎜⎝
a1 a2 a3 a4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a1 a2 a3 a4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 a1 a2 a3 a4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 a1 a2 a3 a4

⎞⎟⎟⎠ . (8)
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The aliased pixel intensity at a location (i, j) for a zoom factor of q = 2 is now
given by

y(i, j) = a1z(2i, 2j)+a2z(2i, 2j+1)+a3z(2i+1, 2j)+a4z(2i+1, 2j+1)+n(i, j).
(9)

In [11], authors discuss the spatial interaction model and choice of neighbors
and use the same for texture synthesis. They model every pixel in an image as a
linear combination of neighboring pixels considering neighborhood system. They
estimate the model parameters using the Least Squares (LS) estimation approach
as the initial estimates. In this paper, we use their approach for estimating the
weights in decimation matrices for different zoom factors.

4 Super-Resolving a Scene

4.1 MRF Prior Model for the Super-Resolved Image

In order to obtain a regularized estimate of the high-resolution image, we define
an appropriate prior term using an MRF modeling of the field. The MRF pro-
vides a convenient and consistent way of modeling context dependent entities.
This is achieved through characterizing mutual influence among such entities
using conditional probabilities for a given neighborhood. The practical use of
MRF models is largely ascribed to the equivalence between the MRF and the
Gibbs Random Fields (GRF). We assume that the high-resolution image can be
represented by an MRF. This is justified because the changes in intensities in
a scene is gradual and hence there is a local dependency. Let Z be a random
field over an regular N × N lattice of sites L = {(i, j)|1 < i, j < N}. From the
Hammersley-Clifford theorem for MRF-GRF equivalence, we have,

P (Z = z) =
1
Zp

e−U(z), (10)

where z is a realization of Z, Zp is a partition function given by Zp =
∑

z e
−U(z)

and U(z) is energy function given by U(z) =
∑

c∈C Vc(z). Vc(z) denotes the
potential function of clique c and C is the set of all cliques. The lexicographically
ordered high resolution image z satisfying Gibbs density function is now written
as

P (z) =
1
Zp

e− c∈C Vc(z). (11)

We consider pair wise cliques on a first-order neighborhoods consisting of the
four nearest neighbors for each pixel and impose a quadratic cost which is a
function of finite difference approximations of the first order derivative at each
pixel location. i.e.,

∑
c∈C

Vc(z) = λ

N1∑
k=1

N2∑
l=1

[(zk,l − zk,l−1)2 + (zk,l − zk−1,l)2], (12)

where λ represents the penalty for departure from the smoothness in z.
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4.2 Maximum a Posteriori (MAP) Estimation

Having defined the MRF prior, we use the MAP estimator to restore the high-
resolution field z. Given the ensemble of images yi, i = 1 to p, at different
resolutions, the MAP estimate ẑ, using Bayesian rule, is given by

ẑ =
argmax

z
P (z|y1,y2, · · · ,yp) =

argmax

z
P (y1,y2, · · · ,yp|z)P (z). (13)

Taking the log of the posterior probability we can write,

ẑ =
argmax

z
[

p∑
m=1

logP (ym|z) + logP (z)], (14)

since nm are independent. Now using Eqs. (1) and (2), we get

P (ym|z) =
1

(2πσ2
n)

M1M2
2

e
−‖ym−DmCm(z−zαm )‖2

2σ2
n . (15)

The final cost function is obtained as

ẑ =
argmin

z
[

p∑
m=1

‖ym −DmCm(z− zαm)‖2

2σ2
n

+
∑
c∈C

Vc(z)]. (16)

The above cost function is convex and is minimized using the gradient descent
technique. The initial estimate z(0) is obtained as follows. Pixels in the zero order
hold of the least zoomed observation corresponding to the entire scene is replaced
successively at appropriate places with zero order hold of the other observed
images with increasing zoom factors. Finally, the most zoomed observed image
with the highest resolution is copied at the appropriate location (see Fig. 1.)
with no interpolation.

5 Experimental Results

In this section, we present the results of the proposed method of obtaining super-
resolution by estimating the decimation. All the experiments were conducted on
real images taken by a zoom camera and known integer zoom factors. It assumed
that the lateral shift during zooming is known. In each experiment, we consider
three low resolution observations Y1, Y2, Y3 of an image. Each observed image is of
size 72×96. Zoom factor q between Y1 and Y2 is 2 and that between Y1 and Y3 is
4. The super-resolved images for the entire scene are of size 288×384. We obtain
super-resolution and compare the results obtained using decimation matrix of the
form in Eq. (4) consisting of equal weights. We used the quantitative measures
Mean Square Error (MSE) and Mean Absolute Error (MAE) for comparison of
the results. The MSE used here is
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MSE =

∑
i,j [f(i, j)− f̂(i, j)]2∑

i,j [f(i, j)]2
(17)

and MAE is

MAE =

∑
i,j |f(i, j)− f̂(i, j)|∑

i,j |f(i, j)| , (18)

where f(i, j) is the original high resolution image and f̂(i, j) is estimated super-
resolution image. In order to use high resolution image for the entire scene the
most zoomed image was captured with entire scene content. However, while
experimenting only a portion of it was used. The estimated D matrices are used
in the cost function given by Eq. (16).

(a) (b) (c)

Fig. 3. Observed images of ’Nidhi’ captured with three different integer zoom settings.
The zoom factor between (a) and (b) is 2 and between (b) and (c) is also 2.

In the first experiment, we considered three low resolution observations of a
girl image ’Nidhi’ shown in Fig. 3, where the observed images have less intensity
variations. Fig. 4(a) and (b) shows zoomed ’Nidhi’ image obtained by successive
pixel replication and successive bicubic interpolation respectively. In both the
images the seam is clearly visible. Fig. 5(a) shows super-resolved ’Nidhi’ image
obtained by using the decimation matrix of the form in Eq. (4) and Fig. 5(b)
shows super-resolved ’Nidhi’ image obtained by proposed method by using the
estimated decimation matrix of the form in Eq. (7). The comparison of the

(a) (b)

Fig. 4. Zoomed ’Nidhi’ image (a) using successive pixel replication and (b) using suc-
cessive bicubic interpolation
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(a) (b)

Fig. 5. Super-resolved ’Nidhi’ image (a) using equal weights decimation matrix and
(b) using estimated weights for decimation matrix.

images show more clear details in the regions like cheeks and forehead in the
image obtained by the proposed method.

In the second experiment, we considered low resolution observations of a house
shown in Fig. 6. Zoomed house images obtained by successive pixel replication
and successive bicubic interpolation are shown in Fig. 7 (a) and (b) respec-
tively. Fig. 8 shows super-resolved house images obtained using the two different
methods. The comparison of the figures show that there is less blockiness in
the super-resolved image obtained by the proposed method. Branches of trees
opposite to windows are more clearly visible.

(a) (b) (c)

Fig. 6. Observed images of a house captured with three different integer zoom settings

(a) (b)

Fig. 7. Zoomed house image (a) using successive pixel replication and (b) using suc-
cessive bicubic interpolation
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(a) (b)

Fig. 8. Super-resolved house image. (a) using equal weights decimation matrix and (b)
using estimated weights for decimation matrix.

(a) (b) (c)

Fig. 9. Observed images of a scene captured with three different integer zoom settings

(a) (b)

Fig. 10. Super-resolved scene image. (a) using equal weights decimation matrix and
(b) using estimated weights for decimation matrix.

In order to consider images with significant texture, we experimented by cap-
turing zoomed images of a natural scene. The observed images are displayed in Fig.
9. Fig. 10 shows super-resolved scene images. The small house near the center of
image appear sharper in the image super-resolved using the proposed approach.

Table 1. shows the quantitative comparison of the our results with the one
obtained using equal weights for decimation matrix. It can be seen that for all
the three experiments, MSE and MAE of the super-resolved images obtained
by using estimated decimation matrices is lower than those obtained by fixed
decimation matrix entries showing improvement in the quantitative measures.
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Table 1. Comparison of performance of the two methods of super-resolution

MSE MAE
Image Estimated Fixed Estimated Fixed

decimation decimation decimation decimation
(Equal weights) (Equal weights)

Nidhi 0.0484 0.0514 0.0489 0.0525
House 0.6671 0.6733 0.6678 0.6751
Scene 0.2732 0.3056 0.2741 0.3082

6 Application of Zoom Based Super-Resolution to
Multiresolution Fusion in Remotely Sensed Images

In this section we show the application of the proposed zoom based super-
resolution to multiresolution fusion in remotely sensed images. The process of
combining panchromatic (Pan) and multispectral (MS) data to produce images
characterized by both high spatial and spectral resolutions is known as multires-
olution fusion. Because of the technological limitations, MS images are generally
acquired with a lower spatial resolution. With a fusion of different images, we
can overcome the limitations of information obtained from individual sources
and obtain a better understanding of the observed scene. Since the Pan image
has high spatial resolution and MS images have lower spatial resolution, we es-
timate the aliasing on MS images by using the Pan image. The same Pan image
is used to estimate the aliasing on each of MS images. Available Pan image can
be used for estimating aliasing matrices for all the MS images as the aliasing
depends on difference in spatial resolution between high resolution and low reso-
lution images.For the experiment, we consider LANDSAT-7 Enhanced Thematic

(a) (b)

Fig. 11. (a) MS image (Band 1) and (b) fused image using estimated weights for
decimation matrix
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Mapper Plus (ETM+) images acquired over a city. We use available Pan image
and six MS images having decimation factor of q = 2 between the Pan image and
MS images. We learn the decimation matrix from the Pan image and minimize
the cost function given by Eq. (16) for each of MS images separately. It may be
noted that the z in the equations has to be replaced by zm, where m = 1, 2, . . . , 5
(One of the MS images, Band 6, is not used.). Due to space limitation, we show
results for only one MS image. Fig. 11(a) shows observed MS image (Band 1).
The fused image obtained by using estimated weights is shown in in Fig. 11(b).
From the figure it is clear that the fused image has high spatial resolution with
negligible spectral distortion. It may be mentioned that we have not compared
the performance of this method with other methods of fusion available in the
literature due to space limitation.

7 Conclusion

We have presented a technique to recover the super-resolution intensity field
from a sequence of zoomed observations by using decimation matrices derived
from the observations. The resolution of the entire scene is obtained at the
resolution of the most zoomed observed image that consists of only a small
portion of the actual scene. The high-resolution image is modeled as an MRF
and the decimation matrix entries are estimated using appropriate regions in
the lesser zoomed image and the most zoomed image. Our future work involves
incorporating the line fields in MRF model so that the discontinuities can be
better preserved in the super-resolved image and also to extend the proposed
approach for fractional zoom settings.
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Abstract. Local feature detection and description have gained a lot of
interest in recent years since photometric descriptors computed for in-
terest regions have proven to be very successful in many applications. In
this paper, we propose a novel interest region descriptor which combines
the strengths of the well-known SIFT descriptor and the LBP texture
operator. It is called the center-symmetric local binary pattern (CS-LBP)
descriptor. This new descriptor has several advantages such as tolerance
to illumination changes, robustness on flat image areas, and computa-
tional efficiency. We evaluate our descriptor using a recently presented
test protocol. Experimental results show that the CS-LBP descriptor
outperforms the SIFT descriptor for most of the test cases, especially for
images with severe illumination variations.

1 Introduction

Local features extracted from images have performed very well in many applica-
tions, such as image retrieval [1], wide baseline matching [2], object recognition
[3], texture recognition [4], and robot localization [5]. They have many advan-
tages over the other methods. They can be made very distinctive, they do not
require segmentation, and they are robust to occlusion. The idea is to first de-
tect interest regions that are covariant to a class of transformations. Then, for
each detected region, an invariant descriptor is built. In this paper, we focus on
interest region description. For more information on interest region detection the
reader is referred to [6].

A good region descriptor can tolerate illumination changes, image noise, im-
age blur, image compression, and small perspective distortions, while preserving
distinctiveness. In a recent comparative study the best results were reported for
the SIFT-based descriptors [7]. For some interesting recent work on interest re-
gion description done after this study, see [8,9,10,11]. The local binary pattern
(LBP) texture operator [12], on the other hand, has been highly successful for
various problems, but it has so far not been used for describing interest regions.
In this paper, we propose a novel interest region descriptor which combines the
strengths of the SIFT descriptor [3] and the LBP operator [12]. Our descriptor
is constructed similarly to SIFT, but the individual features are different. The

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 58–69, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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gradient features used by SIFT are replaced with features extracted by a center-
symmetric local binary pattern (CS-LBP) operator similar to the LBP operator.
The new features have many desirable properties such as tolerance to illumi-
nation changes, robustness on flat image areas, and computational simplicity.
They also allow a simpler weighting scheme to be applied. For evaluating our
approach, we use the same test protocol as in [7]. It is available on the Internet
together with the test data [13]. The evaluation criterion is recall-precision, i.e.,
the number of correct and false matches between two images.

The rest of the paper is organized as follows. In Section 2, we first briefly
describe the SIFT and LBP methods, and then introduce the proposed descriptor
in detail. The experimental setup is described in Section 3, and Section 4 presents
the experimental results. Finally, we conclude the paper in Section 5.

2 Interest Region Description

Our interest region descriptor is based on the SIFT descriptor [3] which has
shown to give excellent results [7]. The basic idea is that the appearance of an
interest region can be well characterized by the distribution of its local features.
In order to incorporate spatial information into the representation, the region is
divided into cells and for each cell a feature histogram is accumulated. The final
representation is achieved by concatenating the histograms over the cells and
normalizing the resulting descriptor vector. The major difference between the
proposed descriptor and the SIFT descriptor is that they rely on different local
features. Instead of the gradient magnitude and orientation used by the SIFT,
we introduce novel center-symmetric local binary pattern (CS-LBP) features
that are motivated by the well-known local binary patterns (LBP) [12]. Before
presenting in detail the CS-LBP descriptor, we give a brief review of the SIFT
descriptor and the LBP operator.

2.1 SIFT and LBP

SIFT Descriptor. The SIFT descriptor is a 3D histogram of gradient locations
and orientations. Location is quantized into a 4×4 location grid and the gradient
angle is quantized into 8 orientations, resulting in a 128-dimensional descriptor.
First, the gradient magnitudes and orientations are computed within the inter-
est region. The gradient magnitudes are then weighted with a Gaussian window
overlaid over the region. To avoid boundary effects in the presence of small shifts
of the interest region, a trilinear interpolation is used to distribute the value of
each gradient sample into adjacent histogram bins. The final descriptor is ob-
tained by concatenating the orientation histograms over all locations. To reduce
the effects of illumination change the descriptor is first normalized to unit length.
Then, the influence of large gradient magnitudes is reduced by thresholding the
descriptor entries, such that each one is no larger than 0.2, and renormalizing
to unit length.
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Fig. 1. LBP and CS-LBP features for a neighborhood of 8 pixels

LBP Operator. The local binary pattern is a powerful graylevel invariant texture
primitive. The histogram of the binary patterns computed over a region is used
for texture description [12]. The operator describes each pixel by the relative
graylevels of its neighboring pixels, see Fig. 1 for an illustration with 8 neighbors.
If the graylevel of the neighboring pixel is higher or equal, the value is set to one,
otherwise to zero. The descriptor describes the result over the neighborhood as
a binary number (binary pattern):

LBPR,N (x, y) =
N−1∑
i=0

s(ni − nc)2i, s(x) =
{

1 x ≥ 0
0 otherwise

, (1)

where nc corresponds to the graylevel of the center pixel of a local neighborhood
and ni to the graylevels of N equally spaced pixels on a circle of radius R. The
values of neighbors that do not fall exactly on pixels are estimated by bilinear
interpolation. Since correlation between pixels decreases with distance, a lot
of the texture information can be obtained from local neighborhoods. Thus,
the radius R is usually kept small. In practice, (1) means that the signs of
the differences in a neighborhood are interpreted as an N -bit binary number,
resulting in 2N distinct values for the binary pattern. The LBP has several
properties that favor its usage in interest region description. The features are
robust against illumination changes, they are very fast to compute, do not require
many parameters to be set, and have high discriminative power.

2.2 CS-LBP Descriptor

In the following, we provide details on our interest region descriptor which com-
bines the strengths of the SIFT descriptor and the LBP texture operator.

Region Preprocessing. We first filter the region with an edge-preserving adaptive
noise-removal filter (we used wiener2 in Matlab). The edge-preserving nature of
the filter is essential for good performance, since much of the information comes
from edges and other high-frequency parts of a region. Our experiments have
shown that this filtering improves the performance on average around 5 percent
(depending on the test images), and therefore all the experiments presented in
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this paper are carried out with this kind of filtering. Furthermore, the region
data is scaled between 0 and 1 such that 1% of the data is saturated at the low
and high intensities of the region. This increases the contrast of the region.

Feature Extraction with Center-Symmetric Local Binary Patterns. After pre-
processing, we extract a feature for each pixel of the region using the center-
symmetric local binary pattern (CS-LBP) operator which was inspired by the
local binary patterns (LBP). The LBP operator produces rather long histograms
and is therefore difficult to use in the context of a region descriptor. To produce
more compact binary patterns, we compare only center-symmetric pairs of pix-
els, see Fig. 1. We can see that for 8 neighbors, LBP produces 256 different binary
patterns, whereas for CS-LBP this number is only 16. Furthermore, robustness
on flat image regions is obtained by thresholding the graylevel differences with
a small value T :

CS−LBPR,N,T (x, y)=
(N/2)−1∑

i=0

s(ni−ni+(N/2))2i, s(x) =
{

1 x > T
0 otherwise

, (2)

where ni and ni+(N/2) correspond to the grayvalues of center-symmetric pairs
of pixels of N equally spaced pixels on a circle of radius R. The value of the
threshold T is 1% of the pixel value range in our experiments. Since the region
data lies between 0 and 1, T is set to 0.01. The radius is set to 2 and the size of
the neighborhood is 8. All the experiments presented in this paper, except the
parameter evaluation, are carried out for these parameters (CS − LBP2,8,0.01)
which gave the best overall performance for the given test data. It should be
noted that the gain of CS-LBP over LBP is not only due to the dimensionality
reduction, but also to the fact that the CS-LBP captures better the gradient
information than the basic LBP. Experiments with LBP and CS-LBP have shown
the benefits of the CS-LBP over the LBP, in particular, significant reduction in
dimensionality while preserving distinctiveness.

Feature Weighting. Different ways of weighting the features are possible. For
example, in the case of SIFT, the bins of the gradient orientation histograms
are incremented with Gaussian-weighted gradient magnitudes. A comparison of
different weighting strategies, including the SIFT-like weighting, showed that
simple uniform weighting is the most suitable choice for the CS-LBP features.
This is, of course, good news, as it makes our descriptor computationally very
simple.

Descriptor Construction. In order to incorporate spatial information into our
descriptor, the region is divided into cells with a location grid. Our experiments
showed that a Cartesian grid seems to be the most suitable choice. For the
experiments presented in this paper, we selected a 4×4 Cartesian grid. For each
cell a CS-LBP histogram is built. In order to avoid boundary effects in which
the descriptor abruptly changes as a feature shifts from one histogram bin to
another, a bilinear interpolation is used to distribute the weight of each feature
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Fig. 2. The CS-LBP descriptor

into adjacent histogram bins. The resulting descriptor is a 3D histogram of CS-
LBP feature locations and values, as illustrated in Fig. 2. As explained earlier,
the number of different feature values depends on the neighborhood size of the
chosen CS-LBP operator.

Descriptor Normalization. The final descriptor is built by concatenating the fea-
ture histograms computed for the cells to form a (4 × 4 × 16) 256-dimensional
vector. The descriptor is then normalized to unit length. The influence of very
large descriptor elements is reduced by thresholding each element to be no larger
than 0.2. This means that the distribution of CS-LBP features has greater em-
phasis than individual large values. Finally, the descriptor is renormalized to
unit length.

3 Experimental Setup

For evaluating the proposed descriptor, we use the same test protocol as in [7].
The protocol is available on the Internet together with the test data [13]. The
test data contains images with different geometric and photometric transforma-
tions and for different scene types. Six different transformations are evaluated:
viewpoint change, scale change, image rotation, image blur, illumination change,
and JPEG compression. The two different scene types are structured and tex-
tured scenes. These test images are shown on the left of Fig. 3. The images
are either of planar scenes or the camera position was fixed during acquisition.
The images are, therefore, always related by a homography (included in the test
data). In order to study in more detail the tolerance of our descriptor to illumi-
nation changes, we captured two additional image pairs shown on the right of
Fig. 3.

The evaluation criterion is based on the number of correct and false matches
between a pair of images. The definition of a match depends on the matching
strategy. As in [7], we declare two interest regions to be matched if the Euclidean
distance between their descriptors is below a threshold. The number of correct
matches is determined with the overlap error [14]. It measures how well the
regions A and B correspond under a known homography H , and is defined by
the ratio of the intersection and union of the regions: εS = 1−(A∩HTBH)/(A∪
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Graf Wall Boat Bark Mvlab1

Bikes Trees Leuven Ubc Mvlab2

Fig. 3. Test images (left): Graf (viewpoint change, structured scene), Wall (view-
point change, textured scene), Boat (scale change + image rotation, structured scene),
Bark (scale change + image rotation, textured scene), Bikes (image blur, structured
scene), Trees (image blur, textured scene), Leuven (illumination change, structured
scene), and Ubc (JPEG compression, structured scene). Additional test images (right):
Mvlab1 (illumination change, structured scene) and Mvlab2 (illumination change,
textured scene).

HTBH). A match is assumed to be correct if εS < 0.5. A descriptor can have
several matches and several of them may be correct. The results are presented
with recall versus 1-precision:

recall =
#correct matches
#correspondences

, 1− precision =
#false matches
#all matches

, (3)

where the #correspondences stands for the ground truth number of matching
regions between the images. The curves are obtained by varying the distance
threshold and a perfect descriptor would give a recall equal to 1 for any precision.

The interest region detectors provide the regions which are used to compute
the descriptors. In the experiments, we use two different detectors: Hessian-
Affine [6] and Harris-Affine [15]. The two detectors output different types of
image structures. Hessian-Affine detects blob-like structures while Harris-Affine
looks for corner-like structures. Both detectors output elliptic regions of varying
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size which depends on the detection scale. Before computing the descriptors, the
detected regions are mapped to a circular region of constant radius to obtain scale
and affine invariance. Rotation invariance is obtained by rotating the normalized
regions in the direction of the dominant gradient orientation, as suggested in [3].
For region detection and normalization, we use the software routines provided by
the evaluation protocol. In the experiments, the normalized region size is fixed
to 41× 41 pixels.

4 Experimental Results

In this section we first evaluate the performance of our CS-LBP descriptor for
different parameter settings and then compare the resulting version to the SIFT
descriptor.

Descriptor Parameter Evaluation. The evaluation of different parameter set-
tings is carried out for a pair of images with a viewpoint change of more than
50 degrees. The images are shown in Fig. 4. We use the Hessian-Affine detec-
tor which extracts 2454 and 2296 interest regions in the left and right images,
respectively. The performance is measured with nearest neighbor matching, i.e.,
a descriptor has only one match. We keep the 400 best matches and report the
percentage of correct matches. Note that there are 503 possible nearest neighbor
correspondences identified between the images.

We compare the matching performance (percentage of correct matches) for
differently spaced location grids, different parameters of the CS-LBP operator,
and two weighting schemes. Fig. 5 shows that a 4×4 Cartesian grid outperforms
all the other grid spacings. The left graph clearly shows that a uniform weighting
outperforms a SIFT-like one and that a neighborhood size 8 is better than 6 or
10. The graph on the right compares different values for the radius and the
threshold and shows that a radius of 1 and a threshold of 0.01 give best results.
In conclusion, the 4× 4 Cartesian grid and the CS − LBP1,8,0.01 with uniform
weighting give the best performance. For the given image pair, the best results
are obtained with a radius of 1. However, experiments with many other image
pairs have shown that a radius of 2 actually gives better overall performance.
Thus, in the comparison with SIFT, we set the radius to 2 instead of 1. The
results also show that our descriptor is not very sensitive to small changes in its
parameter values. Note that due to space constraints, Fig. 5 does not cover all

Image 1 Image 2
CS-LBP SIFT

Recall 0.386 0.316

1 - Precision 0.515 0.603

Correct Matches 194 / 400 159 / 400

Fig. 4. Left: Image pair with a viewpoint change of more than 50 degrees. Right: The
matching results for the 400 nearest neighbor matches between the images.
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Fig. 5. Evaluation of different parameter settings. See text for details.

the tested parameter settings and that the omitted results are consistent with
our conclusions.

The dimensionality of the CS-LBP descriptor can be reduced without loss
in performance. When reducing the dimension from 256 to 128 with PCA, the
results seemed to remain unchanged. The performance of the 64-dimensional
descriptor is still very close to that of the original one. This property makes our
descriptor applicable in systems where the matching speed is important. Note
that a data set different from the test data was used to estimate the covariance
matrices for PCA. The comparison experiments presented next are carried out
without using dimension reduction.

Comparison with the SIFT Descriptor. Figures 6 and 7 show the comparison
results for Hessian-Affine and Harris-Affine regions, respectively. For Hessian-
Affine regions, our descriptor is better than SIFT for most of the test cases
and performs about equally well for the remaining ones. A significant improve-
ment of CS-LBP is obtained in the case of illumination changes. For example,
for the Leuven images, our descriptor gives approximately 20% higher recall
for 1-precision of 0.4. The difference is even larger for the additional two test
pairs (Mvlab1 and Mvlab2 ). Clearly better results are also obtained for the Graf,
Bikes, and Ubc images which measure the tolerance to viewpoint change, image
blur, and JPEG compression, respectively. As we can see, the CS-LBP descriptor
performs significantly better than SIFT for structured scenes, while the differ-
ence for textured scenes is smaller. Similar results are achieved for Harris-Affine
regions. Both descriptors give better overall results for Hessian-Affine regions
than for Harris-Affine ones. This is consistent with the findings in [6] and can
be explained by the fact that Laplacian scale selection used by the region detec-
tors works better on blob-like structures than on corners [7]. In other words, the
accuracy of interest region detection affects the descriptor performance.

Additional experiments were carried out for the scale invariant versions of
the detectors, i.e., Hessian-Laplace and Harris-Laplace [7]. They differ from the
affine invariant detectors in that they omit the affine adaptation step [15]. The
results are not presented due to space limitation, but the ranking of the two
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Fig. 6. Comparison results for Hessian-Affine regions
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Fig. 7. Comparison results for Harris-Affine regions
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descriptors for the scale invariant regions is comparable to that of the affine
invariant regions.

We also performed an additional matching experiment which uses the same
setup that was used in the parameter evaluation. Fig. 4 presents recall, 1-
precision, and the number of correct matches obtained with the two descriptors
for a fixed number of 400 nearest neighbor matches. As we can see, the CS-LBP
descriptor clearly outperforms the SIFT descriptor.

5 Conclusions

A novel CS-LBP interest region descriptor which combines the strengths of the
well-known SIFT descriptor and the LBP texture operator was proposed. In-
stead of the gradient orientation and magnitude based features used by SIFT,
we proposed to use center-symmetric local binary pattern (CS-LBP) features
introduced in this paper. The CS-LBP descriptor was evaluated against the
SIFT descriptor using a recently presented test framework. Our descriptor per-
formed clearly better than SIFT for most of the test cases and about equally
well for the remaining ones. Especially, the tolerance of our descriptor to illu-
mination changes is clearly demonstrated. Furthermore, our features are more
robust on flat image areas, since the graylevel differences are allowed to vary
close to zero without affecting the thresholded results. It should be also noted
that the CS-LBP descriptor is computationally simpler than the SIFT descrip-
tor. Future work includes applying the proposed descriptor to different computer
vision problems such as object recognition and tracking.
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Abstract. This paper describes a novel method for image segmentation
where image contains a dominant object. The method is applicable to
a large class of images including noisy and poor quality images. It is
fully automatic and has low computational cost. It may be noted that
the proposed segmentation technique may not produce optimal result in
some cases but it gives reasonably good result for almost all images of a
large class. Hence, the method is found very useful for the applications
where accuracy of the segmentation is not very critical, e.g., for global
shape feature extraction, second generation coding etc.

1 Introduction

Today it is needless to mention the importance and necessity of image segmen-
tation. Probably it is the most intensively researched topic in the field of image
processing and understanding. Some major concepts include feature threshold-
ing [1], region growing [2], change in feature detection [3], facet model [4], active
contour [5], watershed [6], etc. In [7], a scheme is presented to find out the seman-
tic objects in an image. But, it is applicable for colour images only. A multilevel
hypergraph partitioning method has been discussed in [8]. The scheme suffers
from prohibitive computational cost. Depending on the application domain as
well as the quality of the image data many variations of these approaches have
come up. Thus, hundreds of papers are available in the literature. All these seg-
mentation algorithms may be classified into two groups: (i) Region extraction
and (ii) Contour detection. However, these two groups have a strong correspon-
dence between them. That means if region is available, contour can readily be
found by applying boundary extraction method [1] and, on the other hand, if
contour is available, region can be generated straightaway by filling [9]. Secondly,
none of these algorithms are fully automatic; they always need some form of user
intervention – in the form of threshold selection or markers selection or contour
initialization etc.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 70–81, 2006.
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In this paper, we present a fully automatic, low cost and robust segmentation
algorithm. However, it should be noted that the proposed algorithm may not
give the best result in many cases, but it gives reasonably good result for a
really large class of images. By the term ‘reasonably good result’ here we mean
that the outer-most contour of the segmented/extracted region approximates
the actual contour closely. This kind of segmentation results is good enough in
various types of applications, where exact segmentation may not be very crucial.
For example, it may be suitable for extracting global shape features (like aspect
ratio, circularity, etc.) that are used in CBIR, for second generation compression
where different regions are coded differently, for supplying initial contour to
snake algorithm, or may be used as a mask for selecting marker in watershed
algorithm etc.

The paper is organized as follows. Section 2 elaborates the problem while
section 3 presents fast algorithm for computing Pseudo-convex hull. Proposed
segmentation algorithm is described in section 4 step by step. Experimental
results are presented in section 5 and section 6 contains concluding remarks.

2 Problem Formulation

It is mentioned earlier that the proposed algorithm works for a class of images.
So, first, we like to define that class. Depending on the contents, images may
be grouped into three classes: (i) class of images containing a single dominant
object (Class-1), (ii) class of images containing many objects of more or less
equal significance (Class-2), and (iii) class of images containing no objects of
specific interest, but their combination appears very picturesque (Class-3). The
class-3 is exemplified by outdoor scenery consisting mostly of sky, water body
(like, sea, river, lake etc.), grass-field, beach etc. none of which is particularly
important, but surely the combination is. Images of a group of people, cluttered
objects, busy area (e.g., railway station, departmental store, city street, etc.),
business meeting and like belong to Class-2. Finally, Class-1 contains images
of our child, friend, relative, home, car, pet, object of our interest (e.g., ancient
building, monument, sculpture and statue, biomedical image, animal, bird, etc.),
famous personality, and so on. These objects, in the image, occupy the major area
mostly at the center and are sharply focused. There could be other objects too
in the image, but those are given usually less emphasis while photographed and
are treated as background. Hence, we say that Class-1 contains images of single
dominant object. In any estimate, number of images belong to Class-1 is by far
large than that of Class-2 and Class-3 together. It is also observed that dominant
objects or the objects of interest in the Class-1 images are closely convex shaped.
However, the term ’closely’ is qualitative in nature and introduces ambiguity in
decision. So an objective measure is in order.

An object A is said to be convex if its intersection with a line having any slope
angle θ produces at most one line segment. However, in order to explain the
working of our algorithm we describe convex object in a different way. Suppose
an image contains an object A. If two distinct line segments, with an angle θ
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θ

θ

θ

(a)                                           (b)                                           (c)

θ

Fig. 1. Different types of objects: (a) pseudo-convex, (b) concave, and (c) convex

between them, starting from every point on the boundary of A can reach the
image frame without intersecting any of the interior point of A [see Fig. 1], then
we call A is n pseudo-convex object with respect to θ; It is readily evident that
the objects we mostly deal with are neither strictly convex nor concave, but are
of type pseudo-convex. Hence, in this work, we classify 2D objects into three
groups: Convex, Pseudo-convex and Concave.

Since we work on discrete domain and it is known that digital straight line
segment can uniquely defined only for the slope 0o, 45o, 90o and 135o [10], we
confine our definition of pseudo-convex objects in terms line segment of said
orientations only.

(a)

(b)

(d)

(c)

Fig. 2. Different types of objects (a) convex, (b) ramp-convex, (c) ortho-convex and
(d) wedge-convex objects

Definition: A digital object A is said to be pseudo-convex if two line segments,
with an angle θ between them and one of them is either horizontal (slope 0o) or
vertical (slope 90o), starting from every point on the boundary of A can reach
the image frame without intersecting any of the interior point of A.
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A is a true convex object for θ ≥ 180o and it is taken as a concave object if
θ < 45o. Otherwise, if 45o ≤ θ < 180o then the object is ’closely convex shaped’
which can be further classified as follows. If 135o ≤ θ < 180o then the shape of
A is called ramp-convex. It is ortho-convex if 90o ≤ θ < 135o. A is wedge-convex
for 45o ≤ θ < 90o. Figure 2 shows some examples of convex, ortho-convex,
ramp-convex and wedge-convex objects.

The proposed segmentation algorithm is based on the idea of obtaining a
closely convex region corresponding to the dominant object in an image. It may
be noted that this region is nothing but the pseudo-convex (ramp, ortho or
wedge-convex) hull of the dominant object.

Now suppose a digital graylevel image I(i, j) contains a dominant object and
ideal segmentation of I produces a binary image containing a connected compo-
nent A corresponding to the dominant object. Our segmentation algorithm tries
to obtain a closely convex (e.g., convex, ortho-convex, ramp-convex or wedge-
convex) region, say, R such that

error = #{(A ∩Rc) ∪ (Ac ∩R)} < ta (1)

The operator ’#’ stands for cardinality of a set and ta is the threshold of toler-
ance. In the proposed method R is computed as pseudo-convex hull of the set
of pixels obtained from initial processing (e.g., edge pixel extraction) of I for a
given θ. Detail of the algorithm is described in the next section.

3 Fast Algorithm for Computing Pseudo-convex Hull

Since backbone of the proposed scheme is computing pseudo-convex (i.e., ramp-
convex or ortho-convex or wedge-convex) hull. We first present an efficient
algorithm for the same. To design the algorithm we adopt the definition of
pseudo-convex except that the lines originate from image frame. And then it
is examined whether pair of lines with given θ has reached the boundary before
meeting any interior pixels.

Suppose a binary imageB(i, j) contains a set of points A whose pseudo-convex
hull is to be determined. That means B(i, j) may be represented as

B(i, j) =
{

1 (i, j) ∈ A
0 otherwise

An example of B is shown in Fig. 3(a)(i). Hence, the steps of the algorithm are:

Step 1: Take four other arrays H(i, j), V (i, j), D1(i, j) and D2(i, j) of same
size as that of B(i, j), and initialize them with 1’s.

Step 2: Now for each row of H(i, j) [An example is illustrated in Fig. 3(b &
c)(i)]
1. Start from first column, change its pixel value to zero and move right

until B(i, j) = 1 or the last column is reached.
2. If the last column is not reached then start from last column, change

pixel values to zero, and move left ward until B(i, j) = 1.
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Fig. 3. Scanning directions and output of each step of pseudo-convex hull algorithm

Step 3: Now repeat sub-steps of 2 for V (i, j), D1(i, j) and D2(i, j) with appro-
priate directions i.e., upward and downward for V and so on. [Results are
illustrated in Fig. 3(b & c)(ii)-(iv).]

Step 4: Finally, produce a binary image P (i, j) that contains the pseudo-convex
hull of the given point set A as follows:

P (i, j) =
{

1 H(i, j) + V (i, j) +D1(i, j) +D2(i, j) ≥ th
0 otherwise

1. th = 1 is equivalent to θ = 135o and we have ramp-convex hull. [See
Fig. 3(d)(iv).]

2. th = 2 is equivalent to θ = 90o and if only H(i, j) and V (i, j) taken, we
have ortho-convex hull. [See Fig. 3(d)(ii).]

3. th = 3 is equivalent to θ = 45o and we have wedge-convex hull.

Finally, it may be noted that wedge-convex hull (hullw) is the closest estimate
of the object as

A ⊆ hullwedge(A) ⊆ hullortho(A) ⊆ hullramp(A) ⊆ hull(A)
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As the algorithm involves only the traversal of the pixels along a direction
originating from the image frame, computational cost is quite low. The order of
such complexity is o(n), where, n is the number of pixels in the image.

4 Description of the Proposed Scheme

In this section we describe the details of the proposed segmentation algorithm.
Note that the segmentation algorithm is fully automated and assumes that the
image contains only one dominating object and other objects, if present, are
small in comparison to the object of interest.

4.1 Segmentation Algorithm in Steps

Input to this step is a gray level image representing the intensity map of the
scene. If the original image is in colour we convert it to HLS or HSV or any
other similar triplet and take the L or V component as an intensity image. The
segmentation is done in three steps, assuming that the image background does
not have high contrast texture, as elaborated below:

I. Noise removal.
II. Initial Segmentation.

(a) Formation of Gradient image.
(b) Thresholding.

III. Final Segmentation.
(a) Approximate object area determination.
(b) Removal of small objects by component labeling.
(c) Final extraction of object region.

Explanation of each steps are in order.

Noise removal. Smoothing filters are, in general, used for noise removal and
blurring. Blurring is used as a preprocessing step to remove small details from
the image prior to extraction of large objects as well as bridging of small gaps
in lines and curves. In our case noise removal gets priority rather than blurring
and we would like to keep edge sharpness intact. We used median filtering which
is a suitable tool to get the desired effects. A 5 × 5 window is used over which
the median filtering is done to remove noise.

Initial Segmentation a) Formation of Gradient image
Here edges are detected on the basis of gray level discontinuities. To achieve

this, gradient (i.e., the maximum rate of change of the gray level within a spec-
ified neighborhood) at every point of the filtered image is computed.

The neighborhood around a pixel (i, j) within which the gradient is computed
and the weights given to the neighboring pixels are shown below:

a b c 1
√

2 1
d (i,j) e

√
2 (i,j)

√
2

f g h 1
√

2 1
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The gradient at the centre point (i, j) of the 3 × 3 mask is computed using
the difference operator based on the concept of Weber ratio as follows.

m0 = (c+
√

2e+ h)/(2 +
√

2)
m1 = (a+

√
2d+ f)/(2 +

√
2)

g0 = | m0 −m1 | /(m0 +m1 + 1)

Similarly, g1 is computed considering the elements a, b, c and f , g, h. For g2,
the diagonal elements b, c, e and d, f , g are considered. And, g3 is computed
considering the elements a, b, d and g, h, e. The intensity gradient g(i, j) at the
point (i, j) is then defined as

g(i, j) = max{g0, g1, g2, g3} (2)

The value of g(i, j) ranges from –127 to 127 and is symmetrically distributed
with zero mean. It is observed that the distribution of g(i, j) closely follows
Laplace density function [11].

f(x) =
1
2σ
e−|x−μ|/σ for −∞ < x <∞ (3)

where μ is the mean and σ is the standard deviation of the population. Secondly,
p% of population lie in the range [μ− kσ, μ+ kσ] where

k = −ln(1− p

100
) (4)

b) Thresholding
The gradient image is then subject to a threshold operation to get a binary
image containing edge pixels. Suppose we assume that less than q% of all the
image pixels are edge pixels and p = 100 − q. Then the threshold is μ + kσ; μ
and σ are computed from the gradient image. Edge image is given by

B(i, j) =
{

1 if |g(i, j)| > μ+ kσ
0 otherwise (5)

In our experiment we have taken q = 20. Obviously, the threshold computed
this way may not give optimum results for all kinds of images. The resulting
edge images thus have thick or broken or extraneous edges or their combination.
However, these edge pixels are sufficient to generate approximate pseudo-convex
hull of the object of interest as will be seen below.

These steps are demonstrated by an example shown in Fig. 4. Fig. 4(a) is the
input gray level image and Fig. 4(b) shows its edge pixels.

Final Segmentation a) Approximate object area determination
To find out the object, the edge image obtained in previous step undergoes the
pseudo-convex hull algorithm as described in section 3. We determine wedge-
convex hull of the set of edge pixels, i.e., use th = 3. We choose wedge-convex
hull to ensure that the boundary of the computed hull be as close to the concave
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region of the object as possible and also that the nearby small objects or extra-
neous edges due to background texture (if any) do not merge with the dominant
object.

The result of approximate object area determination is shown in Fig. 4(c).
This process may generate small objects due to presence of extraneous edge
pixels as seen in figure Fig. 4(c). They may be removed through connected
component analysis as described below.
b) Removal of small objects by component labeling
After computing the wedge-convex hull we get an initial estimate of the dominant
object. We also get some small objects arising out of scattered extraneous edge
pixels in the background. These can be isolated by component labeling and
subsequently removed keeping only the biggest one.

Fig. 4(d) shows the result after removal of small objects by connected com-
ponent analysis.
c) Final extraction of object region
After removal of small objects we finally determine the dominant object region
by applying pseudo-convex hull algorithm with th = 1 on the point set of largest
connected component obtained from previous step. This time we choose to com-
pute ramp convex hull to remove undesired intrusion into the object region due
to broken edges. However, this also fills up concave regions. Result of the final
step is shown in Fig. 4(e).

(a) (b) (c) (d) (e)

Fig. 4. Segmentation steps; (left to right) a) Original image; b) After threshold oper-
ation; c) After 1st level of segmentation; d) After removal of small component and e)
Final segmentation

5 Experimental Results and Discussion

The segmentation algorithm proposed here are implemented on a Alphaserver
DS 20E machine with UNIX OS. The average time taken (for image of size
200× 320 approx.) is less than 10 msec. The algorithm can be made even faster
by readily parallelizing various parts. We have tested the proposed algorithm on
a large number (1000 approx.) of images of various types. A few results of the
experiment are shown in Fig. 5 where the original image, segmented image and
the contour superimposed original image are shown side by side.

To compare the performance of the proposed segmentation scheme, we have
implemented the scheme proposed by Siebert [12]. The results are shown in
figure 6.
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(a) (b) (c)

Fig. 5. Segmentation Results (left to right): (a) Original image; (b) Segmented image
and (c) Superimposed image taking the original and the segmented image

To get the visually best possible result in case of Siebert’s scheme, the parame-
ters are set manually. It appears that Siebert’s scheme suffers from various draw-
backs. The algorithm depends on a number of parameters like θcc, abrupt change
etc. setting of which cannot be automated. θcc is a fraction of strong point count
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(a)

(b)

(c)

(d)

(e)

(i) (ii) (iii)

Fig. 6. Column (i) shows original image; (ii) and (iii) show corresponding seg-
mented image by Siebert’s scheme and our scheme respectively. In case of Siebert’s
scheme (θcc, abrupt change) for the five images considered are (0.4, 0.4), (0.4, 0.5),
(0.1, 0.3),(0.4, 0.4) and (0.3, 0.4) respectively.

in the image and is a criterion to determine how far the region growing will
continue. A region growing may result into overspill. If the overspill results into
abrupt change in certain parameters (say, region size), then that overspill is dis-
carded. The region growing starts from a seed region which is selected based on
the smoothness factor. Hence, sometimes the central object (figure 6(b),(d),(e))
and sometimes the encompassing background (figure 6(a),(c)) appear as output.
Moreover, the performance varies from image to image and fails if the background
contains texture. As figure 6 shows, the performance of Siebert’s algorithm is
very good for (d) and moderate in case of (b) and (c). But, it fails in case of
(a) and (e). On the other hand, our scheme provides good output for all those
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cases. Another drawback is that, the algorithm is very slow. Segmenting around
500 images using the two algorithms, it has been observed that on an average
the proposed algorithm is almost 10 times faster than Siebert’s algorithm.

6 Conclusion

In this paper we have presented a fast and robust image segmentation algorithm
based on edge detection and determination of pseudo-convex hull of edge points.
The algorithm may be considered fully automatic as the required parameters
are set in the algorithm itself and no user intervention is needed during batch
operation. Assigned value of the parameters are not claimed to be optimal, they
together can do the job reasonably well in almost all the cases. For example,
the threshold used to detect edge points is by no means the best, even then
the detected edge points provide sufficient clue to estimate the object region
through the pseudo-convex hull algorithm. The result of the proposed algorithm
is compared with that of of a recent work and is found superior in most of the
cases.

Finally, it should again be noted that emphasis is given to design simple and
fully automated segmentation method that incurs very low computational cost.
The proposed method may not give the best result in all cases, but it surely gives
acceptable results in almost all cases. Thus the method is useful where accuracy
of segmentation is not very critically demanded. The class for which the method
would give good results is also defined and is found really large.
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Abstract. Histograms of visual words (or textons) have proved effective
in tasks such as image classification and object class recognition. A com-
mon approach is to represent an object class by a set of histograms, each
one corresponding to a training exemplar. Classification is then achieved
by k-nearest neighbour search over the exemplars.

In this paper we introduce two novelties on this approach: (i) we show
that new compact single histogram models estimated optimally from the
entire training set achieve an equal or superior classification accuracy.
The benefit of the single histograms is that they are much more efficient
both in terms of memory and computational resources; and (ii) we show
that bag of visual words histograms can provide an accurate pixel-wise
segmentation of an image into object class regions. In this manner the
compact models of visual object classes give simultaneous segmentation
and recognition of image regions.

The approach is evaluated on the MSRC database [5] and it is shown
that performance equals or is superior to previous publications on this
database.

1 Introduction

Segmenting natural images automatically in a bottom up fashion has a long
history but has not been that successful – see [16] for a recent example and earlier
references. Two more recent and fruitful trends are class driven segmentation,
where object class models propose object localisations that can then refine a
more local (bottom up) image segmentation [1, 2, 9, 11, 12, 17], and interactive
segmentation in which a human supplies approximate segmentations and then
refines and groups automatically generated image based segmentations [4, 15].
For example, consider a colour based segmentation of a patchy cow – a purely
bottom up segmentation will tend to separate the image into many different
regions rather than recognising the cow as a single, coherent object – there is a
clear need for segmentation and recognition to work together.

Many class driven recognition and segmentation algorithms represent the ob-
ject class or texture using multiple exemplars [1, 2, 9, 11, 12, 20]. One contri-
bution of this paper is to show that equal or superior recognition results can be
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c© Springer-Verlag Berlin Heidelberg 2006



Single-Histogram Class Models for Image Segmentation 83

(a) (a’)

(b) (b’) (c) (c’)

Fig. 1. The image database. (a–c) Example images from the MSRC database and
(a’–c’) their ground-truth class segmentation maps. The colour indicates the object
class, with different kinds of grass, for example, associated with a common “grass”
label. Note the presence of unlabelled (black) pixels.

obtained by a single class model if an appropriate distance measure is used, and
also to explain why this result comes about. A second contribution of this paper
is to show that pixel-wise segmentations can be obtained from sliding windows
using class models.

In more detail we represent an object category by a single histogram of dense
visual words, and investigate the effectiveness of this representation for segmen-
tation. The advantage of a single class histogram is a very compact, and con-
sequently computationally efficient, representation. Histograms of visual words
have been used previously for region or image level classification [6, 8, 14, 18, 23],
though for the most part based on sparse descriptors. Others that have used
dense descriptors [3, 22, 8] have only considered soft segmentations based on the
support of the visual words, rather than explicit pixel-wise classification.

Previous authors [22] have also investigated representing each class in a com-
pact way using a single Gaussian model of each category. The class models
explored here are even simpler and more efficient since they consist of sim-
ple histograms without a covariance. We compare the performance of our class
models with those of [22] using the same data sets.

For the experiments in this paper we use the MSRC image database [5] (see
figure 1). The database contains many classes including grass, trees, sheep, build-
ings, bicycles and others, seen from different viewpoints and under general il-
lumination conditions. A coarse region level ground truth labelling is available,
and this is used to learn the class histograms, and also to assess the pixel level
and region level classifications during testing. For example, in the 120 training
images there are 64 labelled grass regions and 22 labelled cow regions.

2 Background: Features, Visual Words and Histograms

This section illustrates the basic algorithms for estimating the object class mod-
els and the intermediate data representation necessary for classification. The
training and testing steps have much in common and are briefly described next.
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Fig. 2. Flow diagram for the training and testing algorithms

Fig. 3. Texton maps for the images of figure 1. Different colours uniquely identify
different textons/visual words. A small visual vocabulary with only 50 words has been
used here for illustration.

In this paper, feature vectors are estimated densely, i.e. at each pixel location.
The actual feature vectors (step S1 in figure 2) are raw 3 × 3 or 5 × 5 colour
patches [3, 20] in the CIE-LAB colour space. Thus, their dimensionality is 27 or
75, respectively.

During training a vocabulary of V visual words (also called textons, [13, 20,
21, 22]) is built by clustering the feature vectors extracted from many training
images (step S2). Feature clustering is performed by K-means on a randomly
sampled 25% subset of feature vectors using equal numbers from each training
image. Note, a suitable degree of invariance (to lighting, rotations, scale etc)
is learnt implicitly from the training images (since these provide examples of
lighting changes etc), and no additional invariances are built in.

Given the set of cluster centres (these are the visual words or textons), it is
now possible to associate each pixel in the training images with the closest visual
word in the vocabulary (step S3). The result may be visualised by generating
colour-coded word maps such as in figure 3.

Finally, we compute histograms of visual words for each of the training re-
gions (step S4). Those histograms can then be (i) stored separately as training
exemplars, or (ii) combined together to produce compact and yet discriminative
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models of object categories. Here we estimate such single-histogram class mod-
els and demonstrate classification accuracy comparable to standard k-nearest-
neighbour classification (k-NN) on the exemplars.

During testing (step S5), an input image is converted into its corresponding
texton map. Then, pixel-wise classification is obtained by means of a sliding
window technique. A window of dimension (2w + 1) × (2w + 1) is slid across
the image to generate a histogram of visual words for each position. The centre
pixel is then classified according to the closest class histogram. In this manner
an image can be segmented into the various classes it contains, for example into
pixels arising from grass, trees or sheep.

3 Single-Histogram Models for Efficient Classification

This section describes details of our class model estimation algorithm (step S4
in figure 2). During training the histograms corresponding to different training
regions (exemplars) belonging to the same class are combined together into a
single, optimally estimated class histogram. During testing for pixel-wise classi-
fication, a histogram is computed for each pixel of the test image using a sliding
window, and this histogram is then compared to each of the C (the number of
classes) class histograms (as opposed to each of the (possibly many) training
regions/exemplars in the case of k-NN classification). The use of single class his-
tograms clearly reduces the classification cost. The class models are used both
for the aforementioned pixel-wise classification, via a sliding window, and for
region level classification, explained later on.

The key question then is how to compute such single-histogram models. Let
p be one of the exemplar histograms and q the single histogram model that we
seek. Histograms are represented as V -vectors, with V the vocabulary size. For
a given class c, the “optimal” class histogram q is the one which minimises the
overall distance to all the Nc exemplar histograms pj , as this minimises intra-
class variability. Ideally, for best discrimination, one would also like to maximise
the inter-class variability, and we return to this point later. The optimal solu-
tion q̂ depends on the histogram distance function used during classification.
In this paper we analyse and compare the two most common alternatives: (i)
a Kullback-Leibler divergence (DKL), and (ii) a Euclidean distance (DL2). The
same framework may also be applied to other distance measures, such as his-
togram intersection, χ2, Bhattacharyya or Alpha-Divergence.

Kullback-Leibler divergence: The KL divergence between the two normalised
histograms a and b is defined as:

DKL(a ‖ b) =
∑

i

ai log
ai

bi
.

The subscript i labels the bins (ai or bi), with i = 1 . . . V .
Given a class c we seek the model histogram q̂ which minimises the following

cost:
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EKL :=
Nc∑
j=1

njDKL(pj ‖ q) subject to ‖ q ‖1= 1, qi ≥ 0 ∀i , (1)

where nj denotes the number of pixels in the jth exemplar region, and is used
as a weight to each exemplar histogram. Nc is the number of exemplar regions
for the object category c. The normalised histogram for the jth exemplar image
region in class c is denoted pj . Note that the weighting factors nj could be set
to one, thus treating all training exemplars equally. Both versions were explored
and gave comparable results.

Standard manipulation yields the global minimum of (1) as:

q̂ :=

∑
j n

jpj∑
j n

j
. (2)

It can be shown [7] that q̂, with nj as defined, corresponds to the maxi-
mum likelihood estimate of the visual word distribution for class c given its Nc

training region visual words. In other words, q̂ describes the overall visual word
distribution in all training regions.

During classification, given a query image sliding window, or region and its
corresponding histogram p, the closest class model q̃ = argminqDKL(p ‖ q) is
chosen, i.e. q̃ is the model that best explains p and the corresponding class the
most likely one.

Euclidean Distance: The Euclidean distance between the two histograms a and
b is defined as:

DL2(a,b) =
∑
i=1

(ai − bi)2 .

Once again, given the class c and its exemplar histograms pj we seek the
histogram q̂ which minimises the following cost:

EL2 :=
Nc∑
j=1

njDL2(pj ,q) subject to ‖ q ‖1= 1, qi ≥ 0 ∀i . (3)

Standard manipulation leads to the same q̂ as obtained by minimising (1), i.e.
as given in (2).

Next we assess the discrimination power of the learnt class models by mea-
suring pixel-wise classification performance.

4 Results and Comparative Evaluation

In this section we assess the validity of our models by measuring accuracy of
segmentation/recognition against two subsets of the MSRC database [5]: a six
class subset, 6-class = { cow, sheep, dog, cat, bird, grass }; and a nine class subset,
9-class = { building, grass, tree, cow, sky, aeroplane, face, car, bicycle } [22].
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V Acc. w Acc.

(w = 11) (%) (V = 8000) (%)

500 79.1 5 80.3

1000 80.7 11 82.4

2000 81.7 15 82.4

4000 82.3 20 82.1

8000 82.4 26 81.1

16000 83.0 30 80

Fig. 4. Accuracy analysis on the 6-class set. Pixel-wise classification performance
as a function of the size w of the sliding window and the size V of the visual vocabulary.
The features are 27-dimensional 3 × 3 CIE-LAB patches. The vocabulary is learnt
by K-means clustering run for 500 iterations. KL divergence is used for histogram
comparisons.

The databases are split into 125 training and 50 test images for the 6-class set,
and 120 training and 120 test images for the 9-class set. The visual vocabulary
and class models are learnt from the training data only. As mentioned before,
during testing a window of dimension (2w+1)× (2w+1) is slid across the image
to generate a histogram of visual words for each pixel, and thereby classifying
the centre pixel.

Accuracy of segmentation/recognition is measured by the proportion of test
pixels correctly classified according to ground truth. Only the pixels belonging
to one of the aforementioned classes are taken into consideration. In the remain-
der we refer to this accuracy as pixel-wise classification performance, as opposed
to region-wise classification performance which is introduced later. In the fol-
lowing we first evaluate performance using the 6-class set together with single
class histograms over the system parameters: features (3 × 3, 5× 5); number of
iterations in K-means; vocabulary size V ; and window size w. We then compare
the performance of the single class histogram to that of using k-NN over all the
exemplars.

The effect of the window and vocabulary sizes: The first set of experiments are
designed to evaluate optimal values for the size of the sliding window w, the
vocabulary size V , and the best feature clustering technique.

Figure 4 plots the pixel-wise classification accuracy as a function of both the
window size w and the vocabulary size V . Two cross-sections of the accuracy
function through the maximum are shown in the table. The maximum perfor-
mance is reached for w = 11 − 15 and V = 16, 000. Accuracy does not vary
much over the range V = 8, 000 – 128, 000, so from here on a vocabulary of
size V = 8, 000 is used to reduce computational cost. The optimal value w = 12
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Table 1. Variations of K-means clustering. The mean (± one standard deviation)
pixel-wise classification accuracy computed over multiple runs of K-means; with the
number of runs used in each case shown in brackets. Different numbers of iterations
of K-means for constructing the visual vocabulary on the 6-class and 9-class sets are
compared. KL divergence together with single class histograms on 5 × 5 patches was
used.

KM, 0 iters KM, 1 iter KM, 10 iters KM, 500 iters

6-class 81.96 ± 0.20% (50) 82.24 ± 0.20% (10) 82.54 ± 0.15% (5) 82.56 ± 0.13% (5)

9-class 74.72 ± 0.22% (10) 74.92 ± 0.17% (10) 75.07 ± 0.15% (10) –

Table 2. k-NN vs. single-histograms. Comparing the pixel -wise classification per-
formance obtained by our single-histogram class models with that obtained from con-
ventional nearest neighbour. In this case we used V = 8000 and 5×5 patches as features.
K-means with 10 iterations was used to construct the visual vocabulary. For the 6-class
set the best performing k out of k = 1 . . . 100 and for the 9-class the performance for
k-NN with k = 1 is reported. Using single-histogram class models in conjunction with
KL divergence produces the best results.

DKL(6-class) DL2(6-class) Dχ2 (6-class) DKL(9-class) DL2(9-class) Dχ2 (9-class)

k-NN 82.1% 76.6% 78.7% 71.6% 65.1% 72.0%
single hist. 82.4% 77.0% – 75.2% 58.7% –

is also used. The performance is found not to depend much on the size of the
feature (i.e. size of colour patch), 5× 5 colour patches are used from here on.
The effects of different clustering techniques: In table 1 we compare the influence
of different numbers of iterations in K-means clustering for the construction of
the visual vocabulary. Zero iterations denote randomly sampled cluster centres
from the feature space, which is how K-means is initialised in all cases. Inter-
estingly the performance is only slightly affected by the number of iterations.
In particular there is only a small gain in increasing from 10 to 500 iterations.
From here on we use 10 iterations as a trade off between performance and com-
putational time for the experiments.

Keeping all exemplar histograms vs. single-histogram class models: Next we com-
pare the performance of single-histogram models with respect to conventional
k-NN classification, and provide evidence for the main claim of the paper.

Table 2 summarises the results of applying a k-NN approach, i.e. maintaining
all the exemplar histograms of each class separately, and our single-histogram
class models. Classification performance is measured for both KL and L2 dis-
tance. In all cases the accuracy obtained by the proposed class models is compa-
rable (if not superior) to that obtained by k-NN. Experiments were carried out
for the 6-class and 9-class datasets, as shown (the optimal k in the k-NN was
k = 1 for KL divergence, and k = 3, 4 for L2; for the 9-class set only k = 1 was
used). Substituting L2 distance for KL divergence reduces the performance by
nearly 6%. This confirms the better suitability of the KL divergence for single
class histograms (see following discussion).
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Table 3. Confusion matrices for the single class histogram method (see table 2).
(a) for the 6-class set; achieving an overall pixel-wise classification accuracy of 82.4%.
(b) for the 9-class set; achieving a pixel-wise classification accuracy of 75.2%. KL
divergence is used in both cases.

GT\Cl grass cow sheep bird cat dog

grass 95.61 2.0 1.2 1.2 0.1

cow 3.8 71.9 6.4 1.0 5.4 11.5

sheep 3.2 12.0 62.7 4.3 4.9 13.0

bird 5.5 27.1 24.0 27.7 10.4 5.4

cat 5.5 12.4 6.9 69.8 5.5

dog 1.1 24.7 2.3 6.5 18.2 47.2

GT\Cl build. grass tree cow sky plane face car bike

build. 56.7 0.0 4.8 3.0 2.2 12.8 1.4 11.6 7.5

grass 0.5 84.8 9.7 3.9 1.2

tree 6.4 5.6 76.4 1.2 0.3 1.3 2.4 6.5

cow 1.9 2.4 2.7 83.8 0.2 4.5 3.7 0.8

sky 6.5 2.1 81.1 6.4 3.9

plane 16.8 0.8 5.0 3.4 0.1 53.8 16.6 3.5

face 4.6 0.0 0.4 19.1 0.6 68.5 3.6 3.2

car 7.4 1.1 3.4 0.7 2.6 2.0 71.4 11.6

bike 9.9 0.1 4.8 2.9 1.5 0.1 8.8 72.0

(a) conf. mat. for 6-class set (b) conf. mat. for 9-class set

Table 4. Region-wise classification. Comparing the region-wise classification per-
formance obtained by our single-histogram class models with that obtained from con-
ventional nearest neighbour. Shown are the best results if V is varied (V is shown
in brackets). Results are comparable to previous published performances for this
dataset [22].

1-NN (χ2) cl-Hist (KL) 1-NN ([22]) 1-NN T ([22])
9-class 92.34 (for V = 4000 and V =32000) 93.43 (V=64000) 93.4 92.7

Table 3 shows the confusion matrices for selected experiments of table 2. The
matrices are row normalised (so that the percentages in each row sum to 100%).
Only pixels belonging to one of the classes are considered. For the 6-class set, the
grass class is recognised most reliably, followed by cows, cats and sheep. This
provides us with an idea of the relative difficulty of modelling each class. At
this point one may think that our models work well only with texture-defined
objects (grass, woolly sheep...). However, we also include classification of man
made (less texture-like) objects such as cars and bicycles in the 9-class database
(as also used in [22]). Table 3b presents the confusion matrix. The performance
is still well above 70%, thus confirming the modelling power of the proposed
class histograms (see following discussion).

4.1 Region Level Classification

Next we compare the accuracy of discrimination of our models with that achieved
by the Gaussian models proposed in Winn et al. [22]. Following their evalua-
tion methodology, we classify each input test region1 as belonging to one of the
classes in the database and measure the error with respect to ground truth. Table
4 shows that the proposed, simpler class models perform comparably. For this
comparison the exact training/test splits were provided by the authors of [22].
1 The area of the region and its ground truth label is known.
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exemplar 1

exemplar 2

class

top bottom
KL 2.29 (cow) 1.65 (cow)

6.96 (dog) 3.75 (sheep)
11.66 (bird) 4.83 (dog)

L2 0.019 (cow) 0.0028 (dog)
0.202 (grass) 0.0032 (cat)
0.202 (sheep) 0.0034 (cow)

1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7
x 10

−3

(a) (b) (c)

Fig. 5. Advantages of KL. Different instances of cows induce different proportions
of visual words. A unified “cow” model histogram (c) will contain different “modes”
for the different visual aspects and species of the instances. (a) provides a schematic
visualisation. In (c) the mode corresponding to the top cow in (b) is shown in red
(left), and for the bottom cow in blue (right). The remaining visual words of the cow -
model are shown in black in the middle. Note that a simple sorting of the visual words
has been employed to bring out the different modes. The table shows the distances of
the cow exemplars in (b) to the class models (showing the nearest class in bold). KL
divergence ignores zero bins in the query histograms and is thus better suited for this
scenario (note the wrong classification with L2 for the bottom cow).

Each of the methods (k-NN using χ2 on exemplars, and KL for single-class his-
tograms) are optimised separately over the size of the vocabulary V , and the
best result is reported. χ2 is reported for k-NN as this gives superior results to
L2 and it is the standard distance measure for region classification on exem-
plars [20]. In both cases the features are 5×5 patches and the visual vocabulary
was constructed with K-means (10 iterations). In addition to the results given
in the table we experimented on the 6-class database using V = 8000. The re-
sult is similar in that the 1-NN χ2 performance was 79.5% and the single-class
histogram reached 85.5%.

4.2 Discussion

As the experiments demonstrate, KL divergence is superior to both L2 and χ2

distance when the single-histogram models are used ([19] uses KL for similar
reasons). This observation can be explained by the fact that the KL divergence
does not penalise zero bins in the query histogram (which are non-zero in the
model) as much as the other two distances. As a result of the way our class models
are learnt, they are likely to have many non-zero bins due to the contribution
of all training images’ visual words to the model histogram. Query histograms
that stem from a very specific object instance are very likely to have many zero
bins. Consider the three schematic histograms shown in figure 5a. If L2 (or χ2)
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(a) (b) (c) (d)

Fig. 6. Class segmentation results. (a) Original photographs. (b) Ground-truth
class labels. (c) Output class maps obtained with KL divergence. (d) Output class
maps obtained with L2 distance. In most cases L2 gives less accurate segmentation.
In all cases our single-histogram class models were used, together with 5 × 5 patch
features, V = 8000 and K-means clustering.

distances are used then each exemplar histogram will have a large distance from
the class histogram (due to bins qi of the mode in the class histogram which are
not present in each of the exemplars). However, the KL divergence ignores all
the null bins of the exemplar histograms (as these are zero pi values in pi log pi

qi
),

thus making it a better suited distance. Figure 5c provides an example of such
a multi-modal class histogram (here the cow model), and two exemplar regions
inducing modes in the class model. The table shows the actual distances of the
two cow regions to the three closest class models. In this case the bottom cow
would be classified incorrectly as dog if L2 was used.

The optimal estimation of a class histogram is related to the topic vectors
of Probabilistic Latent Semantic Analysis (pLSA) used in statistical text analy-
sis [10]. Using the common terminology, each exemplar region represents a doc-
ument by its word frequencies, visual words in our case. In the pLSA “learning”
stage each exemplar is modelled by a topic distribution and each topic by a visual
word distribution. In our case we use the additional information provided by the
training data and hence define the topics to correspond to the object categories.
Furthermore, each exemplar is constrained to be modelled by one topic only –
the class assigned to it by the training annotation. Consequently, our method
directly corresponds to pLSA in that it also minimises the KL divergence of the
modelled data to the given data. The model is just more constrained in our case.
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As mentioned earlier it would be desirable to maximise the inter-class dis-
tance when building the single-histograms. Maximising the inter-class distance
or generally merging the class histograms in a discriminative way is left for future
research. See [7] for related approaches.

Finally, figure 6 shows results of class segmentations of images. Note that the
(visual) accuracy of the L2 classification results is inferior to that obtained with
KL divergence.

5 Conclusion

This paper has introduced a new technique for the estimation of compact and
efficient, generative single-histogram models of object classes. The models are
applied to simultaneously segment and recognise images.

Despite their simplicity, our single-histogram class models have proved as dis-
criminative as keeping around all exemplar histograms (and classifying via near-
est neighbour approaches). The main advantage being their storage economy,
computational efficiency and scalability. Note, the computational efficiency is a
significant advantage since methods for speeding up nearest neighbour search,
such as k-D trees, do not perform well in high dimensions. Here the number of
dimensions equals the number of histogram bins and is of the order of thousands.
Thus, finding the closest exemplar (in k-NN classification) reduces to a linear
search through all the exemplars, whilst for single class histograms the search is
only linear in the number of classes.

Different histogram similarity functions have been compared. In the case of
single-histogram class models, the KL divergence has been demonstrated to
achieve higher accuracy than widely used alternatives such as L2 and χ2 dis-
tances.

The pixel labelling results demonstrate that our class histograms can also be
used to segment out objects. A natural next step is to combine such labellings
with a contrast dependent prior MRF in the manner of [4] in order to obtain crisp
segmentation boundaries. Alternatively the resulting pixelmaps can be used to
initialise graph-cuts methods automatically rather than manually as in [15].

In future work we will compare performance of the single class histograms
against other standard discriminative classifiers trained on the exemplars. For
instance, an SVM could be trained on sliding-window histograms for pixel-wise
classification or, as in the work of [17], weak classifiers can be built from his-
tograms of visual words within sliding rectangular regions, and then combined
into a discriminative classifier using boosting.
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Abstract. Recent research into recognizing object classes (such as hu-
mans, cows and hands) has made use of edge features to hypothesize
and localize class instances. However, for the most part, these edge-based
methods operate solely on the geometric shape of edges, treating them
equally and ignoring the fact that for certain object classes, the appear-
ance of the object on the “inside” of the edge may provide valuable
recognition cues.

We show how, for such object classes, small regions around edges can
be used to classify the edge into object or non-object. This classifier
may then be used to prune edges which are not relevant to the object
class, and thereby improve the performance of subsequent processing. We
demonstrate learning class specific edges for a number of object classes —
oranges, bananas and bottles — under challenging scale and illumination
variation.

Because class-specific edge classification provides a low-level analysis
of the image it may be integrated into any edge-based recognition strat-
egy without significant change in the high-level algorithms. We illustrate
its application to two algorithms: (i) chamfer matching for object detec-
tion, and (ii) modulating contrast terms in MRF based object-specific
segmentation. We show that performance of both algorithms (matching
and segmentation) is considerably improved by the class-specific edge
labelling.

1 Introduction

There is a long tradition of using edge features in object recognition: dating back
to the 1980s edges were used for recognizing specific objects [7,11,15]; and more
recently edges have been used for recognizing object classes such as humans (e.g.
in Gavrila’s combination of chamfer matching and a template tree [6] or by shape
context [1,17]), hands [21,23], and animals such as cows and horses [9,14,19].

In algorithms such as [6], recognition is performed while treating image edges
equally regardless of their context. However, all edges are not equal. The edges
on the boundary of an object from a specific class have the characteristic local
colour or texture of that object class on one side (and can have anything else
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on the other side). Similarly, class specific edges may also have a characteristic
shape. The key idea of this paper is to learn a classifier for the object class of
interest which can label an edge with the probability of it belonging to that
object class or not.

Our objective is learn a classifier based on all the available local informa-
tion around an edge – appearance, texture and shape. While conventional cue
integration tends to occur later in the processing pathway, this “early vision”
integration means that it is easy to modify existing applications to use our class-
specific edges, offering the potential for improved performance across a range of
applications.

Previous research has considered classifying edges: Carmichael et al. [3] learnt
edge shape (but not appearance) for mugs; McHenry et al. [12,13] built a clas-
sifier by hand for recognizing glass by combining a number of cues (e.g. specu-
larities and the similarity between the image regions on either side of the edge);
and Sidenbladh and Black [20] learn edge likelihoods for limbs for human detec-
tion in video sequences. The methods most closely related to ours are those of
Shahrokni et al . [18] and Dollar et al . [4]. Both these approaches consider each
pixel of the image independently and obtain its probability of being an (object
class specific) edge. Due to the variation in negative examples, which include
regions with no edges, they are forced to employ a large set of features. In con-
trast, our method classifies only the edges (i.e. not all pixels) which are provided
by a standard detector (e.g. canny). This significantly reduces the variability in
negative examples. For instance, homogeneous background regions are pruned
away by canny. Class-specific edge detection is then obtained using simple lo-
cal features together with a standard classifier such as the SVM [16,8] which
guarantees a global minimum.

The organization of this paper is as follows. In §2, we describe our method
for edge classification. We then give two illustrative examples of its use. First
for object detection based on chamfer matching in §3, and then for object seg-
mentation in §4 using the ObjCut algorithm of [10].

2 Classifying Edges for an Object Class

In this section we describe how local information can be learnt to classify detected
edges into those arising from the boundaries of an object class or not. Our
objective is to separate class-specific boundary edges from other image edges —
those arising from internal discontinuities, specularities, and background clutter.
We illustrate our method on two classes here, oranges and bottles.

We follow the standard machine learning procedure and assemble a set of im-
ages which are used to train and evaluate the classifier. We assemble a database
for each class of about 100 images. Each dataset is split into half for training
and testing. The images cover a wide range of scale, pose and illumination condi-
tions, and include multiple object instances, partial occlusions, and background
clutter. Examples are shown in figures 1–3. Edges are obtained using the Canny
edge detector with hysteresis. To simplify ground truth annotation, edges are
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(a) A simple image (b) Canny edges (c) Validated edges

Fig. 1. Overview. The background and internal gradients in (b) throw off chamfer
matching. (c) The class-specific validated edges help in removal of edges from clut-
ter and internal gradients. Template matching works better on this edgemap. Note
that most of the non-class edges have been suppressed, greatly simplifying subsequent
processing such as object detection or class specific segmentation.

linked into chains automatically according to their spatial proximity as shown
in figure 1(b), and all edge chains are manually annotated so they are posi-
tive if they lie on the boundary of an object instance; all other edge chains are
negative.

There is then the question of how to represent the appearance (e.g. colour
distribution), texture and shape of the edges. At the simplest level we could
simply extract a patch around each edge point and use a feature vector consisting
of the ordered colour pixels – this would implicitly capture the shape (since the
edge boundary runs through the patch). It would also capture the texture since
Varma and Zisserman [25] have shown that a simple patch feature is sufficient to
classify texture in monochrome images. On the other hand, with such a simple
representation we are not explicitly recording that the distributions on each side
of the edge may be different. To deal with this point, we do use a simple patch
centred on the edge, but rotate the patch so that its x-axis is aligned with the
edge tangent (derived from the Canny operator and edge chains). In detail, we
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choose a m×n patch around the edge as our feature. This is rotated so that the
edge chain runs horizontally through its centre, giving a rotationally invariant
image descriptor. We also record the colour values of each pixel to represent the
appearance ([25] only used grey values).

Classification. A Support Vector Machine (SVM) [16] is used to learn an edge
classifier for the patch features. The parameters we need to learn are: the size
of the patch; and for the SVM: the kernel type (we compare linear, RBF and

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Orange (b) Bottle (c) Banana

(e) Image (f)Lower false positive rate (g)Higher false positive
rate

Class Accuracy Precision Recall
Orange 98.48% 99.39% 97.57%
Bottle 82.01% 90.03% 72.00%
Banana 90.37% 92.79% 87.53%

Fig. 2. Edge Classification Results. The ROC curve plots the True Positive Rate
against the False Positive Rate as the threshold is varied for classification between the
minimum and maximum values of the SVM output. (f),(g) show edge classification with
a variation in the operating point for the bottle image of (e). In (b) the operating point
towards the left results in lower false positives as seen in (f) and a change to the green
operating point on the right results in a higher false positive rate (g). The red points
on (a),(b) and (c) show the operating point used for the datasets. The classification
results at these operating points are given in the table.
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polynomial kernels of degree 1, 2 and 3) and the slack variables. Optimizing
over the test data we find that the best performance for the orange and banana
datasets is achieved with a polynomial kernel of degree 2, and with patches of
size m = 11 (in the y direction) and n = 11 (in the x direction). For the bottle
dataset, the RBF kernel shows superior performance, the size of the patches
being the same.

Flip ambiguity. Our patches extracted from the images are rotationally invariant
up to a flip factor. The object region can lie either on the top or bottom half of
the patch. In the presence of dominant characteristics such as colour and texture,
the patches can be flipped to remove this ambiguity. For the orange and banana
classes, effective gaussian mixture models of colour characteristics are built from
training data for this purpose.

For bottles the colour and texture is much more variable and hence gaussian
mixture models for colour will not be helpful in disambiguation. For such cate-
gories the classifier will have to handle the ambiguity by choosing the appropriate
support vectors and slack variables.

Alternatively, we can try to handle this ambiguity at the kernel level. We
experimented with modifying the RBF kernels to internally flip the patches and
choose the one which best optimizes the cost. For example, using the kernel

k(x, x′) = max
(
exp
(
−γ‖x− x′‖2

)
, exp

(
−γ‖x− flipud(x′)‖2

))
where flipud(x) flips the patch vertically, with the intuition that the correct
alignment of the patches (flipped or not) will have lower cost due to more con-
sistency of the object region. However, upon experimentation, we find that this
kernel (and similar modifications of linear kernels) have slightly inferior perfor-
mance compared to the standard polynomial and RBF kernels. This difference
is heightened if the category has a strong colour model.

For our three classes, the performance of the classifier is summarized in the
table of figure 2. The accuracy, recall and precision are defined as

Accuracy=
(

tp+tn
tp+fp+fn+tn

)
Precision=

(
tp

tp+fp

)
Recall =

(
tp

tp+fn

)
∣∣∣∣∣∣∣

tp = True Positive
tn = True Negative
fp = False positive
fn = False negative

(1)

The models are fairly well learnt as can be seen from the receiver operator
characteristic curves in the top row of figure 2. In the case of bottles, the lack of
one distinctive colour or texture reduces our accuracy. For such object classes,
(lacking distinctive colour or texture) other representations may be necessary.
For example, texton distributions or separate local colour histograms for each
side of the boundary. Other classifiers, such as Adaboost, may also be employed.

The veracity of classification on several example images is shown in figure 3.
In subsequent sections we will use both the classification and also the distance
from the decision boundary as a confidence measure. The occurrence of false
positives and the degree of suppression of true negatives, can be controlled by
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Edge labels: black: detected +ves, gray: detected −ves

Fig. 3. Edge classification. Example images and the class based edge classifications.
A large number of edges from clutter, specularity and internal gradients that confuse
template matching are discarded by this classification.

varying the operating point along the ROC curve. Figure 2 shows the varying
result of suppression of false edges with the variation of the operating point.

3 Chamfer Matching

In this section we illustrate how edge specific classification can be used to improve
the performance of an object detection algorithm based on chamfer matching. In
chamfer matching a set of learnt object templates are matched to the detected
edges in the image using a distance transform. The position at which the convo-
lution of the template with the distance transform of the feature image (capped
at a certain threshold for stability) is minimal, determines the match. Chamfer
can be made more robust by taking orientation at edges into account.

In practice, an artificial template database is created by geometrical transfor-
mations of exemplar templates, and a hierarchical tree is built to enhance the
search speed [6]. Given a test image, hierarchical chamfer matching is then used
to fit the object model over the test image. With the occasional modification,
this is a standard algorithm for object detection. However, this algorithm ap-
plied to the simple orange object class gives numerous and classic mismatches
(figure 4 (a)).

3.1 Class Based Chamfer Matching

We use our edge classifier to determine the relevant edges for the current object of
interest (see figure 3). Performing chamfer matching on only the positive edges
from the classifier output results in a tremendous improvement (figure 4(b))
compared to the original truncated oriented chamfer matching (figure 4(a)) .
This can be used to improve any algorithm that uses template matching, such
as ObjCut.
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(a) Basic Chamfer (b) Chamfer with
class-specific edges

(c) Improved
ObjCut

Fig. 4. Improving Chamfer for object localization. (a) Chamfer Matching using
all image edges. The matches latch on to irrelevant edges corresponding to internal
gradients and specularities (first row), and clutter (circular lid, second and third row).
(b) Matching on class edges and texture. This leads to better matching – compare
with the confusions arising from the problems in (a). (c) Modified ObjCut results are
much more accurate.



Learning Class-Specific Edges for Object Detection and Segmentation 101

4 Class Based Segmentation — ObjCut

In this section we illustrate how edge specific classification can be used to improve
the performance of an object segmentation algorithm. In particular we modify
the ObjCut algorithm of Kumar et al. [10]. ObjCut is a Bayesian method for
class based binary segmentation using Object Category Specific Markov Random
Field (MRF) and Pictorial Structures. In practice it is implemented in two stages:

1. Initialization–the edges and texture features in the image are used to deter-
mine the object’s position in the image (as in §3)

2. Segmentation–the match found is used to initialize the image segmentation.
Graph cuts are used to optimize the energy over an Object Category Specific
MRF.

We change this method to affect two terms in the ObjCut energy function
using class-based edge classification: (i) As in §3 we modify the initialization
by chamfer matching to only use class specific edges; and, (ii) We modify the
boundary term in the MRF to encourage segmentation along high contrast re-
gions, but only if they are relevant to the object class. This is described in more
detail below.

4.1 The Boundary Term

Following [2] the MRF used in ObjCut has a contrast dependent prior. This
means that a segmentation which introduces a change of state between pixels (i.e.
a change from foreground to background in this case) adds a cost to the energy,
but this cost is diminished if there is a strong gradient between the pixels (as
measured in the image/data). The inclusion of data-dependent pairwise terms
for pixels in a clique gives a substantial improvement in segmentation quality,
and the resulting MRF can still be minimized using graph cuts as described
in [2].

We are given an image D containing an instance of the object. The label
at each pixel x is denoted by mx. We want the algorithm to consider only
those edges that are relevant to the object class. Therefore, only those edges
of the MRF which coincide with object boundaries are weakened. Our edge
classification (§2) gives us a likelihood edge(x), for every pixel x (+ve for valid

Table 1. Average number of misclassified pixels per image

Object class ObjCut
ObjCut

+ modified MRF

ObjCut
+ modified MRF

+ chamfer
matching

Orange 2947 2457 256
Bottle 8121 8064 4077
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Fig. 5. More results. The performance of our method on some examples is shown on
the banana, orange and bottle datasets. This dataset, has a wide range of challenges
from pose, scale, clutter and lighting. In the presence of multiple instances, we use the
best Chamfer match as shown in Row 1. The segmentation using the initialization from
Row 1, 3 and 5, by the improved ObjCut is shown on Row 2, 4 and 6.

boundary, −ve otherwise). A new boundary term is defined, which adds to the
category specificity of the MRF:

ζ(D|mx,my) =
{
λ ∗ exp(−edge(x)) if edge exists

constant for no edge at x (2)

λ is the parameter controlling the influence of this boundary term.
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4.2 Implementation

For ObjCut with the modified category specific MRF and shape model, the
optimal parameters must be found. A large number of parameters (around 20)
are identified for the model to be learnt. 5−6 control the relative weights between
the colour likelihoods, shape likelihoods, prior and the boundary terms, and
are most crucial for performance and strongly interrelated. A simple, gradient
descent is performed to optimize performance on the ground truth labelling over
this subset of important parameters. Subsequently, the other parameters can be
individually optimized in a similar manner. We start with large step sizes for
gradient descent and reduce them as we refine our estimates.

4.3 Results

The performance is measured by the number of misclassified pixels in the test
data with respect to the manually segmented ground truth. Table 1 summarizes
the results for two object classes.

We choose 23 images with single oranges for optimization with respect to
ground truth. The basic ObjCut (optimized for performance) yields segmen-
tation over 22 out of the 23 images with an average misclassification of 2947.2
pixels per image. (Note: Each image has an average of 90, 000 pixels). ObjCut
with a modified MRF (with the boundary term using only relevant edges) yields
segmentation over 22 images with an average misclassification of 2457.3 pixels
per image. The final ObjCut with modifications at both the Chamfer match-
ing (top) and MRF (low) levels yields segmentations over all of the 23 images
over which we are optimizing. The per image error reduces drastically to 255.5
pixels per image. Note: Each image has 90, 000 pixels on an average. For the
orange class, we get visually correct segmentations for 47 out of 50 images. For
the bottle class, we get 57 correct segmentations out of 90 images. The banana
dataset is our most challenging dataset, owing to the wide shape variations and
image clutter. We get good segmentations of around 37 out of 60 images. While
both our edge based modifications improve ObjCut, the use of relevant edges in
chamfer matching makes the more significant difference (see figures 4,(c) and 5).

5 Conclusion

We have demonstrated the advantages in using class specific edges both for
Chamfer matching and segmentation. However, the implications of such class
specific edge labelling are many fold — since any algorithm for object classes
using edges can now be improved. Examples include tracking, segmentation [22]
and recognition [5,14,19]. Of course, the performance of the classifier can be
improved and we are currently investigating other feature vectors and classifiers
such as boosted trees [24]. We are also interested in finding efficient methods for
parameter optimization. This is important for optimal results with algorithms
like ObjCut and for experimentation with new kernels.
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Abstract. A nonparametric neural network model based on Rough-Fuzzy 
Membership function, multilayer perceptron, and back-propagation algorithm is 
described. The described model is capable to deal with rough uncertainty as 
well as fuzzy uncertainty associated with classification of remotely sensed 
multi-spectral images. The input vector consists of membership values to lin-
guistic properties while the output vector is defined in terms of rough fuzzy 
class membership values. This allows efficient modeling of indiscernibility and 
fuzziness between patterns by appropriate weights being assigned to the back-
propagated errors depending upon the Rough-Fuzzy Membership values at the 
corresponding outputs. The effectiveness of the model is demonstrated on clas-
sification problem of IRS-P6 LISS IV images of Allahabad area. The results are 
compared with statistical (Minimum Distance), conventional MLP, and FMLP 
models. 

1   Introduction 

Geospatial information, we gather through different sensors and from the concepts of 
the geographical objects, is generally vague, imprecise and uncertain. Also, the im-
precision becomes obvious due to the multi-granular structure of the multi-sensor 
satellite images and that leads to error accumulation at every stage in geo-processing. 
It has been observed that the ground truth data, an essential ingredient for a super-
vised learning, may itself contain redundant, inconsistent, conflicting information.  

The geospatial information is received in different windows of the electromagnetic 
spectrum and at different resolutions. This presents selective look of the geospatial 
objects under view of the satellite sensor. Therefore, the totality of capturing the truth 
or facets of the objects seems to be very difficult. This implies that at a given set of 
parameters of observation, we have limited capability to discern two objects. It is 
equivalent to say that the knowledge generated from the satellite image at a given 
resolution and spectrum band, is granular. It is, therefore, imperative to have more 
observational parameters to decompose this granule, i.e. to obtain finer view of the 
objects. The effect is that based on the observational parameters, any two objects, 
may appear same, whereas, the ground truths about the objects force us to have dif-
ferent opinion on them. This phenomenon introduces the rough uncertainty into the 
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information system due to imprecision inducted by the observation system. Since the 
boundaries of various land covers in satellite image are not precise, so fuzzy uncer-
tainty is also associated here.   

After the Fuzzy Set theory [4], the Rough Set theory proposed by Z. Pawlak [1], 
has emerged as another major mathematical approach for managing uncertainty that 
arises from inexact, noisy, or incomplete information. The focus of rough set theory is 
on the ambiguity caused by limited discenibility of objects in the domain of discourse.  

In this paper, we have attempted to integrate rough sets, fuzzy sets, and artificial 
neural network (ANN) for designing a nonparametric rough fuzzy neural network 
model to deal with indiscernibility and fuzziness between patterns. Here we have used 
the generalized concept of rough membership function in pattern classification tasks 
to Rough-Fuzzy Membership functions to deal with rough uncertainty [9] in geospa-
tial information gathered by satellites and in ground truth data. Unlike the rough 
membership value of a pattern, which is sensitive only towards the rough uncertainty 
associated with the pattern, the rough-fuzzy membership value of the pattern signifies 
the rough uncertainty as well as the fuzzy uncertainty associated with the pattern. 

2   Background 

2.1   Rough Sets  

Let R be an equivalence relation on a universal set X. Moreover, let X/R denote the 
family of all equivalence classes introduced on X by R. One such equivalence class in 

X/R, that contains x X∈ , is designed by[ ]Rx . For any output class A X⊆ , we can 

define the lower ( )R A and upper ( )R A approximation which approaches A as closely 

as possibly from inside and outside respectively [9]. Here 

( ) [ ] [ ]{ }| ,
R R

R A x x A x X= ⊆ ∈  (1-a) 

is the union of all equivalence classes in X/R that are contained in A, and  

( ) [ ] [ ]{ }| ,
R R

R A x x A x Xφ= ∩ ≠ ∈  (1-b) 

is the union of all equivalence classes in X/R that overlap with A. A rough set 

( ) ( ) ( ),R A R A R A=  is a representation of the given set A by ( )R A and ( )R A . 

The set ( ) ( ) ( )BN A R A R A= −  is a rough description of the boundary of A by the 

equivalence classes of X/R. The approximation is rough uncertainty free 

if ( ) ( )R A R A= . Thus, when all the patterns from an equivalence class do not carry 

the same output class labels, rough ambiguity is generated as a manifestation of the 
one-to-many relationship between that equivalence class and the output class labels. 

The rough membership function ( ) [ ]: 0,1Ar x A →   of a pattern x X∈  in the out-

put class A is defined by        
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( ) [ ]
[ ]

R
A

R

x A
r x

x
∩

=  (2) 

where A  denotes the cardinality of the set A.  

2.2   Fuzzy Sets  

In traditional two-state classifiers, where a class A is defined as a subset of a universal 
set X, any input pattern x X∈  can either be a member or not be a member of the 
given class A. This property of whether or not a pattern x of the universal set belongs 

to the class A can be defined by a characteristic function ( ) { }0,1:A x Xμ → as  

follows 

( ) 1 if and only if x A

0 OtherwiseA xμ ∈
=  (3) 

In real life situations, however, boundaries between the classes may be overlap-
ping. Hence, it is uncertain whether an input pattern belongs totally to the class A. To 
take care of such situations, in fuzzy sets the concept of characteristic function has 

been modified to membership function ( ) [ ]: 0,1A x Xμ → . This function is called 

membership function, because larger value of the function denotes more membership 
of the element to the set under consideration. 

2.3   Rough Fuzzy Sets  

Let X is a set, R is an equivalence relation defined on X and the output class A X⊆  

is a fuzzy set. A rough-fuzzy set is a tuple ( ) ( ),R A R A , where the lower approxi-

mation ( )R A  and the upper approximation ( )R A  of A are fuzzy sets of X/R, with 

membership functions defined by 

( ) [ ]( ) ( ) [ ]{ }inf |AR A R R
x x x xμ μ= ∈  (4-a) 

( ) [ ]( ) ( ) [ ]{ }sup |AR A R R
x x x xμ μ= ∈  (4-b) 

Here, ( ) [ ]( )x RR A
μ and ( ) [ ]( )x RR A

μ  are the membership values of [ ]x R  in 

( )R A and ( )R A , respectively. 

2.4   Rough-Fuzzy Membership Function  

The rough-fuzzy membership function of a pattern x X∈ for the fuzzy output class 

iC A X= ⊆  is defined by [9]  
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l i
i

F C
C

F

∩
=  (5) 

where [ ]
R

F x=  and iC  means the cardinality of the fuzzy set iC . One possible 

way to determine the cardinality is to use: ( )( )Ccx X

def
C xi μ

∈
 For the ''∩  (inter-

section) operation, we can use   

( ) ( ) ( ){ }min ,AA B B

def
x x x x Xμ μ μ∩ ∀ ∈

 
(6) 

It must be noted that, the concept of rough-fuzzy set is necessary when dealing 
with ambiguous concepts, whereas rough-fuzzy membership function is needed when 
uncertain data are considered.  

3   Related Work 

The main approaches to classification of remote sensing images are statistical meth-
ods [10], Artificial Neural Network methods [11], Fuzzy methods [12], [16], Fuzzy 
neural networks [13], Multi-source classification methods [14] and Hybrid ap-
proaches [15]. Statistical methods like Parallelepiped method, Minimum distance 
classifier, and Maximum likelihood classifier are very much dependent on the distri-
bution of classes. 

There has been a spurt of activity to integrate different computing paradigms such 
as fuzzy set theory, neural networks, genetic algorithms, and rough set theory, for 
generating more efficient hybrid systems that can be classified as soft computing 
methodologies. The purpose is to provide flexible information processing systems that 
can exploit the tolerance for imprecision, uncertainty, approximate reasoning, and 
partial truth in order to achieve tractability, robustness, and low cost in real-life am-
biguous situations [2]. Neuro-fuzzy computing [3] captures the merits of fuzzy set 
theory [4] and artificial neural networks [5]. This integration promises to provide, to a 
great extent, more intelligent systems (in terms of parallelism, fault tolerance, adap-
tivity, and uncertainty management) to handle real-life recognition/decision making 
problems. But all these models only deal with fuzzy uncertainty. 

Artificial Neural networks are generally described as nonparametric. The perform-
ance of the neural network depends to a significant extent on how well it has been 
trained and not on the adequacy of assumptions concerning the statistical distribution 
of the data. The most popular neural network classifier in remote sensing is the multi-
layer perceptron. Classification can also be carried out by other main type of neural 
networks such as SOM and fuzzy ARTMAP [15]. 

A fuzzy classification is a soft classification, which is used to find out uncertainty 
in the boundary between classes and to extract the mixed pixel information. This is 
achieved by applying a function called “membership function” on remotely sensed 
images. Using “hard” classification methods, we cannot measure the uncertainty in an 
image whereas in a fuzzy classification technique, we can get more information from 
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the data [12]. Fuzzy multilayer perceptron (FMLP) introduced by Pal and Mitra [13], 
is a fuzzy version of MLP having advantages of both neural network and fuzzy logic. 
It employs the supervised back propagation learning algorithm and incorporates fuzzy 
set-theoretic concepts in both input and output stages. 

Many researchers have looked into the implementation of decision rules extracted 
from operation data using rough set formalism, especially in problems of machine 
learning from examples and control theory [6]. In the context of neural networks, an 
attempt of such implementation has been made by Yasdi [7]. The intention was to use 
rough sets as a tool for structuring the neural networks. The methodology consisted of 
generating rules from training examples by rough-set learning, and mapping the de-
pendency factors of the rules into the connection weights of a four-layered neural 
network. Application of rough sets in neurocomputing has also been made in [8]. 
However, in this method, rough sets were used for knowledge discovery at the level 
of data acquisition, (viz., in preprocessing of the feature vectors), and not for structur-
ing the network. 

4   Proposed Method 

As explained in section 1 due the multi-granular structure of the multi-sensor satellite 
images, we have limited capability to discern two objects. The effect is that based on 
the observational parameters, any two objects, may appear same, whereas, the ground 
truths about the objects forces us to have different opinion on them, i.e. we must have 
to deal with rough uncertainty in association with fuzzy uncertainty to obtain better 
classification accuracy. The fuzzy MLP model explained in [13] and fuzzy classifica-
tion model proposed by Farid [16] only deals with fuzzy uncertainty. Apart from that, 
extraction of class-conditional spectral parameters using mean and standard deviation 
from supervised training sites of pure pixels used in the FMLP is dependent on the 
distribution of the reflectance values. In [17] it is observed that Neural Network clas-
sifiers as compared to statistical classifiers are nonparametric (distribution free). Sta-
tistical classifiers give incorrect results when reflectance values of classes are very 
close.   

The proposed method effectively copes up with these two problems and provides 
better classification accuracy. The steps of the proposed method are described below. 

Step 1: Generating equivalence classes for M1 pure labeled training vectors 

Let U be the set of M1 pure labeled pixels i.e. ( ) ( ){ }1 1 1 1
, , ..., ,M MU x y x y=  

where ( ),i ix y  represents a pure labeled pixel and { }( ),A U A d= ∪  be a decision 

system, where { }1 2, , ..., DA a a a=  is the set of conditional attributes such that 

( ) ,j i i ja X f= , D is the dimensionality of the input feature, d is the decision attribute 

such that ( )i id X Y=  where ( ),1 ,, ....i i i LY y y= , L is the total number of land cover 

classes and 1U M= .  
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The equivalence relation ( ) ( ) ( ) ( )( ){ }, :i j a A i jIND A x x U U a x a x∈= ∈ × ∀ =   

divides the set of objects U into equivalence classes and two objects belong to the 
same class if and only if they have the same values on attributes from A. It is to be 

noted that if each equivalence class generated by ( )IND A contains the objects be-

longing to same output class then there is no rough uncertainty. Here we can also use 
rough set to find the reduct B A⊆ (B is the reduced set of attributes while maintaining 
the decision capability of the decision table) and then generate the equivalence classes 

corresponding to ( )IND B . Let [ ] ( )IND A
x  represents the equivalence class to which x 

belongs. The equivalence class [ ] ( )IND A
x  can be understood as a degenerated fuzzy 

set with those elements belonging to the class possessing a membership of one, and 
zero otherwise. 

Step 2: Assigning fuzzy membership grade to each fuzzy output class for M1 pure 
labeled pixels 
The M1 pixels under consideration are pure labeled pixels i.e. for them we are con-
firmed that to which class they belongs, so here we are taking the fuzzy membership 
value to the appropriate class as 0.9 and to others as 0.1/(L-1), where L is the number 
of land cover classes. Thus for this stage membership function can be defined as 

( )
0.9 if Ci is the appropriate class of x

0.1 Otherwise(L-1)
iC xμ =  (7) 

where Ci, i=1,2,….,L is the fuzzy output class. 

Step 3: Calculating Rough-Fuzzy membership grade to each fuzzy output class 
for M1 pure labeled pixels 

The Rough-Fuzzy membership value ( )l
iC x , to class Ci for input vector x 

=(f1,...fD) is calculated using the equation (5) described in section 2.4. 

Step 4: Designing and training neural network for M1 pure labeled pixels 
A (H+1) layered MLP with D neurons in input and L neurons in output layer, consist-

ing of H-1 hidden layers, is trained by clamping the input vector ( ),1 ,, ....i i i DX f f=  

at input layer and the desired L-dimensional output vector with components ( )l
iC x  

at the output layer. 

Step 5: Computation of Rough-Fuzzy membership grades for M1 pure and M2 
unlabeled mixed training vectors 
In this step M2 unlabeled mixed training samples are included in the training set. For 
(M1+M2) training vectors we calculate the rough-fuzzy membership grade to each 

class by clamping the input vector ( ),1 ,, ....i i i DX f f=  i=1, 2,...., M1+M2 at the input 

layer of neural network trained in the previous step. The output values of the training 
vectors are normalized such that all the membership values of the classes sum up to 1. 
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Normalization is done by first obtaining the total output sum and then all the output values 
are divided by the total sum. Obtaining membership values using Neural network makes 
the Rough Neuro-Fuzzy classifier independent of class reflectance distribution and inclu-
sion of unlabeled pixels helps in increasing the classification accuracy. 

Step 6: Input data fuzzification 
The (M1+M2) labeled training vectors are fuzzified before being employed in the 
FMLP training session. This means that every non-normal component of input pattern 

( ),1 ,, ....i i i DX f f= , i=1,…….., M1+M2  is converted into normal degrees of member-

ship to fuzzy linguistic sets low, medium, and high as explained in [13]. 

Step 7: Supervised training of final Rough Neuro-Fuzzy network via backpropa-
gation algorithm 
The complete training set, consisting of (M1+M2) training vectors, is employed by the 
traditional error backpropagation algorithm to train Rough Neuro Fuzzy Network. 
The proposed Rough Neuro Fuzzy Network is an (H+1)-layered MLP with 3 D× neu-
rons in the input layer and L neurons in output layer, such that there are H-1 hidden 
layers. The input vector, with components fuzzified as in [13], is clamped at the input 
layer while the desired L-dimension output vector obtained in step 5 is clamped dur-
ing training at the output layer. 

5   Results and Discussion 

Two study areas from high resolution multi-spectral IRS-P6 LISS-IV satellite image 
of Allahabad region acquired in April 2004 are selected for classification purpose. 
The spatial resolution of the images is 5.8 m. Three bands available in IRS-P6 LISS-
IV are taken into consideration for analysis. The two LISS-IV satellite images are first 
geo-referenced using 15 well distributed Ground control points (GCP) for each image 
collected using Leica GS5 GPS receiver and then the images were converted to Geo-
tiff image format. This is just to make the analysis work easier. The first study area 

has a geographical extent of 81 45 '36.07 '' E  to 81 47 ' 23.67 '' E  and 

25 26 ' 23.92 '' N  to 25 25 '12.42 '' N  and second study area has a geographical extent 

of 81 51' 49.53 '' E  to 81 53 '17.57 '' E  and 25 26 '30.63 '' N  to 25 27 ' 27.37 '' N .  
For study area 1 there are totally seven predefined classes for three bands in the 

image which are used for analysis. For study area 2 there are totally six predefined 
classes for three bands in the image which are used for analysis. 

MATLAB is used for writing program for classification. MATLAB Mapping tool-
box is used to read shape files and geo registered images. A well distributed 90 
ground truth pixels were collected using the GPS receiver for each class in each study 
area. Out of these 90 pixels, 50 pixels were used from training of ANN and remaining 
40 were used for accuracy assessment. Pixels were collected as 2D point shapefiles. 
Overall accuracy, User's accuracy, Producer’s accuracy and Kappa Coefficient [10] of 
the proposed methodology are compared with statistical, neural network, and FMLP 
models.  Fig. 1(a) and Fig. 1(b) show the study area 1 and study area 2 respectively. 

Fig. 2(a) and Fig. 2(b) show the classified images of study area 1 and study area 2 
respectively, using statistical method (Minimum Distance). 
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Fig. 1(a).  Study area 1 Fig. 1(b).  Study area 2 

 

  

  

Fig. 2(a). Classified Study area 1 byStatistical 
method 

Fig. 2(b). Classified Study area 2 by Statisti-
cal method  

Fig. 3(a) and Fig. 3(b) show the classified images of study area 1 and study area 2 
respectively, using Neural Network method. 

 

  

Fig. 3(a). Classified Study area 1 by Neural 
Network method 

Fig. 3(b). Classified Study area 2 by Neural 
Network method 

Fig. 4(a) and Fig. 4(b) show the classified images of study area 1 and study area 2 
respectively, using the FMLP method. 
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Fig. 4(a). Classified Study area 1 by FMLP 
method 

Fig. 4(b). Classified Study area 2 by FMLP 
method 

Fig. 5(a) and Fig. 5(b) show the classified images of study area 1 and study area 2 
respectively, using the proposed method. 

  

Fig. 5(a). Classified Study area 1 by proposed 
method 

Fig. 5(b). Classified Study area 2 by proposed 
method  

Table 1 briefly shows the overall accuracy and Kappa coefficients for the Statisti-
cal (Minimum Distance), Neural Network, FMLP, and the proposed method in cases 
of study area 1 and study area 2. 

Fig. 6(a) and Fig. 6(b) show the plots of overall accuracy for study area 1 and study 
area 2 respectively, in case of various classifiers. 

Table 1. Overall Accuracy and Kappa coefficients for study area 1 and study area 2 

Overall 
Accuracy 

Kappa 
Coefficient 

Overall 
Accuracy 

Kappa 
Coefficient 

 

Study area 1 Study area 2 
Statistical 94.29% 93.31% 93.33% 92.04% 

Neural Net-
work 

94.64% 93.68% 94.17% 92.99% 

FMLP 92.86% 91.38% 86.67% 84.25% 
Proposed 97.14% 96.61% 97.5% 96.95% 
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Fig. 6(a). Plot of Overall Accuracy for study 
area 1 

Fig. 6(b). Plot of Overall Accuracy for study 
area 2 

Fig. 7(a) and Fig. 7(b) show the plots of Kappa Coefficients for study area 1 and 
study area 2 respectively, in case of various classifiers. 
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Fig. 7(a). Plot of Kappa Coefficient for study 
area 1 

Fig. 7(b). Plot of Kappa Coefficient  for study 
area 2 

Fig. 8(a) and Fig. 8(b) show the bar charts of User’s accuracy for study area 1 and 
study area 2 respectively, in case of various classifiers. 
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Fig. 8(a). Bar chart of User’s Accuracy for 
study area 1 

Fig. 8(b). Bar chart of User’s Accuracy for 
study area 2 
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Fig. 9(a) and Fig. 9(b) show the bar charts of Producer’s accuracy for study area 1 
and study area 2 respectively, in case of various classifiers. 
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Fig. 9(a). Bar chart of Producer’s Accuracy 
for study area 1 

Fig. 9(b). Bar chart of Producer’s Accuracy 
for study area 2 

From the comparison of overall accuracy and Kappa Coefficients it becomes clear 
that the proposed method is giving better results in comparison to other ones. The 
proposed method also gives better User’s and Producer’s accuracy in case of most of 
the classes. The proposed method is distribution free, and is capable enough to handle 
fuzzy uncertainty as well as rough uncertainty associated with the satellite image 
classification process. 

6   Conclusions and Future Scope 

From this experimentation we found that the concept of rough set plays an important 
role for getting better accuracy in case of multispectral image classification. We see 
that the knowledge generated from the satellite image at a given resolution and spec-
trum band is granular, which generates rough uncertainty in data/information. This 
uncertainty can not be dealt with by simply considering the overlapness in terms of 
fuzzy logic. To deal with this situation, we have to consider the vagueness which is 
generated due to insufficiency of knowledge about the event, data or world. FMLP 
only considers the fuzzy uncertainty associated with data. Moreover, the initial fuzzy 
membership value calculation is also dependent on distribution of data. In the pro-
posed Rough Neuro-Fuzzy method we tried to deal with both of these flaws. By the 
use of Rough-Fuzzy membership value in place of simple fuzzy membership value, 
we can effectively model rough uncertainty as well as fuzzy uncertainty. The use of 
neural network to generate Rough-Fuzzy Membership value for final training vectors 
makes the whole model distribution free. The experimental results shown in the pre-
vious section are supporting for the same. 

As a further improvement in the proposed approach, instead of using classical 
equivalence classes we can use fuzzy equivalence classes based on weak fuzzy simi-
larity relation. By using this we can model the fuzziness associated in multispectral 
image classification more effectively.    
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Abstract. Ants, bees and other social insects deposit pheromone (a
type of chemical) in order to communicate between the members of their
community. Pheromone that causes clumping or clustering behavior in a
species and brings individuals into a closer proximity is called aggrega-
tion pheromone. This paper presents a novel method for image segmen-
tation considering the aggregation behavior of ants. Image segmentation
is viewed as a clustering problem which aims to partition a given set
of pixels into a number of homogenous clusters/segments. At each loca-
tion of data point representing a pixel an ant is placed; and the ants are
allowed to move in the search space to find out the points with higher
pheromone density. The movement of an ant is governed by the amount
of pheromone deposited at different points of the search space. More
the deposited pheromone, more is the aggregation of ants. This leads to
the formation of homogenous groups of data. The proposed algorithm
is evaluated on a number of images using different cluster validity mea-
sures. Results are compared with those obtained using average linkage
and k-means clustering algorithms and are found to be better.

1 Introduction

Image segmentation plays a vital role in image processing and computer vi-
sion problems. Number of image segmentation techniques exist in the litera-
ture, which can be grouped into several categories such as edge based, region
based, histogram thresholding and clustering [1] based. Several image segmenta-
tion techniques exist [2,3,4] where clustering is used to group the points in the
characteristics feature space into segments. Features that are commonly used
for image segmentation by clustering not only include the gray values, but also
include textural features defined on local neighborhood [5].

Numerous abilities of ants have inspired researches for designing various clus-
tering techniques [6,7]. Several species of ants cluster their corpses into “cemeter-
ies” in an effort to clean up their nests. Experimental works illustrate that ants
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group corpses, which are initially randomly distributed in space, into clusters
within a few hours. It seems that some feedback mechanism (using local density
or similarity of data items) determines the probability that an ant will pick up or
drop a corpse. Such behavior is used as a model to design several algorithms for
clustering data [6,7,8,9,10,11]. Besides nest cleaning, many functions of aggrega-
tion behavior have been observed in ants and ant like agents [12,13,14]. These
include foraging-site marking and mating, finding shelter and defense. Tsutsui
et al. [15,16] used aggregation pheromone systems for continuous function opti-
mization where aggregation pheromone density is defined by a density function
in the search space.

Inspired by the aforementioned aggregation behavior found in ants and ant
like agents a clustering algorithm was proposed in [17]. In this paper the aggre-
gation behavior of ants is used to perform image segmentation, viewing image
segmentation as a clustering problem. The aim is to partition the image into
clusters/segments such that pixels within a cluster are homogeneous, whereas
pixels of different clusters are heterogeneous.

2 Aggregation Pheromone Based Image Segmentation

As mentioned in the introduction, aggregation pheromone brings individuals into
closer proximity. This group formation nature of aggregation pheromone is being
used as the basic idea of the proposed algorithm. Here each ant represents one
data. The ants move with an aim to create homogenous groups of data. The
amount of movement of an ant towards a point is governed by the intensity of
aggregation pheromone deposited by all other ants at that point. This gradual
movement of ants in due course of time will result in formation of groups or clus-
ters. The proposed technique has two parts. In the first part, clusters are formed
based on ants’ property of depositing aggregation pheromone. The number of
clusters thus formed might be more than the desired number. So, to obtain the
desired number of clusters, in the second part, agglomerative average linkage
clustering algorithm is applied on these already formed clusters.

2.1 Formation of Clusters

While performing image segmentation for a given image we group similar pix-
els together to form a set of coherent image regions. Similarity of the pixels
can be measured based on intensity, color, texture and consistency of location
of different pixels. Individual features or combination of them can be used to
represent an image pixel. For each image pixel we associate a feature vector x.
Clustering is than performed on these set of feature vectors so as to group them.
Finally, clustering result is mapped back to the original spatial domain to have
segmented image.

Consider a data set of n patterns (x1,x2,x3, ...,xn) and a population of n-
ants (A1, A2, A3, ..., An) where an ant Ai represents the data pattern xi. Each
individual ant emits aggregation pheromone in its neighborhood. The intensity
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of aggregation pheromone emitted by an individual A, at x decreases with its
distance from it. Thus the pheromone intensity at a point closer to x is more than
those at other points that are farther from it. To achieve this, the pheromone
intensity emitted by A is chosen to be a Gaussian function. The pheromone
intensity deposited at x′ by an ant A (located at x) is given by

�τ ′(A,x′) = exp− d(x, x′)2
2δ2 . (1)

The total aggregation pheromone density deposited by the entire population of
n ants at x′ is then given by

�τ(x′) =
n∑

i=1

exp− d(xi, x′)2
2δ2 , (2)

where, δ denotes the spread of Gaussian function.
Now, an ant A′ which is initially at location x′ moves to the new location

x′′ (computed using Eq. 3) if the total aggregation pheromone density at x′′ is
greater than that of x′. The movement of an ant is governed by the amount of
pheromone deposited at different points in the search space. It is defined as

x′′ = x′ + η.
Next(A′)

n
, (3)

where,

Next(A′) =
n∑

i=1

(xi − x′). exp− d(xi, x′)2
2δ2 , (4)

with, η as a step size. This process of finding a new location continues until an
ant meets a location where the total aggregation pheromone density is more than
its neighboring points. Once the ant Ai finds out such a point x′

i with greater
pheromone density, then that point is assumed to be a new potential cluster
center, say Zj (j = 1, 2, ..., C, C being number of clusters); and the data point
with which the ant was associated earlier (i.e., xi) is now assigned to the cluster
so formed with center Zj. Also the data points that are within a distance δ/2
from Zj are assigned to the newly formed cluster. On the other hand, if the dis-
tance between x′

i and the existing cluster center Zj is less than δ/2 and the ratio
of their densities is greater than threshold density (a predefined parameter),
then the data point xi is allocated to the already existing cluster centering at
Zj. Higher value of density ratio shows that the two points are of nearly similar
density and hence should belong to the same cluster. The proposed algorithm
for formation of clusters (APC) is given below using pseudo codes.

begin
Initialize σ, threshold density, η
C = 0
for i = 1 to n do
if the data pattern xi is not already assigned to any cluster
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Compute �τ(xi) using Eq. 2
label 1: Compute new location x′

i using Eq. 3
Compute �τ(x′

i)
if (�τ(x′

i) > �τ(xi))
Update the location of ant Ai to x′

i and goto label 1
else continue
if (C == 0) //If no cluster exists
Consider x′

i as cluster center Z1 and increase C by one
else
for j = 1 to C
if (min(�τ(x′

i),�τ(Zj))/max(�τ(x′
i),�τ(Zj)) > threshold density and

d(x′
i, Zj) < δ/2)

Assign x′
i to Zj

else
Assign x′

i as a new cluster center say, ZC+1 and increase C by one
Assign all the data points that are at a distance of δ/2 from x′

i to
the newly formed cluster ZC+1

end of else
end of for
end of else
end of if (if the data pattern xi ...)
end of for
end

2.2 Merging of Clusters

Number of clusters formed by the above algorithm may be more than the desired
number. In this stage, to obtain the desired number of clusters we apply average
linkage [18] algorithm. The algorithm starts by merging the two most similar
clusters until the desired number of clusters are obtained.

3 Objective Evaluation of Clustering Results

The clustering results obtained by the above described method are quantified
using following cluster validity measures.

• Davies Bouldin Index: This index is a function of the ratio of the sum of
within-cluster scatter to between-cluster separation [18]. The average scatter of
order q within the ith cluster (Si, q) and the distance between ith and jth clusters
(dij, q) are computed as

Si, q =

(
1
|Ci|
∑
xεCi

||x− Zi||q
) 1

q

, (5)
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dij, q = ||Zi − Zj||q. (6)

where x is the data point belonging to cluster Ci, Zi is the centroid of cluster Ci,
q ≥ 1 and dij, q is the Minkowski distance of order q. Subsequently, we compute
the index for the ith cluster as

Ri, q = max
j, i�=j

{
Si, q + Sj, q

dij, q

}
. (7)

The Davies-Bouldin (DB) index for C clusters is defined as

DB =
1
C

C∑
i=1

Ri, q. (8)

The smaller the DB value, better is the clustering.

• S Dbw : S Dbw index with C number of clusters is based on the clusters’
compactness in terms of intra-cluster variance and inter-cluster density [19]. It
is defined as

S Dbw(C) = Scat(C) +Den(C), (9)

where Scat(C) represents the intra-cluster variance and is defined as

Scat(C) =
1
C

C∑
i=1

||σ(Zi)||/σ(s); (10)

the term σ(s) is the variance of the data set and σ(Zi) is the variance of cluster
Ci. Inter-cluster density, Den(C), is defined as

Den(C) =
1

C − 1

C∑
i=1

⎛⎝ C∑
i=1,i�=j

den(uij)
max{den(Zi), den(Zj)}

⎞⎠ (11)

where Zi and Zj are centers of clusters Ci and Cj , respectively and uij is the
mid point of the line segment joining Zi and Zj. The term den(u) is defined as

den(u) =
nij∑
i=1

f(x,u), (12)

where nij is the total number of data points belong to clusters Ci and Cj ; the
function f(x,u) is defined as

f(x,u) =
{

0, if d(x,u) > stdev;
1, otherwise. (13)

where stdev is the average standard deviation of C clusters and is defined as

stdev =
1
C

√√√√ C∑
i=1

||σ(Zi)|| (14)

and d(x,u) is the Euclidean distance between x and u.
Lower the value of S Dbw, better is the clustering.
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Table 1. Comparison of results of the proposed aggregation pheromone based algo-
rithm (APC) with average linkage and k-means

Data APC Average linkage k-means
set DB S Dbw Time DB S Dbw Time DB S Dbw Time

Tank 0.3026 0.1576 439.2 0.3887 0.2389 435.4 0.6337 1.0216 470.4
(0.032) (0.024) (4.87) (4.9E-09) (0) (11.80) (0.002) (0.056) (5.14)

Lena 0.5330 0.5508 506.3 0.4814 0.5560 602.6 0.5556 0.6411 528
(0.018) (0.029) (8.13) (7.0E-09) (1.4E-08) (8.26) (0.002) (0.034) (9.84)

Brain 0.4307 0.1567 43.7 0.4797 0.1798 134 0.5089 0.2122 53.2
(0.078) (0.044) (9.91) (0) (0) (7.74) (0.005) (0.003) (8.01)

(a) (b)

(c) (d)

Fig. 1. a) original image, b) APC segmentation result, c) Average link result and
d) k-means result with k=2
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4 Experimental Results

4.1 Results

To evaluate the effectiveness of the proposed algorithm, we have considered only
gray value of pixels as a feature. Experiments were carried out on three images
(Tank, Lena and Brain). Values of η and threshold density were kept to 1 and
0.9, respectively; and different values of δ in the range [0, 1] were considered.
Results obtained are validated using two different cluster validity indices as
described in Section 3. The results obtained by the proposed APC algorithm
are compared with those of average linkage and k-means clustering algorithms.
Table 1 gives the mean values (over 10 runs) of different performance indices
and their corresponding standard deviations (shown in bracket) for each of the
images obtained by APC, average linkage and k-means algorithms. The CPU

(a) (b)

(c) (d)

Fig. 2. a) original image, b) APC segmentation result, c) Average link result and
d) k-means result with k=3
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(a) (b)

(c) (d)

Fig. 3. a) original image, b) APC segmentation result, c) Average link result and
d) k-means result with k=4

time (in milliseconds) needed for all the algorithms are also given in the table
for comparison. Results in bold face indicate the best ones.

Fig. 1 shows the segmentation result obtained on the Tank image by all the
three algorithms. As may be seen, average linkage algorithm fails completely to
segregate the tank (Fig. 1c); k-means algorithm segmented out the tank but the
amount of false classification was very high; but the proposed APC algorithm
successfully segmented out the tank with very less false classification (Fig. 1b). In
terms of validity measures also the performance of the proposed APC algorithm
is found to be better (Table 1) than those of other two.

Original Lena image is shown in Fig. 2a and the segmentation results ob-
tained for the Lena image by APC, average linkage and k-means are shown in
Figs. 2b-2d. From the results one can see that the background is not clearly sepa-
rated out in case of average linkage, whereas with the APC and k-means it is well
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done. The shade on the face of Lena is well segmented with the proposed APC
algorithm which is not obtained with that of k-means. Also, the top left part
of the background is well segmented by the APC algorithm in comparison with
the other two. When validity measures are taken into consideration it is found
that with DB index average linkage algorithm performs well on Lena image but
with S Dbw index APC performs better.

Another image that is considered for our experiments is Brain image. The seg-
mentation results obtained by all the three algorithms for this image are shown
in Figs. 3b-3d. Original Brain image is shown in Fig. 3a. From the results one can
see that the fine structures in the Brain image are very well segmented by the
proposed APC algorithm; average linkage fails to identify these fine structures
and k-means identifies these fine structures but with higher misclassification. In
terms of validity measures also APC outperforms the other two.

As evident from the table, the time requirement of the proposed algorithm is
mostly less compared to the other two algorithms.

5 Conclusions

In this paper we have proposed a new algorithm for image segmentation based on
aggregation pheromone density, which is inspired by the ants’ property to accu-
mulate around points with higher pheromone density. Experiments were carried
out with three different images to evaluate the performance of the proposed al-
gorithm both qualitatively as well as quantitatively. In this paper segmentation
is viewed as a clustering problem and hence for comparative evaluation we have
used cluster validity measures; and comparative study is made with two cluster-
ing algorithms namely, average linkage and k-means algorithms. Future study
should involve more number of features and object extraction from noisy images.
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8. Monmarché, N., Slimane, M., Venturini, G.: On improving clustering in numerical
database with artificial ants. In Floreano, D., Nicoud, J.D., Mondala, F., eds.:
Advances in Artificial Life, 5th European Conference ECAL’99, Lecture Notes
in Artificial Intelligence 1974, Swiss Federal Institute of Technology, Lausanne,
Switzerland, Springer-Verlag (1999) 626–635

9. Handl, J., Knowles, J., Dorigo, M.: On the performance of ant-based clustering.
In: Proceedings of the 3rd International Conference on Hybrid Intelligent Systems,
Design and Application of Hybrid Intelligent Systems, IOS press (2003) 204–213

10. Liu, S., Dou, Z.T., Li, F., Huang, Y.L.: A new ant colony clustering algorithm based
on DBSCAN. In: Proceedings of the 3rd International Conference on Machine
Learning and Cybernetics, Shanghai (2004) 1491–1496

11. Vizine, A.L., de Castro, L.N., Hruschka, E.R., Gudwin, R.R.: Towards improving
clustering ants: an adaptive ant clustering algorithm. Informatica 29 (2005) 143–
154

12. Bell, W.J.: Chemo-orientation in walking insects. In Bell, W.J., Carde, R.T., eds.:
Chemical Ecology of Insects. (1984) 93–109

13. Ono, M., Igarashi, T., Ohno, E., Sasaki, M.: Unusual thermal defence by a honeybee
against mass attack by hornets. Nature 377 (1995) 334–336

14. Sukama, M., Fukami, H.: Aggregation arrestant pheromone of the German cock-
roach, Blattella germanica (L.) (Dictyoptera: Blattellidae): isolation and structure
elucidation of blasttellastanoside-A and B. Journal of Chemical Ecology 19 (1993)
2521–2541

15. Tsutsui, S.: Ant colony optimization for continuous domains with aggregation
pheromones metaphor. In: Proceedings of the 5th International Conference on
Recent Advances in Soft Computing (RASC’04), United Kingdom (2004) 207–212

16. Tsutsui, S., Ghosh, A.: An extension of ant colony optimization for function opti-
mization. In: Proceedings of the 5th Asia Pacific Conference on Simulated Evolution
and Learning (SEAL04), Pusan, Korea (2004)

17. Kothari, M., Ghosh, S., Ghosh, A.: Aggregation pheromone density based clus-
tering. In: Proceedings of 9th International conference on Information Technology,
Bhubaneswar, India, IEEE Computer Society press (2006)

18. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Second edn. Elsevier
Academic Press, Amsterdam (2003)

19. Halkidi, M., Vazirgiannis, M.: Clustering validity assessment: finding the optimal
partitioning of a data set. In: Proceedings of ICDM, California, USA (2001)



Remote Sensing Image Classification:

A Neuro-fuzzy MCS Approach

B. Uma Shankar, Saroj K. Meher, Ashish Ghosh	, and Lorenzo Bruzzone1

Machine Intelligence Unit, Indian Statistical Institute
203 B. T. Road, Kolkata 700108, India

1 Department of Information and Communication Technologies
University of Trento, Via Sommarive, 14, I-38050, Trento, Italy

Abstract. The present article proposes a new neuro-fuzzy-fusion (NFF)
method for combining the output of a set of fuzzy classifiers in a mul-
tiple classifier system (MCS) framework. In the proposed method the
output of a set of classifiers (i.e., fuzzy class labels) are fed as input to
a neural network, which performs the fusion task. The proposed fusion
technique is tested on a set of remote sensing images and compared with
existing techniques. Experimental study revealed the improved classifi-
cation capability of the NFF based MCS as it yielded consistently better
results.

1 Introduction

The objective of designing a pattern classification system is to achieve the best
possible performance for the problems at hand. This leads to the development
of different classification schemes with different performance levels, and hence
they may offer complementary information about the patterns to be classified.
This motivated fusing/combing classifiers’ outputs for improved performance.
The idea is not to rely on a single classifier, rather to use all or some of them for
consensus decision making by combining their individual performance. Recently
many efforts aimed at it have become popular [1,2,3,4,5,6,7,8,9]. Moreover, the
multiple classifier systems (MCSs) are found to be successful with the com-
bination of diverse classifiers. i.e., the classifiers should not commit the same
mistake. Further, the performance of an MCS is highly dependent on the combi-
nation scheme. Many studies have been published in this area of research, e.g., if
only class labels are available a majority voting [10,11] or label ranking [12,13] is
used. If continuous outputs like posteriori probabilities are available, an average
or some other linear combination can be used [14,15]. If the classifier outputs are
interpreted as fuzzy membership values then fuzzy rules [16,17], belief functions
and Dempster-Shafer techniques [14,18] can be used for combination.

Classification of land cover regions of remote sensing images is essential for
efficient interpretation of them [19,20]. This task is very complex because of low
illumination quality and low spatial resolution of remotely placed sensors and
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rapid changes in environmental conditions. Various regions like vegetation, soil,
water bodies etc. of a natural scene are often not well separated. Moreover, the
gray value assigned to a pixel is an average reflectance of different types of land
covers present in the corresponding pixel area. Therefore, a pixel may represent
more than one class with varying degree of belonging. Thus assigning unique
class label to a pixel with certainty is one of the major problems. Conventional
methods cannot deal with this imprecise representation of geological information.
Fuzzy set theory introduced in [21] provides a useful technique to allow a pixel
to be a member of more than one category or class with graded membership
[22]. Many attempts have been made for remote sensing image analysis and
classification using fuzzy logic [19,23,24,25,26,27].

We have considered a set of fuzzy classifiers in the design of MCSs in this
article. Various existing fuzzy and non-fuzzy fusion methods for combination of
classifiers’ output are considered and found that the performances are varying
with the input data sets and fusion methods. We propose a neuro-fuzzy (NF)
fusion method to overcome the risk of selecting a fusion method as neural net-
works can do this in an adaptive way. The performance is demonstrated on a set
of remote sensing images. Experimental study revealed that the MCS with the
proposed NF fusion method provided consistently better classification.

2 Fuzzy Classifiers and Combination Methods

A brief description of the four fuzzy classifiers and six existing combination
schemes used for the present study is made in the following sections.

Fuzzy k-nearest neighbor (Fk-NN): k-NN is based on the determination of
k number of nearest neighbors of a test pattern and assigning it the class label
that majority of the neighbors have. Keller et al. [28] incorporated the concepts
of fuzzy set theory [21] into the k-NN voting procedure and proposed a fuzzy
version of k-NN rule. The membership degree of a test pattern x to class c is
calculated as

μi(x) =

k∑
j=1

μij

(
1

‖x− xj‖2/(mf−1)

)
k∑

j=1

(
1

‖x− xj‖2/(mf−1)

) (1)

where i = 1, 2, ...C (number of classes), and j = 1, 2, ..., k (number of nearest
neighbors). μij is the membership degree of the pattern xj from the training set
to class i, among the k nearest neighbors of x. For this study, the algorithm was
implemented with mf = 2 and k = 5 (selected on the basis of performance).

Fuzzy maximum likelihood (FML): The FML [23] is a fuzzy evaluation
of the conventional ML parameters. The mean and variance-covariance matrix
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estimated using the fuzzy membership values for each pattern are called fuzzy
mean and fuzzy variance-covariance matrix. The membership function (MF) for
class c of a pattern x can be expressed as

fc(x) = pc(x) /
C∑

j=1

pj(x) (2)

where pj(x) can be computed as

pj(x) =
1

(2π)D/2|Σj |1/2
exp

[
−1

2
(x− μj)TΣ−1

j (x− μj)
]

(3)

with j = 1, 2, ...C and D is the dimension of the feature space, assuming a
Gaussian distribution for the input data. The fuzzy mean can then be defined
as

μc =

(
N∑

i=1

fc(xi)xi

)
/

(
N∑

i=1

fc(xi)

)
(4)

where N is the total number of patterns, fc is the MF of class c, and xi is the
ith pattern. The fuzzy variance-covariance matrix can be defined as

Σc =

N∑
i=1

fc(xi)(xi − μc)(xi − μc)T

N∑
i=1

fc(xi)

. (5)

For the estimation of the MF in FML, the parameters mean and variance-
covariance matrix require the fuzzy representation of the patterns to different
classes. Chen [27] described a suitable method which estimates the fuzzy rep-
resentation of the land covers in an iterative manner and does not require the
prior information. In this work we have adopted this procedure.

Fuzzy product aggregation reasoning rule (FPARR): The FPARR clas-
sification process is performed in three steps [29]. In the first step, it fuzzifies
the input feature vector using a π-type MF [30] to get the feature-wise degree of
support of a pattern (x = [x1, x2, ...xd, ...xD]T ) to all classes. The membership
values (fd,c(xd)) thus generated expresses the degree of support of dth feature
to cth class. Thus for a pattern x the membership matrix after the fuzzification
process can be expressed as

F (x) =

f1,1(x1) f1,2(x1) ... f1,C(x1)
f2,1(x2) f2,2(x2) ... f2,C(x2)

... ... ... ...
fD,1(xD) fD,2(xD) ... fD,C(xD)

(6)

In the second step, the fuzzified feature values are aggregated using product
reasoning rule (RR). The RR is operated on the membership matrix column-
wise to get the combined membership grade of features to various classes. The
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resultant vector thus generated represents the fuzzy classification showing the
class belonging.

Fuzzy explicit (FE): The FE classification method [26] also uses three steps.
In the first step, it finds the membership matrix for each of the pixels/patterns
with a Gaussian MF [26]. Thus a fuzzy membership matrix can be evaluated as
in the case of FPARR. The membership matrix is then processed using a MIN
reasoning rule (RR) in the second step. A rescaling operation is also performed
on the output membership values (after applying RR) for all classes.

2.1 Classifier Combination Methods

The fuzzy classifiers’ output are combined using a suitable fusion method. For
the present study we have considered some of the popular existing techniques.
At first the output of the fuzzy classifiers that provide the class belongingness
of an input pattern to different classes are arranged in a matrix form defined
as decision profile (DP) matrix [31]. It is to be noted that the element of DP
matrix need not be fuzzy output only. It could be the labels obtained from the
methods providing posterior probability or certainty or possibility values [8].
Mathematically the DP matrix for L classifiers and C classes is defines as

DP(x) =

⎡⎢⎢⎢⎢⎣
d1,1(x) ... d1,c(x) ... d1,C(x)
... ... ... ... ...

dl,1(x) ... dl,c(x) ... dl,C(x)
... ... ... ... ...

dL,1(x) ... dL,c(x) ... dL,C(x)

⎤⎥⎥⎥⎥⎦ , (7)

where dl,c represent the degree of belonging of the pattern assigned by the lth

classifier to the cth class.
In the classifier fusion systems, some methods calculate the support for dif-

ferent classes using the corresponding column of DP matrix, regardless of the
support for the other classes. This type of fusion methods that use the DP matrix
in a class-by-class manner is called class-conscious (CC) combiners. The alterna-
tive group is known as class-indifferent (CI). The former uses the context of the
DP matrix, i.e., recognizing that a column corresponds to a class, but disregard
part of the information with respect to rest of the classes; whereas the CI meth-
ods use the whole DP matrix but disregard its context. In the CC group various
fuzzy aggregation reasoning rules like maximum, minimum, product, sum, mean
etc. can be applied on each column of the DP matrix. This operation provides
a combined output obtained from the aggregation of the classifiers’ output for
a particular class. Two popular fuzzy combination methods named as decision
template (DT) and Dempster-Shafer (DS) normally work on the DP matrix
coming under the CI group. A brief description of the above mentioned fusion
methods are given below.

Existing fusion methods: Among the various fusion methods majority voting
is the simplest one. In fuzzy aggregation based fusion methods, each column of
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the DP matrix is separately combined using various fuzzy aggregation rules like
maximum, minimum, product, sum and mean to get a total support for one
class. Maximum of these values for C classes represent the class label for the
input pattern [8]. Mathematically the support D̄j for the class j is defined as

D̄j(x) = G((d1,j(x), ...dl,j(x), ..., dL,j(x)),

where x is the input pattern, dl,j(x) is the membership value of x obtained by
lth classifier for jth class and G is the fuzzy aggregation rule.

The probabilistic product aggregation rule performs fusion using continuous-
valued outputs [8]. Let dl,c(x) be the degree of “support” given by classifier l for
the class c. Let the feature space be partitioned into L non overlapping subsets
which are conditionally independent. Let P (c) denote the prior probability for
class c. Then the set of discriminant values proportional to the true posterior
probabilities is given by

μc(x) =

L∏
l=1

dl,c(x)

P (c)L−1
, c = 1, 2, ..., C. (8)

The class label assigned to x is the highest of μc(x). In this fusion method
the fuzzy membership values are assumed to be the probability of a pattern
for different classes. Similarly, the fuzzy integral method is performed on each
column of the DP matrix to obtain the degree of belonging of each pattern for
all classes. In this fusion method, for an input x, C vectors (of length L) of fuzzy
densities are calculated. These values are sorted according to the cth column of
the DP matrix. The sorted values are changed iteratively and the final degree of
support for class c for an input pattern is calculated.

The next group of fusion methods is known as CI, e.g., DT and DS. The idea
of the DT model is to “remember” the most typical DP matrix for each class
and then compare it with the current DP(x) matrix. The closest match will label
x. The DTc(x) for class c is the average of the DP matrices of the elements of
the training set Z in class c. Any kind of similarity measures can be applied for
this purpose. A detail description of the method can be found in [31]. In DS
based fusion method the classifiers’ output are possibility/membership values.
Instead of calculating the similarity between the DTc and DP(x) matrix, the DS
algorithm computes the proximity between the DTc for a class and the output
of a classifier, and from this proximity values belief degrees are computed. Based
on the belief degrees membership degree for each class is computed for a pattern.
The details are available in [14,18].

3 Neuro-fuzzy Combiner

It is well understood that the fuzzy classifiers are suitable for the classification of
different ill-defined classes with overlapping boundaries [22]. For remote sensing
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Fig. 1. A three-layer feed-forward neural network

images, classes are normally ill-defined and overlapping. Thus we have used only
fuzzy classifiers in the present investigation. We propose a neuro-fuzzy fusion
method based MCS that works with fuzzy classifiers, where the output of the
classifiers are combined using a neural network (NN) to learn the classes in an
iterative way. The activation value of the output neurons show the degree of
class labels of the input pattern.

The scheme proposed in the present article falls under the CI category. The
elements of the DP matrix are used as input to a three-layered feed forward
multi-layer perceptron (MLP) (Fig. 1) which acts as a combiner. Number of
input nodes of the NN is equal to the product of number of classifiers used in
the MCS and classes present in the data set. Number of output nodes of the NN
is equal to the number of classes present in the data set.

Each processing node of MLP, except the input-layer nodes, calculates a
weighted sum of the outputs from the nodes in the preceding layer to which
it is connected. This weighted sum then passes through a transfer function to
derive its own output which is then fed to the nodes in the next layer. Thus,
the input and output to node v are obtained as netv =

∑
u WuvOu + biasv and

Ov = S(netv), where wuv is the weight for the connection linking node u to
node v, biasv is the bias value for node v, Ou is the output of node u, and S
stands for the activation function (AF) (sigmoid function [32,33]). MLP uses
back-propagation (BP) learning algorithm [32,33] for weight updating. The BP
algorithm reduce the sum of square error called as cost function (CF), between
the actual and desired output of output-layer neurons in a gradient descent
manner. The weights are corrected using the following equation:

ΔWvu(n+ 1) = αΔWvu(n) + ηδvOu, (9)

where n, α, η and δ are the iteration number, momentum parameter, learning
rate and node error, respectively. The details of BP algorithm including deriva-
tion of the equations can be obtained from [32,33].

The last step of the proposed NFF based MCS system is a hard classification
by performing a MAX operation to defuzzify the output of the NN. Here the
pattern is classified to a class corresponding to the highest node value obtained
at output of the NN.
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4 Results and Discussion

The proposed scheme has been evaluated using a set of remote sensing images
(due to space scarcity we report here results on only two images). Training
samples are selected according to a prior assumption of the land cover regions
and are used to estimate the parameters of the classifiers. After learning the
classifier, it is used to classify the land covers of the whole image.

4.1 Performance Measurement Parameters

Two performance measures described below have been used in the present study.

β index: β is defined [25] as the ratio of the total variation and within-class
variation. For a given image and given number of classes, the higher the homo-
geneity within the classes, the higher would be the β value. Mathematically β
can be represented as

β =

⎛⎝ C∑
i=1

Mi∑
j=1

(xij − x)2

⎞⎠ /

⎛⎝ C∑
i=1

Mi∑
j=1

(xij − xi)2

⎞⎠ , (10)

where x is the mean grey value of all the pixels of an image (pattern vector),
Mi is the number of pixels in the ith (i = 1,2,...C) class, xij is the grey value of
the jth pixel (j = 1, 2, ...Mi) in class i, and xi is the mean of Mi pixel values of
the ith class.

Xie-Beni index: The XB index [34] provides a validity criterion based on a
function that identifies overall compactness and separation of partition with-
out any assumption to the number of substructures inherent in the data. It is
mathematically expressed as the ratio of compactness (θ) and separation (ξ),
i.e.,

XB =
1
Z

C∑
c=1

Z∑
z=1

μ2
cz‖Vc − xz‖2

min
c �=j

‖Vc − Vj‖2
, (11)

where Vc is the centroid of the cth class and xz is zth pattern in the data set.
Z is the total number of data points in the data set and μcz is the membership
value of the zth pattern to cth class. The smaller the XB value, the better is the
classification.

4.2 Description of Images

IRS-1A image: The IRS-1A image is obtained from Indian Remote Sensing
Satellite [35]. We have used the image taken from the Linear Imaging Self Scanner
with spatial resolution of 36.25m x 36.25m and wavelength range of 0.45-0.86μm.
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(a) (b)

Fig. 2. Original (a) IRS-1A (band-4), and (b) SPOT (band-3) image

The whole spectrum range is decomposed into four spectral bands, namely, blue
(band1), green (band2), red (band3) and near infrared (band4) of wavelengths
0.45-0.52μm, 0.52-0.59μm, 0.62-0.68μm, and 0.77-0.86μm, respectively. Since the
image is poorly illumination, we have presented the enhanced image (band4) in
Fig. 2. However, the algorithms are implemented on actual (original) image. The
image in Fig. 2a covers an area around the city of Calcutta in the near infrared
band having six major land cover classes: pure water (PW), turbid water (TW),
concrete area (CA), habitation (HAB), vegetation (VEG) and open spaces (OS).
PW class contains pond water, fisheries etc. River water where the soil content is
more belong to TW class. CA class consists of buildings, runways, roads, bridges
etc. Suburban and rural habitation, where concrete structure are comparatively
less come under HAB class. VEG class represents crop and forest areas. OS class
contains the barren land.

SPOT image: The SPOT image shown in Fig. 2b is obtained from SPOT
satellite (Systeme Pour d’Observation de la Terre) [20]. The Calcutta image
used here has been acquired in the wavelength range of 0.50-0.89μm. The whole
spectrum range is decomposed into three spectral bands namely, green (band1),
red (band2) and near infrared (band3) of wavelengths 0.50-0.59μm, 0.61-0.68μm,
and 0.79-0.89μm, respectively. This image has a higher spatial resolution of 20m
x 20m. We have considered the same six classes as in case of IRS-1A image.

4.3 Classification of Remote Sensing Images

Selection of the training samples for all classes are made according to a prior
assumption of the land cover regions. These training samples are used to estimate
the parameters of the classifiers. After learning the classifier, it is used to classify
the land covers of the whole image.
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Table 1. β and XB values of individual classification methods

Sl. Classification Image
No. method IRS-1A SPOT

β XB β XB

1 Fk-NN (k=5) 7.0121 0.9594 6.9212 2.5004

2 FMLC 7.0523 0.9356 6.9896 2.4231

3 FE 7.1312 0.9112 7.0137 2.3031

4 FPARR 8.1717 0.8310 8.1078 2.1021

Table 2. β and XB values for different combination schemes

Classifiers β index XB index
for fusion Fusion method used IRS-1A SPOT IRS-1A SPOT

image image image image

Voting 8.3134 8.2314 0.8211 2.1005
Fuzzy MAX 0.7903 2.1000 0.7903 2.1000

Aggregation MIN 8.3213 8.5134 0.7879 1.9733
Fk-NN (k=5) reasoning PROD 8.6217 8.6321 0.8003 2.0178

FMLC rule SUM 8.4312 8.3781 0.8202 2.0013
FE MEAN 8.2013 8.2011 0.8201 1.9010

FPARR Probabilistic product 8.5011 8.6005 0.7983 1.9334
Fuzzy integral 8.5078 8.5017 0.7710 1.9768

Decision template 8.4032 8.5712 0.7801 1.9001
Dempster-Shafer 8.6421 8.5312 0.7781 1.9783
Neuro-fuzzy 8.8012 8.7763 0.7697 1.8738

Initially the individual performance of fuzzy classifiers are tested on these
images using β and XB indices and depicted in Table 1. It is found that among
the four classifiers the FPARR based method is providing the best result.

Further, the validation results (β and XB) produced by MCSs with different
combination techniques are provided in Table 2. It is observed that all MCSs
with existing fusion methods are providing better results compared to any of
the individual classifiers. However, this improvement is not consistent for any
of the images. For example, with IRS-1A image, better results are obtained for
Dempster-Shafer fusion based MCS with β as a validity measure; whereas fuzzy
integral fusion based MCS showed improved performance with XB measure (Ta-
ble 2). Results are completely different for SPOT image which provided better
result with PROD aggregation reasoning rule based MCS in terms of β measure,
and DT fusion based MCS in terms of XB measure. Hence, there is a risk in se-
lecting any of these six fusion methods for a particular data set. The performance
of the proposed NFF based MCS is then evaluated. The results revealed that the
performance is further improved consistently for both the images with respect
to the validity measures used here (Table 2). The classified images with this
method are shown in Figs. 3a and 3b. It can be seen from these images that all
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CA PW HAB VEG OS TW CA PW HAB VEG OS TW 

(a) (b)

Fig. 3. Classified (a) IRS-1A and (b) SPOT image using proposed fusion based MCS

the classes (PW, TW, CA, HAB, VEG and OS) have come out clearly. Also
various structures (like rivers, canals, lakes, roads, bridges, airport runways)
present in the images are segregated out properly.

5 Conclusion

A new neuro-fuzzy multiple classifier system (MCS) is presented in this article.
Here output of fuzzy classifiers are fed as input to a neural network that acts as
a combiner. Performance of the proposed scheme is successfully demonstrated
on two remote sensing images, and compared with six existing combination tech-
niques. It is seen that for both the images considered here, the proposed model
works well and the improvement is consistent; whereas the results are different
for different fusion methods and highly dependent on input data sets.
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Abstract. There is increasing need for effective delineation of meaning-
fully different landforms due to the decreasing availability of experienced
landform interpreters. Any procedure for automating the process of land-
form segmentation from satellite images offer the promise of improved
consistency and reliality. We propose a hierarchical method for landform
classification for classifying a wide variety of landforms. At stage 1 an
image is classified as one of the three broad categories of terrain types
in terms of its geomorphology, and these are: desertic/rann of kutch,
coastal or fluvial. At stage 2, all different landforms within either deser-
tic/rann of kutch , coastal or fluvial areas are identified using suitable
processing. At the final stage, all outputs are fused together to obtain
a final segmented output. The proposed technique is evaluated on large
number of optical band satellite images that belong to aforementioned
terrain types.

1 Introduction

Landform Classification is a problem of identifying the predefined class of land-
forms, given a satellite image of the area. In order to explore the navigable
areas, identification of the exact landform becomes a crucial task. Due to the
varying geographic nature of landforms and existence of large number of classes,
landform segmentation is very much different from a conventional image seg-
mentation problem. Geographical definitions give only a very theoretical aspect
of the size, shape and several other features of the landforms. For e.g. “Barchan
dunes” are caused by highly uniform environmental conditions and wind blowing
only in one direction. Barchans can become aligned together along a plane per-
pendicular to the wind. If the line becomes somewhat straight, dune scientists
refer to these forward marching ridges as “transverse dunes”. For such kind of
landforms shape is an important feature. However the definitions do not clarify
the type of shape features to be used for processing. Another category is the
coastal bar. Coastal bars have no specific color, shape or size. Formulation of
these abstract geographical definitions into a single set of features and rules is
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a difficult task for the purpose of segmentation or classification. Hence a sin-
gle classifier or a single set of features cannot efficiently handle various types of
landforms from a satellite image, we propose a hierarchy of classifiers in a unified
framework.

A few approaches have dealt with the problem of landform identification in
the past. However, only a limited set of landforms were used for classification.
Pennock et al. [1] has dealt with the problem by using self organizing feature map.
They calculate the DEM (Digital Elevation Model) and the land cover map as
features. The DEM map normally divides the area into rectangular pixels and
store the elevation of each pixel. These features are then fed to the SOM for
further classification. The method is used to classify the landform of Kobe city
in Japan into hill, plateau, fan and reclaimed land. These classified landforms
were adopted for an earthquake damage evaluation of the 1995 Hyogoken Nanbu
earthquake in Kobe. Gorsevski et al. [2] proposed a method to assign digital
terrain attributes into continuous classes. They used fuzzy k-means for classifying
the continuous landforms. The method finds its usefulness in overcoming the
problem of class overlap. The aim is to describe landslide hazard in roaded and
road less areas of a forest. As the size of the data increases and when there
are artifacts introduced by the derivation of landform attributes from DEM, the
performance of the fuzzy k-means suffers. Burrough et al. [3] proposed a method
to overcome the limitations of the above given model by using spatial sampling,
statistical modeling of the derived stream topology and fuzzy k-means using the
distance metric. Results are shown on images obtained from Alberta, Canada,
and the French pre-Alps.

SVMs is a state-of-art pattern recognition technique whose foundations stem
from statistical learning theory [4]. They have widely been used in literature for
image segmentation and classification. Chen et al. [5] presented an algorithm
for image segmentation using support vector machines. They used two different
sets of features for image segmentation - first, the gray levels of 5x5 neighboring
pixels and second, the gray level and grad orientation of 9x9 neighboring pixels.
They concluded that to obtain good segmentation results feature set should be
chosen appropriately, for instance they achieved superior results using second
feature set. Results on these two different set of features using SVM as classifier,
are shown on two images in their work. Kim et al. [6] proposed an algorithm
for texture classification using multi-class SVM. The gray levels in a window of
17x17 were used as features and multi-class SVM based on one-against-others
decomposition is used for classification. They have compared the results with
different kernels and by varying window sizes. They concluded that polynomial
kernel with degree 5 gives superior results than other kernels. Results are shown
on images composed of two-five textures.

In the work presented in this paper, we have employed hierarchical feature-
based methods using image pixel intensity and shape, for the classification of
different types of landforms. The flowchart for the complete methodology is
shown in Fig. 1. The hierarchical approach used in this paper has enabled us to
process a large variety of landforms with varying features. The rest of the paper is
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Fig. 1. Flowchart of the proposed hierarchical landform classification scheme

organized as follows. Section 2 gives overview of landform classification. Section 3
describes the proposed methodology. Section 4 discusses the experimental results
obtained. Section 5 concludes the paper with the discussion on contribution.

2 Overview of Landform Classification

We attempt to solve the problem of landform classification from satellite im-
ages using a hierarchical method of segmentation. This is a divide-and-conquer
strategy, which divides the complex problem into smaller solvable units. We
have obtained training and testing samples of about 20 different landforms. The
complexity lies in the fact that the rules governing a decision to obtain a land-
form widely varies from one to another. For example, some landform such as,
dunes, inselberg, flood-plains have very distinct texture features, whereas wa-
ter bodies, salt flats/playas have distinct band signatures, and others have very
distinct shapes (OX-Bow, Meanders and Parabolic dunes) and sizes (swamps,
plains etc.). The signatures, adjacency and association rules of these landforms
are also fuzzy (uncertain), according to geo-morphologists who provide us with
this ground truth.

The task is complex, as no classifier would be able to handle the wide variety of
features (texture, color, size and shape), rules of association across all different
landforms, and in some cases even for a particular landform. A large set of
features extracted based on certain features will confuse a classifier, which will
suffer from the following major disadvantages: correct and weighted combination
of features, curse of dimensionality and lack of adequate training samples to
capture the large variability within a class/landform.

The complete methodology for Landform classification can now be divided
into three stages, which is depicted in Fig. 1. At the first stage, a SVM is used
to classify an image belonging to either one of the three major terrains types
found in the bed of earth (at least in India). These are Desertic/Rann of kutch
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(a) (b) (c)

Fig. 2. Examples of a few set of satellite images for the three major terrains (a) Desertic
terrian/Rann of kutch; (b) Coastal terrian; (c) Fluvial (river side) terrian

(we are considering rann of kutch and the desertic in a single category), Fluvial
(river side) and Coastal landforms. This is a fundamental assumption in our
approach and it works well for certain application, such as trafficability and
disaster management for defense, GIS and resource mapping. As we are not
interested in land-use patterns, urban areas are not considered. Examples of
a few set of satellite images for the three major terrains are given in Fig. 2.
We have assumed that coastal, fluvial and desertic are non-overlapping classes,
which we typically found to be true in practical scenarios. For example, dunes
can only occur in a desertic area, and coastal bars can only be found in a coastal
area. Similarly, OX-BOW patterns can occur only in fluvial zones. This enables
us to identify the probable set of landforms occurring in the input image, only
under a particular super-group that has been determined at the first stage. Once
the image is classified as desertic, fluvial or coastal, each pixel of the image is
classified into the actual landforms with SVM, trained using mean of intensity
features, computed as:

xi,j = {μ(Ir
i,j) μ(Ig

i,j) μ(In
i,j)} (1)

where, xi,j represents a 3D feature vector corresponding to (i, j)th pixel. Ir
i,j ,

Ig
i,j and In

i,j represent intensity values of (i, j)th pixel in Red, Green and NIR
bands (the three spectral bands used for processing) of the input image, respec-
tively and μ(h) represents mean of h in a 3x3 window. Other methods such as
moments for shape matching [7] and pixel connectivity [8] are used to obtain
other major landforms. Finally, outputs of different landforms are fused using a
criteria to obtain final classification result. The complete methodology to obtain
all landforms and fusion strategy employed to obtain final classification results
is described in the following sections.

3 Description of the Methods Used for Classification

3.1 Supergroup Classification

This is the topmost stage of the proposed hierarchical classification as shown in
Fig. 1. A Support Vector Machine (SVM) based classification technique has been
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adopted in our design for the task of identifying an input image as belonging to
one of the desertic, coastal or fluvial landform super-groups. In order to capture
and exploit the variability among the different multi-spectral images belonging
to each of the super-groups, histograms of all the 3 bands: Red, Green and NIR
bands are used as features for classification. Thus, the SVM-classifier in our
case has been trained using histograms of all the three bands of multi-spectral
training samples belonging to each one of the three: Desertic, Coastal and Fluvial
categories. A high degree of success has been achieved at this stage which will
be discussed in Sec. 4.

3.2 Desertic/Rann of Kutch Landform Classification

The flowchart of proposed methodology for the classification of landforms in a
desertic/rann of kutch area is shown in Fig. 3. It can be observed from image
shown in Fig. 8 that saltflats/playas (barren areas with highly saline and alkaline
soils, formed through the concentration of mineral residues in salt water) appear
bright and inselberg/rocky exposure (a steep ridge or hill left when a mountain
has eroded and found in an otherwise flat, typically desert plain) appear dark as
compared to dunes/sandy plains (mounds of loose sand grains shaped up by the
wind). We exploit this property to differentiate between these three landforms.
The steps of processing used for classification are as follows:

1. A multi-class SVM (using one-against others decomposition [6]) trained us-
ing mean of pixel intensity values of all three spectral bands, is used to dif-
ferentiate between dunes/sandy plains, rocky exposure and saltflats/playas.

2. The output obtained is fused using algorithm described in Sec. 3.5.

using SVM
Classification

Desertic/rann of
kutch

Playa
Salt flats /Rocky

exposureSandy plain
Dunes /

Fig. 3. Flowchart showing stages of clas-
sification of desertic landforms. Features
used for SVM are mean of pixel intensity
values of all three spectral bands.

Sea/creeks

component labeling
algorithm

Connected

Forested
swamps

beach
Sandy

Coastal
bar

Classification
using SVM

Coastal

Swamps

Alluvial
plain

Fig. 4. Flowchart showing stages of
classification of coastal landforms. Fea-
tures used for SVM are mean of pixel
intensity values of all three spectral
bands.
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3.3 Coastal Landform Classification

The flowchart of proposed methodology for the classification of landforms in
a coastal area is shown in Fig. 4. It can be observed from the image shown
in Fig. 9(a) that intensity-based features have a major role to play for extrac-
tion of coastal landforms. Association rules have also been employed in order to
encode human-knowledge in observing certain key characteristics of coastal land-
forms within the system. The steps of processing for identification of landform
in coastal images are as follows:

1. A multi-class SVM (using one-against others decomposition [6]) trained us-
ing mean of pixel intensity values of all three spectral bands, is used to dif-
ferentiate between sea, forested swamp (a wetland containing trees), sandy
beach and alluvial plain.

2. Since coastal bars are landforms that possess unique characteristic property
of being enclosed by sea on all sides, a connected component [8] labeling
algorithm is employed to determine all connected components surrounded
by sea.

3. Similarly, swamps (a wetland that features permanent inundation of large
areas of land by shallow bodies of water) are patches of land that possess
high water-content and have been obtained by identifying segments classified
as sea in step 1 surrounded by land.

4. The outputs obtained in steps 1,2 and 3 are fused using the algorithm de-
scribed in Sec. 3.5, to obtain final classification results.

3.4 Fluvial Landform Classification

The flowchart of methodology followed for the classification of landforms in a
fluvial area is shown in Fig. 5. An example of fluvial image is shown in Fig. 10(a)
Since fluvial landforms are produced by the action of river or an active channel,
a satellite image taken of a fluvial area mostly contain an active channel within
it. The steps of processing for identification of landfroms in fluvial images are as
follows:

1. A multi-class SVM (using one-against others decomposition) trained using
mean of pixel intensity values of all three spectral bands, is used to differ-
entiate between active channel, flood plain (the low area along a stream or
river channel into which water spreads during floods) and alluvial plain.

2. Flood plains in general occur adjacent to active channel, a connected com-
ponent [8] labeling algorithm is employed to confirm that all segments iden-
tified as flood plains in step 1 are connected to active channel. The segments
that are not connected to active channels (river) are classified as alluvial
plains.

3. A SVM trained using moment features [7] (shape) is used to distinguish ox-
bow (a U-shaped bend in a river or stream) and active channel among the
segments which are classified as active channel in step 1.
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Connected
component labeling

algorithm

channel
Active Flood

plain
Alluvial 
plain

Classification
using SVM

Bar Ox−bow

Fluvial

Fig. 5. Flowchart showing stages of clas-
sification of fluvial landforms. Features
used for SVM are mean of pixel intensity
values of all three spectral bands.
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4. Since bars are landforms that possess unique characteristic property of be-
ing enclosed by active channel on all sides, a connected component labeling
algorithm is employed to determine all connected components surrounded
by active channel.

5. The outputs obtained in steps 1,2,3 and 4 are fused using algorithm described
in Sec. 3.5 to obtain final classification results.

3.5 Fusion

As mentioned in Sec. 2, an input image may contain multiple landforms within
it. However, due to the diverse characteristics (properties) possessed by different
landforms, specific processing algorithms have been designed and implemented
for extraction of a few landforms. As mentioned above, all segmentation re-
sults produced from the different processing algorithms, need to be merged and
combined appropriately. We need an efficient process of merging or fusing the
outputs of different classifier, as a perticular pixel may be assigned to two or
more number of classes by different classifiers.

The strategy adopted by the current system design, attempts to fuse seg-
mentation results of individual landforms on the basis of their association and
adjacency phenomena to occur together in nature. Using knowledge acquired
from domain experts in geomorphology three adjacency Tables 1 - 3 have been
built in order to encode the adjacency relationships that exist among different
landforms under each super-group. Before fusing results of two different land-
forms under the same super-group, their corresponding entry in the adjacency
table is checked. In case their association is invalid (as indicated by ’NA’), there
is no chance whatsoever for the two candidate landforms to occur together and
therefore cause an uncertainty. In the other case when their association is valid
(as indicated by a landform index with higher precedence), the two landforms
under consideration may have a pixel overlap and in such cases their fusion is
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Table 1. Adjacency table for desertic/rann of kutch landforms

Dunes (L1) Rocky exposure (L2) Saltflats (L3)

Dunes (L1) - L2 L3

Rocky exposure (L2) L2 - L2

Salfflats (L3) L3 L2 -

Table 2. Adjacency table for coastal landforms

Swamp Forested Coastal Beach Creek/ Alluvial
(L1) swamp (L2) bar (L3) (L4) sea(L5) plain (L6)

Swamp (L1) - NA L3 L4 NA L1

Forested swamp (L2) NA - Both L4 NA L2

Coastal bar (L3) L3 Both - L4 L3 L3

Beach (L4) L4 L4 L4 - L4 L4

Creek/Sea (L5) NA NA L3 L4 - L5

Alluvial plain (L6) L1 L2 L3 L4 L5 -

Table 3. Adjacency table for fluvial landforms

Ox-bow Active Bar Flood Alluvial
(L1) channel (L2) (L3) plain (L4) plain (L5)

Ox-bow (L1) - NA NA L1 L1

Active channel (L2) NA - L3 L2 L2

Bar (L3) NA L3 - L3 L3

Flood plain (L4) L1 L2 L3 - L4

Alluvial plain (L5) L1 L2 L3 L4 -

done by assigning the area of overlap to the landform with higher precedence.
The block diagram of the fusion stage has been shown in Fig. 6.

The fusion strategy adopted for combination of labeled outputs of each land-
form processing is given below. For combination of two labeled outputs Lk(X,Y )
and Lj(X,Y ) to form the combined output O(X,Y ), (where k and j are the
highest labels in precedence among all the class labels assigned before fusion,
1 ≤ k, j ≤ M). M being the number of possible landform classes with in that
super-class (desertic, fluvial or coastal).

Algorithm for Fusion

1. If landforms k and j do not occur together then output O(X,Y ) is given as:

O(X,Y ) = argmax
1≤j≤M

cj(X,Y ) (2)

where, cj is the number of times label j appears in the neighborhood of point
(X,Y ).
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2. If landforms k and j may occur together then output O(X,Y ) is given as:

O(X,Y ) =

⎧⎨⎩
Lk(X,Y ) if prec(k) > prec(j)
Lj(X,Y ) if prec(j) > prec(k)
Ψ(X,Y ) if prec(j) = prec(k)

⎫⎬⎭ (3)

where, the function prec() is encoded in the adjacency table and Ψ(X,Y ) is
the new label assigned to the pixel (X,Y ).

The adjacency table for all super-group classes (types of terrains) are shown in
Tables 1 - 3. Each adjacency table is a symmetric matrix of size N ∗ N , where
N is the total number of landforms within that super-group. The entries in any
adjacency matrix are:
Li - Landform number with higher precedence among the two adjacent land-
forms.
N/A - Invalid (not possible).
Both - If both landform occur with equal precedence.
Knowledge of geoscientists is encoded in the table. Experts opinion is conseiderd
to form the adjacency matrix.

4 Experimental Results

To verify the effectiveness of the proposed method, experiments were performed
on several test images of size 300x300. The SVM used for super group classi-
fication was trained using 180 training samples (60 for each class) and tested

(a) (b) (c)

(d) (e) (f)

Fig. 7. Examples of classified ((a)-(c)) and missclassified ((d)-(f)) images at stage 1
(supergroup classification): (a) Desertic Image; (b) Coastal Image; (c) Fluvial Image;
(d) Rann of kutch image misclassified as coastal; (e) Coastal image misclassified as
fluvial; (f) Fluvial image misclassified as coastal
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(a) (b) (c)

(d) (e)

Fig. 8. (a) Input image consists of desertic landforms (b) Dunes/Sandy plains; (c)
Inselburg/rocky exposure; (d) Saltflats/playa; (e) Fused Result

using 600 samples (200 each class). We obtained 99.2% of classfication accuracy,
with a SVM using polynomial kernel of degree 2. Figs. 7(a)-(c) show examples
of correctly classified images of desertic, coastal and fluvial terrians, respectively
at stage 1 (supergroup classification). Figs. 7(d)-(f) show examples of a rann of
kutch, coastal, fluvial terrians misclassfied as coastal, fluvial, coastal terrians,
respectively at stage 1 (supergroup classification).

Results obtained at stages 2 and 3 using our proposed methodology are shown
in Figs. 8 - 10. Fig. 8(a) shows input image of a desertic/rann of kutch area.
The corresponding landfroms obtained after classification are shown in: (b)
dunes/sandy plains; (c) rocky exposure; and (d) saltflats/playas. Result obtained
after fusing the individual outputs is shown in Fig. 8(e). Fig. 9(a) shows input
image of a coastal area. The corresponding landforms obtained after classifica-
tion are shown in: (b) coastal bar; (c) forested swamp; (d) swamp; (e) beach;
(f) sea/creek and (g) alluvial plain. Result obtained after fusing the individual
outputs is shown in Fig. 9(h). Fig. 10(a) shows input image of a fluvial area.
The corresponding landforms obtained after classification are shown in: (b) ac-
tive channel; (c) flood plain; (d) bar; (e) ox-bow; and (f) alluvial plain Result
obtained after fusing the individual outputs is shown in Fig. 10(g). Although
active channel is not a landform but it is shown because other landforms are
associated with the active channel. It can be observed from Figs.8-10, that each
landform has been identified correctly in the final output.



150 A. Gagrani et al.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 9. (a) Input image consists of coastal landforms; (b) Coastal bar; (c) Forested
swamp; (d) Swamp; (e) Beach; (f) Creeks/sea; (g) Alluvial plain; (h) Fused result

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10. (a) Input image consists of fluvial landforms; (b) Active channel; (c) Flood
plain; (d) Bar; (e) Ox-bow; (f) Alluvial plain; (g) Fused Result
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5 Conclusion

A hierarchical approach for landform classification has been proposed in the pa-
per. The proposed hierarchical framework enables us to consider large number
of landform classes for segmentation of satellite images. The proposed method-
ology has been tested on a large number of images. Results show that all major
landforms have been identified correctly. With the increase in the number of
landforms the complexity of the adjacency table will also increase, as well as
the super-classes in Fig. 1. However the performance of the system has yet to
be analysed for such situations. Future work includes expanding the system to
handle more set of landforms, for instance, a method to discriminate among
different dunes.
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Abstract. A central task in image processing is to find the region in the image
corresponding to an entity. In a number of problems, the region takes the form of
a collection of circles, e.g. tree crowns in remote sensing imagery; cells in bio-
logical and medical imagery. In [1], a model of such regions, the ‘gas of circles’
model, was developed based on higher-order active contours, a recently devel-
oped framework for the inclusion of prior knowledge in active contour energies.
However, the model suffers from a defect. In [1], the model parameters were ad-
justed so that the circles were local energy minima. Gradient descent can become
stuck in these minima, producing phantom circles even with no supporting data.
We solve this problem by calculating, via a Taylor expansion of the energy, pa-
rameter values that make circles into energy inflection points rather than minima.
As a bonus, the constraint halves the number of model parameters, and severely
constrains one of the two that remain, a major advantage for an energy-based
model. We use the model for tree crown extraction from aerial images. Experi-
ments show that despite the lack of parametric freedom, the new model performs
better than the old, and much better than a classical active contour.

1 Introduction

A central problem in image understanding is to find the region R in the image domain
corresponding to a particular entity. The crucial quantity is P(R|I,K), the probability
that regionRcorresponds to the entity given the image data I and any prior knowledgeK
we may choose to include. Typically, to solve such problems automatically, a significant
amount of prior knowledge specific to the entity must be included, in particular about
region geometry. Generic assumptions, e.g. about boundary smoothness, do not suffice.
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The tree crown extraction problem provides an example. Submetre resolution remote
sensing images in principle permit the automatic extraction of the regionR correspond-
ing to tree crowns, and the subsequent evaluation of various parameters of importance
in forestry and conservation. Particularly in plantations,R takes the form of a collection
of approximately circular connected components of similar size. We thus have a great
deal of prior knowledge about R, without which trees that are close together or that
do not differ much in intensity from the background cannot be extracted correctly. The
question is then how to incorporate such prior knowledge into a model for R?

We focus on ‘active contour’ models [2]. In this context, a region R is represented
by its boundary ∂R. P(R|I,K) is constructed implicitly, via an energy functional
E(∂R) = Eg(∂R) + Ei(∂R, I), where Eg and Ei correspond to prior and likelihood.
In classical active contours, prior energiesEg are constructed from single integrals over
the contour. Eg includes only local, differential interactions between boundary points,
and thus only very simple prior knowledge, e.g. boundary smoothness.

To include more complex prior knowledge, longer-range interactions are needed.
There is a large body of work that does this implicitly, via a template region or regions
to which R is compared, e.g. [3,4,5,6]. However, such energies effectively limit R to a
bounded subset of region space close to the template(s), which excludes, inter alia, cases
like tree crown extraction in which R has an unknown number of connected compo-
nents. ‘Higher-order active contours’ (HOACs) [7] provide a complementary approach.
HOACs generalize classical active contours to include multiple integrals over ∂R. Thus
HOAC energies explicitly model long-range interactions between boundary points with-
out using a template. This allows the inclusion of complex prior knowledge while permit-
ting the region to have an arbitrary number of connected components, which furthermore
may interact amongst themselves. The approach is very general: classical energies are
linear functionals on the space of regions; HOACs include all polynomial functionals.

In [1], a HOAC energyEg was used for tree crown extraction. In this ‘gas of circles’
model, collections of mutually repelling circles of given radius r0 are local minima ofEg.
The model has many potential applications in varied domains, but it suffers from a draw-
back: such local minima can trap the gradient descent algorithm used to minimize the
energy, thus producing phantom circles even with no supporting data. The model as such
is not at fault: an algorithm capable of finding the global minimum would not produce
phantom circles. This suggests two approaches to tackling the difficulty. One is to find
a better algorithm. The other is to compromise with the existing algorithm by changing
the model to avoid the creation of local minima, while keeping intact the prior knowledge
contained in the model. In this paper, we take this second approach. We solve the prob-
lem of phantom circles in [1]’s model by calculating, via a Taylor expansion of the energy,
parameter values that make the circles into inflection points rather than minima. In ad-
dition, we find that this constraint halves the number of model parameters, and severely
constrains one of the two that remain, while improving the empirical success of the model.

In section 2 we present the ‘gas of circles’ model Eg. In section 3, we introduce the
inflection point constraint and show how it fixes some of the parameters. In section 4, we
apply the model to tree crown extraction. We briefly review previous work, describe our
likelihood energyEi and the gradient descent algorithm used to minimizeE = Ei +Eg,
and present experimental results. In section 5, we sum up.
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2 The ‘Gas of Circles’ HOAC Model

A region boundary1, ∂R, is a map γ : S1 → R
2 modulo orientation-preserving diffeo-

morphisms of S1. The HOAC energy Eg used by [1] is then given by2

Eg(∂R) = λL(∂R) + αA(R)− β

2

∫∫
dp dp′ t(p) · t(p′) Ψ(r(p, p′)) , (2.1)

where p is a coordinate on S1; L is the boundary length functional;A is the region area
functional; r(p, p′) = |γ(p) − γ(p′)|; t = ∂pγ; and Ψ is an interaction function that
determines the geometric content of the model. In [1],

Ψ(z) =

{
1
2

(
2− z

d + 1
π sin πz

d

)
z < 2d ,

0 z ≥ 2d .
(2.2)

With this Ψ , the last term in (2.1) creates a repulsion between antiparallel tangent vec-
tors. This has two effects. First, for particular ranges of α, β, and d (λ = 1 wlog),
circular structures, with a radius r0 dependent on the parameter values, are stable to
perturbations of their boundary. Second, such circles repel one another if they approach
closer than 2d. Regions consisting of collections of circles of radius r0 separated by
distances greater than 2d are thus local energy minima. In [1], this was called the ‘gas
of circles’ model.

In order to determine parameter values so that a circle of radius r0 be an energy
minimum, [1] conducted a stability analysis. The energy was Taylor expanded around
a circle, and the result was expressed in the Fourier basis. This is the natural basis to
use because it diagonalizes (2.1): Fourier components do not interact. The parameters
were chosen so that, for a circle of radius r0, the first derivative of the functional (2.1)
was zero (energy extremum) and the second derivative of (2.1) was positive definite
(energy minimum). The first constraint determines β in terms of α and d, while the
second places constraints on the ranges of the latter two parameters. The values of α
and d can further be adjusted so that the energy of the circle is positive (to avoid circle
creation everywhere), but not too high. In more detail: if γr is a circle of radius r, and
δγ is a small variation of the circle with Fourier components ak, the energy to second
order is

Eg(γr + δγ) = E0(r) + a0E1(r) +
1
2

∑
k

|ak|2E2(k, r) ,

where

E0(r) = 2πλr + παr2 − πβG00(r) , (2.3a)

E1(r) = 2πλ+ 2παr − 2πβG10(r) , (2.3b)

E2(k, r) = 2πλrk2 + 2πα

− 2πβ
[
2G20(r) +G21(k, r) + 2irkG23(k, r) + k2r2G24(k, r)

]
. (2.3c)

1 We describe the case of one simply-connected connected component. The generalization to
multiple multiply-connected connected components is trivial.

2 The same HOAC energy was first used, but with different parameter values, by Rochery et
al. [7], to model network shapes.
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The Gij are also functions of d. Note that E1 = ∂rE0 and E2(0, r) = ∂rE1.
Equations (2.3) have the following consequences. First, since the large r behaviour

of E0 is dominated by the α term, we must have α ≥ 0 for the energy to be bounded
below. Second, the conditionE1(r0) = 0 determines β in terms of the other parameters:

β(r0) =
λ+ αr0
G10(r0)

. (2.4)

Third, because G10 > 0, β > 0 is necessary for an extremum. Fourth, although
E2(k, r0) > 0 can only be checked numerically, when k = 0, it implies

α(r0) > β(r0)(2G20(r0) +G21(0, r0)) = β(r0)G̃(r0) .

3 Monotonic Energy Function

The left of figure 2 shows a plot of the energy of a circle versus radius for parameter
values selected according to the above criteria. Viewed as a Gibbs energy, this curve has
just the form we require: circles of radius r0 are metastable (i.e. local minima), with an
energy that is low but nevertheless higher than that of the empty region. In the absence
of supporting data, the global minimum will thus be the empty region, the correct be-
haviour. A gradient descent algorithm, however, cannot escape from these local minima,
meaning that circles of radius r0, once formed during gradient descent, cannot disap-
pear, even if the data does not support their existence. In practice such circles sometimes
do form, which is clearly undesirable. The best solution to this problem would be an
algorithm capable of finding the global minimum of the energy. A slightly less ambi-
tious approach, which we take here, involves making a compromise with the algorithm,
changing the model to avoid the creation of these local minima, while preserving as
much of the prior knowledge as possible.

The idea we will pursue is to adjust the parameters so that the minimum of the
curve on the left in figure 2 is replaced by a broad, approximately flat area, as shown
in the three rightmost plots in figure 2. Such an energy means that in the absence of
image data, a circle will shrink and disappear, whereas small amounts of image data
will be sufficient to create a minimum in the flat area, thus producing a stable circle. The
natural method to achieve such a broad flat region is to create an energy function that
has a single inflection point. If necessary the parameters can then be tweaked to ensure
that the gradient of energy wrt radius is positive rather than simply non-negative. It is,
however, a nontrivial exercise to find parameter values that result in inflection points.
We address this problem via further analysis of the energy (2.1).

We still require that a circle of radius r0 be stable to sinusoidal perturbations with
k > 0, but now we also require that such a circle be an inflection point with respect
to perturbations with k = 0, that is, changes of radius. We will see that these demands
are sufficient to fix the prior energy Eg up to an overall multiplicative constant and
a small range of values for d. More precisely, we still require that E1(r0) = 0 and
E2(k, r0) > 0 for k > 0, but we now require that E2(0, r0) = 0 too. The first condition
gives equation (2.4). The second condition, which follows from equation (2.3c), also
relates α and β:

α(r0) = β(r0)G̃(r0) . (3.1)
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Fig. 1. From left to right (r0 = 5.0 throughout): α plotted against d; β plotted against d; enlarged
plot of α near the critical domain
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Fig. 2. Plot of E0 against r for r0 = 5.0. Left: model in [1], with a local energy minimum. Right
three: new model, with α and β determined by equations (3.2). Second from left, d = 6.4; second
from right, d = 6.8; far right, d = 7.2. For this value of r0, dmin = 6.3880, dmax = 7.2495.

We can solve equations (2.4) and (3.1) for α and β, giving

α(r0) =
λG̃(r0)

G10(r0)− r0G̃(r0)
and β(r0) =

λ

G10(r0)− r0G̃(r0)
. (3.2)

These equations fix α and β as functions of r0 and d. Since r0 is fixed by the application,
the only remaining parametric degrees of freedom are the value of d, and the overall
strength of the prior term, represented by λ. Recall, however, that we also require α
and β to be positive. The question is then how to find values of d for a given r0 so that
α(r0) > 0 and β(r0) > 0.

3.1 Determination of d

To illustrate the behaviour we want to understand, figure 1 shows plots of α and β
against d for fixed r0, in this case r0 = 5. There are two critical points, dmin and dmax.
Only for the range dmin < d < dmax are both α and β positive. Our goal is therefore to
find dmin and dmax as functions of r0.

From equations (3.2), it can be seen that dmax arises from a zero in the denominator,
while dmin arises from a zero in the numerator. It is therefore sufficient to find these
zeros in order to find dmin and dmax. To proceed, we first note a scaling property of G00.
The function G00 is given by the following integral [1]:

G00(r) =
∫ π

−π

dp cos(p) r2 Ψ
(

2r
∣∣∣sin p

2

∣∣∣) . (3.3)
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Since Ψ(z) is a function of z/d only, by pulling d2 out of the integral we can write G00

as G00(r) = d2Ĝ00(r/d). Now recall that G10 = 1
2∂rG00 and G̃ = ∂rG10. We then

find that

G̃(r0) = ˆ̃G(r0/d) and G10(r0)− r0G̃(r0) = d
(
Ĝ10(r0/d)−

r0
d

ˆ̃G(r0/d)
)
,

(3.4)

where Ĝ10(z) = 1
2∂zĜ00(z) and ˆ̃G(z) = ∂zĜ10(z). Thus both numerator and denom-

inator of equations (3.2) can be written, up to multiplication by positive coefficients, as
functions of r0/d. Now, f(r, d) = f̂(r/d) and f(r, d0) = 0 imply f(ar, ad0) = 0 for
all a ∈ R; thus if we determine dmin and dmax for one value of r0, we know their values
for any r0.

To determine dmin and dmax while avoiding iterative numerical procedures to find
these points, we use a polynomial approximation to G00:

G00(r) =
∞∑

n=0

bnr
n .

It is easy to show that

bm =

{
0 m < 2 ,

1
(m−2)!

∫ π

−π
dp cos(p) Y (m−2)(0) m ≥ 2 ,

(3.5)

where Y (r) = Ψ(2r| sin(p/2)|). The derivatives of Y evaluated at zero are

Y (m)(0)
(2| sin(p/2)|)m

= Ψ (m)(0) =

⎧⎪⎨⎪⎩
1 m = 0 ,
0 m = 1 or m even ,

(−1)
m−1

2 1
2d

(
π
d

)m−1
m ≥ 3 and m odd .

Substituting into equation (3.5) gives bm:

bm =

{
0 m < 5 or m even ,

(−1)
m−1

2
4(2π)m−3

m!!(m−4)!!
1

dm−2 m ≥ 5 and m odd .

We can then derive expressions for G̃ and G10 − rG̃:

G̃(r) = 2
∑
m≥3
m odd

(−1)
m+1

2 (2π)m−1(m+ 1)
m!!(m− 2)!!

( r
d

)m

G10(r) − rG̃(r) = 2d
∑
m≥4
m even

(−1)
m−2

2 (2π)m−2

[(m− 3)!!]2
( r
d

)m

.

We computed the roots of these polynomials including terms up to m = 49. The
smallest positive roots furnish the values of dmin and dmax. The result is that dmin �
1.2776r0 and dmax � 1.4499r0. The rightmost three graphs in figure 2 show plots of
E0 against r for r0 = 5, with d values chosen from the domain dmin < d < dmax.
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4 Tree Crown Extraction

The tree crown extraction problem is important in forestry, and has been much stud-
ied. Gougeon [8] uses an automatic valley following method to delineate tree crowns.
Larsen [9] uses a template matching method based on a 3D model to find spruce trees.
This works well, but requires knowledge of image acquisition and illumination parame-
ters to construct the template. Neither of these methods model the spatial distribution of
trees. Perrin et al. [10] model a forest as a marked point process with ellipses as marks,
thereby including inter-tree interactions. The method in this paper is similar in spirit,
although expressed in a very different language. It has the advantage that the tree shape
is not hard-constrained, but the disadvantage that it is difficult to apply to dense forest.

4.1 Likelihood Energy and Energy Minimization

We use Eg, with parameters fixed as described above, as a prior model for the region R
of the image domain corresponding to trees. We also need a likelihood energyEi(I, R).
We will model the image in R, and in the background R̄, using Gaussian distributions.3

We add a term that predicts high gradients along the boundary ∂R:

Ei(I, R) = λi

∫
dpn(p)·∂I(γ(p))+αi

[∫
R

d2x
(I(x)− μ)2

2σ2
+
∫

R̄

d2x
(I(x)− μ̄)2

2σ̄2

]
,

where n is the (unnormalized) outward facing normal. Note that to facilitate comparison
of parameters in the prior energy, we set λ = 1 in Eg and introduce a weight αi in Ei.
The parameters μ, σ, μ̄, and σ̄ are learned from examples using maximum likelihood,
and then fixed.

The energyE = Eg +Ei is minimized using gradient descent. The descent equation
is

n̂ · ∂tγ(p) = −λi∂
2I(γ(p)) + αi

[
(I(γ(p))− μ̄)2

2σ̄2
− (I(γ(p))− μ)2

2σ2

]
− κ(p)− α+ β

∫
dp′ r̂(p, p′) · n(p′) Ψ (1)(r(p, p′)) ,

where κ is the curvature of the contour, r(p, p′) = γ(p) − γ(p′), and r̂ = r/r. In the
algorithm, it is convenient to represent the boundary by the zero level set of its signed
distance function [11]. We use the extended level set framework described in [7] to cope
with the nonlocal forces arising from HOAC energies.

4.2 Experimental Results

We tested the model on colour infrared aerial images of poplar stands located in the
‘Saône et Loire’ region in France, provided by the French National Forest Inventory

3 We ignore the normalization constant Z(R) = DI e−Ei(I,R) since in our case it merely
changes λ and α, and we are interested in stability of the posterior in the absence of image-
dependent terms.
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Fig. 3. From left to right: image of poplars c©IFN; the best result with a classical active contour
(70, 0.08, 5.8); result with model in [1] (150, 0.15, 5.8, 4.67, 4.16, 4.16); result with new model
(90, 0.08, 5.47, 2.61, 6, 4.16).

Fig. 4. Left: bigger slice of planted forest c©IFN; right: result using new model
(90, 0.04, 5.49, 2.65, 5, 3.47). The contour was initialized to the red line.

(IFN). We compare our new model to a classical active contour (β = 0), and the model
in [1] containing an energy minimum. Note that the new model has three free param-
eters, λi, αi and d, since the other likelihood parameters are fixed by training, while
the other prior parameters are fixed once r0 is known. The classical active contour also
has three free parameters (λi, αi, and α), while the model used in [1] has four (λi, αi,
α, and d). The initial contour in all experiments, except that in figure 4, was a rounded
rectangle slightly bigger than the image domain. The image values in the region exterior
to the image domain were set to μ̄ to ensure that the contour would shrink inwards.

Figure 3 shows four images.4 On the left is the data. Next comes the best result we
could obtain using the same likelihood but setting β = 0, i.e. using a classical active
contour. Note how the absence of the quadratic term, which includes the prior shape
knowledge, prevents trees from being separated. Next is the result we obtain with the
model in [1], while on the right is the result obtained with the new model. Note that the
parameter values for the new model, although fixed, nevertheless produce a comparable
result. One tree on the border is missing, but on the other hand, two trees are separated
that were merged by the old model.

4 Parameter values in image captions are written in the form (λi, αi, α, β, d, r0), truncated if
the parameters are not present.
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Fig. 5. Left to right: regularly planted poplars c©IFN; result with model in [1]
(40, 0.05, 5, 4.08, 3.47, 3.47); result with the new model (90, 0.07, 5.49, 2.65, 5, 3.47).
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Fig. 6. Left to right: energy of a circle with α slightly greater than the value given by equa-
tion (3.2), to create slightly positive gradient everywhere; regularly planted poplars c©IFN;
result with model in [1] (15, 0.008, 4.5, 3.73, 2.51, 2.51); result with new model (40, 0, 6 >
5.40, 2.65, 3.6, 2.51).

Figure 4 shows two images. On the left is the data, while on the right is the result
obtained using the new model. The initial contour in this experiment was the red line.
With a couple of exceptions, the trees are separated and the extraction is accurate.

Figure 5 shows three images. On the left is the data; in the middle is the result
obtained with the model in [1]; on the right is the result obtained with the new model.
Despite its fixed parameters, the new model produces a better result, finding a tree
missed by the old model, and again separating trees that were merged by the old model.

For the experiment in figure 6, we used an α value slightly larger than that given
by equations (3.2), in order make E1 slightly positive for all r. This ensures that in the
absence of image data, circles will disappear. The resulting E0 is shown on the left in
the figure. Next comes the data. The aim of the experiment is to detect the older, larger
radius trees in the upper part of the plantation area. Third from left is the best result
using the model in [1]. Note the phantom regions generated as the contour becomes
trapped in local energy minima (the phantom regions in the bright exterior area are also
reinforced by the image term). On the right is the result using the new model. With
one exception, the phantom regions are eliminated, while the level of error elsewhere is
comparable to the old model.

5 Conclusion

The ‘gas of circles’ model developed by [1] has numerous potential applications in
image processing, e.g. tree crown extraction from remote sensing images and cell ex-
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traction from biological and medical images. The model in [1] suffers, however, from
phantom circles created by the fact that circles of a given radius are local energy min-
ima. The requirement that regions consisting of collections of circles of a given radius
be inflection points rather than local minima solves this problem. In addition, the re-
quirement halves the number of model parameters, and severely constrains one of the
two that remain, a major advantage for an energy-based model. Despite the small re-
maining freedom to adjust the parameters, experiments on the tree crown detection
problem show that the new model performs comparably or better than the old local
minimum model, and much better than a classical active contour.
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Abstract. In the Kalman filter, the state dynamics is specified by the
state equation while the measurement equation characterizes the likeli-
hood. In this paper, we propose a generalized methodology of specifying
state dynamics using the conditional density of the states given its neigh-
bors without explicitly defining the state equation. In other words, the
typically strict linear constraint on the state dynamics imposed by the
state equation is relaxed by specifying the conditional density function
and using it as the prior in predicting the state. Based on the above
idea, we propose a sampling-based Kalman Filter (KF) for the image
estimation problem. The novelty in our approach lies in the fact that we
compute the mean and covariance of the prior (possibly non-Gaussian)
by importance sampling. These apriori mean and covariance are fed to
the update equations of the KF to estimate the aposteriori estimates of
the state. We show that the estimates obtained by the proposed strategy
are superior to those obtained by the traditional Kalman filter that uses
the auto-regressive state model.

Keywords: Dynamic state space models, Kalman filter, Auto-regressive
models, Importance sampling, Markov random fields.

1 Introduction

The problem of image estimation involves recovering the original image from its
noisy version. The image estimation problem can be cast in to a state estimation
from noisy measurements in state space representation of the image. When the
state transition and measurement equations are both linear, and the state and
measurement noises are independent and additive Gaussian, the Kalman filter
gives the minimum mean square error (MMSE) estimate of the state. Exten-
sion of the 1-D KF to 2-D was first proposed by Woods and Radewan [7]. They
considered the local neighborhood in updation of the state vector and arrived
at a suboptimal filter known as the reduced update Kalman filter (RUKF) [8].
The reduced order model Kalman filter (ROMKF) proposed in [9] includes only
local states in its state vector, but performs on par with RUKF. Effects of any
distortion resulting from blur and noise can be removed by Kalman filtering,
provided the appropriate image and blur parameters are completely known. In
general, however, such parameters are apriori unknown, and furthermore can
vary spatially as a function of the image coordinates. Hence, adaptive identi-
fication/filtering procedures are necessary for satisfactory restoration. A rapid

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 162–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A New Extension of Kalman Filter to Non-Gaussian Priors 163

edge adaptive filter for restoration of noisy and blurred images based on multiple
models has been presented in [12].

A primary issue with all image estimation methods is about how they handle
noise smoothing versus preservation of edges since the two requirements are
contradictory. Geman and Geman [13] approach the edge preservation problem
using line fields. The smoothness constraint is switched off at points where the
magnitude of the signal derivative exceeds certain thresholds. For a thorough
survey of techniques for image estimation, we refer the reader to [11].

To preserve edges, one must look beyond Gaussianity. Increasingly, for many
application areas, it is becoming important to include elements of non-linearity
and non-Gaussianity, in order to model accurately the underlying dynamics of
a physical system. In this paper, we propose an interesting extension to the tra-
ditional Kalman filter to tackle discontinuities by incorporating non-Gaussianity
within the Kalman filtering framework. This is achieved by modeling the prior as
a discontinuity adaptive Markov random field and proposing sampling-based ap-
proaches to derive necessary statistical parameters required for the update stage
of the Kalman filter. If the state transition equation is not known but an assump-
tion on the state transition density (possibly non-Gaussian) can be made we can
still use the Kalman filter update equations in the proposed frame work. The
edge preservation capability is implicitly incorporated using the discontinuity
adaptive state conditional density. Importance sampling is used to obtain the
statistics of this PDF and the Kalman filter is used to update the prior estimates.

We use the discontinuity adaptive function given by Li [2] to construct the
prior conditional density and show how the edges are better retained in our
method. This is in addition to obtaining better overall estimates of the entire
image. It may be noted that the proposed approach is different from the En-
semble Kalman filter [6,5] which is based on Monte Carlo simulation of the
state probability distribution. It works by creating and propagating the ensem-
ble through model operator. The mean and the error covariance are obtained by
the analysis of the ensemble. In contrast, we use the Monte Carlo approach only
to determine the mean and covariance of the conditional PDF. It is possible to
extend the proposed approach to nonlinear filtering problem.

2 The Kalman Filter

The Kalman filter, rooted in the state-space formulation of linear dynamical
systems, provides a recursive solution to the linear optimal filtering problem [10].
It applies to stationary as well as non-stationary environments. The solution
is recursive in that each updated estimate of the state is computed from the
previous estimate and the new input data.

2.1 Dynamic State-Space Model

The general state space model can be broken down into a state transition model
and measurement model. In linear Gaussian regression, the state space repre-
sentation is as follows:
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xk+1 = Fkxk + wk (1)

yk = Hkxk + vk (2)

where yk ∈ Rny denotes the output observations, xk ∈ Rnx is the state of the
system, wk ∈ Rnw is the process noise and vk ∈ Rnv is the measurement noise.
The mappings Fk : Rnx → Rnx and Hk : Rnx→Rny represent the deterministic
process and measurement models. To complete the specification of the model,
the prior distribution is denoted by p(x0). The process noise wk is assumed to
be additive white Gaussian, with zero mean and with covariance matrix defined
by Qk. The measurement noise vk is additive white Gaussian with covariance
matrix Rk. The process and measurement noise are assumed to be uncorrelated.
The states are assumed to follow a first-order Markov model and the observations
are assumed to be independent given the states.

For the state space model given above, the minimum mean squared error
(MMSE) estimate of the state xk can be derived using the following Kalman
recursive equations [3]:

State estimate propagation:- x̂k/k−1 = Fkx̂k−1

Error covariance propagation:- Ck/k−1 = FkCk−1FT
k + Qk−1

Kalman gain matrix:- Kk = Ck/k−1H
T
k

[
HkCk/k−1H

T
k + Rk

]−1

State estimate update:- x̂k = x̂k/k−1 + Kk(yk −Hkx̂k/k−1)

Error covariance update:- Ck = (I−KkHk)Ck/k−1

Here, x̂k−1 and Ck−1 are the posteriori estimates of the state and error covari-
ance of the previous step available at time k, x̂k/k−1 and Ck/k−1 are the apriori
estimates of the state and error covariance at time k, yk is the new measurement
at time k, Fk and Hk are the state transition and measurement matrices at time
k, Kk is the Kalman gain, and the x̂k and Ck are the posterior state and error
covariance of the present step.

For the image estimation problem, xk corresponds to the true image pixels and
yk are the observations of the degraded image pixel. Matrix Fk contains the auto-
regressive (AR) coefficients of the image. For example, if a1, a2, a3 are the AR
coefficients of the original image (i.e., coefficients of a three pixel neighborhood

with non-symmetric half plane support (NSHP)), then Fk =

⎡⎣a1 a2 a3

1 0 0
0 1 0

⎤⎦ .
Since we do not assume any blurring, we have Hk = [1 0 0]. The above filter is

referred to as the Auto-Regressive Kalman Filter (ARKF). Note that the filter
imposes a strong (linear) constraint on the state equation. It is important to
observe that linear dependence implies statistical dependence but not vice-versa.
Our idea is to arrive at a more general framework wherein pixel dependencies
can be expressed statistically.
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3 Discontinuity Adaptive Prior

A realization of a random field is generated when we perform a random experi-
ment at each spatial location and assigns the outcome of the random experiment
to that location. A Markov random field (MRF) possesses Markovian property:
i.e., the value of a pixel depends only on the values of its neighboring pixels and
on no other pixel [4,2]. More details of MRF can be found in Li [2].
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Fig. 1. Plot shows how MRF and DAMRF differ in the weighing with respect to η

Smoothness is a property that underlies a wide range of physical phenom-
ena. However, it is not valid at discontinuities. How to apply the smoothness
constraint while preserving edges has been an active research area within the
MRF framework. Li [2] identifies that the fundamental difference among differ-
ent models for dealing with discontinuities lies in the manner of controlling the
interaction among neighboring points. Li then proposes a discontinuity adap-
tive (DA) model based on the principle that whenever a discontinuity occurs,
the interaction should diminish. One such interaction function is hγ(η) = 1

1+ η2
γ

and its corresponding adaptive potential function is gγ(η) = γ log(1 + η2

γ ). The
function is such that the smoothing strength |ηhγ(η)| increases monotonically
as η increases [2] within a band Bγ = (−√γ,√γ). Outside the band, smoothing
decreases as η increases and becomes zero as η→∞. This enables it to preserve
image discontinuities. It differs from the quadratic (Gaussian) regularizer which
smoothes edges as η→∞. In Fig. 1 we show that for large η the Gaussian MRF as-
signs zero weight while the discontinuity adaptive MRF (DAMRF) allows edges
with finite weight.

In the case of a simple GMRF model, the state conditional probability density
function (PDF) is given by exp(−η2) where η2(x) = ((x − c1)2 + (x − c2)2 +
(x − c3)2)/2β2. Pixels c1, c2, c3 denote the previously (estimated) pixels in the
NSHP support. This can be shown to be equivalent to a Gaussian (PDF)with mean
(c1+c2+c3)/3 and varianceΓ = β2/3. We assume the state conditional density to
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be non-Gaussian and of the form exp(−gγ(η)) where gγ(η) = γ log(1 + η2

γ ) and
η is as defined in the simple MRF case which leads to the DAMRF model [2].

4 Importance Sampling

It is not analytically possible to compute the mean and covariance of the non-
Gaussian DAMRF distribution. Hence, we resort to Monte Carlo techniques. An
efficient way of doing this is to adopt the importance sampling method. Our aim
is to obtain the conditional mean and variance of the distribution corresponding
to the DAMRF at every pixel, using importance sampling.
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Fig. 2. Importance sampling: A is the PDF whose moments are to be estimated, while
B is the sampler density

Importance Sampling (IS) is a Monte Carlo method to determine the estimates
of a (non-Gaussian) target PDF, provided its functional form is known up to
a multiplication constant [1]. Let us consider a PDF A(s) which is known up
to a multiplicative constant but it is very difficult to make any estimates of
its moments. However, from the functional form, we can estimate its support
(region where it is non-zero). Consider a different distribution B(s) which is
known up to a multiplicative constant, is easy to sample, and is such that the
(non-zero) support of B(s) includes the support of A(s). Such a density B(s) is
called a sampler density. A typical plot showing the PDFs of B (solid line) and
A (dashed line) is given in Fig. 2.

Our aim is to determine the first two central moments of the PDF A. Since it
is difficult to draw samples from the non-Gaussian PDF A, we draw L samples,
{s(l)}L

l=1 from the sampler PDF B. If these were under A, we can determine the
moments of A with these samples. In order to use these samples to determine
the estimates of the moments of A, we proceed as follows.

When we use samples from B to determine any estimates under A, in the
regions where B is greater than A, these estimates are over-represented. In the
regions where B is less than A, they are under-represented. To account for this,
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we use correction weights wl = A(s(l))
B(s(l))

in determining the estimates under A.

For example, to determine the mean of the distribution A we use μ̂a = l wls(l)

l wl .

If L→∞ the estimate μ̂a tends to the actual mean of A. This methodology of
estimating moments of A by sampling from an importance function B forms the
core of importance sampling.

5 The Proposed Kalman Filter

In this section, we present a new algorithm for estimating an image from its
degraded version using the state conditional PDF and Kalman filter update
equations. In section 3, we showed how to construct a DAMRF PDF using a
discontinuity adaptivity MRF function. In section 4, we explained how to deter-
mine the estimates of a PDF using importance sampling. We now present a novel
strategy which integrates the above steps within the Kalman filter framework
to restore images degraded by additive white Gaussian noise. In the proposed
strategy, only the assumption on the conditional PDF needs to be made. The
parameters of the PDF are a function of the already estimated pixels and the
values of Γ and γ. This implicitly generalizes the state transition equation. The
steps involved in the proposed method are as follows:

1. At each pixel, construct the state conditional PDF using the past three pixels
from its NSHP support, and the values of Γ and γ in the DAMRF model
(section 3) . Using the DAMRF function given by [2] we construct the state
conditional PDF as

P (X(m,n)/X̂(m− i, n− j)) = exp
(
−γ log(1 +

η2(X(m,n))
γ

)
)

; (3)

where (i, j) = (0, 1), (1, 0), (1, 1) and
η2(X(m,n)) = ((X(m,n)− X̂(m,n− 1))2 + (X(m,n)− X̂(m− 1, n))2

+ (X(m,n)− X̂(m− 1, n− 1))2)/(2β2), and β2 = 3Γ .
Here, X and X̂ refers to the original image and the estimated image, re-
spectively. The pixels X̂(m,n− 1),X̂(m− 1, n) and X̂(m− 1, n− 1) are the
(estimated) past three pixels of the NSHP support.

2. Obtain the mean and covariance of the above PDF using importance sam-
pling as described in section 4. Explicitly, we draw samples {sl} from a
Gaussian sampler 1 The sampler B(s) has mean μb = (X̂(m,n− 1) +
X̂(m− 1, n)+ X̂(m− 1, n− 1))/3 and variance σ2

b = 15β2. We weight these
samples through the importance weights wl = A(sl)

B(sl) . The mean μ̂a and vari-
ance σ̂2

a of A are computed as

μ̂a =
∑

l wls
(l)∑

l wl
σ̂2

a =
∑

l wl(s(l) − μa)2∑
l wl

(4)

1 The idea is to have the support of the target density A included in the support of
the sampler density B so that the mean ’μb’ is near to the actual mean of the MRF,
and the variance ’σ2

b ’ is high enough.



168 G.R.K.S. Subrahmanyam, A.N. Rajagopalan, and R. Aravind

3. The predicted mean and error covariance are fed to the update stage of the
Kalman filter as follows:

x̂k/k−1 = μ̂a; Ck/k−1 = σ̂2
a;

Kalman gain matrix:- Kk = Ck/k−1H
T
k

[
HkCk/k−1H

T
k + Rk

]−1

State estimate update:- x̂k = x̂k/k−1 + Kk(yk −Hkx̂k/k−1)
This gives the estimated mean X̂(m,n) = x̂k; go to step 1 and repeat.

Finally, the filtered image is X̂.

We note that in this case the state becomes a scalar, the matrix Hn = 1, and yn is
the scalar observation pixel. This approach does not need the state equation (1).

In the proposed approach, based on the past three pixels of the NSHP support,
the prior is constructed. Importance sampling is used to estimate the mean and
covariance of the non-Gaussian prior. These estimates are effectively used by the
Kalman filter update equations (Kalman gain and mean updation equations),
to arrive at the posterior mean (the estimated pixel intensity). Note that in the
proposed formulation, the prior is not restricted to be Gaussian. In other words,
the process noise can have any distribution but with a known functional form.

6 Experimental Results

In this section, we compare the proposed importance sampling based Kalman
Filter (ISKF) with the auto-regressive Kalman Filter (ARKF). In an AR based
Kalman filter, the original image is used to determine the AR coefficients and
the process noise. An alternative is to use the AR coefficients obtained from
images of the same class or to use the observed image itself. But this will in
general, degrade the performance of the algorithm. In contrast for the proposed
algorithm, the image model parameters are not required. Since the conditional
PDF has all the information. The proposed algorithm has two parameters γ
and Γ which depend on the image. We have found that the optimum γ for
most images is in the range of 1 to 2 while the required value of Γ is in the
range of 50 to 150. For low values of γ and high values of Γ the estimated
image will be noisy, and for high values of γ and low values of Γ the estimated
image will be blurred. For a quantitative comparesion of ARKF and the proposed
method we use the improvement-in-signal-to-noise-ratio (ISNR) which is defined

as ISNR = 10 log10

(
m,n(Y (m,n)−X(m,n))2

m,n(X(m,n)−X(m,n))2

)
dB. Here, (m,n) are over entair

image. X,Y and X̂ represent the original image, degraded observation, and the
estimated image, respectively.

Fig. 3(a) shows the ”daisy” image. The image after degradation by additive
white Gaussian noise of SNR = 10 dB is shown in Fig. 4(a). The images es-
timated by ARKF and the proposed importance sampling-based Kalman filter,
are given in Figs. 4(b) and 4(c), respectively. Note that the image estimated by
the proposed approach has sharp petals. At the same time, it is less noisy in
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(a) (b) (c)

Fig. 3. Original images (a) Daisy image, (b) Flowers image and (c) Bric image

(a) (b) (c)

Fig. 4. Daisy (a) Image degraded by additive white Gaussian noise (SNR = 10 dB ).
Image estimated using (b) AR based KF (ISNR = 3.42 dB) and (c) Proposed method
(ISNR = 4.25 dB, Γ = 50, γ = 1.5).

(a) (b) (c)

Fig. 5. Flower (a) Degraded image (SNR = 10 dB). Image estimated by (b) AR based
KF (ISNR = −1.39 dB) (c) Proposed method (ISNR = 3.73 dB, Γ = 50, γ = 1.5).

homogeneous regions compared to the ARKF output. It has a superior improve
ment-in-signal-to-noise-ratio (ISNR) value over ARKF.

Next, we show in Fig. 3(b) a flower image. It is degraded by additive white
Gaussian noise of SNR = 10 dB (Fig. 5 (a)). The image estimated by ARKF and
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the proposed approach are shown in Figs. 5(b) and 5 (c), respectively. The image
estimated by the proposed approach has very little noise, retains the edges, and
has higher ISNR value. Note the ringing-like artifact in the image estimated by
ARKF. For the proposed method, the overall appearance of the estimated image
is quite good.

(a) (b) (c)

Fig. 6. Brick (a) Degraded image (SNR = 10 dB ). Image estimated using (b) AR
based KF (ISNR = −1.3 dB) (c) Proposed method (ISNR = 1.96 dB, Γ = 50, γ = 2).

Fig. 3(c) shows a brick image while its degraded version is given in Fig. 6(a).
The images estimated by ARKF and the proposed method are shown in Figs.
6(b) and Fig. 6(c), respectively. The proposed sampling-based Kalman filter
again outperforms ARKF. The image retains the horizontal edges quite well and
is much closer to the original image as compared to ARKF.

The above results show that the proposed approach is superior to ARKF in
reducing noise, preserving edges, and yelding better ISNR values. Fixing the
parameters for the proposed scheme is also quite simple as discussed in the
beginning of this section.

7 Conclusions

We have proposed a novel importance sampling-based discontinuity adaptive
Kalman filter. Instead of using the state transition equation to predict the mean
and error covariance (as in traditional Kalman filter formulation), we use a
DA non-Gaussian state conditional density function for prediction. Importance
sampling is used to determine the apriori mean and covariance of a DAMRF
model. These are then used in the Kalman filter update equations to obtain the
a posteriori mean. The image estimates obtained by the proposed approach are
superior to those obtained with the auto-regressive Kalman filter.
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Abstract. Boundary detection in natural images is a fundamental prob-
lem in many computer vision tasks. In this paper, we argue that early
stages in primary visual cortex provide ample information to address
the boundary detection problem. In other words, global visual primitives
such as object and region boundaries can be extracted using local fea-
tures captured by the receptive fields. The anatomy of visual cortex and
psychological evidences are studied to identify some of the important
underlying computational principles for the boundary detection task. A
scheme for boundary detection based on these principles is developed
and presented. Results of testing the scheme on a benchmark set of nat-
ural images, with associated human marked boundaries, show the per-
formance to be quantitatively competitive with existing computer vision
approaches.

1 Introduction

Boundary detection constitutes a crucial step in many computer vision tasks. A
boundary map of an image can provide valuable information for further image
analysis and interpretation tasks such as segmentation, object description etc.
Fig. 1 shows an image and the associated boundary map as marked by human
observers. It can be noted that the map essentially retains gross but important
details in the image. It is hence sparse yet rich in information from the point
of scene understanding. Extracting a similar boundary map is of interest in
computer vision.

The problem of boundary detection is different from the classical problem of
edge detection. A boundary is a contour in the image plane that represents a
change in pixel’s ownership from one object or surface to another [2]. In contrast,
an edge is defined as a significant change in image features such as brightness
or color. Edge detection is thus a low-level technique that is commonly applied
toward the goal of boundary detection. In general, it is desirable to be able to
accurately extract all types of boundaries: for instance those formed between
two luminance regions, two textured regions and texture-luminance regions as
shown in Fig. 2. There are some attempts in computer vision to address all these
attributes completely [2] [3] [4] [5] using complex and computationally intensive
schemes. In contrast, humans have an outstanding ability to detect boundaries
pre-attentively (fast in nature). This means that the human visual system (HVS)

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 172–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Computational Model for Boundary Detection 173

(a) (b)

Fig. 1. (a) Example image (b) Human-marked segment boundaries. Image shows
boundaries marked by 4-8 observers. The pixels are darker where more observers
marked a boundary [1].

is capable of extracting all important boundary information in its early stages of
processing. Studying the visual mechanisms underlying these tasks can provide
an alternative solution to the boundary detection problem. It may also lead to
simple and fast scheme for boundary detection in computer vision.

(a) (b) (c)

Fig. 2. Types of boundaries

Some attempts have been made to model boundary detection in HVS. One
such model assumes that saliency of boundaries arise from long-range interaction
between orientation-selective cortical cells [6]. This model accounts for a num-
ber of experimental findings from psychophysics but its performance is unsat-
isfactory on natural images and it is computationally intensive. Another model
emphasises the role of local information and focuses on cortical cells which are
tuned to bar type features [7] [8]. It extracts edge information which is followed
by an assessment based on the local context. These models have been shown
to perform well on natural images but are incapable of detecting boundaries
formed by texture regions (shown in Fig. 2(b), 2(c)). In this paper, we present a
computational model for the boundary detection functionality of the HVS which
can extract all types of boundaries. We present results of testing this model on
a set of benchmarked images where boundaries are marked by human observers.

The presentation in this paper is organised as follows. In the next section,
we review the relevant neurophysiological and psychophysical findings in early
stages of the HVS and end with a proposal for a computational model for bound-
ary detection. In section 3, a computational scheme is developed based on the
proposed computational model. In section 4, the performance of the proposed
scheme is compared against human marked boundaries followed by some con-
cluding remarks.
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2 Computation Model for Boundary Detection

Real world images are processed in our visual system to produce boundaries.
These images are characterised by colour, texture 1 and non-texture (only reg-
ular luminance/colour based) regions. Thus, boundaries can arise due to the
adjacency of any of these regions in natural images. Some of these that can oc-
cur in grey scale images (which is the focus of this paper) are shown in figure 2:
luminance-luminance or LL boundary, texture-luminance or TL boundary, and
texture-texture or TT boundary.

Any image point can be declared as a boundary only after understanding its
local context. By context is meant a characterisation of the local surround in
terms of luminance and texture. In the early stages of HVS, there is evidence
that the derived representation provides enough texture and non-texture infor-
mation to address boundary detection effectively. At the retinal level, visual
input (image) is filtered by ganglion cells whose local classical receptive field’s
(CRF’s)2 are a close fit to a Laplacian of Gaussian [9]. Thus the representation
derived at the retinal level is an edge map. The results of this processing form
direct input to Lateral Geniculate Nucleus (LGN) in the mid-brain. This area
has no known filter function but serves mainly to project binocular visual input
to various sites, especially to the visual cortex. The cells found in this area have
a functional role similar to that of the retinal ganglion cells except that they also
perform binocular mapping. In our work, we ignore binocular details associated
with the LGN cells.

The Ganglion and LGN cells are classified into two classes, known as P and M-
cells [10] [11] [12]. The P-cells have smaller receptive fields and signal high spatial
frequencies in the image while the M-cells have (2-3 times) larger receptive fields
and they cannot resolve high spatial frequencies [10] [12] [13]. We can infer that P-
cells strongly respond to fine and coarse edges whereas M-cells respond to coarse
edges and quite poorly to fine edges. At this stage of HVS, there is not much in-
formation associated with any detected edge to declare it as a boundary point.
When we consider a texture patch for example, the M-cells respond to its contour
while the P cells respond to its contour as well as any edges arising from the tex-
ture elements within the patch. Hence, there is an ambiguity in determining if an
edge belongs to a texture region or not based on the cell responses. Thus, it is dif-
ficult to separate out texture and non-texture information effectively at this stage
of HVS. Such a situation however, gets resolved in the cortical level which is the
next stage of the HVS, called as area V1.

The cortical cells in area V1 are sensitive to some new attributes like orien-
tation. Furthermore, their sensitivity to edge features becomes more specialised
compared to the LGN cells. Hubel and Wiesel [14] distinguished between sim-
ple and complex cells in cat primary visual cortex (area V 1) that are selective to

1 It is a spatial structure characterising, apart from colour and the gray level, the
visual homogeneity of a given zone of an image.

2 The receptive field is, by definition, the visual area within which one can activate
an individual neuron.



A Computational Model for Boundary Detection 175

intensity changes in specific orientation (oriented edge features). Although com-
plex cells have many properties in common with simple cells, including orienta-
tion selectivity, their defining feature is that a suitably oriented pattern will elicit
a response no matter where it lies in the receptive field [14] [15]. This property
is known as “phase invariance”. Although, simple and complex cells bring orien-
tation selectivity in feature detection, their response to texture and non-texture
patterns is ambiguous, similar to LGN cells. There are some other cells in area V1
having more specialised behavior like bar cells, grating cells and end- stopped cells.
[16] [17] [18]. These cells are more specialised forms of complex cells.

The bar and grating cells play an important role in boundary detection [18]
[19]. It is important to know their characteristics and inter-connections with the
previous stages. These cells mostly get their input from the M- cells of area LGN
[10] [11] [20] [21]. The grating cell responds only to a texture edge and not to
any isolated edge or line [18] [19]. On the other hand, a bar cell responds only to
an isolated edge or line but does not respond to any texture edge [7]. Hence, it
is possible to disambiguate between an edge belonging to a textured region and
a non-textured region.

To summarise, the HVS appears to use a principle of increasing functional
specialisation to enable certain features of the visual pattern to become more
explicit in successive stages of processing [9]. Such functional specialisation serves
to resolve the ambiguity present in the previous stages.

Fig. 3. Computational model for boundary detection and corresponding processing
stages in HVS

Based on the above findings, we propose a computational model for boundary
detection (given in Fig. 3): The visual input (or an image) is processed by P
and M types of ganglion and LGN cells in order to extract redundant subsets
of fine and coarse edges. This information is passed to the next stage (area V1)
where the bar and grating cell operators help extract texture and non-texture
information. The boundaries that are formed by texture and non-texture regions
are extracted via an integration process that combines the outputs of the bar
and grating cells. The output of integration is usable in any high level task. Next,
we present an implementation scheme based on the proposed model.
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3 Implementation

3.1 Image Representation at LGN Level

At the retinal level, ganglion cells signal the spatial difference in the light in-
tensity falling upon adjacent locations in the retina. At the output of this stage
(retina), the visual system provides an efficient representation in terms of fine
edge locations. This fine edge map can be computed using any standard gradient-
based edge detector. Assuming the gradient is computed in two orthogonal di-
rections x and y. The gradient map G be for a given input image I is:

G(x, y) =
√

(I2
x + I2

y ) (1)

where Ii is partial derivative of image in i direction. The P-type cells produce a
response similar to the gradient map and extract fine edges in the image whereas,
M-cells are tuned for coarse edge features. We derive such characteristics by us-
ing local surround. For every point p in an image, we consider its surround and
associate with the point a histogram of the surround which we call as the Pho-
toreceptor Histogram (hp). For computational purpose, the surround is taken to
be be a window of fixed size. The Photoreceptor Histogram (h) is a K-long vector
where K is the maximum no. of grey levels in the image. The histogram opera-
tion ignores spatial details and captures coarse details within a local surround
which is actually relevant to get a boundary details. Such details can lead to the
detection of coarse edges similar to the M-type cells. Here, we do not present
the detection of such edges (as it is not of use) but it can be easily obtained by
a sum of gradient values computed at every element of the transformed vector
(hp).

3.2 Image Representation at Area V1

In area V1, cells gain orientation selectivity and exhibit more specialised behavior
towards texture and non-texture patterns. In the context of boundary detection,
bar and grating cells are more useful as they provide unambiguous information
about such patterns.

Bar Cells. A bar cell responds most strongly to a single bar stimulus, such as a
line or edge, in its receptive field and it has a reduced response when more bars
are present in the surrounding region of the stimulus. In natural images, it is
equivalent to a detector which responds only to isolated edges and not to edges
which belong to a texture region [7]. Such a characteristic can be achieved by a
surround (local) assessment of P-type LGN cell response. This notion is called
surround inhibition which models intra-cortical interaction among cells.

For a given point in the image, the inhibition term is computed in an annular
area around it. Let a filter function gσ(x, y) be defined as follows (inverse of
gσ(x, y) is shown in Fig. 4):

gσ(x, y) =
1

||P (DoG)||P (DoG(x, y)) (2)
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Fig. 4. Inhibition function which models the contribution of the surround (2D and 1D
profile)

where P (x) = x+|x|
2 is a rectification operator, |.| denotes modulus, DoG(x, y)

is a difference of Gaussian functions with standard deviations σ in the ratio of
n : 1 for some integer n; and ||.|| denotes the L1 norm. The surround influence
is applied to the gradient image G (obtained from equation 1) as follows:

S(x, y) = (G ∗ gσ)(x, y) (3)

A bar cell response Eα at a location (x, y) is then obtained as:

Eα(G(x, y)) = P (G(x, y)− α.S(x, y)) (4)

where the factor α controls the strength of the influence by the surround inhi-
bition. If there is no texture surrounding (i.e., there is an isolated edge) a given
image point, the response at that point will be equal to the gradient value as
there will be no inhibition. However, if there are other edges in the surrounding
region, the inhibition term S(x, y) will become strong enough to cancel com-
pletely, the contribution of the gradient term. This model for bar cells provides
a contour representation for any given input by discarding irrelevant edges within
texture regions. In the later stages of our boundary detection scheme, we will
use this functional model by the name surround inhibition.

Grating Cells. The grating cells are responsible for texture processing in the
early stages of HVS. These cells respond strongly to a grating (periodic pattern
of edges) of specific orientation, periodicity and position and not to isolated edges
[18]. The role of the grating cells as a texture operator has been established in
[19]. Texture regions are distinguishable based on the distribution of the edges
within. Using this fact, we can define a similarity measure between two texture
regions. Such a measure is useful to determine any boundary between two texture
regions. For instance, any point which lies in between two texture regions which
are dissimilar can be declared as a boundary point. A measure of such similarity
is therefore of interest. Given two photoreceptor histograms hp1 and hp2, we use
the χ2-statistic [22] to define a (dis-)similarity measure:
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χ2(hp1, hp2) =
K∑

k=1

[hp1(k)− hp2(k)]2

[hp1(k) + hp2(k)]
(5)

where k ∈ [1,K] is the intensity level. Two similar texture regions will cause the
numerator of the above expression to diminish, and hence the similarity measure
to be low. In natural images, the diverse nature of the texture regions results
in a wide range of variability in the above measure. To address this problem we
transform these values to fit in the range of 0− 1 in such a way as to emphasise
only low values as follows.

R(χ2) = e−
(χ2)2

2τ2 (6)

where τ is a parameter that controls the level of penalty. The similarity measure
can be used to determine if a point lies on TL and TT types of boundaries by
considering the histograms of points located to its left and right. Next, we inte-
grate the information extracted up to this point in order to obtain boundaries.

3.3 Integration: A Scheme for Boundary Detection

This stage integrates information gathered from the P and M cells of LGN as
well as the bar and grating cells of V1. Let χ2 = [(χ2

x)2 + (χ2
y)2]

1
2 where, χ2

x and
χ2

y are computed along the x and y-axis, respectively. The integration is achieved
as follows:

B̃(x, y) = γ.G(x, y) + β.χ2(x, y) (7)

where, γ and β are appropriate weights. The integration scheme has two sub-
parts with each part contributing to the extraction of specific types of bound-
aries: the first part will be a maximum at the location of a LL boundary whereas
the second part will be a maximum at TL and TT boundaries. To determine
how the weights are to be assigned, let us re-examine the first part. This term
will also be significant within the texture regions of TL and TT boundary which
needs to be suppressed. This can be partially achieved by choosing the weight
γ to be dependent on the texture measure χ2 as follows: γ = 1.0−R(χ2). This
choice of weight ensures that the first term nearly vanishes in equation 7 when
edges are formed due to sub-patterns in a texture region. The weight β can
simply be a scalar.

In principle, equation 7 signals (with a maximum) texture boundaries and
edges. Of these, to extract only boundary points due to all types of boundaries,
we need to further suppress the response for edges within texture regions. This
is accomplished by applying surround inhibition (Eα) as found in bar cells.

B(x, y) = Eα(B̃(x, y)) (8)

Next, we present the results of testing the proposed scheme on natural images
and evaluate the same against human-marked boundaries.
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4 Performance Evaluation and Results

Most of the methods for the evaluation of edge and boundary detectors use
natural images with associated desired output that is subjectively specified by
the human observer [1] [4] [7]. We tested the performance of the proposed scheme
by applying a precision-recall (PR) framework using human-marked boundaries
from the Berkeley segmentation dataset [1] as ground truth. The segmentation
dataset contains 5-10 segmentations for each image. The dataset has training
images and testing images. The training images were not used as there is no
training involved in our scheme and hence the evaluation was done only on the
test image set (100 images) which consisted of both indoor and outdoor scenes.

The precision-recall curve is a parametric curve that captures the trade off
between accuracy and noise as the detector’s threshold varies. Precision is the
fraction of detections that are true positives rather than the false positives, while
recall is the fraction of true positives that are detected rather than missed. The
PR curves are hence appropriate for quantifying boundary detection. The PR
measures are particularly meaningful in the context of boundary detection when
we consider applications that make use of boundary maps, such as stereo or
object recognition. It is useful to characterise a detector in terms of how much
true signal is required to succeed R (recall), and how much noise can be tolerated
P (precision). A method to determine the relative cost μ between these quantities
for a given application is given in [2]. We follow the same and use the F-measure
(proposed therein) which is defined as

F = PR/(μR+ (1− μ)P ) (9)

The location of the maximum F-measure along the curve provides the optimal
threshold for an application for a desired μ, which we set to be 0.5 in our exper-
iments. When a single performance measure is required or is sufficient, precision
and recall can be combined with the F-measure. The F-measure curve is usu-
ally unimodal, so the maximal F-measure may be reported as a summary of the
detectors performance.

Precision and recall are appealing measures, but to compute them we must
determine which true positives are correctly detected, and which detections are
false. We have used the correspondence algorithm presented in [2] to compute
true and false detection using output boundary map and available ground truths.
In summary, given the computed boundary map, we compute the points on the
precision-recall curve independently by first thresholding the output image to
produce a binary boundary map and then matching this computed boundary
map against each of the human boundary maps in the ground truth segmentation
data set.

In our scheme, the following parameter values were empirically chosen to
obtain best results. Once chosen, they were fixed to remain constant for all 100
test images. The window sizes in bar and grating cells’ functional modelling
were 7 × 7 and 15× 15, respectively. The value for β was chosen to be 0.6 and
value of α was 0.1. In equation 5, the intensity level was quantised from 256 to
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Fig. 5. (a) Sample test image, (b) Associated observer-segmented results, (c) Ex-
tracted boundary map, (d) PR curves for each observer relative to the rest.(e) PR
curve for the proposed scheme. The curve is scored by its maximal F-measure, the
value and location of which are shown in the legend.

Table 1. Comparison of proposed scheme with other schemes

Method Performance

Brightness and texture gradient 0.63

Brightness gradient 0.60

Proposed scheme 0.59

Texture gradient 0.58

Multi-scale gradient magnitude 0.58

Second moment matrix 0.57

Gradient magnitude 0.56

32 as it had no effect on the value of χ2 while it helped greatly minimise the
computation. Fig. 5 shows the performance of the proposed scheme on a sample
test image. It provides a comparison of the scheme against human observers.
The points marked by a dot on the figure 5(d) show the precision and recall of
segmentation by each human observer relative to other observers(a total of five).
The median F-measure for the observers is 0.67 while the maximum obtained
value using the proposed scheme is 0.73 indicated by a big dot in the PR curve
(in fig 5(e)). The scheme was tested on a test dataset of 100 images and the
overall performance was computed using a bench-marked algorithm [2] which
gives a score based on the obtained results. The obtained score is 0.59 (shown
in table. 1). Some of obtained soft boundary maps are shown in the Fig. 6.
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Fig. 6. Sample test images, their corresponding ground truth and obtained results
from the presented boundary detection scheme. First row shows the original images;
second row shows the corresponding ground truth images; third row shows obtained
soft boundary map. In the soft boundary map, intensity of the boundaries varies from
0-1.
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Our scheme was also assessed against the existing boundary detection ap-
proaches reported in [2] using the same Berkeley dataset. Table 1 shows the
relatives scores. The top two methods differ from the proposed scheme in the
types of texture and non-texture features used and in the complex manner in
which they are processed to compute boundary maps. In general, all the reported
methods use training images for tuning parameters to obtain the best bound-
ary map. In contrast, our scheme is simpler and the reported performance was
achieved without any training. The latter is an attractive feature. In short, the
performance of the proposed scheme is reasonably good.

5 Discussion and Conclusion

Evidence that complex cells receive direct input from the LGN cells in addi-
tion to simple cells [10] [11] [20] [21] is significant in terms of understanding
the computations performed in V1. However, this has generally not received
much attention in the computational modelling literature. It appears that the
early stages in primary visual cortex provide ample information to address the
boundary detection problem. The richness of information emerges from the ca-
pability of the HVS to extract global visual primitives from local features with
no top-down influence.

A model for boundary detection based on these principles has been developed
and presented. The model is useful for computing boundary points in images with
performance which is competitive with existing computer vision approaches. It is
also computationally simpler than most of the existing approaches to boundary
extraction.

The functions of individual cells found in HVS have been modelled at a fixed
single scale. However, evidence for multi-scale processing exists in the form of
cortical cells of different sizes. Our initial attempt has been limited to understand
the kind of processing and interaction carried out by the cells of fixed size.
The model can be enhanced by extending it to a multi-scale framework and by
including colour information.
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Abstract. In this paper we discuss the speckle reduction in images with the  
recently proposed Wavelet Embedded Anisotropic Diffusion (WEAD) and 
Wavelet Embedded Complex Diffusion (WECD). Both these methods are im-
provements over anisotropic and complex diffusion by adding wavelet based 
bayes shrink in its second stage. Both WEAD and WECD produces excellent 
results when compared with the existing speckle reduction filters. The compara-
tive analysis with other methods were mainly done on the basis of Structural 
Similarity Index Matrix (SSIM) and Peak Signal to Noise Ratio (PSNR). The 
visual appearance of the image is also considered. 

1   Introduction 

Speckle noise is a common phenomenon in all coherent imaging systems like laser, 
acoustic, SAR and medical ultrasound imagery [1]. For images that contain speckle, 
the goal of enhancement is to remove the speckle without destroying important image 
features [2]. Synthetic Aperture Radar (SAR) images are corrupted by speckle noise 
due to the interference between waves reflected from microscopic scattering through 
the terrain. Because of its undesirable effect, speckle noise reduction turns out to be a 
key pre-processing step in order to interpret SAR images efficiently [3]. In medical 
imaging, the grainy appearance of 2D ultrasound images is due mainly to speckle. 
Here the speckle phenomenon results from the constructive-destructive interference of 
the coherent ultrasound pulses back scattered from the tiny multiple reflector that 
constitute biological materials. Speckle typically has the unfortunate aspect of falling 
into the high sensitivity region of human vision to spatial frequency. The frequency 
spectrum of speckle is also similar to the imaging system modulation transfer func-
tion. Speckle can therefore obscure the diagnostically important information.[4]. In 
certain applications, however the removal of speckle may be counter productive. 
Examples in which speckle preservation is important include feature tracking in ultra-
sonic imaging [5] and detection of features that are the same scale as the speckle  
patterns (e.g., coagulation damage) [6]. The source of speckle noise is attributed to 
random interference between the coherent returns. Fully developed speckle noise has 
the characteristic of multiplicative noise [7]. Speckle noise follows a gamma distribu-
tion and is given as 
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where g is the gray level and α is the variance. Below figure shows the plot of 
speckle noise distribution. 

 

Fig. 1. Plot of speckle noise distribution 

A number of methods are proposed in the literature for removing speckle from ul-
trasound images. Popular methods among them are Lee, Frost, Kuan, Gamma and 
SRAD filters. The Lee and Kuan filters have the same formation, although the signal 
model assumptions and the derivations are different. Essentially, both the Lee and 
Kuan filters form an output image by computing a linear combination of the center 
pixel intensity in a filter window with the average intensity of the window. So, the 
filter achieves a balance between straightforward averaging (in homogeneous regions) 
and the identity filter (where edges and point features exist). This balance depends on 
the coefficient of variation inside the moving window[2]. 

The Frost filter also strikes a balance between averaging and the all-pass filter. In 
this case, the balance is achieved by forming an exponentially shaped filter kernel that 
can vary from a basic average filter to an identity filter on a point wise, adaptive ba-
sis. Again, the response of the filter varies locally with the coefficient of variation. In 
case of low coefficient of variation, the filter is more average-like, and in cases of 
high coefficient of variation, the filter attempts to preserve sharp features by not aver-
aging. The Gamma filter is a Maximum A Posteriori (MAP) filter based on a Bayes-
ian analysis of the image statistics [1]. Speckle Reducing Anisotropic Diffusion 
(SRAD) is an edge sensitive diffusion method for speckled images [2]. 

Wavelet Embedded Anisotropic Diffusion (WEAD) [8] and Wavelet Embedded 
Complex Diffusion (WECD)[9] are extensions of non linear Anisotropic and Com-
plex diffusion by adding Bayesian shrinkage at its second stage. The methods increase 
the speed of processing and improve the quality of images than their parent methods.  

The paper is organized as follows. Section 2 deals with diffusion techniques for 
removing noise from images. It mainly discusses anisotropic and complex diffusion. 
Section 3 explains the recently proposed WEAD and WECD and its capability to 
remove speckle noises. Experimental results and comparative analysis with other 
popular methods is shown in Section 4. Finally conclusion and remarks are added in 
Section 5. 
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2   Noise Removal with Diffusion Techniques 

Diffusion is a physical process that equilibrates concentration differences without 
creating or destroying mass [10]. This physical observation, the equilibrium property 
can be expressed by Fick’s law 

uDj ∇−= .                                                             (2) 

This equation states that a concentration gradient ∇u causes a flux j, which aims to 
compensate for this gradient. The relation between ∇u and j is described by the diffu-
sion tensor D, a positive definite symmetric matrix. The case where j and ∇u are par-
allel is called isotropic. Then we may replace the diffusion tensor by a positive scalar 
valued diffusivity g. In the general case i.e., anisotropic case, j and  ∇u are not paral-
lel. The observation that diffusion does only transport mass without destroying it or 
creating new mass is expressed by the continuity equation 

judt div−=                                                           (3) 

where t denotes the time. If we apply the Fick’s law into the continuity equation we 
will get the diffusion equation. i.e., 

)( uDDiv
t

u ∇⋅=
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∂

                                                   (4) 

This equation appears in many physical transport process. In the context of heat trans-
fer, it is called the heat equation [10]. When applied to an image, the linear diffusion 
will generate scale space images. Each image will be more smoothed than the previ-
ous one. By smoothing an image, to some extend noise can be removed. This is why 
linear diffusion is used for noise removal. But one problem with this method is its 
inability to preserve image structures.         

2.1   Anisotropic Diffusion  

To avoid the defects of linear diffusion (especially the inability to preserve edges and 
to impel inter region smoothing before intra region smoothing) non-linear partial 
differential equations can be used. In [11] Perona and Malik has given 3 necessary 
conditions for generating multiscale semantically meaningful  images  

1. Causality : Scale space representation should have the property that no spurious 
detail should be generated passing from finer to coarser scale. 

2. Immediate Localization : At each resolution, the region boundaries should be sharp 
and coincide with the semantically meaningful boundaries at that resolution. 

3. Piecewise Smoothing : At all scales, intra region smoothing should occur preferen-
tially over inter region smoothing.  

Linear diffusion is especially not satisfying the third condition, which can be over-
come by using a non linear one. Among the non linear diffusion , the one proposed by  
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Perona and Malik [11] and its variants are the most popular.  They proposed a nonlin-
ear diffusion method for avoiding the blurring and localization problems of linear 
diffusion filtering. There has been a great deal of interest in this anisotropic diffusion 
as a useful tool for multiscale description of images, image segmentation, edge detec-
tion and image enhancement [12]. The basic idea behind anisotropic diffusion  is to 
evolve from an original image ),(

0
yxu , defined in a convex domain RR ×⊂ , a 

family of increasingly smooth images u(x,y,t) derived from the solution of the fol-

lowing partial differential equation [11] : 
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where ∇u is the gradient of the image u, div is the divergence operator and c is the 
diffusion coefficient. The desirable diffusion coefficient c(.) should be such that equa-
tion (5) diffuses more in smooth areas and less around less intensity transitions, so 
that small variations in image intensity such as noise and unwanted texture are 
smoothed and edges are preserved. Another objective for the selection of c(.) is to 
incur backward diffusion around intensity transitions so that edges are sharpened, and 
to assure forward diffusion in smooth areas for noise removal [12]. Here are some of 
the previously employed diffusivity functions[13] : 

A. Linear diffusivity [14]:   1)( =sc ,                                               (6) 

B. Charbonnier diffusivity [15]:        
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C. Perona Malik diffusivity [11] :   
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D. Weickert diffusivity[10] :  
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 E. TV diffusivity [16] :   
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F. BFB diffusivity [17]:   
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2.2   Complex Diffusion 

In 1931 Schrodinger explored the possibility that one might use diffusion theory as a 
starting point for the derivation of the equations of quantum theory. These ideas were 
developed by Fuerth who indicated that the Schrodinger equation could be derived 
from the diffusion equation by introducing a relation between the diffusion coefficient 
and Planck’s constant, and stipulating that the probability amplitude of quantum the-
ory should be given by the resulting differential equation [18]. It has been the goal of 
a variety of subsequent approaches to derive the probabilistic equations of quantum 
mechanics from equations involving probabilistic or stochastic processes. The time 
dependent Schrodinger equation is the fundamental equation of quantum mechanics. 
In the simplest case for a particle without spin in an external field it has the form [19]  
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where ),( xtψψ = is the wave function of a quantum particle, m is the mass of the 

particle, is Planck’s constant, V(x) is the external field potential, Δ  is the Laplacian 

and 1−=i . With an initial condition )(| 00 xt ψψ == , requiring that 2),( Lt ∈⋅ψ for 
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corresponding power series, and the higher order terms are defined recursively by 
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called the Schrodinger operator, is interpreted as the energy operator of the particle 
under consideration. The first term is the kinetic energy and the second is the potential 
energy. The duality relations that exist between the Schrodinger equation and the 
diffusion theory have been studied in [9]. The standard linear diffusion equation is as 
in (4). From (13) and  (4) we can derive the following two equations. 

00|, IIICICI tRIxxIRxxRRT =−= =                                (15) 

0, 0| =+= =tIIxxRRxxIIT IICICI                                  (16) 

where RTI  is the image obtained at real plane and ITI  is the image obtained at imagi-

nary plane at time T  and  )cos(θ=RC , )sin(θ=IC .  The relation IxxRxx II θ>> holds 

for small theta approximation[8]: 

RxxRT II ≈ ;      RxxIxxIt III θ+≈                              (17)  

In (17) RI is controlled by a linear forward diffusion equation, whereas II is affected 

by both the real and imaginary equations. The above said method is linear complex 
diffusion equation. 
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A more efficient nonlinear complex diffusion can be written as in eqn. (18) [19] 
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where k is the threshold parameter Non linear complex diffusion seems to be more 
efficient than linear complex diffusion in terms of preserving edges. 

3   WEAD and WECD 

Both WEAD  and WECD are improvements of anisotropic and complex diffusion by 
adding BayesShrink [20] at the second stage. In the case of WEAD, Bayesian Shrink-
age of the non-linearly diffused signal is taken. The equation can be written as  

)( '
1−= nsn IBI                                               (20) 

and in the case of WECD the Bayesian Shrinkage of the real part of the non-linearly 
complex diffused signal is taken. The equation can be written as 

))(( '
1−= ncsn IRBI                                             (21) 

where Bs  is the bayesian shrink and '
1−nI  is anisotropic diffusion as shown in (5) at (n-1)th 

time and )( '
1−nc IR  is the real part of the non linearly diffused complex diffusion. 

Numerically (20) and (21) can be written as 

( )nnsn tdIBI Δ+= −1                                     (22) 

and 

))(( 1 nncsn tdIRBI Δ+= −                                 (23) 

respectively. 
The intention behind these two methods is to decrease the convergence time of the 

anisotropic diffusion and complex diffusion respectively. It is understood that the 
convergence time for denoising is directionally proportional to the image noise level. 
In the case of diffusion, as iteration continues, the noise level in image decreases (till 
it reaches the convergence point), but in a slow manner. But in the case of Bayesian 
Shrinkage, it just cut the frequencies above the threshold and that in a single step. An 
iterative Bayesian Shrinkage will not incur any change in the detail coefficients from  
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             (a)                                     (b)                                        (c)  

Fig. 2. Working of WEAD & WECD (a) Shows the convergence of a noisy image (conver-
gence at P). If this P can be shifted towards left, image quality can be increased and time com-
plexity can be reduced. Illustrated in (b). (c) shows the signal processed by WEAD & WECD. 
It can be seen that the convergence point is shifted to left and moved upwards.  

the first one. Now consider the case of WEAD and WECD, here the threshold for 
Bayesian shrinkage is recalculated each time after diffusion, and since as a result of  
two successive noise reduction step, it approaches the convergence point much faster 
than anisotropic diffusion or complex diffusion. 

As the convergence time decreases, image blurring can be restricted, and as a result 
image quality increases. The whole process is illustrated in Fig. 2. Fig. 2(a) shows the 
convergence of the image processed by diffusion methods. The convergence point is 
at P. i.e. at P we will get the better image, with the assumption that the input image is 
a noisy one. If this convergence point P can be shifted towards y-axis, its movement 
will be as in the figure shown in Fig 2 (b).i.e. if we pull the point P towards y-axis, it 
will move in a left-top fashion. Here the Bayesian shrinkage is the catalyst, which 
pulls the convergence point P of the anisotropic or complex diffusion towards a better 
place.   

4   Experimental Results and Comparative Analysis 

Experiments were carried out on various types of standard images. Comparisons and 
analysis were done on the basis of MSSIM (Mean Structural Similarity Index Matrix) 
[21] and PSNR (Peak Signal to Noise Ratio). SSIM is used to evaluate the overall 
image quality and is in the range 0 to 1. The SSIM works as follows, suppose x and y 
be two non negative image signals, one of the signals to have perfect quality, then the 
similarity measure can serve as a quantitative measure of the quality of the second 
signal. The system separates the task of similarity measurement into three compari-
sons: luminance, contrast and structure. The PSNR is given in decibel units (dB), 
which measure the ratio of the peak signal and the difference between two images. 

Fig.3 shows the performance of various filters against speckle noise. It can be seen 
that the image processed by WEAD and WECD given a better result than the other 
three speckle filters. Table 1 shows a comparative analysis of popular speckle filters 
with WEAD and WECD. Various levels of noise are added to image for testing its 
capability. In all the cases the performance of WEAD and WECD was superior to 
others. 
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                     (a)                                        (b)                                                (c) 

   
                    (d)                                            (e)                                             (f) 

 
                     (g)                                             (h)                                              (i) 

 
                     (j)                                              (k)                                            (l) 

 
 

Fig. 3. Speckle affected image processed with various filters (a) Image with speckle noise 
(PSNR 18.85), (b) Image processed with Frost Filter (PSNR : 22.37), (c) Image Processed with 
Kuan Filter (PSNR : 23.12), (d) Image processed with SRAD (PSNR: 23.91), (e) Image proc-
essed with WEAD (PSNR : 25.40), (f) Image Processed with WECD (PSNR :24.52), (g), 
(h),(i), (j),(k),(l) shows the 3D plot of  (a),(b),(c),(d),(e),(f) 
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Table 1. Comparative analysis of various speckle filters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5   Conclusion 

In this paper a comparative analysis of Wavelet Embedded Anisotropic Diffusion 
(WEAD) and Wavelet Embedded Complex Diffusion (WECD) with other methods is 
done. When compared with other methods it can be seen that the complexity and 
processing time of WEAD and WECD is slightly more but the performance is supe-
rior. The hybrid concept used in WEAD and WECD can be extended to other PDE 
based methods. 
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Abstract. Linear filtering of images is usually performed in the spatial
domain using the linear convolution operation. In the case of images
stored in the block DCT space, the linear filtering is usually performed
on the sub-image obtained by applying an inverse DCT to the block
DCT data. However, this results in severe blocking artifacts caused by
the boundary conditions of individual blocks as pixel values outside the
boundaries of the blocks are assumed to be zeros. To get around this
problem, we propose to use the symmetric convolution operation in such
a way that the operation becomes equivalent to the linear convolution
operation in the spatial domain. This is achieved by operating on larger
block sizes in the transform domain. We demonstrate its applications
in image sharpening and removal of blocking artifacts directly in the
compressed domain.

1 Introduction

Filtering of images is required in various applications of image processing, such
as noise removal, sharpening and edge extraction, anti-aliasing operations in im-
age resizing, etc. These operations are usually performed in the spatial domain.
As in many cases the images are stored in a compressed format, it is of interest
to perform these operations directly in the compressed domain. This reduces the
computational overhead associated with decompression and compression opera-
tions with the compressed stream. As DCT based JPEG standard is widely used
for image compression, a number of algorithms have been advanced to perform
various image processing operations in the DCT space [1]-[8].

In a classic work [9], Martucci has shown how the convolution-multiplication
property of the Fourier transform could be extended to the class of trigonomet-
ric transforms, namely the discrete cosine and sine transforms. He has pointed
out that like the discrete Fourier transform where circular convolution holds
the convolution-multiplication property, in trigonometric transforms symmetric
convolutions have similar properties. Hence, a class of linear filtering operations
which could be mapped to symmetric convolutions of images, could be easily
performed in the transform domain. In our work, we restrict our discussion to
images in the type-II block DCT format. We demonstrate here that the Gaussian
filtering could be performed in this domain and show its application in various
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image processing applications such as smoothing of the blocking artifacts of
highly compressed data, image sharpening, edge extraction, etc.

In the case of images stored in the block DCT space, linear filtering is usually
performed on the sub-image obtained by applying an inverse DCT to the block
DCT data. However, this results in severe blocking artifacts caused by the bound-
ary conditions of individual blocks as pixel values outside the boundaries of the
blocks are assumed to be zeros. On the other hand, the symmetric convolution has
an advantage over the linear convolution operation in this regard, as in this case
due to smooth transitions in the boundaries, the strength of blocking artifacts is
reduced in the processed image. Moreover it does not provide similar boundary
conditions of individual blocks what would have been there in the case of linear
convolution of images in the spatial domain. Our objective in this work is to per-
form filtering with the blocks in the compressed domain in such a way that the
symmetric convolution operation becomes equivalent to the linear convolution in
the spatial domain. This has been achieved by operating on larger block sizes in
the transform domain. To this end, we have used composition and decomposition
of the DCT blocks using the spatial relationship of the DCT coefficients devel-
oped by Jiang and Feng [10]. It may be noted that in [8], Shin and Kang used
the convolution-multiplicationproperty of the DCT for designing anti-aliasing low
pass filters for the purpose of image resizing. However, the approach was restricted
for image halving and image doubling operations with the filtered output in the
type-I DCT space. On the other hand, in our work given an image in the type-II
block-DCT space, the output is also of the same type.

2 Symmetric Convolution and Convolution-Multiplication
Properties in the DCT Domain

In this section we briefly review the concept of symmetric convolution and its
equivalent operation in the DCT domain [9]. For the sake of brevity, we restrict
our discussion to the 1-D case, as the concepts are trivially extended to 2-D.

Let h(n), 0 ≤ n ≤ N, be a sequence of length N + 1. Its N -point 1-D type-I
DCT is defined by

C1e{h(n)} = H
(N)
I (k) =

√
2
N α(k)

∑N
n=0 h(n) cos(nπk

N ),
0 ≤ k ≤ N.

(1)

Likewise, x(n), 0 ≤ n ≤ N − 1, be a sequence of length N . Its N -point 1-D
type-II DCT is defined by

C2e{x(n)} = X
(N)
II (k) =

√
2
N α(k)

∑N−1
n=0 x(n) cos( (2n+1)πk

2N ),
0 ≤ k ≤ N − 1.

(2)

In Eqs. (1) and (2), α(k) is
√

1
2 for k = 0, otherwise its value is 1.

It should be noted that the type-I N−point DCT is defined with (N + 1)
samples, whereas, the type-II DCT is defined with N samples. They can be con-
sidered as generalized discrete Fourier transforms (GDFT’s) [9] of symmetrically
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extended sequences. After symmetric extensions, the resulting periods in both
the cases are 2N . For the type-I DCT, the symmetric extension of the (N + 1)
samples is carried out as follows:

ĥ(n) =

{
h(n), 0 ≤ n ≤ N,

h(2N − n), N + 1 ≤ n ≤ 2N − 1,
(3)

whereas, for the type-II DCT the symmetric extension of the length-N input
sequence is carried out as follows (before applying GDFT to it):

x̂(n) =

{
x(n), 0 ≤ n ≤ N − 1,
x(2N − 1− n), N ≤ n ≤ 2N − 1.

(4)

In this paper we refer the symmetric extensions of Eqs. (3) and (4) as type-I and
type-II symmetric extensions, respectively.

The symmetric convolution of two finite-length sequences of appropriate leng-
ths is nothing but the periodic convolution of their symmetrically extended se-
quences (having the same periods). The output resulting from this operation is
observed for a specific interval. This operation is illustrated below.

Let x(n), 0 ≤ n ≤ N − 1, and h(n), 0 ≤ n ≤ N, be two sequences. Denote the
type-II symmetric extension of x(n) as x̂(n) and the type-I symmetric extension
of h(n) as ĥ(n). Symmetric convolution of x(n) and h(n), denoted by the operator
� is then defined as follows.

y(n) = x(n)�h(n)
= x̂(n) �2N ĥ(n)
= Σn

k=0x̂(k)ĥ(n− k) +Σ2N−1
k=n+1x̂(k)ĥ(n− k + 2N),

0 ≤ n ≤ N − 1,

(5)

where the operator �2N denotes the 2N -point circular convolution.
In [9] Martucci has discussed how convolution-multiplication properties hold

for trigonometric transforms with symmetric convolution. In particular, with
respect to Eq. (5) this property is given by:

C2e{x(n)�h(n)} = C2e{x(n)}C1e{h(n)}. (6)

It should be noted that as the N -th coefficient of type-II DCT of x(n) (denoted
by X(N)

II (N) ) is zero, only N multiplications are involved in Eq. (6).
The above concepts could easily be extended to 2-D. Here, the M ×N -point

type-I 2-D DCT is defined over (M + 1) × (N + 1) samples and the type-II
2-D DCT is defined over M × N samples. These can also be derived from the
2-D GDFT defined over symmetrically extended sequences as discussed ear-
lier. We denote the type-I and type-II DCTs of x(m,n) by C1e{x(m,n)} and
C2e{x(m,n)}, respectively. Similar convolution multiplication properties hold
also in 2-D and a trivial extension of Eq. (6) to 2-D is as follows:

C2e{x(m,n)�h(m,n)} = C2e{x(m,n)}C1e{h(m,n)} (7)

It should be noted here that Eq. (7) involves M ×N multiplications.
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3 Filtering in the Block DCT Space

The convolution-multiplication property as expressed by Eq. (7) has a particu-
lar significance in its application to filtering of images represented in the type-II
block DCT space. Given the type-I DCT of the impulse response of a filter,
one can easily compute the filtered output using Eq. (7). In such a situation
both the input (image) and the output (filtered image) remain in the type-II
DCT space. As different compression schemes such as JPEG and MPEG have
adopted the type-II DCT representation of images and videos, filtering in the
transform domain itself can be performed directly using Eq. (7). However, this
filtering operation in the transform domain is equivalent to symmetric convolu-
tion in the spatial (time) domain of an image (signal). Hence, only filters with
impulse responses that are even functions can be supported by this operation.
For performing the symmetric convolution (in this case), specifications for the
first (positive) quadrant (half) of the spatial (time) domain are only required.
This also reduces the storage requirement of the filter.

A Filtering Example. We illustrate next the implementation of a Gaussian
filter in the block DCT domain. A Gaussian filter has an impulse response that
is an even function and performs low-pass filtering. For a symmetric convolution
in 2-D, specifications in the first quadrant of the discretized image space are
required. The 2-D Gaussian impulse response in the first quadrant of the spatial
domain is given by

h(m,n) = 1
2πσxσy

e
− 1

2 ( m2

σ2
x

+ n2

σ2
y

)
,

0 ≤ m ≤M, 0 ≤ n ≤ N.
(8)

Let HI(k, l), 0 ≤ k ≤M, 0 ≤ l ≤ N, denote the type-I DCT of h(m,n). Given a
M × N type-II DCT block B = {BII(k, l), 0 ≤ k < M, 0 ≤ l < N}, the output
F in the transform domain is then computed as follows:

F = {FII(k, l) = BII(k, l).HI(k, l), 0 ≤ k < M, 0 ≤ l < N}. (9)

In our work we have assumed σx = σy , and henceforth both are referred to as σ.

Boundary Conditions. Filtering in the spatial domain is implemented by a
linear convolution of an image with a finite length impulse response with the
boundaries of the image zero-padded. Because of the sharp transitions at the
boundaries, blocking artifacts occur at the boundaries. In a symmetric convo-
lution, symmetric extensions at the boundaries of a block results in smoother
transitions at the boundaries. As a result, the symmetric convolution results in
better boundary conditions than that obtained using the linear convolution. To
arrive at a smoother transition at the boundaries, with the help of Eq. (9), the
symmetric convolution is applied to an independent block (of size 8 × 8 in the
present case). It is of interest to compare its performances to that of a linear
convolution operation. In Table 1 the PSNR values of the images obtained using
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the symmetric convolution operation have been computed by considering the
images obtained via a linear convolution as the reference. It is observed that
the quality of the filtered images obtained by symmetric convolution of 8 × 8
blocks suffer heavily due to blocking artifacts. This is also reflected by the low
PSNR values in Table 1. One of the objectives of the present work is to outline

Table 1. PSNR Values of Gaussian Filtered Images

PSNR (dB)
σ Pepper Mandrill Lena

2.0 28.73 28.89 28.65
3.0 26.10 27.12 26.43
4.0 24.91 26.17 25.41
5.0 24.85 26.09 25.40

filtering in the block DCT domain so that the operation becomes equivalent to
filtering of the whole image by a linear convolution with the impulse response
of the filter. Consider a block of size N in 1-D. Let the effective length of the
impulse response1 be K (beyond (K − 1)-th position sample values are zero).
Hence, the convolved output response (through symmetric or circular convolu-
tion) between the sample positions K and (N − 1 −K) will be the as same as
those obtained from linear convolution with the complete input sequence. This
implies that the smaller the value of K, the closer the result is to that of linearly
convolved output. This may be observed from the PSNR values in Table 1. In-
creasing values of σ make the effective length of the filter longer. For example,
effective half length of a Gaussian impulse response with σ will be around 2σ.
As can be seen in Table 1, PSNR values get degraded with increasing σ. Hence,
one should keep effective half length small to get performance similar to that of
the corresponding linear convolution operation. However, small value of N (e.g.
8) places a severe restriction on the filter design. In addition, filter response also
deviates largely from its desirable characteristics due to the truncation errors.
As a result, one should consider larger block sizes for this purpose. One could
form blocks of larger sizes from smaller sizes directly in the transform domain
following the technique of Jiang and Feng [10]. After performing filtering oper-
ation with larger blocks, the filtered blocks are decomposed into their original
sizes to get back the results in the specified block DCT domain.

Composition and Decomposition of the DCT Blocks. For convenience, we
discuss the spatial relationships of the DCT blocks in 1-D. Let C(N)

i , 0 ≤ i ≥M −
1, the i-th N -point DCT block of a sequence {x(n)}, n = 0, 1, .....,M × N − 1.
Jiang and Feng [10] showed that a block DCT transformation is nothing but an
orthonormal expansion of the sequence {x(n)} with a set ofM ×N basis vectors,
each of which is derived from the basis vectors ofN -point DCT. Hence, there exists
1 For symmetric convolution, impulse response is defined for positive half only. In this

case we refer K as the effective half filter length.
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an invertible linear transformation from M blocks of N -point DCT transform to
the usual MN -point DCT transform. In other words, for a sequence of N -point
DCT blocks {C(N)

i }, i = 0, 1, ....M −1, the corresponding composite DCT C(MN)

(MN -point DCT), there exists a matrix A(M,N) of size MN ×MN such that2

C(M.N) = A(M,N).[C
(N)
0 C

(N)
1 ......C

(N)
M−1]

T (10)

The above analysis in 1-D can also be extended to 2-D. For details one may
refer the discussion made in [6]. It should be noted that the conversion matri-
ces and their inverses are sparse [10]. Hence, lesser number of multiplications
and additions of two matrices is required than those required in usual matrix
multiplications.

4 Filtering with Block Composition and Decomposition

In our technique L×M number of 8×8 blocks are merged into a single block (say,
B

(LN×MN)). Then, the resulting block is subjected to the filtering operation. Let
h(m,n), 0 ≤ m ≤ 8L, 0 ≤ n ≤ 8M , be the filter response specified in the first
quadrant of the image space. Let HI(k, l), 0 ≤ k ≤ 8L, 0 ≤ l ≤ 8M , denote
the type-I DCT of h(m,n) (i.e., C1e(h(m,n)) = HI(k, l)). The filtered response
(say, B

(LN×MN)
f )is computed by multiplying an element of B

(LN×MN) with the

corresponding element of H (refer Eq. (9)). Finally, B
(LN×MN)
f is decomposed

into L ×M blocks (of size 8 × 8). We refer this algorithm in our work as the
Block Filtering on Composition Decomposition (BFCD) algorithm.

We have performed the same Gaussian filtering given by Eq. (9) using the
BFCD algorithm. Table 2 lists the PSNR values of the images obtained using
the BFCD algorithm with the Gaussian filtered image obtained via linear con-
volution in the spatial domain as the reference for different values of L and M .
In our simulations we have kept the values of L and M same. It can be seen that
the PSNR values increases with increasing block sizes. It is also observed that
blocking artifacts are also less visible in the filtered images. One may interest-
ingly note that it is expected that the larger the block size, the closer the result
is to that obtained using the convolution. However, in Table 2 it can be seen that
for L(= M) = 4, the PSNR values are lower for all values of σ compared to that
obtained in the case of neighboring L and M values. In fact, the degradation
in the PSNR values happens when the block sizes are integral multiples of the
image size. In that case, a block at the right and bottom boundaries gets totally
fitted within the image. Hence the boundary effect of symmetric convolution is
felt from all sides of the block. When the block sizes are not integral multiple of
image sizes, a boundary block (containing right and bottom margin of the im-
age) contains a fraction of the image pixel data and the rest are assumed to be
zeros. In such a case, the distortion due to the boundary conditions of symmetric
convolution is less.
2 The transpose of a matrix X is denoted here by XT .
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Table 2. PSNR values obtained using Gaussian filtering with BFCD

4.1 Computational Costs

In this section we compare the computational costs of the transform domain
technique with that of the spatial domain technique. If the costs of a single
multiplication and a single addition are M and A, respectively, then the total
cost for an operation requiring a number of multiplications and b number of
additions is aM + bA. We have also considered the cost of a multiplication
operations is three times of the cost of addition for providing a combined cost
measure following the similar practice used in an earlier work [13].

Computational Cost with Spatial Domain Operations. Costs associated
with spatial domain operation are due to computations involved in: (i) IDCT
of individual blocks, (ii) Convolution of the image with a (2K − 1)× (2K − 1)
mask, and (iii) DCT of individual blocks. It should be noted that the effective
filter size is (2K − 1) × (2K − 1). Outside this support, the filter’s impulse
response samples are taken as zeros. As a result, per pixel, one has to perform
(2K − 1)2 multiplications and ((2K − 1)2 − 1) additions. However, exploiting
the symmetry in the impulse response in the spatial domain (for the class of
filters under consideration of this paper), the number of multiplications could be
reduced to K2. In addition there are costs involved due to DCT and IDCT. We
make use of the computationally efficient algorithm developed by Loeffer et al
which computes 8× 8 DCT (as well as IDCT) with 176 multiplications and 464
additions [11]. Additionally 5.5 multiplications and 14.5 additions per pixel are
needed for performing the 8× 8 DCT and IDCT. Typically for K = 8, numbers
of multiplications and additions per pixel are 69.5 and 238.5, respectively.

Computational Cost with BFCD. Costs associated with BFCD are due to
computations involved in: (i) Composition of L×M blocks into a single block, (ii)
Element to element multiplications between DCT coefficients of composed block
and type-I DCT coefficient of the impulse response, and (iii) Decomposition of
the filtered block into L×M blocks of 8 size.

Following a similar approach for efficient computation of block composition
and decomposition of type-II DCT as discussed in [6], numbers of per pixel
operations for the BFCD algorithm are presented in Table 2 for different values
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Gaussian filtering with σ = 2.0 : (a)-(c): Filtering in the spatial domain using
linear convolution, (d)-(f) Filtering in the DCT domain using the BFCD algorithm for
L = M = 5 and (g)-(i): Filtering in the DCT domain using the OBFCD algorithm

of L (or M). Comparing the computational cost of the BFCD algorithm with
the corresponding spatial domain operation, it is evident that the BFCD is
a faster operation. For example for L = M = 5, the number of equivalent
addition operations for the BFCD algorithm is 393.45, while the requirement
for spatial domain approach (for K = 8) is 447. It may be noted however that
the BFCD algorithm provides an approximate solution. For L = M = 5, the
approximate Gaussian filtered image with σ = 2.0 maintains quite high PSNR
values (typically 35.56 dB, 33 dB and 33.14 dB for the images Pepper, Mandrill,
and Lena, respectively and refer Figures 1(d)-(f)) with respect to the filtered
image obtained through spatial convolution. For obtaining the exact solution,
we outline an overlapping block filtering approach in the compressed domain as
described in the following subsection.

4.2 Filtering with Overlapping Blocks

One way of removing the boundary effects is to apply BFCD in overlapping
set of blocks and retain the results of those blocks which are not affected by
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Table 3. Performances of Gaussian Filtering with OBFCD

the boundary conditions due to the symmetric extension. For example, if the
effective half filter size is K × K (in spatial domain), BFCD could be ap-
plied to L × M number of blocks producing only the (L − 2�K

8 �) × (M −
2�K

8 �) central blocks as the output. Naturally, this will increase the redundancy
in the computation and there will be an increase in the number of multipli-
cations and additions as a consequence. We refer this algorithm as Overlap-
ping Block Filtering on Composition Decomposition (OBFCD). Figures 1(g)-(i)
show the results using OBFCD for L = 3 and M = 3. It can be seen that the
filtered images are almost the same as those obtained by the linear convolution
(Figures 1(a)-(c)). Table 3 presents the PSNR values obtained by OBFCD. In
this case, PSNR values are significantly higher (around 300 dB). This implies
that the OBFCD operation is equivalent to the spatial domain convolution. Ta-
ble 3 also includes the computational cost associated with OBFCD. In this case,
it can be seen that as OBFCD requires more computations than BFCD, it is
marginally faster than the corresponding spatial domain operation. Typically,
for L = M = 3, OBFCD requires 431.64 equivalent number of addition opera-
tions per pixel of the image, whereas for the spatial domain approach for K = 8,
the required number is 447. It is also observed from Table 3 that it is not neces-
sary to increase the value of L(= M) beyond 3. Output response does not vary
significantly with increasing L(≥ 3). It remains close to the spatially convolved
output. However this depends upon the effective half filter size ( K × K). We
summarize our observations in the following lemma:

Lemma 1: The minimum value of L for effective half filter size K ×K is given
by Lmin = 2�K

8 �+ 1.

Proof: As (L− 2�K
8 �) > 0, L > 2�K

8 �. Hence, Lmin = 2�K
8 �+ 1. �

5 Applications of Image Filtering

In this section we demonstrate two specific image processing applications of the
proposed image filtering.
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(a) (b) (c)

Fig. 2. Image sharpening using OBFCD filtering with λ = 0.7, σ = 2.0, L = M = 3
and K = 8: (a) Peppers, (b) Mandrill, and (c) Lena.

(a) (c) (e)

(b) (d) (f)

Fig. 3. Removal of blocking artifacts of highly compressed JPEG images using OBFCD
filtering with σ = 2.0, L = M = 3 and K = 8. Images are compressed with JPEG
compression scheme with the quality factor 10.0:(a) Peppers: JPEG compressed, (b)
Peppers: After OBFCD filtering, (c) Mandrill: JPEG compressed, (d) Mandrill: After
OBFCD filtering, (e) Lena: JPEG compressed, and (f) Lena: After OBFCD filtering.

5.1 Image Sharpening

One approach to image sharpening operation is carried out by adding a fraction
of the high-pass filtered output to the original image. Let Bf be the low-pass
filtered block using BFCD or OBFCD in the transform domain. Let B be its
corresponding original block in the transform domain. Hence the sharpened block
in the transform domain is computed as follows:

Bs = B + λ(B −Bf ). (11)

In Eq. (11) λ (> 0) is the parameter controlling the amount of image sharpening.
Figure 2 shows the sharpened images for λ = 0.7.
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5.2 Blocking Artifacts Removal

Blocking artifacts are often visible in images reconstructed from highly com-
pressed data. These blocking artifacts can be masked by applying low pass fil-
tering directly in the compressed domain. We present here examples of such
filtering of JPEG compressed images (with quality factor =10.0). Blocking arti-
facts are clearly visible in Figures 3(a), (c), and (e), respectively. Their visibility
has been substantially reduced in the filtered images shown in Figures 3(b), (d),
and (f), respectively.

6 Concluding Remarks

In this paper we have described filtering in the block DCT space using the
convolution-multiplication properties of trigonometric transforms [9]. We have
made use of the block composition and decomposition methods of [10] for sat-
isfying the boundary conditions as in the case of linear convolution. We have
demonstrated the application of the proposed algorithm in performing two spe-
cific image processing operations such as enhancement, and removal of blocking
artifacts, in the transform domain.
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Abstract. In this paper, we propose a novel algorithm for robust image
watermarking by inserting a single copy of the watermark. Usually, ro-
bustness is achieved by embedding multiple copies of the watermark.The
proposed method locates and watermarks ‘significant pixels’ of the image
in the wavelet domain. Here, the amount of distortion at every pixel is
kept within the threshold of perception by adopting ideas from Human
Visual System (HVS) model. The robustness of the proposed method was
verified under six different attacks. To verify the advantage of selecting
the significant pixels over the highest absolute coefficients, simulations
were performed under both cases with quantization of pixels as per HVS
model. Simulation results show the advantage of selecting the ‘significant
pixels’ for watermarking gray images as well as color images.

1 Introduction

Recent years have witnessed an outgrowth in the volume of digital data which
can be easily manipulated and reproduced. Digital watermarking has been pro-
posed as a means for owner verification, content authentication, broadcast mon-
itoring etc. A number of watermarking algorithms in spatial domain [1], [2] as
well as transform domain have been proposed. A major disadvantage of spatial
domain techniques is the low robustness of the watermark. The robustness of
the watermark could be improved if the properties of the cover image could be
exploited. The most commonly used transforms for digital watermarking are Dis-
crete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete
Wavelet Transform (DWT) [3], [4], [5], [6], [7], [8].

Given its suitability to model the HVS behavior, the DWT has gained interest
among watermarking researchers. In [9] a blind watermarking algorithm which
embeds the watermark in the DWT domain by exploiting the characteristics
of the HVS is presented. Here, watermark strength modulation is accomplished
through a mask giving a pixel by pixel measure of the sensibility of the human
eye to local image perturbations. Mask construction relies on a work by Lewis
and Knowles [10]. Some modifications to the method by Lewis and Knowles are
proposed in [9] to make it suitable to the computation of the maximum visibly
tolerable watermark energy that can be used for each DWT coefficient.

We propose a wavelet based non-blind watermarking scheme for images with
a comparatively larger size than the watermark. Usually robustness is achieved
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by inserting multiple copies of the watermark, whereas we have inserted a single
copy of the watermark and still robustness is maintained by selecting the co-
efficients with respect to their interband dependencies [11]. Wavelet transform
allows us to study the image at different space-frequency resolutions and making
use of this property, we locate some important feature points in images. These
pixels are referred as ’significant pixels’. Generally watermarking schemes em-
bed information only in the high frequency components or in a selected subclass
of them. But in our proposed scheme the pixels are so chosen that they have
significant magnitude in high frequency as well as low frequency regions. This
should in turn provide better robustness.

Transparency is one of the important criteria in digital watermarking. Since
the significant pixels bear a very important role in the perceptual quality of the
image, the distortion at these pixels are kept below the threshold of perception
as per HVS model [9].

To test the resilience of the proposed method to different signal processing
operations, we have selected mainly six different attacks in the case of gray im-
ages and color images. The attacks considered are salt-pepper noise with median
filtering, Gaussian noise addition, mean filtering, quantization of watermarked
pixels, JPEG compression and cropping. On color images, color palette filtering
using Adobe Photoshop software was also experimented. The simulation results
show the added advantage of selecting significant pixels compared to high abso-
lute coefficients.

The rest of the paper is organized as follows. Section 2 illustrates the proposed
algorithm. Section 3 and Section 4 give the experimental results and conclusion
respectively.

2 Proposed Algorithm

Wavelet representation of any data gives information about the variations of the
data at different scales. Wavelet detail image is obtained as the convolution of
the image with the wavelet function dilated at different scales. We know from
which signal points each wavelet coefficient at a particular scale is computed.
We can further study the wavelet coefficients for the same points at a finer scale.
These coefficients are called children coefficients.

We have used three level wavelet decomposition using Haar wavelet to locate
significant pixels [12]. The three level wavelet decomposition is shown in Fig. 1.
In the proposed algorithm watermark is embedded only in the significant pixels
in bands V2 ,D2 and H2. But for calculating the significance factor ’S’ we have
considered all the bands except L2 .

2.1 Watermark Embedding

Let us denote the bands by Bi
θ where ‘B’ can be replaced by V, H or D as ‘θ’

varies. The suffix ‘i’ denotes the level of wavelet decomposition in which that
particular band is present. To locate the significant pixels, choose every pixel
in third level, say B2

θ and its corresponding children coefficients at all finer
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Fig. 1. Three level wavelet decomposition with different bands

resolutions namely B1
θ and B0

θ. The significance factor (S) of every pixel in
band B2

θ is defined as follows.

S(i, j) = |B2
θ(i, j)| + max

l,k=0,1
|B1

θ(2i− k, 2j − l)| (1)

+ max
m,n=0,1,2,3

|B0
θ(4i− n, 4j −m)|,

∀ (i, j) ε B2

After calculating significance factor(S) at every pixel in bands V2 ,H2 and
D2 , these values are sorted. In our method only the highest significant pixels
will be watermarked. Let the watermark be represented by a column vector w
of size K × 1, obtained after randomizing. The watermark is embedded at every
significant pixel in band B2(i, j) as follows.

B′
2
θ(i, j) = B2

θ(i, j) + αwkq
θ
2(i, j) k = 1, 2, ...K (2)

Here B ′
2

θ is the watermarked pixel and α is the multiplication factor to keep the
watermark below the level of perception. The value of α is unity if the watermark
is binary. The value of q, which is the maximum quantization at every pixel below
the level of perception, is calculated using HVS model as given in [9].

The model presented in this paper is with reference to the four level decom-
posed image, where band L2 in Fig. 1 is further decomposed into V3 ,H3 ,D3

and L3 . According to this model maximum allowable distortion at every pixel
is estimated as the weighted product of three different parameters.

qθ
l (i, j) = q̂θ

l (i, j)/2 (3)

q̂θ
l (i, j) = Θ(l, θ)Λ(l, i, j)Ξ(l, i, j)0.2 (4)

Each term in the above equation is explained below. Here ′l′ and ′θ′ denote the
level of decomposition and the orientation of the selected band respectively. The
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first term Θ(l, θ) takes into account the sensitivity to noise depending on the
band. Eyes are less sensitive to noise in high resolution bands and bands having
orientation of 45o.

Θ(l, θ) =
{√

2, ifθ = 1
1, otherwise

}
.

⎧⎪⎪⎨⎪⎪⎩
1.00, if l=0
0.32, if l=1
0.16, if l=2
0.10, if l=3

⎫⎪⎪⎬⎪⎪⎭
The second term takes into account the local brightness based on the gray-level
values of the low pass version of the image. Also it considers the fact that eyes
are less sensitive to very dark and very bright regions of the image. In [10], this
factor is computed in the following way.

Λ(l, i, j) = 1 + L(l, i, j) (5)

where

L(l, i, j) =
L3

256
(1 + � i

23−l
�, 1 + � j

23−l
�) (6)

Since eye is less sensitive to very dark regions as in the case of bright regions, in
[9], this factor is modified as in the following equation.

L̂′(l, i, j) = 1− L(l, i, j), ifL(i, j) ≤ 0.5 (7)
L(l, i, j), otherwise

The third term takes care of the fact that eye is less sensitive to noise in highly
textured areas but more sensitive near edges.

Ξ(l, i, j) =
3−l∑
k=0

1
16k

2∑
θ=0

1∑
x=0

1∑
y=0

[Bθ
k+l(y +

i

2k
, x+

j

2k
)]2 (8)

.V ar{L3(1 + y +
i

23−l
, 1 + x+

j

23−l
)}

where the first term gives the local mean square value and Var gives the variance
around the 2x2 neighborhood of each pixel. After embedding the watermark,
inverse transformation is performed to get the watermarked image.

2.2 Watermark Detection and Evaluation

For extracting the watermark from a possibly tampered image we need to use
the original image and hence our algorithm is non-blind. Since watermark bits
are embedded only at the significant pixels, we need to locate these pixels on the
possibly attacked image and then get the quantization at those pixels. We have
used Peak Signal-to-Noise Ratio (PSNR) as measure of perceptual quality of the
watermarked image. Normalized correlation coefficient(γ) is defined as a measure
of similarity between the original watermark (w) and retrieved watermark (w’).
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Suppose there are K pixels in the watermark, then normalized correlation coeffi-
cient is defined as follows.

γ =
∑K

i=1 wiw
′
i√∑K

i=1 w
2
i

∑K
i=1 w

′2
i

. (9)

3 Experimental Results

The proposed algorithm was tested on both gray and color images of size 512×
512. The binary watermark of size 16× 16, shown in Fig. 2a, is embedded only
once in the image. We have proposed to use the third decomposed level for em-
bedding. But for the purpose of comparison, results of embedding and retrieval
with second and fourth level decompositions are also included. Since the water-
mark is embedded only once and the quantization to each coefficient is as per
HVS model, as a fair means of comparison, simulations were performed with
highest absolute coefficients in second, third and fourth level decomposition,
quantized as per HVS model given in [9].

The significant pixels of color images were located by considering the lumi-
nance component of the images in YCbCR representation. We have chosen four
gray level images and two color images for experimentation. The watermarked
images of Lena and Peppers are shown in Fig. 2b and 2c. We have not included
all the test images in the paper due to space limitations. The PSNR of the
watermarked images under all the considered cases are tabulated in Table 1.

(a) Watermark (b) Watermarked Lena (c)Watermarked Peppers

Fig. 2. Original watermark and watermarked images

3.1 Resilience to Attacks

Any watermarking scheme should be able to withstand both intentional and
non-intentional signal processing operations. We have considered six different
attacks, namely, salt-pepper noise with median filter, Gaussian noise addition,
mean filter, quantization of the watermarked pixels, JPEG compression and
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Table 1. PSNR(dB) of watermarked images

Images Lena Barbara Baboon Airplane Peppers(color) Airplane(color)

Significant pixels{2-level} 49.56 51.37 50.43 47.84 50.30 49.45
Significant pixels{3-level} 47.46 47.93 48.83 45.21 47.95 46.39
Significant pixels{4-level} 42.25 43.05 44.02 39.10 42.06 40.32

High absolute coeff{2-level} 50.04 50.76 51.63 47.43 49.98 48.50
High absolute coeff{3-level} 47.38 47.28 49.50 44.77 47.81 45.87
High absolute coeff{4-level} 42.30 42.14 44.29 39.27 41.87 40.40

cropping. The results discussed below are of third decomposed level unless oth-
erwise specified. Also, only a few results are included in the paper due to lack of
space. Nevertheless, simulations were carried out on all images and results were
tabulated.

Salt- pepper noise with zero mean and 0.01 variance was added to the water-
marked images and were then median filtered to get an output image that closely
matched the original. Fig. 3a and Fig. 3b show the attacked images by salt-pepper
noise and median filter and Fig. 3c and Fig. 3d show the retrieved watermarks
from them. The correlation coefficient and visual similarity of the retrieved wa-
termarks emphasize the advantage of selecting significant pixels for watermarking
over highest absolute pixels. It can be seen from the results that the significant pix-
els in third decomposed level gave better performance than the highest absolute
coefficients with salt pepper noise addition with median filtering.

Digital images may be corrupted due to Gaussian noise while transmission.
Therefore, we have considered Gaussian noise addition as another attack. The

(a) Significant pixels (b) High absolute pixels

(c) From a, γ = 0.9063 (d) From b, γ = 0.8828

Fig. 3. Salt-pepper noise with median filtered images and retrieved watermarks
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(a) Significant pixels (b) High absolute pixels

(c) From a, γ = 0.7578 (d) From b, γ = 0.6094

Fig. 4. Gaussian noise added images and retrieved watermarks

noise considered has mean zero and variance 0.001. The attacked images of Lena
and the retrieved watermarks from them are shown in Fig. 4. The results for
all the cases were considered and the significant pixels outperformed the highest
absolute coefficients. The results with noise were averaged over 100 sample runs.

Mean filtering was performed with a 3× 3 mask and the averaged image had
very good visual similarity with the original image. The mean filtered images
and the retrieved watermarks are shown in Fig 5. The advantage of selecting
significant pixels instead of highest absolute coefficients is obvious in case of
averaging.

Quantization of the watermarked images were performed by quantizing the
watermarked pixels to multiples of 10, 20 and 40. Fig. 6 shows the quantized
images to multiples of 40 and the retrieved watermarks from them.

JPEG compression is one of the attacks to which all image watermarking
methods should be resistant to. We have tabulated the correlation coefficients
for all the test images for quality factors varying from 10 to 100. The correlation
coefficients obtained were very close to unity in most cases, the lowest being
0.8594 and 0.7812, with quality factor 10, for Lena watermarked using significant
pixels and high absolute coefficients respectively.

We have also tried to retrieve the watermark after cropping the watermarked
image. The simulation results show that the method proposed works satisfacto-
rily, provided cropping does not remove any significant part of the image. For
example, cropped baboon image along with the retrieved watermark is shown
in Fig. 8. The coefficients watermarked are the significant pixels from third and
fourth levels of decomposition. Here 62.5% of the watermarked image is retained
after cropping. The correlation coefficient obtained is 0.8906 and 0.8672 from the
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(a) Significant pixels (b) High absolute pixels

(c) From a, γ = 0.7813 (d) From b, γ = 0.5547

Fig. 5. Mean filtered images and retrieved watermarks

(a) Significant pixels (b) High absolute pixels

(c) From a, γ = 0.9453 (d) From b, γ = 0.8984

Fig. 6. Quantized images to multiples of 40 and retrieved watermarks

fourth and third levels respectively. For the purpose of comparison the retrieved
watermark from the highest absolute coefficients of fourth and third levels of
decomposition are also shown.

Another attack that was specifically performed on color images was color
palette filter using Adobe Photoshop software. The selected filter had stroke size
2, stroke detail 3 and softness 5 so that the attacked image was not perceptually
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(a) Watermarked Image (b) Cropped Image

(c) 4th Sig.Pixels
γ = 0.8906

(d)3rd Sig.Pixels
γ = 0.8672

(e)4th High abs.
γ = 0.7812

(f)3rd High abs.
γ = 0.8047

Fig. 7. Retrieved Watermarks from cropped image

much distorted. Table 2 shows the correlation coefficients of the retrieved wa-
termarks from three different color images, with the original watermark and
the values show the superior performance of the significant pixels over highest
absolute pixels.

Table 2. Color palette filtering

Images Sailboat Peppers Airplane

Significant pixels{2-level} 0.3984 0.4688 0.5859
Significant pixels{3-level} 0.5703 0.6250 0.5703
Significant pixels{4-level} 0.7188 0.8594 0.8594

High absolute coeff{2-level} 0.2188 0.2500 0.2891
High absolute coeff{3-level} 0.4375 0.5469 0.3906
High absolute coeff{4-level} 0.6641 0.7656 0.8125

4 Conclusion

We have introduced significant pixels in wavelet domain for robust watermark-
ing. Moreover, every selected pixel was quantized to the maximum using HVS
model. The scheme worked well without losing robustness and transparency.
The simulation results show that the significant pixel would be a better choice
for watermarking compared to high absolute coefficients. Also the simulation
results prove that, higher the level of decomposition better the robustness. But
the transparency may be crucial and difficult to maintain as higher bands are
selected. Obviously, as we move from one band to the next higher band, larger
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number of pixels are distorted in the original image and the number of available
pixels for watermarking becomes comparable with the number of watermark
bits.
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Abstract. Evidences favouring a dynamic receptive field model of reti-
nal ganglion cells and the cells of Lateral Geniculate Nucleus (LGN) have
been presented based on the perception of some brightness-contrast il-
lusions. Of the different kinds of such stimuli, four, namely the Simulta-
neous Brightness-contrast, the White effect, the DeValois and DeValois
checkerboard illusion and the Howe stimulus have been chosen to es-
tablish this model. The present approach attempts to carry forward the
works that look upon visual perception as a step-by-step information
processing task rather than a rule-based Gestalt approach and provides
a new biologically inspired tool for simultaneous smoothing and edge
enhancement in image processing.

1 Introduction

The present work is aimed at understanding and explaining some of the aspects
of visual signal processing mainly at the retinal level and in the simple cells
of primary visual cortex. The topic may be initiated by recalling a memorable
observation of J. B. Barlow [1] :

A description of that activity of a single nerve cell which is transformed to and
influences other nerve cells and of a nerve cell’s response to such influences from
other cells, is a complete enough description for functional understanding of the
nervous system. There is nothing else “ looking at ” or controlling this activity,
which must therefore provide a basis for understanding how the brain controls
behaviour.

Assumption of such a position was no doubt a great leap forward in unfurling
the “ mysteries ” of the functioning of the nervous system, probably the first
straightforward physical and materialistic approach to achieve an understand-
ing of it in contrast to the Gestalt or holistic approach. Yet in spite of being
essentially objective in its spirit, it could not but finally surrender itself amidst
the relics of anti-science subjectivism. This resulted from its mechanical mode of
relying upon the attempts to provide perceptual explanations by means of single
cell recordings only. The “part” alone thus assumed importance and the “whole”
lost its legitimate role. It was forgotten that the part and the whole are only
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interrelated concepts and truth always emerges from a dialectical synthesis of
the two. The success of Hubel-Wiesel’s work [2,3], wherein they could model the
activity of a deep-seated neuron of layer VI as an output of a summation circuit
having inputs from neurons of outer plexiform layer, led to an over-emphasis
in the study of the details of the neuronal circuits in the understanding of the
functions of brain, completely ignoring the role of emergent behaviours of com-
plex systems. A faith was spread that for any conceivable complicated human
perception, one would be able to identify a type of neurons in the brain leading
to the final output of the perception and the study of the circuits connected
with that cell would lead to a complete understanding of the mechanism of that
perception. What therefore started as a beginning of a new direction in neu-
roscience that was trying to rid itself of its mystical cloaks, led to unnecessary
new mysticisms through the so-called discoveries like the grandmother detecting
cell. Yet the basic point on which this approach initiated by Barlow [1] tried to
emphasize, was that it is only neurons and neurons alone that are responsible for
the entire information processing in nervous system. Like, for example in vision,
starting from the two dimensional intensity array formation on the retina to the
three dimensional object reconstruction and recognition in higher regions of the
brain, the entire process is controlled and executed by networks of neurons of
different types. This pro-materialistic approach, ushered in the radical thought
process that there is no “ soul ” sitting anywhere and interpreting things from
the neuronal outputs, but rather it is a collective, step-by-step synchronization
of the outputs at various stages in the eye and the brain, no matter how com-
plex that process is, that ultimately creates a perception of the world around
us. It was this approach that generated vigor and excitement among the sci-
ence community which needs to be carried forward in the proper perspective by
eliminating all remnants of subjectivism.

The most likely approach in this direction would be to initially consider pri-
mary visual processing and start with gray scale scenario only. To get an insight
into this, the methodology that we are going to adopt in the present work, is to
study the brightness perception in case of some select brightness-contrast illu-
sions. We shall first consider the well-known low-level illusion namely the Simul-
taneous Brightness-contrast stimulus, which is easily explainable with the well
acclaimed Difference of Gaussian (DoG) model of the receptive field of retinal
ganglion cells and the cells of lateral geniculate nucleus (LGN)[4]. Then we shall
consider the more complex stimuli like the White effect [5], and the DeValois and
DeValois checkerboard illusion [6] which are often thought to be inexplainable
without a Gestalt approach [7]. We shall explain these effects by extending the
DoG model that serves to support a dynamic model of the receptive field based
on a linear combination of three Gaussians. Finally we shall consider a very in-
teresting variant of the White effect stimulus called the Howe stimulus [8], that
itself challenges the Gestalt school explanation and apply the above dynamic
model of the receptive field to provide a considerably satisfactory explanation
to this phenomenon as well. Finally, as a corollary, we shall also see how this
model may provide a new approach to edge enhancement in images.
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2 The Proposed Model

2.1 The Classical Model

It is well-known that the brightness of a region of visual space is not related to
the luminance of that region alone, but also depend on the luminance of its adja-
cent regions. When the brightness of a test region shifts away from the brightness
of the surround region the phenomenon is termed as a brightness-contrast event.
Such events, like the Mach band, the Simultaneous Brightness-contrast, the Her-
mann grid illusion or the grating induction effect can be more or less explained
with the help of the isotropic DoG model of primary visual processing [4], even
though there are still many subtle aspects of these stimuli that require a deeper
understanding of how even these low-level brightness-contrast illusions are actu-
ally processed [9,10]. Let us first consider the Simultaneous Brightness-contrast
(SBC) illusion shown in Figure 1. This is a well-studied textbook example where
a gray patch on a white background looks darker than an equiluminant gray
patch on a black background. This model is well-explained by the classical DoG
model. If Figure 1 is convoluted with a DoG filter given by:

Fig. 1. The Simultaneous Brightness-Contrast illusion

DOG(σ1, σ2) = A1
1√

2πσ1

exp(− x2

2σ1
2
)−A2

1√
2πσ2

exp(− x2

2σ2
2
) (1)

then the convoluted image clearly bears the signature of our illusory perception.
Such a convoluted image has been shown in Figure 2 (a). That the convoluted
image is no illusion again has easily been confirmed by drawing two horizontal
line profiles through the two test patches as shown in Figure 2(b). The result is
easily understandable because the inhibition for the upper test patch from its
dark surrounding makes it look brighter than that of the lower test patch with
its bright surrounding.
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Fig. 2. (a) The Simultaneous Brightness-contrast stimulus when convoluted with DoG
(b) Horizontal line profiles through the two test patches in (a). Clearly the test patch
in brighter neighbourhood has become darker.

Fig. 3. The White Effect

2.2 The Classical Model Modified

We now consider the case of the White effect [5] which has caused much hype
among the Gestalt theorists since it totally contradicts the lateral inhibition
based theory of primary visual processing. Let us take a look at the White effect
stimulus shown in Figure 3. In this effect, the direction of brightness change does
not consistently correlate with the amount of black or white border in contact
with the gray test patch or in its general vicinity. It can easily be seen from
Figure 3 that the same vertically oriented rectangle that we used in the SBC
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Fig. 4. (a) The White effect stimulus when convoluted with MDoG. (b) Horizontal line
profiles through the two test patches in (a). Here unlike in Figure 2(b), the test patch
in brighter neighbourhood has become brighter.

Fig. 5. The DeValois and DeValois Checkerboard stimulus

(Figure 1), when sitting on the white stripe of a vertical grating, appears darker
than an identical test patch sitting on a black stripe. Because the later test patch
has more border contact with the black flanking bars and yet appears darker, the
effect is opposite to the SBC and hence cannot be explained by lateral inhibition.
Most of the explanations of White effect provided so far are not computational
models, except that of Ross and Pessoa [11]. But the White effect can also be
explained in the light of a simple modification of the classical DoG model, that
takes into consideration a disinhibitory contribution from the amacrine cells
[12]. This model is based on the existence of an extended surround beyond the
classical receptive field. Such an extra-classical receptive field is reported both
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for LGN cells as well as the retinal ganglion cells [13,14]. The proposed Modified
DoG model is:

MDOG(σ1, σ2, σ3) = A1
1√

2πσ1

exp(− x2

2σ1
2
)−A2

1√
2πσ2

exp(− x2

2σ2
2
)

+A3
1√

2πσ3

exp(− x2

2σ3
2
) (2)

This simple computational model is capable of explaining the White effect. If
we convolve Figure 3 with this model, we find that the convoluted image bears

Fig. 6. (a) The Checkerboard stimulus when convoluted with MDoG. (b) Horizontal
line profiles through the two test patches in (a). Here again the test patch in brighter
neighbourhood has become brighter.

Fig. 7. The Howe stimulus
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Fig. 8. (a) The Howe stimulus when convoluted with MDoG. (b) Horizontal line profiles
through the two test patches in (a). Here again, unlike the White effect the test patch
in brighter neighbourhood has become darker.

Fig. 9. (a) The Howe stimulus when convoluted with MDoG for the alternative set-
tings. (b) Horizontal line profiles through the two test patches in (a). Here neighbour-
hood has no effect on the luminance of the test patches.

signature of the illusory perception in Figure 4 (a). This can again be verified by
drawing horizontal profiles through the two test patches, with two neighbouring
stripes on either side of each, as shown in Figure 4(b). A similar stimulus is the
checkerboard illusion [6], shown in Figure 5. This is also inexplainable with the
isotropic DoG model, since the test patch with darker neighbourhood on the left,
appears less bright than the one with brighter neighbourhood on the right. This
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Fig. 10. (a) The benchmark image of egg-on-plate. (b) The resultant image when (a)
is convoluted with a Gaussian function. (c) The resultant image when (a) is convoluted
with the MDoG function.

illusion can also be explained with the help of the modified model for exactly
the same parameter values as for explaining the White effect. This can be seen
in Figure 6(a) and 6(b).

2.3 The Gestalt Theories and Their Limitations

The White effect and checkerboard illusions have led many investigators to aban-
don spatial filtering and receptive field based explanations, not only for these
particular cases, but for brightness perception in general. Consequently, three
explanations of the White effect that have been put forward are all certain rule
based theories. For example Todorovic [15] put forward a T-junction rule and
Anderson [16] also suggested a lightness rule. The computational model based
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Fig. 11. (a) The intensity profile of AB marked in Figure 10(a) has been plotted with
a solid line. The thicker dotted line represents the same line profile in Figure 10(b) and
the thinner dotted line, that in Figure 10(c). Clearly, the MDoG function can behave
as a smoothing function, like the Gaussian. (b) The intensity profile of CD marked in
Figure 10(a) has been plotted with a solid line. The coarser dotted line represents the
same line profile in Figure 10(b) and the finer dotted line, that in Figure 10(c). Clearly,
the MDoG function can also behave as an edge enhancing function, like any derivative
operator and unlike the Gaussian.

on higher level groupings that was forwarded by Ross and Pessoa [11] in its
simplified form, also segments visual scenes by means of T-junctions. However,
all the three explanations are incomplete if we consider the Howe effect, a novel
variation of White’s display [8] shown in Figure 7, where the T-junctions remain
exactly the same compared to Figure 3 and yet the image perception changes. It
was reported by Howe [8], that when this stimulus was observed by thirty-three
naive observers, almost all of them reported either an opposite perception of
brightness compared to White effect or no illusory perception at all. None of the
three Gestalt explanations mentioned above, can explain these perceptions.

3 Results with the Proposed Dynamic Model

The modified DoG model proposed in the previous section has been found to
be very effective in explaining many brightness-contrast illusions [9]. From this
work, we find that the model is actually a dynamic one that operates at prac-
tically three different sets of amplitudes (A1, A2 and A3) and sampling inter-
vals depending upon the illusory stimulus. If we apply the set of values used
for explaining SBC by the proposed model [9], then convoluting Figure 7 with
this model we achieve an explanation of the perception of those seventeen ob-
servers who reported an opposite perception of brightness compared to White
effect. This has been shown in Figure 8 (a) and in its horizontal line profiles in
Figure 8 (b).

If on the other hand, we apply the settings for explaining Mach band and
Hermann grid illusion [9] when convoluting, we arrive at the explanation of



Early Vision and Image Processing 225

Fig. 12. (a) The benchmark image of Lena. (b) The resultant image when (a) is con-
voluted with a Gaussian function. (c) The resultant image when (a) is convoluted with
the MDoG function.

those thirteen observers who reported equiluminance for both the patches. The
convolution result and its corresponding line profiles are shown in Figure 9 (a)
and 9 (b).

Finally, we apply the proposed filter on benchmark images and analyse the
results. We find that the proposed filter behaves simultaneously as a smoothing
function and an edge enhancer, in contrast to a normal Gaussian function that
can only act as a smoothing function. This is clear from Figures 10 and 11 us-
ing the benchmark image egg-on-plate. Thus unlike the Laplacian of Gaussian
function [17], which is an equivalent to the DoG, even without applying a deriva-
tive filter, we have achieved an enhancement of edges, together with smoothing
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Fig. 13. (a) The intensity profile of AB marked in Figure 12(a) has been plotted with
a solid line. The thicker dotted line represents the same line profile in Figure 12(b) and
the thinner dotted line, that in Figure 12(c). Clearly, we find again that the MDoG
function can behave as a smoothing function, like the Gaussian. (b) The intensity
profile of CD marked in Figure 12(a) has been plotted with a solid line. The thicker
dotted line represents the same line profile in Figure 12(b) and the thinner dotted line,
that in Figure 12(c). So we find again that the MDoG function can also behave as an
edge enhancing function, like any derivative operator and unlike the Gaussian.

using a linear combination of three Gaussian functions at different scales. For
the benchmark image (Figure 10(a)) we have selected two horizontal line pro-
files AB and CD in two different regions of the image and compared the effects
along these two profiles, after applying the Gaussian filter (Figure 10(b)) and
the proposed filter (Figure 10(c)) respectively. The corresponding line profiles in
Figure 11(a), show that like with the Gaussian, a smoothing has been achieved
along the profile AB, with the proposed filter as well. On the other hand, the
line profiles in Figure 11(b), show that unlike the Gaussian the proposed filter
at the same time enhances the edge along the profile CD. Another benchmark
image of Lena has similarly been processed and analyzed in Figures 12 and 13,
yielding similar results.

4 Conclusion

Evidences in favour of a dynamic model of primary visual processing is presented
here, based on a step-by-step information processing approach in contrast to the
rule-based Gestalt approach. The model is able to explain not only the low-level
brightness-contrast illusions, but also those, which were so far supposedly totally
outside the purview of low-level vision. It is also capable of enhancing image
edges without direct differentiation. Hence smoothing and edge enhancement
may simultaneously be achieved in this new biologically inspired approach.
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Abstract. The notion of topographic features like ridges, trenches, hills,
etc. is formed by visualising the 2D image function as a surface in 3D
space. Hence, properties of such a surface can be used to detect features
from images. One such property, the curvature of the image surface,
can be used to detect features characterised by a sharp bend in the
surface. Curvature based feature detection requires an efficient technique
to estimate/calculate the surface curvature. In this paper, we present an
alternative measure for curvature and provide an analysis of the same
to determine its scope. Feature detection algorithms using this measure
are formulated and two applications are chosen to demonstrate their
performance. The results show good potential of the proposed measure
in terms of efficiency and scope.

1 Introduction

A feature detection system for 2D digital images is a part of the back-end of
computer vision systems. It is commonly preceded by an image enhancement
system and operates on the intensity values of the image pixels. The detected
features which are used by a higher level system for further processing and
understanding of the scene, are of two types: (a) perceptual features such as
edges, corners, contours, boundaries etc., and (b) topographic features such as
ridges, valleys, watersheds etc.

The notion of topographic features, such as ridges, valleys, watersheds etc., is
formed by visualising the 2D image function as a surface in 3D space. Features
of this kind are detected by exploiting the properties of the image surface. One
such useful property, which can be used to detect image features, is the curvature
of the image surface. It has been successfully used to detect ridges, valleys, thin
nets and crest lines from digital images [1] [2]. In general, curvature can be
used to detect features where the image surface bends sharply. Such features are
characterised by points of maximal curvature on the image surface.

Detection of features using curvature information requires efficient techniques
to calculate the curvature of image surfaces. A common approach to curvature
based feature detection is based on the differential geometry of image surfaces

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 228–239, 2006.
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[3] [4]. For every point (m,n) on an image, a surface f(m,n) is fit to the ’neigh-
borhood’ of the point prior to computing the first and second partial derivatives.
There exist two curvature measures, namely, the maximum and minimum prin-
cipal curvatures along two orthogonal principal directions which measure the
bend in the surface and are typically used to detect ridges and valleys from dig-
ital images. A pixel is defined as a ridge pixel if the magnitude of the maximum
principal curvature (MPC) at that pixel is a local maximum in some direction.
Depending on the reference coordinate system, a high negative curvature indi-
cates a strong ridge strength while a high positive curvature indicates a strong
valley strength, or vice versa. The direction along which the MPC is a maximum
is the direction perpendicular to the orientation of the ridge (or valley) at that
pixel. An algorithm for the curvature-based feature detection approach described
above can be found in [4]. The algorithm involves four steps: Fit a surface I(m,n)
to the neighborhood of the point of interest (a local graph representation); com-
pute the first and second partial derivatives of the image function; determine
the principle curvatures of the surface; and finally evaluate curvature measures
to find desired features.

Curvature can also be estimated without the knowledge of a local graph rep-
resentation [5] [6]. Such methods calculate the principle curvatures of the surface
numerically from an ensemble of directional curvature estimates. Estimation of
curvature using these methods seem to perform about as accurately as the an-
alytic techniques [7]. Furthermore, lack of need for a local graph representation
reduces the computational load relative to the analytic techniques.

In this paper, we define a curvature measure, called the Surface Tangent
Derivative (STD), as an estimate of the curvature of image surfaces. Though
slightly different from the true curvature measure, STD lends itself for a com-
putationally efficient implementation. This ability makes it a superior measure
than the standard curvature for use in real time feature detection applications.

The paper is organised as follows. The proposed curvature measure (STD) is
derived in section 2. An analysis of the same is presented in section 3 and an
efficient implementation of the measure is presented in section 4; algorithms for
detecting two different kinds of topographical features are presented in section 5;
and section 6 presents validation of STD on two different applications followed
by concluding remarks.

2 The Surface Tangent Derivative (STD)

The curvature at a point on the image surface is a measure of the bend in the
surface along a particular direction. Because of this direction-specific nature of
curvature, one can define the curvature of the image surface along a particular
direction, in terms the curvature of the 1D profile of the image intensity values
along that direction. In this section, we present an alternative measure of surface
curvature of 2D digital images using such an approach. Before presenting the new
measure, we shall first review the definition for curvature of a 1D function.
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Fig. 1. Illustration of curvature of a 1D function

Let y = f(x) be a 1D function. Let the tangent at a point P : x on this function
make an angle θ with the x-axis as shown in Figure 1. If dl is the differential arc
length at the point P , then the extrinsic curvature of the function f(x) at this
point is defined as:

k(x) =
dθ

dl
=

dθ√
dx2 + dy2

=
dθ
dx√

1 + ( dy
dx )

2
(1)

Since, θ is the angle made by the tangent with the x-axis, it can be computed
as:

θ = tan−1

(
dy

dx

)
(2)

Hence, the numerator term dθ
dx can be computed as:

Υ (x) =
dθ

dx
=

d

dx

[
tan−1

(
dy

dx

)]
=

d2y
dx2

1 +
(

dy
dx

)2 (3)

Substituting the above expression in equation 1, we get:

k(x) =
d2y
dx2(

1 +
(

dy
dx

)2) 3
2

(4)

which is the true curvature measure. As the point P moves on the curve y = f(x),
the tangent angle θ changes. This change over a given arc length dl is the true
curvature measure k(x). On a closer examination of equation 1, we can see
that the numerator term Υ (x) represents the rate of change the tangent angle
with respect to the projection of the arc length over the x axis. Comparing the
equations 3 and 4, we see that the two expressions differ only by the power
of the denominator. Significantly, Υ (x) will peak sharply at the locations of
medial points of ridge profiles (as does k(x)), where the first derivative of the
profile function vanishes and the second derivative is a negative maximum. We
propose using Υ (x) as an alternative to the true curvature measure k(x) since
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it also provides information about the rate of change the tangent angle as a
point moves along a curve. In the case of 2D images, Υ (x) corresponds to a
derivative of the angle made by a surface tangent line with the image plane, in
some direction. Accordingly, we distinguish it from the true curvature measure,
by calling it as the Surface Tangent Derivative (STD). We will now analyse STD
as a curvature measure. The analysis is aimed at providing information about
the of STD as a feature detector, specifically for ridges/valleys. A theoretical
analysis of the scope of STD is also useful to determine its limits as compared to
the true curvature measure. A 1D profile-based analysis of the for true curvature
measure has been reported in [8]. We follow a similar analysis for STD to assess
its scope relative that of true curvature.

3 The Scope of Proposed STD Curvature Measure

A ridge/valley detection technique detects the medial lines of surface struc-
tures using their curvature information. Medial lines are loci of ‘medial points’
of the cross section profiles of ridges/valleys. Therefore, it has been shown [8]
that 1D profile functions can be used to perform an analysis of curvature based
ridge/valley detection, by reformulating the original 2D framework to detect me-
dial points of 1D profile functions. We begin with some definitions. Let f : � → �
be a 1D function. If a point x = a is a point of local maximum of the func-
tion y = |f(x)|, then it is a point of magnitude maximum (PMMAX) of the
function y = f(x). Similarly, if a point x = a is a point of local minimum of the
function y = |f(x)|, then it is a point of magnitude minimum of the function
(PMMIN) y = f(x).

Lemma 1: Let f : � → � be a 1D function for which derivatives upto the
second order exist. If

(a)
[
dy

dx

]
x=a

= 0 and, (b)
[
y
d2y

dx2

]
x=a

< 0

then, x=a is a PMMAX of the function y = f(x).

Proof: Follows from definition of derivatives. See [8] for details.
We shall now state the criterion for curvature based medial point detection

using the STD.

Definition 1: Let f : � → � be a 1D function for which derivatives up to the
second order exist. A point x = a is a medial point of the function y = f(x) if
it is a PMMAX of Υ (x).

The PMMAX of the curvature is where the first derivative of the curvature van-
ishes. The derivative of the curvature is found by differentiating the expression
in equation 3.

dΥ

dx
=

d3y
dx3

(
1 +
(

dy
dx

)2 )
− 2 dy

dx

(
d2y
dx2

)2

(
1 +
(

dy
dx

)2
)2 (5)
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Considering equation 5, it is clear that the first derivative of the curvature
can vanish under four different conditions. These are:

C1 ::
dy

dx
= 0,

d2y

dx2
�= 0,

d3y

dx3
= 0; C2 ::

dy

dx
= 0,

d2y

dx2
= 0,

d3y

dx3
= 0

C3 ::
dy

dx
�= 0,

d2y

dx2
= 0,

d3y

dx3
= 0; C4 ::

dy

dx
�= 0,

d2y

dx2
�= 0,

d3y

dx3
�= 0

In C4, the numerator as a whole, of the expression on the right hand side of
equation 5 goes to zero.

Fig. 2. Cross- section of a ridge and the various points of extremal curvature

The second derivative of the profile function is zero in C2 and C3. Hence, by
equation 3, the STD measure of the profile function also goes to zero at such
points. Therefore, a point satisfying C2 or C3 cannot be a PMMAX of the STD
function. A medial point is either the top of a ridge profile, or the bottom of a
valley profile. In other words, the medial points are points of the extremal image
intensities. Hence, a PMMAX which satisfies C4 cannot be a medial point of
a ridge/valley profile. Such PMMAX occur as ’knee/elbow’ points of the ridge
profiles as shown in fig. 2. In practice, it is either rejected by setting a threshold
or in few rare cases, is wrongly classified as a ridge/valley pixel. Therefore, medial
points which satisfy the criterion in Definition 1 should satisfy only C1. However,
a point satisfying C1 need not satisfy the criterion in Definition 1. The condition
under which a point satisfies C1 is also a PMMAX of the STD function can be
found by applying Lemma 1 to the STD expression in 3. This condition is:[

d2y

dx2

{
d4y

dx4
− 4
(
d2y

dx2

)3
}]

x=a

< 0 (6)

If at some points on the profile, the fourth-derivative is non-zero in addition
to C1 being satisfied and the curvature function has a PMMAX, then, the profile
function has to satisfy the inequality in 6. This can be proven by expanding the
STD expression using the Taylor’s series. A detailed proof is given in [8].

We can now identify the classes of ridge/valley profiles detectable using the
STD. C1 requires the third-derivative to be zero while the second-derivative is
non-zero. There are five different possibilities for the second derivative function:



An Alternative Curvature Measure for Topographic Feature Detection 233

Class 1: It has a PMMAX where the first derivative vanishes.
Class 2: It is non-zero and is a point of inflection where the first-derivative
vanishes.
Class 3: It is a non-zero constant function and there exists a point where the
first-derivative vanishes.
Class 4: It has a non-zero PMMIN where the first and fourth-derivatives vanish.
Class 5: It has a PMMIN where the fourth-derivative is nonzero, and condition
C1 and the inequality 6 are satisfied at that point.

These correspond to five classes of ridge/valley profiles that can be detected
using the STD. The STD measure rejects PMMINs of the curvature function
and non-extrema which have also been shown to be rejected by the true curva-
ture measure k(x) [8]. Thus in terms of scope, the STD is identical to the true
curvature measure. However, due to the difference (lower for STD) in the power
of the denominator of Υ (x) and k(x) we can expect a lower specificity for the
STD, which is not a serious problem in many applications. In the next section,
we present a efficient method for computing the proposed STD measure.

4 Calculation of STD

The proposed scheme calculates the STD measure at a pixel location (which
corresponds to a point on the image surface) for a particular direction α. Let
the STD measure at a pixel location (n,m), along a direction α, be denoted
by Γ (n,m, α). Using equation 3, the angle made by the surface tangent with
the image plane at a pixel (n,m), along the direction α in the base-plane, is
calculated as:

Ψ(n,m, α) = tan−1[Iα(n,m)] (7)

where I(n,m) is the image function, Iα(n,m) is the first directional derivative
along the direction α. The STD is the derivative of the angle Ψ and given as:

Γ (n,m, α) = Ψ(n,m, α) (8)

In the above equation, Ψ(n,m, α) is the directional derivative of the surface
tangent angle Ψ , in the direction α. We can use an efficient numerical technique
to estimate these derivatives. In theory, at any given point on the surface, an
STD measure can be obtained for every possible direction measuring the bend in
the surface along that particular direction. However, for a function defined over a
discrete grid (such as digital images), it is possible to evaluate the STD measure
only along a finite number of directions. Thus, the STD can be calculated in four
directions at each point, and the results be combined to obtain the two principle
curvatures. The four different directions correspond to the 8 neighbours of a
pixel. These four directions are specified in the set Ω = {−45 ◦, 0 ◦, 45 ◦, 90 ◦}.
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5 Topographical Feature Detection Using STD

Topographical features are characterised by high values of STD measure. In this
section, we present algorithms for detection of two different kinds of features
namely ridges/valleys which are characterised by points of maximum curvature
in a particular direction and hills/craters which are characterised by maximum
curvature in all directions.

5.1 Ridge Detection Algorithm

Let I(n,m) be the image function.Calculate the STD for four different directions
as Γ (n,m, a), α ∈ Ω . Let tΓ be the threshold for ridge strength. For every pixel
location (n,m), do the following:

1. Evaluate |Γmax| = max{Γ (n,m, α);α ∈ Ω} and the corresponding orienta-
tion αmax.

2. If |Γmax| > tΓ and Γ (n,m, αmax) < 0, then:
– Check if |Γmax| is greater than |Γ (n,m, α)| of the neighbouring pixels cor-
responding to the direction αmax. If yes, then mark the pixel (n,m) as a
ridge pixel. Else,do nothing.
Else: Do nothing.

Fig. 3. Satellite test image and 3D profiles of ridges within sub regions

5.2 Hill Detection Algorithm

The ridge detection algorithm can be modified to label a pixel as a hill pixel if
the value of |Γ (n,m)| is a maximum in all directions.
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6 Case Studies

We have chosen two different applications to test feature (ridges and hills) de-
tection using the STD. The purpose of these case studies is to validate the work-
ing of STD measure and not to evaluate it against existing solutions to these
problems.

6.1 Road Detection in Satellite Images

Roads in satellite images can be seen as narrow ridges or valleys in the intensity
plane (shown in fig. 3). Curvature-based approaches have been used to extract
road structures [9]. The ridge detection algorithm was used to extract roads from
the satellite image using the STD measure computed using a fixed sized mask
of 5× 5. Fig. 4 shows the obtained output image.

Fig. 4. Output image showing ridges (in white)

The presented scheme for ridge detection is able to extract all ridge profiles in
the given input image. The image contains different profiles of the ridges which
vary in their shape and intensity. The shape of a ridge is more important in
extraction rather than the intensity values. In general, road detection methods
involve two processes: road detection, post-processing. Post-processing uses do-
main knowledge to reduce the outliers from the road extraction module. In our
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result, we only present the results of road extraction process. Standard criteria
to evaluate any road detection method include continuity in roads’ structure, no
under- and over-detection. The presented detection result appear to meet the
given criteria. The medial lines of the salient roads are continuous in the output
image. The profiles which are similar to ridges are extracted very well. STD’s
capability to extract different types of ridges profiles (in equation 3) are well
illustrated in this case. However, the result seems to be noisy which is due to
the presence of structures whose profiles are similar to the ridge profiles. As of
now, our scheme does not use any domain knowledge of the structures such as
their location, surround regions, characteristics of roads, etc. These information
can be used to improve the results.

6.2 Detection of Micro-Aneurysms (MAs) in Fundus Fluorescein
Angiograms (FFA)

Most diseases of the retina alter the structure and the functionality of the vas-
culature in the retina. One such disease, the Diabetic Retinopathy (DR), leads
to the occurance of neo-vascularisation. Neo-vascularisation is the growth of
new blood vessels branching out of the existing vessels. The early sprouts of
these new vessels are called microaneurysms (MA). They are bulb-like micro-
scopic structures occuring as small and bright circular disks in FFA images.
MAs are therefore an important lesion in any retinopathy screening programme.
Computer automated detection of MAs offers a fast, objective and reproducible
method for quantifying DR, which also reduces the manual workload.

Fig. 5. A sample FFA image and the 3D profile of an MA

MAs appear as bright tiny spots in FFA images. If the image is visualised as
a surface in 3D space, MAs form hill-like features (shown in Fig. 5). Hence, a hill
detection algorithm can be used to detect MAs. A typical cross-sectional profile
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of a hill-like feature along some direction, is similar to profile shown in Fig. 2.
The medial point of such a profile is a hill point and characterised by maximum
curvature in all directions.

The algorithm given in section 5.2 is used to extract hill-like features (MAs).
A threshold tΓ for the strength of the hill-ness of a pixel is set so that the hills
detected have a certain minimum strength. This helps in filtering out noise pixels
which are otherwise prone to detection as hill pixels. Noise is further reduced by
smoothing the image using 5 × 5 gaussian mask before the STD computation.
The MAs vary in their size and appear as hills of different shapes (narrow to
wide). As a fixed size mask is inadequate to capture all these features, we used
multiple scales to compute the STD measures and collated (using a simple logical
OR operation) the results across scales. Computation at 4 scales was used with
Sobel masks of sizes (from 5× 5 to 11× 11) were used.

Fig. 6. Output of multi-scale detection of MAs shown superimposed on the original
image

The results of MA detection are shown in Figure. 6 superimposed on the origi-
nal image for convenience. MAs are indicated by enclosing with 4 small lines. The
STD-based hill detection algorithm is able to detect all MAs present in the given
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FFA image. However, it also gives false responses close to the veins which have
similar characteristics as MAs. It is difficult to avoid such false responses in the
detection process. These false responses can be removed using post-processing
steps. It is noteworthy that our tests done over 25 FFA images (and visually ver-
ified by a medical expert) have shown that the detection rarely resulted in any
false negatives [10]. In summary, we can state that STD based method provides
a reliable extraction of hill profiles which helps to develop solutions for various
image analysis problems.

7 Discussion and Conclusion

Topographical feature detection using curvature information is a widely used
technique. We have re-examined the definition for extrinsic curvature and pro-
posed a simpler curvature measure (STD) based on the derivative of the surface
tangent to an image surface. A theoretical analysis of the the proposed measure
has also been presented which shows its scope to be equal to that of the true
curvature measure. STD-based algorithms were used to detect roads and MAs
and the obtained results demonstrated the ability of STD to capture a variety
of ridge/hill profiles. The results also illustrated that continuous ridge lines can
be obtained using the STD-based approach. Theoretically, the STD has a lower
specificity compared to the true curvature measure. The conducted experiments
on ridge/hill detection using the STD did not focus on this point. Analytical and
empirical determination of the degree of specificity of STD vs. true curvature is
currently being investigated.
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Abstract. This paper presents a novel image enhancement algorithm using a 
multilevel windowed inverse sigmoid (MWIS) function for rendering images 
captured under extremely non uniform lighting conditions. MWIS based image 
enhancement is a combination of three processes viz. adaptive intensity 
enhancement, contrast enhancement and color restoration. Adaptive intensity 
enhancement uses the non linear transfer function to pull up the intensity of 
underexposed pixels and to pull down the intensity of overexposed pixels of the 
input image. Contrast enhancement tunes the intensity of each pixel’s 
magnitude with respect to its surrounding pixels. A color restoration process 
based on relationship between spectral bands and the luminance of the original 
image is applied to convert the enhanced intensity image back to a color image. 

1   Introduction 

A human observer can clearly see individual objects both in the sunlight and 
shadowed areas, since the eye locally adapts while scanning different regions of the 
scene. The size of pupil is variable to accommodate different levels of radiance from 
different regions in a scene, while the camera aperture is fixed when capturing the 
scene. Current imaging and display devices such as CRT monitors (100:1) and 
printers are limited dynamic range devices. The best photographic prints can provide 
contrasts up to 103:1. But the real world scenes can reach a dynamic range of six 
orders of magnitude (106:1). When attempting to display high dynamic range images 
into low dynamic range devices, either the low intensity areas, which are 
underexposed, or the high intensity areas, which are overexposed, cannot be seen. To 
handle this problem, various image processing techniques such as histogram 
equalization, gamma correction, logarithmic compression and levels/curves method 
were developed. They are usually based on global processing, so they have some 
limitations such as loosing some features during processing, and not enhancing some 
features. More advanced image enhancement techniques have been developed to 
obtain better performance. These techniques are able to compress the dynamic range 
while maintaining or improving local contrast to achieve high visual quality.  

Various techniques were developed to deal with images captured in non uniform 
lighting conditions. Retinex based algorithms developed from E.Land’s theory [1] are 
effective techniques dealing with dynamic range compression and color constancy. 
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Rahman et al. [2-4] modified the Retinex theory with another center/surround method 
(Multi Scale Retinex with Color Restoration - MSRCR) which computes the new 
pixel by a ratio of the treated pixel to the weighted average of the surrounding pixels. 
The drawback of MSRCR is that the color restoration function changes image 
chromatics in an unpredictable fashion. To treat this problem dynamic range and color 
constancy are computed independently. The MSR is only applied to the luminance 
channel to preserve the chromatics of the original image. Luma dependent nonlinear 
enhancement (LDNE) [5] processes only the luminance information of the color 
images instead of all three spectral bands to reduce the processing time. Color noise in 
shadow/dark areas are suppressed by adding the convolution results instead of 
multiplying them. In MSRCR and LDNE, dynamic range compression and contrast 
enhancement are implemented jointly but AINDANE (Adaptive Integrated 
Neighborhood Dependent Approach for Nonlinear Enhancement) [6] and IRME 
(Illuminance-Reflectance Model for Nonlinear Enhancement) [7] use separate 
processes for dynamic range compression and contrast enhancement. 

In computer graphics, the tone mapping solves the problem of reproducing the 
HDR images on LDR devices [8-9]. Larson et al. [10] developed a tone-mapping 
operator based on iterative histogram adjustment and spatial filtering process. The 
aim of this operator is to produce images that preserve visibility in high dynamic 
range scenes. Chiu et al. [11] considered that tone mapping should be neighborhood 
dependent. Schlik [12] developed the Chiu’s algorithm by using a first-degree rational 
polynomial function to map high-contrast scene luminance to display system values. 
This function is not adaptive enough for contrast enhancement for all images. 
Pattanaik et al. [13] presented a tone-mapping algorithm that represents the pattern, 
luminance and color processing in the Human Visual System. This algorithm allows 
not only chromatic adaptation, but also luminance adaptation. However, as other local 
processing algorithms, it is sensitive to strong halo effects. To eliminate the halo 
effects, Tumblin and Turk [14] developed a Low Curvature Image Simplifier (LCIS) 
method. This method can accept inputs from real world image maps and produces 
necessary output for any device. LCIS separates the input scene into large features 
and fine details, compressing the former and preserving the latter. This method 
drastically reduces the dynamic range, but tends to overemphasize fine details. 
Raanan Fattal [15] used the gradient field of the luminance image for HDR 
compression by attenuating the magnitudes of large gradients. 

A new image enhancement technique named MWISE (Multilevel Windowed 
Inverse Sigmoid for Enhancement) is proposed in this paper for enhancing the images 
captured in extremely non-uniform lighting conditions. MWISE is capable of 
compressing bright regions and at the same time enhancing the dark regions by 
preserving the main structure of the illuminance - reflectance modality.  

2   The MWISE Algorithm 

The MWISE algorithm for the enhancement of color images consists of three major 
constituents, namely adaptive intensity enhancement, contrast enhancement and color 
restoration. The structure of MWISE is shown in Fig.1. 
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Fig. 1. Structure of the MWISE algorithm for color image enhancement 

2.1   Adaptive Intensity Enhancement  

First, Color images in RGB color space are converted to intensity (grayscale) images 
using NTSC standard method defined as                            

                   BGRyxI ×+×+×= 114.0587.02989.0),(                          (1) 

where R, G, B are the red, green and blue components of a color image. 

Illumination Estimation. Illumination in an image is characterized by two com- 
ponents: illumination ),( yxL  and reflectance ),( yxR , and is defined as: 

                     ),().,(),( yxLyxRyxI =                                                   (2) 

Illumination represents the low frequency components of the image and reflectance 
represents the high frequency components. Hence a Gaussian low-pass filtered result 
of the intensity image is considered as illumination, which is obtained as: 
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where F is the 2D Gaussian function with size M×N and can be defined as: 
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yxFK  and c is the size of the neighborhood. 

Averaging Illumination and Intensity for Bright Pixels. The estimated illumination 
is smooth in the parts of the image illuminated from the same luminous source, but 
however, it can also present abrupt variation when the scene is illuminated by 
different light sources in the case of background lights. So, the illumination 
estimation: for less than 80% of the highest gray scale value (i.e. 255 for 8-bit image) 
is the illumination which is obtained in (3) and for the other gray scale values, a 
weighted averaging of illumination and intensity values are given by: 
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This averaging produces minimum halo effect in bright regions by reducing the 
influence of dark neighboring pixels. After obtaining new illumination estimation, the 
reflectance estimation can be obtained by (2). 

Enhancing Dark Illumination and Compressing Bright Illumination. The new 
illumination value ),( yxL′ is normalized to the range [0 10] using (6) and then 

treated by an enhancement and compression process to increase the illumination 
values of low-illumination (dark) pixels, and to reduce the illumination values of 
high-illumination (bright) pixels using the MWIS transfer function. 
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Then normalized illumination values are treated by this process also normalizes the 
illumination values to the range [0 1]. This transfer function can be defined as 
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where α is a parameter to adjust the curve for dark pixels and β  is a parameter to 

adjust the curve for bright pixels. For adaptive-ness of MWIS transfer function, 
intensity image is divided into sub images of sizes based on the image enhancement 
experiments and can be expressed as: 

 0.0625 0.0625m M n N= × = ×                    (8) 

where m and n define the size of the sub image, M and N define the size of the 
intensity image.  The parametersα and β can be determined based on the mean of 

the darkest sub-image Lm_min and mean of the brightest sub image Lm_max as: 
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A dark image can be determined as an image which has no bright sub image (i.e. 

max_mL is less than 127) and a bright image can be determined as an image which has 

no dark sub-image (i.e. 
min_mL is more than 127) For these images the shapes of the 

curves are adjusted according to the value of the image’s global mean as:  

               5.1
5.63

127
+

−
= mIα           for 127max_ <mL                       (11) 

                             5.1
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128
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−
= mIβ           for 127min_ >mL                        (12) 

Where mI is the global mean of the image. For some type of images, it is desired to 

pull up and pull down the illuminations very much at the same time, but at the 
expense of color consistency. In this situation, the shapes of the curves can be 
adjusted manually. In Fig.2, the shape of the curve for very dark images obtained 
by 5.0=β  and α is tuned with respect to the global mean of the image, and shape of 

the curve for very bright image with 5.0=α  and β  is tuned according to the global 

mean of the image.  

Combination of Enhanced-Illumination and Reflectance. The visually significant 
image features (high frequency components) are combined with enhanced 

 

 

Fig. 2. Various curves of MWIS transfer function 
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illumination to obtain illumination and reflectance components during contrast 
enhancement.  

  ),(),(),( yxRyxLyxI enhenh ′′=                                        (13) 

During this process, a few bright pixels which are surrounded by dark pixels leave out 
the range [0 1].  

2.2   Contrast Enhancement 

A surrounding pixel-dependent contrast enhancement technique is used to obtain 
sufficient contrast, even higher than that of the original image. 

Obtaining Intensity Information of Surrounding Pixels. For a M×N intensity 
image, 2D discrete spatial convolution with a Gaussian kernel is used to obtain the 
intensity information of surrounding pixels and is expressed as 

 

−

=

−

=

++=
1

0

1

0

),(),(),(
N

n

M

m
conv ynxmFnmIyxI                      (14) 

Where Gaussian function can be obtained as 

 +−=
2

2)(
exp),(

c

yx
KyxF                                                 (15)  

Where == 1),( dxdyyxFK  and c is the scale or Gaussian surround space 

constant which determines the size of the neighborhood.   

Intensity Transformation Process. Surrounding intensity information is compared 
with the intensity value of the center pixel and the result is used to identify the value 
of corresponding enhanced intensity pixel by 

 ( , )( , ) 255 ( , )E x y
enhS x y I x y= ×                                         (16) 

where ),( yxS is the pixel intensity value after contrast enhancement and ),( yxE is 

the ratio of the surrounding intensity information over input image, 
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2.3   Color Restoration 

In the MWISE algorithm, a basic linear color restoration process based on the 
chromatic information of the input image is applied. This process can be expressed as 
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where j = r, g, b represents red, green, blue spectral band respectively. 
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3   Experimental Results and Discussion 

The MWIS algorithm was applied to process a large number of images consisting of 
very dark and bright parts. The main beneficial point of the MWISE algorithm over 
MSRCR, LDNE, AINDANE and IRME is the enhancement of the overexposed 
regions. In Fig.3 the image is composed of only bright regions. For this type of 
images, curvature of the second inverse sigmoid is large. In Fig.4 the image is 
composed of only dark regions. For this type of images, curvature of first inverse 
sigmoid is large. MWISE is also tested on daylight images (Fig.5) that do not have 
extremely dark and bright regions. While most of the images are well enhanced, some 
type of images that have mostly blue-sky turns to gray. The brightness of the sky 
misguides the parameter β , so the curve of the second inverse sigmoid function 
shapes more than required. 

   
   (a)                                                   (b)                                                  (c) 

Fig. 3. Image under “over illumination”; (a)Original image; (b) Enhanced image with 
5.0=α  and 5.1=β ; (c) Enhanced image with 5.0=α  and 5.3=β  

      (a)                                              (b)                                                 (c) 

Fig. 4. Image under “low illumination”; (a) Original image; (b) Enhanced image with 
4020.1=α  and 5.0=β ; (c) Enhanced image with 5.3=α  and 5.0=β  

In Figure 6, a sample image is processed for comparison among the 
performancesof the MWISE, MSRCR, AINDANE, and IRME techniques. The 
original image in Fig. 6(a) has some overexposed regions near the lamp and some  
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                   (a)                                               (b)                                                  (c)             

Fig. 5. Image on “daylight”;  (a) Original image; (b) Enhanced image with 28.1=α  and 
3627.1=β ; (c) Enhanced image with 28.1=α  and 5.0=β  

dark regions at the corners. The enhancement result with MSRCR introduced 
unnatural color or artifacts in dark areas as illustrated in Fig. 6(b). Also, the bright 
region near the lamp still cannot be seen. It can be observed that the images processed 
with AINDANE (Fig. 6(c)) and IRME (Fig. 6(d)) have a higher visual quality than 
those processed by MSRCR. They yield higher color accuracy and a better balance 
between the luminance and the contrast across the whole image. But, they are not 
sufficient to enhance overexposed regions. The result of the proposed algorithm is 
illustrated in Fig. 6(e). MWISE produced sufficient luminance enhancement in both 
dark and bright regions and also demonstrate high contrast, since it has flexibility and 
adaptiveness of AINDANE and IRME. Another comparison among these algorithms 
is also performed on different sample image shown in Fig. 7(a). Figures 7(b), 7(c), 
7(d) and 7(e) illustrate the enhancement results of MSRCR, AINDANE, IRME and 
MWISE algorithms, respectively. All of the algorithms performed well for dark 
regions. MSRCR has lack of good contrast for this image. MSRCR and AINDANE 
did not perform well on overexposed regions (middle region of the hurricane). For 
this image, although IRME has the capability to enhance bright region due to the 
shape of the transfer function, the contrast of bright region is not sufficient. 

3.1   Quantitative Evaluation 

The visibility in original images and enhanced images are evaluated by using a 
statistical method [16], which is a connection between numerical and visual 
representations. A large number of images are tested over this statistical method. The 
evaluation of different images and their corresponding enhanced images are plotted 
(in Fig.8). The points, which are expressed with squares, represent the original images 
and the points, which are expressed with circles, represent the enhanced images.  

Effects of the MWISE algorithm are depicted by transferring images towards the 
visually optimal region (rectangle). Since the original images had very dark and/or 
very bright properties, the enhanced images have not moved inside the visually 
optimal region, but they are moving towards this region. 
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(a) Original image (b) Enhanced image with MSRCR 

  

(c) Enhanced image with AINDANE (d) Enhanced image with IRME 

 

(e) Enhanced image with MWIS algorithm (  =0.8, =2) 

Fig. 6. Performance comparisons of the proposed technique 
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(a) Original image (b) Enhanced image with MSRCR           

  

(c) Enhanced image with AINDANE  (d) Enhanced image with IRME          

 

(e) Enhanced image with MWIS algorithm((  =1, =1.5) 

Fig. 7. Performance comparisons of the proposed technique 

 



250 K.V. Asari, E. Oguslu, and S. Arigela 

 

Fig. 8. Image quality evaluations 

4   Conclusion  

A new image enhancement algorithm for extremely non- uniform lighting images 
based on a multilevel windowed inverse sigmoid transfer function has been presented 
in this paper. The intensity enhancement, contrast enhancement and color restoration 
issues were considered separately to make the algorithm more adaptable to image 
characteristics. The input intensity image was separated into the illumination and 
reflectance components preserving the important features of the image. The adaptive 
ness of the transfer function, depending on the statistical information of the input 
image and its sub images, makes the algorithm more flexible and easier to control.  To 
reduce the halo effects in bright regions, neighborhood average of illumination and 
intensity for bright regions was used as estimated illumination. It is observed that the 
MWISE algorithm yields visually optimal results on images captured under extremely 
non uniform lighting conditions. This algorithm would be a promising image 
enhancement technique that can be useful in further image analysis for pattern 
recognition applications. 
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Abstract. Visibility culling of a scene is a crucial stage for interactive
graphics applications, particularly for scenes with thousands of objects.
The culling time must be small for it to be effective. A hierarchical rep-
resentation of the scene is used for efficient culling tests. However, when
there are multiple view frustums (as in a tiled display wall), visibility
culling time becomes substantial and cannot be hidden by pipelining
it with other stages of rendering. In this paper, we address the prob-
lem of culling an object to a hierarchically organized set of frustums,
such as those found in tiled displays and shadow volume computation.
We present an adaptive algorithm to unfold the twin hierarchies at ev-
ery stage in the culling procedure. Our algorithm computes from-point
visibility and is conservative. The precomputation required is minimal,
allowing our approach to be applied for dynamic scenes as well. We show
performance of our technique over different variants of culling a scene to
multiple frustums. We also show results for dynamic scenes.

1 Introduction

Visibility culling of a scene is central to any interactive graphics application.
The idea is to limit the geometry sent down the rendering pipeline to only the
geometry with a fair chance of finally becoming visible. It is important for the
culling stage to be fast for it to be effective; otherwise the performance gain
achieved will be overshadowed. Hierarchical scene structures are commonly used
to speed up the process. Hierarchical culling of bounding boxes to a view frustum
is fast and sufficient in most applications. Assarsson et al. [1] described several
optimizations for view frustum culling. Bittner et al. [2] exploited temporal co-
herence to minimize the number of occlusion queries for occlusion culling to a
view frustum.

Fast frustum culling is particularly crucial for rendering to multiple frustums
simultaneously. (1) CAVE [3] is a multi-display virtual-reality environment which
requires visibility culling to multiple frustums. (2) Another application using
multiple frustums involves occlusion culling of a scene by eliminating objects in
the frustum shadows formed by all principal occluders, as proposed by Hudson
et al. [4]. (3) Cluster-based tiled displays require fast culling to multiple frus-
tums corresponding to each tile in the display (Figure 7). (4) Multi-projector
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display systems [5] use several overlapping frustums corresponding to each of
the projectors. (5) Multiple frustums are also required to compute visibility for
architectural environments [6,7,8].

Any real-world interactive visualization application typically deals with scenes
with millions of triangles. An effective way of arranging the scene involves scene
graphs. The spatial hierarchy of a scene graph greatly reduces the number of
checks for visibility culling. Similarly, when the number of frustums is large, it
is natural to also treat them hierarchically. In the most general case, we would
want to cull any general object hierarchy to any general frustum hierarchy.

In this paper, we use a hierarchical representation of view frustums to cull the
scene to all the frustums coherently. Our method adaptively merges the two hi-
erarchies – the scene hierarchy and the frustum hierarchy – for visibility culling.
To this end, we present an algorithm which determines which hierarchy to tra-
verse and when. To our knowledge, this is the first work which considers this
decision to be important and effective for coherent culling to multiple frustums.
Here, we address the specific problem of culling an object hierarchy to a frustum
hierarchy for a tiled display wall (Figure 7). Our tiled display wall system [9] uses
a number of commodity systems in a cluster, each powering a tile. The system
uses a scene graph (Open Scene Graph [10]) representation of a massive scene.
The network resources limit the amount of data that can be transmitted, thereby
making efficient visibility culling an important requirement. The individual frus-
tums in the display wall have a fixed arrangement with respect to each other
and have a common viewpoint. Such a tight arrangement of frustums motivates
our visibility culling algorithm to perform coherent computations which are both
fast and scalable. We are able to bring down the culling time for a hierarchical
version of UNC’s power plant model for a 4×4 tiled display from about 14 ms
using the traditional approach to about 5 ms using our adaptive algorithm.

Our visibility culling approach performs from-point visibility as opposed to
from-region visibility performed by several other culling techniques [11,12]. Be-
sides, our culling approach is conservative, as opposed to other probabilistic or
approximate culling techniques [13,14,15], which can lead to serious rendering
artifacts. This is critical for the kind of applications in which the multiple frus-
tums come into use. For a cluster-based tiled display wall, for instance, the load
on the network needs to be minimized and the interactivity needs to be pre-
served. Culling determines the geometry that will be cached on the rendering
nodes. Approximate culling techniques lead to probabilistic prefetching, often
leading to freezes during rendering.

We present experimental results from our visibility culling algorithm for the
Fatehpur Sikri model and UNC’s Power plant model. We have focused only
on fast culling to multiple frustums, and have therefore not discussed the later
stages in the rendering pipeline. We compare the results with different variants
for culling to multiple frustums. We also investigate the performance of our
culling technique for a dynamic scene, when many objects change position. This
involves additional overheads in updating the bounding boxes at many nodes
before the culling can be performed.
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2 Related Work

Visibility determination has been a fundamental problem in computer graphics
[16] since the scene is typically much larger than the graphics rendering capabili-
ties. Cláudio et al. [17] and Durand et al. [18] have presented comprehensive visi-
bility surveys. View-frustum culling algorithms avoid rendering geometry that is
outside the viewing frustum. Hierarchical techniques have been developed [19],
as well as other optimizations [1,14]. Funkhouser et al. [20] described the first
published system that could support models larger than main memory, based
on the from-region visibility algorithm of Teller and Sequin [6]. Aliaga et al. [12]
described MMR, the first published system to handle models with tens of mil-
lions of polygons at interactive frame rates, although it did require an expensive
high-end multi-processor graphics workstation.

Assarsson et al. [1] presented several optimizations for fast view frustum
culling, using different kinds of bounding boxes and bounding sphere. For their
octant test, they split the view frustum in half along each axes, resulting in eight
parts, like the first subdivision of an octree. Using bounding sphere for objects,
it is sufficient to test for culling against the outer three planes of the octant in
which the center of the bounding sphere lies. This can be extended to general
bounding volumes as well [21]. Our frustum hierarchy approach is inspired by
this idea of subdividing the view-frustum into octants. However, Assarsson et
al. divide the view-frustum only once, whereas we complete this procedure to
construct a full frustum hierarchy. Bittner et al. [2] used hardware occlusion
query techniques to exploit temporal coherence and reduce CPU-GPU stalls for
occlusion culling. Since the occlusion culling information holds good for all frus-
tums for our specific case of tiled display walls, separate occlusion culling for
each frustum is not necessary.

Another way to look at occlusion relationships is to use the fact that a viewer
cannot see the occludee if it is inside the shadow generated by the occluder.
Hudson et al. [4] proposed an approach based on dynamically choosing a set
of occluders, and computing their shadow frusta, which is used for culling the
bounding boxes of a hierarchy of objects. Bittner et al. [22] improved this method
by combining the shadow frusta of the occluders into an occlusion tree. This
method has an advantage over Hudson et al. as the comparison in the latter
is done on a single tree as opposed to each of the m frustums individually,
hence improving the time complexity from O(m) to O(logm). Our approach
of constructing a tree of view frustums resembles this technique of handling
frustums. We go even further to combine the frustum hierarchy with object
hierarchy.

3 Object Hierarchy and Frustum Hierarchy

We work with two hierarchies in our culling technique. The first is the spatial
hierarchy of the scene, represented using a scene graph (OpenGL Performer
[23], Open Scene Graph [10]). In the Object Hierarchy (OH), each node has a
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bounding volume such that the bounding volume of an internal node entirely
encloses the bounding volumes of all its children. Only leaf nodes contain actual
geometry. A well-formed scene graph would have compact geometry nodes so
that bounding volumes can be used to provide accurate visibility tests.

Fig. 1. Frustum Hierarchy (FH). White boxes represent view frustums. Their hierar-
chical grouping for 3 levels is shown on the right. The bisection plane at each internal
node is also shown. Note that near and far planes are not shown.

The second hierarchy we deal with is that of view frustums (Figure 1). Our
frustum Hierarchy (FH) is analogous to a BSP-like division. In the most general
scenario, a number of independent view frustums in 3D are grouped together
hierarchically. Every internal node’s bounding volume encloses that of its chil-
dren. A plane bisects each internal node’s volume into half-spaces containing
its children. The leaf nodes in the hierarchy correspond to individual view frus-
tums. For a tiled display wall application, each rendering node corresponds to
one view-frustum. The root node in the frustum hierarchy corresponds to the
primary view-frustum (shown in Figure 1). The case of overlapping view frus-
tums, commonly used for multi-projector displays, is easily handled by treating
the overlapping regions as additional independent frustums.

4 Adaptive Traversal of Object and Frustum Hierarchies

Ideal traversal through OH and FH is crucial for optimal performance. The
preprocessing step required is discussed in Section 4.1. In Section 4.2, we first
discuss several schemes for traversing these hierarchies, and then present our
adaptive algorithm.

4.1 Preprocessing

Oriented bounding boxes (OBB) give a compact representation of object’s ge-
ometry and orientation in space. It is desirable that culling be performed to
OBBs only as opposed to the whole geometry since it is fast and conservative.
During the preprocessing stage, the scene graph is loaded into main memory. For
a set of 3D points, their eigen vectors represent their orientation. Therefore, at
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the leaf nodes of OH, the eigen vectors of the geometry points provide oriented
bounding boxes. However, at the internal nodes, we compute the eigen vectors
using just the children’s bounding box vertices. This is a fast approximation of
an oriented bounding box for the internal node.

A Frustum hierarchy, FH, is constructed, with each internal node having
a bisection plane. Beginning at the root node, root in OH, call Algorithm 1
as preprocess(root). Preprocessing takes place in a bottom-up fashion. The
bounding box information thereby computed is stored with each of the nodes in
the scene graph.

Algorithm 1. preprocess(OH Node)
1: G ⇐ φ
2: if not leaf(OH Node) then
3: for all child c of OH Node do
4: preprocess(c)
5: G ⇐ G+ bounding box vertices of c
6: end for
7: else
8: G ⇐ G+ OH Node.getGeometry()
9: end if

10: e ⇐ compute eigen vectors of G
11: BBOX ⇐ compute OBB from e
12: OH Node.save bbox(BBOX)

4.2 Frustum Culling Approaches

Our culling procedure involves a first level culling to the primary view frustum,
so as to eliminate objects completely outside the view. The next step involves
classifying these n objects to m view frustums. A naive approach involves testing
each of these objects with all the view frustums. The expected time complexity
for this approach is O(mn). We now discuss several other hierarchical variations
to this approach, followed by our adaptive algorithm.

OH without FH: This is a commonly used approach, wherein the scene graph is
culled to all the view frustums one by one. It does not exploit any hierarchical
arrangement of frustums, and therefore performs poorly with large number of
view frustums. This approach has a average time complexity of O(m log n).

FH without OH: If the frustum hierarchy only is utilized, each object has to be
tested against it, beginning from the root. For every internal node in the FH, if
an object is present entirely on one side of its bisection plane, its visibility can
be safely eliminated from all frustums lying in the other half-space. Therefore,
we can potentially eliminate half the number of frustums at each node in the
hierarchy. Hence, the average case time complexity is O(n logm).
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Adaptive OH and FH: In both the above cases, the two hierarchies (OH and FH)
are used independent of each other, i.e. when the OH is traversed, frustums are
treated non-hierarchically and when FH is traversed, objects are treated non-
hierarchically. Hence, adaptive merging of the two hierarchies leads to substantial
reduction in computations. Consider the different cases:

– At leaf nodes in OH, only FH traversal remains.
– At leaf nodes in FH, only OH traversal remains.
– At all internal nodes, decide whether to further traverse FH or OH.

The precomputed data stored during preprocessing stage (Section 4.1) is utilized
to arrive at the above decision. If an OH-node is not intersected by an FH-node’s
bisection plane, the frustum hierarchy should be unfolded further, keeping the
OH intact. Unfolding OH here leads to a large number of OH-nodes to deal with
in the next iteration. If the bisection plane of an FH-node intersects the bounding
box of an OH-node, OH should be unfolded, thereby breaking the object to
its constituents. We classify the children into three groups (L=Left, C=Cuts,
R=Right) depending on their position with respect to the FH-node’s bisection
plane. The group L contains all the children lying completely in negative half-
space, R contains those lying in the positive and C contains the rest (the objects
that cut the plane).

For each node OH_Node determined to be visible in the primary frustum, the al-
gorithm adaptive_OHandFH_Cull(OH_Node, FH_root) (Algorithm 2) is called,
where FH_root is the FH root. ClassifyLCR() is an accessory function which
categorizes OH_Node’s children into the sets L, C and R according to their posi-
tion with respect to an FH node’s current bisection plane. The algorithm recurses
for the members in L and R to the corresponding child-frustum (Algorithm 2:
lines 11, 14) while the members of C is recursed for both the child-frustums
(Algorithm 2: lines 7–8). When the FH is exhausted, the remaining objects are
marked to be visible in the corresponding view frustum. The objects in set C
need to be checked with both the half-spaces. However, the number of frustums
under consideration get reduced by half for objects in set L and R, thereby po-
tentially halving the computations. The number of children to deal with might
increase because classifyLCR() breaks up an OH node into its children. At this
stage, there are two options. We can carry on with each object independently
or can regroup the objects in sets L and R into pseudo-groups. This involves re-
computing the bounding box for the pseudo-group. Pseudo-groups do not really
exist in the scene graph but can reduce the computations required for further
stages. Our experiments show that this regrouping is advantageous only for scene
graphs with very high branching factor. Otherwise, the overhead of forming the
pseudo-group overshadow the gain achieved. Note that pseudo regrouping is not
shown in Algorithm 2.

Our adaptive algorithm follows an O(m nlogp q+(p−q) logm) time complexity,
on a quick analysis, where p is the average branching factor of OH and q is the
average number of nodes in set C. Exact analysis is difficult as it depends on
the goodness of the branching and the spatial separation of child nodes at each
level. Hence, p and q depend heavily on the scene structure, the view frustums
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arrangement and the viewpoint. The average case time complexity follows a sub-
linear pattern. In the worst case, the complexity becomes O(m n) when q = p,
when all OH leaves fall in all FH leaves, and the hierarchy is inconsequential.
In the best cast, the complexity is O(logm) when q = 0. This is the situation
when only one FH leaf contains the entire OH. In practice, the algorithm is able
to adapt to variations in complexity of the visible scene, which is very common
during interactive walkthroughs.

Algorithm 2. adaptive OHandFH Cull(OH Node, FH Node)
1: if leaf(FH Node) then
2: Mark OH Node as visible to FH Node
3: return
4: end if
5: [L, C, R] ⇐ ClassifyLCR(OH Node, FH Node.plane)
6: for all c in set C do
7: adaptive OHandFH Cull(c, FH Node.neg)
8: adaptive OHandFH Cull(c, FH Node.pos)
9: end for

10: for all l in set L do
11: adaptive OHandFH Cull(l, FH Node.neg)
12: end for
13: for all r in set R do
14: adaptive OHandFH Cull(r, FH Node.pos)
15: end for

Fig. 2. Hierarchy of objects as visible to a 2×2 tiled arrangement of view frustums.
The grouping of objects is shown. F1, F2, F3 and F4 represent view frustums. Their
adaptive culling is shown in Figure 3.

Line 2 of Algorithm 2 marks the OH_node as visible to the FH_node. Line 5
performs the classification of the object node to L, C and R. Lines 7, 8 recurses
for every child in C, the set of objects cut by the plane. Lines 11 and 14 recurse
to the next stage of FH.

The algorithm can easily deal with dynamic scenes as well, since the preprocess-
ing stage involves cheap eigen-vector calculations only. The visibility determina-
tion remains unchanged. Besides, very little extra data is stored for the
algorithm execution. Note that bisection using a plane is possible in Algorithm 2
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Fig. 3. Adaptive culling of the scene structure in Figure 2. The object and frustum
hierarchies are shown along with already determined visibility list. Working nodes are
shown as light-gray. Dark gray objects are the ones that need to be recursed further. (a)
OH root is classified as per the bisection plane of the FH root. L, C, R classification is
shown. (b) Continuing culling for set C. (c) Continuing culling for set L. (d) Continuing
culling for set R.

for an application such as tiled display walls because the tile sizes are uniform
and the frustum space ultimately divides to form the individual tile frustums. This
might not be true for non-uniform frustums. However, a hierarchy of frustums can
still be built. Only, in such a case, the terminal frustum in line 2 of Algorithm 2
will further involve a check for visibility before marking an object as visible.

5 Experimental Results

We perform several walkthrough experiments on models of different scene com-
plexities to test the performance of the adaptive algorithm. We used a hierar-
chical model of Fatehpur Sikri, which has 1.6 M triangles spread over 770 nodes
(288 internal + 482 leaf), with an average branching factor of 2.67. We also used
a hierarchical model of UNC’s power plant, which has geometry spread over 5037
nodes (1118 internal + 3919 leaf), with an average branching factor of 4.5.

Figure 4(a) shows a logarithmic plot of culling time taken by various algo-
rithms discussed in Section 4.2 for a 4000 frame walkthrough on the Fatehpur
model. The walkthrough is such that the entire scene is visible. This is a worst-
case situation; typical walkthroughs perform better. Our adaptive algorithm
(Algorithm 2) takes the least time almost throughout the walkthrough. This is
followed by the FH without OH approach. The OH without FH approach per-
forms worse than both these two.

Figure 4(b) shows the culling time for a walkthrough on the power plant
model. The plots for OH without FH and FH without OH approaches coincide, as
opposed to lagging performance by OH without FH approach in Figure 4(a). This
is because the high branching factor in OH makes the OH without FH approach
more significant. However, the adaptive algorithm performs significantly better
than all the other approaches.
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Fig. 4. Culling performance for various approaches. The lower the time, the better.
Our adaptive algorithm outperforms others almost throughout the walkthrough.
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Fig. 5. Culling scalability performance on the Fatehpur Sikri model

We conducted scalability tests with respect to the tile size for different config-
urations of tiled displays. Figure 5 shows the plots for our adaptive algorithm for
an 11000 frame walkthrough of the Fatehpur Sikri model. The algorithm takes
about 11 ms, on an average, for culling to an 8×8 configuration, thereby making
the culling applicable for setting up display walls of such configuration. Other-
wise culling time limits the overall frame rate achievable on a server-managed
display wall such as ours(Figure 7, [9]), where the rendering is done by client
machines and data-transmission can be performed in parallel with the culling of
the next frame.

Figure 6 shows the performance of our adaptive algorithm for a dynamic
scene. Different percentages of the scene is changed prior to every update. Dy-
namic scenes have objects moving in space. The bounding boxes of these objects
and their parents till the OH root need to be recomputed. Fast OBB com-
putations (Section 4.1) permit dynamic scenes to be culled at interactive frame
rates. Although speed can be further increased with axis-aligned bounding boxes
(AABB), it comes at the cost of poor visibility culling. In an optimal situation,
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Fig. 6. Culling performance on the power plant scene for different percentages of dy-
namic objects. The model has a total of 5037 objects. The performance with AABB is
better than with OBB but at the cost of over-conservative visibility culling.

Fig. 7. A 4×4 display wall rendering of UNC’s Powerplant. The combined resolution
is 12 MPixels. Efficient rendering to a display wall requires fast visibility culling of
the scene to all the frustums. Adaptive culling by merging of the object and frustum
hierarchies makes this possible for even bigger tile configurations.

a hybrid of both OBBs and AABBs should be used. It is beneficial to compute
AABBs for dynamic portions of the scene. Note that the percentage of dynamic
objects shown in Figure 6 are extreme case situations. In practice, the scenes
are less dynamic and so the adaptive algorithm performs even better.

6 Conclusions and Future Work

We presented a conservative, from-point visibility culling approach for culling a
large scene to a hierarchy of view-frustums. We presented an adaptive algorithm
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which determines the optimal path, merging object and frustum hierarchies.
The algorithm performs logarithmically in practice. Due to this, it can scale well
for large number of frustums which is critical for the application scenario of a
tiled display wall. The performance gain by our algorithm is shown on several
walkthrough experiments. The algorithm makes culling for very large tile display
setups feasible. Huge models can be handled at interactive frame rates. We also
showed that the adaptive algorithm is applicable for dynamic scenes as well.

Though we showed the performance on a two-dimensional, tight-fit array of
frustums, the results can be extended to other hierarchies of frustums. We are
currently extending it to other typical situations like a 2D array of frustums
with small overlap used in multi-projector displays. We are also working on
culling to general frustum hierarchies needed for applications like shadow volume
computations. A BSP-tree like partitioning of the frustums, very similar to our
current approach, will be needed in such cases.
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1. Assarsson, U., Möller, T.: Optimized View Frustum Culling Algorithms for Bound-
ing Boxes. Journal of Graphics Tools: JGT 5 (2000) 9–22

2. Bittner, J., Wimmer, M., Piringer, H., Purgathofer, W.: Coherent Hierarchical
Culling: Hardware Occlusion Queries Made Useful. Comput. Graph. Forum 23
(2004) 615–624

3. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based
virtual reality: the design and implementation of the CAVE. In: SIGGRAPH.
(1993)

4. Hudson, T., Manocha, D., Cohen, J., Lin, M., Hoff, K., Zhang, H.: Accelerated
occlusion culling using shadow frusta. In: Symposium on Computational geometry.
(1997)

5. Raskar, R., Brown, M.S., Yang, R., Chen, W.C., Welch, G., Towles, H., Seales,
W.B., Fuchs, H.: Multi-projector displays using camera-based registration. In:
IEEE Visualization. (1999) 161–168

6. Teller, S.J., Sequin, C.H.: Visibility preprocessing for interactive walkthroughs. In:
SIGGRAPH. (1991)

7. Airey, J.M.: Increasing update rates in the building walkthrough system with
automatic model-space subdivision and potentially visible set calculations. PhD
thesis (1990) Director-Frederick P. Brooks, Jr.

8. Airey, J.M., Rohlf, J.H., Frederick P. Brooks, J.: Towards image realism with
interactive update rates in complex virtual building environments. In: Symposium
on Interactive 3D graphics. (1990)

9. Nirnimesh, Narayanan, P.J.: Scalable, Tiled Display Wall for Graphics using a
Coordinated Cluster of PCs. In: 14th Pacific Conference on Computer Graphics
and Applications (Pacific Graphics). (2006)

10. Burns, D., Osfield, R.: OpenSceneGraph A: Introduction, B: Examples and Appli-
cations. In: IEEE Virtual Reality Conference. (2004)



Culling an Object Hierarchy to a Frustum Hierarchy 263

11. Funkhouser, T.A.: Database Management for Interactive Display of Large Archi-
tectural Models. In: Graphics Interface. (1996)

12. Aliaga, D.G., Cohen, J., Wilson, A., Baker, E., Zhang, H., Erikson, C., III, K.E.H.,
Hudson, T., Stürzlinger, W., Bastos, R., Whitton, M.C., Jr., F.P.B., Manocha, D.:
MMR: an interactive massive model rendering system using geometric and image-
based acceleration. In: Symposium on Interactive 3D Graphics. (1999)
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Abstract. Recent advances in three dimensional Electron Microscopy
(3D EM) have given an opportunity to look at the structural building
blocks of proteins (and nucleic acids) at varying resolutions. In this pa-
per, we provide algorithms to detect the secondary structural motifs (α-
helices and β-sheets) from proteins for which the volumetric maps are
reconstructed at 5 − 10Å resolution. Additionally, we show that when
the resolution is coarser than 10Å, some of the tertiary structural motifs
can be detected from 3D EM. For both these algorithms, we employ the
tools from computational geometry and differential topology, specifically
the computation of stable/unstable manifolds of certain critical points of
the distance function induced by the molecular surface. With the results
in this paper, we thus draw a connection between the mathematically
well-defined concepts with the bio-chemical structural folds of proteins.

1 Introduction

Three dimensional Electron Microscopy reconstruction(3D EM) and in particu-
lar single particle cryo-EM reconstruction [1], has advanced rapidly over recent
years, such that several macromolecules (complexes of proteins and ribo-nucleic
acids or RNA) can be resolved routinely at low resolution (10-20 Å) and in
some cases at sub-nanometer (intermediate) resolution (7-10 Å) [2]. The ultra-
structure of these complexes once elucidated from the 3D EM (henceforth 3D
Maps), provide not only insights into individual protein and RNA folds and
structural motifs, but even more importantly provide information about how the
various structural components interact. In addition, with the increasing capabil-
ity of determining multiple structural folds and conformers (secondary structures
and tertiary arrangements) of a complex [3], there is the promise of studying the
dynamics of such interacting systems.

Proteins are polypeptide chains of amino acids, (and nucleic acids are sugar-
phosphate chains of acidic bases). The secondary structure of proteins are made
up of a set of helical (or crudely, cylindrical) arrangement of sub-chains called α-
helices and mostly planar arrangement of sub-chains called β-sheets. The various
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(a) (b) (c) (d) (e) (f)

Fig. 1. Secondary structure elucidation algorithm for Insulin Receptor Tyrosine Kinase
Domain with pdbid: 1IRK. (a) volume rendering of its blurred 3D Map at 8Å resolution
(b) surface rendering of the protein’s molecular surface (c) pointset sampling of the
molecular surface (d) The red patch inside the transparent surface depicts the β-sheet
while the straight lines designate the axes of the cylinders which correspond to the
α-helices (e) The secondary structural motifs, documented in the Protein Data Bank,
where the helices are shown as ribbon coils and the sheets are sets of ribbon strands.
(f) combined display of (d) and (e).

structural conformations of sub-groups of helices and sheets, yield the various
different tertiary folds [4]. Relatively similar configuration of secondary and ter-
tiary folds arise also in RNA [5].

In this paper, we provide a solution to the problem of automatically elucidat-
ing the structural secondary and tertiary folds of proteins (and nucleic acids)
from 3D Maps of macromolecular complexes. A 3D Map is akin to a 3D spatial
matrix of electron density values. With the improved reconstruction resolution
of 3D Maps of macromolecules via 3D EM, the secondary and tertiary struc-
tural folds of proteins and RNA can be fully elucidated. Often (as evidenced by
structures in the PDB), the atomic resolution structures of individual proteins or
RNA, that make up the macromolecule are also discerned via X-ray diffraction
and/or Nuclear Magnetic Resonance techniques, allowing us to validate our 3D
EM secondary/tertiary structure elucidation algorithms [6]. Depending on the
resolution of the 3D Map (in Å), our goals here are to either detect the secondary
structural motifs, or segment the molecule into significant components that can
be associated with different tertiary structural folds.

Our processing pipeline has three macro steps, namely, (i) segmentation of
the macromolecular 3D Map into individual protein (or RNA), subvolumes us-
ing the techniques of [7] and implemented in the publicly available VolRover
tool [8]. (ii) computation of a “distance function” to a suitable molecular surface
approximation of the individual protein (or RNA) using the methods detailed
in [9,10] (iii) medial axis computation, classification, and construction of stable
and unstable manifolds of the critical points of different indices. We skip a de-
scription of the first step, as the most recent developments are summarized in
[7]. Step (ii) is sketched in Section 3, for completeness. The main contributions
of this paper are: (a) Elucidation of secondary structural motifs (α-helices and
β-sheets) from relatively higher resolution (5− 10Å) 3D Map of individual pro-
tein or RNA molecules, (b) Decomposition of the molecular surface of individual
proteins or RNA, into its tertiary structural motifs, for 3D Maps at relatively
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coarser resolution (10−15Å). Figure 1 shows the steps of the secondary structure
elucidation process on the 3D Map of protein 1IRK at a resolution 8 Å.

Prior Work. There are relatively few published algorithms that detect α-helices
and β-sheets of proteins from 3D Maps at coarse resolution (> 6Å). Wen et
al have devised an algorithm called Helix Hunter [11] for detecting α-helices
in a low resolution map where they modeled the helices as cylinders and the
density function of the cylinder is convolved with the original map to detect
the peaks of the cross-correlation. The main disadvantage of this technique is
that it searches exhaustively over the space of all rigid-body transformations
and therefore is very slow. A similar approach for detection of β-sheets was
adopted by Kong and Ma [12,13] who modeled it as a disk like primitive and
searched through the input map to find the possible positions of the disk that
yielded high cross-correlation. This work, due to its exhaustive search paradigm,
is also extremely compute intensive. Recently, Yu and Bajaj [14] have developed
a secondary structure elucidation algorithm based on the relative magnitudes
of the eigenvalues of the structure tensor computed at various select groups of
voxels.

Given a compact surface Σ smoothly embedded in R
3, a distance function hΣ

can be assigned over R
3 that assigns to each point its distance to Σ. hΣ : R

3 →
R, x �→ infp∈Σ ‖x − p‖ In applications, Σ is often known via a finite set of
sample points P of Σ. Therefore it is quite natural to approximate the function
hΣ by the function hP : R

3 → R, x �→ minp∈P ‖x − p‖ which assigns to each
point in R

3 the distance to the nearest sample point in P . Distance functions
have found use in surface reconstruction [9,15,16,17], Medial axis approximation
[18,19], shape segmentation and feature analysis [20]. Recently, Goswami et al
[21] have presented an algorithm to compute the unstable manifolds of the index
1 and index 2 saddle points of this distance function and demonstrated its use
in detecting flat and tubular features of any shape.

2 Preliminaries

Voronoi-Delaunay Diagram: We do not to go over the detail about this well-
known datastructure due to space limitation and encourage reader to consult
a standard computational geometry textbook [22]. In this work, we primarily
use the duality of Voronoi and Delaunay diagram which states that every k ≤ 3
dimensional Voronoi element is dual to a 3− k dimensional Delaunay simplex.

Critical Points of hP : The critical points of hP are the points in R
3 which lie

within the convex hull of its closest points from P . It turns out that the critical
points of hP are the intersection points of the Voronoi objects with their dual
Delaunay objects [23].

– Maxima are the Voronoi vertices contained in their dual tetrahedra,
– Index 2 saddles lie at the intersection of Voronoi edges with their dual De-

launay triangles,
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(a) (b) (c) (d)

index 1 saddle

Fig. 2. The relative position of Voronoi and their dual Delaunay objects that results
in the generation of critical points

– Index 1 saddles lie at the intersection of Voronoi facets with their dual De-
launay edges, and

– Minima are the sample points themselves as they are always contained in
their Voronoi cells.

An illustration of the four types of critical points and the relative position of the
Voronoi/Delaunay objects resulting these four types is shown in Figure 2.

At any point x ∈ R
3, one can assign a vector field which is the direction of

the steepest ascent of the distance function. The critical points are assigned zero
vectors. This vector field induces a flow. If a point is allowed to move following
the vector field, it traces an orbit and ends at a critical point. The set of points
whose orbits end at a critical point c is called the stable manifold of c. Similarly, a
point traces an inverted orbit when it follows the steepest descent of the distance
function, and ends at a critical point c′. The set of points whose inverted orbits
end at c′ is called unstable manifold of c′.

The stable manifold of a maximum is a three dimensional polytope which
is bounded by the stable manifold of critical points of lower indices. Similarly,
the unstable manifold of a minimum is a three dimensional polytope which is
bounded by the unstable manifold of critical points of higher indices. In this
paper, our focus is on stable manifold of maxima and unstable manifold of the
index 1 and 2 saddle points.

3 Secondary Structure Identification

The processing pipeline of α-helix and β-sheet identification from 3D Maps, con-
sists of the following steps:

(a) Molecular Surface Extraction and Sampling: Starting with a 3D EM map
of a protein (or RNA), a molecular surface is extracted via contouring [24]. For
robust contouring, we use the implementation in the publicly available software
TexMol [25]. Although several possible isosurfaces can be computed from the 3D
Map, we select an isovalue using contour trees [26] (also implemented in TexMol),
and topological curation wherein the isosurface is a single connected component,
after removal of smaller completely nested surface components (i.e. voids). We
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call this extracted and curated surface component the molecular surface S of the
protein (or RNA). Further, a sufficiently dense set of points are sampled from
S. We call this poinset P which becomes the input to the latter stages of our
algorithm.

(b) Detection of index 1 and index 2 critical points of hP (Sec. 2).
(c) Computing unstable manifold of a subset of those critical points (Sec. 3.1).
(d) Detection of α-helix and β-sheets from the unstable manifolds (Sec. 3.2).

3.1 Computing U1 and U2 from P

Structure and computation of the unstable manifold of an index 1 saddle point
(U1) and an index 2 saddle point (U2) have been described in detail in [21]. For
completeness, we describe it briefly here.

U1: Unstable Manifolds of index 1 saddle points are two dimensional. An index 1
saddle point, c lies at the intersection of a Voronoi facet F and a Delaunay edge.
For any point x ∈ F \ c, hP increases radially outward from c. Therefore the orbit
of one such x hits the Voronoi edges bounding F . Thus F is in U(c). Once the
flow hits a Voronoi edge, if the dual Delaunay triangle is acute angled, the flow is
along the Voronoi edge, and otherwise, the flow enters the Voronoi facet dual the
Delaunay edge opposite to the largest angle of the dual Delaunay triangle. This
iterative process computes the unstable manifold of c. The exact computation and
its approximation have been described in [21]. Figure 3(a) illustrates an interme-
diate stage of this computation where the blue facet contains c, yellow facets are
currently in U(c) and pink facets are to be included in the subsequent iterations.

U2: An index 2 saddle point is generated by the intersection of a Voronoi edge
and a Delaunay triangle. The unstable manifold of an index 2 saddle point is
one dimensional. It is a polyline with one endpoint at the saddle point and the
other endpoint at a local maximum. The polyline consists of segments that are
either subsets of Voronoi edges or lie in the Voronoi facets. Due to the later case,
the polyline may not be a subcomplex of VorP . Again, the exact computation
and its approximation have been described in [21]. Figure 3(b) illustrates an
example. Figure 3(c) shows the unstable manifolds of index 1 and index 2 saddle
points on the interior medial axis of the 3D map of molecule 1IRK.

index 2 saddle

maximum

(a) (b) (c)

Fig. 3. General structure of U1 and U2 is shown in (a,b). (c) A collage of U1 (yellow)
and U2 (red) of the molecule 1IRK. Note U2 bounds U1.
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3.2 α-Helix and β-Sheet Selection

The unstable manifold of index 1 and index 2 saddle points restricted to the
medial axis of the molecular surface decomposes the medial axis into linear (U2)
and planar (U1) portions. We call the linear subset ML and the planar subset
MF . The next task is to select a subset of ML and MF that gives the α-helices
and β-sheets of the protein. Typically, an α-helix is a cylindrical subvolume of
the molecule which is of width approximately 2.5Å. Also the subvolume does not
deviate much from a straight cylinder for proteins [4,11]. These two conditions,
dictate the following computational steps.

The unstable manifold of every index 2 saddle on the medial axis is a polyline
with Voronoi vertices at the joints. Every Voronoi vertex has hP value which
can be computed by the circumradius of the dual Delaunay tetrahedron. Locally
this gives the radius of the cylinder that best fits the molecular surface in the
cylindrical regions. We first populate the set H with the Voronoi vertices whose
hP values fall within 2Å and 3Å. A 3Å neighborhood graph is then computed
over H that clusters the points. The choice of 3Å is dictated by the fact that
pitch of the helices is 1.5Å and usually there is more than 2 turns in every helix.
The diametrical point pair in every cluster is then computed. The maximum
deviation of any intermediate point from the straight line joining the point pair
decided how straight the fitted cylinder to the cluster is. This way we select those
clusters from H and the cylinders fitted to these clusters produce the detected
α helices. The process is shown in 4(b).

(a)

(b)

(c)

(d)

Fig. 4. (a) The molecular surface of 1IRK. (b) The selected Voronoi vertices on U2

and the fitted cylinder. (c) Filtering out subsets of U1 which are small (green) or do
not satisfy the width test (magenta). (d) shows the secondary structures obtained from
the PDB and its correspondence with the computed structure (b,c).

The selection of β-sheets is similar. U1 gives the possible candidates for β-
sheets. First we notice that there are some tiny components that are created
due to sampling artifacts, and they do not correspond to real planar substruc-
tures of the molecule. We first filter these small clusters out (green patches in
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Figure 4(c)). After this first stage of filtering, we are left with the planar subsets
of the medial axis (cyan in Figure 4(c)). At this point we apply the knowledge,
that β-sheets are of width roughly 1.5Å [4,12] and we filter out the planar patches
which do not satisfy this “thickness” criterion. The width of a facet in U1 is easy
to check as they are the Voronoi facets and therefore have an 1-1 correspondence
with their dual Delaunay edges which cross the medial axis. Therefore, we se-
lect only those Voronoi facets from U1 whose dual Delaunay edges are of length
between 1Å and 2Å. The portions of U1 which are filtered out by this test are
shown in magenta in Figure 4(c). The rest of U1, which qualify for β-sheets, are
shown in cyan. The sheets detected in are shown to correspond well with the
β-sheets of the molecule 1IRK obtained from Protein Data Bank.

4 Tertiary Fold Elucidation

Tertiary structural folds (or motifs) provide useful information about the con-
formational and packing arrangement of a protein molecule. Such tertiary folds
can be discerned when a coarser resolution 3D Map of the molecule is available.
In this section, we show how such information can be gleaned again by looking
at the distance function hP induced by the set of points P sampled on an ap-
proximation of the molecular surface S extracted from a coarse resolution 3D
Map. Our main focus is on the maxima of hP . We have already seen that the
maxima are the intersection of the Delaunay tetrahedra with their dual Voronoi
vertices. In other words, these are the circumcenters of only those Delaunay
tetrahedra whose circumcenters lie inside them. As a first step of the tertiary
fold detection, we collect the maxima which are the circumcenters of the interior
Delaunay tetrahedra.

Once the set of interior maxima is populated, we use their stable manifolds to
decompose the volume bounded by S into a set of bio-chemically meaningful seg-
ments. These stable manifolds are three dimensional solid subsets of the interior
of the molecular surface S. Such techniques have been proved useful earlier in
segmentation and matching of free-form objects [20]. We follow the algorithm for
computing the stable manifold of a maximum approximately, as described in [20].

Given two Delaunay tetrahedra σ and σ′ which share a common triangle t, we
say σ < σ′, if the circumcenter of σ lies in the half-space defined by t that does
not contain the fourth vertex of σ. Figure 5(a) describes this case. Note that σ′

is not always unique (Figure 5(b)). However, this can be proved that, a Delaunay
tetrahedron σ can have at most two neighbors σ1 and σ2, for which σ < σ1 and
σ < σ2. Also, it is to be noted, that the Delaunay tetrahedron σmax whose dual
Voronoi vertex is a maximum, has none of its neighbors σ′ for which σmax < σ′.

Following the above observation the stable manifold of the maxima are ap-
proximated. The set of maxima is sorted according to hP . Starting from the
biggest maximum, the algorithm collects all σ which falls under the transitive
closure of the relation ‘<’. A subtle problem remains. The stable manifolds of
the maxima are often numerous, and therefore they need to be clubbed carefully
to bring out the underlying features of the molecule. To this goal, we apply a
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Fig. 5. (a) σ1 < σ2. (b) The situation when σ has two neighbors σ′ and σ′′ for both of
which σ < σ′ and σ < σ′′. (c) 1TIM: Helices surround the sheets to form the tertiary
structure called α/β-barrel. (d) Molecular surface of 1TIM at 15Å resolution. (e,f) The
initial segmentation and further refinement to bring out the β-fold of the barrel from
the surrounding helices (yellow, magenta and blue).

merging step, which adjoins two stable manifolds of two maxima sharing a com-
mon boundary when the hP function values at the maxima as well as at a point
on the common boundary are comparable to each other.

Figure 5(c-f) shows an example of the stable manifolds and the tertiary folds
that they correspond to. It is worth mentioning that, in our experience, tertiary
motifs are not always readily decomposable using this algorithm. Nevertheless,
we observe that the decomposition algorithm successfully detects the helical re-
gion and separates them from the beta regions. The beta regions are sometimes
decomposed into more than one component which need to be associated sepa-
rately to reflect a single fold.

5 Implementation and Results

For calibrating our structure elucidation algorithms, we downloaded atomic level
descriptions of proteins from the Protein Data Bank [27]. For each protein, we
first “blurred” them into a 3D map (to correspond to a reconstructed 3D EM
map) at varying resolutions (5 to 15 Å), using publicly available software EMAN
[28]. From these volumetric maps, we extracted the proteins molecular surface
using TexMol [25]. Next we collected a pointset sampling of the molecular

Table 1. Name and PDBID of the proteins used in the calibration process

PDBID Protein PDBID Protein

1IRK Insulin Receptor Tyrosin Kinase Domain 1TIM Triose Phosphate Isomerase

1PLQ Proliferating Cell Nuclear Antigen 1RIE Rieske Iron-sulphur Protein

1CID T Cell Surface Glycoprotein CD4 1MBN Myoglobin

1VDF Cartilage Oligomeric Matrix Protein 1JPC Agglutinin

1AOR Aldehyde Ferrodoxin Oxydoreductase 1BBH Cytochrome C’
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surface, and used the Cocone software for surface reconstruction and medial
axis computation [29]. The next step was to detect the critical points and com-
pute the stable/unstable manifolds of a subset of the critical points. These com-
putations rely on the Voronoi Diagram - Delaunay triangulation of the pointset,
and were done using the CGAL library [30].

The calibration process is essential before we apply them to 3D EM maps of
unknown atomic descriptions. The datasets used in the calibration process are
summarized in Table 1. Details of the molecules are available from the Protein
Data Bank (PDB) via the pdbid. Figure 6 shows the snapshots of the key steps
of the algorithm. Figure 6(a) shows the U1 (green) and U2 (red) of 1BBH. The
clusters of points lying on U2, selected by the width criterion of α-helix, and the

(a) (b) (c) (d)

1BBH (8 Å)

(e) (f) (g) (h)

1RIE (8 Å)

1MBN (5 Å) 1CID (8 Å) 1BP1 (8 Å)

1VDF (6 Å) 1JPC (8 Å) 1TIM (8 Å)

Fig. 6. Performance of our α-helix and β-sheet detection algorithm
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(a) (b) (c) (d)

1AOR (12Å)

(e) (f) (g) (h) (i)

1PLQ (12Å)

Fig. 7. Performance of the tertiary fold elucidation algorithm

axis of the cylinders to be fitted to the clusters are shown in Figure 6(b). Figure
6(c) shows the secondary structure of 1BBH documented in the PDB. It has
total 8 helices and all of them are detected correctly (green cylinders) by our
algorithm (Figure 6(d)). The second row in Figure 6 shows similar set of pictures
for 1RIE. It has three β-sheets which are identified correctly (red, yellow and
blue patches). Third and fourth row show the performance of the algorithm on
six more molecules at varying resolutions.

Figure 7 shows the performance of our tertiary fold detection algorithm. Top
row shows the secondary structure of 1AOR as provided by PDB along with
the ensemble of the segments of the protein at 12 Å. The tertiary structure of
1AOR is named as β sandwich. The two red segments (in c) correspond to the
two β-sheets. The bottom row shows similar results for 1PLQ (at 12 Å). The
tertiary fold elucidation can successfully separate the three sheets (red, yellow,
green) from the helices (blue).

6 Conclusions

We have presented an algorithm for secondary and tertiary fold elucidation of
a protein from 3D EM maps at varying resolutions. Similar constructions are
applicable for ultra-structure elucidation of RNA’s. The algorithms work by
analyzing the stable and unstable manifolds of a subset of the critical points of
the distance function, computed from the molecular surface pointset sampling
of the protein.

The algorithm presented in this paper relies on a suitable approximation of
the molecular surface. We plan to further investigate the choice of such surfaces
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based on the bond lengths of the atoms present to narrow down the possible
range of selection.

Also we believe the critical points of hP which lie outside the molecular sur-
face, carry useful information about the tertiary structure. For example, pres-
ence of α/β barrels accommodate a through hole in protein surface which can
be characterized by exterior index-2 saddle points.
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Abstract. Terrains and other geometric models have been traditionally
stored locally. Their remote access presents the characteristics that are a
combination of file serving and realtime streaming like audio-visual me-
dia. This paper presents a terrain streaming system based upon a client
server architecture to handle heterogeneous clients over low-bandwidth
networks. We present an efficient representation for handling terrains
streaming. We design a client-server system that utilizes this represen-
tation to stream virtual environments containing terrains and overlayed
geometry efficiently. We handle dynamic entities in environment and the
synchronization of the same between multiple clients. We also present
a method of sharing and storing terrain annotations for collaboration
between multiple users. We conclude by presenting preliminary perfor-
mance data for the streaming system.

1 Introduction

Traditional graphics applications store all geometry locally in the main memory
itself. Geometry can also be stored remotely and received progressively when
needed and rendered on the fly. Streaming of geometry of large virtual envi-
ronments can be beneficial and difficult if the network bandwidth is low. Such
systems find applications when data cannot be replicated easily. Dynamic envi-
ronments such as those used for battlefield visualization involving real terrains
and multiple players is an example. Different users may read/update parts of
the virtual environment while maintaining a collaborative and consistent system
across heterogeneous users connected from client machines with different capa-
bilities and network bandwidths. A similar situation is presented by massive,
multi-player online games consisting of dynamic persistent worlds.

Geometry cannot be split into frames or chunks unlike media like audio and
video. Some parts of a model cannot be lost unlike video where the loss of a
frame may be acceptable. A complete model is necessary to render geometry.
Each may be used for rendering several frames and hence need to be stored at
the client. In this sense, geometry should be served like files from a file-server.
On the other hand, geometric model should reach in time for real-time rendering
of the final rendered video. Delay can result in the undesirable effects like the
freezing and popping. The real-time constraint makes it possible for us to talk
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about streaming geometry. The parallel in geometry to the reduced bit-rate
encoding of audio and video is level of detail (LOD), which is the representation
of the shape at different levels of approximations. The server can send a lower
detail model to the client to reduce various resource requirements. Thus, remote
access of geometry is an interesting mix of data serving and content streaming.

In this paper, we address the issue of streaming terrain data over networks.
Real terrain datasets can span multiple gigabytes in size and are difficult to
render interactively using brute force methods. Level of detail methods must be
used to reduce the amount of detail to be rendered. However, if we are to ren-
der terrains remotely, the biggest bottleneck is the available network bandwidth
between the server and the client. We need to optimize the transmitted terrain
data accordingly depending upon client type and and available bandwidth. This
is a hard problem as the system must achieve performance akin to local ren-
dering at the client end. This is compounded by the fact that the system must
keep track of any dynamic entities that exist in the environment and update
the clients accordingly. This work extends to terrains an earlier work on geom-
etry streaming [1]. We propose an optimized terrain representation based upon
tiles for efficient transmission and rendering in Section 3. In Section 4 we look
at the basic requirements of a geometry streaming system and our design and
implementation of the same. Section 5 presents efficient ways of adapting these
techniques for a terrain rendering system including performance improvements
for the system using the ideas of prefetching and caching. Methods to synchro-
nize and render multiple dynamic entities in the environment are discussed in 6
followed by experimental results in 7 and conclusions 8.

2 Related Work

Media streaming over the web has been popular and several standards exist.
Most media streamers allow a specific bitrate to be chosen based upon available
bandwidth and dynamic changing of bitrate to adjust accurately to client pa-
rameters. Google Earth/Maps streams maps and satellite imagery in real-time
over the internet. However it does not address individual client characteristics
which may lead to lags and freezes.

Djurcilov and Earnshaw added compression of models to VRML and devel-
oped an integrated visualization system, where the basic selection of data is
done by the user [2,3]. However even after revisions of VRML which included
geometry compression (Li et al.) [4], it is not usable for web-based serving since
data needs to be transmitted before rendering can begin. Commercial products
for remote visualization includes VisServer software from Silicon Graphics which
allows rendering of any OpenGL application on remote clients by transmission of
individual frames. Funkhouser describes a system based upon client server archi-
tecture for multi-user virtual environments [5]. The WireGL/Chromium project
is a system that provides the familiar OpenGL API to each node in a cluster,
virtualizing multiple graphics accelerators into a sort-first parallel renderer with
a parallel interface [6]. [7] uses a crude model at the client for navigation and
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streams actual high quality views from the server using viewing parameters to
protect high detail content.

Among geometry based approaches, Schneider and Martin describe a frame-
work which adapts to the client characteristics including network bandwidth and
the client’s graphics capabilities [8]. Martin describes an Adaptive Rendering
and Transmission Environment (ARTE) framework that facilitates the delivery
of 3D models while monitoring the resources available [9]. This uses MPEG4
stream compression which may lead to lag in response to user input. Teler de-
scribes a remote rendering system utilizing path prediction and bandwidth based
level of detail reduction [10]. This system fails to dynamically change/adapt pa-
rameters during the course of the walk-through which may lead to suboptimal
performance. Deb and Narayanan develop a system to stream general polygonal
models between a server and client in [1]. However this approach is suitable for
only tessellated models and may not be the optimal for terrains.

In recent terrain rendering approaches, Lossaso and Hoppe[11] describe how
terrains can be broken into geometric clipmaps of varying metric sizes and that
these clipmaps can be used as Level of Details. This is however not the most opti-
mal representation for streaming. Their method also calculates the blend/morph
factor on a per vertex basis because of inhomoegeneous tile sizes which may slow
down lower end clients. Wagner [12] divides the terrain into regular square tiles for
rendering. However the view frustum culling approach used by [12] fails in cases
when the terrain has large variations in heights. The ground plane is unable to
include the projection of tiles, which are near to the camera looking at horizon,
since they are out of that projection but inside the view frustum. Pouderoux and
Marvie [13] design an out of core terrain rendering system based upon a heuristic
metric. However they do not address the problem of network streaming.

In our system, we follow a technique similar to Wagner [12] for dividing the
terrain into square tiles to make it easy for the geometry streaming system to
select regular data to be transmitted to the client. We can calculate blending
factors on a per tile basis because of the use of a regular tile structure thus
reducing the amount of computation. Given the tile indices, their object space
location is easily computable making query systems on the terrain efficient. How-
ever regular tiles become very small at the extremities of the viewing frustum.
We take care of this problem by using very low levels of detail for such tiles in
view. We tweak Wagner’s frustum culling technique by having the projection on
realtime average height of terrain in the view and not simply the ground plane.

3 Terrain Rendering

We describe the various steps involved in first creating our terrain representa-
tion and then rendering it. Before rendering the tiles, we must store them in
a data structure that is suitable for both rendering and also for transmission.
View frustum culling is required to select only the necessary entities in the view
frustum. VFC is very useful for streaming as it allows us to select only a small
portion of the entire terrain for transmission.
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3.1 Data Organization

Terrain data consists of a height value for every point x, y on a rectangular
grid. We divide it into tiles of equal size for rendering. By equal we mean they
cover the same rectangular area on the heightmap. To handle levels of detail,
we arrange the data in a specific way. For a tile with size 2n × 2n height values,
we store m number of LODs, m ≤ n, m is a user defined number based upon
characteristics and size of the terrain. We also keep the distance between adjacent
heights in x, y as sx, sy Fig 1. For an LOD l we have 2n−l+1+1×2n−l+1+1 (l > 0)
number of height values and 2n + 1× 2n + 1 for l = 0. Note the extra heights at
the end corners of the tiles, they are the height values at the starting corners of
the next tile; kept as they help in stitching (see Section 3.5). This means l = 0
holds highest detail and l = m holds lowest detail as illustrated in Fig. 1. For
l > 0 we keep original height values h at (2i, 2j) locations, 0 ≤ i, j ≤ 2n−l. We
replace the height values at (2i, 2j + 1) locations with avg(h2i,2j , h2i,2j+2), at
(2i+ 1, 2j) locations with avg(h2i,2j , h2i+2,2j), at (2i+ 1, 2j + 1) locations with
avg(h2i,2j , h2i+2,2j+2); where i, j vary as bounded. This is done so that while
rendering when LOD l with alternate height values dropped, we don’t see any
change in the structure.
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Fig. 1. Data organization: An e.g. with n = 3 and m = 3, blue circled height values
are original, rest are interpolated. Note that, they occupy the same area on ground.

3.2 View Frustum Culling

In each frame, we query the graphics API for view frustum equations and calcu-
late the projection P of the frustum (generally a trapezoid) on the base plain.
This base plain is z = ah, ah is the approximated average height of the terrain
in view of previous frame. This is because we haven’t accessed the terrain data
yet and thus will be using the data from previous frame assuming that the view
hasn’t changed much. We then calculate orthogonal bounding rectangle of P .
We can directly map the coordinates of the bounding rectangle to tile indices.
Using these tile indices, we find other tiles that are inside P (Fig.2). We keep
the indices that return positive in a tile buffer Bt for use in rendering. We do not
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Bounding rectangle

Projection of view
frustum on the

base plain

Distances separated by
LOD transition distance

Base Line

Tiles rejected out of
projection

Tiles assigned with l=2

Tiles assigned with l=1

Tiles assigned with l=0

Fig. 2. View frustum culling and LOD assignment

need to do 3D view frustum culling as terrains are injective functions on x, y,
and thus can be reduced to 2D in turn to reduce number of required calculations.

3.3 LOD and Blending Factor Calculation

Using the camera parameters we calculate a base line, that is perpendicular to
the view vector and parallel to the ground plane. For each tile in Bt, we calculate
the perpendicular distance d of its mid point from this line (Fig.2). This distance
d is used to calculate LOD l as �d/lt� where lt is the LOD transition distance. We
choose this distance d instead of the direct distance of the tile from the camera
because if the field of view of the camera is high, we shall end up rendering tiles
at the corner of screen that are actually close to camera in screen space but far
in object space in very low level of detail. The value frac(d/lt) is the blending
factor α. α is used for smooth level of detail changes of tiles as explained in
Section 3.4. We save l and α in Bt along with the tile indices.

3.4 Rendering

With all data in place, the tiles can be rendered from Bt. For all tile indices
in Bt, we load the level l and l + 1 of that tile. The index is clamped to m to
avoid memory exceptions. The distance between adjacent heights for l can be
calculated as (sxl

, syl
) = (sx, sy)2l Fig 1. We calculate the heights h for l > 0 as

h = h(2i,2j)l
(1 − α) + h(i,j)(l+1)

α

l = 0 is a special case: h = h(i,j)0
(1−α) + h(i,j)1

α, i, j vary as bounded. We can
now see that when α is 0, h = h(2i,2j)l

, and when α is 1, h = h(i,j)(l+1)
. Thus

this blending factor is able to smoothly change between the two height values
of 2 different LODs of the same tile as we move the camera. On the fly, we also
calculate the average of the heights at the mid point of these tiles, ah, which will
be used in the next frame for view frustum culling (See Section 3.2).
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i,j

i+1,j

i,j+1

i,j

i+1,j

i,j+1

Fig. 3. Tile Stitching: tile i, j is stitched only to i, j + 1 and i + 1, j

3.5 Tile Stitching

Since every tile is getting assigned l and α independently, we find un-tessellated
areas near the corner of each of the tiles. We assume that a tile on the ground
with LOD l can have a nearby tile whose LOD can be only l − 1 or l + 1. This
makes tile stitching easy and smooth blending of LODs works perfectly. Our
assumption remains true iff lt is always more than the maximum distance a tile
can extend on the ground, i.e., the tile is never able to skip an LOD in between.
So for a tile index ti, tj in Bt, we get the l and α of t(i+1), tj and ti, t(j+1), and
use them for the corner heights of ti, tj Fig 3. Note that we are not looking
at (i− 1, j), (i, j − 1) indices of tiles since those corners are already stitched by
earlier tiles.

4 General Geometry Streaming

The basic objective of a geometry streamer is to provide each client with data
appropriate to it as quickly and efficiently as possible. The server must allow the
highest quality rendered output possible for the client and transmit geometry
and assets that allow the client to maintain an acceptable frame-rate. Changing
latencies should not cause the system to freeze or hang for long durations during
the walkthrough. The server should adapt to the different client parameters such
as graphics capability, network bandwidth and connection latency. Ideally, these
must be met strictly. We briefly outline the basic requirements of a Client-Server
geometry streaming system. The basic architecture of the system is similar to
the system in [1] which may be referred to for further information.

Transparency: A transparent streaming system treats remote and local ob-
jects without distinction. The architecture of the system allows a user program
to include remote models from multiple servers into its local virtual environment.
The client API will handle the necessary tasks such as server interaction, data
caching and management etc., transparently. The streamed data will match with
the client machine’s capabilities and the network properties.

Support for varying clients and networks: No client should receive a
model that it cannot handle at interactive rates. A suitable level of detail is sent
to each client based on capabilities of rendering hardware. Multiple levels of
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detail may be used for improved performance on low-end clients. The heightmap
and model detail can be reduced to handle different connection speeds to avoid
freezing. A model matching the client’s capabilities may be sent subsequently
by progressively refining the original heightmap or model. Frequent updates to
the model at the client can be avoided by sending the client more information
than immediately necessary. Continuous connection monitoring and adjustment
of detail is essential for good streaming performance.

Support for dynamic objects and local modifications: The server mod-
ule should keep track of the static and dynamic objects transmitted to the client
for each of the connected clients. Changes to an existing model in the virtual
environment are notified to all clients possessing the same. All clients must have
access to dynamic objects and their state information. User programs can have
local control of transmitted model. It can mix and match remote models with
local models, and can modify local copies of remote models.

The system consists of the Server Module, the Client Module and the Terrain
Renderer (User Program) as shown in shown in Fig 4.

Fig. 4. Geometry Streaming System Block Diagram

The basic functions of the server module include managing a database of
heightmaps and models, accepting incoming connections from different clients,
serving the clients appropriately and quickly and handling dynamic objects in
the virtual environment. Server receives requests for transmission from clients.
In response, it generates and transmits a representation of the model suitable
for the client. Each client request is translated into a model optimized based on
available bandwidth, client capabilities and viewer speed. Low quality models
will suffice when the user is moving fast, which may be progressively refined
when the user slows down.

The client module interfaces with the user program on one side and the server
module on the other. It provides a client API to the user program through which,
the user program communicates with the client module, provides an initial set
of client parameters and receives data. The amount of data transmitted is to be
minimized by the system to avoid wasteful use of available bandwidth.
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A local model and a remotely served heightmap/model should appear the
same to the user for transparent streaming. A handle to the remote heightmap
or model is returned to the user program by the client module. This is used by
the Terrain Renderer (User Program) directly. The user program is responsible
for the interaction with the user and the navigation control in the virtual envi-
ronment. The user program passes the motion parameters to the client module
on user movement in the virtual environment.

5 Terrain Streaming

In our system, the terrain data exists on the server and must be transmitted
to the client on demand. The renderer described in Section 3 is completely
based on the client side. Instead of loading the data from local storage, the
renderer issues an API call LoadRemoteTile() to the client module. This call
requests for a particular tile in the terrain at a desired level of detail. The
client module maintains a local cache of tiles which is typically much larger
than the number of tiles in the viewing frustum. The cache maintains tiles at
varying levels of detail depending upon initially negotiated client parameters and
available network bandwidth. If the tile does not exist in the client cache, the
client module streams it from the server. Until the tile is actually received, an
upsampled version of the existing data for the same location in the heightmap
is used if available.

Tile Transmission: At the start of the walkthrough, the system transmits a
very low resolution heightmap for the entire terrain dataset. As the viewer moves
around over the terrain, higher quality data is streamed to the client depending
upon viewer position. The renderer will have a bare minimum representation of
the entire terrain available to it. The renderer requests for newer data as and
when required. To transmit the tile, the last transmitted resolution of the tile is
checked and only the residue between the high resolution tile and the supersam-
pled version of the low resolution tile is transmitted to the client by the server.
The residue is compressed using the wavelet based PTC codec [14] before trans-
mission. At the client end, the client module decompresses the representation
and generates the high resolution tile. We use geomorphing to smoothly blend
across tiles without any visible artifacts.

Tile Selection: Selecting the optimal set of tiles to be streamed is difficult
problem. We need to not only select the tiles to stream but also the level of
detail of the tiles to be streamed. We only need to stream tiles that are visible
or would become potentially visible in the near future. This is done by taking
multiple square sets of tiles around the viewing frustum. The inner squares have
the higher levels of detail than the outer squares. Once the frustum moves, newer
higher resolution tiles must be streamed to the client.

Object Selection: Objects present on the tiles are selected in a similar man-
ner as the tiles. The objects are anchored to a particular point on the terrain.
The discrete levels of detail of the object are precomputed. When selecting a par-
ticular level of detail of an object, we check the level of detail of the underlying
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tile and select the LOD of the object accordingly. The entire model must be
transmitted as there is no easy way of creating a general polygonal model from
a residue and lower level of detail in real-time. We maintain a list of transmitted
objects on the server and never retransmit the same or lower level of detail.

The client module performs caching and prediction needed for better perfor-
mance and interfaces with the server. The client module prefetches data based on
predicted motion depending on the latency between the server and the client. The
client caches already transmitted data so that requests can be avoided when the
viewer retraces the navigation path. A balance is established so that the amount
of data prefetched is enough to cover the potential areas in the virtual environ-
ment that the viewer might visit until the time of the next request. Caching
and prefetching are transparent to the renderer. The organization of the cache is
important as a cache miss is extremely expensive as data must be fetched from
the remote server before it can be rendered in full detail. Each heightmap and its
corresponding geometry is timestamped when the cache is updated. The object
tracker logs the objects moving in and out of the cache along with their LOD.

Using the positions of the viewer in the past, the motion parameters are ex-
tracted. These are then used to estimate future motion This method of prediction
works when the motion of the user in the world is smooth and continuous. Good
performance from the prefetching algorithm is absolutely necessary to maintain
a smooth walkthrough. Formally, we average the motion in the last 5 frames to
generate the motion parameters for the next frame. We use a prediction scheme
similar to [15]. However we assume that the rate of change of acceleration is con-
stant. Assuming a constant acceleration may not be the right thing in case an
object is experiencing rotational motion. If ai is the acceleration, vi the velocity
and Pi the position vector in the ith frame which takes ti time to render, assum-
ing that the change in acceleration is smooth, we get the following relationships:
ai − ai−1 = ai+1 − ai or ai+1 = 2ai − ai−1. Knowing that ai = vi−vi−1

ti−ti−1
and

vi = Pi−Pi−1

ti−ti−1
, this reduces to vi+1 = vi + (ti+1− ti)(2ai −ai−1) and finally to

Pi+1 = Pi + c1(ti+1 − ti)vi + c2(ti+1 − ti)2(2ai − ai−1), for some constants c1
and c2. The right hand side of this equation consists of known quantities other
than ti+1. Pi+1 can be written completely in terms of earlier samples of P and
frame time t. We do not reproduce the same here for the sake of brevity. Nor-
malizing Pi+1 will yield us the position vector of the point for which data needs
to be prefetched. Since we do not know the value of ti+1, we must estimate it
from older known values of frame times. Once we know the future position of
the viewer, we can prefetch data corresponding to that particular position. The
amount of data prefetched depends directly on the size of the cache. We can
control the bounds of the area of the terrain to be prefetched depending upon
the cache size.

6 Dynamic Entities and Collaborative Environments

An environment or mode is defined as dynamic if its objects can change in
form, position or appearance or if there is any addition or deletion of objects.
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Synchronization of the state of a dynamic object in all clients is essential to
avoid inconsistencies. The magnitude of the amount of data to be transmitted
depends upon the type of change occurring in the dynamic environment. The
different types of dynamic events that may occur in the VE are:

– Change in the position of an object in the VE: This is the simplest case as
only the new position needs to be sent. If motion is parametric, the positions
can be computed by the user if initialized properly. No data needs to be
transmitted since the position of the object maybe calculated by the client
provided such a motion model is known to the client.

– Change in form/shape of the object: The model of the newly changed shape
needs to be streamed.

– Addition of a new object to the VE: The server needs to calculate which
clients need the object based on the view frustums and notify the clients
accordingly.

– Deletion of an object from the VE: Notify the clients who possess the object.
They in turn can delete the object from their client cache.

To handle dynamic data efficiently, the client must be notified of the changes
immediately. There are two ways in which this can done. One way is to send the
changed data directly. The other way is to inform the clients about the change
and allow them to initiate data transmission. The approach of lazy updates is
preferable since data need not be sent unless needed. When the dynamic object
comes into view at the client’s end, data can be requested for and transmit-
ted. The difference in this scenario over a typical static VE is that the server
needs to initiate the transmission of individual objects in the VE without apply-
ing visibility calculations. This is an additional requirement to handle dynamic
environments. A typical sequence of events during a walk-through of an environ-
ment with dynamic objects is as follows: (1) Dynamic Object is introduced into
the VE or an existing object changes form. (2) Server Module checks the type
of change and the clients affected by it. (3) Server notifies the affected clients
of the change. (4) Clients request and download the required information when
they need it.

Online mapping applications are becoming all pervasive. We have witnessed
web based mapping applications such as Windows Live Local and Google Maps
gain popularity over the past few years. The next step in evolution of such ap-
plications is a real 3D interface with community editing and sharing features.
Our current system allows annotations of the terrain as basic collaborative fea-
tures. Once a user annotates a particular position in the heightmap, the renderer
passes this information to the server. Henceforth these annotations are treated
in the same manner as dynamic objects. The only difference is that we allow
serialization of the annotations at the server side in a database. The entry for
each annotation includes the coordinates of anchor point in the heightmap as
an index for retrieval. Currently we use flat text files but extending it to a real
database instead is easy. The data is preserved across sessions of work. We intend
to improve upon this feature and allow multiple options.
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7 Results

Our test client system consisted of a Pentium M 2GHz laptop with 2GB of
memory and 6800 Ultra graphics. For the low end test, we used a Pentium
4 1.5GHz machine with 256MB memory and onboard Intel 845G graphics. The
server was an AMD Opteron CPU running at 2.8GHz with 2GB of main memory.
Please do note that the clock speeds of the CPUs are not comparable. The
laptop CPU is significantly faster than the low end client because of a better
architecture. The client and server were connected over a 100BaseT LAN. The
lower bandwidth conditions were simulated over this network by limiting network
traffic. The terrain was a 10000x10000 heightmap which was around 300MB of
data. We use the Quality factor metric from [1] to measure the performance of
the system. This metric is 1.0 when the client is rendering at its best LOD.
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Fig. 5. (a) Data transferred during Walkthrough and (b) Achieved Quality Factor

The data transfer graph is indicated in Fig.5. We find that the data transfer
graph is especially smooth. This implies that the walkthrough is free of hitches
and popping. Fig 6 shows the number of high resolution tiles submitted com-
pared to lower resolution tiles. We find that the high resolution tiles account
for the majority of the data transmitted to the client. This is because we use a
lower compression ratio for high resolution tiles as they are close to the viewer.
We find the quality factor 5 to be extremely high as expected with the sys-
tem achieving a high framerate 6. The quality factor seems to degrade with
client type and available bandwidth. The higher end client is worse affected by
lower available bandwidth than the lower end client as a larger amount of data
needs to be transmitted in case of the higher end client. The low end client,
we find that the system is initially unable to cope with the amount of data
causing poor frame rates. The system consequently reduces the highest level of
detail transmitted to the client and henceforth the walkthrough experience is
acceptably smooth. The amount of data transmitted also flattens to a plateau
indicating a smooth walkthrough experience without hitches. The quality factor
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is lower for the low-end client than the high end client but still quite acceptable.
From the low bandwidth tests, we cap the maximum available bandwidth to 100
KB/s. We observe that the network bandwidth is always utilized for progressive
refinement.
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8 Conclusions and Future Work

We presented a Terrain Streaming and Rendering system which renders data
received from a remote server and appropriately adapts to client characteristics
and network bandwidth. The system utilizes a tile representation for efficient
transmission. It uses a combination of visibility culling, clientside caching, spec-
ulative prefetching, motion prediction and deep compression to achieve perfo-
mance similar akin to local rendering. The system supports dynamic entities in
the environment allowing the content developer to create collaborative 3D virtual
environments. It also supports shared annotations as a preliminary collaborative
feature. We intend to include support for realistic terrain deformations at the
client end in future versions along with more collaboration support. Streaming
systems that serve terrains are especially suitable for applications like Virtual
Earth which must transmit large amounts of terrain information. Multiplayer
games and flight simulators shall also benefit by utilizing streaming to incorpo-
rate new content.
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Abstract. High-resolution portable projectors have become commodity
items now to own – but not to use. It is not always possible to find a
display area where the camera can be properly aligned so that an undis-
torted image be seen. We present a method to project an undistorted
image using a digital projector on a piecewise-planar display area.

We use uncalibrated structured light ranging to segment the unknown
projection area and further compute the homographies that map the
projector space to the camera space through each of the planes. The
edge detection and point-correspondences are subpixel precise. Finally,
we use these computed homographies to pre-warp the display image so
that a distortion-free image is visible. Our results show a seamless and
correct rectification with accurate segmentation of the planes.

1 Introduction

Increasingly digital projectors have become commonplace. But using a projector
requires that a good display area be available. This is not always the case. The
costs and maintenance, not to speak of the inconvenience suggests that “it would
be nice to project on an arbitrary wall or desk corner.” Manual calibration of
such a configuration is painstaking and error-prone, and give less than desirable

Projector

Fig. 1. Cluttered working environment precludes casual use of projectors. In this figure,
the projection polygon has been demarcated for clarity. All images in this paper are
best seen in color on a monitor.
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experience. Fig. 1 shows a cluttered office environment where there is no available
area of projection apart from the wall corner. In such an environment it is
imperative that a method be devised to remove the distortion so that the user
sees a rectangular and correct image.

1.1 Projector Camera Systems

Of late, there have been a variety of solutions to this problem and most often, a
camera is used to provide visual feedback to the system (hence the field, called
‘Projector Camera systems.’). These systems range from a simple one-projector
one-camera configuration to clusters of projectors and cameras intended to en-
large the available display area. The primary ideas in this field come from multi-
ple view geometry of cameras [1]. An LCD (or DLP) projector, unlike older CRT
projectors, can be modeled as a pinhole camera. Thus the projector becomes a
dual of the camera and hence, both the capture and the display process can be
represented as perspective transforms.

surface 1

surface 2

projector

camera

Fig. 2. Projector-Camera systems

Problem Definition: The primary components of such a system are a digital
projector, an arbitrary display surface, and a digital camera. We are working with
a model of the system where we have a single projector and camera projecting
on a display surface formed from the juxtaposition of two or more planes as in
Fig. 2. A minimal assumption is that the region of interest is covered in the field
of view of both the camera and the projector.

Related Work: Given a calibrated projector-camera pair, conventional
structure-light ranging can be used to reconstruct a complete 3D model of the
display environment [2,3]. However, such methods are overkill because recovery
of the complete geometry of the scene, the projector, and the camera is not nec-
essary for rectification. In [4], the projection area is divided into a rectangular
mesh and planar homographies are calculated from each rectangle of projection
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to the display. These homographies are then stitched together and the image is
pre-warped to achieve the correction. This method is applicable to any arbitrary
continuous surface. A similar method [5] uses affine transforms rather than ho-
mographies followed by texture-mapping. However, these methods suffer from
artifacts at sharp edges because they do not explicitly identify the planes. The
work most resembling ours appears in [6]; planar homographies are estimated
from projected points and metric rectification is achieved under the constraint
that the display surface contains a rectangle of known aspect ratio whose bound-
aries are visible.

This paper: In this work, we present a method to automatically correct an ad-
hoc projector display using a camera. Correction is achieved in the sense that
the camera position is a ‘sweet spot’ from where the display is guaranteed to be
geometrically identical to what was intended to be displayed by the projector.
Regions around the camera center look acceptable (see Fig. 9). Our method can
be combined with a head tracking system to further correct the display to any
new position the user might move to. The techniques we contribute in putting
together a working system include:

– Automatic segmentation of planar regions. This is the key challenge in ad-
hoc projector usage.

– Use of lines as features instead of points or blobs in the intermediate process
of homography calculation, and the use of point-line duality. The advantage
is that lines are easier to detect and to a greater accuracy using voting mech-
anism. Thus, our system is tolerant to clutter even on the display surface
(see, for example, the white board in Fig. 1).

The rest of this paper is organized as follows. Sec. 2 briefly reviews the theory
of projective transforms and their application in projector-camera systems. The
system design is presented in Sec. 3 followed by implementation details and
results in chapter 4. We conclude in the last section.

2 Homographies for Projector Camera Systems

At the very heart of projector camera systems are planar homographies or pro-
jective transforms. A mapping h : P

2 → P
2 is a projectivity [1] iff there exists

a non-singular 3 × 3 matrix H such that for any point in P
2 represented by a

vector x, h(x) = Hx. P
2 is the projective plane and points are represented in

their homogeneous 3-vector representation. Projectivities form a group since the
inverse of a projectivity is also a projectivity and so is the composition of two
projectivities. Since in homogeneous coordinates lines are the dual of points, for
l ∈ P we have l′ ∈ P

′

l′ = H−Tl

where we have been given a projectivity H from plane P to P
′, and points on the

line related by x′ = Hx.
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projector camera

planar surface

Fig. 3. Projective transform from projector to camera through a plane

Since the camera is the element that can observe images that the projector gen-
erates, albeit through the screen, it is critical to compute the homographies be-
tween these planes. A homography pHs maps points from the projector plane to
the planar display surface, and another homography sHc maps from the surface to
the camera plane. Composing these two we get the transformation from projector
to camera pHc = pHs◦sHc. Thus a point x in the projector plane P is transformed
to point x′ in the camera plane C. Finally cHp is used to pre-warp the input image

screen

cameraprojector

pHs
sHc

pHc

cHp S

S

image

Fig. 4. Projective transforms between the camera, projector and the screen. Correction
happens by applying an inverse map to the projected image.

from the application before projection. The image should now appear rectilinear
in the final camera image except for the scaled rigid-body transform S that pre-
serves shape. It is necessary to apply a correct S to ensure that the pre-warped
image sent to the projector is not clipped to the projector’s resolution.

3 System Design

We now present our system. For simplicity, we assume in the description below
that we are dealing with two planar surfaces, and divide the steps into three stages.
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Structured light: This is the data-collection stage where we use uncalibrated
structured light in the form of lines to identify kinks caused by the inter-
section of the planes. Further, we also identify the line segments that are
formed due to multiple planar regions.

Homography: We determine the line of separation between planes, followed by
a determination of the partitioning of the data. Finally point correspondences
are evaluated from the data and the projective transforms from the projector
plane to the camera plane through each of the surfaces of projection are
found.

Image Correction: The partitioning edge is now identified in the projector
space (rather than the camera space) by using each of the homographies.
Then appropriate inverse homographies are applied to each partitioned re-
gion of the projected image. Finally a stitching is applied.

We now describe details of our system.

3.1 Structured Light

Our structured light registration is run in two phases with different angles for
each of the phases. Common choice of angles for the two phases are 0◦ and 90◦.
For each angle we iteratively create lines and scan the entire projection space.
The corresponding camera images are retrieved and a kink-detection algorithm
is run to find the kink introduced in the line due to the wall corner. This facilities
the breaking of the input lines into line subsegments.

Fig. 5 shows a captured image during the structured light registration phase.
A white line is projected against black background and an image of the display
area is captured by the camera. The following steps are needed to identify the
kink and the individual segments.

Binarize the image: Convert the image to gray-scale and apply a fixed thresh-
old to segment the white projected line from the background. We have seen
that this is quite robust to general ambient lighting. Adaptive thresholds
and other techniques from the image processing literature can be used to
counter the effect of unpredictable lighting.

Line fitting: We use the Hough transform to fit lines to the binary image. The
Hough transform returns all identified lines and we discard lines that lie
too close to each other. Effectively, this ignores clutter on the display area.
The standard Hough transform however identifies only the lines and not the
line-segments and further processing is required.

Kink detection: The detected lines are now intersected to find the kink. We
then sample points in the original image along each line on opposite direc-
tions of the detected kink to partition the line.

Using lines over points/blobs has the advantage that lines are easier to detect and
to a greater accuracy. Blobs tend to get distorted due to perspective distortion.
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(a) Camera image (b) Binary after threshold

(c) Kink detected

Fig. 5. Kink detection in the structured light image

3.2 Point Correspondences and Homographies

Recall that at this stage, we have individual kinks but no line of separation. We
also have false positives in the kinks. We do not know which points belong to
which plane and their relationship.

Line fitting: The structured light registration returns the detected kinks and
the corresponding lines and line-segments in the captured camera image. Least-
squares line-fitting is applied on the detected kinks and an initial estimate is
found. This is further refined by removing outliers from among the detected
kinks by measuring the distance to the fitted line from each kink. Experiments
have proven this to be quite robust because the data tends to have low noise
except for a few random outliers. Fig. 6 shows a line fitted to the detected kink
points after outliers have been removed. The edge detection is highly accurate
with sub-pixel precision and this shows in the results where even a low-resolution
camera is sufficient to correct a high-resolution display.

Partitioning the segments: Now that the intersection of the two planes has
been identified in the camera image, the previously detected segments can be
partitioned onto the each of the planes. Lines that haven’t been broken into
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Fig. 6. (a) Fitting a line to the detected kinks, and (b) after cleaning up and reordering

(a) Source Image (b) Point Correspondences

Fig. 7. Point correspondences between projector and camera image

segments because they do not cross the edge are left as such. Fig. 6 shows the
plotted lines color coded to identify the partition they are in.

Correspondence: The structured light registration was run at two orthogonal
angles. We now find pairwise intersections between lines from each of the first
and second phase respectively. Points of intersection in the source image are un-
ambiguous, however the calculated point of intersection in the camera captured
image, needs to be again tested for sanity. The point correspondences are also
partitioned onto each of the planes depending on where they occur in the cap-
tured image. Fig. 7 shows a row of corresponding points between the projected
image and the captured data.

Partitioning the image space: We now use the point correspondence data for
each of the planes to evaluate a homography from the projector to the camera.
Homographies 1

pHc and 2
pHc map points on the projector plane to the camera

plane through each of the two planes of the display surface respectively. An im-
portant property of the homographies is that they must agree on the common



296 K. Paidimarri and S. Chandran

intersecting lines of two planes, which was previously found. If Lc is the parti-
tioning line in the camera image, then

Lp = 1
pH

−T
c Lc = 2

pH
−T
c Lc

3.3 Image Correction

We need to compute the inverse transformations corresponding to 1
pHc and 2

pHc

to pre-warp the input image. Let us denote 1
cHp and 1

cHp as the corresponding
inverse transforms. Now given an input image I, the warp H gives an image P to
be projected, where P(H ∗ x) = I(x). However, the standard method for applying
a warp is to once again find the inverse of the warping transform and use a
linear (or bilinear or cubic) filtering to fill pixels in the destination image. For
each pixel x′ in the target image P, P(x′) = I(H−1 ∗ x′).

In our method, it reduces to using 1
pHc and 2

pHc for the warping. We thus
generate images P1 and P2 from image I where P1(x′) = I(1pHc ∗ x′), and P2(x′) =
I(2pHc ∗ x′).

All that remains is to composite together the two warped images at the par-
titioning line to generate the final image to be projected. In order to do this we
generate a mask M where M(x) = 1, if x lies on the first plane in the projector
coordinate frame; else M(x) = 0. So, in order to generate the final image P we do
a masked copy of P1 and P2 using the mask M.

P(x′) = P1(x′), if M(x′) = 1 P(x′) = P2(x′), if M(x′) = 0.

4 Implementation and Results

We have implemented the system in C++ using the OpenCV [7] libraries. OpenCV
is a cross-platform library targeted towards work in computer vision and image
processing. The following are the details of the hardware and the software:

Projector. Sharp XR-1S DLP projector with a native resolution of 800x600.
Camera. A ‘Creative Live!’ webcam with a maximum resolution of 640x480.

Note that it does not match the projector resolution.
Platform. Linux 2.6 with Video4Linux, spca5xx usb-webcam drivers and ffm-

peg. We have also tested the system on Microsoft Windows XP.

4.1 Results

Fig. 8 shows the image projected from the projector and that which is seen by the
camera. The camera image is rectilinear with complete agreement at the seam of
the two planes (seen in magenta). The seamlessness is a measure of the correctness
of the edge-detection method and the homography estimation because the parti-
tioning edge in the projector image can only be inferred using the two computed
homographies. When the two homographies do not agree, we see a pair of lines
instead of one. In addition the grid lines running across the two planes stay truly
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(a) Projected (b) Captured

Fig. 8. The projected image and the image as seen from the camera

Fig. 9. The corrected scene

Fig. 10. Video excerpts on the wall corner

parallel. We have also demonstrated the system with video (Fig. 10) as input. Our
experiments indicate a high degree of robustness and accuracy.

For completeness, we show (see Fig. 9) the motivating example of Fig. 1. The
wall corner is now more usable as a projection area and for watching videos!
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5 Conclusion

We have developed and implemented a method to display distortion free recti-
linear images on wall corners and other multi-planar display surfaces. Results
show high accuracy and the method is robust to environmental factors apart
from high ambient lighting. A low-end usb-webcam is sufficient to correct a
high-resolution display and previously unusable display room areas now become
usable as display surfaces.
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Abstract. A novel algorithm to derive an approximate cellular envelope
of an arbitrarily thick digital curve on a 2D grid is proposed in this pa-
per. The concept of “cellular envelope” is newly introduced in this paper,
which is defined as the smallest set of cells containing the given curve,
and hence bounded by two tightest (inner and outer) isothetic polygons
on the grid. Contrary to the existing algorithms that use thinning as
preprocessing for a digital curve with changing thickness, in our work,
an optimal cellular envelope (smallest in the number of constituent cells)
that entirely contains the given curve is constructed based on a combi-
natorial technique. The envelope, in turn, is further analyzed to deter-
mine polygonal approximation of the curve as a sequence of cells using
certain attributes of digital straightness. Since a real-world curve/curve-
shaped object with varying thickness and unexpected disconnectedness
is unsuitable for the existing algorithms on polygonal approximation, the
curve is encapsulated by the cellular envelope to enable the polygonal
approximation. Owing to the implicit Euclidean-free metrics and com-
binatorial properties prevailing in the cellular plane, implementation of
the proposed algorithm involves primitive integer operations only, lead-
ing to fast execution of the algorithm. Experimental results including
CPU time reinforce the elegance and efficacy of the proposed algorithm.

1 Introduction

The subject on properties, characterizations, and representations of digital
curves (DC) has been researched continuously since the debut of digitization
of graphical objects and visual imageries [1], [2]. Nevertheless, in the abundance
of various problems and their algorithms related with digital objects, polygonal
approximation of a digital curve/object has received special attention for its effi-
cient representation and for its potential applications in connection with analysis
of digital images [3], [4], [5]. The set of straight edges of the concerned polygon
carries a strong geometric property of the underlying objects, which can be used
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for efficient high level description of the objects and for finding the similarity
among different objects in the digital plane.

Since an optimal solution of polygonal approximation targeted to minimize
the number of vertices, and space thereof, is computationally intensive, several
heuristic and meta-heuristic approaches based on certain optimality criterion
have been proposed over the last few decades, and some of these that have
come up in recent times may be seen in [6], [7], [8], [9], [10], [11], etc. Further,
there also exist various studies and comparisons of the proposed techniques, e.g.,
[12], [10], [13], to cite a few. This entire collection of polygonal approximation
algorithms, however, consider the input digital curve to be strictly “irreducible”1

(and connected thereof), failing which the algorithm may produce undesired
results pertaining to polygonal approximation.

Hence, in case of a thick DC, thinning is required to ensure the property of
“irreducibility” to the input DC so that it can qualify for the subsequent process
of polygonal approximation. A thinning procedure, being plagued by asymmet-
ric erosion in thick regions and shifting of junction/end points, and being liable
to slow down the overall run time of the approximation process, is susceptible to
deteriorate the results of approximation. Furthermore, the result goes on wors-
ening if there occurs some missing grid points (pixels) in the input DC — which
splits, therefore, into multiple DC’s — producing several approximate polygons
instead of a single polygon, thereby giving rise to misleading impression, and
more specifically, posing severe problems in the subsequent applications. These
problems have been tackled in our method using the novel concept of cellular
envelope of an arbitrary digital curve whose thickness may vary non-uniformly.
In our method, we consider that all possible thicknesses — including 0 (miss-
ing pixel) and 1 (one pixel thick) — may occur in a DC2 when it is subject to
polygonal approximation. The idea of outer and inner boundaries of polygonal
regions is also present in rounding the intersection of two polygonal regions [14]
and simplification envelopes [15].

A brief outline of the paper is as follows. In Sec. 2, we present a combinatorial
algorithm to derive the cellular envelope of an arbitrary DC (stage I) using
its inner and outer isothetic polygons [16], [17], [18], [19]. Sec. 3 enumerates
some digital geometric properties of cellular straight segments (CSS), followed
by the motivation and underlying principle for their extraction (stage II) from
the cellular envelope of the input DC obtained in stage I. In Sec. 4, we present
our method PACE and the two algorithms corresponding to stage I and stage II.
Sec. 5 exhibits some test results on a curve-shaped object with varying curve
thickness. Finally in Sec. 6, we summarize its strength and point out the future
scope of improvements.

1 A digital curve C is said to be “irreducible” if and only if removal of any grid point
p in C makes C disconnected.

2 Henceforth, in this paper, we use the term “DC” to denote a digital curve (reducible
or irreducible) as well as a curve-shaped object that may contain multiple discon-
nected segments producing the impression of a single object.
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Fig. 1. Cellular envelope E(C,G) of a real-world (thick, rough, and reducible) curve-
shaped object C for cell size g = 8

2 Cellular Envelope

If C be a given DC, and G = (H,V , g) be a set of uniformly spaced horizontal grid
lines (H) and vertical grid lines (V) with spacing g, then the cellular envelope
of C, corresponding to the cellular plane defined by G, is given by

E(C,G) = Eout(C,G) \ Ein(C,G) if C is closed or contains a closed part,
= Eout(C,G) if C is open, (1)

where Eout(C,G) and Ein(C,G) represent the respective outer and inner envelopes
of C w.r.t. G, such that (i) each point p ∈ C should lie inside Eout(C,G) and outside
Ein(C,G); (ii) each vertex of E(C,G) (and of Eout(C,G) and Ein(C,G), thereof) is
in G; and (iii) area of E(C,G) is minimized.

The cellular envelope of a DC (curve-shaped object) C, which is rough, not
irreducible, and disconnected (since it has uneven thickness and stray pixels)
has been shown in Fig. 1. Note that, the cellular envelope E(C,G) shown in this
figure is for cell size g = 8, and the envelope “tightly encloses” all the points of
C with no points lying outside E(C,G).

2.1 Combinatorial Properties of a Cellular Envelope

Let I be the 2D image plane having height h and width w, and containing the
entire object C. Let α(i, j) be the point of intersection of the horizontal grid line
lH : x = i ∈ H and the vertical grid line lV : y = j ∈ V . Let SLT, SRT, SLB, and
SRB be the respective left-top, right-top, left-bottom, and right-bottom square
cells with the common grid point α(i, j), and let α′(i, j + g) and α′′(i+ g, j) be
the respective grid points lying immediate right and lying immediate below α,
as shown in Fig. 2. We construct a binary matrix Ae (edge matrix) that contains(
(w/g)(h/g + 1)

)
×
(
(h/g)(w/g + 1)

)
entries, each entry being in one-to-one

correspondence with a particular edge of a particular cell. If an edge e(α, β)
connecting two neighbor grid points α and β is intersected by the object C, then
the corresponding entry in Ae is ‘1’, otherwise ‘0’.

Now, from Ae, we construct another binary matrix Ac (cell matrix) of size
(h/g)× (w/g), in which each entry corresponds to a unique cell — the entry is
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Fig. 2. Four cells with common vertex α

‘1’ if at least one of the four edges of the concerned cell is intersected by the
object C, and is ‘0’ otherwise — which is checked from the correspondence of its
edge information in Ae.

Next, the candidature of α as a vertex of the (inner or outer) envelope is
checked by looking at the combinatorial arrangements (w.r.t. object contain-
ments) of the four cells having common vertex α. There exist 24 = 16 different
arrangements of these four cells, since each cell has 2 possibilities (‘0’/‘1’). These
16 arrangements can be further reduced to 5 cases, where, a particular case Cq,
q = 0, 1, . . . , 4, includes all the arrangements where exactly q out of these four
cells has/have object containments (i.e., contain(s) parts of the object C), and
the remaining (i.e., 4− q) ones have not. That is, the case in which the sum of
the 4 bits in the corresponding entries in Ac is equal to q is represented by Cq.
Further, out of these 5 cases, cases C1 and C3 always and case C2 conditionally
produce vertices of the inner/outer envelope, as explained below.

Case C1.
(
4
1

)
= 4 arrangements are possible where only one cell with vertex α

contains C, i.e., exactly one of the corresponding four entries in Ac is ‘1’ and each
other is ‘0’. The envelope will have its one edge ending at α and the next edge
starting from α. Hence, if α lies inside C, then it is a 2700 vertex of Ein(C,G),
and if α lies outside C, then it is a 900 vertex of Eout(C,G) (the angle 900/2700

of a vertex means its internal angle in the corresponding envelope).

Case C2.
(
4
2

)
= 6 arrangements are possible in which exactly two of the four

cells contain C. If the cells containing C are diagonally opposite (2 out of 6
arrangements), then α is a vertex (900 for Ein(C,G) and 2700 for Eout(C,G));
otherwise α is an ordinary point on the envelope perimeter.

Case C3.
(
4
3

)
= 4 arrangements are possible for q = 3, where, out of the four

cells, only one cell is free. In each such arrangement, α would be a 900 vertex
for Ein(C,G)) and a 2700 vertex for Eout(C,G)).

For case C0:
(
4
0

)
= 1 arrangement, α is just an ordinary grid point lying out-

side Eout(C,G) or inside Ein(C,G)), whereas for case C4:
(
4
4

)
= 1 arrangement,

α is a grid point included in C (since no two traversable edges are incident
on it).
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3 Cellular Straight Segments

There exist several works on constructs, properties, and applications of cell com-
plexes and cellular straight segments (CSS), e.g., [20], [21], [22], [2], [23], in which
the primal as well as many alternative definitions of CSS are found. For example,
as indicated in [2], a CSS C can be defined as the minimal set of cells c specified
by a real straight line segment L such that

L ∩ c �= ∅, ∀ c ∈ C; (2)
and L ⊂ C, (3)

which makes its primal definition.
Another definition of CSS involving the Euclidean metric space is given in [20],

in which it has been shown that a cellular curve C is a CSS if and only if there
exists a direction θ and a pair of (parallel) lines in the real plane (tangential
to and) containing C, such that the distance between, and measured in the
direction (say, θ⊥) perpendicular to, this pair of lines does not exceed the distance
(along θ⊥) between the closest pair of parallel lines containing the square formed
by (2× 2 =) 4 cells sharing a common vertex.

In a recent work [21], an Euclidean-free definition of CSS has been given
in terms of “fully partitioned (finite) strings” (S(0)) and “higher order derived
strings” (S(j) : j ≥ 1), the latter being derived iteratively from the preceding
string (i.e., S(j−1)) by replacing the majority symbol substrings of S(j−1) by
its length, and by deleting the minority symbols of S(j−1). Subsequently, it has
been shown that a string S (= S(0)) represents a CSS, provided the jth order
derived string of S exists for all j ≥ 0.

Alternatively, in the perspective of digital straightness, if we consider the
center points of these edge-connected cells as grid points, then it follows that a
family of cells is edge-connected if and only if the set of center points of these cells
is 4-connected. Thus CSS provides a suitable option — apart from that provided
by digital straight line segments (DSS) [24] — for adjudging the straightness of a
curve in the digital plane, as indicated in a contemporary work [2]. A linear off-
line algorithm for CSS recognition, based on convex hull construction, is briefly
sketched in [22]. In our work, we have designed an on-line algorithm to derive the
set of CSS’s from the cellular envelope of a curve-shaped object, which cannot
be subject to direct DSS extraction/polygonal approximation due to its inherent
nature of possessing varying thickness, as mentioned in Sec. 1.

We have considered the center of each cell for extracting the longest line
segment iteratively in (a part of) a cellular envelope E(C,G) corresponding to
the given curve C and given cell size g imposed by the grid G. We have used
some digital geometric properties of DSS formulated and explained in [2], [24].
Before explaining our algorithm, the DSS properties (defined w.r.t. chain codes
[25]) relevant to our work, which were established in [24], and later (see [2])
correlated with the other straightness options such as cellular straightness, are
mentioned below.
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(a) (b) (c)

Fig. 3. Examples of cellular curves considered to explain the significance of straightness
properties (R1)–(R4). Note that the directed path that traces the ordered set of centers
of the cells shows the digital curve (DC) corresponding to a cellular curve. The curves
in (a) and (b) are CSS’s (the dashed lines show the corresponding real lines); but the
curve in (c) is not, since there does not exist any real line that can pass through the
set of cells defining this curve (see text for explanation).

(R1) The runs have at most two directions, differing by 900,3 and for one of
these directions, the run length must be 1.

(R2) The runs can have only two lengths, which are consecutive integers.
(R3) One of the run lengths can occur only once at a time.
(R4) For the run length that occurs in runs, these runs can themselves have

only two lengths, which are consecutive integers; and so on.
Few examples of cellular curves/envelopes are shown in Fig. 3 to explain the

significance of properties (R1)–(R4). For the curve in (a), if we consider the
center of each cell as a grid point, as mentioned earlier, then its chain code is
000200020002000 = 03203203203, which consists of codes 0 and 2 only, and con-
tains consecutive 0’s but no two consecutive 2’s, thereby satisfying property (R1).
Regarding (R2), (R3), and (R4), since there is only one run length (of 0’s), this
curve trivially satisfies these three properties, and becomes a CSS. Similarly,
since the curve in (b) has chain code 03203203202, which obeys (R1)–(R4), it
is a CSS. On the contrary, the curve in (c) has chain code 03203205201, which
satisfies (R1), but violates (R2) as 0 has non-consecutive run lengths (3 and 5)
— even if we do not consider the leftmost and the rightmost run lengths (which
are 3 and 1, respectively), and so it is not a CSS.

In our method for extraction of CSS from the cellular envelope E(C,G), we
have adhered to the properties (R1–R4). In addition, we have considered that
also the leftmost and the rightmost run lengths of a CSS should follow prop-
erty (R2) (which is not mandatory as suggested in [24]).

4 Proposed Method (PACE)

The method on finding the (cellular) polygonal approximation of an object C
consists of stage I and stage II. In stage I, we construct the cellular envelope
E(C,G) based on the combinatorial arrangement of the cells containing C (Sec. 2).

3 In our work, we have considered 4-connectivity of a DSS, i.e., having chain codes
lying in the set {0, 2, 4, 6}, since the cells in the cellular envelope E(C,G) obtained for
the curve C (Sec. 2) are connected in 4-neighborhood. In a DSS with 8-connectivity,
however, the runs would have directions differing by 450 as stated in [24].
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step 1. Initialize each entry in Ae and each entry in Ac with ‘0’.
step 2. DFS-Visit on C starting from p using 8-connectivity to reach the nearest

cell edge ep of G.
step 3. DFS-Visit on Ae starting from the entry Ae(ep) corresponding to ep in

Ae using 4-connectivity (of ‘1’s in Ae) to assign:
‘1’ to the entry in Ae corresponding to each cell edge e intersected by C,
and
‘1’ to the entry in Ac corresponding to each of the two cells with e as the
common edge.

step 4. DFS-Visit on Ac starting from some cell (e.g., cp, the left adjacent cell
of ep) of the cellular envelope formed by the ‘1’s obtained in step 3 using
4-connectivity (of ‘1’s in Ac); and check whether the entry Ac(c) corre-
sponding to the cell c currently under DFS-Visit satisfies at least one of
the following two conditions:
(i) both the left and the right adjacent entries of Ac(c) are ‘1’s;
(ii) both the bottom and the top adjacent entries of Ac(c) are ‘1’s.
If (i) or/and (ii) is/are true, then terminate the DFS-Visit, since the
current cell c lies either on a horizontal edge/part (when (i) satisfies) or
on a vertical edge/part (when (ii) satisfies) of the cellular envelope of C;
and declare c as the seed cell c0 for stage II.

step 5. If no seed cell c0 is found in step 4, then the cell size is not sufficiently
large compared to the (minimum) thickness of the input curve C. Hence
the user may be asked to increase the cell size (i.e., grid separation g);
alternatively, an arbitrary cell of the envelope may be considered to be
the seed cell c0.

Fig. 4. Algorithm Find-Cellular-Envelope(C,G, p) in stage I

In stage II, we analyze the cells of E(C,G) to extract the straight pieces from
E(C,G), considering the center of each cell of E(C,G) as a grid point and using
the straightness properties (Sec. 3).

4.1 Stage I: Finding the Cellular Envelope

We consider any point p ∈ C as the start point defining the object C. For the
time being, consider that C is connected in 8-neighborhood. Then using DFS-
Visit (Depth First Search algorithm [26]), we can reach the nearest edge ep

of a cell that intersects C. Starting from ep, using DFS-Visit on the edges
of the cells, we visit those cell edges that are intersected by E ; this procedure
helps us in constructing the edge matrix Ae and the cell matrix Ac (Sec. 2),
which are finally used to obtain E(C,G). The major steps of the algorithm Find-
Cellular-Envelope(C,G, p) to find the cellular envelope of a connected (and
of uniform or non-uniform thickness) object C w.r.t. the cellular array imposed
by the grid G is given in Fig. 4.

In case C has some missing points/pixels, i.e., possesses disconnectedness, then
it may happen that none of the edges of a cell is intersected by C, although C is
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step 1. Traverse (cell-wise) towards left and towards right from c0 to extract all
possible pairs of CSS starting from c0, such that
(i) the chain code of each CSS, and
(ii) the combined chain code of the two CSS’s
in each pair are in conformity with properties (R1)–(R4);

step 2. Find a/the pair of CSS that has maximum sum of lengths;
merge this pair into a single CSS, namely C1;
declare c0 and c1 as the left and the right terminal cells of C1;
store (the centers of) c0 and c1 in the ordered set T .

step 3. Start from c1 to extract the next (longest) CSS, C2 := (c1, c2), with
terminal cells c1 and c2;
store c2 in T; and mark the cells defining C2 as visited.

step 4. Repeat step 3 starting from the last entry (i.e., terminal cell) in T to get
the CSS’s defining E until all cells of E are visited (using DFS-Visit).
Note: (i) If a CSS has both its terminal cells in the 4-neighborhood of
another (longer) CSS, then the former (shorter) CSS is not included in
T (Fig. 6(a)). (ii) For a bifurcating/branching CSS, we store both its
terminal cells in T (Fig. 6(b)).

step 5. Declare T as the polygonal approximation of the cellular envelope E .

Fig. 5. Algorithm Find-CSS(E , c0) in stage II

contained in that cell. To circumvent this problem, we have to directly construct
the cell matrix Ac, without constructing Ae, which would, however, increase the
time complexity (and the run time, thereof) of stage I. Further, if the curve
possesses too much gap/disconnectedness, so that the gap is even larger than
the cell size, then this may result to gap (in the edge-connectivity) of the cells
constituting the envelope E(C,G), which gets fragmented into two or more pieces,
thereby producing faulty results. Choosing an appropriate cell size is, therefore,
necessary to obtain the desired cellular envelope of a disconnected DC in stage I.

4.2 Stage II: Finding the Cellular Straight Segments

In stage II, the algorithm Find-CSS(E , c0)4, given in Fig. 5, extracts the ordered
set of CSS’s from the cellular envelope E as follows. W.l.o.g., since in stage I,
the seed cell c0 lies on a horizontal part (or on a vertical part, or on a thick
part) of E , we negotiate two traversals (step 1) — one towards left and the
other towards right of c0 — to obtain two CSSs with complying straightness
such that the sum of their lengths is maximal, and merge these two to get the
first CSS, C1, to be included in the ordered set T of terminal cells (step 2). The
starting cell for extracting the next CSS (step 3) from the cellular envelope is,
therefore, considered to be the right terminal cell c1 of C1. We use the algorithm
DFS-Visit [26] to explore the cells constituting the envelope and to extract the
CSSs, whose terminal cells are finally reported in T .

4 Now onwards, we denote the cellular envelope of C by E for simplicity.
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c’

longer  CSS

shorter  CSS

c

c’

c"

C ’CSS:

CSS: C "
c

(a) A short CSS with each of its terminal cells
lying at 4-N of a longer CSS is not consid-
ered as a valid CSS (Note (i) of step 4 in
Fig. 5).

(b) For a branching CSS, C′′, each of its ter-
minal cells (one is c′′ and the other not
shown) is stored in T (Note (ii) of step 4
in Fig. 5).

Fig. 6. Inclusion and exclusion of terminal cell(s) of CSS in T

Time complexity. If N be the number of points defining the curve C, then its
envelope E consists of O(N/g) cells. Due to DFS-Visits, therefore, the time
complexity in stage I is bounded by O(N/g). In stage II, extraction of each CSS
Ci takes O(|Ci|) time, where |Ci| is the number of cells defining Ci. Hence, the
time complexity to extract all CSS’s in step II is O (

∑
|Ci|) = O(N/g), which

gives the total time complexity of PACE as O(N/g).

5 Experiments and Results

We have implemented the two algorithms, namely Find-Cellular-Envelope
and Find-CSS, that make the proposed method PACE for polygonal approx-
imation of an arbitrarily thick DC, in C in SunOS Release 5.7 Generic of
Sun Ultra 5 10, Sparc, 233 MHz, and have tested various digital curves of ar-
bitrary shape, changing thickness, and irregular connectedness. It may be men-
tioned here that, since the concept of a cellular polygon introduced in this work
is entirely new, and no other work on cellular polygon exists at present, we could
not have a comparative study of our method in this paper.

The result for an (non-thinned) edge map of a “duck” is shown in Fig. 7, which
testifies the elegance of PACE in deriving the cellular polygon corresponding to
a DC. It may may be noticed in this figure that, some of the cells in the envelope
E have not been included in any CSS; because in the algorithm Find-CSS, we
have considered the (terminal cells of) each locally longest CSS to be included in
P (see the Note in step 4). But when there is a bifurcation/self-intersection (e.g.,
in and around the root of its tail) or a sharp bend (e.g., at the tip of its beak),
the cellular envelope (Fig. 7(b)) contains several cells across its thickness, which
may cause error in the polygonal approximation as manifested in Fig. 7(d) in
the part of the polygon corresponding to the region in and around the tail root.
Hence a proper value of the cell size, g, is mandatory to ensure a good cellular
envelope corresponding to a DC, and a good polygonal approximation thereof.

The major strength of the proposed method is the inherent nature of Euclidean-
free metrics and operations involved in both the stages. This imparts high
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(a) Since the curve is not one-pixel
thick, the conventional algorithms
on polygonal approximation cannot
be applied on it.

(b) Cellular envelope E(C,G) obtained
in stage I of the algorithm PACE.
The cells of the envelope are con-
nected in 4-neighborhood, which
are, therefore, 4-cells.

(c) The set of CSS’s extracted in
stage II of the algorithm PACE
from the envelope E(C,G) shown
in (b). The CSS’s have been colored
gray with the terminal cell of each
CSS shown in black.

(d) Final polygonal approximation (in
thin black lines) superimposed
on the (faded) cellular envelope
E(C,G).

Fig. 7. Results of algorithm PACE for cell size g = 4 on a curve-shaped digital object
C of nonuniform thickness representing the edge map of a “duck”

execution speed to the implementation of PACE, which is reflected in the re-
spective CPU times presented in Table 1. Further, with increase in the cell size
g, the compression ratio (CR) improves consistently, but the quality of approx-
imation deteriorates, as evidenced by the average errors (measured w.r.t. both
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Table 1. Results of PACE on the “duck” image (1748 pixels), shown in Fig. 7, for
different grid sizes (g)

avg. error CPU time (secs.)

g
∣∣E∣∣ ∣∣P ∣∣ CR d

(E)
⊥ d

(P )
⊥ E P total

2 703 130 0.074 0.87 0.92 0.026 0.227 0.253

3 445 93 0.053 1.25 1.34 0.019 0.142 0.161

4 382 53 0.030 1.49 1.97 0.014 0.129 0.143

8 191 22 0.013 2.85 3.36 0.006 0.108 0.114

12 125 18 0.010 4.03 5.58 0.004 0.071 0.075

∣∣E∣∣ = number of cells in E ;
∣∣P ∣∣ =

number of terminal cells in P ;
CR (=

∣∣P ∣∣/∣∣C∣∣) = compression ra-

tio; d
(E)
⊥ = isothetic error aver-

aged over (centers of) all cells of
E from (their corresponding near-

est points of) C; d
(P )
⊥ = isothetic er-

ror averaged over all terminal cells
in P from C, where max{|x1 −
x2|, |x2, y2|} is the isothetic dis-
tance between two points (x1, y1)
and (x2, y2).

E and P ) of the curve C in this table. This again indicates that the cell size g
should be suitably chosen to get an acceptable tradeoff in the approximation.

6 Conclusion and Future Work

We have presented here the novel concept of approximating a curve-shaped dig-
ital object by a cellular polygon. The algorithm is marked by its (i) indifference
to change in thickness of the input DC, (ii) innovative combinatorial approach to
construct the optimum cellular envelope for the given DC, (iii) use of straight-
ness properties inherited from digital geometry, (iv) independency to Euclidean
paradigm, and (v) realization without any floating point operation, which col-
lectively make it robust, speedy, and efficient. Presently, we are experimenting
on the nature of variation of the cellular envelope and the resulting polygon of
a DC with its registration (both translation and rotation) w.r.t. grid, which will
be reported shortly.
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Abstract. We present a real-time painterly rendering technique for ge-
ometric models. The painterly appearance and the impression of geomet-
ric detail is created by effectively rendering several brush strokes. Unlike
existing techniques, we use the textures of the models to come up with
the features and the positions of strokes in 3D object space. The strokes
have fixed locations on the surfaces of the models during animation, this
enables frame to frame coherence. We use vertex and fragment shaders
to render strokes for real-time performance. The strokes are rendered
as sprites in two-dimensions, analogous to the way artists paint on can-
vas. While animating, strokes may get cluttered since they are closely
located on screen. Existing techniques ignore this issue; we address it
by developing a level of detail scheme that maintains a uniform stroke
density in screen space. We achieve painterly rendering in real-time with
a combination of object space positioning and image space rendering of
strokes. We also maintain consistency of rendering between frames . We
illustrate our method with images and performance results.

Keywords: Non-Photo-realistic Rendering, Real-time Painterly Ren-
dering, Stroke Based Rendering, Texture Guided Strokes, Levels of Detail
of Strokes.

1 Introduction

Paintings are often used to depict ideas. The aesthetics and expressiveness of
paintings enables effective capture of the intentions of the artist. Animations are
therefore often created in painterly style. In recent times computers are often
used to generate the environments in cartoon based entertainment. (Eg. Titan
A.E., Transformers etc.) Use of computers saves artists from the tedious need
to create various views of the same static environment, but it leads to a visual
disparity between the hand drawn objects and the environment as computer
generated images appear synthetic and lack abstraction. Painterly rendering, a
non-photorealistic rendering technique, can harmonize the composition of hand
drawn elements and the computer modeled environment. Therefore, painterly
rendering has been the focus of several graphics researchers.

More recently games depicting cartoon like appearance based upon cartoon
serials/movies (Eg. Teenage Mutant Ninja Turtles, 2004) have been made. These
� This work was done while being an intern in Microsoft Research India.
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games could benefit from real-time painterly rendering. When painterly render-
ing is applied in gaming scenarios one has to address two key issues namely,
frame to frame coherence, and level of detail management. In this paper we
present a real-time painterly rendering algorithm that addresses theses issues.
Existing painterly rendering techniques for animations employ geometry alone
for placement of strokes and ignore textures that are a crucial part of models.
They also do not address the issue of cluttered strokes. We present a painterly
rendering technique that uses texture guided stroke placement on models and
handles problems due to cluttering of strokes.

The organization of the rest of the paper is as follows: We briefly describe
related work in the following section. We outline our technique in the section 3
and give details on stroke position computation, classification of strokes and
rendering of strokes. We also describe a technique to address problem of stroke
cluttering. Illustrations of our results and the performance of our system are dis-
cussed in section 4. We conclude with a discussion on the aesthetic considerations
and technical aspects in section 5.

2 Related Work

Abstract representation of still images was introduced by Haeberli [1], he uses
image color gradient and user interactivity for painting. Hertzmann [2] places
curved brush strokes of multiple sizes on images for painterly rendering. The
technique fills color by using big strokes in the middle of a region and uses pro-
gressively smaller strokes as one approaches the edges of the region. Shiraishi
and Yamaguchi [3] improves the performance of above method by approximating
the continuous strokes by placement of rectangular strokes discreetly along the
edges to create painterly appearance. Santella and DeCarlo[4] used eye tracking
data to get points of focus on images and create painterly rendering with focus
information. All these techniques work well on single images but they usually
involve iterative (optimization) techniques that make them cumbersome for real-
time applications (see [5]). Also if they are applied on each frame of an animation
independently, it often leads to flickering of strokes due to incoherence of strokes
between frames.

Painterly rendering for animation was introduced in Meier’s work [6] which
focuses on eliminating shower door effect and achieve frame to frame coherence.
Non existence of programmable graphics hardware, however, made the technique
non-realtime. Also the method was limited to fetch stroke properties from ge-
ometry. Klein et al. [7] used realtime creation of painterly textures for painterly
rendering using image based rendering algorithms for simple geometric models.
Their algorithm lacks frame to frame coherence. Haller and Sperl [8] describes
a realtime painterly process inspired by Meier [6]. Their approach makes the
painterly rendering process work in real-time with the help of programmable
graphics hardware. The method extracts stroke properties from geometry alone,
and it does not address the problem of cluttering of strokes with changes in
viewpoint.
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3 Our Approach

A painting is created by placing several brush strokes of various shapes at specific
locations on the canvas. In our approach we use the textures of models to enable
us to select the number, location and shape of strokes to render. The position
of the strokes are defined by the image space coordinates of a pixel in a texture
and property of the stroke is stored as the pixel value at that location. We
call the resulting image as a feature image. The stroke locations are in the
image/texture space; we transform the 2D positions of stroke locations to 3D
object space coordinates for painterly rendering.

The outline of the algorithm is as follows:

Start:

Load various stroke textures;

Load Model Information;

Extract features from Model’s textures;

Transform features from Image to 3D space;

For each frame:

PASS1:

Draw the object;

Save the screen as a texture;

Save the depth information as a texture;

PASS2:

Draw Edge strokes;

Draw Filling strokes;

Draw Feature strokes;

End

In each frame we render the object/scene and save it as a reference image. We
also save the depth information as a depth texture. In the next pass, we render
sprites at the stroke locations using vertex and fragment shaders. These brush-
strokes are categorized based on the details given in section 3.1. The sprites are
texture mapped with brush stroke textures, alpha blended and associated with
color information from the reference image. The depth texture is used to decide
the visibility of sprites/strokes. When a face of the object occupies less area in
the screen space, the strokes in that region become cluttered and overlap. We use
levels of detail to overcome the cluttering. The level of detail scheme, however,
has a popping artifact during transitions. We develop an approach for smooth
level of detail change, the details of which are presented in section 3.3.

3.1 Feature Extraction from Textures

This section describes the technique we use to obtain features from textures.
When painting, one has to decide locations of strokes, number of strokes, shapes
of strokes and orientations of strokes. These properties are gathered from the
textures associated with the model. For each texture, example figure 1(a), we
use a simple Sobel’s edge detector [9] to get the edges and store them in the
gray-scale feature image. Then this edge map is used to get another set of edges
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running parallel along the detected edges. These parallel edges store the angle
along which the edge is oriented at each pixel as the pixel value as shown in
figure 1(b). The angles in the range [0, π], are discretized and scaled in the range
[100, 200] as the pixel value in the feature image. We then stipple the lines by
running a mask on the lines and nullifying a number of surrounding pixels. The
size of the mask is a parameter that decides the concentration of strokes while
rendering since each non-null pixel location represents a stroke. A smaller size
implies a greater concentration of stroke locations, which in turn implies a larger
number of strokes. The generated points on the original edges have pixel value
255. Strokes at these locations are called edge strokes. Strokes on the points,
which are on the lines parallel to the edges, are called feature strokes. In the
remaining empty area we distribute points with a pixel value 64, with random
spacing as shown in figure 1(c). These strokes are called filling strokes.

(a) (b) (c)

Fig. 1. (a) Example texture; (b) Detected Edges and parallel edges storing the ori-
entation; (c) Final feature image giving stroke locations; here different pixel values
indicate whether the strokes are edge, feature or filling strokes

3.2 Stroke Location Transfer from Image to Object Space

As a pre-processing step we transform the positions of pixels in the feature im-
age to object space depending upon which face the strokes are stuck to. We use
simple geometric transformation equations to solve this issue. We find the 3D
points (x, y, z) for any pixel (X,Y ) as

aX + bY + k = x

cX + dY + k = y

eX + fY + k = z

For any 3 pixels in the texture (X1, Y1), (X2, Y2), (X3, Y3), if we know 3 object co-
ordinates (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) (Eg. 3 corners of a triangular face),
we can solve the equations for a, b, c, d, e, f . We save stroke positions and their
properties for each face.
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3.3 Rendering

Rendering consists of two passes; the first pass renders the object and saves it
on a texture as the reference image. The second pass involves calculation of a
Level of Detail (LOD) factor and a blending factor for each face depending upon
its screen occupancy. Less the occupancy, lower the level of detail associated
with the face during rendering. The order of rendering strokes is based on their
category. Rendering of some strokes is skipped based on the LOD.

Creation of Reference Image. We render the textured geometric model,
and copy the output to a texture example figure 2(a). The depth information is
copied to a depth texture.

(a) (b) (c) (d)

Fig. 2. (a) Reference Image; (b) Cluttered strokes of oblique faces; (c) Cluttered strokes
when far; (d) No clutter when with LOD scheme

Calculation of Levels of Detail. We see a cluttering of strokes, in figure 2(c),
when the geometric model is distant. We calculate the distance of the camera
from each face. This distance d is used to calculate LOD indicator ld which is
the level of detail due to distance, as N(d−min)/(max−min) where max and
min are the maximum and minimum distance respectively the object travels
from the eye position, and N is the number of LODs available. When the face
is at min distance to camera, ld equals 0 and when the face is at max distance
to camera, ld equals N .

However, faces also cover less screen space when they are nearly parallel to
the viewing direction as shown in figure 2(b). To address this issue, we calculate
another LOD indicator, level of detail due to orientation lo, as lo = (1−|n.v|)N ,
where n is the normal of the face and v is the unit view vector. As per dot
product’s nature, lo = N when n and v are perpendicular to each other i.e. face
is completely out of view, and lo = 0 when n and v are equal i.e. face completely
faces you.

Thus we use ld = 0, lo = 0 as the highest LOD indicators and ld = N, lo = N
as the lowest LOD indicators. We take the weighted mean of the two and use the
value for assigning an LOD factor l and blending factor α to the face as follows:

l = [wolo + wdld], α = 1− {wolo + wdld}
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where wd andwo are user decided weights for farness and orientation respectively.
We skip 2l number of strokes while drawing stokes for a face. For a stroke with
index i in a face, if the expression mod(i, 2(l+1)) returns a non null value, means
that this stroke is skipped when LOD changes for this face. We multiply α
with this stroke’s opacity, so that it gradually becomes transparent as the face
approaches the next LOD transition. When the face shifts to the next LOD,
this stroke is dropped but we do not see any popping artifact since it gradually
becomes totally transparent. Ours strokes do not clutter, example figure 2(d).
The calculations involving assignment of blending factor is done on the GPU
with the help of vertex shaders explained in more detail in the next section.

Rendering of Strokes. We render the edge strokes first. For each edge stroke
we pass on the edge stroke location to the vertex shader 4 times with 4 texture
coordinates of a randomly chosen perturber texture. Sample edge stroke textures
are shown in figure 3(a). This randomness is pre-computed to avoid inconsis-

(a) (b) (c)

Fig. 3. (a) Edge Stroke textures; (b) Filling Stroke textures; (c) Feature Stroke textures

tency between frames. A vertex shader, which we call VS1 for future reference,
calculates the sprite coordinates using the texture coordinates. We calculate the
sprite coordinates after we have applied the model-view transformation to the
stroke location. To maintain constant sprites size, we calculate the sprite coor-
dinates after we have projected the stroke location. A fragment shader, which
we call FS1 for future reference, picks color information from the edge stroke
texture; uses the red stream as the amount of perturbation in x axis direction
and blue stream as the amount of perturbation in y axis direction, of the location
of pixel of reference image (see figure 4(b)).

px = 2Cr − 1, py = 2Cb − 1

Oc = IcTx+kpx,y+kpy

where p is the disturbance with a scale k in the reference texture’s T coordi-
nates x, y at that fragment location, C is the color of the stroke texture at that
fragment location and Ic is the optional input color for the whole stroke. Oc is
output fragment color of the FS1. Also we use the blending factor and multiply
it with the opacity of the stroke as explained in the previous section. Now using
the filling stroke coordinates and filling stroke textures randomly chosen from
available ones as show in figure 3(b). We render the filling strokes as sprites.
We use the same vertex shader VS1 but a different fragment shader, which
we call FS2 for future reference, since we want to perturb the color picked up
from the reference texture. FS2 uses the filling stroke texture’s color streams to
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(a) (b) (c) (d)

Fig. 4. Lord Ganesha; Using (a) Reference texture, (b) Rendering of edge strokes
followed by (c) Rendering of filling strokes and then (d) Finally rendering of feature
strokes to get the final output

change the color of the background reference texture at that fragment location
(see figure 4(c)).

p = 2C − 1

Oc = Ic(Tx,y + kp)

where the notations mean the same as explained earlier. FS2 does the same job
as FS1 regarding the blending factor. Next we use feature stroke coordinates
and feature stroke textures randomly chosen from available ones to render the
feature strokes as sprites. Sample feature strokes are shown in figure 3(c). We
use a different vertex shader, which we call VS2 for future reference. VS2 incor-
porates not only calculation of sprite coordinates but also rotation of the sprite
in the image space according to feature information stored along with the stroke
coordinate. The rotated strokes are rotated by another angle which is due to the
animation of the model. We use FS2 for the later part of the processing of this
stroke. Figure 4(d), is a example of the output when all the strokes are rendered.
The strokes are alpha blended, therefore order of blending is important. This is
where depth texture comes in picture. An example depth texture is shown in
figure 5(a). In FS1 and FS2 we test the depth of the pixel to be less than or
equal to the depth value at that location in the depth texture, if the pixel does

Depth texture values (T)

Eye

Pixels with Z < T

Pixels getting discarded since

their Z > T
(a) (b) (c)

Fig. 5. (a) A sample depth texture for (b) A reference image; (c) Only pixels of strokes
with depth less than depth texture value pass
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not pass the condition, it is discarded as illustrated in figure 5(c). We use a small
offset when testing since our strokes are front facing sprites with constant depth.
All strokes drawn have a maximum opacity less than 1, so that the rendering is
relative to the background color. This is consistent with an artist using water
colors, the painting has a tone of the color of the paper being used.

4 Results

We use a system with the following specifications: Intel Pentium 4 3.4 GHz,
2.00 GB RAM, nVIDIA 6800 Ultra. We implement the algorithm in C++, with
libraries OpenGL, SDL and CGgl along with Nvidia CG for shaders. We render
simple models: cube with 6 faces, building with 15 faces, a South-Indian Style
temple with 55 faces and a tall building with 1000 faces. The results are given

(b)(a) (c) (d)

Fig. 6. Various Painterly Rendered Objects: (a) Building; (b) Cube; (c) Temple; (d)
Tall building

in table 1 and outputs are shown in figure 6. The cube with LOD system gives
a frame rate of 150 to 200 as the model oscillates between the near and far
plane of the camera respectively. The performance of the system is dependent
on the type of strokes that are rendered as the shaders have different calculations
for different category of strokes. The speed of the system is mainly influenced
by the number of strokes. Example as given in table 1, the cube with 6 faces
and 4266 stroke count gives similar frame rates as the Tall Building with 1000
faces and 4400 stroke count. We do most of the calculations on the GPU. Only
the calculations for LOD are done on the CPU as they decide the primitives
that are getting rendered rather than computations that are performed on the
primitives.
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Table 1. Frame Rates for Model: Building

Model No. of faces No. of Strokes FPS

Building 15 7455 107
Building 15 3727 185
Building 15 1863 357
Temple 55 7170 89
Temple 55 3585 170
Temple 55 1797 402
Cube 6 8532 60
Cube 6 4266 120
Cube 6 2133 232
Tall Building 1000 51200 16
Tall Building 1000 25600 30
Tall Building 1000 12800 50
Tall Building 1000 17600 51
Tall Building 1000 8800 81
Tall Building 1000 4400 140

5 Conclusions and Future Work

We presented a system which produces a painterly rendering of simple geomet-
ric models. Its a combination of stroke based rendering of still 2D images and
painterly rendering in 3D. The visual appearance depends on the number of
strokes used, the stroke textures, the size of strokes. In some scenes, when less
strokes are used, it gives a nice visual appearance of a light water color draw-
ing. Large strokes bring abstract effect whereas small strokes bring accuracy to
the object. Stroke texture used should have a smooth gradient content, high
frequency stroke textures create discreteness between adjacent strokes and spoil
the hand drawn appearance.

As future work, we will explore making technical improvements to our imple-
mentation at various places. Copying the scene and depth texture after PASS1
as explained in section 3.3 are done by the glCopyTexImage2D() function. We
can improve the implementation by rendering directly to textures with the help
of pbuffers. The visibility testing of strokes is done on a fragment shader, i.e.
on all of it’s pixels. This can be done even more efficiently if we can access the
depth texture at the vertex shader level (we want a stroke to be visible as a
whole or not). Vertex texture fetch is a possibility, however vertex textures are
slow and are limited to vendor and specific data types. We are studying vertex
texture fetch improvements.
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Abstract. An interesting alternative to traditional geometry based ren-
dering is Light Field Rendering [1,2]. A camera gantry is used to acquire
authentic imagery and detailed novel views are synthetically generated
from unknown viewpoints. The drawback is the significant data on disk.

Moving from static images, a walkthrough or a camera walk through
the implied virtual world is often desirable but the repeated access of the
large data makes the task increasingly difficult. We note that although
potentially infinite walkthroughs are possible, for any given path, only
a subset of the previously stored light field is required. Our prior work
[3] exploited this and reduced the main memory requirement. However,
considerable computational burden is encountered in processing even this
reduced subset. This negatively impacts real-time rendering.

In this paper, we subdivide the image projection plane into “cells,”
each of which gets all its radiance information from the cached portions
of the light field at select “nodal points.” Once these cells are defined,
the cache is visited systematically to find the radiance efficiently. The
net result is real-time camera walks.

1 Introduction

In contrast with traditional geometry based rendering, a somewhat recent ap-
proach for “flying” through scenes is Image-Based Rendering (IBR) ([4], [5], [6])
which uses a confluence of methods from computer graphics and vision. The
IBR approach is to generate novel views from virtual camera locations from pre-
acquired imagery ([7], [8]). Synthetic realism is achieved, so to speak, using real
cameras.

Light Field Rendering [1] (or Lumigraphs [2],[9],[10]) is an example of IBR.
The approach is to store samples of the plenoptic function [11] which describe
the directional radiance distribution for every point in space. The subset of this
function in an occlusion-free space outside the scene can be represented in the
form of a four-dimensional function. The parameterization scheme is shown in
Fig. 1(a). Every viewing ray, computed using a ray-shooting technique, from the
novel camera location C passing through the scene is characterized by a pair
of points (s, t) and (u, v) on two planes. By accessing the previously acquired
radiance associated with this four tuple, the view from C is generated.

In the general case, C can be anywhere in three-dimensions. So six light slabs
are combined so that the entire scene is covered (Fig. 1(b)). An unfortunate
consequence of this scheme is the huge datasize of the lightfield. The authors in

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 321–332, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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UV plane
ST plane

C

(a) Two-Plane Parametrization.

V

U

(b) Complete Lightfield: Six
slabs of two-plane lightfields.

Fig. 1. The light field is a description of all light rays in a region of interest

[12] propose an interactive rendering based on Lumigraphs [2], by either using
a smaller set of textures (with compromise in quality) or by storing the recon-
structed image as a new texture for subsequent nearby images (with additional
geometric information).

1.1 Problem Statement and Contributions

The beauty of image based rendering lies in re-sampling and combining the pre-
acquired imagery. In a typical walkthrough situation, a person is expected to
walk along a trajectory in three space and “suitably” sample the input images
(in our case, light field). The problem we pose in this paper is “Given the huge
light field on disk, and a camera walk, how efficiently can the scene as seen by
the camera be rendered?”

In interactive walkthroughs, light field rendering is impacted by the sampling
density of acquired images. For example, lightfield generated in [1] is sampled at
0.125 units; for a 512x512 image, the size of the lightfield is about 4.8GB. With
increase in the resolution and density of acquired images, the size of the light
field increases dramatically. For interactive rendering of the scene, one needs to
store the complete light field in volatile memory, and perform computationally
heavy [13] ray shooting operations.

Earlier in [3], we observed that for a camera walk, only a subset of the complete
lightfield is needed. We computed the optimal location of a sparse set of “nodal
points,” suitable for the camera walk. The lightweight light field stored at these
nodal points is enough to render the scene from any of the infinite points —
termed query points — on the camera path. The advantage of this was that
at the time of camera walk, accesses to the hard disk were reduced or absent.
However, considerable computational burden was encountered in processing the
input light field to obtain this subset. In addition, the number of ray shooting
operations required for rendering an image from a query point on the camera
walk was a function of the resolution of the rendered image size. Thus, rendering
time increases considerably with increase in image size. In this paper, we show
that efficiently caching the subset of light field, appropriate for the camera walk,
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and further dividing the image plane into “cells” results in rendering an image
from a query point in real-time. Specifically,

1. We partition the image plane into “cells,” each of which gets all the infor-
mation (radiance values) from a specific nodal point, thereby avoiding the
necessity to perform ray-plane intersections. Further, we show that for un-
known, on-line camera walks, the nodal points once used can be discarded
paving the way for memory efficient real-time implementation.

2. The correctness of our scheme is shown using a mathematical characteriza-
tion of the geometry of the light field.

3. A new light field dataset, using a Mini Cooper car model, has been generated
and experiments have been performed on it. Results validate our technique.

2 Our Approach

As in the original work [1], the field of view of the query camera is expected
to be identical to the cameras that generated the light field. Likewise, sheared
perspective projection handles the problem of aligning the plane of projection
with the lightfield-slab. The center of projection of the camera moves along a
plane parallel to the UV and the ST plane. For brevity, consider a setup similar
to the two slab setup (Fig. 1(a)) where planes, UV and ST are replaced by
lines U and S. We call this as the two-line setup (Fig. 2(a)). The query points q
lie on line C, which in turn replaces the camera plane. As in [1], nearest neighbor
approximation is employed for determining the radiance corresponding to q. We
provide the complete mathematical framework with respect to this setup.

The rest of this paper is organized as follows. Section 2.1 and Section 2.2 sum-
marize [3] for coherence (If proofs are not desired, this paper is self-contained).
Section 2.3 develops the mathematical framework for our new algorithm. In Sec-
tion 3 and Section 4, we give details of our approach and present our algorithm.
Experimental results and analysis are discussed in Section 5. Finally in Section 6,
we provide our concluding remarks.

2.1 Fixed-Direction Algorithm

In this section, we provide a brief summary of the concept of nodal points for a
query point q. Later, we use these concepts in the mathematical characterization
of the rest of the paper.

Denote Δl to be the constant distance d[Gi, Gi+1] between two consecutive
grid points on the U line, i.e., the distance between the input lightfield camera
locations. For a specific s, denote assoc(q), where q is a point on C, to be
the closest grid vertex G (on U) to the ray qs. In Fig. 2(a), assoc(q) = G1.
Given q, we use Algorithm 2.1 to compute nodal points N1 and N2. The radiance
L[q], in the direction of s, is obtained from these nodal points (presumably
cached).
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Fig. 2. (a): N1 and N2, the nodal points for q are marked such that d[q′N1
′] =

d[q′N2
′] = Δl

2
. (b): assoc(N1) is G0 and assoc(N2) is G2.

Algorithm 2.1. Fixed-Direction (q, s)

Shoot a ray from q to s to obtain q′ on U. Mark points N1
′ and N2

′ on U
at a distance d = Δl

2 apart on either side of q′. This determines the nodal
points N1 and N2 on C.
if assoc(N1) == G1 then
L[q] = L[N1]

else
L[q] = L[N2]

end if

In the case of two-plane parametrization, given q, one may compute four nodal
points N1, N2, N3 and N4. Shoot the ray from q to s for a given s to obtain
q′ on UV . Now, mark four points (q′.u ± Δl

2 , q
′.v ± Δl

2 , zuv), where q′.u and
q′.v represent the component of q′ along u and v respectively, and zuv is the z
coordinate of the UV plane. These four points correspond to four nodal points
on the camera COP (center of projection) plane. We use assoc of these nodal
points to determine L[q].

Notice that if the distance d in Algorithm 2.1 is more than Δl
2 , as in Fig. 2(b),

an incorrect value of L[q] is computed. When d is as specified in Algorithm 2.1, it
is easy to observe that either assoc(N1) = G1 or assoc(N2) = G1; it cannot be
the case that assoc(N1) =G0 and assoc(N2) =G2. A choice less than Δl

2 might
be suitable to maintain correctness, but will increase the number of nodal points,
and hence decrease our efficiency. Also note that the if condition in Algorithm 2.1
cannot be dispensed with. We cannot simply pick the nearest nodal point.

2.2 All-Directions Algorithm

Algorithm 2.1 is “backward” in that it computes nodal points given a query
point; in a sense it appears useless. However using this algorithm as the basis,
in [3] we proved that,

– The nodal points N1, N2 corresponding to a query point q are sufficient for
determining the radiance of any query point in the interval [N1, N2]. This
generalizes to three dimensions.

– Choice of nodal points is independent of the direction (of s).
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Using the above results, we use Algorithm 2.2 to compute the radiance cor-
responding to any query point q in the interval [N1, N2]. For simplicity, the
algorithm has been presented for the two line setup.

Algorithm 2.2. All-Directions (q)

Determine nodal points N1, N2 bounding q.
for all s ∈ S do

Shoot a ray from query point q to s.
if assoc(N1) == assoc(q) then
L[q] = L[N1]

else
L[q] = L[N2]

end if
end for

2.3 Image Plane Intervals

In Algorithm 2.2, the scene as rendered from a query point q is determined
expensively by shooting N rays (to the N sample points on S), followed by a
lookup of assoc for each of the N rays. This computational burden increases
dramatically with the increase in query points on a camera walk. Expectedly, the
situation for the two-plane setup is worse. (The number of shot rays are N ×N
for a query point.) With an independent increase in the number of query points,
the computational requirements prohibit real-time rendering.

In this section, we show how to subdivide the image plane into cells and
thereby derive a deterministic “square wave” pattern of using nodal points for
each cell. For the sake of exposition, we consider the two-line setup wherein cells
degenerate to intervals. The following lemma depends on mid grid points, which
are defined as the points lying in the middle of any two adjacent grid points.
For a query point q bounded by nodal points [Nj, Nj+1], consider (respectively)
rays from q, Nj and Nj+1 through the mid grid points on U . These divide S
into intervals [Si, Si+1] (i is a whole number) (see, for example, Fig. 3(a)).

Lemma 1. Range Lemma: The radiance values corresponding to all s points
in an interval [Si, Si+1] can be determined from a single nodal point.

Proof: Without loss of generality, let the interval under consideration be [S2, S3]
(Fig. 3(a)). Let sp be any point in the interval [S2, S3]. Observe that for sp,
assoc(q)=G2. By construction, ∀s ∈ [S2, S4], assoc(N1)=G2. Since [S2, S3] is a
subset of [S2, S4], so ∀s ∈ [S2, S3], assoc(N1)=G2. Thus, for sp, assoc(q)=assoc
(N1) and therefore L(q)=L(N1).  !

Thus, in general, we can avoid ray shooting for a range of s values in any interval
since the radiance L(q) will come from some fixed nodal point. The next lemma
tells us that even the choice of nodal point is deterministic.
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Fig. 3. (a): Radiance L(q, s) for ∀s ∈ [S2, S3] can be determined from N1. (b):
∀s∈[S1, S2],L(q)=L(N2); ∀s∈[S2, S3], L(q)=L(N1).

Lemma 2. Toggle Lemma: If L(q)=L[Nj] for some s ∈ [Si, Si+1], then ∀s ∈
[Si+1, Si+2], L(q)=L[Nj+1] and vice-versa.

Proof: Without loss of generality, let [S1, S2] and [S2, S3] be the two intervals
under consideration (Fig. 3(b)). By construction, we observe that ∀s∈[S1, S2],
assoc(q)=G1 and assoc(N2)=G1. So ∀s ∈ [S1, S2], L(q)=L[N2]. The lemma
claims that ∀s ∈ [S2, S3], L(q)=L[N1].

By construction, assoc(q)=G1, ∀s ∈ [S1, S3]. Also, assoc(N1)=G1, ∀s ∈ [S2,
S4]. The intersection of intervals [S1, S3] and [S2, S4] is [S2, S3]. Hence, ∀s ∈
[S2, S3], assoc(q)=assoc(N1), or, L(q)=L[N1].

The situation when we consider the intervals [S2, S3] and [S3, S4] is similar;
we find that ∀s ∈ [S3, S4], L(q)=L[N2].  !

Thus the lemma asserts that, for a query point, the radiance corresponding to
each interval in S, is deterministic as a toggle between bounding nodal points.
This is best visualized as a square wave (Fig. 4) and is exploited in our algorithm
(Algorithm 2.3).

Algorithm 2.3. Interval Algorithm (q)

Determine the nodal points Nj , Nj+1, bounding q.
Determine all intervals [Si, Si+1] on S using q, Nj and Nj+1.
Shoot a ray from query point q to the first s in [S0, S1].
Toggle = (assoc(Nj) == assoc(q)) ? Nj : Nj+1

for all intervals do
for all s ∈ [Si, Si+1] do
L[q] = L[Toggle]

end for
Toggle = (Toggle==Nj) ? Nj+1 : Nj

end for
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Fig. 4. Nodal points are accessed in a “toggle” manner for any query point. The duty
cycle of the square wave is dependent on which query point is used. Size of the image
plane determines the end conditions.

3 The Algorithm

We now have the apparatus to select the nodal points and divide the image
plane into cells, given a query point. For the sake of exposition, we consider two
types of cases (Fig. 5). In the first case, the input is an unrestricted camera
walk and nodal points are computed on the fly (Fig. 5(a)). As we traverse along
the camera walk, nodal points “used” can be discarded. In the second case, the
first input is a domain, and nodal points are computed after the domain is given
(Fig. 5(b)). The second input are camera walks restricted to be in the domain.
In this case, multiple walks can be rendered efficiently without recomputing new
nodal points, and in parallel.

3.1 Case 1

Algorithm 3.1. Incremental-Camera Walk (walk)

1. Starting from the initial query point on the camera walk, mark four nodal
points at a distance Δx = Δl × R, where R is the ratio of the distance
between the camera plane and the ST plane, and the distance between the
UV and ST plane. For simplicity, the nodal points are selected parallel to
the u and v directions as shown in Fig. 5(a). A cell thus is created.

2. The light field is cached at four nodal points in the grid enclosing the
query point (The precise computation of the light field at the nodal points
can take advantage of the methods suggested in Section 4, instead of the
method in [1].)

3. Apply Algorithm 2.3 iteratively to calculate the radiance at all query points
(along the camera walk) inside the cell.

4. As the walk exits the cell, update the nodal points and go to Step 2.
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Fig. 5. Rendered scene as viewed from a camerawalk can be computed from nodal
points

3.2 Case 2

Next, if we are given several camera walks lying in a domain, we pick domain-
based nodal points, as shown in Fig. 5(b). Scene from any query point, on any
camera walk, or even at random, in the rectangular region defined by the bound-
ing box of the nodal points can be rendered efficiently as shown below.

Algorithm 3.2. Domain-Camera Walk (domain)

1. Determine the bounding box of the domain specified.
2. Mark nodal points at a distance Δx = Δl × R, where R is the ratio of

the distance between the camera plane and the ST plane, and the distance
between the UV and ST plane along the complete bounding box. For
simplicity, the nodal points are selected parallel to the u and v directions
as shown in Fig. 5(b). A grid is thus created.

3. The light field is cached at all the nodal points in the grid (The precise
computation of the light field at the nodal points can take advantage of
the methods suggested in Section 4, instead of the method in [1].)

4. Apply Algorithm 2.3 to calculate the radiance at any query point inside any
cell of the grid.

In summary, the incremental algorithm is more suitable when the user does
not want to specify the camera walk in advance. The domain-based algorithm,
on the other hand, is useful when the user has a number of camera walks, or
random query points in a domain.

4 Caching Radiance at Nodal Points

In Algorithm 2.2, the radiance computation for nodal points was done using the
method in [1]. Caching of nodal points can be less expensive by using the ideas in
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Fig. 6. Lightfield for the
MiniCooper

(a) (b)

(c) (d)

Fig. 7. Rendered novel images (best seen in color)

Lemma 1, i.e., by dividing S into intervals (or the image plane ST into cells). The
radiance values for a number of image pixels is computed from a fixed camera
grid point. Further, the relationship between the intervals and the camera grid
points can be easily determined. As a result, in our method for nodal points, ray
shooting has to be done only once to find the intervals and their corresponding
grid points.

5 Experiments and Results

In this section, we first describe the implementation details and then show the
significant computational advantage. For baseline comparisons, and since it is a
standard, and freely available, we use [1] to contrast our method. Various simu-
lations on different paths confirm our claims to superiority.

Mini Cooper Dataset: We have generated a new lightfield dataset for pur-
poses of our experimentation (Fig. 6). It consists of images of a Mini Cooper car
model captured from cameras placed on a 32x32 grid. The Mini Cooper, a CSG
model, was rendered by performing radiosity computation with 3 different light
sources using Povray. Some features of the Mini Cooper include specular metal
body, reflective window glasses, inner details of the car (car seats, rear-view mir-
ror). Resolution of the images is 256 x 256.
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Table 1. Time in seconds
for different camera walks

|q| [1] §3.1
164 82.617 5.020

335 165.015 10.468

550 281.126 14.640

741 376.040 17.997

1023 521.605 24.417

Table 2. Number of disk
accesses for camera walks
on different planes

zCam [1] §3.1
10 160338 23244

20 211730 20640

30 222284 15360

40 231329 12512

50 238442 10240

Table 3. Time in seconds
for camera walks on different
planes

zCam |p| [1] §3.1
10 170 317.424 30.349

20 86 413.178 27.141

30 60 432.255 20.717

40 46 444.092 17.173

50 40 462.085 14.764

Quality: We downloaded the reference implementation [1], obtained the input
lightfield dataset after the decompression stage, and then “hooked” our modi-
fication. The rendered images (Fig. 7) using our method are identical to those
generated in [1]. The output is devoid of any artifacts — diff under Gnu-Linux
reports the null set.

Theoretical Analysis: The advantages of our technique arise due to efficient
nodal light field caching, and division of the image plane into cells. For a path
with q query points, let the number of nodal points needed be p. Note that for
a camerawalk, the number of query points is much larger than the number of
nodal points, i.e., q " p (e.g., for |q| =886, |p|=40 on a plane at zCam=50).
Let the average number of grid points required for generating an image from a
query point be g. We penalize disk access to the lightfield data (densely sampled
and at a high resolution) by a factor of d.

In [1], the number of rays shot is of the order of the resolution of an image
(NxN). Theoretically, the total time taken is q(k1N

2 +dg), where k1 is the time
taken by each ray shooting operation and corresponding computations. In our
method, time taken for caching each nodal point is less than that taken by a
query point in [1] (Section 4). For each nodal point, the initial computation of
determining cells is constant (c1) but again, the time taken for disk accesses
is dg. For a query point, computation of cells takes constant time (c2). So the
theoretical computational gain is

q(k1N
2 + dg)

p(c1 + dg) + qc2
=

O(q(N2 + dg))
O(pdg + q)

(1)

Computational Advantage: All our experimentation was performed on an
Intel Pentium IV 2.4GHz, 1 GB RAM Linux based computer. Our results confirm
the theoretical computational advantage in Equation 1.

1. Table 1 depicts the results we obtained using different camera walks. The
two techniques compared are [1] and Algorithm 3.1 (with caching of nodal
points as in Section 4). The distance between two successive query points
on the camera walk is constant for all the experiments. With increase in the
number of query points, the rate of increase of time taken in [1] is more than
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Table 4. Total time in seconds for
loading light field into a domain and
rendering from random query points.
The rendering time after loading is
nominal.

|q| [1] §3.2
64 29.949 12.35

130 61.294 12.587

212 99.255 12.682

300 140.166 13.019

464 215.86 13.44

Table 5. Number of disk accesses
for random query points on a plane

|q| [1] §3.2
64 15987 9968

130 32229 9968

212 52400 9968

300 74360 9968

464 114707 9968

that of our method. Note that the number of frames rendered per second
ranges from 30 to 40.

2. In Table 2 and Table 3, we show the results using camera walks on parallel
planes at varying distances from the lightfield setup. The total number of
query points was kept constant, in this case it happened to be 886. The
computational gain increases with increase in the value of zCam, because
the number of nodal points decrease with increase in zCam.

3. Table 4 and Table 5 compares the results of Algorithm 3.2 (with caching of
nodal points as in Section 4) with [1]. The experiments have been performed
on a fixed domain (42 nodal points) and with random number of query
points. The rate of increase in the time taken by our algorithm, as the number
of query points increases is very low, because most of the computational time
is spent generating the (fixed number of) nodal point images. Rendering of
images from the query points takes nominal computational time.

4. We also compared our method with the technique in our previous work [3]
and observed a significant computational gain. For instance, on a camera
walk with |q|=370 (and zCam ranging from 10 to 50), our method was on
an average 10 orders of magnitude faster.

6 Conclusion

In this paper, we have looked at the problem of reducing the computational
burden in dealing with the rich and densely sampled light field when a user
walks through a virtual world. We have achieved this by recognizing that instead
of considering the complete light field, it is enough to consider a sparse set of
nodal points. We have proved that the division of the image plane into cells and
thereafter, deriving a deterministic pattern of the use of the nodal points for each
of these cells, has increased the computational efficiency significantly. The proofs
of the mathematical characterizations of these concepts have been provided. A
new lightfield dataset for purposes of experimentation has been generated and
experimental results have been shown to validate our technique.

Our description does not explicitly deal with decompression issues (indeed, in
the first stage [1] of rendering, the entire light field is decompressed as it is read
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into memory from disk). However, there is no conceptual blockade in applying
the general caching strategy and the mathematical elements even in these cases.
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grant. The base Light field code was downloaded from graphics.stanford.edu
The Mini Cooper model was taken from www.oyonale.com and the lightfield
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Animation and Interaction
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Abstract. This article reports the result of an experiment which in-
tegrates GPU-accelerated skinning, sprite animation, and character be-
havior control. The experiment shows that the existing techniques can
be neatly integrated: thousands of characters are animated at real-time
and the overall motion is natural like fluid. The result is attractive for
games, especially where a huge number of non-player characters such as
animals or monsters should be animated.

Keywords: game, character animation, skinning, impostor, behavior
control, GPU.

1 Introduction

Animation of large crowds is an area of research that has been receiving an
increased amount of interest. Especially, it is becoming essential in multi-player
online games that can accommodate a huge number of simultaneous players
or non-player characters (NPCs). A good example of NPCs is a herd of land
animals. Such a herd is made up of autonomous discrete animals, but the overall
motion seems fluid. Reynolds observed that the motion is the aggregate result
of the actions of individual animals, each acting solely on the basis of its own
local perception of the world[1].

This article reports an experiment result for real-time interaction with au-
tonomous discrete NPCs. For rendering a large number of NPCs, the multi-
resolution technique proposed by Kang et al.[2] is used. The group of NPCs
responds to the player character’s interaction, as well as to each other and their
environment. For controlling the group behavior, the mental models proposed
by Reynolds[1,3] have been adopted, which mediate between several conflicting
behavioral goals.

The experiment results show that the two existing techniques can be neatly
integrated. Such integration is attractive for real-time graphics applications such
as games, especially where a huge number of NPCs including animals or monsters
should be rendered.
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2 Rendering of Large Crowds

This section summarizes the multi-resolution rendering technique for large
crowds, proposed by Kang et al.[2]. Note that an NPC in close proximity with
a player character can interact with the player, and the interaction may cause
various actions of the NPC. However, an NPC at a distance does not interact
with the player character, and performs a limited set of actions. Therefore, differ-
ent levels of detail in NPC animation are used: skinning animation[4] for NPCs
at close proximity as well as all player characters, and impostors (animated
sprites)[6,7] for distant NPCs.

Skinning has been the dominant approach to character animation in real-time
applications. The skinning algorithm is based on a hierarchy of bones, and each
vertex in the mesh is assigned a set of influencing bones and a blending weight
for each influence. Then, the deformed vertex position vc for a configuration c
is computed as follows:

vc =
n∑

i=1

wiMi,cM
−1
i,d vd (1)

where wi is the weight, vd is dress-pose location of the vertex, Mi,c is the trans-
formation matrix associated with the i-th influence in configuration c, and M−1

i,d

is the inverse of the dress-pose matrix associated with the i-th influence.

Fig. 1. Skinning and render target texture (from [2])

The four 1D textures in the left side of Fig. 1 show the skinning data for a
vertex. A vertex is influenced by 4 bones, and the bone matrices are computed
every frame. As shown in the right side of Fig. 1, each row of the 3×4 matrix
is recorded in a separate texture. Through a single drawcall, all vertices of all
characters are transformed, and written into the render target texture, as shown
in the middle of Fig. 1. In implementation, the vertex shader renders a quad
covering the render target, and the pixel shader fills each texel of the render
target texture, where a texel corresponds to a vertex of a character. Then, the
render target texture is copied to a vertex buffer object (VBO)[5], and then each
character is rendered by the vertex shader using a given index buffer.
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The GPU-based skinning algorithm is integrated with sprite animation. A
sprite’s size is 32×32. For each keyframe, sprites are captured from 256 view-
points in the spherical coordinates: 8 along the longitude in the range [0,π/2],
and 32 along the latitude in the range [0,2π]. The set of 256 sprites is stored
in a 512×512 texture. For a character, 11 keyframes are used. The impostors
are rendered through hardware-accelerated point sprites, for rendering of which
both OpenGL and DirectX have standard interfaces.

3 Behavior Control

Reynolds[1] suggested a flocking algorithm which takes a bird as a particle.
Three steering behaviors are considered: separation for avoiding local flock-
mates, alignment towards the average heading of local flock-mates, and cohesion
to move towards the average position of local flock-mates. In addition, avoidance
behavior is included to avoid obstacles or enemies. In his later work[3], Reynolds
also suggested to use lattices as spatial directories for the speedup purpose.

Fig. 2. Vectors for behavior control

In order to control the massive animated NPCs discussed in the previous
section, the behavior control algorithm of [1,3] has been adopted. Three steering
behaviors (separation, alignment, and cohesion) are used to define the path of
each NPC, and the avoidance behavior makes the NPCs flee from the player
character and get away from the fences. The four behaviors lead to specific
velocity vectors for an NPC, and summed through user-defined weight values.
The summed vector determines the combined velocity of an NPC. See Fig. 2
where s, a, and c stand for separation, alignment, and cohesion, respectively.



336 I. Kang and J. Han

An NPC’s steering behaviors are determined by considering the neighboring
NPCs in close proximity. For the sake of the real-time performance, the entire
terrain is partitioned into lattices, and only the NPCs in a lattice and neighboring
lattices are considered.

In the current experiments, the horses move following the terrain surface,
and therefore the moves are restricted basically to 2D. The behavior control
algorithm is applicable to 3D space, for example, to determine the behaviors of a
flock of birds. Note that, however, behavior control in 2D surface is more difficult
than that of 3D space. It is because collisions among the NPCs are harder to
handle in the 2D surface. Imagine hundreds of animals in a cage. In the current
implementations, the maximum velocity has been set to be high enough for
efficient handling of collisions. However, such a high velocity may cause unnatural
change of moving directions such as abrupt rotation. The maximum velocity
should be properly set according to the features of specific NPCs. For example,
the maximum velocity of horses should be greater than that of sheep.

Better performances can be achieved by applying the behavior control algo-
rithm only to the NPCs in close proximity, i.e. the skinning-animated characters.
In FPS (first-person shooting) games, for example, the NPCs interacting with
the player are those in close proximity, and therefore it is a reasonable choice to
apply the behavior control algorithm only to them.

4 Implementation and Result

The algorithms have been implemented in C++, OpenGL and Cg on a PC with
3.2 GHz Intel Pentium4 CPU, 2GB memory, and NVIDIA Geforce 7800GTX
256MB. For experiments, a horse character is used, which is composed of 38
bones, 555 vertices and 1,084 polygons. Table 1 shows how the performance
changes in FPS on the ratio of skinning and impostor rendering when 1,000
horses are rendered. Obviously, the rendering performance is improved as the
ratio of impostor rendering to skinning is increased. When the behavior control
algorithm is executed, the overall FPS is decreased.

Fig. 3 shows snapshots of animating hundreds of horses with behavior con-
trol. The three steering behaviors (separation, alignment and cohesion) are im-
plemented. In addition, the human player character is working as an enemy,
and causes avoidance behavior of the NPCs (horses). Fig. 4 shows snapshots of

Table 1. Performances

# skinning # impostor FPS (no behavior control) FPS (behavior control)

1000 0 57 52
800 200 70 63
600 400 91 79.5
400 600 124 103.5
200 800 207 155.5
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Fig. 3. Large crowd rendering with behavior control

Fig. 4. Large crowd rendering in a scene of fences with behavior control
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animating horses in an area with fences, where both of the human player char-
acter (enemy) and the fences (obstacles) lead to the avoidance behaviors of the
horses.

5 Conclusion

This article presented integration of a multi-resolution technique for real-time
animation of large crowds and the character behavior control. The target ap-
plication of the presented approach is the massively multi-player online role
playing games (MMORPGs). The experiment results show that such integration
is attractive for MMORPGs, especially where a huge number of NPCs such as
animals or monsters should be animated.
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Abstract. Most clickstream visualization techniques display web users’ clicks 
by highlighting paths in a graph of the underlying web site structure. These 
techniques do not scale to handle high volume web usage data. Further, 
historical usage data is not considered. The work described in this paper differs 
from other work in the following aspect. Fuzzy clustering is applied to 
historical usage data and the result imaged in the form of a point cloud. Web 
navigation data from active users are shown as animated paths in this point 
cloud. It is clear that when many paths get attracted to one of the clusters, that 
particular cluster is currently “hot.” Further as sessions terminate, new sessions 
are incrementally incorporated into the point cloud. The complete process is 
closely coupled to the fuzzy clustering technique and makes effective use of 
clustering results. The method is demonstrated on a very large set of web log 
records consisting of over half a million page clicks. 

1   Introduction  

Web usage analysis of large and popular websites can provide vital information about 
online business transactions that can be used by business administrators to improve 
the services provided through their websites. Web usage data has normally been 
analyzed either in the form of user sessions or in the form of clickstream data. A 
session is typically the set of pages (URLS) visited by a user from the moment the 
user enters a web site to the moment the same user leaves it [19]. Clickstream is a 
generic term to describe visitors’ paths through one or more web sites [13]. Analysis 
of clickstream data can show how visitors navigate and use the web site over time.  

Visualization techniques are claimed to be among the best ways to analyze and 
understand web usage data [17]. Through visualization one can discover interesting 
patterns more easily than by looking at raw usage logs. In addition, there is also the 
possibility of generating recommendations from these patterns [18]. As user interests 
are not fixed and change over time, web usage data for a popular web site is very 
large, sparse, and fuzzy. The most basic way to visualize web usage data is by using 
the spanning tree technique to convert a log file into the users’ browsing map. This 
technique is not robust and does not scale well enough to construct a users’ browsing 
map when the web site is complex and the volume of clickstream data is large.  

Our approach differs from earlier work in that we show dynamic web usage trends 
by overlaying clickstream data for every active user in the form of an animated 



340 S. Kannappady, S.P. Mudur, and N. Shiri 

particle moving within a clustered visual representation of historical web usage 
data.Visual analysis of the paths followed by these active users can provide insight 
into the current online interests and trends.  Our visualization process can be briefly 
described as follows: In the first phase, we create a three dimensional (3D) point 
cloud visual representation of historical web log data. For this, the large volume of 
web usage data available is first organized into sessions. Fuzzy clustering is then 
carried out on these sessions. This identifies a small number of the sessions as cluster 
centers.  And for all other sessions, we get fuzzy membership values with respect to 
these clusters. Using a combination of Multi Dimensional Scaling (MDS) and 
Sammon Mapping (SM), the cluster centers are assigned positions in 3D space to 
optimally reflect the dissimilarity interrelationships amongst them. Next we render all 
the user sessions as a point cloud by direct use of the fuzzy membership values of 
these sessions with the cluster centers. This yields a 3D visual representation of the 
web usage pattern. The second phase involves real time visualization of clickstream 
data. An active user is defined as the one whose most recent web page visit was 
initiated within a period, say, 45 minutes. The web pages visited by each active user 
are maintained as a dynamically updated session. When an active session is updated 
by addition of the new web page he/she visited, the dissimilarities between this 
updated session and the current cluster centers are used to obtain the fuzzy 
membership values into the clusters; these values are then used to update the position 
of the session within the point cloud.  

Given that a popular website will have a large number of new page clicks per 
second, the positions of active sessions are updated frequently. Periodically, as active 
sessions terminate (i.e., no new page visited by the active user within the last 45 
minutes), we dynamically update the web usage profiles using an incremental version 
of the fuzzy clustering technique. When a session is incrementally added to the 
current clustering of the web usage data, it could be designated as a new cluster center 
or just be like other sessions with different membership values to the existing clusters. 
In the latter case, it is rendered in the usual manner into the point cloud. In the former 
case, we have devised an incremental version of Sammon Mapping which yields a 
new 3D position for this session. All subsequent visuals of user sessions and 
clickstream data then make use of the newly added cluster centers as well. We have 
experimented with our department’s website with over 10,000 pages and web log data 
gathered over a period of a few months consisting of over half a million web page 
clicks. For simulating real time web page click, we divided the web log records into a 
historical data set and a click stream data set (the last 5,000 records).  

The rest of this paper is organized as follows. Section 2 is a review of related work 
on web usage visualization. Section 3 briefly describes the fuzzy clustering technique 
and also the metric MDS and SM technique used for projecting high dimensional data 
into low dimension. In Section 4 we explain the process of rendering the web usage 
data as a point cloud with the active sessions animated as they are incrementally 
updated with web page click data. We also show results of our experiments on large 
web usage data. In section 5, we describe the use of incremental fuzzy clustering 
algorithm for updating the point cloud image to accommodate new usage sessions. 
Section 6 concludes with some observations and potential future work. 
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2   Related Work 

Most web usage visualizations highlight paths traversed by users in a graph of the 
website structure. Hence results from research on the general problem of visualizing 
graph structures become applicable [23]. Further, the near hierarchical structures of 
the web make visualizing them slightly easier than visualizing a general graph. Cone 
trees [8], Hyperbolic tree maps [15], and Landscape [1] are typical examples of web 
structure visualization approaches. SiteLens, from Inxight Software 
(www.inxight.com), used the hyperbolic tree technique to visualize Web site 
structure, while NicheWorks [21] used an angular layout similar to disk trees [4]. In 
most of these visualizations, the main goal is to help users navigate more effectively 
by visually representing the non-linear information access structure. On the other 
hand, it is very important for web usage analysis to get insight into usage patterns, 
current interests, and trends based on web clicks, particularly for large websites with 
high volume usage. There is considerably less attention on clickstream visualization. 
Unfortunately, it is hard, if not impossible, to visualize sparse voluminous data of a 
large number of dimensions of numerous items in a workable manner, as 
comprehension decreases with the amount of data displayed [8].  

WebQuilt [9] is a tool that uses a proxy server to log the user’s clickstream. It uses 
directed graphs to construct a visualization of the user’s browsing path. The thickness 
and the color of the arrows indicate the user’s browsing behavior. The thicker arrows 
denote a more heavily traversed path, and darker arrows mean that more time is spent. 
Vividence Clickstream [22] and ClickViz [3] use a similar approach to visualize the 
user’s click stream data. Some visualization tools use 3D or multidimensional 
graphics, which can incorporate more features in one graph. Examples of tools using 
this kind of technology include Disk tree [4], VISIP [6], Parallel Coordinate [10], and 
Scalable Framework [14]. However, none of these scale up to be able to handle 
clickstream data consisting of millions of records. Further, none of them keep any 
visual record of usage history, thus making it difficult to gage patterns and trends. Our 
work differs from all the above mainly in the following aspect: we closely couple our 
visualization technique with a data mining technique that discovers usage patterns in 
the form of user profiles and then animates active users’ click data by overlaying it on 
a point cloud rendering of clustered historical usage data.  

3   Fuzzy Clustering and Dimensionality Reduction 

In what follows, we describe the techniques of fuzzy clustering, dimensionality 
reduction, and graphic mapping used in this work. 

3.1   Relational Fuzzy Subtractive Clustering (RFSC)   

For discovering usage patterns, we have used Relational Fuzzy Subtractive Clustering 
algorithm (RFSC) [19]. We have chosen this over other fuzzy clustering techniques 
for its distinct advantages, namely scalability to large usage data, efficiency, ability to  
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handle noise, and most importantly the existence of an incremental version [20] which 
we use to maintain up to date usage profiles. RFSC works on web log data organized 
into sessions and dissimilarity values between sessions defined using the measure 
given in [16]. We briefly describe the core algorithm to provide a flavor of the RFSC 
technique. A detailed exposition can be found in [19, 20].   

The RFSC algorithm starts by considering each session xi as a potential cluster 
center. The potential Pi of each session xi is calculated as follows: 

Pi = 
1

UN

j=

2
ijR

e
α−

, where α = 4/ γ2 

Rij is the dissimilarity between sessions xi and xj, NU is the total number of objects to 
be clustered, and γ is essentially the neighborhood calculated from the relational 
matrix R. It also true that Rij≥0, Rij=Rji, and Rii=0.  

The session with highest potential (P1
*) is selected as the first cluster center. Next, 

the potential of every other session is reduced proportional to the degree of similarity 
with this previous cluster center. Thus there is larger subtraction in potential of 
sessions that are closer to this cluster center compared to those which are farther 
away. After this subtractive step, a session (xt) with the next highest potential (Pt) is 
selected as the next candidate cluster center. Now to determine whether this can be 
accepted as an actual cluster center or not, two threshold values are used, ∈(accept 

ratio) and ∈(reject ratio), where we have that 0 <∈, ∈< 1, and ∈<∈. If Pt > ∈P1
*, 

then xt is selected as the next cluster center, and this is followed by the subtractive 

step described above. If Pt < ∈P1
*, then xt is rejected, and the clustering algorithm 

terminates. If the potential Pt lies between ∈P1
* and ∈P1

*, then we say that potential 

has fallen in the gray region, in which case we check whether xt provides a good 
trade-off between having a sufficient potential and being sufficiently far from existing 
cluster centers. If this holds, then xt is selected as the next cluster center. This process 

of subtraction and selection continues until Pt < ∈P1
*, which is the termination 

condition. After finding C cluster centers, the membership degree of different xj to 

each cluster ci is calculated using the formula: uij =
2

jicR
e

α−
, i = [1..C] & j = [1..NU], in 

which jci
R is the dissimilarity of the ith cluster center

icx with the jth session xj. When 

xj =
icx , we have jci

R = 0 and that the membership uij = 1. When xj = 
icx , we have 

jci
R = 0 and the membership uij = 1. While most other fuzzy clustering algorithms 

impose the condition ,1
1

=
=

ij

C

i

u RFSC does not. This effectively makes RFSC 

algorithm less sensitive to noise. Noise sessions are easily identified as their 
membership values will always lie on the asymptote of each of the clusters. 

We have used a point cloud representation in 3D for visualizing usage patterns. 
Hence, in the next step we need to assign 3D coordinates to each of the sessions. For 
this, we make use of a dimensionality reduction technique. However, as we shall soon 
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see, our experimental web log data of over half a million page clicks gets organized into 
64,529 sessions. Dimensionality reduction for this large data can be computationally 
prohibitive, as it would involve Eigen value analysis using a matrix of this size 
iteratively. In particular, convergence can be a major problem as there are many near 
equal dissimilarity values in the dataset. Fortunately, RFSC provides us with a much 
smaller number of cluster centers. Therefore, we first map these cluster centers into 3D 
and then use the fuzzy membership values to render the rest of the sessions. 

3.2   Metric Multidimensional Scaling 

Metric MDS begins with an n×n dissimilarity matrix R with elements rij, where 1  i,j 
 n. The objective of metric MDS is to find a configuration of points in p-dimensional 

space (p=3, in our case) from the dissimilarities between the data points such that the 
coordinates of the n points in p dimensions yield an Euclidean distance matrix whose 
elements are as close as possible to the elements of R. Using the metric MDS, we 
obtain the initial configuration. Since this is quite standard, we refer the reader to [21] 
for details. However, fidelity to the original distance relationship is poor due to low 
dimensional projection. To minimize this loss, we use Sammon Mapping, with 
suitable modifications to be able to handle the special characteristics of web usage 
data, described next. 

3.3   Sammon Mapping 

Sammon Mapping (SM) [17] is an unsupervised, nonlinear method that tries to 
preserve relative distances. The algorithm that generates a Sammon map employs a 
nonlinear transformation of the observed distances among data items when mapping 
data items from a high-dimensional space onto a low-dimensional space. Let r*

ij 
denote the dissimilarity (usually Euclidean distance) between two different data items 
i and j in the original dimensional space, and rij denote the distance in the required 
projected space. Then the error function of SM is defined as follows: 

= +=

= n

i

n

ij

ijr
E

1 1

*

1
= +=

−n

i

n

ij ij

ijij

r

rr

1 1
*

2* )(
   

(1) 

Here, smaller the error value E, the better is the map we obtain. However, in practice, 
we are often unlikely to obtain perfect maps especially when the dataset is large and 
in high-dimensional space. Therefore, approximate preservation is what we can 
expect.  

Let E (m) be the mapping error after the iteration step m, i.e.,   
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* is the original distance matrix. 
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The new d-space configuration at iteration step m+1 is given by: 

ypq (m+1) = ypq(m)–(MF)× )(mpqΔ  (3) 
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and MF is the “magic factor” determined empirically to be about 0.3 or 0.4.  
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This is an iterative process which terminates when the Sammon stress value E 
cannot be decreased anymore. The guidelines for best stress values suggested by 
Kruskal [12] are given in the following table: 

Table 1. Stress guidelines suggested by Kruskal [12] 

Stress     0.3       0 . 2         0.1     0 . 0 2 5       0 . 0      
Goodness of fit Poor     Fair     Good   Excellent P e r f e c t      

3.3.1   Modified Sammon Mapping 
We can observe that if any two points in the d-space have identical values, then the 
Sammon stress E will go beyond 1, which is not desirable. When going through the 
Sammon Mapping iterations for web usage data, we observed that quite often,  
the distance between some pair of clusters reaches close to zero, thus blowing up the 
stress value disproportionately. To overcome this problem, we modified equations (4) 
and (5) above so that even though the d-space has identical values, the stress E does 
not blow up. This is done by observing that rpj in the denominator of these equations 
essentially provides a scale factor which can be avoided. The corresponding modified 
equations are as follows: 
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If we consider the mapping error in equation (5), we note that it is not necessary to 
maintain c in equations (6) and (7) for a successful solution of the optimization 

problem, since minimization of *2* /)]([)/1( ij

n
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ijij rmrrc

<
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−  

yield the same result. 
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We tested the modified SM algorithm using some benchmark datasets such as iris 
and wine [2] and confirmed that the results were the same as those obtained using the 
original SM algorithm. We use this modified SM algorithm in our work. 

4   Rendering Fuzzy Clustering of Usage Sessions 

We have chosen a simple 3D point cloud visual representation for reflecting the web 
usage patterns discovered by RFSC. Keeping in mind scalability requirements given 
the huge volume of web usage data, its sparseness, the inherent fuzziness and noise, 
and our need for dynamic update to handle clickstream data in real time, we feel that a 
point cloud, though very simple, is quite adequate. This was based on the following 
observations. 

Choice of 3D over 2D: When clustering web usage sessions, the number of clusters 
for large data could lie in the range of few hundreds. The added dimension of “depth” 
in 3D provides the ability to better reflect the distance relationships. With the current 
trends in 3D graphics hardware, it becomes possible to use a simple metaphor of 
navigating in space and looking around a collection of clusters (clouds, in our case) to 
visually inspect the dataset and gain more insight.  

Choice of Point cloud: The point cloud can easily handle the fuzziness captured by 
the clustering technique and visually depict this fuzziness with considerable fidelity.  

Scalability of the Visual Mapping Technique: Sessions represented as particles in 3D 
space is a simple mapping computation and intensity can be varied to reflect closeness 
of association with a cluster. Large volumes of data can be handled efficiently and 
more importantly without undue computational overhead.  

Noise Visualization: Noise sessions are easily detected in RFSC, as their membership 
values lie on the asymptotes of each of the clusters. Noise sessions are therefore 
assigned random positions in the 3D visual space. The effectiveness of this visual 
mapping is discussed in [11]. 

Close Integration with Clustering Method: Lastly, it was desired to have a simple 
method integral to clustering, so that one could show the navigational path in real 
time to help the web administrator get insight into current trends and interests.  

We have the 3D positions of cluster centers from MDS and modified SM. Every 
point in the dataset has a membership value with every cluster center, which we use to 
assign 3D positions. The method is simple and described below.  

4.1   Assigning 3D Position to Click Data Received from Active User Sessions 

Every session (other than cluster centers and noise) is classified into one of following 
categories:  

i) The first category consists of sessions having large affinity towards only one 
cluster center. The sessions that belong to this category will have one high 
membership value and all other membership values will be much lower. 
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ii) In the second category, sessions will have high affinity towards two cluster 
centers, and much lower membership values for all other clusters. 

iii) In the third category, sessions will have high affinity towards three cluster 
centers, and much lower membership values for all other clusters. 

iv) All other sessions are treated as noise.  
For each session, cluster centers are addressed in the order of their membership values 
(m1, m2, m3 …) say, C1, C2, C3, etc. Let a be the average distance between clusters, and 
R be any random 3D vector.  

Steps for rendering sessions that belong to the first category: 

1) We consider Polar coordinates, i.e., (r, ΦΘ, ), where the radius r = 0.3a(1 – m1).  

2) The values ΦΘ,  are chosen randomly to account for the fuzziness. 
3) Then we convert these spherical coordinates to Cartesian coordinates, which  
     gives a position (dx, dy, dz) in 3D space relative to the position of C1. 
4) These points are assigned full intensity. 

Steps for rendering sessions that belong to the second category: 

1) Multiply vector difference, C2 – C1 by (1 – m1) to get the vector P. 
2) Carry out cross product of C2 – C1 with random vector R to get vector N.   
3) Multiply vector N with 0.5a(1 – m2). 
4) Obtain the desired point coordinates by adding the vectors C1, P, and N. 
5) Lastly, assign intensity values reduced in proportion to the distance from  
     the cluster centre. 

Steps for rendering sessions that belong to the third category: 

1) Multiply vector difference, C2 – C1 by (1 – m1) to get the vector P. 
2) Carry out cross product of C2 – C1 with random vector R to get vector N.   
3) Multiply vector N by 0.5a(1 – m2). 
4) Obtain point coordinates by adding the vectors C1, P, and N. 
5) Follow steps 1 to 4 for the first and third cluster centers.  
6) Take the weighted average of the two points (step 4) to get the final point.  
7) Assign intensity values reduced in proportion to the summed distances from the 
     cluster centers. 

The above procedure yields a computationally efficient method for assigning 3D 
positions to sessions. Use of dominant membership values results in preserving the 
inherent relationships much better. We have used the user access logs from our 
department server during January 15, 2004 to May 5, 2004. This file is cleaned in a 
preprocessing phase, organized into session data and then a relational data 
(dissimilarity) matrix is computed using all but the last 5000 log records. This 
relational matrix is then input to the RFSC algorithm. The total number of user 
sessions obtained was 64,529 and the number of cluster centers identified by RFSC 
was 46. Dissimilarity values between cluster centers are extracted from the relational 
data matrix and used as the input to the dimensionality reduction technique (partially 
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shown in left table in Fig. 1). The result of applying MDS to this dissimilarity matrix 
is shown in the middle table in Fig. 1. The reader may note some of the zero 
distances, illustrating the importance of the proposed modification to Sammon 
Mapping for this kind of data. The Sammon stress value E obtained for this dataset 
using our method was 0.11 and the much improved result is shown in the right most 
table in Fig. 1.  

   

Fig. 1. Dissimilarity values: original (left), after MDS (middle), after Sammon Mapping (right) 

 

Fig. 2a. Point cloud image of fuzzy clustering of web usage sessions 

 

Fig. 2b. Representation of profile details of clicked cluster 
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The time needed to determine the coordinate values using our method was around 
1 hour. This was because the distances between any pair of these 46 cluster centers 
were almost the same (close to 1), as can be seen in the left table in Fig. 1. In 
comparison, the time it took to find the coordinates for the iris dataset with 150 
elements was less than a second since the distances were far more distinct. Fig. 2a 
shows a point cloud visual representing this usage data. Clicking on any point on this 
image will yield the preferences of the associated user profile (Fig. 2b). 

4.2   Animating Clickstream Data Received from Active User Sessions 

As mentioned earlier, once we have the historical web usage data imaged as a point 
cloud, we consider the currently active sessions. As each active user navigates 
through different web pages in the website, we animate this as a linear path in 3D 
overlaid on the 3D point cloud model. This is done as follows: The web page clicks 
are retrieved every frame and analyzed. This could create a new active session or 
update the pages visited by an active user session. We first calculate the session 
dissimilarity of each updated active user session with the current cluster centers. Then 
we obtain the fuzzy memberships with all existing cluster centers. Lastly, we assign a 
new position to each updated user session by the method described in section 4 and 
render it in a distinct color.  

 

Fig. 3. Active user path visualization from clickstream data 

For experimental purposes, we analyzed the last 5000 records of our web log and 
extracted the updates to active user sessions in an incremental fashion. Fig. 3 shows 
a screenshot which illustrates a sample of active user sessions as darker dots and the 
paths followed until this time. This type of animation enables one to visually get 
deeper insight into current trends and interests. For example, when an existing 
cluster is the attractor for many active user paths, it indicates that this is a “hot” usage 
profile. 
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5   Incremental RFSC and Visualization 

Over a period of time, active sessions are terminated; in our case when there is no 
activity from that user for 45 minutes. The paths of terminated active sessions are 
removed from the display. However, as the number of such sessions increases, for 
correct visual depiction of the web site usage history, these must be reflected in the 
point cloud. For high volume usage, the over head is quite high if we have to carry out 
complete reclustering of the entire usage data (old clustered sessions plus newly 
completed sessions). Instead, we make use of the Incremental RFSC algorithm [20]. 
Whenever a new session is added, this algorithm either makes it a new cluster center 
or assigns fuzzy membership values to existing clusters.  

As new clusters are discovered, it becomes essential to add the new clusters into 
the point cloud without changing the position of the existing clusters, to avoid any 
visual confusion to the viewer. We have again devised a method for plotting the new 
cluster without having to run the MDS and SM methods for the whole data again. We 
first obtain an initial coordinate value using the distance between the new cluster 
center and the existing cluster centers. Then we use the SM method described in 
section 3 to decrease the error in distance between the newly found cluster center and 
the existing cluster centers. When the Sammon stress goes beyond a pre-defined 
threshold, we need to perform the MDS and SM for the entire data set. We have 
experimented by removing the sessions belonging to a cluster and then found that 
Incremental RFSC does add that new cluster and this method assigns a new 3D 
position to the cluster center, sufficiently distinguishable from the rest. 

6   Conclusions and Future Work 

Historical data of web usage must be used in any visualization of clickstream data, if 
the web administrators have to gain insight into changes in trends and interests over 
time. Web usage data is however, very large, sparse, noisy, non-Euclidean and fuzzily 
classified, making its visualization a difficult task.  In this paper, we have proposed 
using a combination of techniques: (i) RFSC for fuzzy clustering, (ii) a combination 
of Multidimensional Scaling followed by modified Sammon Mapping, we introduced, 
for dimensionality reduction to enable point cloud like visual rendering of the usage 
data, and (iii) incremental RFSC for continued update of the point cloud and (iv) 
animation of active user paths to get insight into trends and interests. By cleverly 
using the membership values assigned by RFSC to the other sessions, we developed a 
fast method for rendering the large data.  

Future work is primarily on improvements to the current technique. First, we plan 
to provide another window which displays the structure of the website and highlights 
any usage profile, selected by user clicking on the point cloud. This will obviate the 
need for the message box which we currently display over the point cloud. Second, 
we plan to provide interrogation facility in the form of “if then” queries. For example, 
the web administrator can change the structure by editing one or more links, and the 
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system would react by illustrating the effect of this change on usage profiles, for 
instance, in terms of the number of links to be traversed.  
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Abstract. Points, lines, and polygons have been the fundamental prim-
itives in graphics. Graphics hardware is optimized to handle them in a
pipeline. Other objects are converted to these primitives before render-
ing. Programmable GPUs have made it possible to introduce a wide class
of computations on each vertex and on each fragment. In this paper, we
outline a procedure to accurately draw high-level procedural elements ef-
ficiently using the GPU. The CPU and the vertex shader setup the draw-
ing area on screen and pass the required parameters. The pixel shader
uses ray-casting to compute the 3D point that projects to it and shades it
using a general shading model. We demonstrate the fast rendering of 2D
and 3D primitives like circle, conic, triangle, sphere, quadric, box, etc.,
with a combination of specularity, refraction, and environment mapping.
We also show combination of objects, like Constructive Solid Geometry
(CSG) objects, can be rendered fast on the GPU. We believe customized
GPU programs for a new set of high-level primitives – which we call
GPU Objects – is a way to exploit the power of GPUs and to provide
interactive rendering of scenes otherwise considered too complex.

1 Introduction

Points, lines, and polygons are the basic primitives in conventional graphics. Ac-
celeration hardware is optimized to process them quickly in a pipeline. Complex
shapes are converted to these primitives before rendering. Procedural geometry,
on the other hand, involves on-the-fly creation of arbitrarily accurate shape from
compact descriptions, usually in the form of implicit equations. The graphics
display pipeline cannot render procedural geometry directly. Procedural objects
are converted to piecewise linear models using polygons and lines before ren-
dering. This results in a loss in resolution and incurs computational overhead.
Ray-tracing methods can handle procedural geometry to produce high-quality
renderings. These methods have very high computational complexity and are
not suitable for interactive applications.

The Graphics Processor Units (GPUs) have seen very steep growth in pro-
cessing capabilities. They deliver highest computation power per unit cost today
and have been improving at a quick pace. Introduction of programmability in
GPUs at the vertex and the fragment levels has brought novel uses of the graph-
ics hardware. We present several examples of fast and accurate rendering of

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 352–363, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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procedural objects on the GPUs in this paper. The equations of the objects are
evaluated exactly at each pixel it projects to in a way similar to the ray-tracing
techniques. This results in high quality rendering at all resolution levels and
exact, per pixel lighting. We also apply the technique to objects that are tradi-
tionally not considered to be procedural. All of this is performed at interactive
frame rates.

Procedural geometry has many benefits over polygonal geometry. In the lat-
ter, the surface is approximated by a triangle mesh. Triangulation in itself is
an overhead, which requires time consuming preprocessing of the geometry. Tri-
angulated mesh requires high memory bandwidth from the CPU to the GPU
and huge video memory for storage. Procedural geometry can save both band-
width and memory requirements drastically. Resolution independent rendering
of curved surfaces [1] was achieved using procedural geometry on GPU. Resolu-
tion independence results in the curved surfaces appearing exactly curved at all
magnification levels. Procedural geometry finds its application in Constructive
Solid Geometry (CSG), which is used in solid modeling to create complex shapes
by combining simple shapes primitives with boolean operators on sets [2]. The
primitives used in CSG are ground set of shapes such as box, sphere, cylinder,
cone, torus, prism, etc.

In this paper, we outline a general procedure for rendering a wide class of
objects using ray-casting from a GPU. We also show how high-quality lighting
options can be computed exactly for these objects. We demonstrate the proce-
dure to interactively render several generic objects very fast on the GPU. These
include triangle, quadrilateral, circle, conic, sphere, box, tetrahedron, quadric,
etc. We also show how different lighting models can be incorporated into the
rendering. We then extend the basic procedure to render a combination of ob-
jects together and demonstrate it on various CSG objects. We believe this is
the first time high-quality ray-casting of CSG objects has been performed at
interactive rates. Our work lays the foundation for a class of GPU Objects that
can be rendered interactively in high quality. We show overview of our results in

(a) (b) (c)

Fig. 1. GPU Objects: (a) Bunny with 36K spheres at 57 fps. (b) Hyperboloid with
reflection and sphere with reflection and refraction at 300 fps. (c) Four-primitive CSG
at 22 fps.
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Figure 1. A GPU Object consists of program fragments for the CPU, the vertex
shader and the pixel shader and can be called like a function by an application
program with the parameters for the objects. As the limitations of today’s GPUs
go away and the architecture evolves to include more memory, longer programs,
and more flexible shaders, customized GPU Objects will be a way to exploit
their compute power to provide interactive rates to rich scenes.

2 Prior Work

Graphics hardware is getting faster which helps rasterization to produce good
rendering effects. The effects generated by ray tracing are the most realistic.
Programmable graphics hardware is able to deliver the promise of realistic ren-
dering effects using ray tracing. Ray tracing of procedural objects [3] transforms
the three dimensional ray-surface intersection into a two dimensional ray-curve
intersection problem, which is solved by using strip trees. It was demonstrated
on procedural objects such as fractal surface, prisms and surfaces of revolu-
tions. Ray tracing of complex scenes [4] incorporated several new schemes such
as bounding box being a good convex hull of the object, division of the object
into hierarchies and efficient data structure for traversing this hierarchy. These
techniques were used for speeding up ray tracing. Ray-tracing on GPU [5] with
different methods such as Whitted ray tracing, path tracing, and hybrid render-
ing algorithms showed that it runs faster on GPU than on CPU. Ray Engine [6]
does a ray-triangle intersection on GPU and achieves effects such as recursive
ray tracing, path tracing, form factor computation, photon mapping, subsurface
scattering, and visibility processing. Ray tracing of ellipses with EWA filtering
which results in anti-aliased splats was done by Botsch et. al [7]. Ray tracing of
perspectively correct ellipsoids on GPU [8] render ellipsoid by transformation of
a unit sphere. GPU accelerated primitives [9] presents a framework for rendering
of quadric surfaces on GPU. They use a different Ray Tracing Area for each type
of quadric to minimize the load on pixel shader. Ray tracing of quadrics on GPU
[10] which uses efficient bounding box computation has been done recently. Fully
Procedural Graphics [11] proposes the extension of graphics hardware so that it
may be able to support procedural rendering of objects.

CSG has already been a well explored area using CPU based algorithms. Ini-
tial methods included the generalization of scanline algorithm using ray tracing
for rendering of intersecting objects [12]. CSG graph representation is optimized
into Convex Difference Aggregates for efficient CSG of convex objects [13]. Nor-
malization and bounding box pruning for CSG [14] demonstrated on the pixel
planes architecture and surface intersection using bounding box optimization
[15] achieve faster CSG. The use of stencil buffer and depth peeling techniques
was done for CSG by Guha et. al [16]. Blister [17] evaluates Blist representa-
tion of CSG expression directly on GPU and is able to render large number of
primitives in real-time.



GPU Objects 355

3 Rendering Geometric Objects

The fundamental operation used by our rendering method is the intersection of
a ray with an object. The intersection is computed in the pixel shader for each
pixel, given the parameters of the object being rendered. This step is essentially
the conventional ray casting implemented on the pixel shader. The points on
the ray in parametric form can be represented as P = O + tD, where t is the
parameter along the ray, O the camera center and D the direction of the ray.
The intersection of the ray with an object given by f(P ) = 0 can be calculated
by substituting the parametric form for P and solving the resulting equations for
the smallest value of t. Polynomial forms of f() span a range of useful objects and
are easy to solve. Many non-linear forms of f() can also be solved for analytically.
Representations such as triangle, quadrilateral, box, tetrahedron, etc., are not
procedural, but can be intersected with a ray efficiently on the pixel shader.

We now give a generic procedure to draw a general object using an appropriate
shader. The object is given by the implicit form f(P ) = 0.

Algorithm 1. renderGeomObject(f)
CPU: An OpenGL program performs the following.

1: Pass the parameters of f() to the graphics pipeline as graphics bindings such as
texture coordinates, color and position. A texture can be used if more data needs
to be sent.

2: Draw an OpenGL primitive such that the screen-space area of the object is covered
by it. This ensures that all pixels will be drawn and the corresponding shaders will
be executed. The primitive used could be a dummy one with the right number of
vertices.
Vertex Shader: A vertex shader performs the following.

3: Pass the parameters from the CPU to the pixel shader.
4: Transform the OpenGL primitive drawn by the CPU to cover the screen-space area

of the object using the object parameters.
5: Perform other pixel independent calculations required for the pixel shader and

passes on the results.
Pixel Shader: A pixel shader performs the following.

6: Receive the parameters of the object and own pixel coordinates (i, j) from the
pipeline.

7: Perform an acceptance test for (i, j) based on the parameters of f(). This involves
computing exactly if the pixel will be on the projected region of the object. This
may require the parameters of f(), the Modelview, Projection, Viewport matrices,
etc. The acceptability can be computed in a 2D texture space in some cases.

8: Compute the ray-object intersection for accepted pixels. This involves solving an
equation in t that is based on f().

9: Compute the 3D point corresponding to the smallest t among the intersecting
points. Also compute the depth and normal at that point using f().

10: Shade the pixel using the lighting, material, normal, and viewing information that
is available to the shader. The reflected ray at the intersection point can be pursued
to apply environment mapping, refraction etc.
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It is important to setup the screen-space bounding area as compactly as pos-
sible as it affects the computation time. A compact bounding polygon is a good
option. The CPU and the vertex shader set this up in combination. The inter-
polation of texture coordinates performed by the primitive assembly unit can be
exploited to send values to all pixels, if suitable. This would be useful for data
like the 3D position, depth, etc., that may be needed at the pixel shader. It is also
possible to draw a single point-primitive with appropriate point-size [10]. This
can involve extra calculations performed at the pixel shader. The pixel shaders
code memory and computation time could be stretched by this, while the task of
the CPU and the vertex shader are simplified. Every pixel in the bounding area
need to check if it is part of the actual object. The ray-object intersection will
give imaginary results for pixels that are outside the object. Easier acceptance
tests may be available for some shapes. The intersection point for the accepted
rays has 3D position (from the ray equation), a normal vector (from derivatives
of f()), and a view direction (from the camera position). Every pixel can be lit
accurately using these. The reflected and refracted rays can be computed and
used for effects like environment mapping and refraction. Recursive ray tracing
is, however, not possible as the pixel shaders don’t support recursion or deep
iteration due to the SIMD programming model available at the fragment units.

We now explain how the above generic procedure can be used to render several
different 2D and 3D objects.

3.1 Planar Shapes

We consider the shapes circle, conic, triangle, and parallelogram. For planar
shapes, the pixel acceptance can be performed in two ways: in the 3D space and
in the texture space. In the former, the ray-plane intersection and the accep-
tance tests are performed in 3D space. In the latter, the vertex shader converts
the coordinates to in-plane coordinates and passes them as texture coordinates.
These values are interpolated by the rasterizer. The pixel shader performs the
acceptance test using the 2D equations using the interpolated texture coordi-
nates. Texture space acceptance test is more efficient but requires a dedicated
bounding area. This means only one primitive can be rendered at a time.

Circle: A square is used as the bounding area for the circle. A more close fitting
regular polygon can also be used, but at the cost of increasing the vertex shader
time. The parameters for the circle are its center, radius and the plane normal.
These values are passed using texture coordinates to the shaders. A dummy
square with coordinates (±1,±1) is passed by the CPU and are transformed by
the vertex shader to a square with length twice the radius. The implicit equation
|P − C| − r ≤ 0 is evaluated in world coordinates to check validity in 3D space.
For texture space calculations, the in-plane coordinates of the square corners are
sent by the vertex shader as a texture coordinate. This is interpolated by the
rasterizer and the interpolated value is available to the pixel shader. The circle
equation can be evaluated in 2D using the texture coordinates. We illustrate the
algorithm for rendering of a circle with environment mapping below :
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Algorithm 2. CircleRender(Center, Radius and Normal)
1: CPU Send a dummy quad with coordinates (±1,±1).
2: Vertex Shader Convert the corner coordinates of the quad to in-plane coordi-

nates and set them as texcoord.
3: Pixel Shader receive center and in-plane coordinates
4: if distance of current pixel from center > radius then
5: discard
6: else
7: use normal for lighting.
8: use reflected ray for environment mapping. reflected ray is obtained by reflecting

the ray from camera center to current pixel about the normal
9: return color and depth of accepted pixel

10: end if

(a) (b)

Fig. 2. (a)Ellipse rendered procedurally on GPU (b) Ellipse rendered using a texture of
512x512 resolution. GPU based rendering is resolution independent and has no aliasing
artifacts where circle shows the zoomed view.

Conic: Conic is a curve formed by intersecting a cone with a plane. Shapes such
as hyperbola, ellipse, circle, and parabola can be represented using conics. Conics
are represented in matrix notation as PCPT = 0 where C is a symmetric matrix.
A conic is described using 6 parameters for C, and the base plane normal. The
bounding area for a conic is computed by finding orthogonal lines tangent to the
conic. The bounding area thus formed is a rectangle. The dummy square from the
CPU is aligned to this rectangle by the pixel shader. The shader also computes
the in-plane coordinates of the rectangle vertices as texture coordinates, which
are interpolated before reaching the pixel shader. Pixel shader evaluates PCPT

for the in-plane coordinates and its sign is used for acceptance.

In fragment shader we first compute intersection of the ray with plane. Equa-
tion of plane with normal n and passing through point p is given by n·(p−x) = 0
and its intersection with ray is given by t = n · (p−O)/n ·D. The traced point is
converted to 2D point and then checked with equation of the conic. For texture
space test, the ray-plane intersection and conversion to 2D point is computed
in vertex shader and interpolated values are used in pixel shader for acceptance
test using sign of PCPT .
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Fig. 3. The sphere is converted into a circle normal to camera view vector

Triangle and Parallelogram: Triangle is strictly not a procedural object. How-
ever, the interior of the triangle is given by 0 ≤ u, v ≤ 1, where u, v are the
barycentric coordinates calculated using the vertices. The bounding area for tri-
angle is a one pixel wider triangle in screen space. Three points are sent from the
CPU which are converted to the barycentric coordinates by the vertex shader
using Möller et al. algorithm [18]. Triangle bound checking on barycentric coordi-
nates is used for acceptance test. For 3D space test the coordinates are evaluated
in pixel shader and then used for bound checking. The same can be achieved
in texture space, by evaluating the barycentric coordinates on the vertex shader
and interpolating it to the pixel shader.

A parallelogram can be handled in a similar way. The condition for acceptance
is 0 ≤ u, v ≤ 1. As for triangle, this acceptance test can be done either in 3D
space or in texture space.

3.2 3D Shapes

We consider the following 3D shapes: sphere, quadric, cylinder, cone, paral-
lelepiped, and tetrahedron. For 3D objects, the bounding area is either a bound-
ing box for the object in 3D space or bounding rectangle in projected space. 3D
shapes can have one or more intersections with ray. Nearest intersection is used
for calculating depth and shading. For use as CSG primitive all intersections are
important.

Sphere: A sphere can be represented using a quadric. It is handled more effi-
ciently than a general quadric by Toledo et al. [9]. We use a different approach
in order to render it even more efficiently by reducing the problem to rendering
of a circle of appropriate radius and orientation. Figure 3 shows a sphere with
center C and radius r and its projected circle with center C2, radius r2, and
oriented along the ray from sphere center to camera center. The procedure for
rendering a sphere, SphereRender(C, r) is described in Algorithm 3.

Thus, we reduce the bounding area for sphere to bounding area of the circle,
which in general is a camera facing regular polygon. It can be drawn using a
polygon with optimal edges or even as a single point with proper size. Figure
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Algorithm 3. SphereRender(C, r)
1: CPU Send a dummy quad

2: Vertex Shader r2 = r cos(sin−1r/d); C2 = (1 − r2

d2 )C + r2

d2 O.
Convert to in-plane coordinates using [18] and send corner points as texcoord.

3: Pixel Shader receive C, C2, r and r2 and in-plane coordinates P : (u, v)
4: if |P − C2| > r2 then
5: discard
6: else
7: solve quadratic equation for ray-sphere intersection and use smaller t.
8: light using 3D point, normal, and view vector.
9: use reflected ray for environment mapping if enabled.

10: if refraction then
11: intersect refracted ray again with sphere,
12: refract it once more and use it for environment mapping.
13: end if
14: set color of pixel as linear combination of above colors.
15: return color and depth of accepted pixel
16: end if

Fig. 4. Top: Bunny Model with 35,947 spheres is rendered at 57 fps at 512x512 viewport
and its zoomed view. Bottom: Ribosome molecule with 99,130 spheres is rendered at
30 fps at 512x512 viewport and its zoomed view.

4 shows rendering of large datasets represented as collection of spheres at in-
teractive frame rates. We used NVIDIA GeForce 6600 GT in our experiments.

Cylinder and Cone: The bounding area for cylinder is billboard rectangle along
cylinder axis and a square at end of the cylinder facing the camera. The bounding
area for cone is billboard triangle along cone axis and a square at the base of
the cone. Ray intersection involves solving quadratic equation, and real roots
producing pixels are accepted.
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Fig. 5. Sphere and Ellipsoid with environment mapping and refraction at 300 fps

General Quadric: Quadric surfaces are second order algebraic surfaces repre-
sented in matrix notation as PQPT = 0 where Q is a symmetric matrix and P
is a point. Bounding area for the quadric is computed from its conic projection
defined as C = PQPT where P is projection matrix. The base plane of the conic
is QC. Ray intersection of quadric is given by roots of quadratic equation in
t and pixels resulting in complex values of t are discarded. For texture space
acceptance test, ray is intersected with base plane of conic in vertex shader and
texture space values of intersections are used in pixel shader for inside-conic
test. Quadrics with reflection, refraction and environment mapping are shown
in Figure 5.

Parallelepiped and Tetrahedron: Parallelepiped is formed by three pairs of paral-
lel parallelograms. A parallelepiped can be represented using four vertices. The
six parallelograms can be described using these vertices and the intersection
with each is computed. Bounding area for parallelepiped is given by three par-
allelogram faces. 3D space ray-parallelogram intersection is computed for every
face, and the nearest intersection point is considered for lighting. For CSG both
intersection are of importance.

Tetrahedron is formed by four triangles and can be represented using its four
vertices. The four triangles can be described using these vertices. A regular tetra-
hedron is representedusing apex position, direction vector and side length. Bound-
ing box for tetrahedron is formed by four triangles of it and the intersection with
each triangle is computed using ray-triangle intersection in 3D space.

4 Rendering CSG Objects

We showed how different objects can be rendered fast using special shaders on the
GPU. The object is rendered with correct depth and color values. Thus, the GPU
rendering can be mixed with normal polygonal rendering and the picture will
have correct occlusions and visibility. We now see how a combination of objects
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can be drawn together by the GPU. The motivation is to draw CSG objects,
which are formed using union, intersection, and subtraction of other objects.
CSG objects are represented using CSG trees of primitives and are popular in
CAD to describe objects exactly. Procedural objects are commonly used in CSG.

We show the rendering of CSG objects that are boolean combinations of the
objects we have seen earlier. Ray casting at the pixel shader is used for this.

Algorithm 4. renderCSGObject()
CPU:

1: Write the primitives of the CSG tree into the texture memory with appropriate
descriptions.

2: Calculate the screen-space bounding area for the positive primitives in the scene
and draw it using OpenGL.

Pixel Shader:

1: Read the CSG tree and information about the primitives from the texture.
2: Calculate all ray intersection for every primitive.
3: Sort the intersections by t. Preserve primitive id for each intersection point. Set toi

as +1 for entry intersections (smaller t) and -1 for exit intersections (larger t).
4: Create two counters: plus for positive and minus for negative primitives and ini-

tialize both to zero.
5: Examine each intersection point. Add its toi to the plus counter if the corresponding

primitive is a positive one. Add toi to the minus counter otherwise. The counters
contains the number of positive and negative objects encountered by the ray from
beginning.

6: Stop when the minus counter is zero and plus counter is positive. This is the
first visible point along the ray. The primitive for this intersection is the visible
primitive.

7: Compute depth and normal using the visible primitive. Reverse normal direction
if the visible primitive is negative.

8: Light the point using the normal material properties etc.

(a) (b)

Fig. 6. (a) CSG of four quadrics with reflection and environment mapping at 20 fps.
(b) CSG of cylinders and spheres with phong shading at 20 fps.
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However, the ray could intersect multiple objects and the boolean combination
between them decides what actually gets drawn. Thus, all objects in the CSG tree
need to be rendered together to generate the correct image at each pixel. Points
are evaluated for being on the boundary of composite object for drawing [17].

Our scheme stores the CSG tree in texture memory and its reference is made
available to the shaders. Each primitive is represented using an id for its type, the
parameters for that type of primitive, and a flag to indicate if the primitive is used
in an additive or subtractive sense. We outline a procedure renderCSGObject()
(Algorithm 4), to draw a simple CSG object, consisting of a set of positive
primitives and a set of negative ones.

The above procedure can render complex CSG objects. Rendering many prim-
itives together is a challenge on today’s GPUs with its limitations on the shader
length. We are able to render CSG objects shown in Figure 6 containing upto 5
quadric primitives on the NVidia 6600GT system. This will improve with newer
generation cards and very complex CSG objects will be possible in the future.
We show some of our results in the accompanying video.

5 Conclusions and Future Work

In this paper, we presented a scheme for rendering several high-level objects using
appropriate shaders on programmable GPUs. We showed interactive rendering
of several geometric and CSG objects with sophisticated, per pixel, lighting. The
figures and accompanying video demonstrate the effectiveness and speed of our
method in rendering many high level objects.

The GPUs are getting more powerful and more programmable with every
generation. While they speed up the rendering of conventional geometry, their
impact can be felt more in rendering higher level primitives that are slow to
render today. This can be made possible using specialized shader packages that
can draw certain types of objects quickly. These packages – which we call GPU
Objects – could be parametrized to generate a class of objects and a class of
rendering effects. These GPU Objects can be invoked by a rendering program
as they do with OpenGL primitives. They can be mixed freely with one another
and with conventional geometry rendering and will produce the correct visibility
and lighting effects. We are currently devising generic GPU Objects that can be
parametrized to get a variety of objects. Such objects will be possible to render
at high speeds on the future GPUs as they get more flexible.
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Abstract. We present a reordering-based procedure for the multireso-
lution decomposition of a point cloud in this paper. The points are first
reordered recursively based on an optimal pairing. Each level of reorder-
ing induces a division of the points into approximation and detail values.
A balanced quantization at each level results in further compression. The
original point cloud can be reconstructed without loss from the decom-
position. Our scheme does not require local reference planes for encoding
or decoding and is progressive. The points also lie on the original mani-
fold at all levels of decomposition. The scheme can be used to generate
different discrete LODs of the point set with fewer points in each at
low BPP numbers. We also present a scheme for the progressive repre-
sentation of the point set by adding the detail values selectively. This
results in the progressive approximation of the original shape with dense
points even at low BPP numbers. The shape gets refined as more details
are added and can reproduce the original point set. This scheme uses
a wavelet decomposition of the detail coefficients of the multiresolution
decomposition. Progressiveness is achieved by including different levels
of the DWT decomposition at all multiresolution representation levels.
We show that this scheme can generate much better approximations at
equivalent BPP numbers for the point set.

1 Introduction

Polygon-based graphics is useful when the properties – such as color, normals,
depth – can be interpolated linearly along a plane, from their values at the ver-
tices. This results in the approximation of the shape for many natural objects. As
the graphics capability improves, they get represented using finer and finer poly-
gons. Recently, points have attracted renewed attention as the basic graphics rep-
resentation primitives [1]. The interest in point-based representations is due to the
increase in the resolution of polygon models. The polygons in the graphics models
have been shrinking in size for greater accuracy and visual fidelity. Per pixel cal-
culations are made in the graphics hardware in most cases to improve the shading
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effects. The display resolution has, on the other hand, been saturating. Thus, it
is common for the polygons of a model to be of the same order as a screen pixel
in many situations. This makes polygons cumbersome and inefficient to handle.
Point-based representations could be more natural and efficient in such situations.

Point based models contain a very large number of points often running into
the millions. Representing them in a compressed manner is therefore essential.
Multiresolution representation and progressive decoding are important to point
based models even more than geometric models. Methods proposed for that typ-
ically compute a local plane of support to induce a regular grid to the points
[2,3]. This facilitates the application of many standard signal and image com-
pression algorithms to points. These local planes are computationally intensive
to find and can cause approximation errors. Since points have no connectivity,
they are conceptually independent of one another and can be reordered with no
loss in information.

In this paper, we present a simple multiresolution decomposition of a point set
based on their proximity without the need for a local plane. Our scheme is based
on the reordering of the points that naturally provides multiresolution represen-
tation and progressive decoding. Our method reorders and decomposes points
successively into approximation and detail sets, loosely similar to the wavelet
decomposition. The approximation results in representation of the point set in a
different levels of decreasing detail. The detail sets are vector differences between
point-pairs. We further reduce the representational complexity of the approxi-
mations by changing the quantization based on the sampling rate, keeping a fine
balance between sampling and quantization. We provide a progressive represen-
tation for the point set. This is done by decomposing the details using DWT up
to a certain number of levels and is used to obtain an approximation of the de-
tail. While reconstructing the point set we use the approximated details instead
of the original details. This scheme is used for generating an approximation of
the point set with given number of bits.

We survey the literature related to the compression of point-based represen-
tations in Section 2. Section 3 presents the details of our multiresolution decom-
position scheme and decompression. Section 4 shows results and is followed by
a few concluding remarks in Section 5.

2 Related Work

Compression techniques have mainly focused on triangle meshes. Triangle based
mesh compression mainly focuses on encoding connectivity [4,5,6]. Vertex po-
sitions are obtained by quantization followed by predictive coding. Progressive
coders allow for better prediction of positions which allow for reconstruction of
intermediate shapes by using a prefix of encoded bit stream. These include pro-
gressive meshes [7] which uses greedy edge collapses to arrive at lower resolution
mesh. Progressive geometry compression [8] eliminates the need for connectiv-
ity compression by using semi-regular meshes, wavelet transforms, and zero-tree
encoding.
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Point based representations allow us to work directly on point data without
worrying about connectivity. QSplat [9] uses a multiresolution data structure
based on a bounding volume hierarchy. This is optimized for rendering of large
point based models such as those obtained through the Digital Michelangelo
Project [10]. The preprocessing allows dynamic level of detail selection on the
fly. Layered Point Clouds [11] handles large point based models and adjust their
sampling according to their projected size on the screen. The sampling technique
[12] used is able to handle complex and procedural geometry. Point set surfaces
[3] use Moving Least Square (MLS) which is a projection operator which can be
used both for upsampling and downsampling of the surface. MLS operator can
be used for generating multiresolution point sets [13]. They use a polynomial
and a local plane and generate multiple resolutions by varying the degree of the
polynomial. The number of choices available for encoding between two consec-
utive levels are however limited. MLS is a smoothing operator and it smooths
the sharp features of the point set surface. Efficient Simplification of Point Sam-
pled Surfaces [14] estimates the curvature of points using local planes. They use
curvature and quadric error metric for simplification which is computationally
expensive. Progressive compression of point sampled models [15] finds an optimal
pairing of points and replace them by their average at lower level of approxi-
mation. This is followed by differential coding where the residues are decreased
further by the use of local planes and a prediction operator. The residues are
coded using a zerotree coder which gives a progressive stream and finally us-
ing arithmetic coding. This scheme can be used for generating progressive levels
from a given point set at a fixed rate and progressive rate. This scheme is able to
handle point attributes such as geometry, color and normals. However, averaging
sends the points to outside the manifold and local plane computation which is
needed is expensive. Predictive point-cloud compression [16] uses a prediction
tree, which is a spanning tree over the vertices. Rooting of the tree defines a
partial order. The tree is built greedily by adding those nodes that predicts the
new point with smallest residue such as constant and linear. The residues are
then encoded by arithmetic coding. This generates multiresolution hierarchy of
the original point set. This scheme handles only geometry.

3 Multiresolution Decomposition Using Reordering

We propose a lossless, multiresolution decomposition of the geometry of the point
set. Our scheme is based on a reordering of the points. Points are first paired
up optimally such that the sum of distances between the pairs is minimum.
The pairing induces a partitioning of the points into Odd and Even halves. The
Odd half provides a lower resolution representation of the model. This process
is repeated recursively with successive Odd sets to get a lossless multiresolution
decomposition of the point set. We also adjust the quantization at the lower
levels to match the sampling. Detail and quantized approximation are encoded
by arithmetic encoding. The multiple resolutions of the representation provide
discrete LODs of the original point cloud with decreasing number of points.
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3.1 Reordering of Points

Our algorithm uses the minimum weighted perfect matching [17] for pairing up
the points. A perfect matching in a graph G is a subset of edges such that each
node in G is met by exactly one edge in the subset. Given a real weight ce for each
edge e of G, the minimum-weight perfect-matching problem is to find a perfect
matching M of minimum weight Σ(ce: e ∈M). An implementation of Edmond’s
original algorithm will run in time O(n2m) where n is the number of nodes in the
graph and m is the number of edges. Minimum weighted perfect matching uses
an improved version of Edmond’s algorithm and is bounded by O(nm log(n)).
The pairing at each level minimizes the total Euclidean distance between all
pairs. The edge weights can additionally include distances between colors and
normals if those attributes are also being compressed. We do not construct the
complete graph but only an adjacency graph connecting each vertex with its
k = 16 nearest neighbours.

After applying perfect matching we get odd and even point sets.While choos-
ing the odd point set and even point set after perfect matching we enhance
coherence in the even point set. The odd point is chosen such that the vector
from the odd point to the even point has positive X,Y , and Z components in
that order of priority. This will increase the correlation between the pairing vec-
tors since our intention is to replace the even points with them. The perfect
matching would reorder the point sets such that the total distance between the
odd and even point sets. After, getting the lowermost odd point set by repeat-
edly applying perfect matching. We would reorder the point sets such that odd
points are in positions (1, · · · , N/2) and the corresponding even points are in the
positions (N/2+1, · · · , N). This reordering is applied recursively to the odd half
of the points so that after reordering the points remain matched. When a point
in the odd section is reordered its matching even point should also be reordered
to maintain the pairing. If only one level of decomposition is done then the even
point set has to be reordered only once. However, if k levels of decomposition is
done or perfect matching is applied k times, then the movement of a point at
the lowest level can result in reordering of 2k−1 points.

3.2 Approximation and Detail

The even point can be replaced by a vector from the matching odd point. If the
pairing is done well, these vectors will have similar values and can compress well.

Odd Even Even Even3 2 13

i+n/4 i+n/2i+n/4+n/8i+n/8i i+n/2+n/4+n/8

Fig. 1. Point set reordering with three levels of decomposition arrows show the move-
ment of matching points. The positions show where the matched points appear after
reordering.
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This is performed in all hierarchical decomposition levels. The approximation
point set is same as the odd point set. The detail point set is obtained by
taking vector difference between the matched even point and the odd point for
every point in the even point set. Thus, after k levels of decomposition the
approximation is Ak and the detail is Dk. We denote jth point of detail Di as
Di[j] and jth point of approximation Ai as Ai[j]. Note that the lower resolution
approximations have the larger index among Ais and Dis. The approximation
and detail are shown after three levels of decomposition Figure 1.

A3 D3 D2 D1

Fig. 2. Approximation and detail after decomposition. A3 is the lowest resolution level.
A3 and D3 make up A2 in a lossless manner and so on recursively.

If each even point i + N/2j at level j is replaced by the vector from its
odd counterpart i at each step, the decomposition divides the original point set
successively into Ak, Dk, Dk−1, Dk−1, · · ·D1.

The approach used by [15] is similar to the full edge collapse used in triangle
meshes. Our approach is similar to the half-edge collapse used in triangle meshes.
In triangle meshes the full edge collapse might result in converting a manifold
mesh to a non-manifold mesh [18]. The same can happen in point sampled models
as the average position is not expected to lie on the manifold. Figure 3 shows
the back part of the of the bunny model with positions as average on the left
one and retained on the right. The edge weight of the graph constructed in both
the cases is the Euclidean distance and attributes are averaged in one case and
retained in another. The averaged representation appears more regular, but has
the points that are clearly away from the original manifold. This problem is more
serious at lower levels of approximation.

Fig. 3. Comparison between averaging the pairs and retaining one of them. The av-
eraged Bunny (left) have points that move away from the manifold (as shown in the
inset), but the retained Bunny (right) has all the points on the original manifold.

3.3 Balanced Quantization and Sampling

It has been established that the quantization and sampling should be matched
to each other in point-sampled representations [19]. It is fruitless to represent
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coordinates with precision when they are sparsely sampled. Conversely, the qual-
ity will be poor if a densely sampled set of points is represented using only a few
bits. This can be exploited to gain greater compression ratios at higher levels of
decomposition.

The point coordinates are represented using fixed precision integers. The num-
ber of bits used should depend on the sampling rate at that level. Twelve to
fifteen bits per coordinate will suffice for most practical models used today.
Thereafter, when approximation Ai−1 is split into Ai and Di, the coordinates of
Ai are stripped off the least significant bit. Thus, the coordinates at level i are
represented using p− i bits if the original points are represented using p bits.
The least significant bits that are collected as an (N/2i)-bit entity Ei of extra
information Figure 4.

Hence, our k-level decomposition of points consists of Ak, Dk, Ek, Dk−1, Ek−1

Dk−1, Ek−2, · · · , D1, and E1. The computation of approximation and detail from
the point set in our case does not involve the use of local coordinate frames as
done in [15].

D1
D2

D3
A3

E3

E2
E1

Fig. 4. Point Set after reordering and quantization

3.4 Compressed Representation

The approximation and detail are encoded using arithmetic encoding [20]. The
extra detail, obtained during quantization, is packed into a stream of bytes and
no encoding is applied as they do not compress much. The encoding is lossless.
Given the lower level approximation, detail and extra-detail we can compute the
higher level approximation exactly.

3.5 Decompression

The original point set has been reordered so that approximation and detail
are matched. Thus decompression is simple and the level up to which we need
lossless reconstruction is computed from the same. Hence, in our scheme the data
size needed to store the complete progressive point set is same as the original
point set. In order to obtain a better approximation, we use the coarsest level
of approximation and the encoded detail levels and extra detail levels till we get
the required level of approximation. We achieve high compression this way as
details and approximation after encoding require less space than the encoded
higher approximation level.



370 J.M. Singh and P.J. Narayanan

Table 1. PSNR and BPP for Different Models. Compression ratio is inversely propor-
tional to BPP.

Level Bunny(35k) Santa(75k) GolfBall(122k) Venus(134k) Armadillo(172k)

0 ∞/30.84 ∞/41.71 ∞/41.29 ∞/31.17 ∞/42.82

1 45.60/7.65 66.41/12.8 62.38/13.05 49.69/6.96 80.15/12.24

2 44.16/3.74 53.53/5.79 61.30/6.72 48.18/2.99 66.19/5.79

3 43.18/1.74 51.19/2.86 60.68/3.27 47.18/1.41 55.61/2.56

4 42.30/0.91 49.81/1.39 50.17/1.50 46.29/0.67 53.12/1.28

5 41.54/0.47 48.76/0.65 47.46/0.75 45.52/0.30 51.6/0.63

6 40.87/0.23 47.91/0.31 45.86/0.37 44.84/0.16 50.48/0.27

7 40.29/0.14 47.22/0.18 44.71/0.18 44.23/0.08 49.61/0.14

8 - 46.62/0.09 43.74/0.09 43.7/0.04 48.88/0.08

9 - - 42.93/0.05 43.2/0.02 48.28/0.04

Level Lion(183k) Lucy(262k) Heptoroid(286k) Brain(294k) Octopus(465k)

0 ∞/31.57 ∞/41.19 ∞/22.59 ∞/43.01 ∞/41.79

1 53.7/8.11 66.26/12.06 65.66/15.03 65.69/13.94 60.33/9.98

2 52.94/3.11 63.37/5.82 61.22/7.05 61.98/6.38 59.36/4.41

3 51.99/1.67 58.11/2.8 56.59/3.27 54.57/3.29 58.35/1.69

4 51.13/0.96 56/1.32 49.5/1.59 50.67/1.56 57.5/0.87

5 50.38/0.47 54.64/0.61 44/0.78 48.82/0.71 56.74/0.48

6 49.72/0.22 53.62/0.27 41.71/0.38 47.60/0.35 56.08/0.21

7 49.15/0.11 52.81/0.13 33.51/0.19 46.72/0.17 55.51/0.10

8 48.65/0.063 52.16/0.07 28.18/0.09 46/0.07 55.02/0.05

9 48.23/0.032 51.65/0.039 25.87/0.04 45.41/0.044 54.57/0.02

10 47.84/0.018 51.22/0.02 24.36/0.021 44.94/0.024 54.19/0.014

3.6 Results

Table 1 shows the PSNR and bits per pixel (BPP) for different point based
models after our decomposition. Some of the models at different resolutions are
shown in Figure 6. The figure shows the model using a surfel radius that is higher
for lower resolution models.

We also give the rate distortion curves for different models (see Figure 5).
The compression is lossless hence the reconstructed model from the coarsest
approximation and details will match exactly. PSNR is calculated by considering
the error induced in the geometry as we go down the levels. The peak signal is
the diameter of the bounding sphere of the point set. The mean square error
is the cumulative magnitude of the details and the extra-details as we go down
the levels. The BPP at a level is calculated as a ratio of the total number of bits
in its representation to the total number of points.

We are able to achieve high levels of compression and low BPP values using the
scheme. Each lower level has approximately half the number of points as the next
higher model. Thus, the levels represent successive approximations using fewer
points but at very low bpp numbers. Our method can be thought of as retaining
the high level information as we down the lower levels which is more important
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Fig. 5. PSNR/BPP for Bunny, Santa, Venus, Armadillo, Lion, Heptoroid, and Octopus
Models

Fig. 6. Left to Right, Top to Bottom: Lucy model at Levels 7 (0.13 BPP), 4 (1.32
BPP) and 2 (5.82 BPP) , Venus at Levels 8 (0.04 BPP), 5 (0.30 BPP) and 3 (1.41
BPP). Octopus at Levels 9 (0.02 BPP), 5 (0.48 BPP) and 2 (4.41 BPP).

for perception and approximating the shape than the low level information which
is a result of averaging process. Thus, averaging will lead to low pass version of
the signal which is not a true approximation of the original shape. However,
retaining the high pass information will give us the important features in the
shape and the rest can be filled by changing the surfel radii accordingly.

4 Progressive Representation of the Point Set

The multiresolution decomposition given above differs from a standard wavelet
decomposition critically, though there are structural similarities. In a wavelet
decomposition, if the detail coefficients are set to zero, an averaged version of
the signal is reproduced. This version is approximate but dense, covering the
whole domain. In our decomposition, if the detail coefficients are set to zero, the
points are repeated. The higher levels do not contain any additional information
if a detail value is 0. We need a scheme in which different approximations of Dis
can be generated. While a 0 value for Di repeats points, approximation of Di

can generate a dense representation of the original point set. One way to do this
is to approximate the detail values as a 1D signal. Different approximations of
this signal will contain different details.
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4.1 Decomposition

We treat each detail Di as a one dimensional sequence of slow varying num-
bers and compress the sequence using DWT. Thus, for each detail Di, DWT is
applied ki times. ki is chosen such that the last level has about M points. We
used a simple 7 -tap Daubechies wavelet for decomposition and set M as 25. A
representation of this is shown in Figure 7 where ki is 5, 10, and 15 for D3, D2

and D1 respectively. Let Di be the DWT decomposition of Di.

D3

D2 D1

A3

E3

E2

E1

Fig. 7. Point set after reordering, quantization and wavelet decomposition of detail
values. This is obtained by decomposing D3, D2 and D1 into 5, 10, and 15 levels
respectively.

4.2 Progressive Representation

Each Di can be approximated by including only a number of its DWT levels
resulting in a smooth version of the Di sequence. Since, each Di[j] value acts as
a displacement on a point Ai[j], it generates another point in the representation.
This results in a better approximation of the point set. A dense representation
of the point set with as many points as the original point set can be obtained
if we include some of all Dis in the representation. If we set all Dis to 0 for
i < j, a representation with as many points as the approximation level Aj can
be obtained. We give a procedure to generate an approximation of the point set
with M points and S number of bits given a model with N original points and
k multiresolution decomposition levels.

The above algorithm can produce approximations of the point set with differ-
ent number of points and total size. The combination of Ak and D′

i, E
′
i, k ≤ i < j

is a compact representation of the point set. They can be used to reconstruct the
model in two steps. First, approximate D′

is for each level is found by applying
IDWT on each Di, setting the missing coefficients to 0. Next, an approximation
A′

j of the point set is generated using the decompression technique given in Sec-
tion 3.5 using Ak and D′

is and Eis. In our experiments, we allocate 80% of the
bits at every level to Di and the rest to Ei.

4.3 Results

We give the rate distortion curves for different models (see Figure 8) using
progressive representation. Since the decomposed model has exactly the same
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Algorithm 1. Progressive Representation(M, S)
1: Find level j = 	log2 N/M
 with more than M points. Skip Dis for all i < j.
2: Include the lowest level Ak. Subtract its size from S. This is the number of bits

available for Dis and Eis.
3: Allocate these bits equally among the levels from k to j.
4: for i = k to j do
5: Let Si be the size allocated to level i. A fraction r of it is used for Di and rest

for Ei.
6: If Si is greater than the combined size of Di and Ei, set D′

i ← Di and E′
i ← Ei.

7: Otherwise, construct D′
i with as many DWT coefficients of Di, starting with the

most approximate level, such that the combined size is rSi and construct E′
i

with (1 − r)Si bits of Ei

8: end for
9: Return Ak and D′

i, E
′
i for i= k to j
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Fig. 8. Rate distortion curve for Bunny, Venus, Heptoroid, Lucy and Octopus mod-
els for the progressive representation. These cannot be directly compared directly
with Figure 5 as the PSNR is calculated in a different way here as explained in the
text.

number of points as the reordered original point-set, the PSNR can be calculated
by taking from the error between the corresponding points. This is a better
measure of quality unlike those used in Section 3 or by Waschbüsch et al. [15]
The peak signal is the diameter of the bounding sphere of the point set. BPP
is calculated by taking into account number of bits used to go till the higher
most level of approximation using the approximation and reconstructed details.
Lucy Model at different BPP is shown in Figure 9 with increased radius for
hole free appearance. We compare the quality of models achieved by progressive
representation and multiresolution decomposition Figure 10. Note that higher
BPP are required in progressive representation but the model has fewer holes.
We use the procedure progressive representation for to generate any number of
points.
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Fig. 9. Lucy Model at 2.27 BPP, 3.16 BPP, and 8.24 BPP respectively using the
progressive representation

Fig. 10. Lucy Model at 3.11 BPP from the multiresolution decomposition (left) and
progressive representation (right) with same radius for both. Progressive representation
is visually superior.

5 Conclusions and Future Work

We presented a simple, reordering based algorithm to decompose a point set into
multiple resolutions. The algorithm is based on optimal pairing and decomposes
the points into a low resolution approximation and a series of detail vectors.
The points of all approximation levels fall on the original manifold. We are
able to get further compression using balanced quantization at every sampling
level. The multiresolution decomposition provides discrete levels of detail to
the point set. We also present a progressive representation of the point set by
compressing the detail vectors using wavelets. By selectively including different
numbers of coefficients of the wavelet decomposition at each detail level, we
are able to get a wide range of representations for the point set, ranging from
the lowest approximation to a totally lossless representation. The progressive
representation scheme can be used to generate a model with the given number
of points and a given BPP. Progressive representation results in better visual
appearance compared to the multiresolution decomposition.

Currently, the decomposition is performed on the whole point set. This de-
creases the coherence of the detail vectors. Partitioning the points into different
parts of the model and treating each part independently will perform better.
The detail vectors will be more coherent and will compress well using DWT.
We can also select different progressive levels for different parts of the point set
based on proximity or importance. We are exploring these ideas currently.
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Abstract. Factorization methods are used extensively in computer vi-
sion for a wide variety of tasks. Existing factorization techniques extract
factors that meet requirements such as compact representation, inter-
pretability, efficiency, dimensionality reduction etc. However, when the
extracted factors lack interpretability and are large in number, identi-
fication of factors that cause the data to exhibit certain properties of
interest is useful in solving a variety of problems. Identification of such
factors or factor selection has interesting applications in data synthesis
and recognition. In this paper simple and efficient methods are proposed,
for identification of factors of interest from a pool of factors obtained
by decomposing videos represented as tensors into their constituent low
rank factors. The method is used to select factors that enable appearance
based facial expression transfer and facial expression recognition. Exper-
imental results demonstrate that the factor selection facilitates efficient
solutions to these problems with promising results.

1 Introduction

Factorization methods are popular in computer vision [1,2,3,4,5]. Applications
of factorization methods include recovery of structure from motion(SfM) [1],
separation of style and content [3], decomposition of facial expressions [4] and
local parts decomposition [2,5]. The use of factorization techniques differs in as-
pects like the manner in which factors are extracted, interpreted and modeled.
Tomasi and Kanade [1] recover the scene structure and the camera motion from
a sequence of images taken with a moving camera by factorizing a measurement
matrix into shape and motion factors using Singular Value Decomposition(SVD).
The factors are interpretable, and they characterize the generative process. The
model of image formation assumed therein is valid. The factors extracted i.e.
the scene structure and the camera motion are useful for several other tasks.
Tenenbaum and Freeman [3] use a bilinear model to characterize the interaction
between style and content parameters. They use SVD and Expectation Maxi-
mization(EM) algorithms to carry out the tasks of classification, extrapolation
and translation which require inferring the model, and one or both of the fac-
tors. The style and content factors in [3] are interchangeable and the generative
model assumed (a simple bilinear model) is rich enough to capture the inter-
action between the factors although it lacks formal evidence. Moreover, their

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 376–387, 2006.
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goal is not the extraction of the factors alone but to solve related tasks that
require simultaneous learning of one or both of the factors and the factor model.
Both these algorithms fall into the class of algorithms where the factors are
fixed in number, interpretable and the factor model corresponds to the under-
lying generative model. Another class of algorithms attempt to identify sets of
latent variables that aid in elimination of redundancies in the data. The small
set of variables along with the factor model explain the structure in the data
and result in compact representation. Ghahramani and Hinton [6] model the
covariance structure of data assuming a simple factor model that is linear in the
factors. A mixture of such models has been used for simultaneous dimension-
ality reduction and clustering. Techniques like Principal Component Analysis
and Positive Tensor Factorization [7] extract factors that enable dimensional-
ity reduction or compression. Tensor representation based methods are gaining
wide attention in computer vision [8,9] as tensor representation is more suitable
for image collections or videos. The observation that positive factorization of
matrices results in local parts decomposition of objects [2] resulted in similar
factorization methods for tensors [7,10]. Such factorization results in sparse en-
coding [5] of the data. The sparse and separable factors obtained using positive
factorization are used for a variety of tasks like image encoding, model selection
and face recognition [10]. The factors obtained by this latter class of techniques
usually lack meaningful interpretations and do not necessarily correspond to the
properties of the generative process but aid in reducing the bulkiness of data.

? ? ?
Fig. 1. The facial expression transfer problem : Given the videos of a person with
different expressions the goal is to synthesize the videos of a second person with the
same expressions (marked by ?’s in the left table). The right table (second row) shows
the results using our method.

Orthogonal to the requirements of compact representations and interpretable
factors, is the need for identification of factors (interpretable or otherwise) that
cause the data to exhibit certain properties of interest. The performance of com-
puter vision algorithms at tasks such as object classification, object detection
is significantly enhanced by using a set of features that are relevant to the task
rather than a full set of features representing the data. For instance, detecting a
face needs features that characterize the holistic appearance of face while discrim-
inating between two face classes would require filters capturing finer variations
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in the appearance of the faces. Similarly, identification of factors that give rise
to properties of interest in the observed data has interesting applications such as
data synthesis and recognition. For instance, given two sets of data with different
desirable properties, identifying the relevant constituent factors and the factor
model enables synthesis of a third collection with both of these properties. In
this paper simple and efficient methods are proposed to perform such factor se-
lection from a pool of factors obtained by decomposing a collection of images or
a video represented as a tensor. The factors are selected so as to enable efficient
appearance based solutions for two challenging tasks: facial expression trans-
fer (explained pictorially in Figure 1), and facial expression recognition. The
non-negative tensor factorization proposed in [10] is used to obtain the factors.
Experimental results demonstrate that the selected factors enable both of the
tasks with satisfactory results despite the use of appearance information alone.

2 Factor Selection for Videos

The expression transfer problem will be our running example. The solution pro-
posed in the current work is based on decomposing the appearance of the face
video represented as tensor using the non-negative tensor factorization(NTF) [10]
technique and then selecting appropriate factors to be used in the synthesis. An
N -valent tensor G of dimensions [d1]× · · · × [dN ] has rank k if k is the smallest
number such that G can be expressed as sum of k rank-1 tensors i.e.,

G =
k∑

j=1

⊗N
i=1u

j
i (1)

where the vectors uj
i ∈ Rdi . The NTF approximates the tensor G with a rank-k

tensor Ĝ =
∑k

j=1⊗N
i=1u

j
i where uj

i s are all positive. The Nk vectors uj
i are iter-

atively estimated using a gradient descent scheme such that the reconstruction
error

1
2

∥∥G−
k∑

j=1

⊗N
i=1u

j
i

∥∥2 (2)

is minimized. Given positive initial estimates of the vectors the method results
in a non-negative decomposition of the tensor.

2.1 Video Factorization

A collection of images of an object or a video of an object can naturally be
represented as a tensor by stacking the 2-D images as slices of a tensor. An
alternative interpretation of the decomposition of a video provides insight into
the selection of factors that best characterize the expression. Figure 2 shows
the factorization of a video into constituent low-rank factors. The t-th 2D slice of
the tensor G is given by Gt =

∑k
j=1 u

j
3,t(u

j
1⊗uj

2) which is a linear combination of
the matrices uj

1⊗uj
2 weighted by the t-th coefficients of uj

3. The matrices uj
1⊗uj

2
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Fig. 2. Tensor Factorization of a video. Each frame of the video is sum of the corre-
sponding frames from the low rank factors. Each low rank factor is formed by stacking
weighted versions of a basis image.em Each basis image is a rank-1 matrix i.e outer
product of two vectors.

can be viewed as basis images which which capture the appearance of the object.
The positivity and sparseness imply that these images loosely correspond to parts
of the object in the video. Figure 3 shows the factors obtained on factorization
of a face video and the factors obtained. It can be seen that the energy in these
images is located near the regions corresponding to various parts of the face like
nose, eye etc.

Fig. 3. Basis images corresponding to factors obtained by tensorial factorization of
a face video (with the expression surprise). The first table shows the representative
frames of the original video (top row) and the reconstructed video (second row). The
second table shows a subset of the basis-image set. It can be seen that the energy in
these images is concentrated near the regions which correspond to location of parts like
cheeks, mouth, nose etc.

2.2 Basis Image Based Method

The identification of factors that best represent an expression requires the knowl-
edge of the appearance of a neutral face. A neutral face video of the same subject
as in the expression video is used for this purpose. Identification of the rele-
vant factors is done by factorizing both the expression video and the neutral
face video. Let VE and VN be the expression and neutral face videos and the
UE = {ui

j} and UN = {vi
j} be the factors obtained by decomposing the tensor
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representation of VE and VN . The factors thus obtained lack alignment i.e. there
is no correspondence between factors that affect the appearance of the same re-
gion in the two videos. To facilitate selection of relevant factors, the factors must
be aligned. The correspondence between the factors can be established using a
greedy algorithm that uses the similarity score between elements of the basis
image sets BE and BN corresponding to UE and UN respectively. Since the
basis images are all positive and sparse with local patches rudimentary metrics
like sum of squared difference capture the similarity well. For the current work a
similarity score based on the distance between the centroids of the local patches
in the two images and the distribution of pixels around the centroid is used.
The correspondence between the factors belonging to the two sets can be estab-
lished by selecting the best matching pair of factors, eliminating them and then
repeating the process for the remaining factors. Algorithm 1 gives the complete
description of alignment of factors.

Algorithm 1. AlignFactors(UE ,UN , k)
1: Build basis image sets : BE ← UE, BN ← UN

2: Compute similarity scores : Sij ← similarity(Bi
E,Bj

N)
3: I ← φ
4: for i = 1 to k do
5: Find p,q such that Spq is maximum where Bp

E ∈ BE, Bq
N ∈ BN

6: I = I ∪ {(p, q)}
7: BE ← BE − {Bp

E}, BN ← BN − {Bq
N}

8: end for
9: return I

Figure 4 shows the results of aligning the factors using the proposed algorithm.
Once the corresponding factors have been identified the factors in the expression
video corresponding to the maximally dissimilar pairs of factors are more likely
to cause the expression appearance. Figure 5 shows the factors identified in this
manner. It is evident that the factors that are maximally dissimilar have energy
centered around the mouth region where the appearance differs drastically from
that of a neutral face. The factors thus identified can now be used to transfer the
expression. Besides the expression transfer problem, the factors can be used as
cues for recognition of expressions. Sections 3 and 4 discuss these applications.

2.3 Factorization of the Difference Tensor

An alternative scheme for identification of factors that are useful for recognition
arises from the Fisher-like criterion for discriminant analysis. Given two videos
V1 and V2 represented as tensors G1 and G2 the objective is to find a rank-k
tensor W =

∑k
j=1⊗3

i=1w
j
i such that projections of G1 and G2 on to this tensor

differ the most. The objective is to optimize the quantity

〈
k∑

j=1

⊗3
i=1w

j
i ,G1〉 − 〈

k∑
j=1

⊗3
i=1w

j
i ,G2〉 (3)
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Fig. 4. Alignment of factors corresponding to a facial expression video and a neutral
face video. The first table shows frames from both the videos and their reconstructions.
The second table shows the aligned factors. The factors of the first video are shown in
the top row and the corresponding factors are shown in the next row.

Fig. 5. Identification of expression-specific factors using basis images. The first table
shows representative frames from two videos and their reconstructions from the factors
: a surprise expression video (top row) and a neutral face video of the same subject
(second row) . The second table (top row) shows the basis images corresponding to the
factors chosen by the method. Note that the energy in these images is centered around
the mouth region where the appearance differs significantly. The result of transferring
these factors to the neutral video is shown in Figure 7. The second row shows the basis
that are least preferred. These images resemble the invariant parts like nose and eyes.

which is equivalent to optimizing 〈
∑k

j=1⊗3
i=1w

j
i , ΔG〉 where ΔG = G1 −G2

captures the changes in the appearance of the video. Although the tensor ΔG
is not guaranteed to be positive, it can be normalized such that the elements
are all non-negative and W is estimated as the rank-k approximation of ΔG.
The factors wj

i are not useful for the problem of expression transfer but when
the basis images corresponding to these factors are used as filters, the frames of
the two videos give rise to markedly different responses to those filters. Thus the
factors provide a bank of highly discriminative filters that can be used effectively
for classification tasks. Figure 6 shows the factors obtained by factorizing the
difference tensor. It can be seen that the basis images corresponding to the re-
sulting factors are useful for discriminating between the two expressions (neutral
and surprise).
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Fig. 6. Identification of discriminative filters by factorizing the difference tensor. The
first table (top row) shows representative frames from both the videos. The next row
shows frames from the difference tensor and reconstructions. The next table shows
the basis images corresponding to the factors chosen by the algorithm obtained by
factorizing the difference tensor. The energy in the images is centered around the
mouth and the eyebrows where the appearance differs from the neutral face.

3 Facial Expression Transfer

The problem of expression transfer has a the flavor of style and content separa-
tion problem where the expression can be thought of as style and the underlying
face as content and the appearance as a result of interaction between these two.
An alternative pair of factors that cause the appearance of a face are the shape
and texture characteristics of the face. However, the interaction between such
factors may not be amenable to simple models like linear or bilinear models.
As a simple and useful alternative the appearance factors obtained by decom-
position of the facial expression video are be used to transfer the expression. As
observed above the knowledge of appearance of the neutral face is a prerequisite
for identification of the expression-specific factors as well as for transfer of the
expression. The expression transfer problem considered in the current work is
posed as follows: Given a video V1E of a subject P1 with certain expression E,
the neutral face videos of the subject P1 and another subject P2, synthesize the
video V2E of subject P2 with the same expression E.

The expression specific factors can be identified by using the algorithm de-
scribed in Section 2. Once the factors are aligned and the relevant factors are
identified the transfer is achieved by simply transferring the expression-specific
factors in the source video to the target neutral video. Figure 7 shows the recon-
structed video after the expression-specific factors are transfered to the neutral
faces of the same subject and a second subject. Algorithm 2 summarizes the algo-
rithm for expression transfer. The appearance based solution here transfers the
appearance factors alone and might appear like a cut and paste method that re-
sults in discontinuities in the frames of synthesized videos. However experiments
have shown that the synthesized videos are visually satisfactory with little or no
discontinuities. However, the quality of synthesized video depends on the source
video i.e. how close the shape of the source face is to the target face, differences
in facial features like complexion, how well the expression is articulated in the
source video etc.
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Algorithm 2. TransferExpression(V1E, V1N , V2N , k)
1: U1E ← NTF (V1E); U1N ← NTF (V1N ); U2N ← NTF (V2N )
2: I = AlignFactors(U1E,U1N )
3: J = AlignFactors(U1N ,U2N )
4: Choose U∗

1E ⊂ U1E such that elements of U∗
1E are maximally dissimilar to corre-

sponding factors in U1N , U∗
1N be the corresponding factors in U1N

5: Find U∗
2N ⊂ U2N the factors corresponding to U∗

1E using I, J and U∗
1N

6: U2E ← U2N ∪ U∗
1E − U∗

2N

7: V2E ← NTFReconstruct(U2N)

Experimental Results. Experiments were conducted on a dataset that was
collected in-house. An OLYMPUS C7000 camera was used to capture the videos
at 30fps under controlled settings with minimal illumination or pose variation.
The videos were preprocessed to segment the faces and scale them to a fixed
size. The algorithms proposed here work best in presence of a good degree of
alignment of faces in the videos. The dataset consisted of 13 subjects in 8 different
expressions including a neutral face video for each subject. The frame count in
the videos was equalized (to 60), for the ease of implementation, by deleting
frames where there was no change in appearance. The frames were all scaled
to fixed dimensions. Figure 7 shows representative results of the experiments
on this dataset. It can be seen that the results are visually satisfactory despite
appearance information alone being made use of. The minor discontinuities and
artifacts are due to the erroneous transfer of some rank-1 factors which come
out as horizontal/vertical lines. Further, large variations in complexion and face
shape also result in discontinuities. Low-pass filtering and contrast enhancement
were applied on the frames of the synthesized video as a post-processing step.

4 Facial Expression Recognition

The second application considered is the recognition of facial expressions. Recog-
nition of facial expression is a challenging task as the appearance of expressions
varies drastically for different subjects. We explore the possibility of solving this
problem using appearance based features alone by using the factors obtained by
tensorial factorization. We used the neutral face video during training for identi-
fication of expression-specific factors. The recognition is done by comparing the
constituent factors of the test video with the expression specific factors of the
samples in the training set. For each expression-specific factor set in the training
data a maximally similar subset of the factors of the test video is found. The
matching score is computed as the mean similarity score between the matched
factors. The test video is assigned the label of the training sample which results
in maximum matching score.

A second method for recognition of expressions uses the factors obtained by
decomposition of the difference tensor. First a classifier that can discriminate
between two expressions is built and the the DDAG architecture [11] is used to
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Fig. 7. Results of expression transfer using the algorithm described in section 3. First
table : The top row shows frames from the facial expression video and the neutral
face video considered for expression transfer (The first neutral face corresponds to
the same subject). The second row shows the frames of the synthesized video using
the algorithm. The third and fourth rows show four expressions (surprise, wink, smile,
giggle ) transferred to the neutral face of another subject. Second table : the expression
transfer algorithm on a set of four subjects where the expression in the videos along the
diagonal were transfered to other subjects (the columns show the same expression for
different subjects and the rows show the same subject in different expressions). Only
the diagonal videos were originally available.

extend it to multiple expressions. The basis images corresponding to the factors
of the difference tensors are used as filters and the mean response to each filter
over the entire video is taken as a feature. Feature vectors built in this manner
are compared to training samples using Euclidean distance as the metric.

Experimental results. The dataset used for expression recognition is same as
the dataset used for the expression transfer experiments. Excluding the neutral
video there were 7 expressions of 13 subjects. Since the sample size was small
leave-one out mode testing was used for testing both the algorithms. The Hinton
diagrams corresponding to the confusion matrices for both the methods table 1.
The leading diagonal elements show that the recognition accuracy is quite satis-
factory despite the use of appearance information alone. The accuracy improved
when the images of the faces of different persons are further aligned by man-
ually selecting the control points such the centers of eyes and tip of the nose.
The overall accuracy is around 51% comparable to the state of the art methods
which use feature correspondences and muscular motion models [12]. The size
of the dataset that is used for the experiments precludes any definite conclu-
sion. However, as the nature of information used by the current technique differs
from that of existing ones, they are complementary and development of a hybrid
solution with improved recognition rate is a promising direction.
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Fig. 8. Expressions used for the expression recognition experiment : Smile, Left wink,
Surprise, Giggle, Mock, Right wink, Disgust

Table 1. The Hinton diagram of the confusion matrix for the expression recognition
task. The squares along the diagonal represent fraction of correctly recognized sam-
ples. It can be seen that the accuracy is reasonable despite the absence the of feature
correspondences or complex modeling schemes.
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5 Relationship to Past Work

Expression transfer in face videos has number of applications in gaming, virtual
worlds, interactive systems etc. It has been studied extensively both in computer
vision and graphics. A method based on ratio images is presented in [13] which
can transfer expression as well as capture illumination variation. Du and Lin [14]
attempt to learn a linear mapping between parameters representing expression
and appearance. Wang and Ahuja [4] use Higher-Order SVD (HOSVD) to de-
compose a collection of face expression images into two separate expression and
person subspaces and use them to map expression on to a new face. Existing
methods use feature point correspondences or complex motion models for expres-
sion transfer. The method that proposed in the current work is purely appearance
based and is sensitive to various sources of differences in appearance such as the
complexion, face shape etc. However, it does not use correspondences or complex
modeling schemes for the task and is widely applicable. Moreover the current
method is computationally efficient since the algorithm is dominated by the fac-
torization step which has good convergence properties [10]. Facial Expression
Recognition is a complex problem since the facial appearance corresponding to
the same expression varies widely across different subjects. Previous methods use
facial muscle motion models like FACS [15] and employ complex classifiers [12].
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The method proposed here recognizes expressions using appearance cues alone
and is complementary to the existing methods.

6 Conclusion

We have proposed methods for identification of task-specific factors that are
useful for a range of tasks like video manipulation and recognition. To the best
of our knowledge, a purely appearance based approach to expression transfer and
expression recognition has not been attempted so far. The task-specific factor
selection scheme provides efficient solutions for the tasks of expression transfer
and recognition. The contributions of the current work are:

– Simple and efficient methods for selection of task-specific factors from the
set of factors obtained by tensorial factorization of videos.

– An efficient technique to perform facial expression transfer without requiring
feature correspondences or muscular motion models.

– A novel technique complementary to existing methods for recognition of
expressions using expression-specific factor in facial expression videos.

The methods based on tensor representation of videos are more natural, simpler
and insightful. Multilinear techniques offer new insights into analysis and pro-
cessing of video information. The factors obtained by factorization of videos can
be used for a number of other purposes like dynamic event analysis and back-
ground modeling. The appearance and dynamics separation achieved by tensorial
factorization provides valuable cues for analysis of dynamic events in videos and
we are actively pursuing this problem. In summary, task-specific factor selection
makes it possible to solve a wide range of problems using tensorial factorization
of videos/image-cubes and is a promising direction for future research.
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Abstract. We present a newly developed algorithm for automatically segment-
ing videos into basic shot units. A basic shot unit can be understood as an un-
broken sequence of frames taken from one camera. At first we calculate the 
frame difference by using the local histogram comparison, and then we dy-
namically scale the frame difference by Log-formula to compress and enhance 
the frame difference. Finally we detect the shot boundaries by the newly pro-
posed shot boundary detection algorithm which it is more robust to camera or 
object motion, and many flashlight events. The proposed algorithms are tested 
on the various video types and experimental results show that the proposed al-
gorithm are effective and reliably detects shot boundaries. 

1   Introduction 

There are many shot detection methods already proposed in past decades [1], [2]. The 
common way for shot detection is to evaluate the difference value between consecu-
tive frames represented by a given feature. Although reasonable accuracy can be 
achieved, there are still problem that limit the robustness of these algorithms [4]. 

One of the common problems in robust shot detection results from the fact there 
are many flashlights in news video, which often introduce false detection of shot 
boundaries. Only some simple solutions to this problem have been proposed in [2], 
[3]. There are main limitations are that they assume the flashlights just occur during 
one frame or limited window region. In real world, such as news video, there are 
many flashlight events occur during a period of time and influence multiple consecu-
tive frames. 

Another problem that has not been solved very effectively well is threshold selec-
tion when comparison changes between two frames. Most of the existing methods use 
global pre-defined thresholds, or simple local window based adaptive threshold. 

Global threshold is definitely not efficient since the video property could change 
dramatically when content changes, and it is often impossible to find a universal op-
timal threshold method also has its limitation because in some situation the local sta-
tistics are polluted by strong noises such as big motions or flashlights. 

                                                           
* This work was supported by the Korea research Foundation Grant (KRF-2006-005-J03801). 
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The objective of this paper are: 1) to provide the metrics that are robust to camera 
and object motion, and enough spatial information is retained, 2) to provide the scaled 
frame difference that are dynamically compressed by log formula and it is more con-
venient to decide the threshold, 3) to propose a new shot boundary detection algo-
rithm that are robust to camera operation or fast object movement, flashlight events. 

The rest of this paper is organized as follows. In the next section 2, we provide a pro-
posed algorithm that gives a detail description of the three new algorithms. Section 3 
presents experimental results, and we conclude this paper and discuss the future work in 
Section 4. 

2   The Proposed Algorithm 

Firstly, we denote the metrics to extract the frame difference from consecutive 
frames. And we scale the frame difference by log formula which makes more dy-
namically robust to any camera or object motion, and many flashlight events. Finally 
we propose the new shot boundary detection algorithm. Our proposed algorithm 
works in real time video stream and not sensitive to various video types. 

Throughout this paper, we shall treat a shot, defined as a continuous sequence of 
frames recorded from a single camera, as a fundamental unit in a video sequence. 

2.1    Metrics in Shot Detection 

To segment the video into shot units, we should first define suitable metrics to extract 
frame difference; so that a shot boundary is declared whenever that metric exceed a 
given threshold. 

We use the local histogram comparison that are more robust to camera and object 
motion, and enough spatial information is retained to produce more accurate results 
[5], [6].  

The local histogram comparison metrics are defined as:  
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where m is the total number of the blocks, and )(kH r
i

denotes the histogram differ-

ence at gray level k  for the block bl  of i ’th frame in red channels. βα ,  and γ are 
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constants and, according to NTSC standard, we set these constants to 0.299, 0.587, 
and 0.114, respectively.  

The best frame difference can be obtained by breaking the frame into 16 equal 
sized regions, using weighted x2-test on color histograms for these regions and dis-
carding the largest differences to reduce the effects of noise, object and camera  
movements. 

2.2   Scaled Frame Difference  

Most of video segmentation algorithms rely on suitable threshold of similarities be-
tween consecutive frames. However, the thresholds are highly sensitive to the type of 
input video. This drawback can be overcome by the scaled frame difference. 

The scale of frame difference is performed by Log-formula which makes more dy-
namically compressed frame difference and Log-formula was referenced by digital 
image processing which was used to image enhancement. 

The proposed Log –formula defined as:  

)1log( 2
log dcd +×=  

))1max(log(

)max(
2

log

d

d
c

+
=  

(3) 

Where d is the frame difference extracted from equation (1) and c is the constant 
calculated from d.  

Figure 1 shows the distribution of total frame differences extracted from news video. 

logdd →

 

Fig. 1. Distribution of all frame difference ‘d ’ and ‘dlog’ 

Distribution of all frame differences dlog has widely spread difference values in a 
scaled region than d and each difference values are enhanced and concatenated each 
other more closely. So if we apply the simple shot cut rules, we can detect the shot 
boundaries only using the frame difference.  
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Table 1 shows the max (maximum), min (minimum), ave (average), and stdev (stan-
dard-deviation) represented from three video types(news, sports, adv.). Each of the frame 
differences d and dlog are calculated from the given equations (1) and equation (2).  

Table 1. Comparison of difference values  ‘d’  and  ‘dlog’ 

Max. Min. Ave. Stdev. videos 
d dlog d dlog d dlog d dlog 

News 223057.9 492.6 1234.2 284.7 9191.3 334.2 23778 38.2 
Sports 212168.3 490.6 703.2 262.2 3740.2 308.1 13380.3 25.1 
Adv. 216088.1 491.3 3993.2 331.7 26494.2 391.6 30614.5 33.3 

As mentioned above it, scaled difference values are more robust and reliable to de-
tect the shot boundaries and are convenient to select the global threshold. 

Figure 2 shows the normal graph of Table 1. Scaled frame difference dlog are dy-
namically compressed and more normally distributed under the scaled region than d. 

 
Fig. 2. Normal Distribution of frame difference ‘d ’ and scaled frame difference ‘dlog’ 

2.3   Shot Boundary Detection Algorithm  

Shot boundary detection is usually the first step in generic video processing. A shot 
represents a sequence of frames captured from a unique and continuous record from a 
camera. Therefore adjacent frames of the same shot exhibit temporal continuity. Both 
the real shot cut and the abrupt cut could cause a great change in frame difference be-
cause of the special situations such as flashlight events, sudden lightening variances, and 
fast camera motion, or large object movements. So each shot corresponds to a single 
continuous action and no change of content can be detected inside a shot. Change of 
contents always happen at the boundary between two shots. Partitioning a video se-
quence into shots is also useful for video summarization and indexing. 

We define shot boundary detection algorithm based on the temporal property of shot 
cut and abrupt cut. If the scaled frame difference of consecutive frames is larger than a 
max-threshold (thmax), and its neighboring difference value of frame difference is lar-
ger than a k-threshold (kgloval), and also its Euclidian distance is satisfied with global-
threshold (thgloval) , then the shot cut is detected by shot boundary detection algorithm. 

Figure 3 shows the proposed shot boundary detection algorithm more details. 
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Fig. 3. The illustration graph of proposed shot boundary detection algorithm 

As shown in Figure 3, the shot boundary detection algorithm can be summarized as 
follows: 

 
Step 1. At first, if the scaled frame difference dlog(i) is larger than a max-threshold 
thmax then the current frame is selected to candidate shot frame,  

maxlog )( thid ≥  

Step 2. And we calculate the newly defined difference value bdlog(i) , fdlog(i) as fol-
lows: 

)1()()( logloglog −−= ididibd , 

)()1()( logloglog ididifd −+=  
(4) 

The calculated difference value bdlog(i) , fdlog(i) must be larger than a k-threshold 
kgloval .  

globalkibd ≥)(log  && globalkifd ≥)(log  

Setp 3. Finally, the Euclidean distance of each calculated frame difference value 
bfdlog is defined as: 

2
log

2
loglog ))(())(()( ifdibdibfd +=   (5) 
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And it must larger than a global-threshold thgloval . 

globalthibfd ≥)(log  

Step 1 is the basic step to check the candidate shot frame. Most of shot frame has 
a big difference value and we heuristically determine the max-threshold thmax from 
scaled frame difference. In experiments results, the determined max-threshold thmax 
was reliable and robust than previous approaches. 

Step 2 is to check whether the current frame is shot cut or abrupt cut. A real shot 
cut has enough distance between bdlog and fdlog but abrupt cut has small distance 
each other. If the distance bdlog and fdlog is smaller than k-threshold kgloval, then 
current frame is classified as abrupt cut. 

Step 3 is to check the sensibility over the set of threshold bdlog and fdlog.. 
Figure 4 shows the illustration of the proposed shot boundary detection algorithm. 

)(log ibd

)(log ifd

)(log ibfd

)(log id

 

Fig. 4. Distribution of remaining number of frames by the proposed algorithm 

As shown in Figure 4, the diagram is the scaled frame difference of consecutive 
frames in sequence ‘interview videos’ which has a lot of flashlight events. Detected 
shot cut frame, and used difference value of each frame difference is shown in  
Figure 4.  

All possible shot cut is detected and flashlight is eliminated in reliable. 
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3   Experimental Results 

We evaluate the performance of our proposed method with DirectX 8.1 SDK, MS-
Visual C++ 6.0 on Windows XP.  

The proposed method has been tested on several video sequences such as news, 
interviews, and commercials videos that have a lot of scene changes occurs, as 
shown in table1. Each video sequence has the various types digitized in 320*240 
resolutions at 30frames/sec.  

Table 2. Description of the Videos in the experiment dataset 

# of abrupt cuts 

Videos # of frames fast object 
and camera 

motion or etc.
flashlights 

# of shot cuts 
(ground truth) 

news1 2772 2 31 26 
news2 2665 2 55 19 
Choice 2975 1 14 21 
soccer 2167 3 6 22 
Flash1 2578 1 52 15 
Movie1 1175 2 25 11 

Golf 665 12 0 19 
Wine 3096 10 0 30 

In table 2, ‘News2’ or ‘Flash1’ videos contain many flashlights events and ‘Golf’ 
or ‘Wine’ videos contain fast object and camera motions. 

 We manually identify the ground truth by a user with frame accuracy. In our ex-
periments, the shot cut detection results are compared with the ground truth in terms 
of precision and recall. Assume N is the ground truth number of shot cuts, M is the 
number of missed cuts and F is the number of false alarms, the recall and precision 
are defined as follows: 

N

MN
call

−=Re  

FMN

MN
ecision

+−
−=Pr  

(3) 

These two measures are both important. We certainly do not want to miss any criti-
cal shot changes. On the other hand, too many false alarms will compromise the effi-
ciency of video segmentation. 

Table 3 indicates that proposed algorithm can detect not only abrupt cuts but also 
shot cut with satisfactory accuracy. Approximately 97% of fast camera transitions, 
fast object motions and flashlight events are detected. The missed abrupt cuts mainly 
results from the fact that the frame differences between consecutive frames are lower 
than the given threshold. 
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Table 3.  Experiment Results 

Videos # of abrupt cuts # of shot cuts 

 
# of 
false 

# of 
missed 

recall 
preci-
sion 

# of 
false

# of 
missed

recall precision 

news1 0 2 94% 100% 2 0 100% 93% 
news2 2 0 100% 97% 0 1 94% 100% 

Choice 0 0 100% 100% 0 0 100% 100% 
soccer 0 0 100% 100% 0 0 100% 100% 
Flash1 0 0 100% 100% 1 1 93% 93% 
Movie1 0 3 89% 100% 1 2 82% 90% 

Golf 0 1 92% 100% 0 1 95% 100% 
Wine 0 0 100% 100% 0 1 97% 100% 

TOTAL 2 6 97% 99% 3 5 95% 97% 

4   Conclusion 

This paper has presented an effective shot boundary detection algorithm, which focus 
on three difficult problems solutions: To provide the metrics that are robust to camera 
and object motion, and enough spatial information is retained. To provide the scaled 
frame difference that are dynamically compressed by log formula and it is more con-
venient to decide the threshold. To propose a new shot boundary detection algorithm 
that are robust to camera operation or fast object movement, flashlight events. Ex-
periments show that the proposed algorithm is promising. 

However the automatic video partition is still a very challenging research problem 
especially for detecting gradual transitions or camera fabrication, special events and 
so on. Further work is still needed. 
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Abstract. In this work we propose a hierarchical state-based model for
representing an echocardiogram video using objects present and their
dynamic behavior. The modeling is done on the basis of the different
types of views like short axis view, long axis view, apical view, etc. For
view classification, an artificial neural network is trained with the his-
togram of a ‘region of interest’ of each video frame. A state transition
diagram is used to represent the states of objects in different views and
corresponding transition from one state to another. States are detected
with the help of synthetic M-mode images. In contrast to traditional
single M-mode approach, we propose a new approach named as ‘Sweep
M-mode’ for the detection of states.

1 Introduction

In the last few decades, medical imaging research has seen a rapid progress. Echo-
cardiography is a common diagnostic imaging technique that uses ultrasound to
analyze cardiac structures and function [1]. Present work is motivated by the
grow-ing interest in managing medical image/video collections based on their
content.

Some systems and standards such as PACS [2] and DICOM [3] are used in
medical imaging centers to digitize, view, communicate and store medical images.
How-ever, these do not take into account the characteristics of the content of the
medical images or videos. In recent past, advances have been made in content
based retrieval of medical images [4]. Research has also been done on the extrac-
tion of cardiac object boundaries from sequences of echocardiographic images
[5]. Work on echo-cardiographic video summarization, temporal segmentation
for interpretation, storage and content based retrieval of echo video has been re-
ported [6]. This process is heavily dependent on the available domain knowledge
which includes spatial structure of the echo video frames in terms of the ‘Region
of Interest ’ (ROI), where an ROI is the region in a frame containing only the
echo image of heart. On the other hand, an approach towards semantic content
based retrieval of video data using object state transition data model has been
put forward in [7][8]. In these articles, the echo videos are segmented based on
states of the heart object. A view-based model-ing approach has been reported in

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 397–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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[9], which uses parts based representation for automatic view recognition. They
represent the structure of heart by a constellation of its parts (chambers) under
the different views. Statistical variations of the parts in the constellation and
their spatial relationships are modeled using Markov Random Field. Support
Vector Machine [SVM] is used for view recognition which fuses the assessments
of a test image by all the view-models. A state based modeling approach [10]
measures the relative changes in left ventricular cavity in echo video sequences
to identify end diastolic and end systolic frames. This information is then used in
conjunction with the statistical correlation between echo video frames to extract
information about systole and diastole states of heart. Thus, view-based model-
ing and state-based modeling of echo video are done separately. But hierarchical
state-based modeling, combining views and states, is a new problem which has
not been addressed till now, to the best of our knowledge.

In our work, we segment an echo video hierarchically based on views and states
of the heart object by exploiting specific structures of the video. The advantage
of using this approach is that it allows storage and indexing of the echo video at
different levels of abstraction based on semantic features of video objects.

For hierarchical state-based modeling we first segment the video based on
views. To detect view boundary, we use traditional color histogram based com-
parison [11] and edge change ratio [12]. After detecting shot boundary, we apply
a novel technique for automatic view classification of each shot which is based
on the signal properties and their statistical variations for each view in echo
video. We train an artificial neural network [17] with the histogram of ‘region of
interest’ of each video frame for classification. For state detection, we propose a
new method using single and sweep M-Mode.

The rest of the paper is organized as follows. In Section 2, we discuss echo video
segmentation techniques based on views. First, we give a brief description of the
shot detection techniques used for detecting various views. Then we introduce
our method for view classification. In Section 3, we discuss state detection using
single and sweep M-mode and finally, we conclude in Section 4 of the paper.

2 Echocardiogram Video Segmentation Based on View

For browsing and content based manipulations of echo video, the visual informa-
tion must be structured and broken down into meaningful components. Shots
are the basic structural building blocks for this and shot boundaries need to
be determined without user intervention. In Figure 1, we show the basic block
diagram of the system. After detecting each shot, we classify them using our
classifier. Then, each view is further segmented based on the states of the heart,
as specified by its state transition diagram.

2.1 Shot Detection

As mentioned above, the first step of video processing for hierarchical state-
based modeling is segmentation of the input video into shots. A shot can be
defined as a sequence of interrelated frames captured from the same camera
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Fig. 1. Block diagram of the system for hierarchical state-based modeling of echo video

location that represents a continuous action in time and space. In echo video
segmentation, traditional definition of shot is not applicable. An echo video is
obtained by scanning the cardiac structure with an ultrasound device. Hence,
depending on the location of the transducer, different views of echocardiogram
video are obtained.

Echocardiogram Shot Definition. Echocardiogram images are used by car-
diologists to analyze physiological and functional behaviors of cardiovascular
components, e.g. heart chambers, valves, arteries, etc. In this process, the heart
chamber can be viewed through different angles by changing the transducer posi-
tion. Accordingly, the same chamber can be seen in different perspectives, known
as views. In [6], four modes of echocardiography are identified i.e. two dimen-
sional, Doppler, color Doppler, zoom-in. They define ‘view ’ as the sequence of
frames corresponding to a single transducer location and mode of imaging.

But in this paper we use a different definition of view as mentioned in [1]. The
views considered are:

1) Parasternal Long Axis View (LAX): Transducer placed parallel to the long
axis of left ventricle and the ultrasound wave passes through the center of
left ventricle chamber.

2) Parasternal Short Axis view (SAX): Transducer is rotated 90 in clockwise
direction from the parasternal long axis view position.

3) Apical View: Transducer is placed in the cardiac apex.
4) Color Doppler: This uses color overlays on the reference frame sequence to

show the blood flow in the heart based on the Doppler effect.
5) One dimensional: This is the gray-scale reference frame sequence of one di-

mensional signal locating anatomic structures from their echoes along a fixed
axis of emission.

In this paper, we use the terms ‘view ’ and ‘shot ’ interchangeably. Transition
from one view to another is always sharp.

Echocardiogram Shot Detection. Various automatic shot boundary detec-
tion algorithms for videos like movie, news, sports, etc., have been proposed in
the literature. Due to the presence of high speckle noise in echo video, it is diffi-
cult to detect views in echo videos by applying these algorithms. We explore two
methods to detect shot boundary, namely, histogram based comparison and edge
change ratio. The main idea of these techniques is that if the difference between
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two consecutive frames is larger than a threshold value, then a shot transition
is assumed to exist at that frame position.

The first approach is global histogram based comparison method [14][15]. Here
we compute color histogram for each frame using 192 color bins, where each bin
contains the percentage of pixels from the whole frame. Color histograms of
two consecutive frames are compared using a cosine similarity metric. When the
similarity value is below the threshold, a shot boundary is detected. The main
drawback of this method is that, if two image frames belonging to different shots
have similar histograms, then the shot boundary may not get detected.

The second approach is based on edge change ratio. Here each frame is first
turned into gray scale image and then the edges are detected. We use Sobel
operator due to its smoothing effect which is important for noisy echocardiogram
video. Then for two consecutive frames, edge ratio is computed in terms of the
number of new edge pixels entering the frame and the number of old edge pixels
leaving the frame[12][16]. Exit-ing pixels are identified by keeping pixels in the
first frame but not the second, and the entering pixels are identified by keeping
pixels in the second frame and not in the first. Using these results, the edge
change ratio (ECR) is determined as follows.

ECRi = MAX(
Ein

i

Ei
,
Eout

i−1

Ei−1
) (1)

Here for the ith frame, Ein
i is the number of entering edge pixels, Eout

i is the
number of exiting edge pixels, and is Ei the total number of edge pixels. When
the edge change ratio exceeds a threshold, a shot boundary is considered to exist.
A global motion compensation based on Hausdroff distance is performed before
the calculation of the ECR.

Between the two techniques described above, edge based method outperforms
histogram based approach. The only drawback is that it cannot detect shot
transition between apical view and color Doppler. In such situation, color his-
togram based comparison gives desired result. We combine these two methods
using majority voting to detect shots in echocardiogram video and obtain 98%
accuracy.

2.2 View Recognition

Automatic view recognition in echo video is a challenging task due to the pres-
ence of multiplicative noise and structural similarity among the constellations of
the different views. Variations in the images captured under the same view but
for different patients, make the problem even more difficult.

Here we classify three types of views i.e., long axis view, short axis view and
apical view. Color Doppler view is classified at the time of detecting shots by the
presence of color. One dimensional view is also identified during shot detection
from their static nature.

For view classification we use the fact that, for each view, different sets of
cardiac chambers are visible. The number of chambers present, their orientation
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and the presence of heart muscles in each view, gives different patterns of his-
togram. We identify the views based on their unique histogram patterns. In our
approach, we first define a ‘region of interest ’ for each frame to minimize the
effect of noisy background. The ROI region is selected after performing experi-
ments on a large number of different types of echo videos containing all the view
types. The ROIs marked on three representative frames, one from each view, are
shown in Figure 2. Next we generate a gray scale histogram for this ROI using
64 bins. For each view, the histogram pattern is unique as shown in Figure 3.
We use a neural network [17] for classifying the views from the 64-dimensional
normalized histogram vector of each frame.

 
(a)

 
(b)

 
(c)

Fig. 2. Frames with ROI: (a) Short Axis View; (b) Long Axis View; (c) Apical View

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(a)

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000

(b)

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(c)

Fig. 3. Histogram of (a) Short Axis View, (b) Long Axis View, (c) Apical View for
Fig. 2

We train the neural network with a total of 1260 frames, 400 each of short
axis view and long axis view, and 460 of apical view. Every frame in the data set
is manually labeled. We use a multilayer perceptron (MLP) with one input layer,
one hidden layer and one output layer. The number of units in the input layer is
64, one for each histogram component. The number of units in the output layer
is 3, one to represent long axis view, one for short axis view and one for apical
view. The number of units in the hidden layer is empirically chosen as 80.

Table 1. View recognition results

Predicted Class
True Class Short Axis View

(no.of frames)
Long Axis View
(no. of frames)

Apical View
(no. of frames)

Short Axis View 128 2 1

Long Axis View 1 80 1

Apical View 3 12 140



402 A. Roy et al.

We evaluated the performance of the classifier on a test data set of 365 frames.
Table 1 shows view classification result in the form of a confusion matrix. An
overall precision of 95.34% is obtained. The main source of misclassification is
incorrect recognition of apical view frames as long axis view frames.

3 State Based Modeling of Echocardiogram Video

A state based video model is a means for extracting information contained in an
un-structured video data and representing this information in order to support
users’ queries. A state stores information about the past, i.e. it reflects the input
changes from the system start to the present moment. A transition indicates a
state change and is described by a condition that needs to be fulfilled to enable
transition. Action is an activity that is to be performed at a given moment. State
transition diagram describes all the states that an object can have, the events or
conditions under which an object changes state (transitions) and the activities
undertaken during the life of an object (actions). In an echocardiogram video,
the two states are systole and diastole.

Systole: During systole, the ventricles contract. The aortic and pulmonary
valves open and blood is forcibly ejected from the ventricles into the pulmonary
artery to be re-oxygenated in the lungs, and into the aorta for systemic distri-
bution of oxygenated blood. At the same time, the mitral and tricuspid valves
close to prevent backflow and the atria start to fill with blood again.

Diastole: During diastole, the ventricles relax. The pulmonary and aortic
valves close and the mitral and tricuspid valves open. The ventricles then start
to fill with blood again.

Figure 4 shows the state transition diagram of heart, where the two states
are systole and diastole. When ventricles start expanding, transition from sys-
tole to diastole occurs. Similarly, transition occurs from diastole to systole with
ventricular contraction.

 

Fig. 4. State transition diagram of heart

3.1 Identification of States Using Single M-Mode

The signal in M-mode or motion mode echocardiography is obtained from the
time sequence of a one-dimensional signal locating anatomic structures from
their echoes along a fixed axis of emission. These measurements are usually
represented as an image (see Figure 5(b)) in which the abscissa and the ordinate
represent time and depth (or distance), respectively. The intensity of each pixel
is a function of the reflected ultrasound energy. The cardiac borders have a
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periodic translational movement with time. Due to high level of noise, automated
detection of these borders is not a trivial task to be solved by standard image
processing techniques.

To obtain synthetic M-mode from 2-D echocardiogram, we use short axis
view. User draws a straight line perpendicular to the walls of left ventricle where
the wall motion is maximum. M-mode can be of different types depending on
the position of the straight line. If the line is vertical, then the generated M-
mode is termed as vertical M-mode. If the line is horizontal or diagonal, the M-
mode is named accordingly. In general, only vertical M-modes are computed for
diagnosis. But it is observed that for some views, horizontal M-mode gives more
useful information than vertical M-mode. We, therefore, compute horizontal M-
mode to get state information more accurately. Figure 5(a) shows the horizontal
line drawn on a short axis view frame. To compute M-mode image, we scan
along this line for each frame in the short axis view segment of the video. The
intensity value along the straight line is taken as ordinate and frame number is
taken as abscissa as shown in Figure 5(b).

Pre-processing. Most echocardiograms have a relatively high noise level be-
cause of intrinsic limitation in the measurement device. Substantial noise re-
duction with minimal information loss is achieved by smoothing the image. We
first use Gaussian filtering to remove noise from M-mode images and then apply
Sobel operator for edge detection.

1) Smoothing: We use a convolution kernel that approximates a Gaussian
with of 0.45. To compute a Gaussian smoothing with a large standard deviation,
we convolve the image three times with a smaller Gaussian kernel [77]. The
Gaussian outputs a ‘weighted average’ of each pixel’s neighborhood, with the
average weighted more towards the value of the central pixels. Because of this,
a Gaussian provides gentler smoothing and preserves edges better than other
types of smoothing filter. Thus it helps in getting better edge detection result.

2) Edge Detection: For edge detection, we use Sobel operator mask because of
its higher noise suppression characteristics than other edge detection operators.

The resulting M-mode image after applying Gaussian and Sobel operator on
the M-mode image of Figure 5(b) is shown in Figure 5(c).

Border Extraction. Border extraction is one of the most important steps in
processing an echo video. Difficulties arise from the fact that the observed time
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Fig. 5. (a) User drawn line on a chosen frame of video, (b) M-mode image, (c) Edge
detected smoothed M-mode image
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trajectories of cardiac borders sometimes present discontinuities and may not
always correspond to well-defined edges. Here we extract the border by searching
for optimal path along time axis. We use a maximum tracking procedure [13]
whose performance is improved by using a local model to predict the position of
the next border point.

The system described by Unser et al.[13] is based on a search algorithm that
traces gray-scale maxima corresponding to each relevant cardiac internal struc-
ture along the horizontal time axis. Although this algorithm was initially de-
signed to be applied to the data directly, it can also be used in our system in
which tracking of cardiac border is based on the position of minimum intensity
pixel on the edge detected M-mode image. A digitized M-mode echocardiogram
is represented as a two dimensional image {Xk,l}, where ‘k ’ represents the time
variable and ‘l ’ represents the distance along the axis of the straight line drawn
on the view. A brief review of the algorithms is presented here.

1) Basic Algorithm: The basic procedure is based on the fact that the move-
ment of cardiac borders from one time frame to another is restricted to a rela-
tively narrow region. A starting point is first determined by the user. Then, as-
suming the present position of the cardiac border to be l, the algorithm searches
for the point with mini-mal intensity in the next vertical line in a window cen-
tered around the previous position (l±w), where w is the window size. This point
is then taken as the next position of the border. The procedure is iterated until
all the frames have been considered. This simple approach follows a single path
guided by locally optimizing the sum of the signal values along the trajectory. It
usually detects the posterior wall epicardium satisfactorily, but generally fails in
detecting the endocardium or the boundaries of the interventricular septum. We
use this algorithm to detect the lower border, having lesser movement, shown in
Figure 6(a).

2) Kuwahara Algorithm (KMTA): Kuwahara et al. suggest searching for the
cardiac borders by reference to the border that has already been detected. Their
algorithm uses the same principle as the basic algorithm except that the position
and extent of the search window at a given time k is also a function of the relative
displacement of the reference structure �lr(K) = lr(K) − lr(K − 1), where lr
is the reference cardiac border position. The reference position is now given by
l(K − 1) + �lr(K), where l(K − 1) denotes the previously detected position
of the structure. Furthermore, the width of the search window is increased in
an asymmetric way, depending on the sign of �l(K) . Broadening the search
window in the expected direction of movement is designed to compensate for
the greater velocity of the endocardium in systole and early diastole. We use
this algorithm to detect the upper border in Figure 6(a).

State Identification. For identifying the states we first compute the distance
between the two endocardium borders in each frame, as shown in Figure 6(a).
Figure 6(b) shows the variation of cardiac border distance with respect to time.

In order to obtain state information, we use the cardiac border distance.
The bottom end points of Figure 6(b) indicate end systole points and the top
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points indicate the end diastole points. During the time elapsed between end
systole point to end diastole point, the heart is in diastole state and is in systole
state from end diastole point to end systole point. In the diastole state left
ventricle expands, thus the distance between the endocardium borders increases.
Hence, the slope is positive. Similarly, in diastole, left ventricle contracts and the
distance between the endocardium borders decreases which results in negative
slope in the distance graph.

Using the distance information, we classify the echocardiogram video frames
into two classes, namely, systole and diastole. In the echocardiogram video, the
frames corresponding to positive slope are classified as diastolic state frames,
while those corresponding to negative slope are classified as systolic. This com-
pletes the process of state detection from an echocardiogram video. The state
transition graph obtained from Figure 6(b) is shown in Figure 6(c).

 
(a)

 
(b)

 
(c)

Fig. 6. (a) Border extracted M-mode image, (b) Variation cardiac border distance with
time, (c) State transition graph

Table 2 shows the detailed result of state identification from 267 frames in
short axis view using single M-mode. This method gives total misclassification
error of 26.22%. Most of the misclassified or unclassified frames are those during
which state transition occurs. The table also shows Sweep M-mode results as
explained in the next sub-section.

3.2 State Identification Using Sweep M-Mode

In order to further improve the state detection accuracy, we propose a multiple
M-mode generation method termed as ‘Sweep M-mode’. It is so named because
multiple M-modes are generated by scanning the intensity value along a straight
line as before, while the straight line is continuously swept by a specified interval
in a direction normal to a fixed axis.

To obtain sweep M-mode, user draws a line perpendicular to the direction of
left ventricular wall motion (see straight line in Figure 7). Sweep M-modes are
created by scanning the intensity value along the straight line perpendicular to
this vertical line, taking it as Y-axis, for each frame of the video considered as
X-axis. The Sweep M-modes are generated along the horizontal broken straight
lines as shown in Figure 7. Now, as explained in Section 3.1, tracking of the
cardiac borders is done for each M-mode individually.

To start tracking, initial border points need to be determined. For this user
draws the left ventricle cavity border freehand at the same time when he draws
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the straight line in order to obtain sweep M-mode (freehand line in Figure 7).
The intersection points of the cavity border and perpendicular straight lines are
considered as the start-ing points for tracking the cardiac borders. Since border
tracking of all the M-modes is not perfect due to inherent noise, we need to select
only those few which are meaningful. It has been observed that in M-modes where
tracking is perfect, the distance between the two cardiac borders never exceeds a
threshold value. But if it does, the M-modes are surely mistracked. We use this
as a heuristic to identify the proper M-modes. Thus, we select the most perfectly
tracked M-modes as shown in Figure 8(a). The same method is followed for each
individual M-mode to extract state information from a single M-mode.

The plot of the distance between two endocardium borders with respect to
time for the selected M-modes is shown in Figure 8(b) and the state transition
plot is shown in Figure 8(c). It is seen that the individual plots have many false
state transitions. So we combine them using majority voting to identify the state
information of each frame.

Fig. 7. User drawn straight line and cavity on a chosen frame of video

             

(a)

       

(b)

      

(c)

Fig. 8. Three selected M-modes: (a) Border extracted M-mode images, (b) Correspond-
ing cardiac distance graph with time, (c) Corresponding state transition graph
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We carried out experiments with the same echocardiogram video as before.
The right hand part of Table 2 shows the detailed result obtained using sweep M-
mode. It is seen that the misclassification error has come down to about 12.36%.
Thus, use of sweep M-mode reduces the misclassification error as compared to
single M-mode described in the previous section.

Table 2. Results of state identification using M-mode

Predicted Class
True Class Single M-mode Sweep M-mode

Systole Diastole Undetected Systole Diastole Undetected

Systole 96 5 21 111 10 2

Diastole 26 101 18 18 123 3

4 Conclusion

In this paper we have proposed a new approach for hierarchical state-based
modeling of echo video data by identifying the views and states of objects. We
first detect the view boundaries using histogram based comparison and edge
change ratio. Then we classify the views by considering signal properties of
different views. Our technique gives a precision rate of 95.34%. To extract state
information from each view, we use synthetic M-modes. At first, we apply single
M-mode. But the misclassification error in identifying the states with the help
of single M-mode is quite high (around 27%). So we introduce a new type of M-
mode generation method named as sweep M-mode. Application of sweep M-mode
reduces the misclassification error to about 13%. We have used this approach of
hierarchical state-based modeling to develop an object relational video database
for storage and retrieval of echocardiogram video segments. The proposed scheme
is now being extended for finer (sub state) segmentation.
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Abstract. In this paper, we present a new approach for object removal
and video completion of indoor scenes. In indoor images, the frames are
not affine related. The region near the object to be removed can have
multiple planes with sharply different motions. Dense motion estimation
may fail for such scenes due to missing pixels. We use feature tracking to
find dominant motion between two frames. The geometry of the motion
of multiple planes is used to segment the motion layers into component
planes. The homography corresponding to each hole pixel is used to warp
a frame in the future or past for filling it. We show the application of
our technique on some typical indoor videos.

1 Introduction

Segmenting and removing objects from images or videos is of much current
interest. Object removal leaves the image or video with unknown information
where the object was earlier placed. Missing information recovery in images
is called inpainting. This is accomplished by inferring or guessing the missing
information from the surrounding regions. For videos, the process is termed
as completion. Video completion uses the information from the past and the
future frames to fill the pixels in the missing region. When no information is
available for some pixels, inpainting algorithms are used to fill them. Video
completion has many applications. Post-production editing of professional videos
in creative ways is possible with effective video completion techniques. Video
completion is perhaps most effective with home videos. Video can be cleaned up
by removing unnecessary parts of the scene. Inpainting and video completion is
often interactive and involve the users as the objective is to provide desirable
and appealing output.

Image inpainting inevitably requires approximation as there is no way of ob-
taining the missing information. For videos, the missing information in the cur-
rent frame may be available from nearby frames. Significant work has been done
on inpainting and professional image manipulation applications and tools exist
to accomplish the task to various degrees. The solution to the problem of object
removal in video depends also on the scene complexity. Most video completion
work has focused on scenes in which a single background motion is present such
as an outdoor scene. In scenes with multiple large motion, motion layer segmen-
tation methods are used to obtain different motions layers. A particular layer

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 409–420, 2006.
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can be removed by filling the information with the background layers. Scenes
with multiple motion, such as indoor scenes, are challenging to these algorithms.
For scenes with many planes, motion model fitting may not be suitable as the
boundaries between the layers are not exact. This is especially problematic for
video completion as the region being filled could straddle these boundaries. Peri-
odicity of motion is also often used by techniques which fill the holes by patching
from some other part of the video.

In this paper, we present a technique for video completion for indoor scenes.
We concentrate on scenes where the background motion consists of two or three
planes in the neighborhood of the object to be removed. The main contribution
of this paper is the use of the geometry of intersecting planes in multiple views
for motion segmentation, without applying a dense motion segmentation in the
image. We also show that segmentation of only the nearby background around
the missing region is sufficient for the task of video completion. Full-frame motion
segmentation can thus be avoided. The geometric nature of the method ensures
accurate and unique background assignment to the pixels in the unknown region,
which to the best of our knowledge is not possible with other video completion
methods. We particularly concentrate on scenes where the neighborhood around
the object to be removed is planar in nature.

The rest of the paper is organized as follows. In Section 2, we describe relevant
previous work. Section 3 discusses various stages of our algorithm in detail.
Results are shown in Section 4. Conclusions and ideas for future work follow in
Section 5.

2 Previous Work

The work presented here is closely related to a few well studied problems. Image
inpainting fills-in the unknown regions (or holes) in an image based on the
surrounding pixels. Structure propagation and texture synthesis are the two basic
approaches for image inpainting. Structure propagation methods propagate the
structure around the unknown region progressively to inside it. Bertalmio et al [1]
proposed a method for filling-in of the image holes by automatic propagation
of the isophotes (lines of similar intensity) in the image. Texture synthesis [2,3]
methods assume the existence of a pattern in the image and fill the pixels in
the missing region by finding a patch matching the neighboring texture in the
whole image. Texture synthesis has been done at pixel level [2] as well as block
level [3,4]. Structure propagation methods work well only on small holes, whereas
texture synthesis methods require texture in the image. Methods combining both
structure propagation and texture synthesis have been proposed in recent years
and show impressive results [5,6]. These image inpainting methods calculate the
values of unknown regions. These can only be an approximation of original data,
however.

Kang et al [7] proposed a technique for inpainting or region filling using mul-
tiple views of a scene. Their technique is based on finding the appropriate region
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in the second view and then mapping the pixels back to the first view using the
affine projection calculated using the correspondence in the two views. Similar
methods are used in video completion as discussed below.

Object removal in videos has received attention in recent years. Two types
of techniques have been proposed. The first type finds out the missing data by
searching for a patch matching the neighborhood of the hole in the video. The
match is defined in terms of spatial and temporal feature similarity. Periodic-
ity in motion is a common assumption for these techniques. Space time video
completion [8] uses a five dimensional sum of squared differences to find the
appropriate patch for filling the holes where the matrices include the three color
values and velocity along x and y direction. Video Repairing proposed by Jia
et al [9] recovers the missing part of foreground objects by movel sampling and
alignment using tensor voting to generate loops of motion by connecting the
last frame to the first frame. Motion field interpolation based methods have also
been developed recently. Kokaram et al [10] perform object removal by using
the motion information to reconstruct the missing data by recursively propagat-
ing data from the surrounding regions. Matsushita et al [11] proposed motion
inpainting where the inference of the unknown pixels information is based on
the optical flow vectors which are in turn interpolated based on the flow of the
surrounding pixels.

In the second scenario, explicit use of the geometry of multiple views is made
to infer the information missing in the current frame from the nearby frames.
This is directly related to the problem of disocclusion in computer vision. The
fact that two views of a plane are related by a perspective transformation de-
fined using a Homography matrix, forms the basis of most such approaches.
Jia et al [9] proposed the repairing of the static background by the use of pla-
nar layered mosaics. The layers are assumed to be available from initial manual
segmentation followed by tracking using the mean shift algorithm. Similar ap-
proach has been demonstrated by Zhang et al [12]. They use an automatic layer
extraction approach followed by layered mosaicing. If some holes still remain an
image inpainting approach is used in frame-wise manner based on a graph cuts
formulation.

When the camera is far from the background, the nearby frames of the back-
ground can be approximated to be related by an affine or projective transforma-
tion. This approximation is used by some methods [9]. Such methods will fail for
indoor scenes where multiple background motion exists. In general, it would be
impossible to identify every single plane in the scene and apply layer mosaicing
on each of them individually, automatically and accurately.

Structure from motion problems employ some techniques that are relevant
to this problem. Vincent and Laganire [13] discuss the problem of dividing the
image into planes. They start with a set of point correspondence and apply
the RANSAC algorithm with an optimal selection of the four initial points to
maximize the chance that the points are on same plane. All the other points in
the image are declared to belong to the plane whose homography gives least re-
projection error. Fraundorfer et al [14] find the interest regions in the two views



412 V. Jain and P.J. Narayanan

on which affine region matching is performed. The affine matching is helpful in
removing the non-planar regions from considerations. On the matched region the
homography is determined and a region growing is performed around the region
to include regions which match the homography well. During the region growing
step the homography is updated to include the new interest points inside the
region for the estimation. At the termination of the region growing, the scene
is segmented into a set of planar regions. Wills et al [15] proposed a graph cuts
formulation for motion segmentation. First a set of dominant motions in the two
views is obtained. The energy terms in the graph are based on the re-projection
error due to each motion model and the smoothness term is defined based on
color similarity between the pixels.

The work presented in this paper combines many of these ideas to perform
video completion indoor scenes with multiple background motions.

3 Video Completion for Indoor Scenes

In this paper, we address the problem of object removal and video completion
for indoor scenes where the transformation of the background is non trivial
and variable. An overview of the process is shown in Figure 1. We track the
foreground (the object to be removed) interactively using our earlier work [16] to

Interactive object extraction

Feature tracking over 2 views

Motions estimation and segmentation

Video Frames

Video with unknown region (hole)
Video completion

Planewise completion

Object Removed Video

Fig. 1. The overview of the various steps of our system
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track the objects across the video. For this paper, we assume that the background
has a maximum of 2 planes around the object to be removed in two adjacent
views. The region around the object is segmented into one or two planes, using
dominant motion model estimation followed by an optimal boundary detection
algorithm. We then apply the respective homography to recover the unknown
pixels from the neighboring frames. These steps are explained below.

(a) (b)

Fig. 2. Two different cases of object removal (a) The local background around the
object is a single plane (b) The local background around the object is spread over
more than 1 plane. Due to the local nature of the plane segmentation technique the
first case (a) doesn’t need any motion segmentation. Motion segmentation in the second
case (b) is also local in nature and even though there are more planes in the image
only the two planes which constitute the object’s background would be segmented.

3.1 Object Segmentation

The segmentation step provides the masks of the object to be removed across
the video frames. Unlike image inpainting techniques, getting this mask from
the user in each frame is not feasible. We use an interactive method of object
extraction using graph cuts and feature tracking to generate the mask across the
video sequence.

The user gives a binary segmentation of the first frame, marking the fore-
ground and the background. We track features points in the segmented frame
to the current frame (unsegmented) and set them as seed points in the 3D
graph constructed with the two frames. A graph cuts optimization on the graph
gives the segmentation for the current frame. The user can mark extra stroke
and run the iterative graph cut to improve the segmentation before proceeding
to next frame. Our method has the advantage of being fast and interactively
driven. This allows us to have complex object or object with complex motion
segmented across the video. This method is similar to Video object cut and
paste [17].

After running through the frames of video, we get the object mask in each
frame. This mask defines the region to be filled in using the video completion
algorithm.
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3.2 Video Completion

Our algorithm’s basic assumption is the existence of a piecewise planar back-
ground in local neighborhood of the object to be removed. Our video completion
algorithm can be divided into following major sub-steps.

Feature tracking in two views: The first step is finding the corresponding
feature points in the two frames of the video. We use the KLT tracking for
tracking point features across the frames. The method involves finding trackable
features in the first image, which are then matched in the second image. We find
the features selectively in only local neighborhood of the hole, this is to ensure
that we only consider useful correspondences for our motion estimation and
completion steps. We call the region around the hole where we do the selective
matching as the Region of Interest (ROI). Figure 3 (b) shows the optical flow
vectors calculated in the ROI. The ROI can be obtained by dilating the object
mask with an appropriate thickness.

Motion Segmentation: Given the point correspondences in the two images,
our aim is to find the planar segmentation of the ROIs. Figure 2 shows the
two possible scenarios. In Figure 2(a) the ROI around the object is a single
plane, while in Figure 2 (b) the ROI includes two different planes. We use a
combination of two approaches to robustly estimate the segmentation of the
points inside the ROI into multiple planes. The algorithm proceeds by finding
the dominant motions in the ROI using the set of correspondences. We use the
RANSAC [18] algorithm to determine the dominant motion. RANSAC algorithm
has the advantage of being robust to outliers, which are indeed present in our
correspondence pairs due to the existence of multiple planes.

To begin with, we use all the correspondence pairs to determine the dominant
motion. The features which are inliers for the current dominant motion are
then removed from the set and the step is repeated to find the next dominant
motion. To avoid RANSAC algorithm from choosing wrong set of initial four
points, we modify the selection phase to accept the set of points only if they
are within a set threshold distance. The points which are declared inliers to the
RANSAC algorithm are then used for a least square error fitting estimate of the
homography using the normalized DLT algorithm [19]. This fitting gives us the
final homography for the set of points. Figure 3 (c,d) shows the automatically
determined first and second dominant motions as cluster of optical flow vectors
which are their inliers.

Optimal boundary estimation: Optimal boundary estimation is needed to
actually separate the ROI into two different planes. This information is later
used during the filling-in process. Note that unlike other methods [13,14] we
cannot depend on the region growing method to give us the boundaries of the
planes because we can not estimate these boundaries in the unknown region.
We assume the intersection of the two planar regions to be a line. Let H1 and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Intermediate outputs at the various stages of the algorithm (a) Input image
(second frame is not shown) (b) The object to be removed is masked out and region
is shown in black (c) Sparse optical flow vectors on the image (shown in red, in twice
the original size to make them visible) (d,e) First and Second dominant motion vectors
clustered respectively (f) Line of intersection of the two planes calculated as detailed
in Section 3.2. (g) The surrounding background of the region is segmented into two
planes (h) Output of graph cuts based binary partitioning of the segments, shown for
comparison (i) The results of the completion on this frame.

H2 be the homography due to π1 and π2 between the two views. We find the
generalized eigenvectors of the pair (H1, H2) by solving the equation,

H1v = λH2v.

The eigenvectors obtained have the property that two of them are the projec-
tions of two points on the line of intersection of the two planes π1, π2 on to the
image plane I1 and third one is the epipole in the image I1. The two eigenvectors
corresponding to the points on the plane can be identified due to the equality
of their corresponding eigenvalues. The reader is referred to Johansson [20] for
a proof of this fact.

Using the homogeneous coordinates of the two points on the image plane,
we can obtain the exact line of intersection in the image. In fact we need this
line only over the ROI. Thus, we have the planar layers for the ROI. We warp
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these layers in the neighboring frame to the frame to be fill-in the unknown
region. The correspondence between layers obtained in two views is established
by measuring the percentage of the tracked points that are part of the layer
in previous frame. In the ongoing discussion we use the word label of a pixel
to refer to the layer assigned it. Figure 3. (f) shows a line obtained by this
method, (g) shows the plane segmentation in the ROI which is defined by the
line.

The correctness of the line determined using the method needs to be ensured
as small errors in homography calculation can lead to high errors in line determi-
nation. In fact the homography pair may have complex generalized eigenvalues
and eigenvectors and may not yield a valid pair of points to obtain the line.
We validate the correctness of the boundary line by ensuring that it partitions
the correspondence pairs into different clusters depending on the homography
to which they belong. In case the line is not determinable or validation fails we
obtain the line from a neighboring frame where it was detected and verified by
applying the underlying homography.

It should be noted that the methods which give good results for dense mo-
tion segmentation from multiple views are not suitable for segmentation of the
frames with the missing region. Graph cuts based motion segmentation tech-
niques [15,21] determine the dominant motion models in the scene and assign
each pixel to one of the motion model based on an optimal graph cuts segmenta-
tion. The unknown pixel can never be accurately assigned to any particular label
in these approaches due to lack of both color and motion information, which are
used for determining the weights in the graph. We show the result of applying
binary graph cuts partitioning in Figure 3(f), to illustrate this fact. We only
apply a binary labeling in the graph, the white region shows points supporting
first dominant motion and gray region shows points supporting second dominant
region. Grey region of the image was not considered for the segmentation stage.
Similarly methods like [14,13] which assign the pixels to the motion model or
planes based on re-projection error measure can not assign the unknown pixels
to any particular layer accurately.

3.3 Layer-Wise Video Completion

The line dividing the two planes gives a single confident label to each pixel in
the ROI. Once the label is determined we can fill the hole by warping the nearby
frames according to the homography related to the label. We build the mosaic
of each plane using the neighboring frames. The missing pixels are assigned the
color from the mosaic of the plane correspondence to their label. This method
is in principle similar to the layered mosaic approaches [9,12]. The difference
is that we have exact knowledge of which plane an unknown pixel belongs to
and use only that corresponding plane (layer). The blending of homographies
of multiple layers is not needed. As in case of layered mosaic approaches the
intensity mismatch might occur due to combination of various frames, simple
blending methods could be applied to circumvent the error due to this.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. The process applied on a synthetic sequence. (a-d) show the five frames of the
sequence. (e-h) show the frames after completion. The monkey is removed from the
original video. (a,e) have only one background plane, while in (b,c,d) two planes are
present in the background.

3.4 Inpainting

Some pixels may remain unknown after the layer-wise video completion due to
absence of the information in the video. Pixels which are always covered by the
object to removed belong to this set. As in case of image inpainting techniques
we can only approximate the values of these pixels based on the surrounding
information. The extra information however is the knowledge of which plane the
pixel belongs to. We can restrict the filling algorithm to use values only from
the corresponding plane.

4 Results

We demonstrate the application of our approach on two sequences. Figure 4
shows the results of our algorithm on a synthetic sequence. The sequence is set
in a room with two wall, a roof and a ceiling i.e. four planes. Our approach
removes the monkey as shown in the figure. Due to intensity difference on the
wall during the motion the mosaicing of the wall over the views generate some
intensity seams. Simple blending applied during the mosaic construction gives
much better results. No application of inpainting was needed in this sequence.

Figure 5 demonstrate the result of the technique applied to a real sequence.
Some black holes are present in the output due to unavailability of data. In-
painting is not being applied on the sequence as it is neither structure rich nor
texture rich. Seams which are visible in the results can be removed by applying
some blending approach.

The algorithm takes around 2 seconds per frame for the motion segmentation
and plane matching step the completion step is dependent on number of neigh-
boring frames used for creating the mosaic and takes around 1-2 seconds when
12 (6 forward and 6 backward) frames are used.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. The process applied on a real sequence, we remove the bottle from the video
(a-e) shows five frames of the sequence. (f-j) shows the results of video completion
algorithm on each input frame. Initial and final frames have only one background
while frames in the middle have two background planes. The output has visible
seams at the junction of the removed object due to very high intensity change in
the scene.

(a) (b) (c)

Fig. 6. Application of our approach to images. (a,b) two views of the scene contain-
ing 3 different background planes. (c) Image (a) is filled-in using information from
image (b) to remove the hole created due to the removed flag. Note that the shadow
of the flag is present in the completed image as shadow region was not selected for
removal.

Our method can also be used for object removal in pairs of images. We demon-
strate a simple example of this in Figure 6. The background of the flag object
has three planes. Motion estimation gives us three different motion models. The
intersection line is obtained for each pair of planes and used in same way as
described as for videos for layer-wise completion of the unknown region. We
used an affine region matching to determine the point correspondences as the
inter-frame motion was large in this case. There is also significant change in
illumination between the views, which is apparent after the flag is removed and
the image is completed. Both images didn’t see table in the region near the flag
and in the region containing the flag’s shadow. Thus, that information could not
be filled in.
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5 Conclusions and Future Work

In this paper, we address the problem of video object removal and completion
for indoor scenes. Our method involves user interaction only for object selection
and performs the rest of the operations without any user interaction. Ours is an
attempt to use multiview information for scene inference and video completion.
We showed results on scenes with piecewise planar background near the object
to be removed. The technique can be easily extended to more planes as long as
the dominant motion segmentation can be achieved.

The geometric information we used give better segmentation of multiple mo-
tions. The motions are segmented at the pixel level without region growing or
interpolation, unlike the motion segmentation performed in the image space.
Motion inpainting methods can work well for scenes with a multiple planes or
non-textured surfaces. Combining the geometric information with motion in-
painting will be the most promising one for scenes with multiple planes. We
propose to investigate the problem further in that direction.
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Abstract. Video has become an interactive medium of daily use today.
However, the sheer volume of the data makes it extremely difficult to
browse and find required information. Organizing the video and locating
required information effectively and efficiently presents a great challenge
to the video retrieval community. This demands a tool which would break
down the video into smaller and manageable units called shots.

Traditional shot detection methods use pixel difference, histograms,
or temporal slice analysis to detect hard-cuts and gradual transitions.
However, systems need to be robust to sequences that contain dramatic
illumination changes, shaky camera effects, and special effects such as
fire, explosion, and synthetic screen split manipulations. Traditional sys-
tems produce false positives for these cases; i.e., they claim a shot break
when there is none.

We propose a shot detection system which reduces false positives even
if all the above effects are cumulatively present in one sequence. Similar-
ities between successive frames are computed by finding the correlation
and is further analyzed using a wavelet transformation. A final filtering
step is to use a trained Support Vector Machine (SVM). As a result, we
achieve better accuracy (while retaining speed) in detecting shot-breaks
when compared with other techniques.

1 Introduction

In recent times, the demand for a tool for searching and browsing videos is
growing noticeably. This has led to computer systems internally reorganizing the
video into a hierarchical structure of frames, shots, scenes and story. A frame
at the lowest level in the hierarchy, is the basic unit in a video, representing
a still image. Shot detection techniques are used to group frames into shots.
Thus, a shot designates a contiguous sequence of video frames recorded by an
uninterrupted camera operation. A scene is a collection of shots which presents
different views of the same event and contain the same object of interest. A story
is a collection of scenes that defines an unbroken event. Fig. 1 illustrates this
paradigm.

Video shot detection forms the first step in organizing video into a hierarchical
structure. Intuitively, a shot captures the notion of a single semantic entity. A
shot break signifies a transition from one shot to the subsequent one, and may be
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Fig. 1. Hierarchical structure of video

of many types (for example, fade, dissolve, wipe and hard (or immediate)). Our
primary interest lies in improving hard cut detection by reducing the number of
places erroneously declared as shot breaks (false positives).

A wide range of approaches have been investigated for shot detection but the
accuracies have remained low. The simplest method for shot detection is pair-
wise pixel similarity [1,2], where the intensity or color values of corresponding
pixels in successive frames are compared to detect shot-breaks. This method is
very sensitive to object and camera movements and noise. A block-based approach
[3,4] divides each frame into a number of blocks that are compared against
their counterparts in the next frame. Block based comparison is often more
robust to small movements falsely declared as shot-break. Sensitivity to camera
and object motion, is further reduced by histogram comparison [4,5,6,7,8]. For
example, a 16 bin normalized HSV color histogram is used in [6] to perform
histogram intersection. In [7] a combination of local and global histogram is used
to detect shot-breaks. However, all these methods perform less than satisfactorily
when there are deliberate or inadvertent lighting variations. [9] uses a statistical
distribution of color histogram of the shot to refine shot-breaks.

At the cost of more processing, the edge change ratio method [10,11] handles
slow transitions by looking for similar edges in the adjacent frames and their
ratios. [11] addresses the problem with illumination changes. Three-dimensional
temporal-space methods [12,13] are better, but still sensitive to sudden changes
in illumination. Cue Video [14] is a graph based approach, which uses a sampled
three-dimensional RGB color histogram to measure the distance between pairs of
contiguous frames. This method can handle special issues such as false positives
from flash photography.

1.1 Problem Statement

As mentioned earlier, our main interest is in reducing false positives in challeng-
ing situations enumerated below.
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1. Illumination changes: An example of this situation (inter-reflections, user-
driven light changes, flash photography) is illustrated in Fig. 2. In the movie
excerpt, lighting causes the actress to appear different. It is natural to the
human, but confuses shot detection algorithms and even the camera as seen
in the third frame!

2. Camera effects: These include effects such as zooming and tilting of objects
of interest, shaky handling of amateur video, fast object motion, and fast
camera motion. An example is illustrated in Fig. 3.

3. Special effects : An example of this situation (explosion) is illustrated in
Fig. 4. Split screen is another possibility shown in the last figure.

Fig. 2. A movie excerpt featuring Aishwarya Rai. Lightning creates unpredictable light-
ing changes.

Fig. 3. Fast camera motion makes individual frames undecipherable

Fig. 4. Explosion in a dimly lit scene causes considerable change in color and intensity

Fig. 5. Two different scenes are displayed simultaneously using split-screen methods.
However, a shot break may be observed in only one of them.
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1.2 This Paper and Our Contributions

Our first attempt of detecting shot-breaks only from correlation value resulted
in many false positives as the correlation value, when used as is, is unreliable.
Therefore, a multi layer filtering framework as described in Section 2 is neces-
sary. Based on a large number of experiments, we decided on the use of a Morlet
wavelet based feature and a SVM to reduce false positives. It is significant to
note that any framework should not increase errors if all unusual effects are cu-
mulatively present in one sequence, or when gradual transitions are present. Our
machine learning based scheme avoids this problem. Results of our experiments
are given in Section 3 and we end with some concluding remarks in the last
section.

2 Proposed Method

We propose a shot detection system which reduces errors even if all the above
effects are cumulatively present in one sequence. Similarities between successive
frames are computed by finding intensity-compensated correlation using ideas
similar to the ones in [15]. We depart, by further analyzing these similarities
using wavelet methods to locate the shot breaks and reduce false positives by
analyzing the frames around the predicted shot-breaks. We further use learning
techniques to refine our shot-breaks. The method is summarized in Fig. 6 and
essentially consists of the following three steps.

Fig. 6. Our filtering approach

1. Extracting features representing the similarity between the successive frames
helps to determine candidate points for shot breaks. Candidate points for
shot breaks are where similarity is low; four frames are indicated in the
portion marked in Fig. 6 (First Step). This is further elaborated in Section 2.1
(for hard cuts) and Section 2.4 (for gradual transitions).
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(a) A sample correlation sequence. Low val-
ues might indicate shot breaks.

(b) ψ(t) = Ce(−t2
2 ) cos(5t).

Fig. 7. Similarity features and the Morlet mother wavelet

2. Analyzing features to detect plausible shot breaks. As shown in Fig. 6 (Sec-
ond Step) the second predicted shot break is dropped because it is a false
alarm. This is further elaborated in Section 2.2 (for hard cut) and Section 2.5
(for gradual transitions). We then refine the detected shot breaks using more
involved techniques to further reduce the false positives.

3. Training the system using a support vector machine to further improve the
accuracy. In Fig. 6 (Third Step), the first candidate is now dropped. This
technique is elaborated in Section 2.3 (for hard cuts) and Section 2.6 (for
gradual transitions).

2.1 Hard Cut Feature Extraction

The similarity between two consecutive frames is computed using a normalized
mean centered correlation. The correlation between two frames f and g is com-
puted as ∑

i,j(f(i, j)−mf )(g(i, j)−mg)√∑
i,j(f(i, j)−mf )2

√∑
i,j(g(i, j)−mg)2

(1)

where mf and mg are the mean intensity values of frame f and g respectively.
A high correlation signifies similar frames, probably belonging to the same shot;
a low value is an indication of an ensuing shot break.

The correlation values between successive frames are plotted as in Fig. 7(a).
The locations of shot breaks as identified by a human annotator are also indi-
cated. From this diagram, it is also clear that placing an ad-hoc value as threshold
to detect shot breaks will not work. A delicate shot break, like the one at frame
85 is missed if a hard threshold is placed.

2.2 Hard Cut Shot Prediction

To overcome this difficulty, we consider the continuity of correlation values rather
than the correlation values themselves, as an indicator of a shot. We achieve this
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using wavelet analysis. We have experimented with different wavelet transforms
to detect this continuity and have observed that the Morlet wavelet results in a
good discrimination between actual shot breaks and false positives.

The Morlet wavelet is a complex sine wave modulated with a Gaussian (bell
shaped) envelope as shown in Fig. 7(b) . Note there are equal number of positive
and negative values in the mother wavelet and the area sums to zero. Whenever
there is no or little change in the correlation sequence, the wavelet transform
returns zero value. If there is a hard cut, there is a discontinuity in the correlation
value, which results in a distinctive PPNN pattern (two positive values followed
by two negative values) in the lowest scale. At high scales the coefficient values
are quite large. Hence hard cuts can be obtained by observing this pattern.

(a) A sample correlation sequence. (b) A visualization of the relevant
wavelet transform

Fig. 8. Using the Morlet wavelet

We graphically illustrate the power of the wavelet in Fig. 8. Fig. 8(a) shows
a fluctuation in the correlation values from frames 215 up to 420. Out of these,
frames 215 and 387 look like possible candidates for shot breaks. However, only
frame 215 is an actual cut and frame 387 is a false positive (if reported as a cut).

In contrast, observe the corresponding Morlet wavelet transform in Fig. 8(b).
The wavelet coefficients are high in all the scales around the frame 215, whereas
the wavelet coefficients value around the frame 387 is not high at all the scales.
Thus frame 215 is detected correctly as shot-break and frame 387 is dropped.

Filtering: After detecting possible locations of shot breaks, we improve the
accuracy by analyzing the frames around predicted shot breaks in greater detail.
The following measures are used.

1. Due to random lighting variations, the gray-scale value of successive frames
in a shot might differ considerably resulting in a low correlation value. We
pass potential shot break frames through a median filter. As a result, false
positives are decreased without increasing false negatives.
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Fig. 9. Computing correlation of corresponding sub-windows

Fig. 10. Recomputing correlation in the frames around the shot-break. The dashed
window indicates a shot break and the frame under focus is darkened. The correla-
tion between the dark frame and other frames indicated by arrows is computed. The
maximum of these values replaces the value computed earlier.

2. Synthetic manipulations such as animations or screen-split cause the corre-
lation coefficient to become low resulting in false positives. We divide the
frame into four overlapping sub-frames as shown in Fig. 9 and compute the
correlation of corresponding sub-frames. One of these four correlation values
reflect the desired relation. As a result, false positives are decreased.

3. MPEG errors and noise in the neighboring frame in low quality video can
cause false positives in spite of recomputing the correlation value at shot-
breaks. The correlation of the frames around the shot-break is recomputed
in a window size as shown in Fig. 10. This measure helps in reducing false
positives due to noise in the subsequent frames from the same shot.

4. Camera or object motion may cause low correlation value resulting in false
positives. For the predicted frames only, cross-correlation is computed.

We select the best correlation values generated using the above measures and
rerun the process of computing wavelet coefficients and detecting discontinuities
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with these new values. Finally, by taking the intersection of the two sets of
predicted shot breaks, we produce a pruned set.

2.3 Training

We now describe how to train a SVM to further improve our accuracy. As the fea-
tures play an important role in the training, we mainly focus on the features used
in this process. The features extracted in previous two steps contribute correla-
tion and wavelet features. Apart from this, we also compute traditional features
like pixel differences, histogram differences, and edge differences. The training set
consists of videos containing the challenging problem presented in Section 1.1,
news videos, and movie clips. The features used in training the SVM are

1. Pixel differences which includes average pixel difference and Euclidean pixel
difference

2. Histogram differences: Average histogram difference, histogram intersection,
thresholded chi-square distance

3. Edge difference
4. Average intensity value
5. Correlation, Cross-correlation and maximum of the correlation values com-

puted in the previous step
6. Presence of PPNN pattern in the lowest level of wavelet transform computed

in the previous step
7. Lowest wavelet coefficient

Though our feature set contains some duplication, we use standard machine
learning methods to select relevant features.

2.4 Gradual Transitions

Gradual transitions (or graduals) are shot transitions which occur over multi-
ple frames resulting in smooth transition from one shot to another. As a re-
sult, gradual transitions are comparatively difficult to detect when compared to
hard-cuts. The problem is increased with issues like uncertain camera motion
common among amateurs resulting in false positives. Unfortunately, imposing
more constraints to eliminate these false positives can eliminate the actual grad-
uals as well. Most of the gradual detection algorithms [16,1,17,18,19] use a hard
threshold to detect the shot transitions. Tuning these thresholds to improve the
accuracy of the gradual detection system is a critical and important task. We
use machine learning algorithms to solve this task.

A primary feature used in gradual detection is in the change in the brightness
value of frames. The total brightness of a frame f is computed as∑

i

∑
j

[f(i, j)]2 (2)

Within a shot, the total brightness remains predictable by and large. Upon
encountering a gradual, we see a cone-like pattern. Fig. 11(a) shows a sample
situation.
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(a) A fade-out from frame 40 to 65
results in increasing brightness and a
fade-in from frame 65 to 75 results in de-
creasing brightness value.

(b) Multiple “cones” can be found
even when there is no shot break.
In this example, a moving object has
caused the changes.

Fig. 11. Sample brightness values around a gradual transition (a) can sometimes be
predictable. At other times, the pattern can result in false positives.

2.5 Gradual Shot Prediction

The possible gradual transitions are predicted by detecting steady increase or
decrease in the brightness values of the image sequence. Unfortunately, as ex-
emplified in Fig. 11(b), false positives are produced. We improve the accuracy
by analyzing the frames around predicted shot breaks in greater detail. The
following measures are used.

1. Analysis by synthesis: The detected gradual transitions are checked for the
dissolve linear property [17] thereby eliminating some of the false positives.

2. Edge Energy: Sequences containing illumination changes affects the total
brightness value but do not affect the edge energy computed as∑

i

∑
j

[edge(f(i, j))]2 (3)

As a result, a few false positives are eliminated.

2.6 Training

The following features are used for classifying gradual transitions. The videos in
the training set are rife with characteristics mentioned in Section 1.1.

1. The normalized brightness difference between the start and end of the grad-
ual transition.
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2. The differences of brightness value between starting and middle point of the
gradual transition and the difference between the brightness value of middle
and end value is computed. The sum of these two differences is calculated.

3. The difference between the minimum value and the maximum value in the
pixel difference sequence computed in the previous step.

4. Average edge energy value of the dissolve interval.

By this training process, we eliminate most of the hard-coded thresholds and
make our system more flexible to use.

3 Experimental Results and Discussion

Our training data consists of a large number of videos. These involving the
challenging problems stated in our problem statement and other videos which
do not have too many unusual situations. Normal videos are included in the
training set to avoid the over fitting problem in SVM.

We have tested our system on the data comprising of

– News videos each having around 500 hard cuts, containing different types of
events. These are in multiple languages (notably Chinese and English).

– Short videos taken from motion pictures and from NASA. These involve
some of the challenging problems mentioned in Section 1.1.

– Low-quality home video with varying lighting conditions and fast, shaky
motion.

– Clips from motion picture containing illumination changes, fast camera mo-
tion, and object intrusion.

The ground truth for these experiments is from Trecvid 2005 [20].
Table 1 shows the experimental results on a news video which is a synthet-

ically combined video of various challenging problems like fast camera motion,
illumination change, flash light, explosion, and low video quality. We present
results which shows the efficacy of our filtering approach. In the first attempt,
we detect shot-breaks using only the first step (see Section 2). In the second
attempt, we imposed the constraints to remove false positives as noted earlier,
but do not use any learning methods. We note that the precision improves, but
the recall drops. Many of the true positives were also eliminated. The third row
shows our result on cross-validation with a split of 33% training data and 66%
test data. The precision and recall go up.

Table 1. Result from a news video

Method Precision Recall F-Measure

Without training, without filtering 0.686 1.0 0.814

Without training, with filtering 0.761 0.768 0.764

Cross-validation(33-training, 66-test) 0.892 0.992 0.939
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Table 2. Result from an unseen video containing fast camera motion, object intrusion,
and unpredictable illumination changes

Method Precision Recall F-measure

Pixel Difference 0.926 0.571 0.707

Histogram Comparison 0.259 0.195 0.222

Correlation Value 0.785 0.734 0.759

Temporal Slice 0.750 0.604 0.669

Our Method 0.923 1.000 0.960

Table 2 shows the experimental results on unseen test data from motion video
containing problems like fast camera motion, shaky handling of camera, object
intrusion and illumination changes. The ground truth for these experiments was
generated manually. As the results reflect, our system is successful in reducing
the false positives considerably.

4 Conclusions

We have discussed in this paper the characteristics of videos that make shot
detection a challenging problem. We have presented our framework that improves
the accuracy of shot detection in such cases. In summary, we use mean-centered
correlation as the similarity measure and use Morlet wavelet to predict shot-
breaks by capturing the discontinuity in the correlation sequence. We further
improve our accuracy by using a support vector machine.

Our shot detection system achieves the following:

1. Reduces false positives in the event of challenging problems like unpre-
dictable illumination changes, camera effect & special effects.

2. Processes more than 30 frames per second with the accuracy required for
the normal usage.

3. Presents a unique solution to solve all the problems, instead of combining
different problem specific solutions.

4. Introduces a new wavelet based feature based on extensive experiments.
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Abstract. In this paper we address the problem of temporal segmentation of
videos. We present a multi-modal approach where clues from different informa-
tion sources are merged to perform the segmentation. Specifically, we segment
videos based on textual descriptions or commentaries of the action in the video.
Such a parallel information is available for cricket videos, a class of videos where
visual feature based (bottom-up) scene segmentation algorithms generally fail,
due to lack of visual dissimilarity across space and time. With additional top-
down information from textual domain, these ambiguities could be resolved to a
large extent. The video is segmented to meaningful entities or scenes, using the
scene level descriptions provided by the commentary. These segments can then
be automatically annotated with the respective descriptions. This allows for a se-
mantic access and retrieval of video segments, which is difficult to obtain from
existing visual feature based approaches. We also present techniques for auto-
matic highlight generation using our scheme.

1 Introduction

The significance and challenge of temporal segmentation of videos into meaningful
entities, is parallelled only by its spatial counterpart. Much of the previous work in
video segmentation has focused on shot-cut detection. Contiguous frames in the video,
which have little change in visual content are generally grouped into a video shot. A
shot change or a cut is detected, whenever the camera shifts, or the scene being captured
changes significantly. However, our work focuses on obtaining a scene segmentation,
which is a meaningful entity of a video [1]. This work is motivated by the following
facts:

• Shot-Cut detection, using visual features, has been well addressed in literature
[2,3,4]. However, the video shot obtained from cut detection is not generally a
meaningful entity. Shots are a low-level or syntactic representation of the video
content, while for the purpose of recognition, annotation and retrieval, a higher
level semantic representation such as a “scene”, is required.

• Semantic access to content, has met with much success in the text retrieval domain.
Much work exists on mining and retrieving semantic concepts from document col-
lections.

• A parallel text is available for many videos such as closed captions for news videos,
subtitles for movies, lyrics for music videos, commentary for sports videos, etc.
This text is a reliable source of information regarding the content of the video.
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• With a synchronisation between the text and the video, the video segments would
correspond to a textual description of the video. This allows for automatic annota-
tion of video segments with the associated text. The videos could then be accessed
at the semantic level and retrieved using human-understandable textual queries.

Segmenting a video into meaningful entities is very challenging since there is a lack
of correspondence between the meaning of the scene and the visual features. Previous
work that segments a video into scenes [1,5] using visual features [6,7] or scene dy-
namism [8], fail in many cases where there is no significant visual change across space
and time. This is especially true for the class of sports videos. However, this class of
videos have the advantage of being associated with a textual description in the form of a
commentary that is generally available in parallel. This text provides ample information
regarding the scene content and where and how it changes.

The Problem: In this paper we address the problem of segmenting a video into mean-
ingful scenes, using the text that describes the video. Specifically, we use the commen-
taries available for sports videos, to segment a cricket video into its constituent scenes,
called balls. Once segmented, the video could be automatically annotated by the text
for higher-level content access.

The Challenges: The scene changes in a sports video are highly ambiguous, since there
is no fixed point where one event ends and another begins. The videos are characterised
by diverse visuals within the scene and very similar visuals across scenes (at the scene
boundaries). This makes it difficult to find scene changes, using purely visual domain
techniques. To complicate things further, during broadcast, a large number of replays
are shown, which are not synchronous with the flow of the match. Moreover, the broad-
cast contains a large number of scenes, videos, graphics etc. that closely resemble the
actual match. They also contain a large number of advertisements that overlap in visual
content with the match scenes.

Apriori Knowledge Used: The ambiguities in the visual domain could be resolved by
using parallel information for the video. The parallel information could be obtained
form two sources: i) audio and ii) text. The audio in a sports video would consist of the
commentators’ running commentary and the audiences’ reaction. The audio is avail-
able only in a feature space, which needs to be converted to a more meaningful domain
(such as text) by using various speech recognition modules (which are inherently com-
plex and not totally accurate). Moreover the information from the audio domain is as
ambiguous as the visual domain (for very similar reasons). On the other hand, textual
commentaries, as available from websites such as Cricinfo.com(TM), are meaningful,
reliable, accurate, and complete, with regards to conveying the proceedings of the event.
Textual descriptions are accurate and meaningful, and immediately correspond to a se-
mantic representation. The semantics provide clues regarding the visual content, when
described using visual scene categories. By identifying the scene category from text,
the visual content could be estimated.

The Semantic Gap: The top-down information from text and the bottom-up informa-
tion from visual features has to be synchronized and merged. The top-down informa-
tion defines the approximate content of a video segment and the bottom-up techniques
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should be used to segment the video such that it appears similar to the model defined
for the segment. However, the commentaries are a high level conceptual description of
the scene, which cannot be directly represented using visual domain features, the so-
called Semantic Gap. A mechanism is required to bridge the semantic gap by finding
correspondences between scene changes and the scene descriptions. This is achieved
by building approximate scene models for each of the scene categories.

In other words, the top-down (textual) and bottom-up (visual) information needs to
be effectively merged to solve the problem on hand (segmentation). The visual clues
are used to estimate a scene segmentation, which is refined by constraining the seg-
mentation to look similar to the model defined. The optimization of this estimation is
performed using the Maximum Likelihood (ML) framework. Though explained in the
context of cricket videos, our techniques can be directly extended to any class of videos
where the events occur from a given set of categories.

Automatic Annotation: Following the segmentation, the textual description is directly
synchronized with the video segments. Thus, the segments could be automatically an-
notated. Automatic annotation of multimedia is of immense interest in the information
retrieval community. Existing content based retrieval systems are computationally ex-
pensive and few approaches can robustly retrieve from large video collections. Text
annotations of video allow us to build a text based retrieval system for videos, which is
very quick and efficient.

2 Visual Domain Processing of Videos

It is common to use the domain knowledge of the class of videos for processing them,
such as [9] for baseball, [10] for American football, [11] for tennis, and [12,13] for
cricket etc. We use the domain knowledge of the videos to build scene categories and
approximate scene models. The scene in cricket, is called the “ball” (similar to a “pitch”
in baseball). The ball is defined to begin with the bowler running to deliver the ball,
and end at the start of either i) the next ball, ii) a replay or iii) an advertisement. A
ball consists of the bowler running to deliver the ball, the ball being delivered, played,
fielded and returned. There are a minimum of six balls per over, and 50 overs for each
side to play. Between consecutive overs there is a lengthy break which is typically filled
with advertisements in the broadcast. A large number of replays are generally shown
between the balls. A conceptual description of the broadcast cricket video is given in
Figure 1.

In this section we describe the visual domain processing of the videos. We first detect
shot changes in the video and categorise the shots into one of several classes. These shot
classes and shot class transitions are used to model the scene categories as described in
Section 3.

Shot Detection. Much work exists in shot-cut detection [2,3]. Popular techniques that
use image features [7], optical flow [14] etc., are not applicable due to the heavy noise
that is common in broadcast videos. In such cases, a histogram based descriptor is well
suited [4]. To ensure invariance to minor changes in RGB values and to noise, the RGB
axes are binned, and each pixel is assigned to the cube that the bins describe. To enforce
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Fig. 1. Depiction of a generic cricket video. Each over has 6 (or more) balls, each scene consisting
of the ball being delivered, played, fielded and returned. In a broadcast, replays and graphics are
shown between the scenes and advertisements between the overs.

spatial consistence, we divide the frame to N blocks and build the binned histograms
for each block. For cut detection, the histograms of consecutive frames are compared
and a cut is detected if the difference is above a particular threshold. The threshold for
the given video is found using the technique described in [15].

Soft Classification of Shots. The detected shots are classified into one of the shot cate-
gories. For cricket videos, these are the set C = {pitch view, run-up view, player close-
up, crowd, advertisement, replay}. The different shot classes are shown in Figure 2.
Though these classes exhibit wide disparity over different matches, the features from
the video for a given cricket match (or in many cases a given tournament of matches)
are very similar. The representative histogram feature vector Ci = fCi1, fCi2, ..., fCin

for each shot class is learnt from training data. Each shot S = fS1, fS2, ..., fSn is
compared with the class-representative feature vector Ci, using the L1-Norm to obtain
d(S,Ci) =

∑n
k=1(fCik−fSk) . The shots are classified using the maximum likelihood

estimate as

Class(fS1, fS2, ..., fSn) = argmax
i

d(S,Ci)∑
k(d(S,Ck))

The accuracy of shot classification is presented in Figure 3 (a).

Another class of shots that we need to handle are the advertisements and replays. Pre-
vious advertisement detection methods [16] rely on the intensity in activity from the
large variations in the video frames. However, this is also valid for action sequences
in a sports video. Replay detection techniques [17] have used a replay transition detec-
tion, or slow motion as a clue, which are not applicable for our case. Instead, it was
observed that for advertisements and replays, the video production removes the score-
board at the bottom, that is generally present for the match play, as can be seen in
Figure 2. The scoreboard could be detected to distinguish between match play and ad-
vertisement/replay. Our method provides a detection accuracy of 82.44% for the class
advertisemnts/replays.

Segmenting using Visual Features. Scene segmentation in visual domain could be per-
formed by using the pitch views as canonical scenes [18] that bound the action. How-
ever, due to the large number of replays, and the inaccuracy of shot classification, the
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Fig. 2. Example frames from the shot classes, from left to right: Ground view, West Indies player,
Crowd, Pitch view, Indian player and Advertisement. Note that the scoreboard present in the
bottom of the screen for the shot classes, is absent for the advertisement.

identified pitch views are more than the number of balls, consequently, yielding poor
segmentation. It was observed that over a duration of 8 hours of a match with 629 balls,
945 segments were obtained, where the extra segments come from repeated pitch view
shots. Moreover, a large number of balls (52) were missed due to inaccurate shot clas-
sification. By enforcing a minimum time duration for each segment, a large number of
false positives were eliminated, but many outliers still remained. Also the segmenta-
tion tends to favour segments of the same size, while the duration of the scenes would
actually depend on the scene category.

3 Modelling the Scene Categories

In cases where the visual domain techniques are insufficient for scene segmentation, a
parallel textual description could be used to provide additional information. Such par-
allel text is available for sports videos in the form of online commentaries. For. eg., the
commentary of a cricket game is given below:

13.1 Smith to Sehwag, FOUR, short of a good length and outside the off, driven on
the up superbly through cover, the timing and placement are excellent, Bravo dives des-
perately but can’t quite pull it back

13.2 Smith to Sehwag, 1 run, played away for a single

13.3 Smith to Yuvraj Singh, FOUR, short of a length and outside the off, Yuvraj stands
tall and times that magnificently through cover point. That is a good shot from Yuvraj!

It can be seen that the commentaries contain heavy usage of the domain specific vo-
cabulary, which is a highly conceptual representation. Mapping such semantic concepts
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(a) (b)

Fig. 3. (a) Precision-Recall of the shot classification (b) Scene model for the outcome FOUR

to lower level features from images/video is a major challenge corresponding to bridg-
ing the semantic gap. We model the scenes by finding an approximate map between the
shot and scene classes. We assume that each scene class could be characterized by the
shot classes it consists of, along with their durations and transitions. The scene building
is described in Algorithm 1. The input to build the scene model are the training example
scenes < V1, V2, ..., Vn > of the scene Ss. Let LVi be the length of the video Vi. The
text commentary is used to generate a hypothetical video’s representation that is used
as the model for the entire match.

The average duration of a given scene is computed from the examples and used
to build a descriptor for the scene. The scene descriptor is the set of probabilities for a
given frame to belong to each of the shot classes. These probabilities model the scene to
a large extent. For example, in case of the outcome four, the pitch view would generally
be followed by the ground view for some time, and the camera would then shift to the
players. Such probabilities are computed for each frame and normalized to the average
length of the scene. The scene model for the outcome FOUR is shown in Figure 3(b).

Algorithm 1. Train Model(Ss, < V1, V2, ..., Vn >)
1: Find average length LSi of the videos < V1, V2, ..., Vn >
2: Set Ss = NULL
3: for Vi = V1 to Vn do
4: Identify shots, Ci1 , Ci2 , ..., Cim in Vi

5: for each shot j = 1 to m and each shot-class k = 1 to l do
6: Find probability Pk(Cij ), of shot Cij belonging to the k th shot-class
7: end for

/*Build scene representation Ssi as */
8: for j = 1 to LVi , and each shot-class k = 1 to l do
9: Append Pk(Cij ) to Ssik

10: end for
11: Scale Ssik

to average length LSi

12: For each k = 1 to l, Append Ssik
to Ssi

13: end for
14: Average Ssi over i = 1 to n to obtain Ss

15: return Ss
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The above representation builds a model for the intra scene shot changes. To describe
the video completely, an inter-scene model is required. The inter scene model describes
the probabilities of a particular scene following a given scene. This is modelled for the
purpose of handling advertisements and replays. The model learns the probability of
an advertisement or replay to follow a given scene. Generally a replay follows a scene
belonging to four or six etc., and advertisements follow an out scene. The intra-scene
and inter-scene models are used to provide a model for the video to be matched against.

4 Text Driven Segmentation of the Video

4.1 Maximum Likelihood Formulation of Scene Segmentation

The segmentation procedure should identify the begin and end frames of the scenes,
over the entire video. The real scene boundary Zi is assumed to be fixed but unknown.
The estimate zi of the scene boundary, is assumed to be found near the real boundaryZi

with a probability distribution that follows a Gaussian. The Gaussian is centered around
Zi, with a variance σ. The estimate zi is obtained from visual-temporal information. Let
such an observation of the beginning and end of a scene Si be zi1 and zi2 respectively.
The likelihood that shot Si bounded by zi1 and zi2 actually corresponds to a real scene
X is given by P (Si|X) = P (zi1 , zi2 |X). This likelihood corresponds to a local cost
of corresponding Si to X . The global cost of matching scene estimate set γ with real
scene boundaries is given by

L(γ) = p(Z1, Z2|γ) =
∏

0<i<n

P (zi1 , zi2 |X)

where n is the number of shots in the video. The maximization of the global likeli-
hood function corresponds to minimizing its negative logarithm. In cases where the
scenes are not represented by a known model, the optimization of this function could
be done using an Expectation Maximization approach, where both the segmentation
and scene parameters are learnt simultaneously. However, using the textual informa-
tion, the appropriate scene models could be plugged into the likelihood computation.
The minimization in such a situation would correspond to a simple weighted matching
or assignment problem, which could be solved in polynomial time using dynamic pro-
gramming. The derivation of local cost between a scene estimate and a scene model is
derived following the building of scene models in Section 4.2.

The Generative Video Model. In an ML framework, the observed data, D, or the given
video, needs to be compared with an assumed model for the dataM . In a general model
fitting problem, there are two unknowns: i) the model parameters and ii) the mapping of
the data to the model. These unknowns are estimated using an Expectation Maximiza-
tion procedure. This would be a bottom-up approach. The results of a purely bottom
up approach would be poor, due to the ambiguities present in the observed data and
the absence of an appropriate scene model. Top-down information in the form of tex-
tual descriptions, could be used to identify the scene models and parameters. With such
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Algorithm 2. Generate Video Representation(Match Commentary)
1: Set G = NULL
2: Parse Match Commentary and identify the ball Bi and their corresponding Outcomes Oi

3: for each ball i = 1 to n do
4: Identify scene model Ss for Oi

5: Append Ss to G
6: end for
7: Return G

information, the only unknown that remains, is the mapping of the observed data to the
assumed model. The model M is built from the Match Commentary using Algo-
rithm 2.

4.2 Segmenting Using the Video Model

The model M , would be a hypothetical video, generated from the scene descriptions.
For each ball in the match, the scene category is identified and the corresponding scene
model is appended to the generated video. Advertisements and replay shots are added
based on the probability of their occurrence following a given scene. The generated
model provides an approximation of the shot and scene changes in the video for the
given scene description. The mapping of D to M , can be computed using a Dynamic
Programming (DP) technique [19]. Assuming that the distance array in the DP proce-
dure is given as D, we use the DP cost computation:

D(i, j) = min

⎧⎨⎩
D(i− 1, j) + c(i, 0)
D(i− 1, j − 1) + d(i, j)
D(i, j − 1) + c(0, j)

where the local distance between two frames, i and j is given by

d(i, j) =
∑

s∈shotclasses

P (is).P (js)

P (is) being the probability that the ith frame belongs to the s shot class; and c(i, 0)
is the cost of occlusion. The cost of occlusion is lesser if one of the frames belongs to
an advertisement scene, and more otherwise. The optimal path of the match is found by
backtracking the DP matrix. With this match, the observed scenes from D are warped
onto the generated model M . The segments of a scene is the segment that maps to the
scene in the generated model. The procedure is depicted in Figure 4. The procedure is
given in Algorithm 3. In Algorithm 3, the Dynamic Programming and Back Track are
standard dynamic programming and backtracking algorithms.

The scenes obtained from the text driven segmentation, were evaluated manually
over a 20 minute video. The segments were found to be satisfactory. Out of 124 balls,
the segmentation was able to identify about 98 balls correctly. The errors in identifi-
cation are due to the overlap with replays and advertisements. The presence of large
number of replays and advertisements, especially back to back, causes the estimation to
perform poorly. It was also found that the segments generally follow the length of the
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Algorithm 3. Segment Video(V , G)
1: Set S = NULL
2: Identify shots, C1, C2, ..., Cm in V
3: for each shot j = 1 to m and each shot-class k = 1 to l do
4: Find probability Pk(Cj), of shot Cj belonging to the k th shot-class
5: end for

/*Build video representation S as */
6: for j = 1 to LVi , and each shot-class k = 1 to l do
7: Append Pk(Cj) to Sk

8: end for
9: Compute D = Dynamic Programming(S, G)

10: Find optimal path using P = Back Track(D)
/*Segment Video*/

11: for each scene s = 1 to n do
12: Find the scene segment Gs corresponding to s in generated video G
13: Find correspondence of Gs in P
14: Output Vs corresponding to Gs in P
15: Annotate Vs with the scene description of s
16: end for

scene model, in the absence of other discrimination. The scene model, thus, constraints
the accuracy of segments obtained.

5 Automatic Annotation of Scenes

Following the text driven segmentation of video, the balls are synchronized with their
commentary. This enables automatic annotations of the video scenes with their respec-
tive description. Such an annotation could be used for retrieval and summarization. It
should be noted that automatic annotation of videos using visual features alone is a
very difficult task using existing techniques. It is in cases like these that cross-modal
techniques are highly relevant.

5.1 Retrieval

From the process of annotation, each ball has an associated textual description, which
allows us to build a text based search engine over the videos. The video segments are
indexed by the keywords associated with them. The keywords are obtained from the uni-
gram frequencies of the words in the entire commentary. The most commonly occurring
words are removed as stop-words. For each keyword, the associated video segments are
found and indexed to it. Given a query, the index is searched for the query word, and
the matched index is retrieved for the user. The user can then click on the search results
and view the video segment. A screenshot of the retrieval tool is shown in Figure 5.
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Fig. 5. Snapshot of the “Cricket Browser”, the tool that allows to browse through the matches and
allows for searching the annotation, thereby providing semantic access to cricket videos

The retrieval of videos using our scheme is interactive, with a retrieval time of about
0.01 seconds. This is because the search is performed in the text domain, and no image
or video feature comparisons are necessary (as in general CBIR). The user can search
for popular outcomes such as four, six, out etc., or for scenes involving his favourite
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player. The user could also search in the descriptions, which means he could search for
semantic concepts like an out swinger. Learning and identifying such subtle concepts
using purely visual domain practises, is highly involved, which is circumvented by our
approach. However, the accuracy of the search system is affected by the errors from the
scene segmentation phase. With accurate scene segmentation, the search could provide
accurate retrieval of video scenes.

5.2 Summarization

Highlights of the match are generated by finding interesting events from the commen-
tary. An exciting ball is generally described in detail, with many adjectives in the sen-
tences. These are identified using text processing schemes and the exciting balls are
extracted for the highlights. We compared our highlights with those shown on TV for
two matches. The evaluation measure was the number of highlights missed during the
entire match. The results of the evaluations are shown in Table 1. The large disparity
between the durations between the TV highlights and those generated by us is due to
the fact that we have not incorporated replays into the highlights. The missed highlights
are those which were not classified as exciting due to lack of detailed description in the
commentary of some of the balls.

Table 1. Comparison of generated highlights with those created manually

Match Input Duration Highlights’ Duration TV Highlights’ Duration Missed Highlights
Ind Vs. WI 1 4.00 32 min 48 min 13
Ind Vs. WI 2 3.26 hr 37 min 45 min 16

6 Conclusions and Future Directions

The major contributions of our work are:

• A novel framework that performs temporal segmentation of videos into scenes by
effectively merging the scene description information with visual features

• A formulation to partially bridge the semantic gap between the descriptions and the
video shots they correspond to

• Automatic annotation of multimedia with text
• Search and retrieval, summarization and highlight generation of videos

One application of the results of our work is in learning semantic concepts such as
a poor shot or a good ball. We have, in this work, modelled distinctive concepts for
the scene models, but more robust representations are required to model concepts over
shorter sequences. User preferences for highlights could be learnt using relevance feed-
back and customized match summaries could be generated. With an annotated corpus
many video processing algorithms could be built and tested on this platform. Activity
recognition systems could be reliably trained and evaluated using our corpus.
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Abstract. A novel object representation for tracking is proposed. The
tracked object is represented as a constellation of spatially localised linear
predictors which are learned on a single training image. In the learning
stage, sets of pixels whose intensities allow for optimal least square pre-
dictions of the transformations are selected as a support of the linear
predictor.

The approach comprises three contributions: learning object specific
linear predictors, explicitly dealing with the predictor precision – compu-
tational complexity trade-off and selecting a view-specific set of predic-
tors suitable for global object motion estimate. Robustness to occlusion
is achieved by RANSAC procedure.

The learned tracker is very efficient, achieving frame rate generally
higher than 30 frames per second despite the Matlab implementation.

1 Introduction

We formulate real-time object or camera tracking as establishing correspondence
in a short-baseline pair of images followed by robust motion estimation. In real-
time tracking, computation time together with the relative object-camera veloc-
ity determine the maximum displacement for which features must be matched.
Local features (corners, edges, lines) or appearance templates have both been
widely used to estimate narrow baseline correspondences [1,2,3].

Recently more discriminative features have been introduced to increase ro-
bustness to changes in viewpoint, illumination and partial occlusion allowing
wide-baseline matching but their are too computationally expensive for tracking
applications since their include combinatorial search [4,5,6,7].

We propose a novel object representation for tracking. The tracked object is
represented as a constellation of spatially localised linear predictors. The predic-
tors are learned using a set of transformed versions of a single training image.
In a learning stage, sets of pixels whose intensities allow for optimal prediction
of the transformations are selected as a support of the linear predictor.

The approach comprises three contributions: learning object specific linear
predictors which allow optimal local motion estimation; explicitly defining the
trade-off between linear predictor complexity (i.e. size of linear predictor sup-
port) and computational cost; and selecting an view-specific set of predictors
suitable for global object motion estimate. We introduce a novel approach to
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learn a linear predictor from a circular region around the reference point which
gives the best local estimation, in the least square sense, of the object motion for
a predefined range of object velocities. Spatial localisation robust to occlusions
is obtained from predicted reference points motions by RANSAC. The approach
makes explicit the trade-off between tracker complexity and frame-rate.

Tracking by detection [8,9] establishes the correspondences between distin-
guished regions [6,4] detected in successive images. This approach relies on the
presence of strong, unique features allowing robust estimation of large motions
by matching across wide-baseline views. Detection approaches also allow auto-
matic initialisation and re-initialisation during tracking. Methods dependent on
distinguished regions are not able to track fast, saccadic motions with acceptable
accuracy due to their low frame-rate.

Displacement estimation methods achieve higher frame rates but are not
able to reliably estimate large inter-frame motions. The methods usually utilise
gradient-base optimization algorithms minimising a criteria function. The
method of Lucas and Kanade [2,1] minimise color dissimilarity. They assume that
total intensity difference (dissimilarity) is a convex function in some neighbour-
hood. Thus, the motion is estimated by a few iterations of the Newton-Raphson
method, where the difference image is multiplied by the pseudo-inverse of the
image gradient covariance matrix. Black and Jepson [10] robustifies this idea by
tracking in eigen-space. Jepson et al. [11] extend tracking by online adaptation
to non-rigid changes using EM-algorithm.

The method of Lucas and Kanade [2,1] was also extended by Cootes [12] and
applied to tracking by Jurie [13,14] who learn a linear approximation of the rela-
tionship between the local dissimilarity image and displacement. Assuming that
there exists a neighbourhood where displacement can be found directly from
gradients of image intensities, online tracking is performed by multiplying the
difference image by a matrix representing the linear function. This is computa-
tionally efficient because no gradient or pseudo-inversion are required. Recently
this approach [15] has been extended to more general regression functions, where
displacements are estimated by RVM. Such methods can learn a larger range of
pose changes but tracking is more complex resulting in a lower frame-rate. Since
we believe that the computational cost grows faster than the region of conver-
gence, the main attention is focused on Jurie’s [13] linear predictor. Although,
all proposed methods are simply extendible to an arbitrary motion predictor.

The computation cost of tracking is a trade-off between the time required
for displacement estimation and the distance moved between successive frames.
Therefore, we propose a tracking method which explicitly models the trade-
off between tracker complexity and frame-rate. Given the expected maximum
velocity of the object we learn the optimal support of linear predictors for frame-
rate tracking.

It is desirable to have efficient tracking and motion estimation to limit the
object movement between successive estimates. In this paper, we extend the
computationally efficient tracking using linear models of motion proposed by
Jurie et al. [13], whose linear predictors use a support around pixels with high
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gradient values. Instead, our approach learns the support suitable for estimation
of the linear motion model. Given a circular region around a reference point we
learn the k best pixels to estimate the linear motion from synthesized training
images with known motion giving the optimal linear predictor support. Selection
of predictors, suitable for the global object motion is performed online. This
approach tracks a view-specific set of reference points using the optimal supports
for efficient tracking with a known relationship between maximum object-camera
velocity, motion estimation accuracy and computation time.

The rest of the paper is organised as follows. Section 2 introduces learning
of linear predictors templates and reference points set, respectively. Section 3
describes tracking and the optimal size of the template neighbourhood. Following
Section 4 shows the experiments and the last Section 5 summarises the results
and conclusions.

2 Motion Estimation

In this section we introduce a method for learning a linear predictor as well as
a subset of a given size from a circular region around the reference point, which
minimise a training error. This subset is called a linear predictor support and
the size is called complexity of linear predictor.

The input to our system is a single image of the object to be tracked. This
image is used to synthesise a set of training images under the motion model to be
tracked. In this work we assume planar object surfaces giving a homography for
object motion estimation. The local linear approximation of the motion model
for each image neighbourhood allows more general non-planar surfaces and per-
spective projection. Combining particular motion of regions into a global motion
estimate imposes constraints on the object surface shape and motion model. Sec-
tion 2.1 presents the learning of object specific linear predictors for local motion
estimation. Section 2.2 describes predictor complexity estimation optimal with
respect to the maximum object velocity.

Region

Reference point

Object

Linear predictor support

Fig. 1. Terminology: Reference point and a circular region around it. The linear pre-
dictor support is a learned set of pixels from the region.
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2.1 Learning of Linear Predictors

In this section we present a method for learning a reference point specific linear
predictor of a given complexity for estimation of the local motion. The set of
pixels sampled in the predicted region is optimised to give the best k pixel pre-
dictor support for estimating the object motion using a linear approximation 1.
Optimisation is performed with respect to a set of synthesised training examples
(i.e. perturbations) of the predicted region under known motion. The resulting
subset gives efficient motion computation.

We are looking for a linear mapping H : Rk → R2, from which we can esti-
mate the displacement t (2-vector) from the difference d (k-vector) between the
template and observation on the support,

t = Hd. (1)

The (2 × k matrix) matrix H is estimated by the least squares method. A set
of training examples are generated from a single input image by perturbing the
observed object surface with random affine deformation. The range of possible
affine deformations considered is given by the expected maximum relative veloc-
ity between the camera and object together with the camera frame-rate. Given
m training examples, represented by 2×mmatrix T and k×m matrix D such that
columns are the corresponding pairs of displacements and intensity differences,
the least-squares solution is:

H = TD+ = TD(DD)−1 (2)

The supporting set need not include all the pixels from a predicted region. For
example in uniform image areas pixels will add no additional information to the
transformation estimation whereas pixels representing distinct features (edges,
corners, texture) will be important for localisation. We therefore want to select
the subset of k pixels for a predicted region which provides the best local estimate
of the motion according to the linear model defined in equation (1). The quality
of a given subset of the pixels can be measured by the residual error of the
transform estimated on the training data:

e = ‖HD− T‖F (3)

For k pixels from the radius s we have
(
πs2

k

)
possible subsets of pixels. Explicit

evaluation of the training error for all possible subsets is prohibitively expensive,
we therefore subset is selected by randomised sampling.

The above analysis considers a single linear function H approximating the
relationship between the observed image difference and object motion for a pre-
dicted region. This allows motion estimation upto a known residual error. For a
given region of radius R the linear model gives an approximation error r << R

1 Estimation of the optimal k with respect to the object maximum velocity is described
in Section 2.2.
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such that 95% of the estimated motions are within r of the known true value.
Typically in this work R ≈ 20− 30 pixels and the resulting r ≈ 2 − 5 pixels for
a planar homography. Given a set of local motion estimates for different regions
a robust estimate of the global object motion is obtained using RANSAC to
eliminate the remaining 5% of outliers Section 3.

To increase the range across which we can reliably estimate the object motion
we can approximate the non-linear relationship between image displacement
and motion by a piece-wise linear approximation of increasing accuracy. For a
given region we learn a series of linear functions H0, . . . , Hq giving successive 95%
approximation errors r0, . . . , rq where r0 > r1 > . . . > rq. This increases the
maximum object velocity without a significant increase in computational cost.

2.2 Learning of Predictor Complexity

In this section we analyse the complexity of motion predictor in order to max-
imize framerate. To achieve real-time tracking, we generally want to utilise the
observations at each frame to obtain a new estimate of the motion. This re-
quires a trade-off between tracking complexity and estimation error due to object
motion. Here we assume a maximum object velocity and optimise the motion
estimation for tracking at frame-rate.

Fig. 2. Distance d(t) from the real position of the object and its minimum

For a single linear predictor the error of displacement estimation decreases
with its complexity (i.e. the number of pixels k selected from the predicted
region). However, as k increases the error converges to a constant value with
decreasing negative gradient. The error will only decrease when new structural
information about the local variation in surface appearance is added. In uniform
regions the variation is due to image noise and will not decrease localisation
error. The computation cost increases linearly with the number of pixels used,
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k. Therefore, we seek to define an optimal trade-off between computation time
and motion estimation error.

Since the time needed for displacement estimation is a linear function of the
number of pixels t = ak, the displacement error e(t) is also a decreasing function
of time. During the displacement estimation, the object moves away from the
observation. The distance d(t) from the real position of the object in the worst
case is

dmax(t) = e(t) + vmaxt, (4)

where vmax is the maximum velocity of the object in pixels. Figure 2 shows the
characteristic of the maximum distance and the motion estimation error e(t)
with increasing number of pixels k or time.

Assuming ė(t) = de(t)
dt is a monotonically decreasing function, equation (4)

has a unique solution given by:

t∗ = arg min
t

(d(t)) = ė−1(−vmax) (5)

The complexity of the tracker which minimises motion estimation error for real-
time tracing is k∗ = t∗

a . The worst expected accuracy error is e(t∗) + vmaxt
∗.

Similarly, given the required accuracy, the maximum speed of the object could
be estimated.

3 Tracking

Motion estimation for each individual prediction support requires a single ma-
trix multiplication using equation (1). The cost of this operation is proportional
to the number k of pixels in the regions. Matrix H is estimated offline in a pre-
processing stage using synthesised training examples. Iterative refinement of the
linear approximation using a hierarchy of q linear approximations H0, ..., Hq re-
quires O(pkq) operations, where p is the number of regions and k is the predictor
complexity.

Global motion estimation for a set of p regions is estimated using RANSAC
to provide robustness to errors in local motion estimates and partial occlusion.
In this work we assume planar object surfaces giving image motion defined by
a homography with eight degrees-of-freedom. Once the motion of each region
is estimated, we use 4-point RANSAC to filter out outliers and compute the
correct motion of the object. Note, that this homography is applied to both the
reference point positions and the supporting sets.

3.1 Active Region Set

Robust motion estimation in the presence of occlusion requires regions to be
distributed across the object surface. It is not possible to find the set of re-
gions suitable for object tracking independently on the object position, because
if the object gets closer to the camera some regions can disappear and the global
motion estimation can easily become ill-conditioned. In this section we present
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an online method which automatically selects a subset of p regions, called ac-
tive region set, from all visible regions which provide the most accurate motion
estimate and is sufficiently robust.

To optimise the distribution of regions across the surface, we define a coverage
measure of the region reference points set X ,

c(X) =
∑
x∈X

d(x, X \ x), (6)

where distance between point x and set X is defined as the distance from the
closest element of the set

d(x, X) = min
y∈X

‖x− y‖. (7)

Ideally for optimal robustness to occlusion the coverage measure would be
maximised. In practice, individual regions have an associated localisation error
which must be taken into account. The quality q(x) of individual regions is
measured by their mean error e(x) on the training data.

q(x) = max
y∈X

(
e(y)
)
− e(x). (8)

To find a suitable subset X of regions from all visible regions X we seek to
optimise the weighted combination of the coverage and quality:

f(X) = w
c(X)
c(X)

+ (1 − w)
q(X)
q(X)

, (9)

where w ∈ [0; 1] is the coverage weight. Given the maximum number of regions p
we search for the optimal set of regions using the greedy search strategy presented
in Algorithm 1.

Figure 3 shows example results obtained for w = 0, 0.5, and1. In the case of
w = 0 the p regions with the minimum error are selected resulting in clustering of
regions in one part of the image. Conversely,w = 1 results in regions spread across
the object with some having a relatively high motion estimation error. Interme-
diate values of w result in a compromise between region distribution and quality.

1. Let X be the set of possible regions and X = ∅ a subset of selected
regions.

2. Select x∗ ∈ X holds x∗ = argmaxx∈X\X f(x ∪X)
3. X = x∗ ∪X and X = X \ x∗

4. if |X | = p end, else goto 2

Algorithm 1. Active region set estimation

4 Experiments

The proposed method was tested on several different sequences of planar objects.
We demonstrate robustness to large scaling and strong occlusions as well as
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Fig. 3. Object coverage by regions for w = 0, 0.5, 1. Blue circles correspond to the all
possible regions, red crosses to the selected regions. Size of crosses corresponds to the
training error.

saccadic motions (e.g. like shaking), where object motion is faster than 30 pixels
per frame. Section 4.1 investigates region suitability and influence of the coverage
weight. We show that even the regions which are strong features, in the sense of Shi
and Kanade [3] definition, may not be suitable for tracking. Section 4.2 summaries
advantages and drawbacks of methods for linear predictor support estimation and
Section 4.3 shows real experiments and discuss very low time complexity.

4.1 Active Region Set Estimation

In this experiment, we show influence of coverage weight on active region set and
discuss region suitability for tracking. Different region sets selected for different
weights are shown at Figure 3. The set of all possible regions is depicted by blue
circles. Active region set of the most suitable 17 regions is labeled by red crosses,
where size of the cross corresponds to the training error of the particular region.
The weight defines the compromise between coverage and quality of the regions.
The higher is the weight, the more uniform is the object coverage.

Fig. 4. Comparison of different methods for linear predictor support estimation



Learning Efficient Linear Predictors for Motion Estimation 453

In the last case (w = 1), we can see that the teeth provide very high tracking
error, although they are one of the strongest features due to the high values of
gradient in their neighbourhood. The repetitive structure of teeth causes that
different displacements correspond to the almost same observations. If the range
of displacement had been smaller than teeth period, the training error would
have been probably significantly smaller. In this sense, region quality is depends
on the expected object velocity (or machine performance).

4.2 Comparison of Different Methods for Linear Predictor Support
Estimation

In this experiment we compare several different methods for linear predictor
support selection. The experiment was conducted on approximately 100 regions.

Fig. 5. Different sequences: Blue points represent support set, green circles highlight
inliers, red arrows outline particular motion
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From each region of 30-pixel radius a subset of 63 pixels was selected supporting
by different methods.

Figure 4 compares average errors of tracking on artificial testing examples for
different ranges of displacements of the following methods:

– Equally distributed pixels over the region - the support consists of pixels
lying on a regular grid.

– Equally distributed with gradient based selection - pixels are divided into
the grid-bins. The pixels with the highest gradient from each bin forms the
support.

– Normal re-projection - First the least square solution is found for the whole
n-pixel region. Each row of the obtained matrix H corresponds to the normal
vector of n-dimensional hyper-plane. Particular components provide an in-
formation about pixel significance. The pixels corresponding to the highest
components are utilised.

– Randomised sampling - Random subsets are repetitively selected from the
region. Those which provide the lowest training error are utilised..

Since the global minimum seems for practical region sizes unreachble, it is
necessary to use a heuristic method. Randomized sampling seems as the best
choice, because even as few as 20 iterations provide very good results. The more
iterations is performed, the closer to the global minimum we can get. In the other
hand, randomised sampling requires as many estimation of least square problem

Fig. 6. 3D tracking: Robustness to motion blur achieved by learning
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as iterations. If someone looks for a fast heuristic (e.g. for online learning) then
normal re-projection method is a natural compromise.

4.3 Tracking

Figure 5 shows tracking of different planar objects including views from the acute
angles, partial occlusion, shaking and large range of scales 2. Figure 6 shows 3D
tracking and robustness to the motion blur due to assured in learning stage.

Our slightly optimized matlab implementation runs at 30−140 frames/second.
The frame-rate is mainly dependent on the number of tracked regions and the
sizes of their complexity. Time required for the particular motion estimation,
pose estimation and the active region set selection is approximately the same.

5 Conclusions

We proposed a very efficient tracking method based on linear predictors of dis-
placement. The predictors, learned from a randomly perturbed sample image,
predict displacement of reference points from image intensities. The set of pre-
dictors changes during the tracking depending on the object pose. The dynamic
selection makes the procedure robust against occlusions. The achieved frame
rate depends on the object complexity, and it is generally higher than 30 frames
per second despite the Matlab implementation.

Perhaps surprisingly, the reference points of the predictors do not often corre-
spond to classical feature points which are mostly anchored at points with high
gradient. The strength of method lies in the learning stage. The predictors are
learned from the expected maximum velocity. The predictors are linear but strong
enough to cover wide range of motions. The linearity allows for efficient learning.
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Abstract. This paper presents a probabilistic approach for object localization
which combines subspace clustering with the selection of discriminative clus-
ters. Clustering is often a key step in object recognition and is penalized by the
high dimensionality of the descriptors. Indeed, local descriptors, such as SIFT,
which have shown excellent results in recognition, are high-dimensional and live
in different low-dimensional subspaces. We therefore use a subspace clustering
method called High-Dimensional Data Clustering (HDDC) which overcomes the
curse of dimensionality. Furthermore, in many cases only a few of the clusters are
useful to discriminate the object. We, thus, evaluate the discriminative capacity
of clusters and use it to compute the probability that a local descriptor belongs to
the object. Experimental results demonstrate the effectiveness of our probabilis-
tic approach for object localization and show that subspace clustering gives better
results compared to standard clustering methods. Furthermore, our approach out-
performs existing results for the Pascal 2005 dataset.

1 Introduction

Object localization is one of the most challenging problems in computer vision. Ear-
lier approaches characterize the objects by their global appearance and are not robust
to occlusion, clutter and geometric transformations. To avoid these problems, recent
methods use local image descriptors. Many of these approaches form clusters of local
descriptors as an initial step; in most cases clustering is achieved with k-means or EM-
based clustering methods. Agarwal and Roth [1] determine the spatial relations between
clusters and use a Sparse Network of Windows classifier. Dorko and Schmid [2] select
discriminant clusters based on the likelihood ratio and use the most discriminative ones
for recognition. Leibe and Schiele [3] learn the spatial distribution of the clusters and
use voting for recognition. Bag-of-keypoint methods [4,5] represent an image by a his-
togram of cluster labels and learn a Support Vector Machine classifier. Sivic et al. [6]
combine a bag-of-keypoint representation with probabilistic latent semantic analysis to
discover topics in an unlabeled dataset. Opelt et al. [7] use AdaBoost to select the most
discriminant features.

However, visual descriptors used in object recognition are often high-dimensional
and this penalizes classification methods and consequently recognition. Indeed, cluster-
ing methods based on the Gaussian Mixture Model (GMM) [8] show a disappointing
behavior when the size of the training dataset is too small compared to the number
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of parameters to estimate. To avoid overfitting, it is therefore necessary to find a bal-
ance between the number of parameters to estimate and the generality of the model.
Many methods use global dimensionality reduction and then apply a standard clus-
tering method. Dimension reduction techniques are either based on feature extraction
or feature selection. Feature extraction builds new variables which carry a large part
of the global information. The most popular method is Principal Component Analysis
(PCA) [9], a linear technique. Recently, many non-linear methods have been proposed,
such as Kernel PCA [10]. Feature selection, on the other hand, finds an appropriate
subset of the original variables to represent the data [11]. Global dimension reduction
is often advantageous in terms of performance, but loses information which could be
discriminant, i.e., clusters often lie in different subspaces of the original feature space
and a global approach cannot capture this. It is also possible to use a parsimonious
model [12] which reduces the number of parameters to estimate by fixing some param-
eters to be common within or between classes. These methods do not solve the problem
of high dimensionality because clusters usually lie in different subspaces and many di-
mensions are irrelevant. Recent methods determine the subspaces for each cluster. Many
subspace clustering methods use heuristic search techniques to find the subspaces. They
are usually based on grid search methods and find dense clusterable subspaces [13]. The
approach “mixture of Probabilistic Principal Component Analyzers” [14] proposes a la-
tent variable model and derives an EM based method to cluster high-dimensional data.
A similar model is used in [15] in the supervised framework. The model of these meth-
ods can be viewed as a mixture of constrained Gaussian densities with class-specific
subspaces. An unified approach for subspace clustering in the Gaussian mixture model
framework was proposed in [16]. This method, called High Dimensional Data Cluster-
ing (HDDC), includes the previous approaches and involves additional regularizations
as in parsimonious models.

In this paper, we propose a probabilistic framework for object localization combining
subspace clustering with the selection of the discriminative clusters. The first step of our
approach is to cluster the local descriptors using HDDC [16] which is not penalized by
the high-dimensionality of the descriptors. Since only a few of the learned clusters are
useful to discriminate the object, we then determine the discriminative score of each
cluster with positive and negative examples of the category. This score is based on a
maximum likelihood formulation. By combining this information with the posterior
probabilities of the clusters, we finally compute the object probability for each visual
descriptor. These probabilities are then used for object localization, i.e., localization
assumes that points with higher probabilities are more likely to belong to the object.
We evaluate our approach on two recently proposed object datasets [7,17]. We first
compare HDDC to standard clustering methods within our probabilistic recognition
framework. Experiments show that results with HDDC are consistently better than with
other clustering methods. We then compare our probabilistic approach to the state of
the art results and show that it outperforms existing results for object localization.

This paper is organized as follows. Section 2 presents the EM-based clustering
method HDDC, i.e., the estimation of the parameters and of the intrinsic dimensions of
the subspaces. In Section 3, we describe the probabilistic object localization framework.
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Experimental results for our approach are presented in Section 4. We conclude the paper
in Section 5.

2 High-Dimensional Data Clustering

This section presents the clustering method HDDC [16]. Clustering divides a given
dataset {x1, ..., xn} of n data points into k homogeneous groups. Popular clustering
techniques use Gaussian Mixture Models (GMM). The data {x1, ..., xn} ∈ R

p are then
modeled with the density f(x, θ) =

∑k
i=1 πiφ(x, θi), where φ is a multi-variate nor-

mal density with parameter θi = {μi, Σi} and πi are mixing proportions. This model
estimates the full covariance matrices and therefore the number of parameters is very
large in high dimensions. However, due to the empty space phenomenon we can assume
that high-dimensional data live in subspaces with a dimensionality lower than the di-
mensionality of the original space. We therefore propose to work in low-dimensional
class-specific subspaces in order to adapt classification to high-dimensional data and to
limit the number of parameters to estimate. Here, we will present the parameterization
of GMM designed for high-dimensional data and then detail the EM-based technique
HDDC.

2.1 Gaussian Mixture Models for High-Dimensional Data

We assume that class conditional densities are Gaussian N (μi, Σi) with means μi and
covariance matrices Σi, i = 1, ..., k. Let Qi be the orthogonal matrix of eigenvectors
of Σi, then Δi = Qt

i Σi Qi is a diagonal matrix containing the eigenvalues of Σi. We
further assume that Δi is divided into two blocks:

Δi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ai1 0
. . .

0 aidi

0

0

bi 0
. . .

0 bi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
di

(p − di)

where aij > bi, ∀j = 1, ..., di. The class specific subspace Ei is generated by the di first
eigenvectors corresponding to the eigenvalues aij with μi ∈ Ei. Outside this subspace,

the variance is modeled by a single parameter bi. Finally, let Pi(x) = Q̃iQ̃i
t
(x −

μi) + μi be the projection of x on Ei, where Q̃i is made of the di first columns of Qi

supplemented by zeros. Figure 1 summarizes these notations.
The mixture model presented above will be in the following referred to by [aijbi

Qidi]. By fixing some parameters to be common within or between classes, we obtain
particular models which correspond to different regularizations. For example, if we fix
the first di eigenvalues to be common within each class, we obtain the more restricted
model [aibiQidi]. This model is in many cases more robust, i.e., the assumption that
the matrix Δi contains only two eigenvalues ai and bi seems to be an efficient way
to regularize the estimation of Δi. In this paper, we focus on the models [aijbiQidi],
[aijbQidi], [aibiQidi], [aibQidi] and [abQidi].
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Fig. 1. The specific subspace Ei of the ith mixture component

2.2 EM Estimation of the Model Parameters

The parameters of a GMM are usually estimated by the EM algorithm which repeats
iteratively expectation (E) and maximization (M) steps. In this section, we present the
EM estimation of the parameters for the subspace GMM.

The E-step computes, at iteration q, for each component i = 1, ..., k and for each
data point j = 1, ..., n, the conditional probability t(q)ij = P (xj ∈ C

(q−1)
i |xj). Us-

ing the Bayes formula and the parameterization of the model [aijbiQidi], the proba-

bility t
(q)
ij can be expressed as follows (the proof of the following result is available

in [16]):

t
(q)
ij =

π
(q−1)
i φ(xj , θ

(q−1)
i )∑k

�=1 π
(q−1)
� φ(xj , θ

(q−1)
� )

= 1/
k∑

�=1

exp
(

1
2
(Ki(xj)−K�(xj))

)
,

where Ki(x) = −2 log(πiφ(x, θi)) is called the cost function and is defined by:

Ki(x) = ‖μi−Pi(x)‖2
Ai

+
1
bi
‖x−Pi(x)‖2+

di∑
j=1

log(aij)+(p−di) log(bi)−2 log(πi),

where ‖.‖Ai is a norm on Ei such that ‖x‖2
Ai

= xtAix with Ai = Q̃iΔ
−1
i Q̃i

t
. We

can observe that Ki(x) is mainly based on two distances: the distance between the pro-
jection of x on Ei and the mean of the class and the distance between the observation
and the subspace Ei. This cost function favours the assignment of a new observation to
the class for which it is close to the subspace and for which its projection on the class
subspace is close to the mean of the class. The variance terms aij and bi balance the
importance of both distances. For example, if the data are very noisy, i.e., bi is large, it
is natural to weight the distance ‖x− Pi(x)‖2 by 1/bi in order to take into account the
large variance in E

⊥
i .
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The M-step maximizes at iteration q the conditional likelihood and uses the follow-
ing update formulas. The proportions, the means and the covariance matrices of the
mixture are classically estimated by:

π̂
(q)
i =

n
(q)
i

n
, μ̂

(q)
i =

∑n
j=1 t

(q)
ij xj

n
(q)
i

, Σ̂
(q)
i =

1

n
(q)
i

n∑
j=1

t
(q)
ij (xj − μ̂

(q)
i )(xj − μ̂

(q)
i )t.

where n(q)
i =

∑n
j=1 t

(q)
ij . The ML estimators of model parameters are in closed form

for the models considered in this paper. Proofs of the following results are given in [16].

– Subspace Ei: the di first columns of Qi are estimated by the eigenvectors associated
with the di largest eigenvalues λij of Σ̂i.
– Model [aijbiQidi]: the estimator of aij is âij = λij and the estimator of bi is:

b̂i =
1

(p− di)

⎛⎝Tr(Σ̂i)−
di∑

j=1

λij

⎞⎠ . (1)

– Model [aijbQidi]: the estimator of aij is âij = λij and the estimator of b is:

b̂ =
1

(p− ξ)

⎛⎝Tr(Ŵ )−
k∑

i=1

π̂i

di∑
j=1

λij

⎞⎠ , (2)

where ξ =
∑k

i=1 π̂idi and Ŵ =
∑k

i=1 π̂iΣ̂i is the estimated within-covariance matrix.
– Model [aibiQidi]: the estimator of bi is given by (1) and the estimator of ai is:

âi =
1
di

di∑
j=1

λij . (3)

– Model [aibQidi]: the estimators of ai and b are respectively given by (3) and (2).
– Model [abQidi]: the estimator of b is given by (2) and the estimator of a is:

â =
1
ξ

k∑
i=1

π̂i

di∑
j=1

λij . (4)

2.3 Intrinsic Dimension Estimation

Within the M step, we also have to estimate the intrinsic dimension of each class-
specific subspace. This is a difficult problem with no exact solution. Our approach is
based on the eigenvalues of the class conditional covariance matrix Σi of the class Ci.
The jth eigenvalue of Σi corresponds to the fraction of the full variance carried by the
jth eigenvector of Σi. We estimate the class specific dimension di, i = 1, ..., k, with
the empirical method scree-test of Cattell [18] which analyzes the differences between
successive eigenvalues in order to find a break in the scree. The selected dimension
is the one for which the subsequent differences are smaller than a threshold. In our
experiments the value used for this threshold was 0.2 times the maximum difference.
The resulting average value for dimensions di was approximately 10 in the experiments
presented in Section 4.
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3 A Probabilistic Framework for Object Localization

In this section, we present a probabilistic framework for object localization which com-
putes for each local descriptor xj of an image the probability P (xj ∈ O|xj) that xj

belongs to a given object O. It is then easy to precisely locate the object by considering
only the local descriptors with high probabilities P (xj ∈ O|xj). We first extract a set
of local invariant descriptors using the Harris-Laplace detector [19] and the SIFT de-
scriptor [20]. The dimension of the obtained SIFT features is 128. An interest point and
its corresponding descriptor are in the following referred to by xj .

3.1 Training

During training we determine the discriminative clusters of local descriptors. We first
cluster local features and then identify discriminative clusters. Training can be either
supervised or weakly supervised. In the weakly supervised scenario the positive de-
scriptors include descriptors from the background, as only the image is labeled as
positive.

Clustering. Descriptors of the training images are organized in k groups using the
clustering method HDDC. From a theoretical point of view, the descriptors xj of an
image are realizations of a random variableX ∈ R

p with the following density f(x) =∑k
i=1 πiφ(x, θi) = τfO(x) + (1 − τ)fB(x), where fO and fB are respectively the

densities of descriptors of the object and of the background and τ denotes the prior
probability P (O). The parameter τ is equal to

∑k
i=1Riπi, where Ri = P (Ci ∈ O).

The density f can thus be rewritten as follows:

f(x) =
k∑

i=1

Riπiφ(x, θi)︸ ︷︷ ︸
Object

+
k∑

i=1

(1−Ri)πiφ(x, θi)︸ ︷︷ ︸
Background

.

The clustering method HDDC provides the estimators of parameters πi and θi, ∀i =
1, ..., k and it thus remains to estimate parameters Ri, ∀i = 1, ..., k.

Identification of discriminative clusters. This step aims to identify discriminative
clusters by computing estimators of parameters Ri. Positive descriptors are denoted
by P and negative ones by N . The conditional ML estimate of R = {R1, ..., Rk}
satisfies:

R̂ = argmax
R

⎧⎨⎩ ∏
xj∈P

P (xj ∈ O|xj)
∏

xj∈N

P (xj ∈ B|xj)

⎫⎬⎭ .

The expression of the gradient is:

∇R =
∑

xj∈P

Ψj

< R,Ψj >
−
∑

xj∈N

Ψj

1− < R,Ψj >
,
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where Ψj = {Ψji}i=1,...,k and Ψji = P (xj ∈ Ci|xj) which are provided by HDDC.
The ML estimate of R does not have an explicit formulation and it requires an iterative
optimization method to find R̂. We observed that the classical gradient method con-
verges towards a solution very close to the least square estimator R̂LS = (Ψ tΨ)−1

Ψ tΦ,
where Φj = P (xj ∈ O|xj). In our experiments, we use this least square estimator of
R in order to reduce computation time. We assume for this estimation that ∀xj ∈ P ,
P (xj ∈ O|xj) = 1 and ∀xj ∈ N , P (xj ∈ O|xj) = 0. Thus, Ri is a measure for the
discriminative capacity of the class Ci for the object O.

3.2 Object Localization

During recognition we compute the probability for each local descriptor of a test image
to belong to the object. Using these probabilities, it is then possible to locate the object
in a test image, i.e., the descriptors of an image with a high probability to belong to the
object give a strong indication for the presence of an object. Using the Bayes formula
we obtain the posterior probability of an descriptor xj to belongs to the object O:

P (xj ∈ O|xj) =
k∑

i=1

RiP (xj ∈ Ci|xj), (5)

where the posterior probability P (xj ∈ Ci|xj) is given by HDDC. The object can then
be located in a test image by using the points with the highest probabilities P (xj ∈
O|xj). For comparison with existing methods we determine the bounding box with a
very simple technique. We compute the mean and variance of the point coordinates
weighted by their posterior probabilities given by (5). The mean is then the center of
the box and a default bounding box is scaled by the variance.

4 Experiments and Comparisons

In this section, we first compare HDDC to standard clustering techniques within our
probabilistic localization framework on the Graz dataset [7]. We then compare our ap-
proach to the results on the Pascal 2005 dataset [17].

4.1 Evaluation of the Clustering Approach

In the following, we compare HDDC to the several standard clustering methods within
our probabilistic localization framework: diagonal Gaussian mixture model (Diagonal
GMM), spherical Gaussian mixture model (Spherical GMM), and data reduction with
PCA combined with a diagonal Gaussian mixture model (PCA + diag. GMM). The
diagonal GMM has a covariance matrix defined by Σi = diag(σi1, ..., σip) and the
spherical GMM is characterized by Σi = σiId. In all cases, the parameters are esti-
mated with the EM algorithm. The initialization of the EM estimation was obtained
using k-means and was exactly the same for both HDDC and the standard methods. For
this evaluation, we use the bicycle category of the Graz dataset which is consists of 200
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Table 1. Object localization on Graz: comparison between HDDC and other methods. Precision
is computed on segmented images with on average 10 detections per image (i.e., detections such
that P (xj ∈ O|xj) > 0.9).

Clustering HDDC [∗ ∗ Qidi] Classical GMM Result
method [aijbi] [aijb] [aibi] [aib] [ab] PCA+diag Diag. Sphe. of [2]

Precision 0.85 0.83 0.92 0.89 0.88 0.63 0.70 0.76 0.62

All detections HDDC PCA+diag. GMM Diag. GMM

Fig. 2. Object localization on Graz: localization results displayed on groundtruth segmentations.
We display the points with highest probabilities P (xj ∈ O|xj). The same number of points is
displayed for all models (5% of all detections which is equal to 12 detections per image).

training images and 100 test images. We determined 40 clusters with each clustering
method in a weakly supervised setting.

The localization performance was evaluated using segmented images [7]. Table 1
summarizes localization performance of the compared methods as well as results pre-
sented in [2]. Precision is the number of points within the object region with respect to
the total number of selected points. We can observe that the HDDC models give better
localization results than the other methods. In particular, the model [aibiQidi] obtains
best results, i.e., a precision of 92% when considering points with P (xj ∈ O|xj) > 0.9.
We also observe that a global dimension reduction with PCA does not improve the re-
sults compared to diagonal GMM. This confirms our initial assumption that data of dif-
ferent clusters live in different low-dimensional subspaces and that a global dimension
reduction technique is not able to take this into account. Figure 2 shows localization
results on segmented test images with the different methods. The left image shows all
interest points detected on the test images. The bounding boxes are computed with the
displayed points, i.e., the points with the highest probabilities in the case of the three
right most images. It appears that our localization method identifies precisely the points
belonging to the object and consequently is able to locate small objects in different
positions, poses and scales whereas other methods do not give an efficient localization.

Table 2. Average precision (AP) for supervised and weakly-supervised localization on Pascal
test2. The result in italic is the average result of the best method of the Pascal challenge [17].

Clustering Supervised Weakly-supervised
method Moto Bike People Car Aver. Moto Bike People Car Aver.
HDDC 0.315 0.172 0.091 0.155 0.183 0.311 0.161 0.046 0.049 0.142
Best of [17] 0.341 0.113 0.021 0.304 0.112 / / / / /
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(a) motorbike (b) car (c) two cars

Fig. 3. Supervised localization on Pascal test2: predicted bounding boxes are in magenta and true
boxes in yellow

4.2 Comparison to the State of the Art

For this second experiment, we compare our approach to the results on the Pascal visual
object class 2005 dataset [17]. It contains four categories: motorbikes, bicycles, people
and cars. It is made of 684 training images and two test sets: test1 and test2. We chose
to evaluate our method on the set test2, which is the more difficult one and contains
956 images. Since the bounding boxes of the objects are available for all categories we
evaluate our method with supervised as well as a weakly supervised training data. In
the supervised case only the descriptors located inside the bounding boxes are labeled
as positive during training. Here we use 50 clusters for each of the four categories. We
use the model [aibiQidi] for HDDC, since the previous experiment has shown that it
is the most efficient model. To compare with the results of Pascal Challenge [17], we
use the localization measure “average precision” (AP) which is the arithmetic mean of
11 values on the precision-recall curves computed with ground-truth bounding boxes
(see [17] for more details).

The localization results on Pascal test2 are presented in Table 2 for supervised and
weakly supervised training data. In the supervised case, Table 2 shows that our proba-
bilistic recognition approach performs well compared to the results in the Pascal com-
petition. In particular, our approach wins two “competitions” (bicycle and people) and
is on average more efficient than the methods of the Pascal challenge. This is despite the
fact that our approach detects only one bounding box per image for each category and
this reduces the performance when multiple objects are present, as shown in the right
part of Figure 3. Notice that our approach has the best overall performance although we
do not have any model for the spatial relationships of the local features.

We can also observe that our weakly-supervised localization results are only slightly
lower than the ones in the supervised case and on average better than the Pascal re-
sults in the supervised case. This means that our approach efficiently identifies
discriminative clusters of each object category and this even in the case of weak super-
vision. There are no corresponding results for the Pascal Challenge, since all competing
methods used supervised data. It is promising that the weakly supervised approach ob-
tains good localization results because the manual annotation of training images is time
consuming.
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5 Conclusion

The main contribution of this paper is the introduction of a probabilistic approach
for object localization which combines subspace clustering with the selection of dis-
criminative clusters. This approach has the advantage of using posterior probabilities
to weight interest points. We proposed to use the subspace clustering method called
HDDC designed for high-dimensional data. Experimental results show that HDDC per-
forms better than other Gaussian models for locating objects in natural images. This
is due to the fact that HDDC correctly models the groups in their subspaces and thus
forms more homogeneous groups. In addition, our method performs well also in the
weakly-supervised framework which is promising. Finally, our approach provides bet-
ter results than the state of the art methods and that using only one type of detector and
descriptor (Harris-Laplace+Sift). We believe that the results could be further improved
using a combination of descriptors as in [2,5]. Also, the localization results presented
here are based on a very simple spatial model which can be easily improved to further
increase the performance of our approach.
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Abstract. Activity recognition consists of two fundamental tasks:
tracking the features/objects of interest, and recognizing the activities.
In this paper, we show that these two tasks can be integrated within the
framework of a dynamical feedback system. In our proposed method,
the recognized activity is continuously adapted based on the output of
the tracking algorithm, which in turn is driven by the identity of the
recognized activity. A non-linear, non-stationary stochastic dynamical
model on the “shape” of the objects participating in the activities is
used to represent their motion, and forms the basis of the tracking al-
gorithm. The tracked observations are used to recognize the activities
by comparing against a prior database. Measures designed to evaluate
the performance of the tracking algorithm serve as a feedback signal.
The method is able to automatically detect changes and switch between
activities happening one after another, which is akin to segmenting a
long sequence into homogeneous parts. The entire process of tracking,
recognition, change detection and model switching happens recursively
as new video frames become available. We demonstrate the effectiveness
of the method on real-life video and analyze its performance based on
such metrics as detection delay and false alarm.

1 Introduction

The problem of event analysis from video consists of the related issues of recog-
nizing different activities and keeping track of the objects participating in the
activities. In many practical applications, all we have is a video sequence con-
sisting of a number of activities, and we have to track, as well as recognize, the
various events taking place in the video. Often we have time critical applications
where the option of first completing the tracking and then recognizing is not
available. Thus it is important to design methods that can simultaneously track
and recognize a sequence of human activities from a video sequence.

In this paper, we present a novel framework for integrated tracking and recog-
nition of human activities consisting of the following steps which take place in
a loop: (i) modeling the appearance and motion of single activity sequences and
tracking them, (ii) detecting a change from one sequence to the next, and (iii)
classifying which is the next activity to change to and start tracking it. This
is achieved in a recursive manner as new video frames become available. Hu-
man activities are represented by non-linear, non-stationary dynamical models,

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 468–479, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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learned from training data. These models represent the change in the shape of
the human body in the course of the activity. Given a video sequence, the model
parameters are used for recognition, with the recognized parameters then driv-
ing the tracking algorithm. The method is able to automatically detect changes
from one activity to another and switch accordingly. Switching between models
occurs when the tracking error [1], which serves as a feedback signal, exceeds
a certain threshold. Thus our proposed system is able to persistently track and
recognize a sequence of multiple activities. A diagrammatic representation of this
framework is shown in Fig. 1. We present experimental results on real life video
of different activities and analyze the issues of recognition delay and tracking
accuracy.

Learned
Models

+
Edge
Image

Activity Model

Tracking
Error

Tracking
Result

Recognization
Module

Video
Frame

Tracking
Error

Computation

Particle Filter
based

Tracking Module

Edge
Image

Edge
Detector

Camera

Tracking
Error

Is
e>threshold

?

Compare
With

Learned
Models

Activity
Model

Edge
Image

YesNo

Learned
Models

(e)

Recognition Module

(a) (b)

Fig. 1. (a): Framework of dynamical feedback system for simultaneous tracking
and recognition. (b): Recognition module incorporating change detection and model
switching.

1.1 Relation to Previous Work

A review of recent work is given in [7]. Based on the conclusions of [7], we
find that most existing methods handle events of short duration with moderate
changes in illumination, scene clutter and occlusion. In most video surveillance
methods, the tracks are obtained first followed by recognition [10,5,18]. Inte-
grated tracking and recognition is very promising becasue of its ability to track
and recognize activities in a long video seuqnece, where switching between dif-
ferent activities will usually occur.

A few techniques have studied the problem of simultaneous tracking and recog-
nition, though not always in the context of activity recognition. In [20,21], the
authors presented methods whereby the identity of a person, based on face recog-
nition, is obtained after tracking the face over the whole sequence. However,
the identity of a face in a video sequence is a static parameter which can be
estimated by integrating over the entire sequence, whereas activities are inher-
ently dynamic and hence the recognition needs to evolve in time. In [15,13], the
idea of integrated tracking and recognition of activities was proposed. However,
their method requires a-priori knowledge of the transition probability matrix
for switching between different activity models. While this is feasible in some
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applications, designing such a transition matrix for uncontrolled environments
like video surveillance may be difficult (since the class of possible activities is
large and can change arbitrarily from one to another) and the process has to
repeat for each application scenario. In contrast to this open-loop approach, we
propose to use change detection measures to detect slow or sudden transitions
between activities, and use these as a feedback signal in a closed-loop system.

Simultaneous tracking and recognition was also the theme in [6], but here the
authors used color and depth information to create a “plan-view” map based on
which tracking is done, and activity recognition was carried out using pose esti-
mates; they did not consider the dynamics inherent in any activity. Simultaneous
tracking of moving people and recognition of their activities has been performed
in many applications using a Dynamic Bayesian Network (DBN) model tracked
by a Rao-Blackwellized particle filter [11,3,2]. In [2], the authors perform figure
tracking by defining a DBN to switch between various linear dynamical systems
(also called Switched Linear Dynamical System (SLDS)). However, these meth-
ods also require knowledge of a state transition pdf for a seqeuence of changes,
which implies learning what sequences are likely to occur. Key-frame segmenta-
tion methods [19] can achieve some of the goals of this research (i.e., find the
switching instances), but they usually require the entire video to be available
a-priori rather than simultaneously tracking, recognizing and detecting changes.

We use a discrete shape representation of the human body which is different
from level set representations of shapes such as those described in [14,9,12]. The
level set approach is theoretically infinite (and in practice large time varying
finite) dimensional, and hence defining dynamics on and sampling from such a
large dimensional space is computationally expensive. This is overcome through
the use of various approximate tracking solutions. Level sets, however, have the
advantage that they can adjust to large changes in the shape and topology,
which is usually problematic for discrete representations. For large changes in
shape, we show that it is possible to overcome this problem for many activity
recognition applications by using a piecewise stationary dynamical model. We
do not encounter topology changes in our application. Moreover, a discrete rep-
resentation allows adoption of the overall framework to different descriptions of
human body structure, like stick figures, cylindrical models, etc.

2 State Space Model for Shape Dynamics

We model the motion/deformation of a deforming shape as scaled Euclidean
motion of a “mean shape” (i.e., translation, rotation, isotropic scaling) plus its
non-rigid deformation. The term “shape activity” is used to denote a particular
stochastic model for shape deformation. We define a “stationary shape activity”
(SSA) as one for which the mean shape remains constant with time and the
deformation model is stationary. We define a piecewise stationary shape activity
(PSSA) model [17] as one that models a shape activity with slowly varying
“mean shape” (approximated as piecewise constant). The SSA model is accurate
for activities where the shape of the body does not change significantly in the
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course of the activity. The PSSA model deals with the case where the shape
changes appreciably in the course of the activity. This allows us to handle large
shape deformation using a discrete shape descriptor.

2.1 Shape Representation

We briefly review Kendall’s statistical shape theory, details of which can be found
in [4]. We use a discrete representation of shape for a group of k landmarks.
The configuration is the set of landmarks: in the 2D case it is the x and
y coordinates of the landmarks which can be represented as a k dimensional
complex vector, Yraw. This raw configuration can be normalized for translation
and then for scale to yield the pre-shape, denoted by w. A configuration of
k points after translation normalization, denoted by Y , lies in Ck−1 (a (k-1)-
dimensional complex space), while the pre-shape, w, lies on a hyper-sphere in
Ck−1. A pre-shape w1 can be aligned with another pre-shape w0 by finding the
rotation angle for the best fit (minimum mean square error fit) and this gives the
Procrustes fit of w1 onto w0. This is the shape of w1 with respect to w0. The
Procrustes distance between preshapes w1 and w0 is the Euclidean distance
between the Procrustes fit of w1 onto w0. The Procrustes mean of a set of
preshapes {wi} is the minimizer of the sum of squares of Procrustes distances
from each wi to an unknown unit size mean configuration μ. Any pre-shape of
the set can then be aligned with respect to this Procrustes mean to return the
shape (denoted by z) with respect to the mean shape, μ.

The shape space, M, is a manifold in Ck−1 and hence its actual dimension is
Ck−2. Thus the tangent plane at any point of the shape space is a Ck−2 dimen-
sional hyperplane in Ck. The tangent coordinate (denoted by v) with respect to
μ, of a configuration, Yraw, is evaluated as follows:

Y = CYraw, where C
�
= Ik − 1k1T

k /k

s
�
= s(Y ) = ||Y ||, w = Y/s,

θ
�
= θ(Y, μ) = − arg(wTμ), z(Y, μ) = wejθ , (1)

v
�
= v(Y, μ) = [Ik − μμT ]z = [Ik − μμT ]

Y ejθ

s
. (2)

s is the scale of the centered configuration and θ is the rotation of the scaled
configuration with respect to the mean shape.

The inverse mapping of (2) (tangent space to centered configuration space)
is:

z(v, μ) = (1 − v∗v)1/2μ+ v, (3)
Y (v, θ, s, μ) = zse−jθ = [(1 − v∗v)1/2μ+ v]se−jθ .

2.2 System Model

The observed configuration of landmarks, in a single frame at time t, after trans-
lation normalization, is defined by Yt, and forms the observation vector. Let μt
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(a) Stationary Shape Sequence (SSS) (b) Piecewise Stationary Shape Sequence (PSSS)

Fig. 2. Stationary and ”Piecewise-Stationary” Shape Sequences on the shape manifold
which is depicted using a circle (M), instead of a complex Ck−1 sphere. In (a), we show
a stationary sequence of shapes; at all times the shapes are close to the mean shape and
hence the dynamics can be approximated in Tμ (tangent space at μ). In (b), we show
a piecewise-stationary sequence of shapes; the shapes move on the shape manifold.

denote mean shape associated with this frame. Denote the tangent space at μt

by Tμt . Since the tangent plane is a (k − 2)-dim hyperplane in Ck, a tangent
vector has only (k− 2) independent (complex) coefficients. We perform an SVD
(Singular Value Decomposition) of the tangent projection matrix, [Ik − μtμ

T
t ]C

(from (1), to obtain a (k − 2)-dim orthogonal basis for Tμt . The basis vectors
of the SVD, {ut,i}k−2

i=1 , are arranged as column vectors of a matrix, Ut(μt), i.e.,
Ut

k×(k−2) = [ut,1, ut,2...ut,k−2]. The vector of coefficients ((k − 2)-dim) along
these basis directions, ct(zt, μt), is thus a canonical representation of the tan-
gent coordinate of zt in Tμt . The tangent coordinate is given by vt(zt, μt) = Utct.
The coefficients vector of the tangent coordinate of shape with respect to the
current mean shape, ct, and the motion parameters (scale st, rotation θt) form
the state vector, i.e., Xt = [ct, st, θt].

For a stationary shape activity, the “mean shape” is constant with time, i.e.,
μt = μ0, and the shape sequence is clustered around the “mean shape” (see
figure 2(a)). Hence the shape deformation dynamics can be defined in a single
tangent space at the mean (which can be learnt as the Procrustes mean of
the training data). The dynamics on ct is defined by the autoregression model,
ct = Acct−1 + nt.

PSSA Model for Shape Deformation. When the shape is not stationary
but is slowly varying, one could model the “mean shape” as being piecewise
constant [17]. Thus unlike SSA, the dynamics can be described in a single tan-
gent space. Let the “mean shape” change times be tμ1 , tμ2 , tμ3 , ... and the corre-
sponding means be μ1, μ2, μ3, .... Then we have the following dynamics: between
tμj−1 ≤ t < tμj , μt = μj−1 and so ct−1(zt−1, μt) = ct−1(zt−1, μj−1). Hence in
this interval, the dynamics is similar to that for an SSA, i.e.,

ct(zt, μj−1) = Ac,j−1ct−1(zt−1, μj−1) + nt, nt ∼ N (0, Σc,t)
vt = U(μj−1)ct,

zt = (1− v∗t vt)1/2μj−1 + vt. (from (3)) (4)
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At the change time instant, t = tμj , μt = μj and so the tangent coefficient ct−1

needs to be recalculated in the new tangent space with respect to μt = μj . This
is achieved as follows[17]:

ct−1(zt−1, μj−1) = U(μt)∗zt−1e
jθ(zt−1,μj−1)

ct(zt, μj−1) = Ac,jct−1(zt−1, μj−1) + nt,

vt = U(μj−1)ct,

zt = (1 − v∗t vt)1/2μj−1 + vt. (5)

Global Motion Dynamics. We use the same global motion model as in [18]
to represent the Euclidean motion of the mean shape. We use a Gauss-Markov
model for log-scale, log st, and a Markov uniform model for θt, i.e.,

log st = αs log st−1 + (1− αs)μs + ns,t

log s0 ∼ N (μs, σ
2
s), ns,t ∼ N (0, σ2

r)
θt = αθθt−1 + nθ,t, nθ,t ∼ Unif(−a, a) (6)

Training. Given a training sequence of centered (translation normalized) con-
figurations, {Yt}T

t=1, for a particular activity, we first evaluate {ct, vt, st, θt}T
t=1

for each stationary sub-model (i.e., tμj−1 ≤ t < tμj ) as follows 1 :

μj−1 = Procrustes mean of Yt, tμj−1 ≤ t < tμj

st = ||Yt||, wt = Yt/st,

θt(Yt, μj−1) = −angle(wT
t μj−1), zt(Yt, μj−1) = wte

jθt ,

vt(Yt, μj−1) = [Ik − zt−1z
T
t−1]zt,

ct(Yt, μj−1) = Ut(zt−1)
T
zt. (7)

If we assume a time invariant Markov model on ct, we can use {ct}T
t=1 to learn

its parameters [18].

2.3 Observation Model

In practice, the landmarks are not easy to extract directly from a given image,
while an edge image is convenient to obtain by edge detection algorithms (e.g.
Canny detector). Our observation is the edge image, Gt = Υ (It), (where Υ de-
notes the edge extraction operator) and It is the image at t. The observation like-
lihood describes the probability of a set of landmark points, Γt, on the edge image
with Γt ⊂ Gt, given the predicted state vector, Xt. Let Ŷt = h(Xt) = stzte

−jθt

be the predicted configuration of landmarks. It is assumed that a mapping, f , is
known that associates each predicted landmark of Ŷt with a point on the edges.

1 Note, the last equation, ct = Ut
T zt, holds because ct = Ut

T vt = Ut
T [I −

μj−1μ
T
j−1]zt = Ut

T [I − μj−1μ
T
j−1]Czt = Ut

T UtUt
T zt = Ut

T zt.
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In practice this mapping is set up by searching for the closest edge along the nor-
mal of the predicted configuration (as in [8]) and this is treated as the observed
landmark, Γt. Thus the observation likelihood is

p(Γt|Xt) ∝ exp{−
K∑

k=1

1
2rkK

||qk − f(qk, Gt)||2}, (8)

where K is the shape vector dimension, rk is the variance of the kth component,
qk is the kth predicted landmark, i.e., qk = Ŷt,k and f(qk, Gt) = Γt is the nearest
edge point of qk along its norm direction.

3 Tracking, Change Point Detection and Recognition

3.1 Tracking Using Particle Filters

In this paper, we use a particle filter for “tracking”, i.e., for obtaining observa-
tions on the fly by tracing along the normals of the predicted configuration, Ŷt,
to search for the closest edge (as described in Section 2.3). The particle filter
is a sequential Monte Carlo method (sequential importance sampling plus re-
sampling) which provides at each t, an N sample Monte Carlo approximation
to the prediction distribution, πt|t−1(dx) = Pr(Xt ∈ dx|Y1:t−1), which is used
to search for new observed landmarks. These are then used to update πt|t−1 to
get the filtering (posterior) distribution, πt|t(dx) = Pr(Xt ∈ dx|Y1:t). We use a
particle filter because the observation model is nonlinear and the posterior can
temporarily become multi-model when there are false edges due to background
clutter.

3.2 Change Point Detection

Activities will change in the course of a long video sequence. The activity changes
will cause the PF, with a large enough number of particles, and tuned to the
dynamical model of a particular activity, to lose track when the activity changes.
This is because under the existing activity model with which the particle filter
operates, the new observations would appear to have very large observation
noise. Thus the tracking error will increase when the activity changes and this
can be used to detect the change times. The tracking error or prediction error
is the distance between the current observation and its prediction based on past
observations. When observation is an edge image, TE is calculated by

TE =
K∑

k=1

||qk − f(qk, Gt)||2.

For the case when the switch from one activity to another is a slow one, the
PF dose not lose track very quickly (the tracking error increases slowly). The
tracking error will take long to detect the change, and then we use the Ex-
pected (negative) Log Likelihood (ELL), i.e., ELL = E[− log p(vt)] [16]. ELL is
approximated by
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ELLN =
1
N

N∑
i=1

v
(i)T

t Σ−1
v v

(i)
t +K,

where K
�
= − log

√
(2π)2k−4|Σv|,

and N is the number of particles, Σv is the covariance matrix of v.

3.3 Model Switching to a New Activity

Once the change time detection has happened successfully, the next problem is
to determine the correct activity from the class of previously learned activity
models. This is known as the problem of model switching. This is done by pro-
jecting the observed shape in a frame onto the mean shape for each of the learned
activities and choosing the one with the largest projection. In practice, this is
done for a few frames before a final decision is made, since individual frames
of different activities may be similar. In order to initialize the shape after a
model-switch, we use motion segmentation to isolate the person and re-estimate
the scale and translation parameters (note that background information is not
required). The autoregression matrix, Ac, is extremely sensitive to the training
data, and is not used in the recognition experiments.

3.4 Simultaneous Tracking, Change Detection and Recognition
(Simul-TraCR) Algorithm

We now outline the main steps of the simultaneous tracking and recognition
algorithm, incorporating change detection and model switching. For simplicity,
let us assume that there are two activities in the sequence, A1 and A2. For
the first frame in A1, the region of interest (a person or a group of people) is
detected based on the application requirements (not part of this paper) and the
corresponding model for the activity is determined as in Section 3.3. After this
initialization, the algorithm now proceeds as follows.

Track. Based on the detected region and the chosen dynamical model, the
particle filter is used to track the activity. Measures for determining the accuracy
of the tracking algorithm (TE and ELL) are computed for each frame.

Change Detection. When the fidelity measures exceed a certain threshold
(details in Section 4.1) for a few consecutive frames, a change is detected.

Model Switching. Once the change is detected, the new shape vector is
obtained from the edge map of image frame and a search is initiated for the
correct activity model. Given an observed image It, we label this frame as the
activity that minimizes ||Γt − sejθμm + (a+ jb)||2,m = 1, ...,M , where s, θ and
a+ jb are the scale, rotation and translation parameters respectively, M is the
number of all candidate activities, and Γt is obtained from It as explained in
Section 2.3. If the distance is above a certain threshold for all m, we decide that
the activity is not within the learned database and this is also indicated. Once
the correct activity model is identified, we use this and go back to Track.
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Note that change detection and switching may be between different portions
of the same activity, specifically, for those activities in which a non-stationary
dynamical model is needed.

4 Experimental Results

4.1 Indoor Activity Sequence

We now show examples of our Simul-TraCR algorithm on 10 different activities
captured in video. The training and testing sequences were captured separately
on different days. The binarized silhouette denoting the contour of the person
in every frame of the training sequence is obtained using background subtrac-
tion. We extracted the shape from this binary image by uniformly sampling on
the edge of the silhouette. Once the landmarks are obtained, the shape is ex-
tracted using the procedure described in Section 2.1. Using the training data,
the parameters of the dynamical models for each activity were learnt using these
shape sequences and as explained in Section 2.2. In the testing sequence, the
silhouette is pre-computed only in the first frame if the background information
is available; otherwise we use motion segmentation over a few initial frames to
obtain the siluhouette. Thereafter it is obtained as the output of the tracking
algorithm, as explained above. The database we collected consists of 10 ac-
tivities (whose composition make up a number of normal everyday activities),
bending across, walking towards camera and bending down, leaning forward and
backward, leaning sideward, looking around, turning head, turning upper body,
squatting, bending with hands outstretched, and walking. We will refer to the
nth activity as Actn.

Figure 3 shows the tracking results of several activities, along with the edge
image observations for each of them. Activiies 1 and 2 are tracked with PSSA
model composed of three and two “stationary” sub-models respectively. Activi-
ties 3-10 are tracked with the “stationary shape activity” model.

Figure 4 shows a plot of the tracking error of a multi-activity sequence which
includes one slow change and some sudden changes. The order of activities
is Act3, Act4, Act8, Act9 and Act7. From Act3 to Act4 the change happens
slowly, other changes happen suddenly. There is a delay involved in detecting
this change, which should not be confused with the one mentioned above for
switching to the correct model. The total delay is the sum of the delays due to
change detection and model switching. There is a long delay in the case of slowly
changing activities, because the tracking error increases slowly, while for other
changes, the delays for change detection are very short.

4.2 Experiments with Outdoor Data

The sequence on which we show our results consists of activities of two people:
Person 1 walking with a package in hand and doing this multiple times, and
Person 2 first walking towards the camera, and then walking parallel to the
camera. There are three activities in this case: walking towards camera, walking
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(a) Act1

(b) Act2

(c) Act3

(e) Act8

Fig. 3. Tracking results on video data. On the right is the edge image which is used as
the observation.
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Fig. 4. Tracking error of multi-activity sequence which includes slow and sudden
change. The order of activities is Act3, Act4, Act8, Act9 and Act7. From Act3 to
Act4, the change happens slowly, other changes happen suddenly. The tracking error
increases when an activity transition happens. Once the model switch occurs and the
new model is able to track properly, the tracking error goes down.

parallel to camera, walking with small package in hand. The tracking results,
along with the recognized activity, is shown in Figure 5. The recognition results
for each frame for the two different people are shown in Fig. 6.
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Fig. 5. Tracking and recognition results on an outdoor sequence
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Fig. 6. Similarity Matrices, shown for the activities of of Person 1 in Figure 5(a), and
Person 2 in Figure 5(b)-(c), respectively. The thick yellow line represents recognized
activity for each frame.

5 Conclusion and Future Work

In this paper, we proposed a novel dynamical feedback system for simultaneous
and persistent tracking, recognition and segmentation of human activities from
video sequences. We use a non-linear, non-stationary model defined on the shape
of human body contour to represent activities. The activities are recognized by
comparing the tracked observations against a prior database. At the same time,
the performance of our tracking algorithm is analyzed using feedback signals
and this helps in segmenting the shots of different activities. We demonstrate
the effectiveness of our system by showing experimental results on real life video
of different activities. As a part of future work, we will address the problems of
recognizing complex multi-person activities in networks of video cameras.
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Abstract. Existing multi-kernel tracking methods are based on a for-
wards additive motion model formulation. However this approach suffers
from the need to estimate an update matrix for each iteration. This pa-
per presents a general framework that extends the existing approach and
that allows to introduce a new inverse compositional formulation which
shifts the computation of the update matrix to a one time initialisation
step. The proposed approach thus reduces the computational complex-
ity of each iteration, compared to the existing forwards approach. The
approaches are compared both in terms of algorithmic complexity and
quality of the estimation.

1 Introduction

Tracking based on color distributions [1,2,3,4] has drawn increasing interest re-
cently, as it offers a flexible and generic framework for object tracking in videos. It
is especially useful for non rigid objects, for which the integration of the informa-
tion over spatially extended regions offers more allowance to slight misalignment
compared to pixel based template matching [5].

The basic kernel tracking method associates a single color distribution to an
object, and maximises the color similarity with a reference model using Mean-
Shift [1]. Alternative approaches such as particle filters may be involved in order
to take into account tracking ambiguities [6].

The parameter estimation of higher order motion models such as affine or ho-
mographic motion involves the use of an extended representation, which incorpo-
rates more information than just color. This was experimented with spatial-color
distribution [7] [8] as well as with multi-kernel color distributions, where each
spatial kernel is associated to a distinct color model [3,4]. An intermediate ap-
proach was recently proposed in [9] where a “texture of blobs” is used that is
constituted of many overlapping kernels covering the surface of the object to
track.

One of the difficulty with such multi-kernel tracking is the increased complex-
ity introduced by the additional parameters to estimate. Previous works adopted
an iterative optimisation framework based on Gauss-Newton optimisation [3,4],
on quasi-Newton optimisation [9], or on the trust-region approach [10]. These
methods are all based on an additive approach, where the motion parameters
are incrementally refined by adding a correcting parameter until convergence.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 480–491, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The goal of this paper is to propose a new framework for multi-kernel tracking,
similar to the approach Baker and Matthews [11] introduced in image template
based tracking. It covers the existing multi-kernel tracking approach, while al-
lowing to derive a new efficient technique : the inverse compositional approach
allows to use a fixed Jacobian for gradient based optimisation, which shifts a
computationally costly part of the algorithm to the initialisation step and de-
creases the complexity of online computations.

The rest of the paper is organised as follows. In section 2, multi-kernel color
distribution tracking will be exposed and the compositional framework
introduced. This will serve as a global framework to present, in section 3, the
classical forwards additive approach and, in section 4, the proposed inverse com-
positional approach. Finally, the techniques will be experimented and compared
in section 5.

2 Tracking Using Color Distributions

This section presents the compositional framework for multi-kernel color distri-
bution tracking. After formalising the notion of a multi-kernel color distribution,
the framework will be exposed, and be shown to cover both the existing forwards
additive approach, and a new inverse compositional approach.

2.1 Motion Model

The tracking occurs between two images Iref and I related by an unknown 2D
transformation f of parameter θ∗,

∀x ∈ D Iref(x) = I(f−1(x,θ∗)) (1)

where D represents a region of interest in image Iref .
In the sequel, the motion model is assumed to exhibit a group property. This

is the case for most models of interest, and in particular non degenerate homo-
graphies or affine motion [11]. The latter will be exploited in this paper. For the
sake of notational convenience, the group property is extended to the parameters
using the following notations:

f( · ,θ−1) = f−1( · ,θ) (2)
f( · ,Δθ ◦ θ) = f( · ,Δθ) ◦ f( · ,θ) = f(f( · ,θ),Δθ) (3)

and θ = 0 represents the parameters of the identity transformation.

2.2 Multi-Kernel Color Distribution

Color distribution tracking is based on the computation of the color distribution
of an image region. In the sequel, this region is defined using real valued kernels,
that associate a weight to each pixel. In order to estimate non-translational
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movements, a general multi-kernel approach is used, that is now presented. The
reader interested in a discussion on the choice of the kernels is refered to [3].

Given
– a set of κ spatial kernels (K1, . . .Kκ) defined as piecewise differentiable

weighting functions Kk(x) expressed in the reference coordinates x,
– a parametric motion model f( · ,θ) with parameter vector θ, which trans-

forms each point m in the current image coordinates into a point x = f(m,θ)
in the reference coordinates, and its inverse transformation m = f−1(x,θ),

– a quantification indicative function δu( · ) whose value is 1 for colors belong-
ing to color bin u and null otherwise,

the multi-kernel color distribution of image I with parameters θ is defined as a
vector q(I,θ) = (qk,u(I,θ))k,u, where

qk,u(I,θ) = Ck

∫∫
x∈R2

Kk(x) δu(I(f−1(x,θ)))dx (4)

The normalisation constant Ck is chosen such that
∑

u qk,u(I,θ) = 1 for all k.
The subvector (qu,k(I,θ))u represents the local color distribution, over the

spatial kernel Kk, of image I after it has been aligned onto the reference co-
ordinates according to parameters θ. The relationship of (4) with expressions
used in previous works [3,4,9] will be discussed in section 4.2. The choice of this
expression is motivated by its invariance with respect to any 2D motion model
group, even non-affine ones. Indeed

q(I,θ) = q(I(f(·,θ−1)), 0) (5)

or more generally
q(I,Δθ ◦ θ) = q(I(f(·,θ−1)),Δθ) (6)

2.3 Compositional Framework for Multi-Kernel Tracking

Let us now consider two images related by equation (1). In the following, p will
be used for the reference image Iref and q for the current image I

p(θ) = q(Iref ,θ) and q(θ) = q(I,θ) (7)

Because of (6) the following holds for any θp:

p
(
θp

)
= q
(
θp ◦ θ∗) (8)

Multi-kernel image alignment can be formalised as finding θp and θq that min-
imise the dissimilarity between p(θp) and q(θq).

The actual matching relies on the minimisation of an error measure E(θq,θp).
Several error functions can be used, such as the Bhattacharyya distance or the
Kullback-Leibler divergence. Following [4] and [3], the Matusita’s metric will be
used in this work:

E(θq,θp) =
∑
k,u

ek,u(θq,θp)2 (9)

with a bin specific error vector ek,u(θq,θp)



Inverse Composition for Multi-kernel Tracking 483

ek,u(θq,θp) =
√
qk,u(θq)−

√
pk,u(θp) (10)

By equating θq and θp ◦ θ∗ in equation 8, the estimated alignment parameter is
then

θ∗ = θ−1
p ◦ θq (11)

This formalisation shows the central role that composition plays for the image
alignment problem using multi-kernel distributions. We call it the compositional
framework, as the effective parameter estimation θ∗ is obtained by composing
the estimates θq and θp.

This framework covers existing forwards additive multi-kernel tracking meth-
ods [3,4,9], which optimise the error criterion with respect to θq = θ̂ + Δθ. We
propose to optimise with respect to θp = Δθ instead, which leads to inverse
compositional multi-kernel tracking.

The terms forward additive and inverse compositional come from the analogy
with the classification Baker and Matthews [11] proposed in the context of image
template tracking. The framework we introduced formalises the adaptation of
this classification to the context of multi-kernel histogram based representation.
In particular, a more complex error function has to be taken into account, which
is a distance between histograms derived from the images, instead of direct
pixelwise compensated image difference. This will play a role in the gradient
based optimisation.

The forwards additive approach will be briefly presented in section 3, in order
to compare its structure to the proposed inverse compositional approach, which
will be presented in section 4.

3 Forwards Additive Optimisation

The forwards additive approach used in [3] relies on the Gauss-Newton optimi-
sation of the error E(θ̂ + Δθ, 0) with respect to Δθ, where a single iteration is
estimated using

Δθ = A(θ̂) e(θ̂, 0) (12)

where A(θ̂) is an update matrix

A(θ̂) = −
(
Je|θ̂

tJe|θ̂
)−1

Je|θ̂
t (13)

and Je|θ̂ represents the Jacobian of the error vector e(θ, 0) with respect to θ,

computed at θ = θ̂. It can be expressed by using the gradient of eu,k with respect
to θ, as well as the partial derivative of e according to each coefficient θm of θ

Je|θ̂ =

⎡⎢⎢⎣
...

∇eu,k(θ)|θ̂
...

⎤⎥⎥⎦ =
[
· · · ∂e(θ)

∂θm

∣∣∣∣
θ̂

· · ·
]

(14)
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A robust estimator version of this approach is used in [4]. In [9], a quasi-Newton
optimisation was used instead, based on JE|θ̂ which also depends on θ̂.

The parameter update follows the forwards additive scheme of (15), and the
whole process is repeated until convergence

θ̂ ← θ̂ + Δθ (15)

The expression of Je|θ̂ depends on the error metric used. In particular, when
using the Matusita’s objective function of equation (10),

Je|θ̂ =
1
2
diag(q(θ̂))−1/2Jq|θ̂ (16)

where Jq|θ, the Jacobian of q(θ), will be studied in more details in section 4.2.

4 Inverse Compositional Optimisation

In the previous approach, the computation of equations (12) and (13) is the bot-
tleneck of the algorithm. Indeed, the update matrix A(θ̂) needs to be computed
for each new iteration, which involves in particular the computation of Je|θ

tJe|θ .
An alternative approach is now proposed, that takes advantage of the general

framework introduced in section 2.3 and allows to use a constant update matrix
A, which can be pre-computed once during the model initialisation.

4.1 Principle

In a similar way as the forwards approach, a Gauss-Newton iteration is com-
puted, but the parameter correction now applies to the kernel position in the
reference image. The Gauss-Newton parameter update of E(θ̂,Δθ) with respect
to Δθ satisfies:

Δθ = A e(θ̂, 0) (17)

The update matrix A is now a constant matrix

A = −
(
Jê|0

tJê|0
)−1

Jê|0
t (18)

where Jê|0 represents the Jacobian of e(θ̂,Δθ) with respect to Δθ computed at
Δθ = 0. When using the Matusita metric, Jê|0 does not depend on θ̂.

Jê|0 = − 1
2
diag(p(0))−1/2Jp|0 (19)

The estimation rule (17) can be compared to the analogous rule (12) in the
forwards approach, as it has the same structure. The main difference is that in
the inverse approach, the A matrix does not depend on θ̂ anymore, which allows
to pre-compute it offline, thus removing most of the online complexity.
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In this approach, the correction parameter Δθ represents an update on the
kernel locations in the reference image. In order to convert it into an updated
parameter vector for the motion between the two images, the compositional
framework is invoked through equation (11), which corresponds to the update
rule:

θ̂ ← Δθ−1 ◦ θ̂ (20)

The estimate θ̂ is iteratively updated while it corresponds to a decrease of the
error E(θ̂, 0) and until convergence.

4.2 Jacobian Computation

The computation of the Jacobian Jp,0 or its more general form Jq,θ is not direct
from equation (4), as δu is not easily differentiable. This part is detailed in the
current section through the computation of the gradient of qk,u.

An equivalent formulation of qk,u is used in [9], which is based on the coordi-
nates m in the current image :

qk,u(I,θ) = Ck

∫∫
m

Kk(f(m,θ)) δu(I(m)) j(m,θ) dm (21)

where j(m,θ) =
∣∣Jf(m,θ)|m

∣∣ is the absolute value of the determinant of the
Jacobian of f with respect to m.

For affine transformations, j(m,θ) is constant with respect to m, which leads
to a simplified expression

qk,u(I,θ) = Ck,θ

∫∫
m

Kk(f(m,θ)) δu(I(m)) dm (22)

with Ck,θ = Ckj(m,θ) corresponding to the kernel normalisation parameter
that now depends on θ. This equation is very similar to the definitions of qk,u

used in [4,3]. Note that for non-affine motion this equivalence does not hold, so
that the computation of the Jacobian for more complex models should instead
use the full expression (21).

By differentiating (22) and after taking into account the kernel normalisation∑
u qk,u = 1, the gradient can be simplified as (23).

∇qu,k |θ̂ = Ck,θ̂

∫∫
m

∇Kk(x)|f(m,θ̂) Jf(m,θ)|θ̂
(
δu(I(m)) − qk,u(θ̂)

)
dm (23)

In the simpler case of inverse composition, the Jacobian is

∇pu,k|0 = Ck

∫∫
x

∇Kk(x)|x Jf(x,Δθ)|0
(
δu(Iref(x)) − pk,u(0)

)
dx (24)

The −qk,u(θ̂) term in the previous equations is related to the gradient of the
normalisation constant Ck,θ with respect to θ. Its influence is null for translation
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and rotation components, but should be taken into account when considering
scale. Neglecting this term, as was done in [4], results in a biased estimation of
the Jacobian. This is illustrated for the scale estimation in figure 3(d), where it
leads to the under-estimation of the motion parameters.

From a practical point of view, the integrals must be replaced by discrete
sums, on either the integer pixels {mi} of the current image for (23) and (24),
or on a regular grid {xj} in the reference coordinates for (23). In order to improve
the running time, this sampling was done on x, which allows to pre-compute the
kernel values and gradients at the sampling points.

A large choice of kernel functions can be used in this framework in the same
way as with the forwards approach [3]. In this paper, Epanechnikov kernels are
used. The kernel Kk, with centre xk and covariance matrix Bk is defined by

Kk(x) = max(0, 1− (x− xk)t
Bk

−1(x− xk)) (25)
∇Kk(x)|x = −2(x− xk)t

Bk
−1 where Kk(x) > 0 (26)

5 Experiments and Discussion

The properties of the forwards additive multi-kernel tracking approach have been
experimentally studied and compared to the image template based approach in
[4]. It was shown that the kernel approach allows for a larger region of con-
vergence, thanks to the integration of the kernels. This comes at the cost of
a slightly less precise alignment, which was resolved by combining the two ap-
proaches. As the inverse compositional approach proposed in this paper uses the
same multi-kernel representation as the forwards approach, these experiments
will not be duplicated here. The proposed method is expected to be faster to
compute than the forwards method because of its algorithmic structure, while
bearing similar tracking performances. This section will therefore be devoted to
checking this hypothesis.

5.1 Computational Performance

The algorithmic structures of both the forwards additive and the inverse com-
positional are summed up and compared in figure 1.

For the complexity analysis, the following notations will be used : κ is the
number of kernels, P the mean number of pixels for which a kernel is non null,
U the number of color bins in each color histogram and T the number of degrees
of freedom in θ. The cost of each step is of the order of O(κP ) for {1} and {3},
O(κU) for {4}, O(κPT ) for {5}, O(κUT 2) for the computation of Je|θ̂

tJe|θ̂ and
O(T 3) for its inversion in {6}, and O(κUT ) for {7}.

Given that U and P are large compared to the other parameters (of the
order of 100 to 1000), steps {5} and {6} are the two most costly steps in the
algorithm. Therefore, moving them to a pre-computation phase decreases the
overall complexity of each iteration significantly.

In particular, with our current Matlab implementation, one iteration for κ = 9
kernels each covering P = 150 pixels and with the color quantised into U = 64
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Forwards Additive Inverse Compositional

Pre-computations

{1} Reference distribution p (7)

Pre-computations

{1} Reference distribution p (7)
{5} Jacobian Je|0 (19) (24)
{6} Update matrix A (18)

For each new frame

{2} Initial estimate θ̂

Iterate until convergence:

{3} Current distribution q(θ̂) (7)
{4} Current error e(θ̂, 0) (10)
{5} Jacobian Je|θ̂ (16) (23)

{6} Update matrix A(θ̂) (13)
{7} Step Δθ (12)
{8} New estimate : θ̂ ← θ̂ + Δθ

For each new frame

{2} Initial estimate θ̂

Iterate until convergence:

{3} Current distribution q(θ̂) (7)
{4} Current error e(θ̂, 0) (10)

{7} Step Δθ (17)
{8} New estimate : θ̂ ← Δθ−1 ◦ θ̂

Fig. 1. Algorithm comparison. The pre-computations occur only during the model
initialisation, and is not repeated for a new frame. For each step, the equation that
defines the related computation is shown at the right.

color bins with an affine motion model (T = 6) requires 168 ms with the inverse
compositional approach, instead of 359 ms with the classical forwards additive
approach.

5.2 Convergence Properties

The forwards additive approach is a typical Gauss-Newton optimisation of the
error E(θ̂, 0). The inverse compositional approach adopts an hybrid scheme.
Indeed, the general optimisation criterion is still E(θ̂, 0), but each iteration uses
the E(θ̂,Δθ) criterion. These functions both express the matching error as was
shown in section 2.3. They are not identical when the error is large, which is
why the convergence properties of the two approaches are now compared.

Figure 3(a-d) shows the return map of the two methods (forwards additive
from section 3, inverse compositional from section 4), when perturbated with a
pure translation (b), a pure rotation (c), and a pure scale (d). Nine Epanechnikov
kernels centred on a regular 3× 3 grid were used, as shown1 in (a).

Overall, both approaches yield similar results. Indeed, both the forwards and
the inverse methods approximate well the correction for small perturbations, and
tend to under-estimate the correction for larger perturbations. This observation
reflect the fact that both are based on a linearisation of the error around the
initial parameters, which is valid for small perturbations.

1 Test image courtesy of Krystian Mikolajczyk, http://www.robots.ox.ac.uk/∼vgg.
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Fig. 2. Comparison of the parameter estimation of a single iteration for controled
affine perturbations (see section 5.2). (a) Test image, with the supports of the nine
Epanechnikov kernels overlayed. Return maps (corrected parameters depending on the
perturbated parameters: the closer to the perturbation the better) for (b) an horizontal
shift, (c) a rotation around the centre of the image.

The scale estimation exhibits a systematic under-estimation on this example.
This is observed with other classical kernel configurations, but not when us-
ing a totally unambiguous image made of squares with unique colors. Although
the unbiased approach presented in section 4.2 slightly improves the estimation,
further work is needed to explain this behaviour. The estimations are neverthe-
less in the correct direction even for large perturbations, which make the iter-
ative optimisation eventually converge to the correct parameters even in that
case.

The quality of the parameter estimation is also evaluated in more general
conditions in figure 3(e-f), for one single iteration. The perturbations are a com-
bination of random translations within [−20, 20] pixels, rotations within [−20, 20]
degrees and scale within [1.2−1, 1.2].

The mean spatial error D corresponds to the average of the spatial error of
the kernel centers, evaluated in the reference coordinates. These two measures
allow to evaluate translation, rotation and scale errors in an unified manner.
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Fig. 3. Comparison of the parameter estimation quality of a single iteration for ran-
dom affine perturbations (see section 5.2). Ranked mean spatial error (e) and color
distribution error (f).
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Fig. 4. Tracking example with scale change on CAVIAR video for the inverse compo-
sitional approach (a). Comparison of the computational time (b) and the color distri-
bution error E(θ, 0) after convergence (c) for each frame on the same video, with both
approaches.

Results are sorted by increasing error. These results show that the inverse
approach has a slightly larger color distribution error than the forwards approach
(f), which can be explained by the fact that it does not operate directly on
the optimisation criterion E(θ̂, 0). This difference do not seem to impact the
parameter estimation, though, as the corrected parameter appear to be equally
good from a spatial point of view (e).
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Fig. 5. Tracking example for a video with affine distortions, with the parameter esti-
mation overlayed for the inverse approach (a). Comparison of the computational time
(b). Comparison of the mean spatial error (c); the error for the initialisation at each
frame is plotted to show the amount of correction needed on this sequence.

5.3 Tracking

In this section the computational performance and the quality of estimation are
compared in tracking conditions: a person with scale change2 in figure 4 and an
image part with affine distortions in figure 5. Both trackings use 9 Epanechnikov
kernels centred on a regular 3×3 grid. The parameters obtained with the forwards
and the inverse approach are very similar, which is supported by similar mean
spatial errors D with respect to the ground truth in figure 5-c, and comparable
color distribution errors E in figure 5-c. In the last case, a slightly lower error
is observed for the forwards approach, which was discussed in section 5.2. The
computational time is in both cases significantly reduced by using the inverse
approach instead of the forwards approach.

6 Conclusion

This paper presented the adaptation and the application of inverse composition,
which is already used in image template tracking, to tracking with multi-kernel
color distributions. The multi-kernel tracking paradigm was reformalised in or-
der to cover both the existing forwards additive approach and a new inverse

2 Video produced by the EC Funded CAVIAR project/IST 2001 37540.
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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compositional approach. The quality of the parameter estimation of the new
technique is similar to the multi-kernel forwards additive approach, while shift-
ing the computational burden from each iteration to a one-time initialisation
step.

The structure of the proposed approach relies on an iterative optimisation
with a constant update matrix A, which is estimated by inverting the Jacobian
of the error function. This structure offers the possibility to introduce alternative
forms forA, such as the hyperplane approximation [12], in a multi-kernel context.

Other interesting problems for future research would be to study how illumi-
nation changes, which can be taken into account in the forwards approach [4,9],
could be handled in an inverse compositional approach, and how the choice of
the kernel configuration impacts the performances of the method.
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Tracking Facial Features Using Mixture of Point

Distribution Models

Atul Kanaujia, Yuchi Huang, and Dimitris Metaxas

Department of Computer Science, Rutgers University

Abstract. We present a generic framework to track shapes across large
variations by learning non-linear shape manifold as overlapping, piece-
wise linear subspaces. We use landmark based shape analysis to train a
Gaussian mixture model over the aligned shapes and learn a Point Dis-
tribution Model(PDM) for each of the mixture components. The target
shape is searched by first maximizing the mixture probability density
for the local feature intensity profiles along the normal followed by con-
straining the global shape using the most probable PDM cluster. The fea-
ture shapes are robustly tracked across multiple frames by dynamically
switching between the PDMs. Our contribution is to apply ASM to the
task of tracking shapes involving wide aspect changes and generic move-
ments. This is achieved by incorporating shape priors that are learned
over non-linear shape space and using them to learn the plausible shape
space. We demonstrate the results on tracking facial features and provide
several empirical results to validate our approach. Our framework runs
close to real time at 25 frames per second and can be extended to predict
pose angles using Mixture of Experts.

1 Introduction

Tracking deformable shapes across multiple viewpoints is an active area of re-
search and has many applications in biometrics, facial expressions analysis and
synthesis. Accurate reconstruction and tracking of 3D objects require well de-
fined delineation of the object boundaries across multiple views.

Landmark based deformable models like Active Shape Models(ASM)[1]have
proved effective for object shape interpretation in 2D images and have lead to ad-
vanced tools for statistical shape analysis. ASM detects features in the image by
combining prior shape information with the observed image data. A major lim-
itation of ASM is that it ignores the non-linear geometry of the shape manifold.
Aspect changes of 3D objects causes shapes to vary non-linearly on a hyper-
spherical manifold. During tracking, the shape change is mostly smooth but in
certain cases there may be discontinuities. For example, during a head rotation
to the full profile face, some of the facial features may get occluded causing a
drastic change in the shape. Besides the shape, the correspondences between the
local 2D structures and the 3D object structures changes for the landmark based
deformable models. The local grey level profiles at these landmarks also exhibit
dramatic variations.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 492–503, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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There have been several efforts in the past to represent non-linear shape vari-
ations using kernel PCA and multi-layer perceptron[2,3]. The results from non-
linear approaches largely depend on whether all the shape variations have been
adequately represented in the training data. Discontinuities in the shape space
may cause these models to generate implausible shapes. Kernel methods suffer
from a major drawback to learn pre-image function for mapping shape in the
feature space to the original space.

In this work we present a generic framework to learn non-linear shape space
as overlapping piecewise linear subspaces. Our objective is to accurately track
facial features across large head rotations. We use the Point Distribution Mod-
els(PDM) to represent the facial feature shapes and use ASM to detect them
in the 2D image. The contribution of our work is: (1) Improve the specificity
of ASM to handle large shape variations by learning non-linear shape manifold.
(2)Real time framework to track shapes, and (3) Learning non-linearities for
accurate prediction of 3D pose angles from 2D shapes. Our generic framework
enables large scale automated training of different shapes from multiple view-
points. The model can handle larger amount of variability and can be used to
learn non-linear continuous shape manifold.

Cluster 1 Cluster 2 Cluster 4 Cluster 5

Fig. 1. Shapes from 4 different clusters of the training data set. Cluster 1 contains
primarily frontal poses whereas Cluster 5 contains pose with head rotated to right.

2 Related Work

A large segment of research in the past decade focused on incorporating non-
linear statistical models for learning shape manifold. Murase et. al. [4] showed
that pose from multiple viewpoint when projected onto eigenspaces generates a
2D hypersphere manifold. Gong et. al [5] used non-linear projections onto the
eigenspace to track and estimate pose from multiple viewpoints. Romdhani et
al. [6] proposed an ASM based on Kernel PCA to learn shape variation of face
due to yaw. More recently [7] has proposed a multi-view face alignment algo-
rithm to infer visibilty of feature points across large rotations. The work stresses
more on Bayesian estimation to learn shape parameters without providing in-
sight into the shape space. Moreover their EM algorithm is impractical for real
time shape fitting applications. Several prominent work exist on facial feature
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registration and tracking use appearance based models(AAM)[8,9]. [8] uses mul-
tiple independent 2D AAM models to learn correspondences between features
of different viewpoints. We prefer ASM model over more accurate AAM model
as shape based models can be easily generalized to a specific class of objects
and is more robust to variations occurring due to changes in appearance and
illumination compared to AAM. Most notable work in improving ASM to learn
non-linearities in the training data is by Cootes et. al[3] in which large variation
is shapes is captured by parametric Gaussian mixture density, learned in the
principal subspace. In order to constrain the shape to lie within plausible shape
subspace, the probability density is increased using gradient ascent. Our work
differs from it in 2 aspects. Firstly we learn multivariate gaussian mixture den-
sity on the original shape space and not the parameteric subspace. Consequently
the shape non-linearities are preserved across the clusters. We learn PDM within
each cluster by projecting shapes of the clusters onto independent tangent spaces.
Secondly we explicitly ensure that the learned sub-spaces are overlapping. This
is required for efficient search and tracking of the shapes. In this respect our
work follows from [10,11] although they primarily focus on shape analysis and
surface learning. Unlike [8], our framework does not require explicit modeling
of head pose angles. Although we use multivariate gaussian mixture model to
learn initial clusters of the shape distribution, our subspaces are obtained by
explicitly overlapping the clusters. ASM can be easily generalized to a specific
class of objects and is more robust to variations occurring due to changes in ap-
pearance and illumination compared to Active Appearance Model(AAM). The
faster convergence of ASM gives significant advantage over other shape analysis
methods based on level sets and snakes.

Fig. 2. (Best Viewed in Color)Shape fitting results on multiple Subjects across large
head movement. The model recovers the pose irrespective of the initial cluster.

3 Learning Shape Manifold

Active Shape Model(ASM) is a landmark based model that tries to learn a sta-
tistical distribution over variations in shapes for a given class of objects. Changes
in viewpoint causes the object shapes to lie on a hyper-sphere and cannot be
accurately modeled using linear statistical tools. Face shape variation across mul-
tiple aspects is different across human subjects. A 30o head rotation will produce
more distinctive shape variation for the face with raised features(eyes and nose)
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as compared to face with flat features. Hence learning independent ASM models
and switching the models based on the learned pose, tends to generate abrupt
shape changes and inaccurate fitting. Tracking shapes across multiple aspects
requires modeling and synthesis of paths between the source and target shapes
lying on a non-linear manifold. A complex, non-linear region can be approxi-
mated as a combination of multiple smaller linear subregions. Each subregion
defines a hyper-ellipsoid within which a shape instance is constrained to lie.
The search iteratively modify the shape by searching along the normals of the
landmark points and simultaneously constraining it to lie on the shape mani-
fold. The path between the source shape and the target shape is traversed by
searching across multiple subspaces that constitute the non-linear shape surface.
Tracking of features can be successfully leveraged by taking advantage of the het-
erogeneous nature of shape variations due to pose changes thereby causing these
subregions overlap. The extent of overlap can be improved by having a fixed
minimum mahalanobis radius for each subregion and including points across the
cluster boundaries to learn the principal subspace. As a pre-requisite for shape
analysis, all the 2D planar shapes are aligned to the common co-ordinate system
using Generalized Procrustes Analysis[12]. The aligned shapes obtained from
Procrustes analysis lie on a hyper-sphere. The tangent space approximation Ts

projects the shapes on a hyper-plane normal to the mean vector and passing
through it. Tangent space is a linear approximation of the general shape space
so that the Procrustes distance can be approximated as euclidean distance be-
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Fig. 3. (Best Viewed in Color)(Left)The 9 overlapping subspaces (projected onto 2
Principal components) learned using GMM. The red cluster in the center is for the
frontal pose. The other clusters corresponds to right, left and down movement. Iterative
ASM search in fig.4 is shown as black path.(Right(Line Plot)) Increasing the number
of clusters increases the accuracy of ASM for both the frontal and left head pose images.
This is due to more accurate representation of the non-linear surface by piecewise linear
regions. Increasing the number of gaussian components for the local intensity profile
models(IPM) also improves the accuracy(red plot). (Right(Bar Plot)) The average
ASM iterations(over 4 levels of gaussian pyramid) also improves with more gaussian
components of the local intensity models but shows erratic increase for more than 10
components due to noise.
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tween the planar shapes. The cluster analysis of shape is done in the global
tangent space.

We assume a generative multivariate Gaussian mixture distribution for both
the global shapes and the intensity profile models(IPMs). The conditional density
of the shape Si belonging to an N-class model p(Si|Cluster) =

N∑
j=1

γj(2π)−( N
2 )‖Cj‖−1/2 exp{−1

2
(Si−(μj +Pjbj))T Cj

−1(Si−(μj +Pjbj))} (1)

We assume diagonal covariance matrix Cj. γj are the cluster weights and (μj , Pj ,
bj) are the mean, eigen matrix and eigen coefficients respectively for the prin-
ciple subspace defined for each cluster. The clustering can be achieved by EM
algorithm with variance flooring to ensure sufficient overlapping between the
clusters. For each of the N clusters we learn a locally linear PDM using PCA
and using the eigenvectors to capture significant variance in the cluster(98%).
Unlike the method proposed in [3] where clustering is done in the PCA subspace,
we use clustering in the global tangent space to decide class membership of the
original shapes. Consequently the shape non-linearities are preserved across the
clusters. We learn independent PDM within each cluster. Our algorithm allows
more accurate modeling of the non-linear shape manifold using piecewise linear
hyper-ellipsoid subspaces. The intensity profiles for the landmark points also ex-
hibit large variation when trained over multiple head poses. The change in face
aspects causes the profiles to vary considerably for the feature points that are
occluded. The multivariate Gaussian mixture distribution(1) is learned for the
local intensity profiles model(IPM) in order to capture variations that cannot
be learned using a single PCA model.

Overlapping between Clusters: It is important that the adjacent clusters
overlap sufficiently to ensure switching between subspaces during image search
and tracking. The amount of overlap can be controlled by variance flooring
during EM algorithm for clustering the data set. Setting minimum variance
to a fixed value Vfloor during the Maximization step, enables clusters to have
larger expanse. Eventually the mahalanobis distance is used as a classification
cost. The number of clusters also affect the degree of overlap. We can ensure
subspace overlap by using boundary points between adjacent clusters to learn
the subspace for both the clusters. These points can be obtained as nearest to
the cluster center but not belonging to that cluster.

4 Image Search in the Clustered Shape Space

The search is done over 4 levels of Gaussian image pyramid. Conventional ASM
uses Alternating Optimization(AO) technique to fit the shape by searching for
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Fig. 4. Iterative search across multiple clusters to fit the face.The frames correspond
to iteration 1(Cluster 1), iter. 3(Cluster 5), iter. 17(Cluster 7), iter. 23(Cluster 6) and
final fit at iter. 33(Cluster 6) for level 4 of the Gaussian pyramid. The lower row shows
the shapes of the cluster centers. Cluster 5 and Cluster 7 contain smaller head rotations
while Cluster 6 contains extreme right pose. Fig. 3 shows the corresponding path of
the iterative search.

the best matched profile along the normal followed by constraining the shape to
lie within the learned subspace. The initial average shape is assumed to be in
a region near to the target object. We use robust Viola-Jones face detector to
extract a bounding box around the face and use its dimensions to initialize the
search shape. The face detector has 99% detection rate for faces with off-plane
and in-plane rotation angles ±30o. We assign the nearest Clusteri to the average
shape based on mahalanobis distance between the average shape and the cluster
centers in the global tangent space. The image search is initiated at the top
most level of the pyramid by searching IPM along normals and maximizing the
mixture probability density (1) of the intensity gradient along the profile. The
model update step shifts the shape to the current cluster subspace by truncating
the eigen coefficients to lie within the allowable variance as ±2

√
λi. The shape

is re-assigned the nearest cluster based on the mahalanobis distance and the
shape coeficients are re-computed if the current subspace is different from the
previous.

The truncation function to regularize the shapes usually generates discon-
tinuous shape estimates. Bregler et. al. [11,3] suggests a continuous constrain
function that can be maximized using gradient ascent to ensure that the shape
lies within the subspace of the nearest cluster. A major limitation of their ap-
proach is the use of thresholding to discriminate a valid shape from an invalid
shape. We use the truncation approach, due to its low computational require-
ment and faster convergence. The above steps are performed iteratively and
converges irrespective of the initial cluster of the average shape. We present the
algorithm steps below:
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————————————————————————–
ASM Train in Clustered Shape Space

1. Align all the shapes Yi to the average shape X using procrustes analysis as
Yi,a

2. Project the aligned shapes Yi,a in the common tangent space of X by scal-
ing as Y′

i,a = Yi,a/(Yi,a.X). This ensures that procrustes distance can be
approximated as euclidean distance.

3. Cluster the rescaled shapes Y′
i,a to N Clusters using EM algorithm with

minimum covariance Vfloor to ensure overlapping clusters.
4. Generate the subregions from the original shapes using the cluster member-

ship. Realign the shapes locally and project the shapes to tangent space of
the cluster mean as Yi,a,c

5. Learn locally linear PCA models within each cluster as Yi,a,c = Xc +Pcbc,i

6. Learn Gaussian mixture density for the Intensity Profile Model(IPM) for
each landmark.

ASM Search in Clustered Shape Space

1. Assign initial cluster Clusterinit to the global average shape X based on
Mahalanobis Distance.

2. Search IPM along normal for the intensity profile that maximizes the mixture
density probability (eqn. 1) to get new shape Ys

3. Constrain the shape Ys = Xinit + Pinitbinit,s by truncating binit,s within
the subspace of the current cluster to get new shape Y′

s.
4. Re-assign Clusteri by projecting the new shape Y′

s onto global tangent space
and finding the nearest cluster based on mahalanobis distance.

5. Re-estimate the parameter b′
i,s for the new cluster Clusteri by projecting

the new shape Y′
s onto cluster mean shape tangent space.

6. Iterate until convergence.

————————————————————————–

5 Tracking Framework

Running ASM at every frame is computationally expensive and causes feature
points to jitter strongly. We track the features using Sum of Squared Intensity
Difference(SSID) tracker across consecutive frames[13]. The SSID tracker is a
method for registering two images and computes the displacement of the feature
by minimizing the intensity matching cost, computed over a fixed sized win-
dow around the feature. Over a small inter-frame motion, a linear translation
model can be accurately assumed. For an intensity surface at image location
I(xi,yi, tk), the tracker estimates the displacement vector d = (δxi, δyi) from
new image I(xi + δx,yi + δy, tk+1) by minimizing the residual error over a win-
dow W around (xi,yi) [13]∫

W
[I(xi + δx,yi + δy, tk+1)− g.d− I(xi,yi, tk)] dW (2)
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Fig. 5. (Best Viewed in Color)Tracking the shapes across right head rotation.(Top)
The cluster projections on 2D space using 2 principal modes(for visualization)and the
bounded by hyper-ellipsoid subspace. The right head rotation causes the shape to vary
across the clusters. The red circles corresponds to the frames 1, 49, 68, 76, 114, 262
and 281. The entire tracking path lies within the subspace spanned by the hyper-
ellipsoids.(Bottom) The images of the tracking result for the frames shown as red
markers in the plot.

The inter-frame image warping model assumes that for small displacements of
intensity surface of image window W , the horizontal and vertical displacement
of the surface at a point (xi,yi) is a function of gradient vector g at that point.
During tracking, some features(ASM landmarks) eventually lose track due to
blurring or illumination changes. To avoid this, at every frame we re-initialize
the points which have lost track by searching along the normal and maximiz-
ing the intensity profile mixture density1). At every frame we ensure that the
shape Yt obtained from tracking is a plausible shape by constraining the shape
to lie on the shape manifold. We align the new shape Yt to the global aver-
age shape Xinit and re-assign it to the nearest Clusteri based on mahalanobis
distance. The new shape Yt is constrained to the subspace of the assigned
Clusteri. This ensures switching between the overlapping subspaces that form
the non-linear shape manifold. Fig. 5 shows the path (projection on 2 princi-
pal components) of a shape for a tracking sequence when the subject rotates
the head from frontal to full right profile view and back. The figure also il-
lustrates the cluster switching as the person rotates the head. The entire path
remains within the plausible shape manifold spanned by the 9 hyper-ellipsoid
subspaces.
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6 Pose Angle Estimation

The proposed framework does not use head pose angles for tracking features
across large head rotations. In order to deal with discontinuities in shape space
and adapting ASM model according to pose change, it may be required to predict
pose angles. The current tracking framework can be extended to support pose
angle prediction using mixture of experts(ME).

The mapping from 2D shape to 3D pose angle is intrinsically non linear.
Inverse mappings from observations to 3D states cannot be functionally approx-
imated due to ambiguities caused by perspective projection and the lost degree
of freedom. Mixture of Experts(ME) provide a modular framework for learn-
ing non-linear mappings by clustering the dataset and simultaneously learning
function approximators locally in the cluster. The EM algorithm for training
ME decouples the optimization task into regressor fittng and multi-way classi-
fier learning. In order to learn point distribution models for the shape X, and
the corresponding pose angles A, ME formulates the problem as likelihood max-
imization. The Expectation step involves soft clustering:

P (Cluster = i|X,A) =
p(A|X,Fi(X))P (Cluster = i|X)∑N
j p(A|X,Fj(X))P (Cluster = j|X)

(3)

The density P (Cluster = i|X) is the gate distribution for classifying shapes
to the ith Cluster. The gate distribution is a multi-category classifier learned
using softmax function. The pose angle predictions is done by the function
approximators Fi(X) fitted locally to each cluster and are represented using
Gaussian distribution p(A|X,Fi(X)). The likelihood is a binomial distribution∏N

j {p(A|X,Fi(X))P (Cluster = i|X)}I(Cluster=j) where I(Cluster = j) is the
indicator function for the class to which shape X belongs. The EM iteratively
learns the parameters by independently maximizing the gate and the regressor
distributions in the log likelihood L as the Maximization step.

Log Likelihood:
∑M

i

∑N
j E[I(Cluster = j)] log(P (Cluster = j|Xi))

+ E[I(Cluster = j)] log(p(A|Xi,Fj(Xi)))
(4)

Where E denotes the expected value. In effect the EM algorithm does soft clus-
tering of the shapes X at each step and learns a pose predictor Fj locally in the
cluster. We used linear regressors with softmax gate distribution in our frame-
work. We experimented on the data set containing large shape variations due
to yaw with pose angles varying from −90o to +90o. The pose angles for the
training set were estimated within an error of ±5o by linear interpolation be-
tween the full profile ±90o and frontal 0o poses and assuming constant angular
velocity during the head rotation. The use of ME gave an average improvement
in the prediction accuracy by 8.34o over single regressor on our data set. More
number of experts usually improves the prediction accuracy. However they need
to be regularized to avoid overfitting the training dataset. Fig.6 illustrates the
ME fitting to the non-linear data. Mixture of Experts incorporates pose angles
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Fig. 6. (Best Viewed in Color)(Left) A non-linear toy dataset generated from the
inverse mapping x = y +0.3sin(2πy)+ ε where ε is zero mean Gaussian noise. Multiple
locally learned linear regressors(shown in color) gives better predictions compared to
single regressor(shown as black). (Middle) 5 Shape clusters(projected on 2 principle
components) obtained from the learned gate distribution using Mixture of Experts.
The data set contained right, frontal(blue points) and left head poses. (Right)Pose
angle prediction on test data set using 5 Experts. The plot in black indicates the most
probable expert. Notice how the most probable expert switch between different experts.
The experts predict different range of pose angles and fit well locally.

information to cluster the shapes based on similarity between the aligned shapes
and generates meaningful clusters that are based on pose variations. The gat-
ing network discriminatively classifies the data set into multiple classes. The
overlapping subspaces are learned directly from the clusters.

1.668o , Init 17.97o, Iter. 1 27.95o , Iter. 20 45.29o, Iter. 40 55.53o , Iter. 47

Fig. 7. Iteratively fitting ASM using clusters obtained from the Mixture of Experts.
The lower row indicates the predicted angles at each of the iteration.

Full Profile and Self Occlusion: The case of full profile has been loosely han-
dled in the past. Zhou et al. [7] presents a model for handling self occlusion and
demonstrates the results only on the head poses with yaw ∼ 40o − 50o. Romd-
hani et al. [6] does not discuss about the self occlusion. Unlike appearance based
approaches, the shape undergoes drastic change during full profile head move-
ment. The correspondence between face features and landmark points changes
for the outer contour, the eyes and the eyebrows. Depending upon the targeted
application the full profile has to be handled by either turn off the visibility of
the landmark points which are occluded, or allowing the landmark points to lie
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along the boundary of the features of the face. Former approach induces discon-
tinuities in the shape space and has to be handled by discrete model switching
using stochastic methods [10]. We adopt the latter approach in our framework.
The plausible shape space remains continuous in this case. The pose angle pre-
diction enables us to identify the clusters which are full profile (clusters with pose
angle in the range 90o± 10o). For the full profile image search, we do not match
local intensity along the normals for the occluded landmarks. Fig. 8 shows the
results obtained from our framework. Occluded landmarks are shown as points.

Fig. 8. Shape fitting results on a full profile pose initialized with the average frontal
shape. The above frames correspond to iterations 1, 16, 74, 94 and 114 of level 4 of the
gaussian pyramid. The initial average shape is in Cluster 1(cluster center shown as the
2nd image ). The cluster switch during iteration 74 to Cluster 4(cluster center shown
as the 4th image). The cluster switches to the profile cluster (cluster center shown as
the 7th image)during iteration 94.

7 Conclusion

In this work we have presented a generic real time framework for detecting and
tracking the deformable shapes across non-linear variations arising due to aspect
changes. Detailed analysis and empirical results have been presented about issues
related to modeling non-linear shape manifold using piecewise linear models. A
composite method for pose angle estimation using Mixture of Experts is also
proposed. The full profile shape is handled in a special way to ensure continuous
shape space modeling.
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Abstract. A successful approach for object tracking has been kernel
based object tracking [1] by Comaniciu et al.. The method provides an
effective solution to the problems of representation and localization in
tracking. The method involves representation of an object by a feature
histogram with an isotropic kernel and performing a gradient based mean
shift optimization for localizing the kernel. Though robust, this tech-
nique fails under cases of occlusion. We improve the kernel based object
tracking by performing the localization using a generalized (bidirectional)
mean shift based optimization. This makes the method resilient to occlu-
sions. Another aspect related to the localization step is handling of scale
changes by varying the bandwidth of the kernel. Here, we suggest a tech-
nique based on SIFT features [2] by Lowe to enable change of bandwidth
of the kernel even in the presence of occlusion. We demonstrate the effec-
tiveness of the techniques proposed through extensive experimentation
on a number of challenging data sets.

1 Introduction

Real-time object tracking is indispensable to a vast number of computer vision
applications like video surveillance and security, driver assistance, video abstrac-
tion, traffic management and video editing. Segmenting and tracking objects
accurately with low computational complexity is a challenge.

A method which has been quite successful in handling this task is the kernel
based object tracking algorithm [1]. In this method the target is spatially masked
with an isotropic kernel. A spatially-smooth similarity function is defined and
the target localization problem is then done by a gradient based optimization
method, based on mean shift filter [3]. This method has been demonstrated to
successfully work for non-rigid motion and in the presence of significant clutter.
While in some cases it does handle partial occlusion, it unfortunately fails in a
large number of cases. The reason for this can be traced to the mean shift based
approach used for target localization. It is an effective method for clustering
when the modes are distinct. However if there are multiple modes which are
nearby then the gradient based optimization step can often converge to a local
mode which is not necessarily the “true” mode. In this paper we address this
issue effectively by considering a generalized mean shift based approach. This

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 504–515, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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method effectively handles the problem of partial occlusion and in some cases
total occlusion in a more robust manner. A recent work which addresses the same
problem is by Babu et al. [4] in which they consider the problem of improving
the kernel object tracker. However, they address this problem by considering
multiple tracking systems, that is they combine the mean shift filter with an
SSD based tracking system. This affects the real time performance of the system
and besides it does not actually address the core issue of the mean shift procedure
which we have considered. Another approach [5], has been based on combination
of particle filtering with blob tracking and is very successful in handling the
occlusion problem, however, the method is computationally expensive.

The other aspect which is of interest has been that of adapting the bandwidth
of the kernel to account for a change in scale of the object of interest. There have
been a few approaches for data driven bandwidth selection [6,7] and a scale space
based approach [8] for the mean shift procedure to account for the scale as well.
However, while these approaches work well to account for a scale change when
there is no occlusion, they fail when the scale changes with partial occlusion.
To handle this aspect we consider a approach where we compute the SIFT [2]
based features and compute the matches of key-points over the frames. Using this
technique we are able to handle scale change even in the presence of occlusion.

In the next section we discuss the original kernel object tracker. In section 3 we
discuss the procedure of generalized mean shift. Next, in section 4 we formulate
a tracker based on generalized mean shift. The technique for scale change is
presented in section 5. The experimental results are presented in section 6 and
we conclude in section. 7.

2 Kernel-Based Object Tracking

The main contribution of the kernel based object tracking algorithm [1] has been
in the target representation and localization aspects of tracking. The other as-
pects of tracking like initial object segmentation can be addressed using methods
like background subtraction. Further, to make it more robust it can be associ-
ated with a prediction filter like Kalman filter. The target representation and
localization is a bottom up process and has to handle changes in the appearance
of the object. We now briefly discuss these aspects of the object tracker.

2.1 Target Representation

The reference target model is represented by its probability distribution function
(p.d.f.) q in the feature space. Here the p.d.f.s are represented using m-bin his-
tograms due to the low computational cost involved and the real-time processing
restrictions. A target is represented by an ellipsoidal region in the image. Let
x∗i , i = 1 . . . n be the normalized pixel locations in the region defined as the tar-
get model. The region is locally centered at 0. An isotropic kernel with a convex
and monotonic decreasing kernel profile k(x), assigns smaller weights to pixels
farther from the center. The function b associates to the pixel at location x∗i
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the index b(x∗i ) of its bin in the quantized feature space. The probability of the
feature u = 1 . . .m in the target model is then computed as

q̂u = C
n∑

i=1

k(||x∗i ||2)δ[b(x∗i )− u] (1)

where δ is the Kronecker delta function and C is the normalization constant and
is given by

C =
1∑n

i=1 k(||x∗i ||2)
. (2)

The target model can be considered as centered at the spatial location 0. In the
subsequent frame, a target candidate is defined at location y and is characterized
by the pdf p(y). Let xi, i = 1 . . . nh be the normalized pixel locations of the target
candidate, centered at y in the current frame. Using the same kernel profile k(x),
but with bandwidth h, the probability of the feature u = 1 . . .m in the target
candidate is given by

p̂u(y) = Ch

nh∑
i=1

k(||y − xi

h
||2)δ[b(xi)− u], (3)

where
Ch =

1∑nh

i=1 k(||
y−xi

h ||2)
. (4)

A similarity function is defined that defines the distance among target model
and candidates as

d(y) =
√

1− ρ|p̂(y), q̂|, (5)

where

ρ̂(y) = ρ|p̂(y), q̂| =
m∑

u=1

√
p̂u(y)q̂u, (6)

is the sample estimate of the Bhattacharyya coefficient between p and q.

2.2 Localization

In the localization phase the distance measure between the target model and tar-
get candidates is minimized. Minimizing the distance given in eqn.(5) is equiv-
alent to maximizing the Bhattacharyya coefficient ρ̂(y). The search for the new
target location in the current frame starts at the location ŷ0 of the target in
the previous frame. The linear approximation of the Bhattacharyya coefficient
in eqn.(6) is

ρ̂(y) ≈ 1
2

m∑
u=1

√
p̂u(ŷ0)q̂u +

1
2

m∑
u=1

p̂u(y)

√
q̂u
p̂u(ŷ

(7)

The resultant expression considering eqn.(3) is

ρ̂(y) ≈ 1
2

m∑
u=1

√
p̂u(ŷ0)q̂u +

Ch

2

nh∑
u=1

wik(||
y − xi

h
||2), (8)
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where

wi =
∑

u = 1m

√
q̂u

p̂u(ŷ0)
δ[b(xi)− u]. (9)

To minimize the distance, the second term in eqn.(8) has to be maximized.
The second term represents the density estimate with kernel profile k(x) at
y in the current frame. The mode of this density in the neighborhood is the
sought maximum that can be found employing the mean shift procedure. In this
procedure, the kernel is recursively moved from the current location ŷ0 to the
new location ŷ1 according to the mean shift procedure with the relation being

ŷ1 =
∑nh

i=1 xiwig(|| ŷ0−xi

h ||2)∑nk

i=1 wig(|| ŷ0.−xi

h ||2)
(10)

where g(x) = −k′(x). In the next section we discuss the generalized mean shift
procedure which can be used to find the modes more robustly.

3 Generalized Mean Shift

The mean shift procedure ([3,9]) when applied on a set of points explicitly moves
the points towards their modes. The mean shift procedure has been extended in
[10] to perform reverse mean shift which moves the points away from their modes.
The generalized mean shift procedure combines forward and reverse mean shift
methods so as to move the points to their correct modes without getting stuck
in the local mode.

3.1 Generalized Mean Shift

The forward and reverse mean shift based methods move the points towards and
away from the mode of the cluster respectively. However, when there are multiple
modes close by it is possible that the point may be clustered to an incorrect mode
away from its “true” mode. In order to handle this case, we formulate the notion
of generalized mean shift where the points are perturbed away from their mode
by the reverse mean shift and then clustered again using forward mean shift.
This is not a purely convex optimization and hence it is able to move away
from local minima and converge to the global minima provided that the global
minima is near. The threshold for the global minima being nearer is decided by a
dissimilarity factor and is discussed in section 6. The process of generalized mean
shift is illustrated in fig. 1. It involves combining the forward and reverse mean
shift procedures in an iterative manner with the switching between forward and
reverse mean shift being decided using an automatic switching criterion. The
reverse mean shift is a divergent procedure and tends to move the cluster values
away from their mode in the direction of the gradient and the forward mean shift
is a convergent procedure. Hence, in case of mixed clusters (that correspond to
occluded scenarios), the generalized mean shift mixes the forward and reverse
mean shift, ensuring that it is a convergent procedure, by switching the direction
based on the dissimilarity factor.
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t = t0 t = t2 > t1t = t1 > t0

Fig. 1. Illustration of mixed diffusion in the feature space. The inverse diffusion results
in the mixed clusters being separated and the individual elements of clusters coming
closer together due to forward diffusion.

4 Tracking Using Generalized Mean Shift

The application of generalized mean shift optimization for tracking becomes
relevant in the case of partial or total occlusion of tracked objects. In this case
the modes of the histogram are affected and the kernel tends to be attached to
the false mode, i.e. the occluding object. By using adaptive forward and reverse
mean shift, i.e. the generalized mean shift, one can recover the true mode even
after partial or total occlusion. The generalized mean shift is then given by:

ŷ1 = sgn(y)
∑nh

i=1 xiwig(|| ŷ0−xi

h ||2)∑nk

i=1 wig(|| ŷ0.−xi

h ||2)
(11)

where sgn(y) is a sign function and is determined by a dissimilarity factor thresh-
old θ.

d(y) > θ ⇒ sgn(y) = −γ
d(y) <= θ ⇒ sgn(y) = +1. (12)

Here γ is the reverse mean shift coefficient such that 0 < γ < 1. The value
of γ is generally less than 1 since the reverse mean shift procedure is divergent
and hence it is required to dampen the divergent procedure. The value of θ is
determined based on the distance measure between the target model and the
candidate model and is fixed for a wide class of tracking scenarios. However,
since the reverse mean shift is a divergent procedure, if the distance function
during reverse mean shift increases beyond the value θ, then the sgn function
is again made positive and the forward mean shift procedure is used. Thereby,
one ensures that the generalized mean shift procedure is always convergent. The
algorithm for the generalized mean shift procedure for Bhattacharyya coefficient
is given in Algorithm 1.
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Algorithm 1. Bhattacharyya Coefficient Maximization using Generalized
mean shift
Input: The target model {q̂u}u=1...m and its location ŷ0 in the previous frame

1: Initialize the location of the target in the current frame with ŷ0, compute
{p̂u(ŷ0)}u=1...m, and evaluate

ρ[p̂(y0), q̂] =

m

u=1

p̂u(ŷ0)q̂u.

2: Derive the weights {wi}1=1...nh .
3: if d[p̂(y0), q̂] > θ then
4: sgn(y) = −γ, 0 < r < 1 and a = 0.
5: end if
6: Find the next location of the target candidate according to eqn.(11).
7: Compute d(ŷ1)
8: if d(ŷ1) < d(ŷ0) then
9: ŷ1 ← 1

2
(ŷ0 + ŷ1)

10: Evaluate ρ[p̂(ŷ1), q̂]
11: else
12: reinitialize sgn(y) = 1 and go to Step 6.
13: end if
14: if ||ŷ1 − ŷ0|| < ε then
15: Stop.
16: else
17: Set ŷ0 ← ŷ1

18: go to Step 2.
19: end if

5 Scale Adaptation

While there have been works related to adapting the kernel bandwidth h based
on the scale [6,7,8], the methods assume that there will be no occlusion during
scale change or relatively no occlusion. In order to consider real world scenarios
where there may be scale change while there is occlusion we consider a different
approach based on Scale Invariant Feature Transform (SIFT) based features [2]
proposed by Lowe.

5.1 SIFT Features

The SIFT features [2] are highly robust and are invariant to image scale and
rotation and provide robust matching across a substantial range of affine distor-
tion, change in 3D viewpoint and change in illumination which are pervasive in
tracking. The scale of the key-points are computed by a search over all scales
and image locations using a difference of Gaussian function and the interest
points selected are invariant to scale and orientation. At each key-point location
a detailed model is fit to determine the location and scale and it is ensured that
the key-points selected are stable.
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5.2 Scale Adaptation Using SIFT

Given a kernel at the current location and a kernel from an earlier location,
the key-points are selected using the SIFT operator and key-point matches are
calculated between the key-points in the kernels from the selected frames. Then
the average change in the matched key-points is calculated. The scale of the
kernel, i.e. the bandwidth factor h is then resized using the change in the scale as
indicated by the matched key-points. Let Sm be the average scale of the matched
key-points in the target model and Sc be the average scale of the matched key-
points in the target candidate. Then we obtain the new value for the bandwidth
parameter h as

ĥ = h ∗ Sc + αSm

(1 + α)Sm
(13)

where α is a weight factor which denotes the weight given to the scale of the
target model key-points as compared to the scale of the target candidate key-
points. We have used a value of α = 4 in our experiments. Since even matches of
a few key-points are sufficient to indicate the scale change, this method is able to
adaptively change the size of the kernel even under severe partial occlusion thus
making the kernel tracker more robust. In case there are no matches between the
kernels as can happen in certain cases of total occlusion, the scale of the kernel is
chosen to be the same as in the previous frame. This method of adapting to scale
is more robust as compared to the scale space based approach advocated in [8]
where the author proposes a scale space based mean shift approach. While, the
idea of Gaussian scale space is similar, since these are considered for key-points
instead of the whole kernel they are more resilient in case of occlusion.

6 Experimental Results

The proposed algorithm has been extensively tested on numerous videos from the
Caviar [11], Jojic [12], and Karl-Wilhelm-Strasse [13] datasets. The generalized
mean-shift tracker performed well for almost all the test cases under partial as
well as full occlusion and in real time.
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Fig. 2. Plot of Dissimilarity Factor (Y-axis) vs image frames (X-axis)
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(a) (b) (c)

(d) (e) (f)

Fig. 3. EnterExit sequence: Tracking with occlusion.(a), (b), (c) show the results of
the plain kernel tracker while (d), (e), and (f) show that of the proposed method on
the Caviar data set.

The targets have been initialized by a manually chosen ellipse in all the video
sequences. However, colored crosses have been used to indicate the kernel posi-
tions, they represent the minor and major axes of the tracking ellipse. We now
discuss the results.

The EnterExit sequence is a set of 50, 384 x 288 pixel frames taken from the
Caviar dataset [11]. It is a scene from a mall where one person enters a shop
and another person exits it resulting in the two people crossing each other. Thus
one observes partial occlusion. When we use the forward mean shift tracker [1],
then the tracker fails to track the person entering the shop correctly and latches
onto the person leaving the shop. This is due to the partial occlusion. However,
as can be seen in Fig. 3, the proposed method is able to successfully track the
person entering as well as the person leaving correctly even in case of partial
occlusion.

Next we consider a close range sequence used by Jojic and Frey in [12]. The
sequence consists of 40 frames with each frame 320x240 pixels in size. Here one
can observe that there is full occlusion present. The results for the forward mean
shift tracker and the proposed method are presented in Fig. 6. The interesting
part is that the two close range observations are quite similar in terms of skin
color. The forward mean shift tracker fails to track the two persons when there
is full occlusion. However, due to the improvements proposed in terms of gener-
alized mean shift optimization we are able to track the two persons even in case
of full occlusion.

The algorithm presented is scalable and hence can be extended to higher
number of objects being tracked simultaneously with occlusion. It has been tested
on three objects and can be scaled up with ease. For this purpose another Caviar
sequence has been used: ThreePastShop sequences (Fig. 4) which consists of 100
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Fig. 4. ThreePastShop sequence: Tracking 3 targets with occlusion on the Caviar data
set

Fig. 5. Karl-Wilhelm-Strass sequence: Tracking vehicle targets with occlusion and fog

384 x 288 pixel frames shot at a corridor of a shopping mall. In this case we
are able to successfully track three people and multiple occlusions. The results
shown in Fig. 4 demonstrates this.

The proposed method has also been successfully tested on traffic videos. We
ran experiments on the Karl-Wilhelm-Strass data set [13] (60 frames 350 x 350
pixels) with considerable fog and occlusion (Figure 5). Here we are able to track
a car under severe fog and also occlusion when it passes under a billboard. This
demonstrates the robustness of our approach.



Improved Kernel-Based Object Tracking Under Occluded Scenarios 513

(a) (b) (c)

(d) (e) (f)

Fig. 6. Jojic sequence: Tracking with occlusion.(a), (b), (c) show the results of the
plain kernel tracker while (d), (e), and (f) show that of the proposed method on the
Jojic data set.

Further, we have demonstrated the effectiveness of the SIFT based technique
to handle scale change in tracking videos. The results of the same are shown
on a video clip from the movie “Breakfast at Tiffany’s”, which shows a scene
where two persons are climbing down while being occluded by a passing motor-
vehicle. The SIFT based technique enables effective handling of scale change
as can be seen from the results in Fig. 7. The results can be better considered
from the result videos available at http://vinaypn.googlepages.com/tracking. We
now discuss the parameters used in our experiments. The generalized mean-shift
approach has two parameters that need to be initialized manually. The first is
a similarity factor threshold θ in eqn. (12) which is used to determine the sign
of the sgn function. It can be seen from Figure 2 that at areas of partial or
total occlusion the distance factor d(y) is quite high and this can be used to
determine a threshold value θ. In the Caviar, Karl-Wilhelm-Strass, “Breakfast
at Tiffany’s”sequences we used a threshold value of 0.4. While, in the sequence
of Jojic we had to use a value of 0.15. This change can be attributed to the fact
that this sequence was a close range video while all the others were shot from a
considerable distance. Hence, we believe that if the range of the scene is known
approximately, we need to initialize these parameters just once.

The other coefficient we used is the reverse mean-shift weight γ in eqn. (12)
and we used a value of 0.4 for all the test cases. We found that these parameters
are fairly global and were not changed in most of the test sequences.

There are a few areas where the tracker might fail. Whenever the foreground
object is considerably bigger than the tracking kernel of the background object,
the tracker will not be able to locate the object once the occlusion frames are
over. This situation may be handled by using a much wider search window when
the tracker fails to locate a match after a certain number of iterations.
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Fig. 7. Breakfast at Tiffany’s sequence: Tracking target with occlusion and scale change
in a clip from the movie

The SIFT based technique to handle scale change requires relatively high
resolution videos to be able to generate adequate number of match points to
work effectively. Often, the tracked object’s orientation changes in a video se-
quence. We have taken care to update our matching image to take care of these
situations.

7 Conclusion

In this paper we address the problem of occlusion while tracking multiple ob-
jects using a kernel based tracker. We identify the problem as incorrect mode
estimation due to the convex optimization method of mean shift based optimiza-
tion used for localization. Hence, we suggest a modification based on generalized
mean shift based optimization which is able to escape problems of local minima
in a neighborhood. We further consider the problem of scale adaptation and pro-
pose a solution based on identifying scale change in key-points computed using
SIFT. This method of scale change works well even in case of occlusion. The
improved kernel tracker thus developed is robust and also processes the data
in real time. The tracker’s efficiency has been proved by extensive testing on
various popular data sets.

There are certain cases where in case there is prolonged total occlusion, the
errors are propagated. We intend to explore solutions based on a global search
paradigm in such cases to handle the problems which are inherent due to the
local nature of the approach considered.
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Abstract. Experiments in infant category formation indicate a strong role for
temporal continuity and change in perceptual categorization. Computational ap-
proaches to model discovery in vision have traditionally focused on static images,
with appearance features such as shape playing an important role. In this work, we
consider integrating agent behaviors with shape for the purpose of agent discov-
ery. Improved algorithms for video segmentation and tracking under occlusion
enable us to construct models that characterize agents in terms of motion and in-
teraction with other objects. We present a preliminary approach for discovering
agents based on a combination of appearance and motion histories. Using uncal-
ibrated camera images, we characterize objects discovered in the scene by their
shape and motion attributes, and cluster these using agglomerative hierarchical
clustering. Even with very simple feature sets, initial results suggest that the ap-
proach forms reasonable clusters for diverse categories such as people, and for
very distinct clusters (animals), and performs above average on other classes.

1 Introduction

Our concepts carve nature into chunks that form more compact and efficient represen-
tations of the world. It is possible that much of our early categories are learned from
a single system of knowledge, based ultimately on perception [1]. If so, how does one
go about discovering these categories from the passing show? This is clearly one of
the central problems of perception, and we attempt to approach this problem from a
computational standpoint.

Temporal continuity and change plays a strong role in category formation. By three
months, infants begin to pay attention to coherently moving blobs (Spelke objects [2]),
and by six months they are sensitive to the spatio-temporal dynamics of occlusion [3].
Indeed, in significant respects, the behavior of objects may constitute a more important
hallmark of their categorization (e.g. animacy) than appearance alone [4].

Computational models of object categorization and object recognition, on the other
hand, have focused traditionally on clustering based on appearance attributes in static
images [5]. While appearance attributes may be prior (e.g. faces), category formation
seems to be strongly tied to dynamic scenes.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 516–527, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this work, we consider dynamic image sequences and use improved algorithms for
video segmentation and tracking under occlusion to construct coherent motion histories
and occlusion relations simulating these cognitive aspects of infant category formation.
The aspects of the scene that characterize agents may involve motion, shape and their
interactions with other objects, and we present an attempt to form clusters based on the
first two elements, and to form a set of features for the third. Thus, we obtain shape
and motion characteristic for each agent instance and use an average-link hierarchical
clustering algorithm to cluster agents in this combined-feature scenario. Comparing our
results with those obtained based on appearance alone shows significant improvements
in recognizing certain heterogeneous groups such as People. Thus, through this work,
we present an initial approach for discovering agents based on a combination of appear-
ance and motion histories.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Image sequence showing multi-agent activity in a traffic surveillance scenario. Vehicles,
people, and animals are tracked across partial and complete occlusions and identified as agent in-
stances. Frames (a)-(h) shows a crowd of people embarking a static tempo (marked as an erstwhile
moving object) in the foreground, while a truck, motorcycles, rickshaws, bicycles and pedestrians
are seen interacting along the main road.

1.1 Dynamic Image Characterization

We use an image sequence (acquired with a static camera) involving simultaneous in-
teractions of tens of agents in a traffic scene, interacting with and occluding each other
(figure 1). Agents are identified as connected blobs that are capable of motion, includ-
ing those that are currently at rest. Agents constitute 3-manifolds in the {image×time}
space, which is reduced to a set of features covering appearance and behavior.

Behavior of an agent can involve many aspects. Here we distinguish solitary behav-
iors (motions) from multi-agent behaviors (interactions). Based on the assumption that
interaction involving proximity in 3D space may result in visual occlusion, we use oc-
clusion, as one of the indicators of interaction. These three sets of features, then, are
central to agent recognition:
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– Appearance: attributes include shape, which is captured via the summary attributes
of area, aspect ratio, and dispersedness (Perimeter2 / Area).

– Motion : attributes include speed, direction change sequences, velocity change, as
well as the quadratic-splined curve of the trajectory.

– Interactions: These are computed based on occlusion primitives (sub-section 2.3)
such as isolation, crowding, fragmentation and disappearance.

Next we highlight our approach to multi-agent tracking in crowded scenarios. Since
these algorithms have already been presented elsewhere [6] only a minimal summary is
presented below.

2 Multiple Agent Tracking

Connected regions in the foreground (sub-section 2.1) that are seen to persist coher-
ently over time constitute agents. Agents are tracked across multiple frames, and partial
or complete occlusions are handled. The part of the image corresponding to an agent
(called its support region) is tracked across frames by associating the predicted agent
regions to foreground blobs obtained from figure-ground segmentation (2.1).

Several agents may correspond to the same blob (crowding), or a single agent may
map to several blobs (fragmentation), etc; and the nature of this mapping is also stored
in terms of several occlusion primitives (sub-section 2.3). The agents are further lo-
calized by an iterative centroid update algorithm, where their appearance (position and
color) features are used to re-estimate the agent centroids (2.2). For the purpose of pre-
diction, agent-blob associations are re-computed and agent models updated only for
those agents which are unoccluded by others.

Agents which have been successfully tracked at the tth instant comprise the active
set of agents Aactive(t), whereas agents which have disappeared (occluded by others,
etc.) constitute the set Adisapp(t) - which are matched with new agents when they arise
in the scene. The system initializes itself with empty sets and agent instances are added
(removed) as they appear (disappear) in the field of view.

2.1 Foreground Extraction

Agents are identified as foreground regions based on one of two kinds of evidence:
first, as regions of change with respect to a learned background model; and second, as
regions exhibiting motion. The background model is learned as a pixel-wise mixture of
Gaussians [7] only for those pixels which exhibit no image motion. Inter-frame motion
information [8] along with the higher level multi-agent tracking feedback (sub-section
2.2) is used further to disambiguate objects that come to a stop or objects that suddenly
start moving [6]. The detected foreground pixels are further subjected to neighborhood-
voting based corrections followed by connected component analysis to obtain a set of
disjoint foreground blobs F(t) = {fi(t) : i = 1, . . . , nt}.

2.2 Agent Localization

Tracking multiple agents involve the use of their appearance models along with the tra-
jectory information. The appearance of the jth agent having region of support consisting
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ofnj(t) pixels at the tth instant is represented by an appearance modelaj(t) = {αjk(t) :
k = 1, . . . , nj(t)}, where αjk(t) = [rjk(t), gjk(t), bjk(t), x̃jk(t), ỹjk(t)]T character-
izes the kth component pixel of the jth agent. Here, the appearance is a collection of
pixel positions (x̃jk(t), ỹjk(t)) relative to the centroid cj(t) of the agent pixel set and
the corresponding colors (rjk(t), gjk(t), bjk(t)) in the RGB color space.

The agent-blob association is performed among the members of the active set
Aactive(t) and the set of foreground blobs F(t). If at least one pixel of aj(t) over-
laps fi(t) : |{(x̃jk(t), ỹjk(t)) + c∗j(t)} ∩ fi(t)| �= 0, where c∗j(t) is the predicted
agent centroid obtained at the tth instant from the motion history.

We consider the general case where the agents {Ap(t) : p = 1, . . . , Pt} are asso-
ciated with the foreground blobs {fq(t) : q = 1, . . . , Qt}. Let, ul(t) be a foreground
pixel characterized by color and position as ul(t) = [rl(t), gl(t), bl(t), xl(t), yl(t)]T .
We consider ul(t) to be the best match of the k∗ pixel of the j∗ associated agent, if the
following are satisfied.

ũlj(t) = [rl(t), gl(t), bl(t), (xl(t), yl(t))− c(s)
j (t)]T (1)

λ
(s)
jkl(t) = exp(−‖αjk(t)− ũlj(t)‖Σ) (2)

v
(s)
l (t) = (j∗, k∗) = argmaxj,kλ

(s)
jkl(t) (3)

where Σ is a weighing matrix and c(s)
j (t) is the iteratively re-estimated centroid of the

support of the jth agent in the sth iteration for the tth frame. The best match agent-pixel
index two tuple for ul(t) is given by v(s)

l (t) = (j∗, k∗), which indicates the visibility of
the k∗ pixel of the j∗ agent as ul(t). Thus, with respect to ul(t), the centroid of Aj∗(t)
can be expected to be at ĉ(s)

j∗k∗l(t) = (xl(t), yl(t))− (x̃j∗k∗(t), ỹj∗k∗(t)) with a certain

weighted belief λ(s)
jkl(t). We re-estimate the agent centroid in the (s + 1)th iteration

as the weighted average of such expected centroid positions derived in sth iteration as
shown in equation 5.

V
(s)
j (t) = {l, k : v(s)

l (t) = (j, k)} (4)

c(s+1)
j (t) =

∑
l,k∈V

(s)
j (t)

ĉ(s)
jkl(t)λ

(s)
jkl(t)∑

l,k∈V
(s)

j (t)
λ

(s)
jkl(t)

(5)

The agent localization iterations are initialized with c(0)
j (t) = c∗j(t) and are ter-

minated, when maxj‖c(s+1)
j (t) − c(s)

j (t)‖ ≤ εc is satisfied. The experiments are per-
formed on 5000 frames of a traffic surveillance video, acquired with a static camera
under almost constant ambient illumination conditions. We have used a diagonal weigh-
ing matrix (equation 2) of Σ = [0.25, 0.25, 0.25, 1, 1] and obtained a tracking accuracy
of 61%. The results of multiple agent tracking on the traffic video are shown in figure 1.

2.3 Interactions: Occlusion Primitives

Interactions between objects in 3D cannot be dealt with, but one may assume that ob-
jects in close proximity are likely to occlude one another (given a supra-horizon view).
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The nature of this occlusion and its transitions constitute a partial signature of the inter-
action. Four types of occlusion situations are distinguished:

– Isolation (O(I)): Single agent associated to single foreground blob (No occlusion).
– Crowding (O(C)): More than one agents are associated to a single foreground blob

(Occluding or occluded by other agents).
– Fragmentation (O(P )): Agent appears as fragmented, being associated to multiple

foreground blobs (partial occlusions).
– Disappearance (O(D)): Agent unassociated to any foreground blob (Complete oc-

clusion by background objects).

In crowding / fragmentation situations, only the agent trajectory is updated. Ap-
pearance models are updated only for those agents which are unoccluded by other
agents/background objects. Disappeared agents are moved from Aactive to Adisapp.
Foreground blobs (or fragments) unassociated to any agent in Aactive, are compared
against those in Adisapp - if a match is not found, an entrance of a new agent is de-
clared, otherwise the matched agent is reinstated in Aactive. Clearly, since our recog-
nition is 2D, many agents which re-emerge after near-complete occlusion may not be
recognized - and indeed this is the case in approximately half of such situations.

3 Agent Characterization

An agent instance Aj(ts(j), te(j)) is a space-time manifold characterized by the time
indexed set of appearances (a collection of position (XY ) and corresponding color
(RGB) vectors) and the centroid-trajectory {cj(t) : t = ts(j), . . . , te(j)} during its
scene presence [ts(j), te(j)). This agent model encodes both the appearance and motion
and constitutes part of the cognitive percept of the agent; the other aspects being its
interactions with other objects.

This work focuses on unsupervised agent categorization based on low level features
derived from the shape and the motion. As shape features, we consider the area (number
of pixels in the support region), aspect ratio (vertical to horizontal length ratio of the
minimum bounding box of the agent) and dispersedness (ratio of perimeter squared to
area). Collins et al. [9] have successfully classified people and vehicles using this simple
set of features, albeit in a supervised learning framework. The motion features include
the set of speeds, directions of motion and the form (e.g. linear versus quadratic) of the
trajectory in the image space. Such features can assist us in handling queries such as
“List all high speed vehicles”, “List all agents moving in a straight path from left to
right” or “Group agents of similar size” etc. The distributions of the shape and motion
features of all the agents are shown in figure 2. Categorizing agents with respect to their
low level features are described in further details in sub-section 3.1.

Motion and interactions together constitute the behavior model of an agent. Inter-
actions in the real world often leave their imprints in terms of image space occlusions.
Thus, the interactions with other objects in the scene can be represented by the occlusion
primitive transition sequences of the concerned agents. This might lead to behavioral
descriptions like “The agent that walked across the tree”.
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Fig. 2. Low level shape features projected on the (a) aspect ratio - dispersedness plane, (b) area -
aspect ratio plane and (c) dispersedness - area plane; (d) Agent speed distribution in image plane;
(e) Distribution of directions of motion in image plane; (f) Agent trajectories obtained till the first
2500 frames

3.1 Agent Categorization

The scene presence of the agents vary leading to the formation of variable length shape
and motion feature sets. Here, the agent Ar is represented as a set of certain features
q as A(q)

r = {qrj : j = 1, . . . , n(q)
r }. Such forms of agent characterizations can’t be

efficiently handled by the usual approach of learning mixtures of Gaussians. Thus, we
opt for “agglomerative hierarchical clustering algorithms” [10] which only require a
definition of a distance measure between two such sets. Consider two Agents Ar and
As characterized by their respective feature sets A(q)

r and A(q)
s . We define the distance

Da(A(q)
r , A

(q)
s ) between these two agent feature sets as,

Da(A(q)
r , A(q)

s ) =
1

n
(q)
r n

(q)
s

n(q)
r∑

j=1

n(q)
s∑

k=1

‖qrj − qsk‖ (6)

We employ the average-link clustering algorithm as it offers a compromise between
the single-link and complete-link ones and is more robust to outliers [10]. The algorithm
initializes by assigning a cluster label to each of the agents. Thus, for a collection of
agent feature sets {Ai}n

i=1, the initial collection of clusters is given by {Ci = {Ai}}n
i=1.

A dendogram is formed in a bottom-up approach, where each iteration reduces the
cluster number by one while merging two clusters, until finally, at the nth iteration, all
the agents are assigned to a single cluster.

Consider the kth iteration, where we merge two of the (n− k+ 2) clusters obtained
from the (k − 1)th step. The diameters of all possible 2-cluster mergers are computed
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and the pair minimizing the same is considered for merging. We select the cluster index
pair (i∗, j∗) for merging in the kth iteration, if (i∗, j∗) = argminDc(Ci, Cj), ∀i, j =
1 . . . (n − k + 2) and i �= j, where Dc(Ci, Cj) is the distance between two clusters
given by,

Dc(Ci, Cj) =
1

|Ci||Cj |
∑

A∈Ci

∑
A′∈Cj

Da(A,A′) (7)

3.2 Categorizing with Shape and Motion Features

The multiple agent tracking performed on the aforementioned traffic surveillance video
yielded the discovery of n = 376 agents. The appearances of the discovered agents are
manually inspected for generating ground-truth data, from which we observe the exis-
tence of 10 distinct categories along with outliers (formed from track losses and spu-
rious foreground detection) - Γ (SHAPE) = { OUTLIERS (62) PEOPLE (130), TEMPO

(18), BUS (3), TRUCK (1), TRACTOR (3), CAR (18), MOTORBIKE (55), CYCLE (44),
RICKSHAW (25), COW (17) }.

We form the collection of agent shape feature (area, aspect ratio and dispersedness)
sets {A(shape)

i }n
i=1, which are subjected to the average link clustering algorithm. A

certain cluster C(k)
i in the kth iteration is declared to host a certain agent category Γj , if

the agents of that class occur with the highest frequency in C(k)
i . The sensitivity Sj(k)

of categorizing the agent category Γj in the kth iteration is thus defined as,

Sj(k) =
1
|Γj |

n−k+1∑
i=1

|C(k)
i |δ(β(i)− j) (8)

Where, |Γj | is the total number of instances of the jth category, β(i) denotes the cate-
gory of an agent (from groundtruthed data), | • | determines the cardinality of a cluster
and δ(•) is the Kronecker Delta function. The sensitivities of clustering with up to 25
clusters for shape features and instances of the appearances of the discovered agents are
shown in figure 3.

In a similar manner, we construct the agent trajectory feature sets of direction
{A(direction)

i }n
i=1 and form {A(form)

i }n
i=1 which are subjected to hierarchical cluster-

ing. Manual inspection of the ground-truth data shows the existence of 6 different kinds
of trajectories along with outliers (on account of track losses) - Γ (TRAJECTORY) = {
OUTLIERS (205) LEFT TO RIGHT (77), FROM BOTTOM TURN LEFT (5), MOVE UP

(4), RIGHT TO LEFT (76), U-TURN (3), MOVE TO BOTTOM (6) }. Among these, there
were only 163 LINEAR TRAJECTORIES. The sensitivities of detecting trajectories up to
100 clusters and the three distinctly discovered trajectories ( LEFT TO RIGHT , FROM

BOTTOM TURN LEFT and RIGHT TO LEFT )are shown in figure 4.
The high sensitivities (figures 3 and 4) in grouping the appearances of PEOPLE,

TRUCK , CAR and the LINEAR TRAJECTORIES of agents moving LEFT TO RIGHT and
RIGHT TO LEFT is indicative of the satisfactory performance of the proposed
approach.
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Fig. 3. Results of agent appearance discovery. Area, aspect ratio and dispersedness constitute the
appearance features of an agent. However, the cardinalities of the appearance feature sets of the
discovered agents vary due to their different frame presence. Here, we only have a measure of
distance between two such sets and thus the average link clustering algorithm is executed on a
collection of 376 (discovered) agent shape feature sets. (a) Detection rates achieved by the aver-
age link clustering algorithm computed by Cross-validating with ground-truth data. (b) Instances
of appearances of discovered agents (appearances are scaled for better viewing purposes).

3.3 Behavior as Variable Length Occlusion Sequences

Models of single-agent behaviors are mainly characterized by their state space trajecto-
ries. Agent categorization in a surveillance scenario in terms of its motion features have
already been discussed in sub-section 3.2. Agent-object interactions exhibit several dif-
ferent modes - the actions may involve actual contact (e.g. riding a bike, boarding or
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Fig. 4. Detection rates achieved by the average link clustering algorithm computed by cross-
validating with ground-truth data. Sensitivity of categorization of agents by (a) Trajectory direc-
tion and (b) Trajectory form (linear versus higher order); Plotting discovered trajectories with
respect to form and direction. Linear trajectories (in image plane) of agents moving (d) Left to
Right, (e) Right to Left and (f) higher order trajectories of Turning Left coming from Bottom.

disembarking a vehicle, grouping etc.) or may involve interactions at a distance (e.g.
following, chasing, overtaking, etc.). In terms of image space, actual contacts are nec-
essarily reflected in terms of occlusions, but non-contact situations do not necessarily
lead to non-overlap. Thus, we believe that occlusion sequences exhibited by an agent
form visual signatures for the underlying interactions. More so, we identify that the oc-
clusion state transition sequences form a more significant interaction description than
the occlusion state sequences themselves. In this work, we aim to discover the interac-
tions arising out of agents moving in complex environments undergoing both static and
dynamic occlusions with background objects and other agents respectively.

A number of methodologies employing hidden Markov models, time-delay neural
networks, recurrent networks etc. have been proposed for modeling and recognition of
action/interaction sequences in a supervised learning framework. On the other hand,
unsupervised learning of activity patterns have also been proposed by trajectory clus-
tering [11] or variable length Markov model learning [12]. A good overview of such
techniques can be found in [13].

Supervised activity modeling techniques are mostly task oriented and hence fail to
capture the corpus of events from the time-series data provided to the system. Unsuper-
vised data mining algorithms, on the other hand, discover the modes of spatio-temporal
patterns thereby leading to the identification of a larger class of events. The use of
VLMMs in the domain of activity analysis was introduced for automatic modeling of
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the actions in exercise sequences [14] and interactions like handshaking [12] or overtak-
ing of vehicles [15] in a traffic scenario. These approaches propose to perform a vector
quantization over the agent feature and motion space to generate temporally indexed
agent-state sequences from video data. These sequences are parsed further to learn
VLMMs leading to the discovery of behavioral models of varying temporal durations.

Incremental Transition Sequence Learning. In this work, we employ “Incremen-
tal Transition Sequence Learning” to capture the variable length sequences of occlu-
sion primitives which describe different behavior patterns. The atomic event primitives
(here, the occlusion primitives) ε constitute the set E . Our approach to mining in this
space involves the construction of an activity tree Tα whose branches represent variable
length event primitive sequences.

An empty (first in first out) buffer βj (of length L, the maximum sequence length)
and the null activity tree Tα(j) (containing only the root node ρj) are initialized at
the very first appearance of every jth agent Aj . Each node of Tα(j) is a two tuple
Tn ≡ (ε, π) containing the primitive ε ∈ E and a real number π ∈ (0, 1] signifying the
probability of occurrence of the path {ρj, . . . , Tn} among the set of all possible paths
of the same length.

Let, ε(j, t) be the event primitive observed for Aj at time t. If there is a transition
in this event primitive, i.e. if ε(j, t) �= ε(j, t − 1), then ε(j, t) is pushed to βj . Let the

set of l-length paths (originating from ρj) of Tα(j, t), be B(l)(j, t) = {α(l)
u (j, t)}bl

u=1,
where bl is the number of l-length branches in the tree. More so, if the sequence {βj[l−
k](t)}l

k=1 signify the bth path of B(l)(j, t), then the probabilities {π(l)
u (j, t)}bl

u=1 of the
nodes of Tα(j, t) at the lth depth are updated as,

π(l)
u (j, t) = (1 − ηl(t))π(l)

u (j, t− 1) + ηl(t)δ(u − b) (9)

Where, ηl(t) is the rate of learning l-length sequences at the tth instant and δ is the
Kronecker delta function. However, in the current implementation a fixed learning rate
η is employed such that ηl(t) = max

(
1
t , η
)
∀l.

Occurrence of a new event primitive results in the formation of newer variable length
sequences in the buffer. Thus, new nodes signifying this event primtive are added at
different levels of the tree thereby growing newer branches. Each new node is initialized
with an initial probability of ηl(t), whereas the older node probabilities in the same
levels are penalized by multiplying with a factor of (1 − ηl(t)). This ensures the self-
normalizing nature of node probability updates (as in equation 9) such that they add up
to unity at each depth.

3.4 Occlusion Interaction: Learning from O-Transitions

Consider a short video sequence where a person walks across a tree from left to right
in the image space from which we sample 18 frames to illustrate the process of agent-
background object interaction discovery. Key frames from this sequence are shown in
figure 5(a)-(e). Incremental transition sequence learning is performed with a maximum
depth of L = 10 and a learning rate η inversely proportional to the frame number. The
growth of the activity tree is shown in figure 5(f).
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(f)

Fig. 5. Example video sequence: Man walks left to right behind a tree. Frames and Agent states:
(a) 1-5: isolated; (b) 6: partially occluded, (c) 7-8: disappeared, (d) 9: partially occluded (e)
10-18: isolated. (f) Learning Activity Tree. The left-most nodes are just below the root of the
growing tree. Results of incremental transition sequence learning are shown after frames 1, 6, 7,
9 and 18. Branches encode different variable length event sequences along with relative frequen-
cies. Thus, in column 2 (after Frame 9), the sequence {(I → P → D), 0.89} corresponds to the
event primitive sequence {O(I) → O(P ) → O(D)}; i.e. the event sequence “coming from the
left and getting hidden” occurs with relative frequency 89% among observed 3-length sequences.

Semantic labels can be assigned to the sequences in the occlusion-primitive space to
denote different activities, and subsequences may constitute sub-activities. For example,
consider the longest path {O(I) → O(P ) → O(D) → O(P ) → O(I)} learned in the
activity tree from the aforementioned video that correspond to the activity of walking
across a tree from left to right. Subsequences of this path viz. {O(I) → O(P ) →
O(D)} and {O(D) → O(P ) → O(I)} also correspond to the visually significant
events of going to hide from left to right and reappearing and moving to the right.

4 Conclusion

In this work we have attempted to capture some cognitive notions of perceptual cate-
gory learning and attempted to devise computational analogs of this process. While our
results in terms of category discovery are clearly preliminary, we believe that the high
correlations obtained in terms of sensitivity matches (figures 3 and 4) do indeed pro-
vide some justification for such an approach, especially given that the system operates
in completely unsupervised mode, without any information about the complex scene
that is being observed.

Clearly, the results are indicative, and much work remains. In particular, characteriz-
ing the interactions between objects is a very rich area, of which the occlusion models
used here only scratch the surface. In cognitive terms, the behavior of agents can be
described compactly in terms of landmarks - and currently we are exploring the emer-
gence of scene landmarks with which to characterize such interaction.
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Abstract. This paper presents an approach of fusing the information provided 
by visible spectrum video with that of thermal infrared video to tackle video 
processing challenges such as object detection and tracking for increasing the 
performance and robustness of the surveillance system. An enhanced object de-
tection strategy using gradient information along with background subtraction is 
implemented with efficient fusion based approach to handle typical problems in 
both the domains. An intelligent fusion approach using Fuzzy logic and Kalman 
filtering technique is proposed to track objects and obtain fused estimate ac-
cording to the reliability of the sensors. Appropriate measurement parameters 
are identified to determine the measurement accuracy of each sensor. Experi-
mental results are shown on some typical scenarios of detection and tracking of 
pedestrians. 

1   Introduction 

With the advances in sensor and computing technologies, new generation video sur-
veillance and security system will be required to be persistent (ability to function 
continuously for 24 hours and in a variety of scenarios) and intelligent in combining 
multimedia information for robust operation. Color and grayscale video cameras have 
an obvious limitation of daytime operation only, whereas Infrared media are more 
informative in dark environment (especially in night). Traditional approaches analyze 
video only in a single modality; either using the visible spectrum or using another 
modality such as mid-wave or long-wave infrared images [1]. Since, the visible spec-
trum and thermal infrared are inherently complementary; having their own unique 
characteristics, combining them can be advantageous in many scenarios, when either 
may perform poorly. For example, in foggy weather condition and in night, IR sensor 
will outperform visible range camera.  Sudden lighting changes, shadows and camou-
flage, in visible spectrum, can often cause the foreground detection to incorrectly 
classify pixels. Combining the visible analysis with infrared imaging seems very 
beneficial, as it is very robust to the above mentioned problems. However, in good 
lighting and stable background conditions, visible spectrum video would give better 
results because of containing strong edges, robust color and other features with com-
paratively low noise. Although humans and other hot objects usually appear as areas 
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of high contrast and are more distinctive in infrared but well insulated clothing can 
cause the torso to have very low contrast and appear as background noise. Sudden 
temperature change, heat diffusion through objects in contact and “Halo effect” pro-
duced by some infrared sensors, which appears as a dark or bright halo surrounding 
very hot or cold objects respectively, are some additional difficulties that cause incor-
rect segmentation of object region. The challenge therefore is to determine the best 
approach to combine both modalities so that typical problems in both the domains can 
be addressed. This is made more challenging by the fact that some sources of data 
may give misleading or incorrect information. For example, changes in lighting, such 
as those caused by clouds blocking the sun’s light during the daytime, can cause in-
correct change detection in the visible spectrum. In a recent review on surveillance 
research [2], Hu et al. conclude in their section on Future Developments in Surveil-
lance that “Surveillance using multiple different sensors seems to be a very interesting 
subject. The main problem is how to make use of their respective merits and fuse 
information from such kinds of sensors”. In another review of video surveillance and 
sensor networks research [3], Cucchiara argues that the integration of video technol-
ogy with sensors and other media streams will constitute the fundamental infrastruc-
ture for new generations of multimedia surveillance systems.  

This paper presents an approach of fusing the information provided by thermal  
infrared video and that of visible spectrum video for robust object detection and accu-
rate object tracking thereby increasing the performance and robustness of the surveil-
lance system. An enhanced object detection strategy is implemented with efficient 
fusion based approach. We collected a database of known scenarios in indoor and 
outdoor situations captured simultaneously by video and IR cameras. These image 
sequences (video and IR) are time synchronized and geometrically corrected to co-
register them with their counterparts. For both sensor sequences, we apply our  
enhanced background subtraction algorithm using gradient information, to identify 
region of interests (ROI) and extract blobs corresponding to the objects in the scene. 
For individual sensor sequence, blobs have to be matched with the objects (tracked at 
fusion level) present in the previous frame and some measurement parameters are 
computed. For tracking purpose, track-to-track fusion scheme is used, where a sepa-
rate Kalman Filter is used for each track to obtain a filtered estimate. An intelligent 
fusion algorithm subsequently proceeds to obtain fused measurement data for each 
object according to the reliability of the sensors. A Fuzzy Inference System (FIS) is 
employed to assign suitable weights to each sensors filtered estimate, based on the 
value of two parameters called ‘Confidence’ and ‘Appearance Ratio’, computed for 
all the objects in each sensor output. Finally, a defuzzificator obtains the fused esti-
mated measurement based on the weightage values. The Experimental results are 
done to demonstrate the effectiveness of fusing visible and IR in some typical scenar-
ios of detection and tracking of pedestrians. 

2   Literature Review and Background  

Object Detection and Tracking beyond Visible Spectrum: Recent literature on the 
exploitation of near-infrared information to track humans generally deals only with 
the face of observed people and a few are concerned with the whole body [4] but 
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these approach rely on the highly limiting assumption that the person region always 
has a much brighter (hotter) appearance than the background. In [5], the author pro-
poses a novel contour based background subtraction strategy to detect people in ther-
mal imagery, which is robust across a wide range of environmental conditions. First 
of all, a standard background-subtraction technique is used to identify local region-of 
interest (ROI), each containing the person and surrounding thermal halo. The fore-
ground and background gradient information within each region are then combined 
into a contour saliency map (highlighting the person boundary). Using a watershed-
based algorithm, the gradients are thinned and thresholded into contour fragments and 
A* search algorithm is used to connect any contour gaps. However use of highly 
computational techniques, makes their approach inappropriate for use in real time 
surveillance settings.  

Modality Fusion: Multi modal fusion is the process of combining data from multiple 
sources (of different spectrum) such that the resulting entity or decision is in some 
sense better than that provided by any of the individual sources [6]. Data fusion tech-
niques have had a long history in radar and vision based military applications to en-
hance the information content of the scene by combining multispectral images in one 
image. However, only recently data fusion is being considered for enhancing the 
capabilities of automatic video-based detection and tracking system for surveillance 
purpose. In [7], the fusion of thermal infrared with visible spectrum video, in the 
context of surveillance and security, is done at the object level. Detection and tracking 
of blobs (regions) are performed separately in the visible and thermal modality. An 
object is made up of one or more blobs, which are inherited or removed as time 
passes. Correspondences are obtained between objects in each modality, forming a 
master-slave relationship, so that the master (the object with the better detection or 
confidence) assists the tracking of the slave in the other modality. In a recent work, 
Davis et al. [8] propose a new contour-based background-subtraction technique using 
thermal and visible imagery for persistent object detection in urban settings. Their 
algorithm requires co-registered image from two streams. Statistical background sub-
traction in the thermal domain is used to identify the initial regions-of-interest. Color 
and intensity information are used within these areas to obtain the corresponding 
regions of-interest in the visible domain. Within each image region (thermal and visi-
ble treated independently), the input and background gradient information are com-
bined as to highlight only the boundaries of the foreground object. The boundaries are 
then thinned and thresholded to form binary contour fragments. Contour fragments 
belonging to corresponding regions in the thermal and visible domains are then fused 
using the combined input gradient information from both sensors.  

Multi-Sensor Fusion: The determination of the target’s position and velocity from a 
noisy time-series of measurements constitute a classical statistical estimation problem 
and it involves the use of sequential estimation techniques such as the Kalman filter 
or its variants. Observational data may be combined, or fused, at a variety of levels 
from the raw data (or observation) level to feature level, or at the decision level. In the 
fusion process, it is essential to asses the reliability of sensor data because the results 
could be seriously affected in the case of malfunctioning sensor. Therefore for fusing 
data collected from different sensors requires the determination of measurements’ 
accuracy so that they can be fused in a weighted manner. In [9], the authors propose a 
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multi-sensor data fusion method for video surveillance, and demonstrated the results 
by using optical and infrared sensors. The measurements coming from different sen-
sors were weighted by adjusting measurement error covariance matrix by a metric 
called Appearance Ratio (AR), whose value is proportional to the strength of the 
segmented blobs. In [10], the authors propose a hybrid multi-sensor data fusion archi-
tecture using Kalman filtering and fuzzy logic techniques. They feed the measurement 
coming from each sensor to separate fuzzy–adaptive kalman filters (FKF), working in 
parallel. Based on the value of a variable called Degree of Matching (D0M) and the 
measurement noise covariance matrix R coming from each FKF, a fuzzy inference 
system (FIS) assigns a degree of confidence to each one of the FKFs output. Finally, a 
defuzzificator obtains the fused estimated measurement based on the confidence val-
ues. They demonstrated the result on a simulated dataset, by taking example of four 
noisy inputs. 

3   Object Detection 

Simple background subtraction and Thresholding is ineffective in detecting the ob-
jects in various situations because of typical problems (as noted before) in both the 
domains. We employ a fusion based enhanced and efficient detection strategy using 
both visible and thermal imagery, which is well suited to handle typical problems in 
both the domains. Our approach is based on the use of gradient information along 
with background subtraction, as proposed and demonstrated in [5] but differs in the 
sense that we don’t use computational intensive techniques for real timeliness. Addi-
tionally we take a fusion approach with visible spectrum video based on mutual 
agreement between the two modalities.  

Since the algorithm requires registered imagery from the two sensors, we initialize 
the system by manually selecting four corresponding feature points from a pair of 
thermal and visible images. A homography matrix created from these points is used to 
register the thermal and visible images. First of all, localized regions of-interest 
(ROIs) are identified in both domains by applying standard gaussian background-
subtraction, which generally produces regions that encompass the entire foreground 
object with surrounding halo in IR and shadows in visible, if present. The statistical 
background model for each pixel (in thermal or visible intensity) is created by com-
puting weighted means and variances and the foreground pixels in the ROI then ob-
tained using the squared Mahalanobis Distance by using following equation: 

( )2

2

( , ) ( , )
1  100

( , ) ( , )

0             otherwise
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Now, at this step we examine the ROI’s from both the domains, to get fused ROI that 
will be used to cue further processing in both the domains. Since the ROIs will in-
clude shadow in visible and halo in IR (if present) along with the foreground objects, 
taking intersection of both ROIs, will eliminate regions that are not present in both the 
modalities (like shadows, noise, etc.). However, if either of the sensor is performing 
poorly, either due to malfunctioning or environmental conditions, taking intersection 
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will degrade the output of other sensor as well. Hence, we take the intersection only 
when both the ROIs have reasonable amount of mutual agreement in detecting fore-
ground regions. Otherwise, we continue processing with the original ROIs separately 
for each domain and leave the detection of noise region at later stage. For determining 
the mutual agreement in both modalities, we use the following ratio (R), defined as: 

(1,1)

(1,0) (0,1)

P
R

P P
=

+
 (2) 

where P(x,y) is the total sum of pixels whose visible classification is x and whose 
infrared classification is y. Therefore, R is the ratio of the agreed foreground pixels to 
the total disagreed pixels. Now if R is greater than a predefined threshold, we assume 
that there is a high degree of mutual agreement in both the modalities, and we choose 
the fused ROI for further processing. 

We again examine the difference image in each domain within resultant ROI in an 
attempt to extract gradient information corresponding only to the foreground object. 
Sobel operator is applied to calculate foreground gradient magnitudes from difference 
image and background gradient magnitudes. As proposed in [5] a gradient map is 
formed by taking pixel wise minimum of the normalized foreground gradient magni-
tudes and the normalized foreground-background gradient-difference magnitudes (as 
shown in equation 3), preserving the foreground object gradients that are both strong 
and significantly different from the background. 

( )|| , |||| , ||
min ,

max max

Ix BGx Iy BGyIx Iy
GradientMap

− −
=  (3) 

By Thresholding the gradient map and applying morphological operations like closing 
and dilation, we obtain blobs corresponding to actual foreground objects (without 
halo or diffused shadows). The approach is equally applicable to both thermal and 
visible imagery. Figure 1 shows the output of the various steps of object segmentation 
applied to an infrared image having halo effect. 

    

Fig. 1. Segmentation Output shown for infrared image with halo effect a) original image b) 
ROI c) Foreground gradient d) Background gradient e) Gradient map f) after Thresholding  g) 
blobs h) objects detected 
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4   Target Tracking 

Achieving better trajectory accuracy and continuity is of great importance for the 
successive steps of behavior understanding performed by a surveillance system. In 
particular, the trajectories of the objects in the scene have to be analyzed to detect 
suspicious events [11]. Tracking takes place at two levels. In the first level of the 
tracking procedure the system matches the blobs detected in the current frame with 
those extracted in the previous frame. Second level of tracking takes place at fusion 
level, where the objects (combination of one or more blobs) are tracked, using a fu-
sion filter to obtain fused estimate of the object state. For getting an estimate of seg-
mentation output and reliability, we compute certain measurement parameters for 
blobs, which are defined as follows: 

1. “Appearance Ratio (AR)”: Let D be the difference map obtained as the absolute 
difference between the current frame and a reference image with  T as threshold 
to binarize D , and let Bj be the j-th blob extracted from the sensor, then the Ap-
pearance Ratio  for that blob is defined as 

,
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B T
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where | Bj | is the number of pixels of the blob Bj. The value of AR is proportional to 
the strength of the segmented blobs from each sensor. A low AR value indicates that 
the pixel intensity in the blob region has barely crossed the threshold. Thus AR value 
can be compared to determine which sensor is more informative 
2. “Overlapping”: Overlapping O(a,b), between  blobs a and b, is defined as: 

Omax(a,b) = Maximum( IA(a,b) / A(a), IA(a,b) / A(b))  

Omin(a,b) = Minimum( IA(a,b) / A(a), IA(a,b) / A(b))  
(5) 

where A(i) is the area of the ith blob’s bounding box, and IA(a,b) is the intersection 
area between them. These two factors are used in matching blobs. 
3. “Resemblance”: between two blobs is estimated with respect to the degree of 

match between two blobs (using Omin) and similarity factor. R(a,b) is defined as: 

R(a,b) = Omin(a,b) × [ 1 - [Abs(Aa-Ab) / Maximum(Aa, Ab)] (6) 

4. “Confidence (C)”: It gives the persistence of a blob over time and is defined by 
the following equation: 

0

( ) ( ( , ) ( )) 1
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where a is the new blob, b is the preceding blob, and n the number of preceding blobs 
that matched to the present one. As seen from the equation, the confidence on match-
ing from t-1 to t increases if the blob has been tracked for a long time and the  
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resemblance from two time steps is large. Note that the minimum value of confidence 
of any blob is 1, which is in case of its first appearance in the scene.  

Initially an object can be made up from an isolated blob or many closer blobs. The 
system first of all matches the current set of blobs with the objects detected in the 
previous frames by simple spatial occupancy overlap tests between the predicted 
locations of objects and the locations of blobs in current frame. The maximum over-
lapping factor (Omax) is used for this purpose. The system then establishes corre-
spondence between the individual blobs (of current and previous frames) that corre-
spond to same object. This is done by maintaining a list of blobs in the previous 
frames that correspond to each object. Subsequently, specific parameters like resem-
blance and confidence factor are calculated for each blob. The object’s confidence is 
computed as the average of the confidence of individual blobs comprising the object. 
The appearance ratio for an object is calculated by summing up the numerator and 
denominator for each individual blobs and then dividing. The confidence C and ap-
pearance ratio AR is used in the fusion process to estimate the measurement accuracy 
of each sensor for extracted objects. 

5   Fusion Process 

We employ second order Kalman filter to model the motion of each object in the 
scene. The fusion procedure maintains its own list of targets. In the fusion process, the 
fused estimate should be more biased by accurate measurements and almost unaf-
fected by inaccurate or malfunctioning ones. An intelligent fusion algorithm based on 
fuzzy logic techniques is designed to obtain fused measurement data (for each object). 
The main advantages derived from the use of fuzzy logic techniques with respect to 
traditional schemes are the simplicity of the approach, the capability of fuzzy systems 
to deal with imprecise information, and the possibility of including heuristic knowl-
edge about the phenomenon under consideration [10]. 

The reliability of the sensors is estimated by two input parameters, the Appearance 
Ratio (AR) and Confidence (C).  AR value reflects the strength of segmentation out-
put from each sensor at current instance. The value of C also reflects on the temporal 
consistency of the sensor in maintaining good detection of a particular object. Also 
the confidence for an object detected as a single blob will be more than the object 
detected in fragemented parts (blobs).  

Figure 2 shows the Hybrid Fuzzy logic-Kalman Fusion filter. A separate fuzzy in-
ference system (FIS) is employed to monitor each channel and assigns suitable 
weights to each sensor’s filtered estimate. Based on the values of the variables C and 
AR, the FIS assigns a weightage w, on the interval [0,1], to each of the KF’s outputs. 
This value reflects the reliability of the sensor’s measurement and it acts as a weight 
that tells the defuzzifactor, the confidence level at which it should take each KF’s 
output value. 

Each FIS was implemented using two inputs, the current value of C and AR; and 
one output, the weight w. For C and AR, we consider three fuzzy sets: ZE=zero, 
S=small, L=large. The membership function for C and AR are shown in figure 3. For 
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Fig. 2. A Hybrid Fuzzy logic-Kalman Fusion Filter 

 

Fig. 3. Membership function for C and AR 

the output w, three fuzzy singletons were defined with the labels: G=1=good, 
AV=0.5=average and P=0=poor. Thus the fuzzy rule base of each FIS comprises of 
following nine rules: 

1. If C=ZE, and AR=ZE, then w=P 
2. If C=ZE, and AR=S, then w=P 
3. If C=S, and AR=ZE, then w=P 
4. If C=ZE, and AR=L, then w=AV 
5. If C=S, and AR=S, then w=AV 
6. If C=L, and AR=ZE, then w=AV 
7. If C=S, and AR=L, then w=G 
8. If C=L, and AR=S, then w=G 
9. If C=L, and AR=L, then w=G 

The above rules are based on two simple heuristic considerations. First, if both C 
and AR are large for an extracted object from a sensor, it implies that the sensor’s 
filtered estimate is highly reliable. Second, if both of these values are near to mini-
mum, the output is unreliable. Thus, using the compositional rule of inference sum-
prod, the FIS calculates the weight, which tells the defuzzifactor at what confidence 
level it should take each output. Note that this method of fusion is suitable for any 
number of sensors.  
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6   Experimental Results 

For experiments, we used the Sony TRV65 Hi8 Camcorder with 37mm 1000nm IR 
filter that allows recording of daytime video (visible spectrum) and nighttime images 
in indoor situation. For outdoor situation we used MATIS thermal camera with InSb 
detector (320x284) and spectral range of 3-5 m,  for capturing good quality infrared 
images. The program implementation was done in Matlab 7.0. We tested our ap-
proach at every stage to analyze the improvement in the performance obtained by 
combining visible and infrared imagery. 

Object Detection: The object detection approach is robustly able to detect objects 
across a wider range of environmental conditions than is possible with standard ap-
proaches as demonstrated in [5]. Here we have also tested the method over different 
ranges of IR sensors (with varying degree of noise, halo effect etc) suitable for indoor 
and outdoor surveillance. We collected samples of IR images from three sensors rang-
ing from high, medium and low quality. Figure 4 shows segmentation result on sam-
ple images from these sensors taken in indoor and outdoor situations.  

 

Fig. 4. First column shows the original IR images, second column shows the corresponding 
gradient map, third column shows the blobs extracted and the fourth one show the objects 
detected in the images 

The IR images in the first and second row are night shot images (from Sony Cam-
corder) taken in indoor situations. The IR image in first row contains Halo around 
people and the second row image is extremely noisy.  The third row shows an outdoor 
situation where the person’s body is quite insulated by clothing and only the head 
portion appears as hot spot. In spite of these challenges, the output shows properly 
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Fig. 5. First row shows the image in visible domain having shadow and the second row shows 
the corresponding IR image, after registration. The second column shows the Fused ROI in 
both domain and the third column shows the blob extracted. Finally the detected object region 
(shown in visible image) does not contain shadow. 

segmented out objects. In Figure 5, an outdoor situation of one pedestrian walking 
near a building is presented and it shows that the IR image can be helpful in removing 
shadows from the visible image.  

Object Tracking: For comparison of accuracy in tracking the trajectory, the follow-
ing performance measures were adopted: 

( )2

1

1 n

zv k k
k

J za z
n =

= −  (8) 

( )2

1

1
ˆ

n

ze k k
k

J za z
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Where zak  is the actual value of the position; zk  is the measured position; and kẑ  is 

the estimated position at an instant of time k. Figure 6 (appendix) shows a pedestrian 
being tracked with fused measurement of centroid position (shown with red cross) 
and fused estimate (with green cross) is shown in visible imagery. Actual position 
was calculated by manually segmenting the pedestrian. Table 1 shows the perform-
ance measures obtained by using only visible, only thermal and using both modalities.      

Table 1. Comparison of tracking accuracy obtained by using only visible, only thermal and 
using both 

Sensor Jzv Jze 
Only Visible 2.04 2.92 

Only Infrared 3.35 3.20 
Visible and Infrared 

(fused) 
1.87 2.45 
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Fig. 6. A pedestrian being tracked in outdoor situation 

Since it is a daytime situation with sufficient lighting and temperature difference in 
the environment, the two sensors are reporting a track similar to the ground truth. 
Nonetheless, a better result is obtained through data fusion. We haven’t shown obvi-
ous case of night situation, where visible sensor fails completely and the fused output 
is according to the infrared sensor only.  

7   Conclusion 

In this paper, we presented the framework for combining visible and IR for robust 
object detection and accurate tracking in a surveillance system. The problems that 
arise in each domain and the potential of combining both modalities in addressing 
these problems were discussed. Fusion approach for combining information from 
visible and infrared source at segmentation level and tracking level was discussed in 
detail. An enhanced object detection strategy is implemented with efficient fusion 
based approach to handle typical problems of both the domains The following are the 
contributions of our work. The novelty of our work lies in using Fuzzy logic based-
Kalman filtering technique to track objects and obtain fused estimate according to the 
reliability of the sensors. Suitable measurement parameters are identified to automati-
cally estimate the measurement accuracy of each sensor so that they can be fused in a 
weighted manner. 
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Abstract. Dynamic events comprise of spatiotemporal atomic units. In
this paper we model them using a mixture model. Events are represented
using a framework based on the Mixture of Factor Analyzers (MFA)
model. It is to be noted that our framework is generic and is applicable
for any mixture modelling scheme. The MFA, used to demonstrate the
novelty of our approach, clusters events into spatially coherent mixtures
in a low dimensional space. Based the observations that, (i) events com-
prise of varying degrees of spatial and temporal characteristics, and (ii)
the number of mixtures determines the composition of these features,
a method that incorporates models with varying number of mixtures is
proposed. For a given event, the relative importance of each model com-
ponent is estimated, thereby choosing the appropriate feature composi-
tion. The capabilities of the proposed framework are demonstrated with
an application: recognition of events such as hand gestures, activities.

1 Introduction

Characterization of dynamic events, which are spatiotemporal in nature, has
been a problem of great interest in the past few years [1,2,3,4,5,6]. Early methods
employ segmentation and tracking of individual parts to model the dynamism in
events [2,7]. They are based on identifying moving objects – typically referred to
as blobs – constrained by their size or shape. Tracked trajectories of these blobs
are used to distinguish events. Naturally, these methods are very sensitive to the
quality of segmentation and tracking of blobs. A popular approach has been to
represent the dynamism in events as image features [1,5,8]. Typically these ap-
proaches, of identifying a fixed feature set (or interesting regions), are applicable
to a limited set of events. As observed by Sun et al. [9], techniques that learn an
optimal set of features from the given event set are of much interest for real life
applications. In today’s scenario, wherein events can be captured as videos under
different conditions, there is also a need to model the variations across videos in
a probabilistic framework. Models such as Hidden Markov Models (HMMs) are
popular to accomplish this [10]. However, these models fail to capture the events
in a low dimensional space. Although there have been attempts to use dimen-
� Currently at Oxford Brookes University, UK.
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Fig. 1. A sample of events performed by humans (shown as image strips) and action
representatives (shown as individual frames). A set of actions constitute an event. Four
events and their corresponding actions are shown as distinct groups here (Green (Top
Left) - Jumping, Red (Top Right) - Flapping, Blue (Bottom Left) - Squatting, Magenta
(Bottom Right) - Waving). The arrows denote the temporal transitions between the
actions and the number on each arrow denotes the temporal sequencing of the event.
Note that the action ‘standing’ is common to all these events.

sionality reduction methods in combination with these models [9], they fail to
be generic. Thus, to characterize events efficiently we need a representation that
not only discards the acceptable statistical variability across multiple instances
of an event, but also discriminates among different events.

We propose a method to learn a compact representation of events preserving
their discriminatory characteristics. An event is modelled as a sequence of atomic
spatiotemporal units called actions. Actions can be interpreted as subsequences
from the event sequence. A probabilistic approach is employed to estimate the
actions and the compositional rules for the events, in a low dimensional manifold.
This is achieved using a Mixture of Factor Analyzers (MFA) model [11] com-
bined with a probability transition matrix, which encodes the transitions among
the action mixtures. The mixtures represent the actions while the transitions
represent the compositional rules. In other words, the number of mixtures de-
termines the composition of spatial and temporal features in events. Fixing the
number of mixtures for the entire event set is not optimal, as the spatiotempo-
ral characteristics vary among events. A unifying framework which incorporates
models with varying number of mixtures (which form the model components) is
proposed. For a given event, the relative importance of each model component
is estimated from an example set.

The model is based on the observation that events comprise of more fun-
damental units, actions. Similar observations were made in the past in differ-
ent ways [6,7,8,10,12]. Actions were represented as components of PCA [7], the
hidden states of HMMs [10], key frames in the event video, canonical poses,
etc. It has also been a common practice to analyze the event sequences in a
window-based fashion [13] to capture the atomic characteristics in events. In
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addition to this, we exploit the fact that most of the events have a large degree
of overlap among them. This is evident in the form of common actions among
various events. An example of this is shown in Figure 1 where the events share
the action ‘standing’. Furthermore, actions capture the spatial (or the appear-
ance) features in events, while transitions among actions capture the temporal
features. The main advantages of the model are: (a) It represents events in a
low dimensional manifold retaining their discriminative characteristics, (b) It
recognizes events in a real-time fashion, (c) It chooses the appropriate spatial
and temporal feature extent by analyzing the event.

Section 2 presents an overview of the event recognition model. It also anal-
yses the dependency of event recognition accuracy on the number of mixtures.
Preliminary results on the CMU MoBo database [14] are also presented in this
section. The method to combine model components to capture various degrees
of appearance and temporal features is described in Section 3. In Section 4 re-
sults on human event and Sebastian Marcel Dynamic Hand Posture Database
available at [15] are presented along with a discussion. Conclusions are presented
in Section 5.

2 Events as Mixture of Actions

Events are represented as a mixture of actions and the transitions among these
actions. The representation model consists of an MFA coupled with a probability
transition matrix. MFA is essentially a reduced dimension mixture of Gaussians.
The model learns action mixtures in a low dimensional space, i.e. it accomplishes
the task of clustering and estimating a low dimensional representation simulta-
neously. There are two reasons that argue for action clustering in a subspace
representation. Firstly, different actions may be correlated in different ways, and
hence the dimensionality reduction metric needs to be different between action
mixtures. Secondly, a low dimensional representation may provide better sepa-
rated mixtures. We choose the MFA model to accomplish this task.

Let the total number of frames from examples of all the events be N and
let xt (of dimension d), t = 1 . . .N , denote the t th frame. Subsequences of xt

form actions. For instance, if we consider the event Squatting (which consists of
two distinct actions – standing and sitting), the initial few frames represent the
action standing and the other frames represent the action sitting (refer Figure 2).
The subsequent frames of an action are highly correlated and therefore, for
each xt, a p (' d) dimensional representation zt exists. That is, xt is modelled
as xt = Λjzt + u, where Λj represents the transformation basis for the j th
action and u is the associated noise. Multiple such subsequences, occurring across
different events, are used to learn Λj for each action, and hence the corresponding
low dimensional representation.

Consider a generative process for the ensemble of events based on the MFA
model. An event, which is captured as a set of frames, is composed of var-
ious actions. A typical frame of the event, xt, can be generated as follows. The
action to which it belongs is chosen according to the discrete distribution P (ωj),
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Fig. 2. A few sample frames showing events performed by humans: Squatting (top row),
Flapping (bottom row). Note the presence of a common action – Standing – between
these events. The initial few frames of the event Squatting represent the action standing
while the other frames represent the action sitting. The action standing also occurs in
the initial few frames of the event Flapping.

j = 1 . . .m. Depending on the chosen action, a continuous subspace representation
zt is generated according to p(zt|ωj). Having learnt zt and action ωj , the observa-
tion xt is obtained according to the distribution p(xt|zt, ωj), i.e. xt is modelled
as a “mixture model of actions” according to p(xt) =

∑m
j=1

∫
p(xt|zt, ωj)p(zt|ωj)

P (ωj)dzt, where ωj , j = 1 . . .m, denotes the j th action. This is a reduced dimen-
sion mixture model where the m mixture components are the individual actions.
The probability p(xt) describes the probability of generating a frame given the ac-
tion which it belongs to, and its corresponding subspace representation. The gen-
erative process is to be inverted to learn the parameters of these distributions from
the event sequences. This is achieved using an Expectation Maximization (EM) al-
gorithm. It is a general method of finding the maximum-likelihood estimate of the
parameters of an underlying distribution from a given data set when the data has
missing or unknown values [11]. In this case, the data corresponds to the frames,
the unknown values to the low dimensional representations of these frames and the
actions to which these frames are associated.

The EM algorithm alternates between inferring the expected values of hidden
variables (subspace representation and actions) using observed data (frames),
keeping the parameters fixed; and estimating the parameters underlying the dis-
tributions of the variables using the inferred values. All the event videos are
represented as a sequence of frames and are used for estimating the parameters.
The two phases of the EM algorithm – Inference and Learning – are executed
sequentially and repeatedly till convergence. The E-step (Inference) proceeds
by computing E[ωj |xt], E[zt|ωj , xt] and E[ztz

T
t |ωj , xt] for all frames t and ac-

tions ωj [11]. In the M-step (Learning), the parameters πj , Λj, μj and Ψ are
computed.
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During the E-step the following equations are used.

E[ωjzt|xt] = htjβj(xt − μj)
E[ωjztz

T
t |xt] = htj(I − βjΛj + Λj(xt − μj)(xt − μj)TβT

j ),

where htj = E[ωj |xt] = πjN (xt − μj , ΛjΛ
T
j + Ψ), βj = ΛT

j (ΛjΛ
T
j )−1. The pa-

rameters μj , Λj, j = 1 . . .m, denote the mean and the corresponding subspace
bases of the mixture j respectively. The mixing proportions of actions in the
event are denoted by π. The noise in the data is modelled as Ψ . The expectation
htj can be interpreted as a measure of the membership of xt in the j th action.
Interested readers may derive the equations for M-step easily from [11].

Although the MFA model captures the spatial features as actions effectively,
it does not account for the temporality in events. As shown by Veeraraghavan et
al. [16] both spatial and temporal features are important for event recognition.
This issue is addressed by modelling the dynamism in events as transitions across
the learnt actions ω1, ω2, . . . , ωm. The transition probabilities are computed by
observing zts across the various actions for each event. After the EM algorithm
converges, the action transition matrix Tk = [τk

pq], for each event k, is formed as
follows.

τk
pq =

N−1∑
t=1

[ct = p][ct+1 = q] 1 ≤ p, q ≤ m, (1)

where ct denotes the class label of the frame xt and is given by ct = argmaxj htj ;
j = 1 . . .m. Normalizing the entries in the transition matrix gives the corre-
sponding probability transition matrix Pk. Thus, a compact representation of
the events by automatically learning the m actions in a low dimensional mani-
fold, and the sequencing information are obtained. The structure of the ensemble
of events is contained in the parameters of the actions and the probability tran-
sition matrix, i.e. {(μj , Λj)m

j=1, π, Ψ}, {Pk}K
k=1.

When recognizing events in a new video sequence, the learnt parameters are
used to compute the action mixture (cluster) assignment, ct for each frame xt.
Let c1, c2, . . . , cNs , denote the action assignments for the respective frames of a
Ns frame-long event sequence. The probability that the video frames belong to
the k th event, Sk, is given by Sk =

∏Ns−1
t=1 Pk[ct][ct+1]. The video sequence is

assigned to be the event k∗, which maximizes Sk.
This model is validated using the CMU MoBo database [14]. The frames of the

video sequence are processed minimally before learning the event-set representa-
tion using the EM algorithm described above. The available background images
are used to obtain the corresponding silhouette images. The silhouette images,
represented as vectors, are used to learn the event representation. After the al-
gorithm converges the sequence probabilities of all the events are computed. The
transition probability of a new event video is estimated via the inference step
of the EM algorithm, and is labelled following a maximum likelihood approach.
Even though the four activities in the database (Slow walk, Fast walk, Incline
walk, Walking with a ball) had subtle differences, an average accuracy of 85%
is achieved. These results compete with, and also outperform, those reported
in [16].
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3 Combining Mixture of Actions Models

The relationship between the event recognition accuracy and the number of ac-
tion mixtures is interesting. Varying the number of actions has minimal influence
on the accuracy, beyond a certain limit. For instance, when recognising the event
Flapping (of hands) it was observed that beyond 5 mixtures, the accuracy var-
ied negligibly. Low accuracy is observed initially, when the number of actions is
small, because the temporal characteristics of the event are not modelled. Sim-
ilar behaviour was observed for all the events, except that the optimal number
of actions varied with the event in consideration. Also each of these models cap-
tures different characteristics of the events. This argues for an integrated model
which learns the appropriate number of actions for each event.
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Fig. 3. (a) Event sequences consist of spatial (or appearance) and temporal features.
(b) A summary of the proposed appearance and temporal feature integration model: A
combination of MFAs (MFA 1 . . . MFA M) is used to have the model choose between
appearance (App), temporal (Temp), which are the two extreme cases, and a com-
bination of both features (say, MFA i) adaptively. The contribution of each of these
components in the decision making process is identified by its corresponding weight
(w i).

Varying the number of actions can also be interpreted as varying the appear-
ance and temporal feature content in the event representation. The proposed
adaptive scheme chooses the appropriate model component based on the event
being recognized. The basic model, i.e. mixture of actions model with a tran-
sition matrix to capture the temporality in events, is replicated with different
number of action mixtures in each of them (see Figure 3). The two ideal extreme
cases in this framework are: modelling with (1) a single mixture for each event,
and (2) a separate mixture for every frame of an event. In the training phase,
the relevance of each component model is also estimated for all the events in the
database.
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Theoretically, one may define a single mixture for each frame in the event
sequence. However, such a scheme is inefficient and impractical due to the possi-
bly large number of transitions between these mixtures. The maximum number
of action mixtures is typically decided by the nature of the data set, but is
much lower than the total number of frames. Each mixture of actions model,
Mi, i = 1 . . .M , is trained separately with the frames of all the events using
an EM algorithm, as described in the previous section. By the end of the mix-
ture model training phase, the parameters of the model – {(μj , Λj)m

j=1, π, Ψ},
{Pk}K

k=1 are obtained for each model component.

3.1 Relevance of Each Component

Learning the event representation also involves estimating the relevance of all
the component models for any event. This is estimated by optimizing an objec-
tive function defined over the training set of N video sequences. The objective
function, J(.) is given by

J(Γ ) =
N∑

j=1

M∑
i=1

(γijdij)2,

where Γ ∈ R
MN is a matrix [γij ]. γij denotes the contribution of the i th mixture

of actions model component for the j th video sequence in the data set, and dij

is the distance metric signifying the cost of recognizing the j th sample with the
i th model component. The objective function is minimized over the space of γs.
This is done by using Lagrange multipliers with the constraint

∑M
i=1 γij = 1. The

objective function J is formulated so as to minimize the recognition accuracy
across all the component models. Given that each component model captures
a new composition of temporal and spatial features, this framework provides a
unifying scheme to describe events with different compositions of these features.

On observing that the relevance (or weights) for each event sequence are
independent, the minimization can be done independently in each column. Thus,
the Lagrangian is given by

J (λ, γj) =
M∑
i=1

(γijdij)2 − λ(
M∑

i=1

γij − 1). (2)

Differentiating Equation 2 with respect to γpq, γpq = λ/2(dpq)2. Using this equa-
tion and the constraint

∑M
r=1 γrq = 1, γpq can be computed as

γpq = 1

/
(dpq)2

M∑
r=1

(drq)2 . (3)

Equation 3 provides a method to compute the relevance of component mod-
els, given the distance metrics dij . The distance metrics, in this case, are the
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Fig. 4. A few sample frames showing hand gestures [15]: Click (top) and No (bottom)

likelihoods of the mixture of actions model component Mi, which is the prob-
ability computed from the corresponding transition matrix. Metrics based on
other models such as HMM, SVM, NN, etc., can also be incorporated. Although
the framework is generic, we limit the discussion to our mixture of actions model.

3.2 Weighted Measure to Recognize Events

Once the weights [γij ] are identified for all the events, they are used in the recog-
nition framework. Given an un-trained event video sequence, its corresponding
low dimensional representation is learnt using each of the model components,
Mi, i = 1 . . .M . The likelihood of the event being recognized as belonging to
class j using each of the mixture of actions model components is computed. The
decision criteria based on the weighted sum of posterior probabilities (for class
j) is given by

pj =
N∑

i=1

γijp(j|data,Mi).

The event is labelled as belonging to the class j∗, which maximizes the posterior
probability according to j∗ = argmaxj pj .

4 Recognizing Events

The proposed framework is used to recognise events such as hand gestures and
human events. We used hand gesture sequences from Marcel’s database [15].
Sample frames of some of the events can be seen in Figures 2 and 4. For the
experiment on human events, we used videos of 20 human subjects performing
7 different events for an average duration of 6 seconds. Three samples per sub-
ject per event were used. Video sequences of 10 human subjects, i.e. 10× 7× 3
sequences, and another disjoint set of sequences were used for training and test-
ing respectively. These events occur with the subject either being stationary or
indulging in locomotion. In the former category, we consider events Flapping,
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Table 1. A comparison of recognition accuracy using a single MFA model (which
has a fixed composition of appearance and temporal features) and the combination of
MFA models. On an average, 35.35 percentage reduction in error was observed. Sample
frames of some of these events can be seen in Figures 2 and 4.

Events
% Accuracy

Single MFA Comb. of MFAs

Hand gestures:

Click 89 94

No 88 93

StopGraspOk 90 92

Rotate 86 90

Human Activities:

Flapping 83 88

Jumping 80 86

Squatting 83 90

Waving 82 86

Limping 85 92

Walking 87 93

Hopping 84 90

CMU MoBo database:

Slow walk 84 92

Fast walk 85 94

Incline walk 86 93

Walk with Ball 85 93

Jumping, Squatting and Waving, while in the latter category (involving locomo-
tion), we consider Limping, Walking and Hopping. All the videos were captured
with a Panasonic Digital Video Camera at 24 fps. The model is also validated on
the MoBo Database [14] available from the Robotics Institute, Carnegie Mellon
University. The database consists of 25 subjects performing 4 different walk-
ing activities on a treadmill. Each sequence is 11 seconds long recorded at 30
fps. Data corresponding to one of the view angles (vr03 7 of [14]) is used for
experimentation. The training and testing data sequences were disjoint in all
the three validations.

Minimal preprocessing is done on the video sequences. In order to retain
the visually significant information, background subtraction and normalization
is performed on all the frames. The intensity values obtained are used in the
process henceforth. For the events involving locomotion, the frames are motion
compensated to centre the subject performing the event. Using a set of exam-
ple videos as the training set, the appropriate composition of appearance and
temporal features is learnt, and the parameters that describe them for all the
events (refer Section 3). Same training sequences are used in all the component
models. To recognize an unlabelled test event, the frame sequence transitions
are computed via the inference step of EM algorithm. This results in a set of
sequence probabilities computed for each event. The test video is then labelled
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as the event whose corresponding weighted probability measure is maximum (re-
fer Section 3.2). The recognition accuracy results obtained using the proposed
model and an MFA model are presented in Table 1. When compared to the single
MFA model, we achieved 35.35 percentage reduction in error on average.

4.1 Discussion

We performed a quantitative analysis of the subspace by reconstructing the orig-
inal sequences from the learnt representations. Using Λj and the low dimensional
representation, zt, the original frames, xt, ∀t, are recovered, thereby generating
the entire sequence. The reconstruction error is found to be 0.5%. A comparison
of some of the original and recovered frames is shown in Figure 5.

Fig. 5. A comparison of the original (top) and the reconstructed (bottom) frames of the
activity Squatting. Even though we achieve 99.94% reduction in size, the reconstruction
error is negligible (0.5%).

The recognition process over frames is displayed in Figure 6, as a plot of the
log likelihood for each possible activity. The correct activity Squatting – the
topmost plot in the figure – is clearly disambiguated within the first few frames
(around 5), which shows the ability of the model to obtain all the aspects of the
activity quickly and accurately.

The proposed approach differs from various time-series models in many as-
pects. Our techniques for preprocessing, feature extraction and representation
have considerable advantages, as described below.

– In comparison with a standard left-to-right HMM based on [9], the mixture
model provides superior recognition. For example, HMM results in 88% ac-
curacy for the hand gesture Click, while the mixture model provides 94%
accuracy. Similar improvement (of 6 − 8%) is observed in the case of other
events.
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Fig. 6. Cumulative sequence probabilities for the activity Squatting. The horizontal
axis represents the frame number and the vertical axis represents the logarithm of
sequence probability. The topmost plot (blue dotted line) corresponds to Squatting. A
closer view of the graph (shown in inset) indicates that the activity is recognized after
observing a few frames – 5 in this case. Best viewed in pdf

– The proposed method is related to a standard left-to-right HMM. However,
we work at a lower dimension, which is simultaneously obtained while mod-
elling the event structure. Furthermore, a single observation model is used
to train all the events in the ensemble unlike HMMs where each event is
modelled separately [9].

– Events have been modelled, in the past, using a variety of features [1,7,9].
Most of these methods involve large amount of preprocessing. In contrast,
we perform minimal preprocessing and avoid any explicit feature extraction.
It is limited to background subtraction and binarization of the individual
frames.

5 Conclusion

The mixture model presented in this paper adapts based on the set of events
being considered. It learns an optimal combination of various mixture of ac-
tions model components. It can also be interpreted as a unifying framework for
combining appearance and temporal features in events. The composition of the
feature content is controlled by the number of mixtures in the model. The ap-
plicability of this framework has been demonstrated using the Mixture of Factor
Analyzers model. However, it can easily incorporated in other mixture modelling
schemes such as Gaussian Mixture Models. Other video (or event) analysis prob-
lems which require a higher level of semantic understanding are yet to explored.
Incorporating a discriminant based scheme into this framework is another inter-
esting direction.
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Abstract. This paper presents an approach to identify the importance
of different parts of a video sequence from the recognition point of view.
It builds on the observations that: (1) events consist of more fundamental
(or atomic) units, and (2) a discriminant-based approach is more appro-
priate for the recognition task, when compared to the standard modelling
techniques, such as PCA, HMM, etc. We introduce discriminative actions
which describe the usefulness of the fundamental units in distinguishing
between events. We first extract actions to capture the fine character-
istics of individual parts in the events. These actions are modelled and
their usefulness in discriminating between events is estimated as a score.
The score highlights the important parts (or actions) of the event from
the recognition aspect. Applicability of the approach on different classes
of events is demonstrated along with a statistical analysis.

1 Introduction

An event may be considered as a long-term temporally varying object, which typ-
ically spans over tens or hundreds of frames [1]. The problem of recognising events
has received considerable research attention over the past few years [2,3,4,5,6,7].
It has gained importance because of its immediate applicability to surveillance,
gesture recognition, sign language recognition, Human Computer Interaction,
etc. [4,8,9]. Many approaches have been proposed in the past to recognise events.
Early methods typically employed 2D or 3D tracking to temporally isolate the
object performing the event. Subsequent to tracking, the event is recognised by
extracting higher-order image features [6, 9]. An excellent review of such classi-
cal approaches for event recognition can be found in [2]. Owing to the inherent
dynamism in events, Hidden Markov Models (HMMs) [10] and Finite State Ma-
chines [5] have been popular to address the event recognition problem. Further-
more, models such as HMMs provide elegant ways to incorporate the variability
in a large collection of event data.

Another significant direction in event analysis research is to extract static
image features from dynamic events [8,11,12]. Bobick and Davis [11] introduced
Motion History and Motion Energy Images, which represent the recency and
spatial density of motion respectively. In some sense their approach reduces the
dimensionality of the event recognition problem from a 3D spatiotemporal space
� Currently at Oxford Brookes University, UK.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 552–563, 2006.
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(a)Standing
In−air action

Standing . . .

(b)Standing Sitting Standing
. . . . . .

Fig. 1. A few sample processed frames (silhouettes) of the two events: (a) Jumping
(first row), and (b) Squatting (second row), showing the constituent actions. Note the
presence of a common action – Standing – between these events.

to a 2D image space. More recently Yilmaz and Shah [8] proposed a method to
generate spatiotemporal volume (STV), in (x, y, t) space, using contours of the
subject performing the event. The 3D “objects” are then recognised using dif-
ferential geometric properties of STV. These methods either analyse the entire
video sequence with a single image feature, which fails to capture the fine char-
acteristics in events, or treat all parts of the sequence with equal importance,
which leads to confusion in recognising highly similar events.

A method to recognise events using features which have optimal distinguishing
characteristics is described in this paper. Our approach is motivated by the
following observations.

– Events comprise of more fundamental (or atomic) units, which we refer to
as actions. They are subsequences of the event sequences, and are a gen-
eralisation of the two extremes, namely the individual frames in an event
(finest detail) and the entire video (coarsest detail). Analysing a video at
the finest detail fails to capture the dynamism in events. On the other hand,
analysing a video as a whole does not provide the fine details in various parts
of the event sequence. Actions provide a natural mechanism to control the
coarse-to-fine detail in the analysis.

– Due to the bulky nature of video sequences, it has been common to extract
features in a low dimensional space. PCA is a popular modelling technique
used to achieve this [2, 4]. However, it has been argued that discriminant
techniques are more useful for the recognition task, when compared to mod-
elling techniques [13].

– A direct discriminant analysis of video sequences, analogous to that per-
formed on images, is not meaningful. This is because the relationships
between parts of a video sequence are important, unlike the relationships
between parts of an image. It is semantically useful to perform such an anal-
ysis at the action level.

Features, in the form of actions, are extracted to capture the fine characteristics
of individual parts in the events. These actions are modelled and their usefulness
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in discriminating between events is estimated as a corresponding score. The score
highlights the important parts (or actions) of the event from the recognition as-
pect. Using the estimated discriminatory scores and the corresponding action
distances, a similarity measure is computed when comparing two events. The
main advantages of our approach are as follows: (1) It requires minimal pre-
processing of videos. In most situations where the video is recorded using a
fixed camera, the background is relatively known, the silhouettes (see Fig. 1)
can be extracted easily. (2) It is fast and does not require careful parameter
tuning. (3) It is robust to the scheme used to extract actions from the events
(Section 4.3).

1.1 Are Events Atomic?

Complex events such as people gesturing when interacting with others [14], play-
ing Tennis [1], doing Aerobics [8], etc., are made up of more fundamental units.
In fact, even simpler events such as a person squatting (see Fig. 1b) comprise
of fundamental units: standing and sitting, in this case. Many researchers in the
past have made similar observations [1, 3, 5, 15]. The fundamental (or atomic)
units of events have been represented in many forms – as states of a stochastic
finite automaton [5], components of PCA [15], the hidden states of HMMs [10],
key frames in the event video [3], canonical poses [16], etc. There have also
been approaches which analyse the event sequences in a window or block based
fashion [1] to capture the granularity in the events.

All the above methods constitute a class of approaches which are designed to
model the data in an optimal way. They deal with the representational aspects
of events. It has been argued that such modelling techniques, suited for efficient
representation, need not be the optimal for the classification task [13]. Discrim-
inative models are more appropriate for the recognition task. However, it is not
evident how these models can be derived in the context of video sequences.

This paper presents a discriminative model to recognise events effectively.
In the past there have been a few attempts to use discriminant techniques for
analysing video sequences, but are limited to either tracking [17] or gait-based
human recognition [18]. We identify the actions in events, i.e. subsequences of
the event sequences, which are more useful in discriminating between two events
by analysing their statistical characteristics. The individual actions in the event
are modelled to compute their discriminatory potential – the relative importance
for distinguishing events – following a Fisher-like formulation [19]. To account
for the statistical variability in each event, a collection of example event se-
quences is used. Each action together with its discriminatory potential is called
a discriminative action. Using the discriminatory potentials (or weights) and
the corresponding action distances for individual actions, a statistical distance
measure is computed. Action distance denotes the similarity of two correspond-
ing actions. In contrast, Han and Bhanu [18] use discriminant analysis only to
extract features for human recognition based on gait. Also, unlike our approach
the discriminative characteristics are not explicitly incorporated into the decision
making process.
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w2w1

Classifier

More useful !Less useful !

... ...

C2

N2

... ... C1

N1

Fig. 2. Sample hand gesture frames showing two parts with different discriminatory
potentials. Here the events Click (C) and No (N), the two events posses similar prop-
erties at the beginning of the sequences. The latter frames are more useful in the
classification task when compared to the former frames. The individual segments (two
shown here) of the video sequences are modelled and their discriminatory potential is
combined to compute a similarity score.

The rest of this section discusses the motivation through an example. Section 2
presents the technical background along with an outline of the approach. The
algorithm to obtain discriminant-based features for event sequences is given in
Section 3. Section 4 presents results on two categories of event videos, namely
hand gestures and human activities, along with a statistical analysis. Section 5
provides concluding remarks.

1.2 Motivation

To better appreciate the need for discriminative approaches for event recognition,
consider the example illustrated in Fig. 2. It shows sample frames from two hand
gesture [14] events: “Click”, “No”. The high degree of similarity among the
gestures establishes the need to select the features which discriminate between
the two event classes.

In the Click event (see Fig. 2) the subject moves his index finger vertically
up and down, while in the No event the subject moves his index finger sideways
horizontally, as if “saying” no to something. The two events appear to posses
similar properties at the beginning of the sequences (where the finger remains in
an almost stationary vertical state). As the complete event video sequence begins
to appear over time, the distinguishing characteristics unfold, i.e. the latter
frames of the sequence are more useful for discriminating between the two events
when compared to the former frames. Hence, the latter frames should contribute
more towards the decision making process. As shown in Fig. 2, the objective
is to identify actions C2 and N2 which map to a feature space wherein the
events are clearly distinguishable. The other parts (C1 and N1 in this example)
owing to their similarity may not contribute much to the decision criteria. The
popular pattern recognition approaches do not allow for such a scheme on video
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data. They give equal importance to all the actions when comparing two event
sequences, which may not be optimal, as in this case.

2 Semantic Discrimination of Events

Distinguishing between different parts of an event sequence, requires the need to
“weigh” them appropriately when computing the decision criterion. This is in the
spirit of Discriminant Analysis and Statistical Pattern Recognition techniques.

Fisher Discriminant Analysis (FDA) is a popular feature extraction scheme
for 2-class problems [19]. It has been used to compute Fisherfaces in the image
domain, which are optimal for recognition tasks [13]. FDA finds an optimal
direction ϕ along which the between-class variance is maximised and the within-
class variance is minimised. The criterion function J(.) is defined as

J(ϕ) =
ϕT Sbϕ

ϕT Swϕ
, (1)

where Sw and Sb are the within-class and the between-class scatter matrices.
The function J(.) is maximised to compute the optimal ϕ for discriminating
between the patterns. It is shown that any vector ϕ which maximises the Fisher
criterion in Equation 1 satisfies Sbϕ = λSwϕ for some constant λ [19]. This can
be solved as an eigenvalue problem. Thus, the discriminant vector ϕ is given by
the eigenvector corresponding to the largest eigenvalue of Sw

−1Sb. Extensions
of Fisher Discriminant Analysis such as Multiple Discriminant Analysis, Ker-
nel Discriminant Analysis, incremental LDA have also been used in computing
discriminant features.

2.1 Event Recognition Using Discriminative Actions

Consider two video sequences A and B which belong to events (classes) A and B
respectively. They represent a sequence of image frames where the corresponding
event, like Click, No, etc., is captured.

The similarity between the two video sequences A and B can be computed by
comparing the sequences directly. If the sequences are of different lengths, say
due to variation in frame rate of video capture or duration of the event, a nor-
malisation can be done by resampling. However, this naive comparison of video
data frame-by-frame is not valid since the event of interest is macro in nature
and cannot be captured from one sample frame. An appropriate intermediate
subsequence is chosen for the representation to overcome this problem [1]. The
problem we address is identification of the contribution of each of these subse-
quences (or actions) for the global dissimilarity/discriminative information for
the given video sequences.

Let Ak and Bk, k = 1, 2, . . . , s be the s actions extracted from the video
sequences A and B respectively. Discriminative actions from a collection of event
examples are computed as follows. Each action is represented as a corresponding
static image by modelling its inherent dynamism. It is then modelled using
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Discriminant History Images. This produces s images each for both the events.
The discriminatory potentials computed for different parts of the video sequences
and the action-action distance metrics are used to compute a weighted decision
score when recognising a new video sequence.

Before segmenting the video sequences temporally, to extract the actions,
they need to be aligned to account for the difference in frame capture rate. It is
assumed that the collection of input video sequences is either already aligned or is
captured at a uniform frame rate. A further discussion on the alignment schemes
is beyond the scope of this paper. When the video sequences are captured at a
uniform frame rate, the sequences are already aligned, and are directly segmented
temporally. This process can also be understood as that of analysing the video
sequence in a window-based fashion [1]. The number of actions is determined
based on the set of events under consideration. For the experiments on videos
sequences captured at 25 fps, with about 150 frames each, 6 actions are used,
with the assumption that each action is performed in approximately 1 second.

3 Recognition Based on Discriminative Actions

In this section, the technical details of the approach to identify discriminative
actions, and subsequently use them to recognise events are presented. The sep-
arability of the two events is maximised and the variability within the event is
minimised to compute these actions.

3.1 Computing Discriminative Actions

Representing Actions: Each action Ak consists of a set of image frames that
describe the inherent dynamism in the action. The action characteristics are
modelled using Motion History Images (MHI), which capture the dynamism in
events, proposed by Bobick and Davis [11]. Although other modelling techniques
are applicable in this context, for the results in this paper MHI features are
used. They represent how motion is occurring in the actions. Given NA and NB
instances each for the events A and B, the MHI of the j th instance of the action
Ak is denoted by θk

Aj . Similarly, θk
Bj for the j th instance of the action Bk.

From [11], the intensities at pixels in the history image at time instant t, Hτ (t),
are a function of the temporal history of the motion of the corresponding pixels.
It is defined as Hτ (t) = τ, if I(t) = foreground; max(0, Hτ (t− 1)− 1), otherwise,
where τ is a pre-determined constant and I(t) = foreground denotes the set of
all pixels belonging to the event-performing subject. History Image features are
computed for the last frame of every action. This provides exactly one History
Image feature for each action. For instance, if there are pk

j image frames in the j
th instance of the action Ak, θk

Aj = Hτ (pk
j ). MHI features of a few sample video

segments are illustrated in Fig. 3a. The motion trails of these actions clearly
show how the motion is occurring. To enhance the discriminating characteristics
between the two events, the relevance of individual actions for the recognition
task is computed.



558 K. Alahari and C.V. Jawahar

Computing the Discriminatory potential: The usefulness of a k th action for the
recognition task is identified by ϕk, k = 1, 2, . . . , s. It is computed such that the
action features have optimal distinguishing characteristics along the direction of
the vector ϕ. The within-class scatter (variability within events) is minimised
and the between-class scatter (separability of events) is maximised for this. These
scatter matrices are defined as

Sw =
∑

i∈{A,B}

Ni∑
j=1

(θij − θ̄i)(θij − θ̄i)T ,

Sb = (θ̄A − θ̄B)(θ̄A − θ̄B)T ,

where the number of instances in class i is denoted by Ni, the symbols without
the superscript k denote the sequence features with the action representations
(MHIs) computed for each action stacked as rows, and the mean over the in-
stances of a class i is given by θ̄i = 1

Ni

∑Ni

j=1 θij . Also, (θij − θ̄i) is the distance
measure defined in the representation space. Here, the s×s matrices Sw and Sb

capture the within-class and between-class scatters at the action level. Each en-
try of Sb = {bij} represents the variance between actions Ai and Bj over the set
of all instances. Maximising the objective function in Equation 1 results in a dis-
criminant vector of length s along which the classes possess large discriminating
characteristics. Fig. 3b shows the actions and their corresponding discriminatory
potentials for the event pair Click vs No. Discriminative actions are computed
from a collection of example event video sequences. This constitutes the training
phase of the proposed approach which is summarised below.

1. Align all the event video sequences in the training set with respect to a tem-
plate video sequence, and segment them temporally to obtain s subsequences
(or actions) for all the instances in the two classes A and B. If it is known
that the instances are captured at a uniform rate, segment them temporally.

2. Use Motion History Images (MHI) to compute the action representations
and obtain the features: {θk

Aj , θ
k
Bj}s

k=1.
3. Compute the discriminant vector ϕ, whose elements denote the relative im-

portance of each action, by minimising the objective function J(.) according
to Equation 1.

3.2 Recognising Events

Let T be the event sequence which is to be recognised. It is labelled as class i∗ ac-
cording to i∗ = arg mini∈{A,B}Dϕ(T, i), whereDϕ(T, i) defines the cost of recog-
nising the sequence T as the sequence i in the discriminative feature space. The
matching costDϕ(T,A) is given byDϕ(T,A) = f(ϕ1 . . . ϕs, θ

1
T . . . θ

s
T, θ

1
A . . . θ

s
A).

The MHI features θ1
T, . . . , θ

s
T of the actions from the test sequence are com-

puted as described before for the training set. The function f(.) models Dϕ as a
combination of the action level matching costs dk(.) and the weights ϕk, which
discriminate between the actions. In other words, f(.) =

∑s
k=1 ϕkd

k(θk
T , θ

k
A),

where dk(.) is defined as the Euclidean distance between the two MHI feature
vectors.
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Action 1 Action 2 Action 3 Action 4

0.006 0.030 0.152 0.197

Click

No

(a) (b)

Fig. 3. (a) Motion History Images (MHI) of the events Flapping, Squatting and Waving
respectively, clearly illustrating the motion trails. (b) MHI features computed using 4
actions of the events Click, No, and their corresponding discriminatory potential (shown
in the last row). The first two actions have low discriminatory potential owing to their
similarity. The last two actions are more useful for the classification task.

Significance of ϕ: Along the direction of the vector ϕ the ratio of between-
class scatter and within-class scatter is maximised. When the data points, say,
ΘT = [θk

T ], k = 1, 2, . . . , s, and ΘA = [θk
A], k = 1, 2, . . . , s, are projected onto this

direction as ϕTΘT and ϕTΘA respectively, each element of ϕ acts as a weight for
the corresponding dimension. In this lower dimension space, the distance between
two events T andA is expressed as a weighted linear combination of the distances
along each dimension. The distance function f(.) defined above can also be writ-
ten as f(.) = ϕTD(ΘT , ΘA), where D(ΘT , ΘA) = [d1(θ1

T , θ
1
A), . . . , ds(θs

T , θ
s
A)]T .

Assuming that the distance functions are metric, f(.) can be simplified as f(.) =
D(ϕTΘT , ϕ

TΘA) = Dϕ(T ,A). Thus, using metric distances the similarity be-
tween two events can be computed as a weighted linear combination of the
action-level distances and the elements of the discriminant vector.

4 Experiments and Results

Results are presented on two classes of event video sequences – hand gestures
and human activities. Both recorded and publicly available videos are used to
test the applicability of the model.

4.1 Hand Gestures

Recognising hand gestures has received a lot of attention in the recent past. It
finds innumerable applications in HCI, Virtual Reality [4], wherein input to the
computer can be regulated through various hand gestures, for instance control-
ling the visualisation of a CAD model. One of the challenges in hand gesture
recognition is the high degree of similarity among the events. Hand gesture
videos from Marcel’s Dynamic Hand Gesture database [14] are used. It consists
of 15 video sequences for each of the 4 dynamic hand gestures, namely Click,
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No, StopGraspOk and Rotate. The data was divided into separate train and
test sets. Results on three of the possible pairs – Click vs No, StopGraspOk vs
Rotate, Rotate vs Click – which have a high degree of similarity between them
are discussed. Sample frames of a couple of hand gestures are shown in Fig. 2. It
can be observed that the two gestures are highly similar in the initial few frames
and their distinguishing characteristics unfold over time in the latter frames.
Following is the summary of the experiment conducted on this data set.

1. Minimal preprocessing (background subtraction and subsequent threshold-
ing) is performed to the eliminate the background from the scene. The actions
in the events are extracted according to the method discussed in Section 2.1.

2. Discriminative actions are estimated by modelling the actions as MHI fea-
tures and computing their corresponding discriminatory potential, according
to the method described in Section 3.1.

3. Given a new video sequence (of one of the trained categories) to recognise,
we perform Step 1, model the actions as MHI features, and then use the
estimated discriminant weights to compute the similarity score. The video
sequence was labelled as discussed in Section 3.2.

The accuracy results on this data set are illustrated in Table 1. Results are
compared to those obtained from a technique which gives equal importance to
all parts of the sequence. No resubmission error is observed in the case where
an optimally weighted distance measure is used. On average a percentage error
reduction of 30.29 on about 200 video sequences is observed. Fig. 3b illustrates
the Motion History Image features computed for 4 segments of Click, No ges-
tures. It shows that the latter frames of the event sequence are more useful for
the classification task.

4.2 Other Activities

Recognition of events involving humans finds many applications in surveillance
[2, 6, 11]. Most events performed by humans are marked by a considerable de-
gree of commonality among them (for instance, see Fig. 1). This observation
is exploited through the proposed discriminative action based method. For this
experiment videos of 4 events, namely Jumping, Squatting, Limping, Walking,
performed by 20 different people for an average duration of 6 seconds each, are
used. These events occur with the subject either stationary or indulging in loco-
motion. In the former category, events Jumping and Squatting are considered,
while in the latter category, Limping and Walking are considered. The videos
are captured with a Panasonic Digital Video Camera at 24 fps. The data set is
divided into distinct train and test sets. Minimal preprocessing is done on the
video sequences as follows. In order to retain only the visually significant infor-
mation, background subtraction and normalisation was done on all the frames.
Motion compensation is also performed to centre the subject for the events where
locomotion is involved. The events are temporally segmented into actions and
are modelled using MHI features. The modelled actions are used to estimate the
corresponding discriminatory potential. To recognise an unlabelled test event,
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Table 1. Recognition accuracy for about 200 video sequences. On an average a 30.29
percentage reduction in error is observed.

Event Pair
% Accuracy

Equal weights Optimal weights

Click vs No 91 93

StopGraspOk vs Rotate 90 92

Rotate vs Click 87 92

Jumping vs Squatting 85 90

Limping vs Walking 87 91

the sequence is preprocessed as above and the similarity measure is computed
with respect to the two learnt event representations. The test video is then la-
belled as the event for which the weighted similarity measure is maximum (refer
Section 3.2). The recognition accuracy results on these events are presented in
Table 1. On an average, 32.05 percentage reduction in error is achieved.

4.3 Statistical Analysis

The proposed method improves the compactness and the separability of events.
Within-event and between-event scatters in the standard and the discriminant-
based feature spaces are computed to quantify the performance of the approach.
This is done on a set of Click and No video sequences. Optimality of the feature
space is defined in terms of the compactness (low variance within an event) and
the separability (high variance between events) of the classes. Low within-event
and high between-event scatters shown in Table 2, after transforming the fea-
tures to a discriminant-based feature space, support our claim that this method
identifies an optimal discriminant feature set.

The proposed approach is also not sensitive to the action extraction method
used. It is observed that changing the action extraction method leads to negligi-
ble change in recognition accuracy. A noticeable change is observed only when
the event is modelled as a single action. In the case of Rotate vs Click video pair,
the average recognition accuracy was about 87% when modelled with a single
action, and 91% when modelled with two actions. This is due to the fact that,
the discriminatory potentials of different parts of the sequence are not exploited
in a single action. Similar behaviour is observed on other video sequences.

The recognition scheme presented is applicable in a multiple class scenario as
well. There are many ways of combining pairwise classifiers for solving multiple
class problems. We use a Directed Acyclic Graph [19] is used to achieve this.
The DAG is built following a one-vs-one architecture, where each node is a 2-
class classifier. Multiple video sequences of 5 events are used to compute the
recognition accuracy. All the 10 possible pairwise combinations of these events
are trained to get the corresponding optimal weights. The results of this analysis
are presented in Table 3. It shows the accuracy results in the multiclass scenario
and certain pairwise combinations of events. The discriminant weight approach
shows significant improvement compared to the equal weight approach.
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Table 2. Performance of the model in identifying an optimal discriminant feature
space. The within-class and the between-class scatters for both the classes (Click: Class
1 and No: Class 2) in the standard and the proposed discriminant-based feature spaces
are shown. The values are computed by considering the events to be comprising of
3 actions. Low within-event and high between-event scatter values indicate that our
approach identifies a feature space wherein the classes are compact and well-separated.

Feature Space Within-class scatter Between-class scatter

Standard
Class 1 5.025

Class 1 vs 2 6.174
Class 2 4.619

Discriminant-based
Class 1 3.907

Class 1 vs 2 15.958
Class 2 2.794

Table 3. Event recognition results for 5 events in a multiclass scenario. The notation
x/y denotes x misclassifications for y sequences. Some of the pairwise combination
results (among the 10 possible combinations) are also shown. Similar results are ob-
served on other pairs. In all cases the discriminant weight approach outperforms the
equal weight approach.

Multiclass classification Pairwise classification

Event
No. of misclassifications Event

Pair
No. of misclassifications

Equal weights Optimal weights Equal wts. Optimal wts.

1 8/70 5/70 1 vs 2 12/140 5/140

2 6/70 6/70 2 vs 3 14/140 8/140

3 8/70 4/70 3 vs 4 9/140 6/140

4 5/70 4/70 4 vs 5 11/140 7/140

5 5/70 3/70 1 vs 5 10/140 6/140

5 Conclusions

This paper addresses the issue of identifying the importance of different parts
of a video sequence from the recognition point of view. It highlights the impor-
tance of feature selection for recognising rather than just representing events. An
adaptive technique which chooses the important features from an event sequence
is described. It demonstrates that a fixed feature selection scheme may not be
appropriate for a wide class of events. This approach: (a) provides a mechanism
to identify the video segments (actions) and their importance statistically, (b) is
suitable for various domains involving analysis of sequential data such as video
event sequences, online handwriting, etc., (c) is straight-forward to implement
without requiring careful parameter-tuning, and (d) can be extended on the lines
of Multiple Discriminant Analysis and Kernel Discriminant Analysis.
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Abstract. Gesture segmentation is an extremely difficult task due to
both the multitude of possible gesture variations in spatio-temporal space
and the co-articulation of successive gestures. In this paper, a robust
framework for this problem is proposed which has been used to segment
out component gestures from a continuous stream of gestures using finite
state machine and motion features in a vision based platform.

1 Introduction

One very interesting field of research in Pattern Recognition that has gained
much attention in recent times is Gesture Recognition. Hand gesture recognition
from visual images finds applications in areas like human computer interaction,
machine vision, virtual reality and so on. Many vision-based gesture recogni-
tion systems assume that the input gestures are isolated or segmented. This
assumption makes the recognition task easier, but at the same time it limits the
naturalness of the interaction between the user and the system, and therefore
negatively affects the user’s experience. In more natural settings, the gestures of
interest are embedded in a continuous stream of motion, and their occurrence
has to be detected as part of recognition. This is precisely the goal of gesture
spotting i.e., to locate the start point and end point of a gesture pattern, and
to classify the gesture as belonging to one of predetermined gesture classes. An-
other important issue of gesture recognition is co-articulation, which makes the
extraction and segmentation of gesture commands even harder in continuous
hand movements. Co-articulation is a phenomenon in which one gesture influ-
ences the next in a temporal sequence [1]. This happens due to hand movement
during transition from one gesture to the next. The problem is very significant
in case of fluent sign language. Recognition of co-articulated gestures is one of
the difficult tasks in gesture recognition.

Zhao et al. calculates velocity, and treats local minima in the velocity as
gesture boundaries [2]. However, this method does not produce gestures that
are consistent with human perception. The indirect approach uses a state space
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model of gestures [3]. Lee and Kim proposed a gesture spotting system using a
threshold model that calculates the threshold likelihood of a given input sequence
as the basis of approving or rejecting the input pattern as a gesture. For gesture
spotting, this system detects the end point of a gesture and finds a correspond-
ing start point by searching the Viterbi path from the end point [4]. However,
the method has a problem in that the system cannot report the detection of a
gesture immediately after the system reaches its end point. Moreover they used
heuristic information, such as moving the hand out of the camera range. Such
a heuristic is not very natural to humans. Nishimura and Oka also proposed a
gesture spotting method using continuous dynamic programming (CDP), which
worked on a frame-by-frame basis and matched a sequence of input feature vec-
tors and standard patterns corresponding to each gesture [5]. The matching
result is the cumulative distance between cumulative frames and a gesture, and
the best match is the result of spotting and recognition. However, this approach
is limited to sets of gestures that do not contain any intermediate poses that
resemble the start or end poses. In practical applications, this approach of using
state-space models for achieving gesture segmentation and recognition severely
limits the number of gestures that can be segmented. Vogler and Metaxas used
context-dependent HMMs for recognition of continuous gestures [6]. However
the context-dependent modelling has some inherent problems. First, it is lin-
guistically implausible, because it fails to model movement epenthesis properly.
Second, by using signs as the basic phonetic unit, the number of states used in
the HMM recognition network grows roughly with order of O(W 2), where W is
the number of signs in the vocabulary, as the number of possible contexts itself
grows with order O(W 2).

Though the “segmentation” as well as “co-articulation detection” are the the
most important and open research issues for continuous hand gesture recogni-
tion, not much vision based approaches are reported till date of this research
work. The techniques developed so far for co-articulation detection are not al-
ways successful for wide range of gesture vocabulary. Moreover, these algorithms
do not address the problems associated with the recognition of continuous hand
gestures of different spatio-temporal behavior viz., gestures having only local mo-
tions, gestures having only global motions, gestures having both local and global
motions, and also fluent finger spelling. Motivating by these facts, we propose
a more general and relatively simple model for continuous gesture segmentation
by combining good features of state based and motion based approaches. In our
method, we first segment the input video stream by detecting gesture boundaries
at which the hand pauses for a while during gesticulation. Next, every segment
is checked for co-articulation via finite state machine (FSM) matching or by
using hand motion information. Thus, co-articulation phases are detected and
eliminated from the sequence and we are left with a set of isolated gestures. We
proposed to use FSM for segmentation of gestures having only local hand mo-
tions, where we used only some selected frames for building up a gesture model.
For gestures having both local and global motions, we first determine the co-
articulated strokes and subsequently used it for determining gesture boundary.
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2 Proposed Scheme for Gesture Spotting and
Co-articulation Detection

2.1 Gesture Boundary Detection

Generally a gesture starts and ends with the hand staying in a standstill position
for a while. That is, a signer generally starts making a sign from a “pause” state
and ends in a “pause” state in case of continuous gesturing. Based on this idea,
we propose to use the hand motion information for locating the boundary points
of each individual gesture in a continuous stream of gestures. A boundary point
is detected whenever the hand pauses during gesturing.

The first step in the proposed method for gesture spotting involves generating
the video object plane (VOP) from each input frame in the continuous stream
of video. A series of key VOPs are extracted from the generated VOPs, which
also gives the duration of each key VOP in terms of the number of frames
between each pair of key VOPs [7]. A VOP model diagram showing a portion of
a continuous gesture sequence is given in Fig. 1. The diagram shows two gestures
in the sequence connected with a co-articulation phase in between them. In the
figure, KVOPm,n represents the nth key VOP in gesture number m and Tm,n

is the corresponding time duration, expressed in terms of the number of video
frames between KVOPm,n and KVOPm,n+1

Non gesture 
(Co−articulation phase)

Gesture 2Gesture 1

KVOP KVOP KVOP1,1

1,1 1,2
T

1,31,2 KVOP KVOP

T
co−art

KVOP21

T

KVOP22

2,1T

time

VOP VOP VOP VOP VOP VOP VOP VOP VOP VOP VOP VOP

Fig. 1. VOP model for a portion of a continuous gesture sequence showing co-
articulation

A key VOP in the sequence corresponds to a particular hand shape and/or
position and the key VOP duration indicates the time for which the hand remains
more or less fixed in that pose and position. This key VOP information is used
in the proposed gesture spotting algorithm as well as for gesture recognition. For
gesture spotting, a “pause” in the sequence is detected whenever the duration
of a key VOP exceeds or at least equal to the minimum time for which the hand
pauses at the starting or ending of a single gesture, as determined during the
training session.

In the proposed algorithm, we assume that the camera starts capturing the
hand image sometime before the signer starts gesturing. Therefore, the first
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Fig. 2. Gesture sequence starting point detection

“pause” in the video indicates the starting of the first gesture in the sequence,
as illustrated in Fig. 2. The gesture may end when the next “pause” in the video
stream is spotted. Assuming that there is always some non-gestural movement
in between two gestures, the third and fourth “pauses” in the input video will in-
dicate the starting and ending of the second gesture in the sequence respectively
and so on. Thus, all the gestures in the input sequence can be conveniently se-
lected out. However, the scheme will fail under certain situations, as listed below,
and will result in incorrect spotting of gestures.

1. The assumption that there is always some non-gestural movement of hand
in between two gestures may not be always true. For example, if the end
position or pose of a gesture is same as the start position or pose of the
next gesture then there is generally no extra movement in between these
two gestures. In that case, the two gestures are adjoined to each other in
the sequence with a common “pause” indicating end of the first gesture and
start of the next gesture.

2. In the case of fluent finger spelling, there is generally no motion during the
gesturing period while the hand may move in between two gesture poses
due to co-articulation. That means, here a “pause” itself in the sequence
corresponds to a gesture sign as if the start-point and end-point of the gesture
have merged together.

3. In the case of gestures involving global hand motion, there may be some
“pauses” within a single gesture. When the hand traverses in space, it makes
one or more hand strokes to build up a complete gesture trajectory. Since a
hand stroke generally starts from a “pause” and ends in a “pause”, a multi-
stroke gesture will contain some extra pauses in between. Some examples of
ideal gesture trajectories that are made up of one or more gesture strokes are
shown in Fig. 3. The first two examples are gestures having global motion
only representing “One” and “Square”, respectively. As we see in the figure,
“One” is a single stroke gesture while “Square” is made up of four strokes.
Therefore, the gesture “One” will start from a pause and will end in the next
“pause”. But, there will be three intermediate “pauses” in the “Square” in-
dicating gesture. The last example is the trajectory of a gesture composed
of both local and global motions that represents a sentence in sign language.
Here each word in the sentence is signed by a single stroke associated with
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(a) (b) (c)

Fig. 3. (a) Single hand stroke for a gesture (b) Multiple hand strokes for a gesture (c)
Multiple strokes for a sentence of sign language

changing the hand pose. Hence, the number of strokes in the gesture is equal
to the number of words in the sentence. Accordingly, for this example, there
will be one extra pause in between.

Hence, it is not always possible to have reliable spotting of gestures only by
detecting pauses in an input video. In view of this, we propose to check the
nature of hand movement in every video segment in between two “pauses” in the
input stream. Assuming that there is no unintentional movement other than co-
articulation in between gestures, the proposed gesture spotting method requires
to determine the occurrence of co-articulation in the sequence. This is done
through FSM matching and/or using motion features, as explained in the next
section.

2.2 Co-articulation Detection in Continuous Gestures with Local
Motion Only

Following two steps are used for co-articulation detection for gestures having
only local hand motions.

Step 1: We assume that after completing a gesture, the signer holds his hand
for sometime in the last signed pose in the gesture and then quickly moves it to
the starting pose of the next gesture in the sequence. The signer does this by
bending his fingers and/or moving his palm in a very short span of time while
holding the hand more or less fixed at one position in space. That means, the
co-articulation phase is also made up of local hand motions only and hence may
be represented by an FSM model. Now since there is fast change in hand shape
during co-articulation compared to that during a gesturing phase, the time du-
ration associated with each state of an FSM representing co-articulation will be
generally very small than that for an FSM representing a gesture. Therefore,
co-articulation in continuous gesturing may be detected if the key VOP dura-
tions in between two “pauses” are below a certain threshold. The value of this
threshold may be decided during the training session.

Step 2: The co-articulation detected in Step 1 can be verified by representing
the KVOPs in the detected co-articulation phase by an FSM. The input video
sequence is represented by an FSM and is matched to all the prototype FSMs
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contained in the database, each prototype FSM representing a local motion
gesture in our gesture vocabulary. If no match is obtained then co-articulation
is detected.

2.3 Co-articulation Detection in Continuous Gestures Having
Global Motion

In the case of gestures having global motion only or gestures having both global
and local motions, the gesturing hand traverses in space to form a gesture tra-
jectory. After a gesture trajectory is complete, the hand pauses for a while and
then moves with very high velocity to the starting position of the next trajectory.
After that, the hand again pauses for a while before starting the next trajectory.
Based on this, we now propose to detect co-articulation by observing the motion
of the hand between two “pauses” in the input hand motion video.

A gesture phase can be divided into three motion stages – preparation, stroke
and retraction, in addition to the starting and ending “pauses” [8]. On the other
hand, a co-articulation phase starts from a pause, makes a fast hand stroke and
finally ends up in another pause. Therefore, it is possible to distinguish a co-
articulation from a gesture stroke if we can determine the behavior of the gestur-
ing hand in between two “pauses”. For this, we compute two motion parameters,
viz., velocity and acceleration, at every key VOP instant and decide the nature of
hand movement at that instant. The proposed scheme for co-articulation detec-
tion in the continuous gestures with global hand motions consists of the following
two stages.

Step 1: Co-articulation detection by motion features

Acceleration feature for co-articulation detection:

The most important motion parameter that can discriminate a co-articulation
phase from a gesture is the change in speed or acceleration. During co-articulation
the speed of the hand increases to a very high value from almost zero value and
then abruptly comes down to almost zero as illustrated in Fig. 4. That means,
the hand moves with very high acceleration (positive or negative) during the co-
articulation phase. On the other hand, during gesturing the speed of the hand
gradually increases from a pause, may remain constant for sometime and then
gradually comes down to almost zero. Therefore, acceleration feature may be a
good measure to check for co-articulation.

Velocity feature for co-articulation detection:

The speed of the hand is generally very high while making a stroke. But, that dur-
ing the preparation and retraction stages is generally very small. That means,
the average velocity of the hand during co-articulation is generally very large
compared to that during a gesturing phase. Hence, the measure of velocity may
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serve as an additional feature to detect co-articulation. We now describe how
these two motion parameters are used to discriminate between a co-articulation
phase and a gesturing phase.

Fuzzy method for co-articulation detection:

We have formulated a scheme to measure the motion behavior in terms of some
fuzzy sets and rules to determine whether a particular motion is gesture phase or
co-articulation. By observing different gesture samples, we first define four fuzzy
sets to denote the different ranges of speed. They are ‘Zero’ (ZO), ‘Positive Small’
(PS), ‘Positive Medium’ (PM) and ‘Positive Large’ (PL). The corresponding
fuzzy membership functions are plotted in Fig. 5. Similarly, we define five fuzzy
sets to quantify change in speed in terms of some fuzzy measures. They are
‘Negative Medium’ (NM), ‘Negative Small’ (NS), ‘Zero’ (ZO), ‘Positive Small’
(PS) and ‘Positive Medium’ (PM); the corresponding membership functions are
shown in Fig. 6. Mathematically these two motion features can be expressed in
terms of motion vector (MVi) as follows.

Speed : Si =
√

(xi − xi+1)2 + (yi − yi+1)2 = MVi (1)

Change in speed : ΔSi = Si − Si−1 = MVi −MVi−1 (2)

Key Frames

phase n+1

V
el

oc
it

y

Co−articulationGesture
n

Gesture

Fig. 4. Example of a typical velocity plot for connected sequentially global motion
gestures in a continuous video stream

As given in Algorithm 1, motion vector MVi for ith video object plane in the
gesture sequence is determined from generalized Hausdorff distance measure.
Hausdorff tracker can be used to track non–rigid objects in a complex scene
[9], [10]. In our algorithm, Hausdorff distance is computed using distance trans-
form algorithm [11]. As explained earlier, a typical gesture can be divided into 5
motion phases. There are three distinct phases: preparation, stroke and end. The
stroke is distinguished from the others by the speed and the change of speed.
Table 1 shows these 5 motion phases. These two motion parameters are subse-
quently fuzzified and the motion stage through which the hand is undergoing is
determined using some fuzzy rules, as stated below.
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Algorithm 1. Estimation of Motion vector

Given (i− 1)th VOP O and the ith VOP I and a set of translated vectors T
begin

for t = (tx, ty) ∈ T
Calculate distance transform of edge images O and I.
Calculate hp,t(O, I).
Calculate hj,t(I,O).
Determine Ht(O, I) = max{hp(O, I), hj(I,O)}.

end.
Find min{Ht(O, I)} over t ∈ T.

Find translation vector t
′
= (t

′
x, t

′
y) corresponding to min{H(O, I)}.

MVi = (t
′
x, t

′
y).

return MVi

end

Fig. 5. Fuzzy membership functions defining different ranges of speed

Fig. 6. Fuzzy membership functions defining different ranges of change in speed

From a large set of real gestures we observe that the speed of the hand gen-
erally lies within a certain range at every stage in a gesture or co-articulation.
So, is the case for change in speed. For example, during the “Preparation” stage
the speed is generally ‘Positive Small’ and the change in speed is either ‘Positive
Small’ or ‘Negative Small’. This we can write in the form of a fuzzy rule as
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– “IF the speed is Positive Small AND the change in speed is Positive Small
OR Negative Small, THEN the hand is in Preparation stage”.

Accordingly, if the hand is moving at a speed v and change in speed is a then,
using this fuzzy rule and applying min-max method, the degree of certainty by
which we can say that the hand is in “Preparation” stage is given as

μPrep(v, a) = min

[
μPS(v),max

[
μPS(a), μNS(a)

]]
(3)

The IF-THEN fuzzy rules for all the other three motion phases can be derived
in a similar manner and using Table 1 that gives the fuzzy sets for the two
motion parameters corresponding to the different stages of hand motion. Using
all these fuzzy rules we can compute the degrees of confidence that the hand
is doing “Pause”, “Preparation”, “Stroke” and “Retraction” at a given instant
of time. Finally, we decide for the motion stage that has the maximum degree
of confidence. In doing so, we are able to find the sequence of hand motion in
an input stream of hand gesture video and a motion pattern. If the extracted
motion pattern follows the motion phases of Table 1 in order, the video segment
is classified as a gesture, otherwise it is labelled as co-articulation.

Table 1. Gesture motion phases and corresponding motion parameters

Motion phase Speed Change in Speed

Pause ZO ZO, PS, NS
Preparation PS PS, NS

Stroke PL, PM ZO, PS, NS, PM, NM
Retraction PS NS

Step 2: Verification of Co-articulation Using Trajectory Shape

The process of co-articulation detection can be made more reliable and accurate
by considering the hand trajectory shape for verification. It is observed that
during co-articulation the hand generally moves in a straight path. So, a motion
phase is not a co-articulation if the trajectory is not a straight line. Note that
a straight-line trajectory does not always indicate co-articulation. It may also
represent a valid gesture stroke. The Step I discriminates between co-articulation
and such a gesture stroke.

However, the above scheme fails to spot gestures if there is no co-articulation
phase between two gestures. In such cases, gesture spotting is done along with
recognition. In these types of gestures, every video segment between two “pauses”
corresponds to either a gesture stroke in space or a co-articulation phase. There-
fore, as a first step towards recognition, it is required to check whether an input
segment is a co-articulation or a gesture stroke. If it is a co-articulation then it
is discarded and we move on to the next segment. If it is a stroke then we check
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whether it is a complete gesture trajectory or not by comparing it to all the
prototype trajectories contained in the gesture vocabulary database. If not, we
then move on to the next segment and check for gesture stroke. This we continue
till a valid gesture trajectory is obtained by connecting all these individual hand
strokes in a sequential manner.

3 Experimental Results

In a first set of experiments, we considered some sequences of continuous gestur-
ing with local hand motions only. We have used five different gesture sequences
taken from Sebastien Marcel’s gesture database and Thomas Moeslund’s ges-
ture recognition database. The continuous gesture sequences were formed by
performing different gesture signs in different orders in such a way that while
some gestures were connected to each other in the sequence there were cases
where two gestures were separated by a co-articulation phase in between. In
our experiments, we achieved an overall recognition accuracy of 90.4%. This
high recognition rate confirms that our proposed algorithm for gesture spotting
and co-articulation detection was indeed effective in segmenting out meaningful
individual gestures in the input sequences accurately and precisely.

In a second set of experiment, we considered some trajectory patterns indi-
cating “One”, “Two”, “Five”, “Seven” and “Three”, as shown in the first row of
Fig. 7. These gesture signs were performed one after another in different orders
to build up different sequences of continuous hand motion gestures with global
motion only. The second row of Fig. 7 shows another set of gesture trajecto-
ries, viz., “Square”, “Circle”, “Diamond”, “triangle” and “W”. These gestures
were used in our third set of experiments. As we observe, each gesture in the
first row starts from some point at top of the frame and ends somewhere at the
bottom. So, in our second set of experiments we always have a co-articulation
phase in between two gestures in a sequence. On the other hand, in our third
set of experiments the starting and ending of all gestures in a sequence are
in the vicinity of each other. That means, here the gestures are generally con-
nected to each other without any co-articulation in between. Fig. 8(a) shows
a sample of the continuous gesture sequence without any co-articulation while
Fig. 8(b) shows a sequence of gestures connected by co-articulation strokes in
between.

In our second set of experiments, we used hand motion information to discrim-
inate the co-articulation phases in the input gesture sequences. Subsequently, all
individual gesture patterns in the sequences were segmented out and were iden-
tified with an overall accuracy of 90%. This demonstrates the efficiency of our
proposed method for co-articulation detection and subsequent trajectory guided
recognition. We also observed that the acceleration of the hand was significantly
high during co-articulation compared to that during the gesturing phase. Finally,
in our third set of experiments, individual gesture patterns in the sequences
were segmented out and were identified with an overall accuracy of 94%. This
shows that the proposed system is capable of identifying gesture strokes and
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Fig. 7. Trajectories of the gestures used in our experiments: (a) Gestures that produce
co-articulation, used in our 2nd set of experiments, (b) Gestures that do not produce
co-articulation, used in our 3rd set of experiments

(b)(a)

(c)

Fig. 8. (a) Continuous motion trajectory without co-articulated stroke (b) Continuous
motion trajectory with co-articulated stroke (c) Segmented out trajectory

trajectory patterns with very high accuracy. The segmented out gesture trajec-
tories from the gesture sequence samples in Fig. 8(a) and Fig. 8(b) are shown in
Fig. 8(c).

4 Conclusion

Co-articulation is one of the main challenges in continuous gesture recognition.
Motion interpretation is a quite ill-posed problem, in which cognitive science and
psychological studies need to be combined. That is why, not many vision based
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approaches for estimating co-articulation have been reported in the literature till
date. Most of the proposed algorithms till now have success only for some specific
gesture vocabularies, which can not be generalized for all kinds of gestures per-
formed in different contexts. The proposed system for co-articulation detection
in a continuous stream of gestures performs well for different types of gesture
sequences having different spatio-temporal and motion behaviour in a common
vision-based platform. One notable advantage of the proposed method is that
finger motion during gesticulation is considered as the shape change of the video
object, which can be efficiently quantified using FSM based representation.
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Abstract. This paper proposes a novel, simple and efficient method for face seg-
mentation which works by coupling face detection and segmentation in a sin-
gle framework. We use the OBJCUT [1] formulation that allows for a smooth
combination of object detection and Markov Random Field for segmentation, to
produce a real-time face segmentation. It should be noted that our algorithm is
extremely efficient and runs in real time.

1 Introduction

Object detection and segmentation are important problems of computer vision and have
numerous commercial applications such as pedestrian detection, surveillance and ges-
ture recognition. Image segmentation has been an extremely active area of research in
recent years [2,3,4,5,1,6]. In particular segmentation of the face is of great interest due
to such applications as Windows Messenger c© [7,8].

Until recently the only reliable method for performing segmentation in real time was
blue screening. This method imposes strict restrictions on the input data and can only
be used for certain specific applications. Recently Kolmogorov et al. [9] proposed a
robust method for extracting foreground and background layers of a scene from a stereo
image pair. Their system ran in real time and used two carefully calibrated cameras
for performing segmentation. These cameras were used to obtain disparity information
about the scene which was later used in segmenting the scene into foreground and
background layers. Although they obtained excellent segmentation results, the need
for two calibrated cameras was a drawback of their system.

Shape priors for Segmentation: An orthogonal approach for solving the segmentation
problem robustly has been the use of prior knowledge about the object to be segmented.
In recent years a number of papers have successfully tried to couple MRFs used for
modelling the image segmentation problem with information about the nature and shape
of the object to be segmented [3,4,1,10]. The primary challenge in these systems is that
of ascertaining what would be a good choice for a prior on the shape. This is because
the shape (and pose) of objects in the real world vary with time. To obtain a good shape
prior then, there is a need to localize the object in the image and also infer its pose, both
of which are extremely difficult problems in themselves.

Kumar et al. [1] proposed a solution to these problems by matching a set of exem-
plars for different parts of the object on to the image. Using these matches they gener-
ate a shape model for the object. They model the segmentation problem by combining
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Fig. 1. Real Time Face Segmentation using a face detections. The first image on the first row
shows the original image. The second image shows the face detection results. The image on the
second row shows the segmentation obtained by using shape priors generated using the detection
and localization results.

MRFs with layered pictorial structures (LPS) which provide them with a realistic shape
prior described by a set of latent shape parameters. A lot of effort has to be spent to learn
the exemplars for different parts of the LPS model.

In their work on simultaneous segmentation and 3D pose estimation of humans, Bray
et al. [3] proposed the use of a simple 3D stick-man model as a shape prior. Instead of
matching exemplars for individual parts of the object, their method followed an iterative
algorithm for pose inference and segmentation whose aim was to find the pose corre-
sponding to the human segmentation having the maximum probability (or least energy).
Their iterative algorithm was made efficient using the dynamic graph cut algorithm [5].
Their work had the important message that rough shape priors were sufficient to ob-
tain accurate segmentation results. This is an important observation which will be
exploited in our work to obtain an accurate segmentation of the face.

Coupling Face Detection and Segmentation: In the methods described above the com-
putational problem is that of localizing the object in the image and inferring its pose.
Once a rough estimate of the object pose is obtained, the segmentation can be computed
extremely efficiently using graph cuts [2,5,11,12,13]. In this paper we show how an off
the shelf face-detector such as the one described in [14] can be coupled with graph cut
based segmentation to give accurate segmentation and improved face detection results
in real time.
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The key idea of this paper is that face localization estimates in an image (obtained
from any generic face detector) can be used to generate a rough shape energy. These
energies can then be incorporated in to a discriminative MRF framework to obtain
robust and accurate face segmentation results as shown in Figure 1. This method is an
example of the OBJCUT paradigm for an unarticulated object. We define an uncertainty
measure corresponding to each face detection which is based on the energy associated
with the face segmentation. It is shown how this uncertainty measure might be used to
filter out false face detections thus improving the face detection accuracy.

Organization of the Paper: This paper proposes a method for face segmentation which
works by coupling the problems of face detection and segmentation in a single frame-
work. Our method is extremely efficient and runs in real time1. The key novelties of the
paper include:

– A framework for coupling face detection and segmentation problems together.
– A method for generating rough shape energies from face detection results.
– An uncertainty measure for face segmentation results which can be used to identify

and prune false detections.

A summary of the paper follows. In the next section, we briefly discuss the methods
for robust face detection and image segmentation. In section 3, we describe how a rough
shape energy can be generated using localization results obtained from any face detec-
tion algorithm. The procedure for integration of this shape energy in the segmentation
framework is given in the same section along with details of the uncertainty measure
associated with each face segmentation. We conclude by listing some ideas for future
work in section 4.

2 Preliminaries

In this section we give a brief description of the methods used for face detection and
image segmentation.

2.1 Face Detection and Localization

Given an image, the aim of a face detection system is to detect the presence of all human
faces in the image and to give rough estimates of the positions of all such detected faces.
In this paper we use the face detection method proposed by Viola and Jones [14]. This
method is extremely efficient and has been shown to give good detection accuracy. A
brief description of the algorithm is given next.

The Viola Jones face detector works on features which are similar to Haar filters.
The computation of these features is done at multiple scales and is made efficient by
using an image representation called the integral image [14]. After these features have
been extracted, the algorithm constructs a set of classifiers using AdaBoost [15]. Once
constructed, successively more complex classifiers are combined in a cascade structure.

1 We have developed a system which uses a single camera and runs in real time.
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This dramatically increases the speed of the detector by focussing attention on promis-
ing regions of the image. The output of the face detector is a set of rectangular windows
in the image where a face has been detected. We will assume that each detection win-
dow Wi is parameterized by a vector θi = {cxi , c

y
i , wi, hi} where (cxi , c

y
i ) is the centre

of the detection window and wi and hi are its width and height respectively.

2.2 Image Segmentation

Given a vector y = {y1, y2, . . . , yn} where each yi represents the colour of the pixel
i of an image having n pixels, the image segmentation problem is to find the value of
the vector x = {x1, x2, . . . , xn} where each xi represents the label which the pixel i
is assigned. Each xi takes values from the label set L = {l1, l2, . . . , lk}. Here the label
set L consists of only two labels i.e. ‘face’ and ‘not face’. The posterior probability for
x given y can be written as:

Pr(x|y) =
Pr(y|x) Pr(x)

Pr(y)
∝ Pr(y|x) Pr(x). (1)

We define the energy E(x) of a labelling x as:

E(x) = − log Pr(x|y) + constant = φ(x,y) + ψ(x) + constant, (2)

where φ(x,y) = − log Pr(y|x) and ψ(x) = − logPr(x). Given an energy function
E(x), the most probable or maximum a posterior (MAP) segmentation solution x∗ can
be found as:

x∗ = arg min
x
E(x). (3)

It is typical to formulate the segmentation problem in terms of a Discriminative Markov
Random Field [16]. In this framework the likelihood φ(x,y) and prior terms ψ(x) of
the energy function can be decomposed into unary and pairwise potential functions. In
particular this is the contrast dependent MRF [2,5] with energy:

E(x) =
∑

i

(φ(xi,y) + ψ(xi)) +
∑

(i,j)∈N

(φ(xi, xj ,y) + ψ(xi, xj)) + constant, (4)

where N is the neighbourhood system defining the MRF. Typically a 4 or 8 neighbour-
hood system is used for image segmentation which implies each pixel is connected with
4 or 8 pixels in the graphical model respectively.

Colour and Contrast based Segmentation: The unary likelihood terms φ(xi,y) of the
energy function are computed using the colour distributions for the different segments
in the image [2,1]. For our experiments we built the colour appearance models for the
face/background using the pixels lying inside/outside the detection window obtained
from the face detector. The pairwise likelihood term φ(xi, xj ,y) of the energy function
is called the contrast term and is discontinuity preserving in the sense that it encourages
pixels having dissimilar colours to take different labels (see [2,1] for more details). This
term takes the form:

φ(xi, xj ,y) =
{
γ(i, j) if xi �= xj

0 if xi = xj .
(5)
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Fig. 2. Generating the face shape energy. The figure shows how a localization result from the face
detection stage is used to generate a rough shape energy for the face.

where γ(i, j) = exp
(

−g2(i,j)
2σ2

)
1

dist(i,j) . Here g2(i, j) measures the difference in the

RGB values of pixels i and j and dist(i, j) gives the spatial distance between i and j.
The pairwise prior terms ψ(xi, xj) are defined in terms of a generalized Potts model

as:

ψ(xi, xj) =
{
Kij if xi �= xj ,
0 if xi = xj .

(6)

and encourage neighbouring pixels in the image2 to take the same label thus resulting in
smoothness in the segmentation solution. In most methods, the value of the unary prior
term ψ(xi) is fixed to a constant. This is equivalent to assuming a uniform prior and
does not effect the solution. In the next section we will show how a shape prior derived
from a face detection result can be incorporated in the image segmentation framework.

3 Integrating Face Detection and Segmentation

Having given a brief overview of image segmentation and face detection methods, we
now show how we couple these two methods in a single framework. Following the
OBJCUT paradigm, we start by describing the face energy and then show how it is
incorporated in the MRF framework.

The face shape energy: In their work on segmentation and 3D pose estimation of hu-
mans, Bray et al. [3] show that rough and simple shape energies are adequate to ob-
tain accurate segmentation results. Following their example we use a simple elliptical
model for the shape energy for a human face. The model is parameterized in terms of
four parameters: the ellipse centre coordinates (cx, cy), the semi-minor axis a and the
semi-major b (assuming a < b). The values of these parameters are computed from the
parameters θk = {cxk, c

y
k, wk, hk} of the detection window k obtained from face detec-

tor as: cx = cxk, cy = cyk, a = wk/α and b = hk/β. The values of α and β used in
our experiments were set to 2.5 and 2.0 respectively, however these can be computed
iteratively in a manner similar to [3]. A detection window and the corresponding shape
prior are shown in figure 2.

2 Pixels i and j are neighbours if (i, j)∈N .
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Face Detection Colour Likelihood Shape Term

Colour + Shape Contrast Term Result

Fig. 3. Different terms of the shape-prior + MRF energy function. The figure shows the different
terms of the energy function for a particular face detection and the corresponding image segmen-
tation obtained.

3.1 Incorporating the Shape Energy

For each face detection k, we create a shape energyΘk as described above. This energy
is integrated in the MRF framework described in section 2.2 using the unary terms
ψ(xi) as:

ψ(xi) = λ(xi|Θk) = −logp(xi|Θk) (7)

where we define p(xi|Θk) as:

p(xi = ‘face’|Θk) =
1

1 + exp(μ ∗ ( (cxi−ck
x)2

ak2 +
(cyi−ck

y)2

(bk)2 − 1))
(8)

and p(xi = ‘backgound’|Θk) = 1− p(xi = ‘face’|Θk) (9)

where cxi and cyi are the x and y coordinates of the pixel i, {ckx, cky , ak, bk} are pa-
rameters of the shape energy Θk , and the parameter μ determines how the strength of
the shape energy term varies with the distance from the ellipse boundary. The different
terms of the energy function and the corresponding segmentation for a particular image
are shown in figure 3.

Once the energy functionE(x) has been formulated, the most probable segmentation
solution x∗ defined in equation (3) can be found by computing the solution of the max-
flow problem over the energy equivalent graph [13]. The complexity of the max-flow
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Fig. 4. The figure shows an image from the INRIA pedestrian data set. After running our algo-
rithm, we obtain four face segmentations, one of which (the one bounded by a black square) is
a false detection. The energy-per-pixel values obtained for the true detections were 74, 82 and
83 while that for the false detection was 87. As you can see the energy of false detection is
significantly higher than that of the true detections, and can be used to detect and remove it.

algorithm increases with the number of variables involved in the energy function. Recall
that the number of random variables is equal to the number of pixels in the image to
be segmented. Even for a moderate sized image the number of pixels is in the range of
105 to 106. This makes the max-flow computation quite time consuming. To overcome
this problem we only consider pixels which lie in a window Wk whose dimensions are
double of those of the original detection window obtained from the face detector. As
pixels outside this window are unlikely to belong to the face (due to the shape term
ψ(xi)) we set them to the background. The energy function for each face detection k
now becomes:

Ek(x) =
∑

i∈Wk

φ(xi,y)+ψ(xi|Θk)+
∑

j∈Wk,(i,j)∈N

φ(xi, xj ,y)+ψ(xi, xj)+constant,

(10)

This energy is then minimized using graph cuts to find the face segmentation x∗
k for

each detection k.

Pruning false detections: The energy E(x′) of any segmentation solution x′ is the
negative log of the probability, and can be viewed as a measure of how uncertain that
solution is. The higher the energy of a segmentation, the lower the probability that it is
a good segmentation. Intuitively, if the face detection given by the detector is correct,
then the resulting segmentation obtained from our method should have high probability
and hence have low energy compared to the case of a false detections (as can be seen
in figure 4). This characteristic of the energy of the segmentation solution can be used
to prune false face detections. Alternatively, if the number of people P in the scene is
known, then we can choose the top P detections according to the segmentation energy.

3.2 Implementation and Experimental Results

We tested our algorithm on a number of images containing faces. Some detection and
segmentation results are shown in figure 6. The time taken for segmenting out the faces
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Before Smoothing

After Smoothing

Original Image Contrast Terms Final Segmentation

Fig. 5. Effect of smoothing on the contrast term and the final segmentation. The images on the
first row correspond to the original noisy image. The images on the second row are obtained after
smoothing the image.

Fig. 6. Some face detection and segmentation results obtained from our algorithm

is of the order of tens of milliseconds. We also implemented a real time system for
frontal face detection and segmentation. The system is capable of running at roughly 15
frames per second on images of 320x240 resolution.
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Handling Noisy Images: The contrast term of the energy function might become quite
bad in noisy images. To avoid this we smooth the image before the computation of this
term. The result of this procedure are shown in figure 5.

4 Conclusion and Future Work

In this paper we presented a method for face segmentation which combines face detec-
tion and segmentation into a single framework. Our method runs in real time and gives
accurate segmentation and improved face detection results.

While segmenting image frames of a video, the use of knowledge of the correct face
detections in the previous frames in eliminating errors in the current image frame needs
to be explored. Another area for future research is the idea of efficient selective refine-
ment of the shape energy. This procedure could successively refine the shape energy
to obtain good segmentations in complicated scenarios. It should be noted that such
a procedure could be performed using dynamic graph cuts [5] which would make it
computationally efficient.
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Abstract. In this paper, a novel representation called the subband face
is proposed for face recognition. The subband face is generated from
selected subbands obtained using wavelet decomposition of the original
face image. It is surmised that certain subbands contain information
that is more significant for discriminating faces than other subbands.
The problem of subband selection is cast as a combinatorial optimization
problem and genetic algorithm (GA) is used to find the optimum subband
combination by maximizing Fisher ratio of the training features. The
performance of the GA selected subband face is evaluated using three
face databases and compared with other wavelet-based representations.

1 Introduction

The objective of the face recognition task is to determine the identity a per-
son in a given face image. The problem is complicated due to the variations in
illumination, pose, facial expression, aging, occlusions such as spectacles, hair,
etc. Different techniques proposed for face recognition are surveyed in [1,2,3].
Although the human face is a 3-dimensional structure, only the two-dimensional
projection or the ‘appearance’ of the face is captured by images. In this work, a
new representation of the face image based on the wavelet subbands is proposed.
The face image is decomposed into subbands using the Discrete Wavelet Trans-
form (DWT) and selected subbands are used to reconstruct the face image. This
is based on neurophysiological evidences [4,5] that humans process images similar
to multi-resolution, multi-channel processing similar to the wavelet transform.
It is therefore surmised that out of all the subbands obtained using DWT, only
certain subbands contain the discriminatory information required for face recog-
nition. If such subbands can be identified and the face image is reconstructed
from these discriminatory subbands, then the reconstructed subband face image
can give a better recognition performance. In this paper, GA is used to deter-
mine those subbands that contain the discriminatory information for a given
population of face images in the presence of illumination variations.

A number of techniques for illumination invariant face recognition have been
proposed [6,7,8]. Recently, spherical harmonics based representation has been
proposed for illumination invariant recognition [9]. Wavelet-based features have
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been used to obtain a representation for face recognition task in [10,11,12,13].
The use of statistical measures (mean, variance) of fully decomposed wavelet
subbands or packets as a feature was reported in [10]. Here, 2D-DWT is used to
fully decompose the face image and statistical features such as mean and vari-
ance are extracted from the wavelet coefficients, and used as a feature vector for
representation. The use of wavelet subbands with kernel associative memory for
face recognition was reported in [12]. Here, wavelet decomposed faces are used
to build an associative memory model for face images of each person and kernel
methods are used to exploit higher order relations which cannot be captured
by linear transformations. Different wavelet subbands have been combined at
different levels (data level, feature level, classifier level and decision level) for
face recognition [13]. In [14], the face image was dyadically decomposed and ap-
proximation subbands at different levels were suppressed during reconstruction
to obtain an approximation-suppressed subband face. In this paper, we explore
the suppression of different fully decomposed subbands using GA, for selection
of the optimal subband face.

Genetic algorithms have been used for selecting the optimal subspace in which
the projected data gives a higher recognition accuracy [15,16,17,18,19,20]. In [15],
GA has been used to find the Optimal Projection Axes (OPA) for face recog-
nition. The OPA is found by searching through all possible rotations in the
whitened PCA subspaces. The fitness function used is a weighted sum of class
separation and performance accuracy. It is reported that the OPA selected by
the GA yields better performance compared to the eigenspace technique. Face
recognition using kernel PCA and GA has been reported in [21], where the in-
put data is transformed to higher dimension using a non-linear transfer function
(polynomial function) and GA is used to select the optimal subset of the non-
linear principal components with the fitness function taken as the recognition
performance. An algorithm for Independent Component Analysis (ICA) is used
to represent the face image in terms of non-orthogonal bases in order to cap-
ture the higher order statistics [18]. Apart from the optimum subspace selection
techniques, selection of optimum non-orthogonal wavelet for representing the
face image has also been reported [22]. Here, the GA is used to find optimal
basis from a combination of frequencies and orientation angles in the 2D Gabor
wavelet transform and entropy is used as the fitness function instead of class
separation and performance. In this paper, the face image is fully decomposed
to obtain different subbands or wavelet packets and GA is used to select an
optimum combination of subbands. The optimal subband face is reconstructed
from the selected subbands that contain the desired discriminatory information
and suppressing those subbands that contain the similarity information.

The rest of the paper is organized as follows. The proposed subband face
representation is described in section 2. Section 3 discusses the use of genetic
algorithm for selecting optimal subband combination for generating the sub-
band face. In section 4, the proposed representation is evaluated on three differ-
ent face databases and the recognition results are compared with other similar
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techniques. Section 5 concludes the paper and some directions of future work
are discussed.

2 Subband Face Representation

A face image of a person contains common (approximation) as well as discrim-
inatory (detail) information with respect to faces of all other persons. The dis-
criminatory information is due to structural variations of the face which are
acquired as intensity variations at different locations of the face. The location
and degree of intensity variations in a face for an individual are unique features
which discriminate one person from the rest of the population. These similarity
information and discriminatory information are segregated in different subbands
at different levels of decomposition of the face image. Therefore wavelet decom-
position can be used to split the features in a face image into different subbands,
with ‘approximations’ containing the common (smooth) parts of the face and
‘details’, containing the discriminatory (variations) information. Since level-1
decomposition may not be adequate to effectively isolate these pair of visual
features, it is necessary to explore different combination of subbands at higher
levels to obtain a suitable isolation.

2.1 Wavelet Decomposition

The wavelet transform [23,24] is expressed as an inner product of a signal f(x)
with a family of functions which are translations and dilations of a mother
wavelet function ψ(x) and the scaling function φ(x). This is used to split the
signal into approximation and detail. For two-dimensional signal or image, the
two-dimensional scaling function φ(x, y) and three two-dimensional wavelet func-
tions ψH(x, y), ψV (x, y), ψD(x, y) are used to produce the approximation and
horizontal, vertical, diagonal details respectively. The two-dimensional discrete
wavelet transform (2D-DWT) for an image f(x, y) gives the approximations Wφ

and the details W d
ψ

Wφ(s0,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)φs0,m,n(x, y) (1)

W d
ψ(s,m, n) =

1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ψd
s,m,n(x, y) (2)

where d = {H,V,D} for horizontal, vertical and diagonal details, φ(x, y) is
the scaling function and ψH(x, y), ψV (x, y) and ψD(x, y) are the three two-
dimensional wavelets, s0 is the starting scale (taken as zero) and N = M = 2S

such that s = 0, 1, 2, ..., S−1 and m,n = 0, 1, 2, ..., 2s−1. For level-1 decomposi-
tion of f(x, y), s = 0. Thus the 2D-DWT uses a family of wavelet functions and
its associated scaling function to decompose the original image into four sub-
bands, namely the approximation (A), horizontal (H), vertical (V ) and diagonal
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Fig. 1. Wavelet decomposition tree up to level-2. The root node (A0) represents the
original image which is decomposed to A1, V1, H1, D1. They are in turn decomposed
to level-2 subbands which are the leaf nodes.

(D) details. Fig. 1 shows the full level-2 wavelet decomposition tree. The original
image A0 is decomposed to level-1 subbands (A1, H1, V1, D1) which are in turn
decomposed to obtain level-2 subbands. We have used the lifting technique [25]
for the 2D-DWT with Haar basis. In the following subsection, the method of
reconstructing a subband face using selective wavelet subbands is discussed.

2.2 Reconstruction from Subbands

In order to reconstruct the subband face that contains only the discrimina-
tory information, certain subbands can be selected or retained and others are
suppressed during reconstruction. Reconstruction is done using a method sim-
ilar to inverse DWT. Given the level-1 approximations Wψ and the details
WH

φ ,WV
φ ,W

D
φ , the subband image f̂(x, y) is reconstructed using the relation

f̂(x, y) =
1√
MN

∑
m

∑
n

Wψ(m,n)ψm,n(x, y)bA

+
1√
MN

∑
d=H,V,D

∑
m

∑
n

W d
φ (m,n)φd

m,n(x, y)bd (3)

where bA, bH , bV , bD are the binary subband selection variables that can be set to
zero or one if the subband is to be selected or suppressed respectively. For level-
1 subbands, the sequence of four bits {bA, bH , bV , bD} is the subband code for
generating f̂(x, y). In order to reconstruct the discriminatory subband face from
level-l subbands, a 4l length subband code is to determined. It can be noted that
the number of possible subband combinations at level-l is 24l

. Therefore at higher
levels of decomposition, there are a large number of subband combinations. To
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cater for the search in this large search space, the subband selection problem is
cast as a combinatorial optimization problem and a genetic algorithm is used to
find an optimum subband code. The following section describes the use of GA
and the fitness functions used in selecting a suitable subband code that gives a
high recognition accuracy.

3 Subband Selection Using Genetic Algorithm

Due to the exponential increase in the subband combinations with higher levels of
decomposition, it is not possible to select an optimum combination using an ex-
haustive search. Therefore genetic algorithm [26] is used for finding an ‘optimal’
solution or subband code. GA maintains a population of subband combinations
or subband codes and iteratively finds a subband code that has the high fitness
value among all subband codes of all generations. The subband code is used as
the binary chromosome in the GA. Each subband code has an associated fitness
value. Fisher ratio of the training features is used as the fitness function. This
is the ratio of the between-class scatter and the total within-class scatter of the
training features. This is given by

F =

∑
i

∑
r �=i

||μi − μr||2∑
i

∑
j∈Ci

||μi − xj ||2
(4)

where i, r are the class indices and j is the feature index, μi mean feature of
the class i, xj is the jth feature, and Ci is the set of training features of class
i. The use of Fisher ratio as the fitness function is motivated by the fact that a
large between-class spread and smaller within-class spread will lead to compact
clusters with larger separation and thus lesser confusion or overlap between the
classes.

The following are the steps involved in the GA used for subband selection:

1. Initialization: Start with a random population of subband codes bp, p ∈
[1, P ] where P is the number of subband codes in the population.

2. Evaluation: Evaluate fitness F (bp) ∀p.
3. Selection: Select Ps (where Ps < P ) fittest subband codes for next genera-

tion.
4. Crossover: From the fittest subband codes selected in the above step, apply

crossover on two randomly chosen samples to generate new subband code.
This is repeated to obtain Pc (where Pc ≤ Ps) new subband codes for the
next generation.

5. Mutation: Apply mutation to randomly selected sample obtained using
crossover to generate a new subband code. This is repeated to obtain Pm

(where Pm ≤ Pc) new subband codes.
6. Repeat steps 2-5 (evaluation, selection, crossover and mutation) for each

generation until the fitness converges to a high value.
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The number of solutions P for each generation is maintained constant by ensur-
ing that Ps + Pc + Pm = P . For applying the crossover operator on two parent
subband codes selected at random, a crossover position is chosen and the bits on
the left of the crossover point from one parent and those on the right from the
other parent are copied to the child subband code. Thus the child inherits code
segments from both parents. For applying the mutation operator on a subband
code, a bit value is flipped at a randomly chosen location. In this work, a batch
GA which has a constant population for all generations is used. The population
size is made ten times the length of the chromosome bitstring. This is to have
an increased exploration where there are more free parameters. The values for
Ps

P , Pc

P , Pm

P are set to 0.5, 0.3 and 0.2 respectively. In the following section, the
experimental results are discussed.

(a)

(b)

(c)

Fig. 2. Face databases used: (a) Yale (b) ORL and (c) PIE. First row shows the training
samples and other rows show the testing samples used for experiments.

4 Experiments

In this paper, three face databases are used: Yale, ORL and PIE.
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Original face Subband face Original face Subband face 

Yale

ORL

PIE

Fig. 3. Original face and the subband face reconstructed from the GA selected subband
codes for Yale (top row), ORL (mid row) and PIE (bottom row)

1. The Yale face database (Fig. 2 (a)) has 15 subjects with 11 samples with
variations in expression and illumination for each subject. The training sam-
ple set contains rightlight, sad, noglasses, happy and the testing sample
set consists of centerlight, leftlight, glasses, sleepy, surprised, wink, and
normal samples.

2. The ORL face database (Fig. 2 (b)) has 40 subjects with 10 samples for each.
There is no change in illumination but there are variations in pose. Training
samples used are images numbered 1 to 4 and the rest are used for testing.

3. A subset of the PIE (Pose Illumination and Expression) face database
(Fig. 2 (c)) [27] with 60 subjects with only the frontal poses is used. For
each subject, 42 samples (flash from 21 different directions with and without
the room lights on) are used. Only four samples with flash numbers 12, 13
for both lights and illum sets are taken for training and the remaining for
testing.

The face region is extracted from the background and resized to 32x32 pixels for
generating the subband face. The subband face is obtained using the subband
code determined by the GA. Fig. 3 shows the original gray-level face image and
the subband face generated for sample face images taken from three databases.
Although the subband face does not appear similar to the original gray-level
face image, it preforms much better than the original face images because it
contains only the discriminatory information that is required for a machine to
obtain higher recognition accuracy.
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Fig. 4. Features in 3D eigenspace for (a) gray-level and (b) subband faces determined
by the GA for four subjects of the PIE database
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Table 1. Comparison of the accuracies (%) of face recognition techniques published
earlier using wavelet based features. (A0−Al denotes the suppression of approximation
Al during reconstruction of the subband face).

Database Baseline Approximation Best performing
Eigenface [28] suppressed [14] subband [13]

(A0 − A1) 88.6
Yale 81.9 (A0 − A2) 91.4 (D2) 81.9

(A0 − A3) 89.5

(A0 − A1) 60.0
ORL 77.1 (A0 − A2) 65.0 (A1) 79.5

(A0 − A3) 72.5

(A0 − A1) 87.1
PIE 34.3 (A0 − A2) 85.3 (H1) 93.1

(A0 − A3) 75.4

Table 2. Accuracy of subband face selected by GA using Fisher ratio as the fitness
function for PCA features

Database Decomposition Subband code Accuracy
level (Hex) (%)

Yale 2 5333 90.5
3 0354-1040-00CB-0098 87.6

ORL 2 8800 78.5
3 E888-E084-8004-0000 76.5

PIE 2 5101 88.6
3 0808-0006-0802-0001 81.1

Fig. 4 (a) shows the projection of the original face images of four subjects of
the PIE database in 3D eigenspace. It can be observed that there is a significant
overlap of the clusters. Such overlap often leads to misclassification using the
nearest-neighbor rule. Fig 4 (b) shows the projection of the subband faces in 3D
eigenspace. It can be seen that there is an increase in the separation and com-
pactness of the eigenfeatures of the subband faces generated using the subband
code selected by the GA. Therefore there are less chances of misclassification
using nearest neighbor rule.

Table 1 shows a comparison of the performance of wavelet-based representa-
tions [14,13] against the baseline Eigenface method. Table 2 shows the recog-
nition performance of the GA selected subband face. It can be observed that
the performance of the GA selected subband face is comparable to the approx-
imation suppressed subband face and the best performing subbands given in
Table 1. It can also be noted that the level-3 subband code found by the GA
always gives lesser accuracy compared to level-2. This is due to the sub-optimal
determination of the large number of free parameters (64) in level-3 subband
code. This is also due to the fact that increase in Fisher ratio of the training
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features does not guarantee a higher recognition accuracy of test features. It can
also be noted from Table 2 that the subband code selected by the GA is depen-
dent on the database. The subband codes determined for Yale and PIE (5333
and 5101 respectively) are very different form that of ORL (8800). This is be-
cause ORL has pose variations that are absent in Yale and PIE. The similarity
between the subband codes of Yale and PIE is due to the presence of signif-
icant lighting changes in the training sets. There is also a similarity between
the subband codes selected by the GA and the best performing subbands [13].
Therefore, it can be generalized to a certain extent that, when there is no pose
variation and only lighting changes are present, then the level-2 subband code
of the form 5*** (which includes the horizontal and diagonal details of level-1
approximation subband) works best. This eliminates the level-2 approximation
(A2) similar to [14]. However, when there are changes in pose, as in the case of
ORL database, the level-2 subband code of the form 88** works best. This is
because the subband code 88** retains the smoothed approximations of A1 and
H1 subbands that are invariant to minor pose changes.

5 Conclusion and Future Work

In this paper, we have proposed the subband face as a representation for face
recognition. A genetic algorithm is used to select the optimal choice of subbands
by using Fisher ratio as the fitness function. It is shown that the GA is able
to find the subband codes that contain only the discriminatory information in
the face image of different persons of a given population. The performance of
the subbands selected by the GA to other wavelet-based representations are
compared. The GA selected subbands are also invariant to lighting changes as
shown for the PIE database. The subband face is also scalable as the accuracy is
consistent with increasing database size (15 to 60 subjects for Yale and PIE re-
spectively). Future work includes exploring the possibility of using class specific
subband codes, and use of single training face image for generating virtual train-
ing samples with variations in illumination, pose and scale. The use of subband
images can also be used for non-face classes.
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Abstract. This paper proposes an object recognition system that is invariant to 
rotation, translation and scale and can be trained under partial supervision. The 
system is divided into two sections namely, feature extraction and recognition 
sections. Feature extraction section uses proposed rotation, translation and scale 
invariant features. Recognition section consists of a novel Reflex Fuzzy Min-
Max Neural Network (RFMN) architecture with “Floating Neurons”. RFMN is 
capable to learn mixture of labeled and unlabeled data which enables training 
under partial supervision. Learning under partial supervision is of high impor-
tance for the practical implementation of pattern recognition systems, as it may 
not be always feasible to get a fully labeled dataset for training or cost to label 
all samples is not affordable. The proposed system is tested on shape data-base 
available online, Marathi and Bengali digits. Results are compared with “Gen-
eral Fuzzy Min-Max Neural Network” proposed by Gabrys and Bargiela. 

1   Introduction 

Object recognition is an important component in computer vision. Object recognition 
broadly involves two steps namely, feature extraction and pattern classification. Effi-
cient object recognition demands rotation, translation and scale invariant (RTSI) fea-
tures. Pattern classification extracts the underlying structure in the data and performs 
the recognition. Fuzzy interpretation of patterns is very natural in cases where precise 
partitions of data are not known. Zadeh [1] elaborated the importance of fuzzy logic 
for pattern classification in his seminal paper. The merge of fuzzy logic and neural 
network for pattern classification can be found in “Fuzzy Min Max Neural Network” 
(FMNN) proposed by Simpson [2][3]. Gabrys and Bargilela [4] proposed a merge of 
FMNN classification and clustering algorithms called as “General Fuzzy Min-max 
Neural network” (GFMN). This hybridization allowed learning under partial supervi-
sion. Semi-supervised learning is of high importance for the practical implementation 
of pattern recognition systems, as it may not be always feasible to get a fully labeled 
dataset for training or cost of labeling all the samples is not affordable. 

The proposed Object Recognition System (ORS) uses a new set of RTSI features. 
Recognition is carried out using proposed “Reflex Fuzzy Min-Max Neural Network 
with Floating Neurons” (RFMN). RFMN is trainable by means of partial supervision. 
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It uses aggregation of fuzzy hyperbox sets (called as hyperbox neurons) [2][3] to 
represent classes or clusters. A variety of ORS methods are available such as, bound-
ary based analysis via Fourier descriptors [5], neural networks models [6] and invari-
ant moments [7]. However, most of these methods are too computationally expensive 
or are not invariant under the three types of transformations i.e., rotation, translation 
and scaling (RTS). An inexpensive ORS was proposed by Torres-Mendez et al [8] 
based on radial coding technique. 

The proposed RFMN with floating neurons exploits use of reflex mechanism in-
spired from human brain for the pattern classification and clustering. It uses Compen-
satory Neurons (CN) to overcome the hyperbox overlap and containment problems 
[9] [10]. CNs are inspired from the reflex system of human brain [11]. CNs maintain 
the hyperbox dimensions and control the membership in the overlapped region. Dur-
ing the training RFMN tries to label the unlabeled data, thus it is possible to learn 
from mixture of labeled and unlabeled data. The unlabeled hyperbox neurons created 
during training are kept floating and are restrained from contributing to the classifica-
tion. This approach has improved performance of RFMN compared to GFMN [4]. 
Gabrys and Bargiela advocated the use of a new activation function [4] for FMNN 
based algorithms. But we observed that their activation function can lead to errors and 
is discussed in section 3.   

The main contribution of this work is development of a new architecture for semi-
supervised learning and new set of RTSI features for object recognition. Rest of the 
paper is organized as follows. Section II elaborates new RTSI features. The proposed 
new RFMN architecture is explained in section III. Detailed learning algorithm and 
recall procedure is explained in section IV. Section V shows the experimental results 
on real datasets. Section VI concludes with summery. 

2   RTSI Features 

Feature can be defined as quantitative description of input within a lower dimensional 
space [12]. It plays an important role in object recognition systems (ORS) since the 
information related to an object is contained within the extracted features. In an ORS, 
pre-processing is required to extract the features. This may include image enhance-
ment, filtering, segmentation [13] etc. Object segmentation is a must to recognize it. 
For an invariant ORS feature extraction must be invariant to translation, rotation and 
scale. Here we propose a new set of RTSI features for object recognition.  This in-
cludes 1) normalized moment of inertia, 2) max to average ratio, 3) average to max-
min difference ratio, 4) radial coding [8] and 5) radial angles.  

To extract these features one needs to compute centroid of an object. Here we as-
sume that after segmentation a binary image of the object is available for post proc-
essing. The centroid (Cx, Cy) of a two-dimensional object is given by,  ( y) j
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xi, yi : co-ordinate values and N: total number of object pixels. 
Once the centroid is computed other features are extracted as follows: 

1) Normalized moment of Inertia (NMI) 
In general the moment of inertia quantifies the inertia of rotating object by consider-
ing its mass distribution. The moment of inertia (MI) is normally calculated by divid-
ing the object into N-small pieces of mass m1, m2,..,mN , each piece is at a distance di 
from the axis of rotation. MI is given by, 
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I                                                                     (3) 

In case of object in a binary image, we consider pixel as unit pieces (i.e. m=1). Due 
to the finite resolution of any digitized image, a rotated object may not conserve the 
number of pixels. So moment of inertia may vary but normalized moment of inertia 
reduces this problem.  Normalized MI is invariant to translation, rotation and scale.  
This can be observed from Table 1 depicting features for an object shown in Fig. 1(a). 
The normalized moment of inertia (MI) of an object is [8] computed by, 
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where (Cx,Cy) are centroid co-ordinates and xi,yi  are object pixel co-ordinates. di pixel distance 
from centroid.  

2) Max to average length ratio (MAR) 
MAR is a ratio of maximum (dmax) of distance of object pixels from centroid to the 
average pixel distance (davg) from centroid.  

avg

max

d

d=MAR                                                             (5) 

Note the RTS invariance of this feature from Table 1.  

3) Average to Max-Min Difference (AMMD) Ratio 
AMMD is a ratio of average pixel distance from centroid davg to difference between 
maximum (dmax) and minimum (dmin)of pixel distance from centroid. It is given by, 
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d
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=                                                     (6) 

Table 1 indicates AMMD is a RTS invariant feature. 

4) Radial Coding (RC) and Radial Angles (RA) 
The radial coding features are based on the fact that circle is the only geometrical 
shape that is naturally and perfectly invariant to rotation. RC is computed by counting 
the number of intensity changes on circular boundaries of some radius inside the ob-
ject. This simple coding scheme extracts the topological characteristics of an object 
 



600 A.V. Nandedkar and P.K. Biswas 

Table 1. NMI, MAR and AMMD for Fig.1(a) with various rotations, translations and scales  

Rotation 
(Degrees) 

NMI MAR AMMD 

0 0.193 2.161 0.465 
25 0.193 2.166 0.464 
55 0.193 2.179 0.463 
85 0.194 2.176 0.463 

105 0.194 2.145 0.468 

 

Size 
(%) 

NMI MAR AMMD 

120 0.193 2.164 0.466 
140 0.194 2.154 0.465 
160 0.193 2.174 0.462 
180 0.193 2.169 0.463 
200 0.193 2.171 0.462 

regardless of its position orientation and size. The methodology to obtain the radial 
coding features of an object can be seen in [8]. Along with RC, proposed radial angles 
(RA) are found out as follows: 

1) Obtain the centroid of the object. 
2) Generate K equidistant concentric circles Ci around the centroid. The spacing is 

equal to the distance between centroid and furthest pixel of the object divided by K. 
3) For each circular boundary, count the number of intensity changes (zero to one or 

one to zero) that occur in the image. These are radial coding features. 
4) Find the largest angle ( ) between the two successive intensity changes for every 

circle. These are called as Radial Angles. If 2astakethen −> . This is a nec-

essary step to avoid the dependency of angle measurement on reference point or di-
rection of  the measurement. If there is no intensity change then take =0. 

Fig. 1(b) shows an example of radial coding and angles. Extracted features are 
shown in Fig.1(c). These features are also rotation, translation and scale invariant and 
can be noted from Table 2 and 3. We used seven concentric circles to code an object. 
Thus total feature vector length used in the proposed ORS is 17 (7RC+7RA+ 
NMI+MAR+AMMD). 

y g

 

Fig. 1. (a) Object (b) Radial Codes and Angles (c) RC and RA  

Table 2. RA for various rotations of Fig 1(a) 

Rotation (deg) / Ring 1 2 3 4 5 6 7 
0 0 0 1.08 2.68 2.64 2.56 0 

25 0 0 1.1 2.78 2.44 2.56 0.06 
55 0 0 1.82 2.26 2.02 2.56 0.24 
85 0 0 1.82 2.76 2.22 0.46 0 

105 0 0 0.74 2.66 2.32 2.56 0 
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Table 3. RA for various sizes of Fig 1 

Size (%)/ Ring 1 2 3 4 5 6 7 
120 0 0 1.08 2.6 2.54 2.54 0 

140 0 0 1.1 2.7 2.54 2.56 0 

160 0 0 1.08 2.7 2.62 2.58 0 

180 0 0 1.1 2.7 2.54 2.58 0 

200 0 0 1.06 2.7 2.64 2.58 0 

3   Reflex Fuzzy Min-Max Neural Network with Floating Neurons  

The proposed ORS uses a novel Reflex Fuzzy Min-Max Neural Network (RFMN) 
with floating neurons for the recognition purpose. RFMN uses aggregation of hyper-
box fuzzy sets to represent classes or clusters. It can be trained in two ways i.e. classi-
fication (supervised learning) and hybrid mode (semi-supervised learning). During 
training RFMN tries to accommodate the training samples in the form of hyperbox 
fuzzy sets. The class overlaps are handled by reflex section. In hybrid mode, RFMN 
tries to label the unlabeled data using knowledge acquired from available labeled data. 
After completion of training, many hyperbox fuzzy sets may remain unlabeled due to 
lack of evidence for these sets. Neurons representing such hyperbox fuzzy sets are 
restrained from contributing to the output. Such neurons are called as “Floating Neu-
rons”. Floating neurons (FN) can be labeled and are allowed to contribute to the out-
put if evidence for a class is found out later on. Since RFMN learns on-line whenever 
data is made available it can be trained without hampering performance on the earlier 
acquired knowledge. 

3.1   RFMN Architecture 

The proposed architecture of Reflex Fuzzy Min-Max Neural Network (RFMN) is 
shown in Fig. 2.  

 

Fig. 2. RFMN Architecture 
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It is divided into three sections: 1) The classifying neuron section (CL) 2) Reflex 
section and 3) Floating Neuron section. The classifying section contributes in calcu-
lating memberships for different classes. The Reflex section consists of two subsec-
tions, Overlap Compensation neuron (OCN) section and Containment Compensation 
neuron (CCN) section. Reflex section is active whenever a test sample falls in the 
class overlap area. This action is very similar to the Reflex action of human brain 
which takes over the control in hazardous conditions. It compensates the output of 
classifying section and solves the dispute of membership in class overlapped area. 
Floating neuron section represents hyperbox fuzzy sets whose labels are not con-
firmed. These neurons are transferred dynamically during training to the classifying 
neuron section if class evidence is found. 

An n-dimensional input Ah= (ah1, ah2,…ahn) is applied to the input nodes a1-an. The 
neurons b1-bj are classifying neurons. Classifying section collects output of these 
neurons at class nodes C1-Ck. During training hyperboxes belonging different classes 
do overlap as depicted in Fig3(b), 4(b). These overlaps and containments infer OCNs 
and CCNs respectively in the reflex section. The nodes d1-dp are overlap 
compensation neurons and e1-eq represent the containment compensation neurons. 
Outputs of OCN & CCN are collected at a class node Ci in respective compensation 
sections. The output of floating neurons (FNs) f1 -fr are not connected to any class 
node. The activation function of the classifying neuron bj is given by [3], 

=
−−−−=

n
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where V, W: min-max point of the hyperbox bj.  γ : Fuzziness controller, f(x,y) is a two 
parameter ramp threshold function, n- dimension of data. 
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Eq.7 finds membership for a given input as an average of memberships along each 
dimension. Membership depends on the distance of applied input from hyperbox min 
and max point along each dimension. Gabrys and Bargiela [4] modified the above 
activation function and advocated use of their new activation function given by Eq.9 
for FMNN based algorithms. It is stated in [4] that Simpson’s activation function 
(Eq.7) [3] offers a large memberships even though very few features are close to the 
range specified by the hyperbox min-max points. To solve this problem Eq.9 [4] 
offers a membership based on the minimum of the memberships (match) along each 
dimension. 

))])(())([(( γγ ,avf1,,waf1minmin)W,V,A(b hijijihin..1ijjhj −−−−=
=

          (9) 

But we observe that this criterion of offering membership based on minimum 
membership is not suitable universally. The search for the minimum membership 
penalizes too heavily and leads to errors in cases where matching of features is more 
important rather than searching for a minimum match. In case of proposed features 
for object recognition, the requirement is to see how many features of an input match  
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to the learned patterns, thus we found that Eq.7 is more suitable than Eq.9. This is 
supported by our results of experiment 1, in Section 5. 

As training progresses hyperbox size goes on increasing to accommodate the 
applied input. The maximum hyperbox size is controlled by the expansion coefficient   

 −≥
=

n

i hijihiji a ,vmina ,wmax
n 1

))()((1                                   (10) 

As stated earlier while training the network, hyperboxes representing different 
classes may overlap, or a hyperbox of one class may contain a hyperbox of another 
class as depicted in Fig. 3(b), 4(b) respectively. The overlap compensation and 
containment compensation neurons are trained to handle these situations. Fig. 3(a) 
depicts the details of overlap compensating neuron (OCN), which represents a 
hyperbox of size equal to the overlapping region between two hyperboxes. OCN is 
active only when the test sample falls in the overlap region. The activation function is 
given by Eq.(11) and (12).  
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p=1,2. dj1 and dj2 are Class1 and Class2 outputs. V,W: OCN min-max points. 
V1,W1,V2,W2: min-max point of overlapping hyperboxes U(x) : a unit step function. 
bj() is same as Eq.(7). 

The unit step function with threshold of ‘1’ allows OCN to be active whenever 
applied input falls inside the overlap region represented by it. If the test data is outside 
the OCN region, membership calculated by bj() is less than one and thus U(bj() -1) 
term is zero. This makes compensatory neurons inactive i.e. no compensation is 
added. Compensation is produced whenever the test data falls inside overlapped 
region. If data is contained in OCN region (as shown in Fig.3(b)), its membership is 
calculated for the respective classes depending on its distance from the min-max 
points.The activation function of this neuron is such that it protects the class of the 
min-max point of the overlapping hyperboxes, which improves the learning accuracy. 
The output of this neuron is connected to the two class nodes of overlapping classes 
(OCN section Fig. 1).  

j

 

Fig. 3. Overlap Compensatory Neuron  
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Fig. 4. Containment Compensatory Neuron 

Referring to the overlap shown in Fig. 3(b) note that the resulting membership 
grade after adding compensation decreases gradually from point C to B for class 1 
(Fig. 3(c)) and from B to C for class2. Thus activation function tries to give a 
membership grade for the applied input considering its position in the OCN region. 

The containment compensation neuron (CCN) is shown in Fig. 4(a). This 
represents a hyperbox of size equal to the overlap region between two classes as 
shown in Fig. 4(b). Similar to OCN activation function the term U(bj() -1)  finds 
whether the input data falls inside the overlapped region represented by CCN. This 
neuron is also active only when the test data falls inside the overlapped region. The 
activation function of CCN is: 

1))- )(( ,V,WAbUO hjcj
−=                                         (13) 

where Ocj: output, V,W: CCN min-max points, U(x) : unit step function,  bj(): same as 
Eq.(7)  

This activation function allows a hyperbox of one class to be contained in a 
hyperbox of different class. The output of CCN is connected to the class that contains 
the hyperbox of other class (CCN Section Fig.2). 

In hybrid mode of learning, there may be generation of hyperboxes without labels 
due to lack of class evidence. These hyperbox neurons are kept in Floating Neuron 
section without connection to output and thus are not allowed to contribute to the out 
put. Floating neurons are brought dynamically into the classifying neuron section if 
evidence of a class is found.  

The number of output layer nodes in CL section is same as the number of classes 
learned. The number of class nodes in the CCN, OCN section depends on the nature 
of overlap the network faces during the training process. The final membership 
calculation is given by, 

))()((( mimq..1mlilp..1lkikj..1ki zemin,ydminmin)ubmax
===

+=μ                        (14) 

where U,Y,Z are the connection matrices for the neurons in the three sections. 
j,p,q are number of neurons in respective sections. 

Eq.(14) takes care of multiple class overlaps. It gives maximum grade to a class 
from the available grades considering its compensation. 

3.2   Comparison of RFMN with GFMN and FMNN 

FMNN and GFMN use a process called as contraction to solve the class overlaps. 
Nandedkar and Biswas [9] [10] pointed out that the contraction process causes errors 
during training. To overcome this problem, contraction process was removed and a 
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reflex mechanism was added in to the FMNN architecture. It is observed that in case 
of GFMN hybrid mode of learning, many hyperboxes remain unlabeled after training 
due to no class evidence for them. Thus any test sample falling in these hyperboxes 
are not classified. But in situations where we need to take a decision based on existing 
knowledge, one needs to ignore the output of these neurons. Thus we propose a 
concept of “Floating Neurons” to overcome this problem. Floating neurons are 
labeled dynamically and are allowed to contribute to the output if evidence for a class 
is found.   

4   Training Algorithm and Recall Procedure 

RFMN Training algorithm creates and expands hyperboxes depending on the demand 
of the problem. It utilizes the currently learned structure to label the unlabeled data. If 
there is any overlap, containment created (between hyperboxes of different classes) 
while expanding labeled hyperboxes, respective compensatory neuron is added to the 
network. Note that hyperboxes are not contracted in RFMN learning. 

a) Training Algorithm  
Training algorithm consists of mainly two steps, Data Adaptation and Overlap Test. 
Assume {Ah,Ci} is a training data, {bj,Cj} a hyperbox for class Cj. : current hyperbox 
size max: maximum hyperbox size. Initialize the network with b1 with V1=Ah, W1= Ah 
and class Ci for an ordered data pair {Ah,Ci}, Repeat the following steps 1 and 2 for 
the all-training samples. Note that for simplicity unlabeled data and hyperboxes are 
represented by C0. 

STEP 1:  Data adaptation 
Find a {bj,Cj} for training sample {Ah,Ci} such that Cj=Ci or Cj=C0 offering 
largest membership, ≤ max and is not associated with any OCN or CCN. Adjust 
the min-max points of hyperbox bj as:  

Vji
new= min (Vji 

old, Ahi)  Wji
new = max (Wji 

old, Ahi) where i =1,2…n                 (15) 
and If Cj =C0 and Ci≠C0 then Cj=Ci. Take a new training sample.  
If no bj is found, create a new hyperbox with Vj=Wj=Ah and class Ci. 

STEP 2: Overlap Test 
Assuming that bj expanded in previous step is compared with bk with class label 
Ck≠Ci.  
a) Isolation Test: 
  If (Vki<Wki<Vji<Wji) or (Vji<Wji<Vki<Wki) is true for any i, (i 1..n) Then 
(bk,bj) are isolated and Check the following: 
Case1: if Cj=C0 then assign Cj=Ck  
Case2: if Ck=C0 then assign Ck=Cj  
Case3: if Cj=Ck=C0  
Stop further expansion of these hyperboxes if any of the above cases is satisfied 
and go to step1. Else go for Containment test. 

b) Containment Test: 
  If (Vki<Vji<Wji<Wki) or (Vji<Vki<Wki<Wji) is true for any i, (i  1.. n) then 
Create a CCN with hyperbox min-max co-ordinates given by,  
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  Vci= max(Vki,Vji),  Wci=min((Wki,Wji) for i =1,2…n                          (16) 
Else hyperboxes are not facing containment problem go to step (c) 
c) Overlap compensation neuron creation: 
 Create a OCN with hyperbox min-max co-ordinates given by,   

Voci=max(Vki,Vji), Woci=min(Wki,Wji) for i=1,2…n                             (17) 

 Avoid further expansion of hyperboxes belonging to different classes, which are 
facing the problem of overlap and containment, in the next expansion cycles.  

b) Recall Procedure 
The class nodes in each section calculate the class memberships and respective  
compensations. The summing node in the classifying neuron does the final grade 
calculation. The membership grade is computed according to Eq. 14 by adding the 
compensation to the class membership. 

5   Experimental Results 

The basic aims for the experiments were to verify 1) Effectiveness of change in acti-
vation function on the performance of RFMN, 2) To compare performance of pro-
posed set of RTSI features, 3) To verify performance of proposed ORS on various 
datasets, 4) To check performance of RFMN under partial supervision.  

a)   Effect of activation function  
Here we used shape database [14] available on line. Fig.5 depicts some examples. It 
consists of 18 different classes and 12 images for each class, in total 216 images. 
Proposed RTSI features were extracted and fifty percent samples were selected ran-
domly for training. Performance of RFMN on complete dataset with two different 
activation functions is compared with GFMN. Results are presented in Table 4.  

It is clear from the results that RFMN performance is better than GFMN with 
activation function Eq.9. But it improves a lot when Eq.7 is used. The reason is that 
for the proposed RTSI features how many features match to the learned patterns is 
more important than the mismatches. Hence we recommend using activation 
functions depending on the nature of features.  

 

Fig. 5. Few Images from Database [14] 

Table 4. Activation function comparision 

Algorithm Learning Error (%) Test Error (%) 

RFMN (Eq. 7) 0 1.39 
RFMN (Eq. 9) 0 9.26 
 GFMN 0 19.91 



 Object Recognition Using Reflex Fuzzy Min-Max Neural Network 607 

b) Performance on Various Feature Sets 
Performance of RFMN, GFMN and K-Nearest Neighbor (KNN) [12] on shape data-
base [14] using various feature sets is compared in Table 5. Training dataset is pre-
pared by selecting 50% samples randomly. Note that a better object recognition is 
achieved using RFMN and the new set of RTSI features. 

Table 5. Feature Set comparison (LE- Learning Error, TE – Test Error) 

 RFMN GFMN K-NN (n=1) K-NN (n=3) 
Features LE TE LE TE LE TE LE TE 

New RTSI  Features 0 1.39 0 19.91 0 4.62 22.22 20.83 
Invariant Moments[13] 0 3.24 0 20.37 0 7.87 15.74 21.29 
Radial Coding [8] 0 7.87 0 11.11 0 7.87 22.22 19.90 

c) Test for RTS Invariance 
To test the RTS invariance performance of proposed ORS rigorously we tested it on 
Bengali, Marathi digit database and an expanded shape database created from [14]. 

 

Fig. 6. Bengali (First Row) and Marathi Digits (0-9) 

The details of the image database are given in Table 6. 

Table 6. Database details  

Database Rotations Sizes Classes Samples 
/Class Total 

Bengali ,Marathi 
Digits (0-9) 

0, 10 35, 55, 60, 75, 
90, 110, 135 Degrees Font 20,24,28 10 30 300 

Expanded Shape 
Database 

0, 45, 90  
Degrees 

50, 100, 150 % 
of size in [14] 18 108 1944 

 

For training the system, fifty percent of new RTSI features were selected randomly. 
Complete dataset is used for the test purpose. Table 7 shows that performance of 
proposed RFMN classifier is better than GFMN and KNN. A good recognition of 
proposed ORS i.e. combination of rotation, scale and translation invariance of new 
RTSI features and RFMN is demonstrated.   

d) Semi-Supervised Learning 
As stated earlier this mode of learning is suitable for the practical implementation of 
pattern recognition based systems, since practically it may not be always possible to 
label every training sample or cost of labeling is very high. To study the performance 
under partial supervision a mixture of labeled and unlabeled samples is used to train 
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Table 7. Performances on Bengali, Marathi Digits and Shape Database 

RFMN GFMN KNN (n=1) KNN (n=3) Database 
LE TE LE LE LE TE LE TE 

Bengali Digits 0 4 0 35.67 0 11 15.33 20 
Marathi Digits 0 8 0 35.33 0 12.66 1.33 21 
Expanded Shape  0 1.75 0 7.87 0 2.82 4.01 6.79 

RFMN and GFMN. RFMN tries to apply the acquired knowledge from the labeled 
sample to label unlabeled and extract the underlying data structure. In this experi-
ment, fifty percent of shape database and expanded shape database were selected 
randomly for training. Out of the selected training samples 2/3 samples were unla-
beled randomly. This mixture was used to train GFMN and RFMN. Testing was car-
ried out on complete dataset.  

Table 8 compares results for RFMN, GFMN and KNN on shape and expanded 
shape database (Table 6). For training KNN we used available labeled data. RFMN 
and GFMN expansion coefficients were 0.1 and 0.05 for shape, expanded shape data-
set respectively. It is clear that RFMN performance is better than GFMN and KNN. 
Compared to the hybrid mode learning of RFMN, performance of GFMN is poor due 
to the problems of unlabeled hyperboxes and its activation function. The interference 
of unlabeled hyperboxes leads to no classification of the input for GFMN.   

Table 8. Semi-Supervised Test Error 

 Database RFMN GFMN KNN(n=1) KNN(n=3) 
Shape  [14]  11.57 48.61 21.29 30.55 
Expanded Shape  11.98 45.37 18.10 23.14 

6   Conclusion 

A new rotation, translation and scale invariant object recognition system along with a 
novel RFMN architecture with floating neurons is presented. The need to select an 
activation function for neurons depending on the nature of features is discussed. The 
problem in GFMN hybrid mode learning is elaborated. The concept of floating neu-
rons has improved the performance of RFMN in hybrid mode of learning. It helped to 
solve the problem due to unlabeled hyperboxes in GFMN. Experimental results show 
that the proposed object recognition system with RFMN classifier learns efficiently 
even with very few labeled samples added to unlabeled data. This is an important 
consideration for the practical implementation of pattern recognition system. More-
over performance of proposed set of RTSI features is found to be better than radial 
coding and invariant moments feature. 
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Abstract. In this study, we propose three extended fitting methods to the 
standard ASM(active shape model). Firstly, profiles are extended from 1D to 2D; 
Secondly, profiles of different landmarks are constructed individually; Thirdly, 
length of the profiles is determined adaptively with the change of level during 
searching, and the displacements in the last level are constrained. Each method 
and the combination of three methods are tested on the SJTU(Shanghai Jiaotong 
University) face database. In all cases, compared to the standard ASM, each 
method improves the accuracy or speed in a way, and the combination of three 
methods improves the accuracy and speed greatly. 

1   Introduction 

The location of facial landmarks plays a very important role in face research. Most 
facial features location methods can be broadly divided into two categories: One is 
local methods[1],[2],[3]. The other is global methods[4],[5],[6]. Deformable templates, 
active shape model(ASM) and active appearance model(AAM) all belong to the global 
methods. Compared to local methods, global methods are more robust, the most 
important thing is that the number of facial landmarks detected by global methods is 
greatly more than that of the local methods. ASM has been successfully applied in 
many areas[7],[8]. However, its drawbacks in accuracy and speed limit its further 
application. First, standard ASM searches the new position in 1D profile. However, the 
true new position may not lie in 1D profile, it therefore may bring to some error. 
Secondly, local structure of each landmark in standard ASM is generated identically. 
However, all landmarks are characterized by different features. Construct structures 
alike is unreasonable. Thirdly, length of profiles in different levels equals to each other 
during searching. In fact, the displacements become to decrease with the increase of the 
level. Hence length of the profiles in different levels doesn’t need to be equal. 

This paper presents three methods to address the above problems. Firstly, the 1D 
profile is extended from 1D to 2D; Secondly, local structures for the different 
landmarks are constructed according to their characteristic features; Thirdly, we 
decrease the length of the profiles when it comes to the next level during the fitting. We 
also constrain the displacements in the last level. 
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The rest of the paper is organized as follows. Section 2 introduces the standard 
ASM. Three extended fitting methods are described in Section 3. Section 4 gives the 
comparison between the proposed methods and the standard ASM, experimental results 
are also presented. Section 5 is the conclusion of the paper. 

2   Active Shape Models 

ASM[4]is a statistic model, which includes the construction and fitting. The parameters 
used in this paper are listed in Table 1. 

Table 1. Parameters of ASM(stand ASM and our methods). Values given between parentheses 
are used in our experiments. 

k Number of landmarks(60) 

n Number of training images(200) 

s Number of images in the testing set(2069) 

t Number of modes in the shape model(21) 

m Number of points in sub-profile on either side of the landmark (4)  

l Number of points in profile either side of the landmark for searching, length of the profile is 

2l+1(11 for the first, second method and single-resolution standard ASM. 11,9 and 7 for different 

levels of the third method and the combined method) 

L  Number of levels(3) 

N Number of iterations(50 for single-resolution scheme,5 for each level of multi-resolution scheme)  

T Threshold of the displacement of the last level for the third method and the combined method(2) 
 

2.1   Construction of the ASM 

For each face image in face database, mark k facial landmark 1 1( , ),..., ( , )k kx y x y   
manually on picture as is shown in Fig. 1. Each landmark with the same index number  
 

Fig. 1. Facial landmarks 
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in different images stands for the same feature, and all the landmarks of an image give a 
shape vector 

1 1 2 2( , , , ,..., , )k kx x y x y x y=  (1) 

To make the shape model independent of the size, position and orientation, all shape 
vectors are aligned[4]. Principal component analysis(PCA) is then applied to the 
aligned shape vectors and we can get the mean shape 

1
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and the covariance  
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Then the eigenvalues i 2, ,..., )sλ λ λ  and the eigenvector 1 2 s( , ,..., )p p p are 

computed. Select the first t eigenvectors and eigenvalues to satisfy the inequation:  
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where TV is the sum of all the eigenvalues. Then a shape vector can be approximated by

x x Pb≈ +  (5) 

where b  is a vector of weights, computed by  

 ( )Tb P x x= −  (6) 

In order to find the new positions for facial landmarks, local structure needs to be 
constructed in advance. As for a landmark ( , )i ix y , sample m  pixels on either side then 
give a profile. Then local structure can be built by using the normalized first derivatives 
of this profile. Denoting the normalized derivative profiles 1 2, ,..., ng g g , the mean 
profile g , covariance matrix gS , we then can compute the Mahalanobis distance 
between a new profile ig and the mean profile 

1( ) ( ) ( )T
i i g if g g g S g g−= − −  (7) 

2.2   ASM Fitting 

ASM fitting can be realized by two iterative steps:(1)finding a new position for each 
landmark;(2)updating b and the parameters of the affine transformation. 

At first, sample l pixels either side of the landmark and give a profile alike as before, 
select a sub-profile and compute the Mahalanobis distance. The center of the 
sub-profile with the minimal Mahalanobis distance is the new position. Find the new 



 Extended Fitting Methods of Active Shape Model 613 

position for each landmark and compute the displacement for each landmark to get a 
displacement vector 1 2( , ,..., )kdX dX dX dX= .Then the following equation is used to 
update the affine transformation parameters and b: 

( , )[ ] cX M s x Xθ= +  (8) 

According to equation (8), we can get  

( (1 ), ( ))[ ] ( ) ( )c cM s ds d x dx X dX X dXθ θ+ + + + + = +  (9) 

and  

( (1 ), ( ))[ ] ( , )[ ] ( )c c cM s ds d x dx M s x dX X X dXθ θ θ+ + + = + + − +  (10) 

According to equation (5), db is utilized such that ( )x dx x P b db+ = + +  and 

1db P dx−= . Then affine transformation parameters and b are updated as follows: 

, , , (1 ),c c t c c c t c s bX X w dX Y Y w dY w d s s w ds b b W dbθθ θ θ= + = + = + = + = +  (11) 

where , , ,t s bw w w Wθ  are scalar weights. 

3   Extended Fitting Methods of the Active Shape Models 

Although there are many ways to refine the standard ASM, we discover that three 
methods can best improve the accuracy and speed of it. 

3.1   Extend the Profile from 1D to 2D  

It is well known that there is a key idea in the standard ASM: finding a new position for 
each landmark. This finding accuracy affects the whole accuracy of ASM directly. In 
Fig. 2, the target position of the current landmark is point P1, whereas the best position 
that can be located is point P2. To tackle this problem, we propose to extend profile 
from1D to 2D as shown in Fig. 3. 

  

Fig. 2. 1D profile Fig. 3. 2D profile 
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Since the profile has been extended to 2D, local structure should be constructed in 
another way: for each landmark, select a square with side length of m and center of 
current landmark, such that there are n squares, then compute the average gray-scale of 
each pixel within the square, and get a 2D profile og . A square with the side length of l 
and the center of the current landmark is selected during the fitting. We define a 
function of to replace the Mahalanobis distance:  

1 1

1
( )

m m
ij ij

o o o
i j

f abs g temp
m m = =

= −
×

 (12) 

where ij
og is the gray-scale of pixel lies in the ith row , jth column of 2D profile of oth 

landmark, ij
otemp is counterpart of the sub-profile of the oth landmark, of represents the 

similarity between the 2D profile and the 2D sub-profile. The center of the 
sub-profile is viewed as the new position for the current landmark if of reaches the 
minimum. 

3.2   Construct the Local Structures for Landmarks According to Their Feature 

In standard ASM, local structures of all landmarks are constructed identically. 
However, local structures of landmarks don’t express their true feature. Accordingly, 
the accuracy of location will subject from this kind of local structure. In order to 
improve the accuracy, we propose to construct the local structures for landmarks 
individually. For the landmarks around the irises and eyebrows, we construct the local 
structures not only with profiles, but also with gray-scale information. And a new 
function is used  

 1( ) ( ) ( )T
i i g if g gray g g S g g−= × − −  (13) 

where gray  is the gray-scale of the landmarks. Then for the landmarks on the contour 
of chin and mouth, we construct their local structures with profiles and edge 
information, and use another function  

1( ) ( ) ( )T
i i g if g edge g g S g g−= − × − −  (14) 

where edge  is the magnitude of the landmark of the gradient image.  

3.3   Adjust the Length of the Profile Adaptively 

In the standard ASM, length of the profile in different levels is fixed. Experiments 
indicate that the displacements of the landmarks in the first level are very large, and the 
displacements begin to decrease with the increase of the level. Thus we propose to 
reduce the length of the profile with the increase of the level and constrain the 
displacements in the last level by setting a threshold T.  
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4   Comparison and Experiments 

To compare the proposed methods with the standard ASM, experiments are conducted 
on the SJTU face database, which includes 2269 labeled frontal face images and the 
size of image is 640×480. We divide the SJTU face database into training set and 
testing set. The former and the latter contain 200 and 2069 images respectively. All 
experiments are conducted on a P4 2.8GHz machine with Matlab implementations. In 
order to compare our methods with the standard ASM quantitatively, we first define 
two functions, average error 

1 1

1 1
( ( , ) ( , ))

n k

ave
i j

E dis X i j pos i j
s k = =

= × −  (15) 

and average computation time 

 
1

1
_

s

i
i

ave time time
s =

=  (16) 

where ( , )X i j  is the manually marked position of the jth landmark of the ith image in 
the testing set, ( , )pos i j  is the position located by different methods, 

( ( , ) ( , ))dis X i j pos i j− is the Euclidean Distance between ( , )X i j and ( , )pos i j , itime  
is the computation time for the fitting of the ith face.  

At first, we compare the first method with the standard ASM. All other aspects of 
the two algorithms are identical except the shape of the profiles. Both use 50 
iterations for fitting. Since profiles have been extended from 1D to 2D, the 
corresponding searching spaces are also extended. Therefore, the probability of 
finding the new positions will be increased and the accuracy of whole fitting will be 
increased accordingly. We plot the average error against the number of iteration N= 
5, 10,…, 50 in Fig. 4, which shows that the average error of the first method is lower 
than that of the standard ASM during the fitting. Furthermore, it needs less iteration 
to converge. From Fig. 4 we can also see that the first method has converged after 25 
iterations, and the counterpart of the standard ASM is 35. However, on the other 
hand, the average computation time for two methods is 0.30s and 0.33s. It is not 
strange because the profile has been extended from 1D to 2D, and the corresponding 
searching space also be extended form 1D to 2D, it will come down to more pixels 
and need more computations.  

Then for the second method, we construct the local structure for landmark 
individually. Local structure of the second method has more information. Thus, the 
new local structure can discriminate the landmarks more efficiently. We plot the 
average error against the number of the iterations in Fig. 5. It shows that the second 
method also needs fewer iterations to converge. On the other hand, the second needs 
more computation since the functions of equation (14) and (15) need a more 
multiplication operation. The average computation time for the second method and the 
standard ASM is 0.31s and 0.30s.  
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Fig. 4. Average error against the number of iterations 

 

Fig. 5. Average error against the number of iterations 

For the third method, the number of pixels each side of the landmark in the first, 
second and last level is 11, 9 and 7. The displacement threshold T in the last level is 2. 
For the standard ASM, the number of pixels each side of the current landmark in all 
levels is 11. For both methods, the number of levels and the iterations of each level is 
3 and 5 in turn. We plot the average error against the iterations in Fig. 6, from which 
we can see that the standard ASM has converged after two levels(1-10 iterations). 
Fig. 6 also indicates that the average error of the two methods is the same in the first 
level. When it comes to the second level, we shorten the profiles. As for the third 
method, the number of iterations for converge is only 8, which is less than that of the 
standard ASM. The average computation time for the third method and standard 
ASM is 0.11s and 0.08s 

At last, we combine all three methods to give a combined method. Since the 
profiles are extended to 2D and the local structures of the landmarks are constructed 
differently, the accuracy of finding the new positions is enhanced, which leads to a 
great increase in the accuracy of the whole fitting. As the length of the second and 
third level in the combined method is shortened, the speed for the fitting is reduced. 
The average computation time of the combined ASM and standard ASM is 0.09s and 
0.11s. We also plot the average error against the iterations Fig. 7. It is clear that the 
combined method needs 7 iterations to fitting.  
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�

Fig. 6. Average error against the number of iterations 

�

Fig. 7. Average error against the number of iterations 

5   Conclusions  

In this paper we have presented three methods to the fitting of the standard ASM to 
locate the facial landmarks. Experimental results demonstrate that each of method can 
improve the accuracy or speed in a way, and the combined method improves the 
accuracy and speed greatly, when compared with the standard ASM. 

References 

1. Zhi-Hua Zhou and Xin Geng, Projection functions for eye detection, Pattern Recognition, 
vol. 37, no. 5, pp. 1049-1056, 2004. 

2. Kawaguchi T and Rizon M, Iris detection using intensity and edge information, Pattern 
Recognition, vol. 36, no. 2, pp. 549-562, 2003. 

3. Shu-Hung Leung, Shi-Lin Wang, and Wing-Hong Lau, Lip image segmentation using fuzzy 
clustering incorporating an elliptic shape function, IEEE Transactions on Image Processing, 
vol. 13, no. 1, pp. 51-62, 2004. 

4. T.F.Cootes, C.J.Taylor, D.H.Cooper, and J.Graham, Active Shape Models - Their Training 
and Application, Computer Vision and Image Understanding, vol. 61, no. 1, pp. 38-59, 1995. 



618 C. Du et al. 

5. Alan L.Yuille, Peter W.Hallinan, and David S.Cohen, Feature extraction from faces using 
deformable templates, International Journal of Computer Vision, vol. 8, no. 2, pp. 99-111, 
1992. 

6. T.F.Cootes, G. J. Edwards, and C. J. Taylor, Active Appearance Models, IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-685, 2001. 

7. Christos Davatzikos, Xiaodong Tao, and Dinggang Shen, Hierarchical active shape models, 
using the wavelet transform, IEEE Transactions on Medical Imaging, vol. 22, no. 3, pp. 
414-423, 2003. 

8. B. van Ginneken, A. F. Frangi, J. J. Staal, B. M. ter Haar Romeny, and M. A. Viergever, 
Active shape model segmentation with optimal features, IEEE Transactions on Medical 
Imaging, vol. 21, no. 8, pp. 924-933, 2002. 



Pose Invariant Generic Object Recognition with

Orthogonal Axis Manifolds in Linear Subspace

Manisha Kalra, P. Deepti, R. Abhilash, and Sukhendu Das

Visualization and Perception Laboratory
Department of Computer Science and Engineering

Indian Institute of Technology - Madras, Chennai - 600 036, India

Abstract. This paper addresses the problem of pose invariant Generic
Object Recognition by modeling the perceptual capability of human be-
ings. We propose a novel framework using a combination of appearance
and shape cues to recognize the object class and viewpoint (axis of ro-
tation) as well as determine its pose (angle of view). The appearance
model of the object from multiple viewpoints is captured using Linear
Subspace Analysis techniques and is used to reduce the search space
to a few rank-ordered candidates. We have used a decision-fusion based
combination of 2D PCA and ICA to integrate the complementary in-
formation of classifiers and improve recognition accuracy. For matching
based on shape features, we propose the use of distance transform based
correlation. A decision fusion using Sum Rule of 2D PCA and ICA sub-
space classifiers, and distance transform based correlation is then used
to verify the correct object class and determine its viewpoint and pose.
Experiments were conducted on COIL-100 and IGOIL (IITM Generic
Object Image Library) databases which contain objects with complex
appearance and shape characteristics. IGOIL database was captured to
analyze the appearance manifolds along two orthogonal axes of rotation.

1 Introduction

Existing object recognition systems [1][2][3][4] focus on recognition of a particu-
lar object class as well as its pose only along one axis of rotation. Such systems
fail if they are given an object image from an arbitrary viewpoint. It is tough to
capture the 3D appearance model of an object using a limited set of 2D views
only along a single axis. Also, creation and storage of 3D models of objects poses
a problem to the existing 3D model-based recognition systems. The problem we
address is not restricted to a single class of objects, say only face recognition or
vehicle recognition. Rather, it involves recognition across multiple categories of
objects. Content based image retrieval, infant perception and recognition are the
potential areas of its application. The goal of this work is to design a framework
for generic object recognition (GOR) from arbitrary viewpoints and poses, using
a limited set of 2D views of objects along multiple orthogonal axes of rotation.
The various approaches for object recognition can be grouped into the following
categories based on the type of features and matching strategies used: a) Struc-
tural Decomposition: Recognition-by-components [5], 3-D part-based methods;

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 619–630, 2006.
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b) Appearance Based Approaches: Principal Component Analysis [1], [2], [6],
Support Vector Machines [7], [8]; c) Shape Based Approaches: Shape Context
[9], Moment-based methods 4) Model Based Approaches: Geometric Invariants,
CAD Model Based approach [10].

Murase and Nayar [1] have addressed the problem of automatically learning
object appearance models for recognition and pose estimation using 1D PCA.
From the set of 100 objects in COIL database, the authors have picked 20 objects
(COIL-20 database) that do not possess pose ambiguities and have reported a
recognition rate of 100% on these 20 objects. The object pose estimation is re-
ported to have a mean absolute error of 2.02 degrees and standard deviation of
16.7 degrees. Nagabhushan et al. [2] have experimented the use of 2D Principal
Component Analysis (2D PCA) on COIL-20 database for object recognition and
have reported that 2D PCA gives a better recognition accuracy than 1D PCA.
They also report a 100% recognition rate on the 20 object database for noise-free
test samples. However, they did not report their results on COIL-100 database.
The existing appearance based techniques (1D and 2D PCA) summarized above
try to recognize object class and pose from only one axis of rotation and also do
not use any shape cues for verification.

2 Proposed Framework

We propose a two stage framework based on the studies in cognitive psychology
where we try to model the ’human visual-pathway’ starting with low-level pro-
cessing like feature extraction (using appearance based cues), to high-level object
representation in the human brain, such as perception (using shape cues) and
recognition. The flowchart of the overall framework for generic object recogni-
tion is shown in Fig. 1. The entire framework can be logically divided into three
phases: (a) Memory, (b) Representation and Classification, (c) Shape Percep-
tion. Below, we describe the three phases.

2.1 Memory : 2D Image Gallery with Multiple Axes Views

The image gallery contains the 2D views of objects from multiple (orthogonal)
axis of rotations. These views represent the objects already seen by human be-
ings. This aspect of the framework models the recollection ability of the human
beings to retrieve exemplars from the memory on seeing an object and studying
its appearance from different poses and viewpoints [11]. A subset of this database
is used to train the system, rest of the samples are used for testing.

2.2 Appearance Based Representation and Classification

According to neurological studies, the initial phase of object recognition uses
the fact that people might initially characterize the objects using some set of
rules or features. The human brain extracts a set of statistical features or cues
from images of 3-D objects to represent or recognize it [11][13]. Based on this
hypothesis, we propose a method which uses second and higher order statistics
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Fig. 1. Flowchart for Generic Object Recognition framework combining appearance
(Linear Subspace Analysis) and Shape (DT based matching) cues

[13] to represent objects in a high dimensional space. We use a fusion of two
linear subspace analysis based classifiers: 2D PCA [2] and ICA [14] for this task.
Both 2D PCA and ICA are shown to capture the appearance manifold of the
object from multiple orthogonal axis of rotations. The appearance representation
of each object i is defined by a manifold set Mi = {oij |j = 1..K} where oij is the
manifold of the object i captured by rotating the object along the jth orthogonal
axis, and K (=2) is the total number of orthogonal axes along which the object
is rotated. The manifold curves for an object lie on a manifold surface which is
unique for an object. A typical manifold set for an object is shown in Fig. 2.
Since consecutive poses (θ) of an object along a particular axis of rotation are
close in appearance to each other, they lie close to each other in the manifold.

Decision Fusion of 2D PCA and ICA: Second order statistics (PCA) cap-
ture the amplitude spectrum of images but not their phase spectrum. The higher
order statistics (ICA) capture the phase spectrum. However, both amplitude and
phase spectrum contain important information that drives human perception
[14]. The advantages of ICA over PCA have been quoted in [14]. 2D PCA on
the other hand, preserves the column-wise or row-wise adjacency of pixels [15].
Each classifier shows different level of performance on different subsets of im-
ages, suggesting that different classifiers contribute complementary information
to the classification task. A combination scheme involving both 2D PCA and
ICA is likely to improve the recognition accuracy.

We use the decision level combination that is more appropriate when the
component classifiers use different types of features. We use Sum rule (observed
to work the best among all six combination strategies) for combining the two
appearance-based object recognition methods : 2D PCA and ICA since it is
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Fig. 2. Expected manifold set for an
object in the linear subspace. j repre-
sents the axis of rotation (viewpoint),
θ represents the pose number.

Fig. 3. Appearance-based Classifier Com-
bination System Framework

the most robust classifier combination strategies [16]. Our combination strategy
(shown in Fig. 3) is designed at decision level, utilizing the confidence value,
called the matching score provided by each of the two appearance-based recog-
nition schemes. The criterion for appearance-based object recognition is

Dcomb =
D2DPCA +DICA

2
(1)

where D2DPCA and DICA are euclidean distances between the test and train-
ing features in the 2D PCA Eigenspace and ICA Space respectively. Since each
classifier uses its own representation of input patterns, the distances extracted
from the patterns are unique to each classifier. Thus, before computing Dcomb,
the matching scores (D2DPCA and DICA) are normalized using Max normal-
ization, as in [16]. Use of the fused generic classifier helps to reduce the search
space for objects, to a few rank ordered similar (in appearance) samples in the
gallery. Shape matching is required to verify the object and it helps to improve
the recognition accuracy.

2.3 Shape Perception for Verification

Since psychological findings indicate that shape dominates other cues in human
object recognition, we suggest a shape perception stage in our framework which
tries to imitate the visual similarity detection capability of the human brain.
Once a set of rank ordered samples has been selected from the image gallery
using appearance cues, the next step is to verify and match it with the test image
using shape-based features (distance transform (DT) based matching). As the
knowledge about the foreground pixel is stored around it at many positions by
the DT, this representation of a bitmap gives the process of matching a high
degree of tolerance to noise and discontinuities. DT based features have been
preferred over moments and shape context [9] due to reduced computational
cost and robustness against noise and discontinuities in edgemaps [17].
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Shape Matching using Distance Transform based Correlation: Let bx,y

be a bitmap with feature pixels of value 1 and background pixels with value 0.
Consider a second bitmap b′ and let dx,y be the DT of b′. Let the cross-correlation
between DT d and the bitmap b be given as R(b, d). If two samples (test and
target shapes) are similar, we obtain small value of correlation indicating a higher
degree of match. Instead of using R(b, d) as the distance measure between two
bitmaps b and b′, we use an average distance of the cross correlations of DT of b
with bitmap b′ [17]; and that of DT of b′ with the bitmap b. Thus the distance
measure for choosing the best sample based on the shape of the object is given
as

DTCorr = avg(R(T,D(bi)), R(bi, D(T ))) (2)

where bi is the edge map of the ith training sample, T is the edge map of the
test image and D(.) is the DT function. This criterion works better than just
using R as the shape similarity measure, as it is unbiased to T or bi.

2.4 Combining Appearance-Based Generic Classifier and Shape
Perception

The two stage approach (Fig. 1) based on linear subspace analysis (using fu-
sion of 2D PCA and ICA) and DT based correlation attempts to imitate some
perceptual properties of the human brain. For each object to be stored in the
database, a large set of images from different poses and along multiple orthogo-
nal viewpoints of the object are obtained. The set of images is normalized with
respect to scale and projected into the universal linear subspace constructed
using 2D PCA and ICA from the set of all object images. Each object is then
defined by a manifold set in the universal linear subspace, where each manifold
of the object corresponds to a single orthogonal axis of rotation (viewpoint).
Given a test image, it is first projected onto the universal linear subspaces (sep-
arately for 2D PCA and ICA) and a few rank ordered samples closest to the
test sample are selected based on the fused decision given by 2D PCA and ICA
classifiers. These objects have overall similarity in appearance with respect to
the input test sample. Linear subspace analysis thus acts as a generic classifier
to identify such closely appearing objects. Shape matching is then performed
using DT based correlation. The object with the minimum value of a sum of (a)
appearance based fused ICA and 2D PCA distance (Eq. 1) and, (b) shape (rule
as in [16]) cues using DT based matching (Eq. 2) is selected as the best match.
The statistical analysis tool represents objects using second and higher order
features, and DT based matching takes care of the response of the brain to
boundaries of objects and shape features which match the test object with sam-
ples in memory. The manifold set of the object captures the perceptual properties
of the human brain keeping the images of consecutive poses of objects which are
visually similar in appearance, close to each other in the manifolds. The proposed
criterion (for detailed flowchart, refer to Fig. 1) is evaluated on the COIL-100
[18] and IGOIL databases, and results are presented in the following section.
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3 Experimental Results

We have conducted experiments using our proposed approach on two databases:
COIL-100 (Columbia Object Image Library) [17] and IGOIL (IITM Generic Ob-
ject Image Library) [19]. COIL-100 has been previously used by [1], [2], [7] to
test the performance of their appearance based systems. To compare the per-
formance of our proposed approach with the existing state-of-art techniques, we
have used COIL-100 Database which contains color images of 100 objects. Im-
ages are taken at pose intervals of 5 degrees (72 poses per object). A part of
the gallery used has been shown in Fig. 4. However, COIL-100 gallery contains
images of objects along only one axis of rotation. To analyze the performance
of the proposed methodology for recognition from arbitrary viewpoints, we have
generated our own image gallery of objects along two orthogonal axes of rota-
tion. The details of the experimental set up and the results of the application of
fused appearance and shape classifier is presented in this section.

IITM Generic Object Image Library (IGOIL): [19] We have captured
images of 20 objects along two orthogonal axes of rotation. In general, more
than two orthogonal axes of rotation can be used to increase the robustness
of the classifier to recognize from arbitrary viewpoints. However, since most of
the objects in our gallery have similar appearance along two out of the three
axes, we have used only two axes of rotations to capture the object appearances
from several viewpoints. Images are taken at pose intervals of 5 degrees along
each axis. This corresponds to 144 images per object. The images of objects
were taken using a 35mm Sony CCD camera. Ambient light was used to avoid
strong shadows. Each object’s images along two orthogonal axes of rotation were
taken by placing it on a turnable. The images taken by the camera were cropped
and size normalized and rescaled to 128 × 128. The images had uniform black
background and there was no occlusion. The 0 degree pose angle views of some
objects along two orthogonal axes of rotation is shown in Fig. 5. Experiments

Fig. 4. Sample Objects from COIL-100 Fig. 5. Sample Objects from IGOIL

were conducted separately for both the databases with a part of the gallery
chosen for training and the rest for testing. Different experiments were performed
with training samples chosen for all objects from each database in the gallery,
obtained at increments of every 10, 15, 20, 25 and 30 degrees. The framework was
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trained (separately for each experimentation) using each of these five training
sets. The performance was analyzed using four and eight test samples (4 test
samples from each orthogonal axis) per object for COIL-100 (400 test samples)
and IGOIL (160 test samples) respectively, selected at random from the rest of
the gallery.

3.1 Appearance Based Recognition

Fig. 6 show images of an object from IGOIL database along three orthogonal axes
of rotation along with its corresponding manifold set captured using 2D PCA
and ICA. For ease of visualization, we have displayed the manifolds using only
the first three eigenvectors/ICs. For rest of the experimentation, we have used 10
eigendimensions for 2D PCA on both COIL-100 and IGOIL databases for better
separability. We have selected 110 and 45 ICs for ICA on COIL-100 and IGOIL
databases respectively. These dimensions was selected empirically by running
experiments for 3-20 dimensions with 2D PCA and 10-125 ICs with ICA on both
the databases. In order to have control over the number of ICs extracted by the
algorithm, we have adopted the method used on face images in [13] for ICA.
Given that the two linear subspace analysis based classifiers provide comparable
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Fig. 6. (a) An object from IGOIL database along three orthogonal axes of rotation
(only two views shown for each axis). (b) Parametric Eigenspace (2D PCA) for an
object in (a). (c) Parametric IC Space (ICA) for an object in (a). Appearance is rep-
resented by a Manifold Set where each manifold corresponds to one axis of rotation.

recognition performances, we examined whether the two representations gave
similar patterns of errors on object images. There are objects which only either
of the two classifiers are able to recognize. Fig. 7 (a) shows some objects for which
2D PCA worked but ICA failed. Fig. 7 (b) shows a set of objects for which ICA
worked but 2D PCA failed. When the two algorithms made errors, however, they
did not assign the same incorrect identity. Because the errors made by the two
algorithms differed, a combined classifier was employed in which the similarity
between a test image and a gallery image was defined by Dcomb (Eq. 1). The
comparison of percentage accuracy of the fused classifier (using Dcomb), 2D PCA
(D2DPCA) and ICA (DICA) on COIL-100 database has been shown in Fig. 9.
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(a) (b)

Fig. 7. Set of Objects from COIL-100 Database for which (a) 2D PCA succeedes but
ICA fails and (b) ICA succeedes but 2D PCA fails

The recognition accuracies using D2DPCA, DICA and Dcomb on IGOIL database
for 160 test samples (8 test samples per object) are shown in Table 1.

Need for Shape Matching: Linear Subspace analysis techniques (2D PCA
and ICA) give good results for objects having distinct appearance and shape
characteristics but fail for objects which are similar in appearance, but with
minor differences in shape. Fig. 8 (a) and (b) show manifolds of two objects
from COIL-100 database generated using (first three eigenvectors) 2D PCA
and ICA respectively. The linear subspace techniques show an overlap in the
eigenspace/IC space (i.e. both methods fail to discriminate). In such cases, use
of shape properties gives an advantage over appearance based schemes to rec-
ognize objects from multiple viewpoints. We hence propose the use of shape
properties to discriminate such objects and verify the results obtained by 2D
PCA/ICA.
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Fig. 8. a: Universal Eigenspace (2D PCA) of two objects from COIL-100 database with
similar appearance properties; b: IC Space of two objects showing an overlap. Overlap
in both 2D PCA and ICA space suggests the use of a shape verification stage.

3.2 Improving Recognition Performance Using Shape Matching

Using linear subspace analysis we first select a set of rank-ordered samples
(10 and 3 for COIL-100 and IGOIL respectively) based on their distances in
eigenspace / IC Space. Increasing the number of rank-ordered samples does not
alter the performance of the system by much, but increases the computational
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complexity. The number of rank-ordered samples selected is empirically set to
approximately 10% of the total number of objects in the database. These samples
are then matched with the test object based on shape features and the object
with minimum distance of appearance and shape cues is returned as the best
match. The criterion for object recognition using combination of 2D PCA and
DT based correlation with 2D PCA and ICA are:

Dξ = D2DPCA +DTcorr Dρ = DICA +DTcorr (3)

The values of D2DPCA, DICA and DTcorr are normalized using Max normal-
ization, before Dξ and Dρ are computed. Analysis is also conducted for recog-
nition from arbitrary viewpoints on IGOIL database.

Fusion of combined 2D PCA and ICA system with Shape cues for
Recognition: The proposed criterion for object recognition using combination
of 2D PCA, ICA and DT based shape cues is

Dλ = Dcomb +DTcorr (4)

where Dcomb and DTcorr are defined in Eq. 1 and 2 respectively. Fig. 10 shows
the comparison of recognition accuracies using Dξ (2DPCA and Shape), Dρ

(ICA and Shape) and Dλ on COIL-100 Database. Table 1 shows the comparison
of recognition accuracies of Dξ, Dρ and Dλ on IGOIL database for recognition
along multiple orthogonal axes. Note (in Fig. 10 and Table 1) that neitherDξ nor
Dρ performs consistently better than the other. However, Dλ works better than
both Dξ and Dρ for varying number of training samples given to the classifiers
on both COIL-100 and IGOIL databases. The proposed approach gives peak
recognition accuracies of 96.375% using 2DPCA, 97.675% with Dξ, 97% using
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Fig. 9. Comparison of performance
of D2DPCA (EigenDimensions=10),
DICA (No. of ICs=110) and Dcomb.
The percentage accuracy is shown as a
function of the number of training sam-
ples (pose interval).
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Fig. 10. Comparison of performance of the
proposed method using Dλ , Dρ and Dξ on
COIL-100 Database in case where the num-
ber of Independent Components=110 and
Number of eigenvectors=20
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ICA, 97.25% using Dρ and 98.25% using Dλ, when tested with 400 samples on
the entire COIL-100 database (pose interval of 10 degrees) containing 100 ob-
jects. The method provides a recognition rate of 91.375% with Dλ even when
a sparse database was used for training. We compare the performance of our
proposed method with that of Murase and Nayar [1] and Nagabhushan [2] as
benchmarks which report a 100% recognition performance on 20 objects pre-
selected from the COIL database. Most methods in the literature use only a
subset of the 100 objects (typically 20 to 30) from COIL-100 database for exper-
iments. Table 2 shows a comparision of recognition rates of techniques proposed
by [1], [2] and [7] with our proposed framework. Our results provide better per-
formance than those reported in [1], [2] and [7], given the fact that we have
tested our approach on the entire 100 objects in the COIL database. Fusion of
2D PCA, ICA and DT based shape matching (Dλ) is shown to perform better
than all other techniques. The comparison of recognition accuracies of D2DPCA,
DICA, Dξ, Dρ and Dλ on IGOIL database is shown in Table 1.

3.3 Results in Cluttered Background

To recognize objects from a cluttered background, we segment the given test
image to extract the required object from the cluttered background (selective
visual attention) and then recognize it. In segmentation phase, GrabCut [19] is
used to extract the required foreground image from background with minimum
user interaction. Results are shown in Fig. 11(a) and 11(b) for two different
objects with varying background. Failures in segmentation can occur in two cases
(i) regions of low contrast at the transition from foreground to background (ii)
camouflage, in which the true foreground and background distributions overlap
partially in color space (iii) background material inside the user rectangle but
not belonging to the object of interest. Recognition is then performed using
the technique explained in Fig. 1. The proposed approach gives good results
in recognizing objects from highly cluttered backgrounds. We have tested our
approach on 10 cluttered scene images. Fig. 11 shows the scenes, the extracted
foreground object and the recognized object from the gallery.

(a) (b) (c) (d) (e) (f)

Fig. 11. (a) and (d) Cluttered scenes with user selected ROI. (b) and (e) Extracted
object using GrabCut. (c) and (f) Recognized object from IGOIL.
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Table 1. Comparison of recognition accuracies of D2DPCA, DICA, Dcomb, Dξ , Dρ and
Dλ on IGOIL database with number of independent components=45 and number of
eigenvectors for 2DPCA=15 using 160 test samples (8 test samples per object)

Pose Recognition Criterion
Interval D2DPCA DICA Dcomb Dξ Dρ Dλ

10 98.75 98.75 98.75 99.375 99.375 99.688
15 96.25 95.875 96.875 95.938 96.25 96.875
20 92.813 95.625 95.625 95.625 96.563 96.563
25 91.25 91.875 91.875 92.5 91.875 92.813
30 90.625 91.563 91.75 93.438 92.813 93.75

Table 2. Comparison of Recognition Rates of 1D PCA, 2D PCA, SVM, ICA and
proposed framework (with Dλ as distance measure) on COIL-100 Database with 10
degree pose interval (36 training samples per object for training)

Technique Reference No. of Objects No. of Test Samples %Accuracy
IDPCA [1] 20a 720 100
2DPCA [2] 20a 720 100

100b 400 96.375
3600 95.468

SVM [7] 32a 1152 96.03
ICA 100b 400 97

3600 96.639
Proposed (Dλ) 100 400 98.25

3600 97.694
aresults reported in literature; bour implementation

4 Conclusion

We present an efficient framework to Generic Object Recognition from arbi-
trary viewpoints using a combination of appearance and shape features. We
use a fusion of two linear subspace analysis (2D PCA and ICA) techniques
to reduce the search space to a few objects and then select the closest match
using a sum of distances in linear subspace and DT based shape matching.
The proposed method outperforms the recognition accuracy of the existing
schemes of using only 1D PCA, 2D PCA and SVM for object recognition and
also can capture the appearance manifold set of objects along multiple axes.
There is however, a scope for analysis of the performance of the proposed tech-
nique for generic object recognition in presence of illumination variance and
occlusion.
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A Profilometric Approach to 3D Face

Reconstruction and Its Application to Face
Recognition

Surath Raj Mitra and K.R. Ramakrishnan

Indian Institute of Science

Abstract. 3D Face Recognition is an active area of research for past
several years. For a 3D face recognition system one would like to have
an accurate as well as low cost setup for constructing 3D face model.
In this paper, we use Profilometry approach to obtain a 3D face model.
This method gives a low cost solution to the problem of acquiring 3D
data and the 3D face models generated by this method are sufficiently
accurate. We also develop an algorithm that can use the 3D face model
generated by the above method for the recognition purpose.

1 Introduction

Face Recognition is a very old research problem. For the last 30 years numer-
ous methods have been proposed by the researchers from several different fields
to solve this problem [1]. Though a considerable amount of success has been
achieved, still there exist a lot of unsolved questions.

A large number of techniques exist for face recognition from still images. In
[2], Turk and Pentland have used that Principal Component Analysis for face
recognition. Elastic bunch graph matching [3] is another interesting approach.
Here each face is represented as a graph and face recognition is based on the
graph similarity. In [4], Cootes et al. proposed Active appearance model (AAM)
for face recognition. An AAM combines the statistical model of the appearance
and shape variation in a shape normalized from.

Recently 3D face recognition has gained a significant attention among the
researchers in this field. Intutively a 3D face recognition system should perform
better than a 2D face recognition system as face is inherently a 3D object. In [5],
Lee and Milios have used Extended Gaussian Image (EGI) based approach for
3D face recognition. Medioni and Waupotitsch [6] proposed to solve the 3D face
recognition problem using iterative closest point (ICP) matching of face surfaces.
A review of the 3D face recognition systems can be found in [7]. An important
problem in a 3D face recognition system is the generation of an accurate 3D
model. Generally laser scanners (which are very costly) are used to capture 3D
model. On the other hand one can use fringe projection techniques to capture
the 3D information.

Fringe projection techniques has been extensively used in industry for the
purpose of 3D measurements. One of the popular fringe projection techniques
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is Fourier Transform Profilometry(FTP) [8]. In FTP, a sinusoidal or rectangular
fringe pattern is projected on to the object from an offset angle and the image
of the deformed fringe pattern which is phase modulated by the topographical
variations of the object surface is captured. Then the phase is extracted from
the deformed fringe pattern using Fourier transform analysis. The recovered
phase is limited in the interval [−π, π]. This is called the wrapped phase map.
Phase unwrapping technique is used to get the natural phase distribution from
the wrapped phase. Unwrapping process refers to adding an appropriate integer
multiple of 2π to each pixel element of the wrapped phase map. Phase unwrap-
ping should be path independent for a perfect phase map. But, local shadows or
low fringe modulation, irregular surface brightness, fringe discontinuities makes
phase unwrapping a path dependent problem. One popular approach for phase
unwrapping is based on reliability-guided parameter map.A recent review on reli-
ability guided phase unwrapping algorithms can be found in [9]. The unwrapped
phase-map so obtained by the phase unwrapping algorithm is proportional to
the height variations of the object surface.

In this paper Fourier Transform Profilometry(FTP) [8] method is used to
generate a dense depth map of human face to pixel level accuracy as the phase
is estimated for each pixel by a Fourier Transform. Then 2D face image estimate
(i.e. the image of face without fringe pattern) is generated from the input fringe
image. The 3D model of the human face along with the 2D face image estimate
is then used for the purpose of the face recognition.

The rest of the paper is organized as follows: In section 2 we describe the
basic theory of the Fourier Transform Profilometry(FTP). In this section we
also describe the results obtained by the FTP method. In section 3 we describe
the Face Recognition algorithm. In section 4 summary and the future work is
discussed.

2 3D Face Reconstruction Using Fourier Transform
Profilometry

In Fourier Transform Profilometry(FTP) [8],[10],[11] a sinusoidal fringe pattern
is projected on a 3D object and resulting image is captured by a CCD camera.
The height distribution of the three dimensional object results in phase modula-
tion.The phase contains the information about the object profile. In FTP,Fourier
analysis is used to get the phase map from the fringe image. In our experiments,
we have used the human face as the three dimensional object. Though the FTP
is widely used in industry, it has never been used in human 3D face reconstruc-
tion.In the next subsection we will describe the basic theory of FTP.

2.1 Theory of Fourier Transform Profilometry [8]

Takeda et al. introduced FTP in [8]. General optical geometry for Fourier trans-
form profilometry is shown in the figure 1. This is called crossed optical axes
geometry. In the figure 1, E′

pEp is the optical axis of the projector lens and
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Fig. 1. Optical geometry of FTP[from [8]]

E′
cEc is the optical axis of the camera lens and R is the reference plane. The

reference plane R is a fictitious plane and serves as reference from which object
height is measured. The image of a perfectly flat and uniform reference plane
( i.e. the height distribution is zero) with fringe pattern projected on it can be
expressed as,

g0(x, y) =
∞∑

n=−∞
An exp{i[2πnf0x+ nφ0(x, y)]} (1)

When the measured object (in our case, human face) is put on the reference
plane, the deformed fringe pattern observed can be expressed as:

g(x, y) = r(x, y)
∞∑

n=−∞
An exp{i[2πnfox+ nφ(x, y)]} (2)

where f0 is the fundamental frequency of the observed fringe image, φ(x, y) and
φ0(x, y) are the the phase modulation due to object height distribution and the
phase modulation for reference plane ( when object height distribution is zero )
respectively, r(x, y) and An are the non uniform distribution of reflectivity on
the object surface and the weighting factors of the Fourier series respectively.
φ(x, y) contains the information about object profile.

In the FTP method, 1D Fourier transform of (2) is calculated. The Fourier
spectra obtained is shown in the figure 2. The Fourier transform is calculated
with respect to the variable x and the other variable y is treated as a fixed
parameter. r(x, y) and φ(x, y) are assumed to vary very slowly compared to
the frequency f0 of the fringe pattern. Using a suitable filter function only the
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Fig. 2. Spatial frequency spectra of a deformed fringe image for a fixed value of y

fundamental spectrum is selected(shown as red in the figure 2 ). Applying inverse
Fourier transform on the fundamental spectrum,we get,

g′(x, y) = A1r(x, y) exp{i[2πf0x+ φ(x, y)]} (3)

The same operation on (1) gives,

g′0(x, y) = A1 exp{i[2πf0x+ φ0(x, y)]} (4)

Then the phase change ( �φ(x, y) ) is given by,

�φ(x, y) = φ(x, y)− φ0(x, y) (5)

From (3) and (4) �φ(x, y) is obtained as,

�φ(x, y) = Im(log(g′(x, y)g′0
∗(x, y))) (6)

where * denote the conjugate operation.
�φ(x, y) is approximately proportional to the height variation and thus it is

the measure of the object height distribution. The phase calculated here is the
wrapped phase. Using phase unwrapping algorithm, we can get the natural phase
distribution. In our work we have used zpm [12] algorithm for phase unwrapping.

2.2 Results of FTP

The experimental setup consists of a LCD projector and a CCD camera. Si-
nusoidal fringe patterns are projected on the face of a subject using the LCD
projector and the CCD camera is used to capture the image of the fringe de-
formation on the face. Figure 3 shows input fringe pattern which is a sinusoidal
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fringe pattern. The fringe pattern we are using varies only in the vertical direc-
tion. So Fourier transform is applied on each column (scan line) of the image.
Figure 4 shows different steps in FTP. Figure 4(a) shows the input fringe im-
age. Figure 4(b) shows the wrapped phase map. The gray value at a pixel in
the figure 4(b) is proportional to the phase at that pixel. Figure 4(c) shows the
unwrapped phase map. Figure 4(d) shows the 3D mesh plot of �φ(x, y). Figure
5 shows two views of the generated 3D model.

Fig. 3. Input fringe pattern

(a) input fringe image (b) Wrapped phase map

(c) Unwrapped phase map (d) 3D mesh

Fig. 4. Results of different steps in FTP
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Fig. 5. Two views of generated 3D model

3 A Multimodal(2D+3D) Face Recognition System

The face recognition method we have developed uses both 2D and 3D features.
The 3D feature is obtained from the 3D face model that we have generated
using FTP. In order to get the 2D feature, we need to generate the 2D face
image estimate(i.e. the image of face without fringe pattern) from the input face
image with fringe projection. The advantage of generating the 2D image estimate
is that the position of the face in the estimated image will be same as that in
the 3D model. This will help us in placing the facial grid on both the 3D model
and the 2D image estimate which is described latter.

3.1 Estimation of 2D Face Image

For 2D face image estimation we assume that the texture of the face does not
have any repetitive patterns comparable to the frequency of the sinusoidal fringe,
which in general is true. With this assumption the 2D face image estimate can
be done by simple low pass filtering operation. Therefore, we need to separate
the low frequency components from the high frequency components those are
present in the image after fringe projection. In other words, we need to extract
the envelope of the modulated sine wave. This will give us the estimate of the
2D face image. This process is done along each color channel to get a full color
estimate of 2D face. Then this is converted to the gray scale as 2D features are
extracted from the gray scale image. Figure 6 shows the result of the 2D image
estimation.

3.2 Face Recognition Algorithm

The first step in our algorithm is the detection of the nose tip location [13].
Locating nose tip is very easy from the 3D face model. Since our 3D model gives
the relative height distribution of the face, the nose tip has always maximum
height. So, we just have to find the point with maximum height in the 3D face
model. After locating the position of the nose tip the start and the end of the
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Fig. 6. Result of the 2D image estimation

nose (which approximately points to the eye location and the mouth location
respectively) are found. With respect to the nose tip position a facial grid is
formed to cover the eye, nose and the mouth portion of the face. Figure 7 shows
a subject from our face database with facial grid on the unwrapped phase map
as well as on the 2D image estimate.

In order to get the 2D feature, the 2D face image is convolved with the 2D
Gabor wavelets [14][3]. The Gabor wavelets (kernels, filters) is defined as follows,

Ψμ,ν(z) = (
‖ kμ,ν ‖2

σ2
)e−(

‖kμ,ν‖2‖z‖2

2σ2 )[eikμ,ν z − e−( σ2
2 )] (7)

where μ and ν denote the orientation and scale of the Gabor kernels respectively.
z = (x, y), ‖‖ denotes the norm operator, and the wave vector kμ,ν can be defined
as follows,

kμ,ν = kνe
iφμ

where, kν = kmax

fν , φμ = πμ
8 and f is the the spacing factor between kernels

in the frequency domain. The estimated 2D face image is convolved with the
Gabor filters.Then for all the points in the facial grid the absolute magnitudes
of the complex-valued filter responses are concatenated to form a 2D feature
vector (vt).

In order to get the 3D depth/shape feature, for each point in the facial grid we
have considered its eight neighborhood points. Then the mean and the variance
of the local height distribution is calculated as,

mean = (
1
8
)

8∑
i=1

(dn − di) (8)

variance = (
1
8
)

8∑
i=1

(mean− (dn − di))2 (9)
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where di is the height of a neighborhood point and dn is the height of the nose
tip point. Here by height we mean the value of φ(x, y) at a facial grid point. So
for each facial grid point we have two depth feature. The 3D feature vector (vd)
is obtained by concatenating the mean and variance feature for all the facial grid
points.

Given a test 3D face model and its 2D image estimation we form correspond-
ing 2D feature vector (vt) and 3D feature vector (vd).Then the nearest neighbor
classification rule is applied. In the Nearest neighbor procedure, the closest Eu-
clidean distance match of a test face to the faces in the training set is determined.
Then the level of the closest match training face is assigned to the test face. The
Euclidean distance between a test face and a training face is given by,

D2 = α ‖ (vt − (vt)k) ‖2 +β ‖ (vd − (vd)k) ‖2 (10)

where (vt)k and (vd)k are the 2D and the 3D feature vector describing the kth

training face and α, β are suitably chosen weights.

3.3 Experiments and Results

In order to test the performance of our face recognition algorithm we have col-
lected a database of 13 persons. Each person has two images on the database, one
of which is used for training and other for testing. Each face image is collected
after projecting a sinusoidal fringe pattern on the face. Fourier transform anal-
ysis is carried out on each of the captured image to get the phase distribution.
This phase distribution gives us the estimate of height distribution on the face
and hence the 3D model. We have also computed the 2D face image estimation
for each of the captured fringe image. Then a facial grid is placed on the 2D im-
age estimate and on the 3D model. The number of facial grid point considered
is 160. Then the face recognition algorithm is applied on this database.We have
used Gabor wavelets at five different scales, ν = {0, ....., 4}and eight orientations,
μ = {0, ......., 7}. In our experiment we have used 1 and .1 as the value of α and

(a)facial grid on unwrapped phase map (b)facial grid on 2D image estimate

Fig. 7. A subject with facial grid
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Fig. 8. 2 subjects from the face database

β respectively. An accuracy of more than 90% is obtained in our experiment.
Figure 7(a) and 7(b) show a subject from our face database with facial grid on
the unwrapped phase map as well as on the 2D image estimate respectively.
Figure 8 shows 2 subjects from our database with corresponding 3D models.

4 Summary and Future Work

In this paper we use FTP to construct the 3D model of human face. This method
needs only a LCD projector and a CCD camera to acquire the 3D data. These
instruments are very cheap and easily available. Thus the FTP approach shows
a way to reduce the cost associated with the 3D face data acquisition. In this
paper we also propose a multimodal Face Recognition algorithm. However the
algorithm is tested only on a small dataset. It needs to be tested on a larger
dataset to really bring out the efficacy of this approach for face recognition. So
our future work includes collection of a large amount of dataset and testing our
approach on that dataset.
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Abstract. Techniques that can introduce low dimensional feature representation 
with enhanced discriminatory power are important in face recognition systems. 
This paper presents one of the symbolic factor analysis method i.e., symbolic 
Linear Discriminant Analysis (symbolic LDA) method for face representation 
and recognition. Classical factor analysis methods extract features, which are 
single valued in nature to represent face images. These single valued variables 
may not be able to capture variation of each feature in all the images of same 
subject; this leads to loss of information. The symbolic Linear Discriminant 
Analysis Algorithm extracts most discriminating interval type features; they op-
timally discriminate among the classes represented in the training set. The pro-
posed method has been successfully tested for face recognition using two data-
bases, ORL and Yale Face database. The effectiveness of the proposed method 
is shown in terms of comparative performance against popular classical factor 
analysis methods such as eigenface method and Linear Discriminant Analysis 
method. Experimental results show that symbolic LDA outperforms the classi-
cal factor analysis methods.  

1   Introduction 

Feature extraction has been the most fundamental and important in face recognition 
and other recognition problems. The main objective of research on face recognition 
problem is to find a technique that can introduce low dimensional feature representa-
tion of face objects with enhanced discriminatory power. Among various solutions to 
this problem, the most successful are those appearance-based approaches 
[4][5][19][26][27]. Principal Component Analysis (PCA) is a well known appearance 
based technique, Kirby and Sirovich [14] are among the first who used this technique 
directly on the characterization of human faces and showed that PCA is an optimal 
compression scheme that minimizes the mean squared error between the original 
images and their reconstructions for any given level of compression. Turk and Pent-
land [22] popularized the use of PCA for face recognition; they used PCA to compute 
a set of subspace basis vectors (which they called eigenfaces) for a database of face 



642 P.S. Hiremath and C.J. Prabhakar 

images. Grudin [11] showed that the correlation between images of the whole faces is 
not efficient for satisfactory recognition performance. Illumination normalization is 
usually necessary for the eigenface approach. Zhao and Yang proposed a new method 
to compute the covariance matrix using three images each taken in different lighting 
conditions to account for arbitrary illumination effects. Bartlett et al., [2] proposed 
using Independent Component Analysis (ICA) for face representation and found that 
it was better than PCA when cosines were used as the similarity measure. ICA im-
proves upon the PCA scheme by considering higher order statistics and ICA searches 
for a linear transformation to express a set of random variables as linear combinations 
of statistically independent source variables. Yang [24] used Kernel PCA for face 
feature extraction and recognition and showed that the kernel eigenfaces method out-
performs the classical eigenfaces method. However, ICA and Kernel PCA are both 
computationally more expensive than PCA. Swets and Weng [21] present a method to 
selecting discriminant eigenfeatures using multidimensional linear discriminant analy-
sis (LDA). LDA [25] based algorithms outperform PCA based ones, since the former 
optimizes the low-dimensional representation of the objects with focus on the Most 
Discriminant Features (MDFs) extraction while the latter achieves simply object re-
construction. PCA based technique produce a set of Most Expressive Features 
(MEFs); the features produced are not necessarily good for discriminating among 
classes defined by the set of samples. The MEFs describe some major variations in 
the class, such as those due to lighting direction; these variations may well be irrele-
vant to how the classes are divided. Recently, many appearance-based algorithms 
have been proposed [9][16][17][18][23][24][27].   

The defining characteristic of these classical appearance-based algorithms is that 
they directly use the pixel intensity values in a face image as the features on which to 
base the recognition decision. The pixel intensities that are used as features are repre-
sented using single valued variables. However, in many situations same face is cap-
tured under different orientations, lighting conditions, expressions and backgrounds, 
which lead to image variations. The corresponding pixel intensities do change be-
cause of image variations. The use of single valued variables may not be able to cap-
ture the variation of feature values of the images of the same subject. In such a case, 
we need to consider the symbolic data analysis (SDA) [1][8][15], in which the inter-
val-valued data are analyzed. We have focused our research towards extracting inter-
val type features to represent face images, which are robust to variations due to illu-
mination, orientation and facial expression. In [12], a Symbolic Principal Component 
Analysis (symbolic PCA) approach for face recognition is presented, in which sym-
bolic PCA is employed to compute a set of subspace basis vectors for symbolic faces 
and then project the symbolic faces into the compressed subspace. This method re-
quires a small number of features to achieve the same recognition rate as compared to 
eigenface method. The symbolic PCA technique, however, encodes only for second 
order statistics, i.e., pixel wise covariance among the pixels, and does not address 
high-order statistical dependencies such as the relationships among three or more 
pixels. As these second order statistics provide only partial information on the statis-
tics of both natural images and human faces, it might become necessary to incorporate  
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higher order statistics as well. The kernel PCA [20][24] is capable of deriving low 
dimensional features that incorporate higher order statistics. Higher order dependen-
cies in an image include nonlinear relations among the pixel intensity values, such as 
the relationships among three or more pixels in an edge or a curve, which can capture 
important information for recognition. The kernel PCA is extended to symbolic data 
analysis as symbolic KPCA [13] for face recognition and the experimental results 
show improved recognition rate as compared to the symbolic PCA method.   

In this paper, symbolic LDA method is presented, which is generalization of the 
classical linear discriminant analysis to symbolic objects for face recognition. In the 
first phase, we represent the face images as symbolic objects (symbolic faces) of 
interval type variables. The representation of face images as symbolic faces accounts 
for image variations of human faces under different lighting conditions, orientations 
and facial expressions. It also drastically reduces the dimension of the image space 
without losing a significant amount of information. Each symbolic face summarizes 
the variation of feature values through the different images of the same subject. In the 
second phase, we have applied the proposed symbolic LDA on the symbolic faces and 
linearly derives low dimensional most discriminant interval type features. Finally, a 
minimum distance classifier with Minkowsky’s symbolic dissimilarity measure pro-
posed by De Carvalho and Diday [1] is employed for classification. The proposed 
method has been successfully tested using two standard databases ORL and Yale Face 
database.       

The remainder of this paper is organized as follows: the construction of symbolic 
faces is described in section 2. In section 3, extraction of most discriminant interval 
type features from symbolic faces is presented. The comparison results are presented 
in the section 4. Finally, a conclusion is drawn in the section 5. 

2   Extraction of Symbolic Faces 

Let { }nΓΓ=Ω ,....,1  be the collection of n face images of the database, each of 

size MN × . An image set is a collection of face images of m different subjects (face 

class) denoted by { }mcccE .,..,, 21= . We have assumed that images belonging to 

a face class are arranged from right side view to left side view. The view range of 
each face class is partitioned into q sub face classes and each sub face class contains r 

number of images. The feature vector of thk sub face class k
ic of thi  face class ic , 

where ,,,2,1 qk =  is described by a vector of p interval variables pYY ,...,1 , and is 

of length NMp= . The interval variable jY  of thk sub face class k

ic of thi  face 

class is described as ],[)(
k
ij

k
ij

k
ij xxcY = , where 

k

ijx  and k

ijx  are minimum and maxi-

mum intensity values, respectively, among th
j  pixels of all the images of sub face 

class k

ic . The vector k

iX of interval variables is recorded for thk sub face class k

ic  of 
thi  face class. This vector is called as symbolic face.  
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We denote 

( ) ( )( ) ,,,1,,,1,,...,1 qkmicYcYX k
ip

k
i

k
i === pj ,...,1= . (1) 

We represent the qm  symbolic faces by a matrix X  of size )( qmp × , consisting of 

column vectors k
iX , .,,1,,,1 qkmi ==  

3   Extraction of Most Discriminant Interval Type Features 

Let us consider the matrix X  containing qm symbolic faces pertaining to the given 

set Ω  of images belonging to m face classes. The centers [6] [7] ℜ∈
ck

ijx  of the 

intervals ],,[
k
ij

k
ij xx are given by:  

2

k
ij
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ijck
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xx
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+
=  (2) 

where    .,...,1,...,1 pjandmi ==  

The qmp × data matrix CX containing the centers ℜ∈
ck

ijx  of the intervals for qm 

symbolic faces. The p-dimensional vectors =
ck

ip

ck
i

Ck
i xxX ,,1 , 

( )k

ip
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i

k

i xxX ,,1=  and ( )k

ip

k

i

k

i xxX ,,1=  represent the centers, lower bounds 

and upper bounds of the qm symbolic faces k

iX , respectively. There are m face 

classes denoted by { }mcccE .,..,, 21= , each class ic contains ,,,2,1, miqi =  

number of symbolic faces.  
The mean iM  of class ic is calculated as  

=
=

iq

k

Ck
i

i
i X

q
M

1

1
 (3) 

where iq  is number of symbolic faces of class ic .  

Similarly the grand mean vector of all qm symbolic faces from all classes is de-
fined as    

.,,1,,,1,
1

1
qkandmiforX

qm
M

qm

L

Ck
i ===

=
 (4) 

The within class scatter matrix wS  is defined as  

== −−= iq
k i

Ck
i

T
i

Ck
i

m
iw MXMXS 11 )()(  (5) 

The between class scatter matrix bS  is defined as  
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     [ ][ ]= −−= m
i i

T
ib MMMMS 1 )()(  (6) 

where iM  is mean of class ).,,1( mici =  

In discriminant analysis, we want to determine the projection axis W  that maxi-

mizes the ratio
{ }
{ }w

b

S

S

det

det
. In other words, we want to maximize the between-class 

scatter matrix while minimizing the within-class scatter matrix. It has been proven 
(Fisher and Loeve) [10] that this ratio is maximized when the column vectors of pro-

jection axis W is the eigenvector of bw SS 1−  associated with the largest eigenvalue. 

We need a set of projection axes, dWW ,,1 , which are eigenvectors of  bw SS 1−  

corresponding to first d largest eigenvalues. The optimal discriminant projection axes, 

dWW ,,1  are used for feature extraction.  

Since, each symbolic face k

iX  is located between the lower bound symbolic face 

k
iX and upper bound symbolic face 

k
iX , so it is possible to find most discriminating 

interval type features ],[
k
i

k
i BB . 

The lower bound features of each symbolic face k

iX  is given by  

k
i

T
l

k
i XWB =  , dl ,,2,1=  (7) 

for .,,1,,,1 qkmi ==   

Similarly the upper bound features of each symbolic face k

iX is given by  

k
i

T
l

k
i XWB = , dl ,,2,1=   (8) 

Let [ ]ltestc ΓΓΓ= ,,, 21  be the test face class contains face images of same subject 

with different expression, lighting condition and orientation. The test symbolic face 

testX  is constructed for test face class testc  as explained in the section 2. The lower 

bound test symbolic face of test symbolic face testX  is described as 

( )test

p

testtest

test xxxX ,,, 21= . Similarly, the upper bound test symbolic face is de-

scribed as ( )test

p

testtest

test xxxX ,,, 21= .  

The interval type features ],[
testtest BB of test symbolic face testX  are computed 

as: 

,test
T

l
test XWB =  (9) 

                                                  ,test
T

l
test

XWB =                                                (10) 

where .,,2,1 dl =  
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3.1   Face Recognition Based on a Minimum Distance Classifier 

When test face class testc  is presented to the symbolic LDA classifier, low dimen-

sional interval features ],[ testtest BB are derived. Let, ],[
k
i

k
i BB , 

,,,1,,,1 qkmi == be the interval features of qm symbolic faces. The classifier 

applies the minimum distance rule for classification using symbolic dissimilarity 
measure :δ  

itest

k
i

k
i

testtest

i

k
i

k
i

testtest ccBBBBBBBB ∈→= ],[],,[min],[],,[ δδ  (11) 

The symbolic LDA interval feature vector ],[ testtest BB  is classified as belonging to 

the symbolic face, ic , using appropriate symbolic dissimilarity measure .δ  

4   Experimental Results 

Face recognition system using symbolic LDA method identify the face by computing 
nearest face image for a given unknown face images using minimum distance classi-
fication rule. If our system is able to recognize given probe image is to same face 
image in the database then the trial is success, otherwise it is a failure. To show the 
significance symbolic LDA for dimensionality reduction we have chosen different 
sized subspaces for experiments. We assess the feasibility and performance of the 
proposed symbolic LDA on the face recognition task, using ORL and Yale databases, 
these databases contains frontal face images which were acquired under variable illu-
mination, orientation and facial expressions. The effectiveness of proposed methods is 
shown in terms of comparative performance against five popular face recognition 
methods. In particular, we compared our algorithms with eigenfaces [22], fisherfaces 
[3], symbolic PCA [12], symbolic ICA and symbolic KPCA [13]. The experimenta-
tion is done on system with CPU: Pentium 2.5 GHz. 

4.1   Experiments Using ORL Database 

We assess the feasibility and performance of the proposed symbolic LDA on the face 
recognition task using ORL database. The ORL face database is composed of 400 
images with ten different images for each of the 40 distinct subjects. All the images 
were taken against a dark homogeneous background with the subjects in an upright, 
frontal position, with tolerance for some tilting and rotation of up to about o20  from 
frontal view to left side view and right side view. There is some variation in scale of 
up to about 10%. The spatial and gray level resolutions of the images are 11292×  
and 256, respectively. In our experiments, based on the eye positions, all the face 
images in the database and the query input are manually cropped to a size of 8080× . 
All the 400 images from the ORL database are used to evaluate the face recognition 
performance of proposed methods. We have manually arranged the face images of 
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same subject from right side view to left side view. Six images are randomly chosen 
from the ten images available for each subject for training, while the remaining im-
ages are used to construct the test symbolic face for each trial. Fig.1 shows the some 
typical images of one subject of ORL database.  

 

Fig. 1. Sample face images belonging to one subject of ORL database 

Table 1. Comparison of classification performance of proposed symbolic LDA method using 
ORL database 

Methods Training time (sec) Feature Dimension Recognition Rate (%) 
Fisherfaces      98     86     92.8 
Eigenfaces 102 189 87.65 
Symbolic PCA 38 71 94.85 
Symbolic ICA 87 109 89.15 
Symbolic KPCA 110 49 95.45 
Symbolic LDA 19 28 97.5 

Table-1 presents the experimental results for each method corresponding to ORL 
database. The experimental results show that the proposed method outperforms the 
classical factor analysis methods. Further, the symbolic LDA method achieves the 
better recognition rate than symbolic PCA method, symbolic ICA and symbolic 
KPCA method. 

4.2   Experiments on the Yale Face Database 

The experiments are conducted using Yale database to evaluate the excellence of the 
symbolic LDA for the face recognition problem. The Yale Face database consists of a 
total 165 images obtained from 15 different people, with 11 images from each person. 
The images contain variations in the following facial expressions or configurations: 
center-light, with glasses, happy, left light, without glasses, normal, right light, sad, 
sleepy, surprised and wink. We preprocessed these images by aligning and scaling 
them so that the distances between the eyes were the same for all images and also 
ensuring that the eyes occurred in the same co-ordinates of the image. The resulting 
image was then cropped. The final image was .156128×  The Fig.2 shows some typi-
cal images of one subject of Yale Face database. 

In our experiments, 9 images are randomly chosen from each class for training, 
while the remaining two images are used to construct test symbolic face for each trial. 
The recognition rates, training time and optimal subspace dimension are listed in 
Table-2. From Table-2, we note that the symbolic LDA method with a smaller num-
ber of features outperforms the classical factor analysis methods with a larger number 
of features.  
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Fig. 2. Some typical images of one subject of Yale Face database 

Table 2. Comparison of classification performance using Yale Face database 

Methods Training time (sec) Feature Dimension Recognition Rate (%) 
Fisherfaces     59     23     89.85 
Eigenfaces 85 110 82.04 
Symbolic PCA 35 41 91.15 
Symbolic ICA 43 32 92.00 
Symbolic KPCA 98 56 94.55 
Symbolic LDA 18 13 96.15 

5   Conclusion 

This paper presents symbolic LDA for face recognition. The feasibility of the sym-
bolic LDA method has been tested successfully using standard databases, ORL and 
Yale Face database. The experimental results show that the proposed method achieve 
significantly improved recognition rates as compared to classical factor analysis 
methods. The proposed symbolic LDA outperforms symbolic PCA, symbolic ICA 
and symbolic KPCA under variable lighting conditions, orientations and expressions. 

The proposed symbolic LDA has many advantages compared to classical factor 
analysis methods. The drawback of classical factor analysis methods is that in order to 
recognize a face seen from a particular pose and under a particular illumination, the 
face must have been previously seen under the same conditions. The symbolic LDA 
overcomes this limitation by representing the faces by interval type features so that 
even the faces seen previously in different poses, orientations and illuminations are 
recognized. Another important merit is that we can use more than one probe images 
with inherent variability of a face for face recognition. Therefore, symbolic LDA 
improve the recognition accuracy as compared to classical factor analysis methods at 
reduced computational cost. This is clearly evident from the experimental results. 
Further, the symbolic LDA yields significantly better results than other symbolic 
factor analysis methods.  
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Abstract. This paper proposes a new method of feature extraction called two-
dimensional optimal transform (2D-OPT) useful for appearance based object 
recognition. The 2D-OPT method provides a better discrimination power 
between classes by maximizing the distance between class centers. We first 
argue that the proposed 2D-OPT method works in the row direction of images 
and subsequently we propose an alternate 2D-OPT which works in the column 
direction of images. To straighten out the problem of massive memory 
requirements of the 2D-OPT method and as well the alternate 2D-OPT method, 
we introduce bi-projection 2D-OPT.  The introduced bi-projection 2D-OPT 
method has the advantage of higher recognition rate, lesser memory 
requirements and better computing performance than the standard PCA/2D-
PCA/Generalized 2D-PCA method, and the same has been revealed through 
extensive experimentations conducted on COIL-20 dataset and AT&T face 
dataset. 

Keywords: Principal Component Analysis; Optimal Transform; Appearance 
Based Model; Object Recognition; Face Recognition. 

1   Introduction 

Appearance based object recognition methods have demonstrated their success in 
various visual learning and recognition chores such as 3D object recognition, face 
recognition, ear recognition, palm recognition, and tracking.  In particular, principal 
component analysis (PCA) [5, 7, 8, 9] based methods have been proposed and shown 
to have good performance. The PCA has also been exploited for accurate 
identification of faces [2, 10, 13], palms [11], and ears [2]. The drawback of the 
conventional PCA based approaches is the curse of dimensionality as the size of the 
covariance matrix is proportional to the size of images. In addition to this, specifically 
to the application of face recognition, an alternative model, Fisherfaces [1], a 
derivative of Fisher’s Linear Discriminant (FLD) has been proposed. The objective of 
the FLD is to find the optimal projection for the samples such that the discrimination 
ratio of between-class scatter matrices to within-class scatter matrices reaches its 
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maximum. So far, the FLD method and its variants have been well received by the 
face recognition community. However, it should be noticed that the PCA/FLD 
methods [2, 5, 7, 8, 9, 10, 13] are based on the analysis of vectors. When dealing with 
images, we should firstly tranform the image matrices into vectors. Then based on 
these vectors, the covariance matrix is calculated and the optimal projection is 
obtained. As object images are high-dimensional patterns, it is difficult to evaluate the 
covariance matrix in such a high-dimensional vector-space. To overcome this 
drawback, Yang et al. [15] proposed a image projection technique called 2D-PCA that 
is directly based on the analysis of original image matrices. The Generalized 2D-PCA 
method proposed by Kong et al. [4] overcomes the limitations of 2D-PCA. 

On the other hand, we have also seen an evolutionary improvement in the use of 
PCA based approach for efficient representation and recognition of 3D objects. The 
major advantage of the approach is that both learning and recognition are performed 
using just two-dimensional intensity images without any low-level or intermediate-
level processing. However, as noticed by many researchers [5, 8, 9, 10] the method in 
its standard form cannot handle problems such as occlusion, and of varying 
background. Pentland et al. suggested the use of modular eigenspaces [10] to alleviate 
the problem of occlusion. Ohba and Ikeuchi [9] proposed the eigen-window method 
to be able to recognize partially occluded objects. But, due to local windows, these 
methods lack the global aspect and usually require further processing. To eliminate 
the effects of varying background, Murase and Nayar [8] introduced the search 
window, which is the AND area of the object regions of all the images in the training 
image set. However, the assumption is too restrictive and fails for some class of 
object models as mentioned in their work itself. Moreover, the target object may be 
occluded by other target objects which are the images of the training set only, rather 
than some foreign object. In order to alleviate these problems, Leonardis and Bischof 
[5] proposed a robust and an efficient approach which is based on multiple 
eigenspaces. A novel self-organizing framework has been used in their work to 
construct multiple, low-dimensional eigenspace from a set of training images.  

However, it is observed from [3, 12] that the idea of principal component 
transformaton is based on the reduction of the dimension of original image vectors 
using some linear mapping such that the resulting feature vectors show pairwise 
maximum distance. Besides, feature vectors resutling from PCA allow the 
reconstruction of images with minimal mean quadratic error. If the distribution of 
features is such that the principal axes of all classes are parallel to each other, the 
projected features will allow no discrimination of these classes. This problem is called 
as ADIDAS problem [12] and is illustrated in Fig. 1 considering a 2-D example, 
where we project the features onto the x-axis. Hence, an alternative objective function 
is introduced in [3] which eliminates the ADIDAS problem. However, as noticed by 
many researchers, the computational complexity in the evaluation of covariance 
matrix still exists in this approach. Motivated by [4, 15], we proposed 2D-OPT and its 
variants to eliminate the problem of massive memory requirements, higher 
computational complexity involved in covariance matrix computation, and as well to 
resolve the ADIDAS problem. 
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Fig. 1. The 2D-PCA and ADIDAS problem 

The rest of the paper is organized as follows. In section 2, we discussed the 
working model of the 2D-PCA method along with its limitations. In section 3, we 
propose 2D-OPT transform and establish that the proposed 2D-OPT works in the row 
direction of images and hence an alternate 2D-OPT which works in the column 
direction of images is introduced and in sequel a combined model, bi-projection 2D-
OPT is proposed. The results of the experiments are presented in section 4 and 
conclusions are given in section 5. 

2   Problems in 2D-PCA 

Working model of 2D-PCA: Training is a process of acquiring features from 
available training images and storing them in a knowledge base for the purpose of 
recognizing an unknown future scene image. Given a set of samples of each class, the 
2D-PCA approach extracts most informative features which could establish a high 
degree of similarity between samples of the same class and a high degree of 
dissimilarity between samples of two different classes. 

Formally, let there be T number of classes each with ki, i=1...T, number of training 

images. Therefore, we have totally
=

=
T

i
ikN

1

 number of training images. Let j
iA  be 

an image of size m x n representing the jth sample in the ith class. Let C be the average 
image of all N training images. In 2D-PCA, the scatter matrix G is computed as 
follows. 

)()(
1

11

CACA
N

G j
i

k

j

Tj
i

T

i

i

−−=
==

 (1) 

Once G is computed, it is recommended to find the optimal projection axis X so that 
the total scatter of the projected samples of the training images is maximized. For this 
purpose, the criterion used is, 

XGXXJ T=)(  (2) 
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It is a well-known fact that the eigenvector corresponding to the maximum eigenvalue 
of G is the optimal projection axis which maximizes J(X). Generally, as it is not 
enough to have only one optimal projection axis, we usually go for d number of 
projection axes, say X1, X2,…, Xd, which are the eigenvectors corresponding to the 
first d largest eigenvalues of G. In 2D-PCA, once these X1, X2,…,Xd  are computed, 

each training image j
iA  is then projected onto these X’s to obtain the feature matrix 

j
iW of size m x d  of the training image j

iA . So, during training, for each training 

image j
iA , a corresponding feature matrix of size m x d, d<<n, is constructed and 

stored in the knowledge base for matching at the time of recognition.  
 
Limitations of 2D-PCA: Albeit the above described 2D-PCA overcomes the 
limitations of standard PCA based approaches, still it has some shortcomings. As 
noticed by many researchers, 2D-PCA has massive memory requirements for feature 
representation and hence consumes much recognition time. Problems occur if the 
distribution of features is such that the principal axes of all classes are parallel to each 
other, resulting in ADIDAS problem (see Fig. 1). Hence, the projected features will 
allow no discrimination of these classes. For this situation, projection on the y-axis 
would provide discrimination among the classes. Hence, in general, it is necessary to 
have another plausible optimization criterion, which does not show the disadvantages 
of 2D-PCA. 

3   Two-Dimensional Optimal Transform (2D-OPT) 

The scatter matrix introduced in this work is in such a way that the features of the 
same class have minimum distance and possess maximum distance to other classes. 
However, knowledge of the classified sample set, like FLD, is required in this case.   

3.1   Learning Formulation in 2D-OPT 

To devise 2D-OPT, we propose to compute the scatter matrix Hr as follows. Let 

iC be the average image of all ki training images of the ith class. 
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(3) 

Using this scatter matrix Hr, similar to the original 2D-PCA,  in this proposed model 
also we find the optimal projection axis Y so that the total scatter of the projected 
samples is maximized using the same criterion introduced in 2D-PCA given by, 

YHYYJ r
T=)(  (4) 

Thus, the eigenvectors of Hr are computed and then r numbers of eigenvectors 
corresponding to the first r largest eigenvalues of Hr are chosen. Finally projection of 
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a training image onto these optimal projection axes results with a feature matrix of the 

respective training image. That is, if j
iZ represents the feature matrix of j

iA , then  

YAZ j
i

j
i =  (5) 

It should be noted that the above described scatter matrix (Eq. (3)) in the feature space 
is equivalent to an optimal transform  given by,   

( )( )
=

−

=

−−
−

=
T

p

T

q

T
qpqpTT 2

1

1)1(

2 μμμμψ , 
(6) 

where i, i=1…T, is the average feature matrix of all feature matrices of the ith class. 
Hence, using an optimal transform, the distance between the class centers is 
maximized.  

3.2   Recognition 

Let I be an image given for recognition. Let |I  be its projected image onto the r 

number of optimal projection axes computed by YII =| . Given two images, say 

1i
v and 

2i
v of any object(s)/face(s), represented by feature matrices 

[ ]1111 ,...,, 211
i
q

iii zzzZ =  and [ ]2222 ,...,, 212
i
q
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ii ZZdist  

is defined as  
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where 
2

ba − denotes the Euclidean distance between the two vectors a and b. If the 

feature matrices of the training images are Z1, Z2, …,ZN, and each image belongs to 

some object Oi, then for a given test image |I , if dist( |I , Zl) = min j dist( |I , Zj) and Zl 

∈ Oi, then the resulting decision is |I ∈ Oi.  

Theorem 1: The 2D-OPT approach works in the row direction of images.  

Proof 

Let ( ) ( ) ( ) .,...
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The Eq. (3) can be written as 
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(8) 

Equation (8) implies that the image covariance matrix Hr is obtained from the outer 
product of the row vectors of mean images. Therefore we claim that the 2D-OPT 
method works in the row direction of images.                             
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In the following section, we present a modified version of this 2D-OPT, called 
alternate 2D-OPT, which works in the column direction of images. It shall be noticed 
that both the 2D-OPT method and the alternate 2D-OPT method help us in reducing 
dimension only either in the row direction or in the column direction. Thus, a 
combined model called bi-projection 2D-OPT which works in both the directions is 
also presented in the next section. The advantage of this combined approach is that 
the reduction in dimensionality can be achieved in both row and column directions 
without any deterioration in recognition performance. 

3.3   Alternate 2D-OPT 

In alternate 2D-OPT, we propose to compute the scatter matrix Hc as follows. 
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TT
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It shall be observed that Hc in Eq. (9) is obtained in this new formulation as outer 
products of column vectors unlike Hr (Eq. (3)) in the case of the 2D-OPT. Using this 
scatter matrix, similar to the original 2D-PCA, in this alternate 2D-OPT model also 
we find the optimal projection axes V (m x s) so that the total scatter of the projected 
samples is maximized using the same criterion given by 

T
cVVHVJ =)(  (10) 

Thus, the eigenvectors of Hc are computed and then s numbers of eigenvectors 
corresponding to the first s largest eigenvalues of Hc are chosen. Finally projection of 
a training image onto these optimal projection axes results with a feature matrix of the 

respective training image. That is if j
iU represents the feature matrix of j

iA , then  

j
i

Tj
i AVU =  (11) 

Recognition: Let I be an image given for recognition. Let |I  be the feature matrix 

obtained by projecting I onto V, i.e., IVI T=| . By using a Euclidean distance based 
nearest neighbor classifier, the class label of I is obtained as explained in section 3.2. 
Theorem 2: The alternate 2D-OPT approach works in the column direction of 
images.  
Proof 
Let ( )( ) ( )[ ] .,...
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Equation (12) implies that the image covariance matrix Hc is obtained from the outer 
product of the column vectors of mean images. Therefore we claim that the alternate 
2D-OPT method works in the column direction of images.                         
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3.4   Bi-projection Two-Dimensional Optimal Transform (B2D-OPT) 

In the preceding subsection, we proposed an alternate 2D-OPT concept which works 
in the column direction capturing information between columns of images. On the 
other hand, the 2D-OPT works in the row direction capturing information between 
rows of images. In this subsection, we recommend to project the images on both the 
directions simultaneously while extracting feature matrices. 

Let Y denote n x r optimal projection matrix obtained as explained in the 2D-OPT 
method (Section 3.1) and let V denote the m x s matrix obtained by the alternate 2D-

OPT method (Section 3.3). During training, each training image j
iA  is projected onto 

both Y and V simultaneously to obtain the respective feature matrix j
iF  which is of 

dimension s x r as follows. 

YAVF j
i

Tj
i =  (13) 

Recognition: Let I be an image given for recognition. Let |I  be the feature matrix 

obtained by projecting I onto V and Y simultaneously, i.e., YIVI T=| . By using a 

Euclidean distance based nearest neighbor classifier, the class label of I is obtained as 
explained in section 3.2. 

Thus, the B2D-OPT algorithm for training a system is as follows. 
 

Algorithm: B2D-OPT [TRAINING PHASE] 

Input: Set of images: { }i
j

i kjTiA ...1,...1 ==  

Output: Knowledge base: F = { }i
j

i kjTiF ...1,...1 ==  

Procedure: 

A. [Computation of optimal projection axes in the row direction: Y] 

a. Compute the image scatter matrix Hr as explained in section 

3.1 (Eq. (3)). 

b. Find the eigenvectors of Hr. 

c. Choose r eigenvectors say Y1, Y2,…,Yr associated with the first 

r largest eigenvalues of Hr and let Y = (Y1, Y2,…,Yr).  

B. [Computation of optimal projection axes in the column direction: V] 

a. Compute the image scatter matrix Hc as explained in section 

3.3 (Eq. (9)). 

b. Find the eigenvectors of Hc. 

c. Choose s eigenvectors, say V1,V2,…,Vs associated with the first 

s largest eigenvalues of Hc and let  V = (V1,V2,…,Vs).  
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C. [Creation of Knowledge base: F ] 

a.     F  =  { i
j

i
Tj

i kjTiYAVF ...1,...1| === } 

Algorithm B2D-OPT Training ends. 
 
The corresponding recognition algorithm is as trivial as follows. 

Algorithm:  B2D-OPT Recognition   

Input:   Test image, I (m x n) 

   Knowledge base, F,  
Optimal projection axes: Y, 

                    Optimal projection axes: V  

Output:  Class label of I 

    Procedure: 

1. Obtain the feature matrix |I of the input image I using Y and V, 

YIVI T=| . 

2. Find q
pF such that 

( )i
j

i
q
p kjTiFIFI ...1,...1,minarg

2

|

2

| ==∀−=− , 

where 
2

⋅  denotes Euclidean distance. 

3. Classify the test image I as a member of pth class. 

Algorithm B2D-OPT Recognition ends. 

4   Experimental Results 

Experiments on COIL dataset: In this section, we present several experiments 
conducted to demonstrate the performance of the proposed method for object 
recognition. We performed all experiments on the standard set of images, COIL-20 
[http://www1.cs.columbia.edu/CAVE/research/softlib/coil-20.html] which is used by 
many researchers as a bench mark dataset to verify the validity of their proposed 
object recognition models. Each object is represented in the database by 72 views 
obtained by rotating the object in 5o intervals (1440 views in total).  

We have conducted a series of experiments to compare the performances of the 
2D-OPT, the alternate 2D-OPT, the B2D-OPT and the standard PCA (1D-PCA) [7] 
methods with varying number of training views. More specifically, we have 
considered alternate views and tested with the remaining views. Similarly, we have 
conducted experiments considering 480, 360, 240, 160 and 120 views as training 
views of the COIL-20 database choosing 24, 18, 12, 8 and 6 views respectively from 
each object and the recognition performances have been obtained considering the 
remaining views as test views. The computing time taken by each method (1D-PCA 
[7], 2D-OPT, alternate 2D-OPT and B2D-OPT) during feature extraction for different 
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training samples is given in Table-1. Table-1 also summarizes the recognition 
accuracy of each method. It should be noticed that the 2D-OPT method and its 
variants consume less time when compared to 1D-PCA method for feature extraction 
and in addition, they have relatively higher recognition rate. As the number of training 
samples per object set is increased, the relative gain among the 2D-OPT, alternate 2D-
OPT, the B2D-OPT and the 1D-PCA becomes more apparent. Figures 2(a), 2(b), 2(c), 
and 2(d) show respectively the recognition performance of the 1D-PCA, the 2D-OPT, 
the alternate 2D-OPT and the B2D-OPT methods with varying number of dimensions 
of feature vector with varying number of training samples. This experiment is 
conducted to reveal the superiority of the proposed approach over a well accepted 
method (Murase and Nayar [7]) for 3D object recognition. 

   
(a) (b) 

Fig. 2. Recognition performance with varying number of training samples and varying number 
of principal components- (a) Standard PCA (1D-PCA); (b) 2D-OPT; (c) Alternate 2D-OPT; (d) 
B2D-OPT, on COIL-20 database 

Table 1. Object recognition performance of 1D-PCA, 2D-OPT, alternate 2D-OPT and  
B2D-OPT 

Computing time for feature extraction  
(in secs.) 

Percentage of recognition No.of 
views 
used 

to 
train 

No. of 
views 
used 

to test 1D-
PCA  
(20-D 
PCs) 

2D-
OPT 
(128x10 
PCVs) 

Alterna
te 2D-
OPT 
(10x128 
PCVs) 

B2D-
OPT 
(10x10 
PCVs) 

1D-
PCA 
(20-D 
PCVs) 

2D-
OPT 
(128x10 
PCVs) 

Alternat
e 2D-
OPT 
(10x128 
PCVs) 

B2D-
OPT 
(10x10 
PCVs) 

720 720 4080.68 72.578 72.453 67.921 100 100 100 100 

480 960 1091.33 48.812 47.296 47.218 99.27 99.79 99.90 100 

360 1080 167.98 35.468 35.359 34.421 96.48 99.26 98.98 99.35 

240 1200 58.906 23.609 23.765 24.015 94.50 97.42 97.58 98.00 
160 1280 35.953 16.281 16.375 17.468 90.86 94.92 94.22 95.08 

120 1320 28.766 12.375 12.671 13.609 86.67 90.23 90.83 91.67 
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Experiments on AT&T dataset: We have also conducted experiments on the 
standard AT&T face database [http://www.uk.research.att.com/facedatabase.html] in 
order to corroborate the success of the proposed methodology even for face 
recognition. This face database contains images from 40 individuals, each providing 
10 different images of size 112x92. In our experiment, we have considered alternate 
five samples per class during training and the remaining samples for testing. The 
recognition performances of the methods 2D-PCA [15], Generalized 2D-CPA [4], 
2D-OPT, alternate 2D-OPT and B2D-OPT with varying dimension of feature vectors 
are given in Fig. 3. The running times of 2D-PCA [15], Generalized 2D-PCA [4], 2D-
OPT, alternate 2D-OPT and B2D-OPT with varying dimension of feature vectors are 
given in Fig. 4. Table-2 gives a comparative analysis of the methods [4, 15] with 
respect to their running times and dimension of feature vectors. It can be observed 
from Table-2 that the proposed 2D-OPT and alternate 2D-OPT have better 
recognition rate with least running time when compared to the 2D-PCA method. The 
proposed B2D-OPT method achieves the best recognition rate with reduced 
dimension of feature vector among all the approaches. Nevertheless, it has relatively 
better running time. 

   
                                                 (c)    (d) 

Fig. 3. Contd. 

    

Fig. 4. Recognition performance of different approaches with varying dimension of feature 
vectors on AT&T face database 
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Table 2. Running times, Dimension of feature vectors and Recognition rate 

Method Running time 
(in secs.) 

Dimension 
of feature 

vector 

Best 
Recognition 

rate (%) 

2DPCA [15] 5.265 112x9 97.25 

Generalized 2DPCA [4] 2.719 6x6 97.75 

2D-OPT (Proposed method) 3.766 112x4 97.75 

Alternate 2D-OPT (Proposed 

method) 

3.812 92x5 98.00 

B2D-OPT (Proposed method) 2.703 5x5 98.25 

      

Fig. 5. Running time of different approaches with varying dimension of feature vectors on 
AT&T face database 

5   Conclusions 

In this paper, an efficient appearance based object representation and recognition 
method called 2D-OPT and its variants are introduced. The major advantage of the 
proposed method, B2D-OPT, is that it requires fewer coefficients for object/face 
image representation unlike the standard PCA/2D-PCA as it works simultaneously on 
both row and column directions. Experimental results reveal that the proposed 
approach is relatively faster and has better recognition rate when compared to the 
other standard approaches available in the literature for 3D object recognition and 
face recognition, and, hence, is suitable for real-time recognition applications. 
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Abstract. This paper presents a novel approach to construct an eigen
space representation from limited number of views, which is equivalent
to the one obtained from large number of images captured from multiple
view points. This procedure implicitly incorporates a novel view synthesis
algorithm in the eigen space construction process. Inherent information
in an appearance representation is enhanced using geometric computa-
tions. We experimentally verify the performance for orthographic, affine
and projective camera models. Recognition results on the COIL and
SOIL image database are promising.

1 Introduction

Recognition is an active area of research in computer vision. The problem of
view-independent object recognition has received considerable amount of atten-
tion in recent years [1,2,3,4,5]. Recognition techniques can be broadly classi-
fied into (a) Shape representation based and (b) Appearance based techniques.
Shape representation based techniques are popular for specific categories of ap-
plications, where the object’s structure is more important than the intensity in-
formation within its boundaries. Plenoptic function captures object appearance
across views and allows to completely model an object. However, estimation of
this appearance representation is not a viable intermediate step in recognition.
A popular alternative is to model the subspace that will contain all views of
the object. Appearance based matching techniques attempt to model this space.
Since images are bulky in nature, dimensionality reduction is usually sought to
reduce the complexity of the appearance based representation. One of the very
popular approaches for this purpose is the eigen image representation [5,6].

Following the successful application of Eigen spaces for face recognition [6], a
real-time system [5] was built to recognize hundred objects imaged from multiple
view points. This system employed parametric hypersurfaces constructed in the
eigenspace, to model the appearance of the objects in different views. View
based models are built from a large number of training images in [7]. Correlation
between views of an object is exploited to construct the appearance models.
� Currently with Kritikal Solutions, New Delhi, India.
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Performance and applicability of these systems is often limited by the number
of views. With reduction in number of views, the parametric representations
also become poorer approximations of the real appearance models. A direct
method to address this problem is to capture or synthesize additional views
of the object and construct the appearance model from these images. When
an object is viewed with multiple cameras, there holds some constraints in the
geometry of the views [8] which allows the synthesis of novel views.

This paper presents a new approach to solve the view-independent recognition
problem from limited number of views. We construct an eigen space, from a
limited number views, equivalent to the one obtained from a large number of
views. We show that these two are mathematically equivalent, except for the
occluded pixels. The following sections have been written with the emphasis on
linear Principal Component Analysis (PCA) but it may be extended to nonlinear
techniques like Kernel PCA. Note that the output of the proposed technique is a
data matrix of new views interpolated in the pose space. A linear PCA, Kernel
PCA and many other nonlinear Component Analyses can equally well be applied
over this data matrix.

The rest of the paper is organized as follows. Section 2 revisits Principal
Component Analysis and introduces the notation used. Section 3 describes the
details of the eigen space construction process in the proposed scheme for simple
case of orthographic camera projection model. Section 4 discusses its extension
to other camera projection models and application to object recognition. In
Section 5, we demonstrate that the eigen space constructed from limited views
practically approximates the ideal one for orthographic, affine and projective
camera models. Performance of recognition is verified on a set of synthetic images
and images from the COIL [9] and SOIL [10] databases.

2 Eigen Images for Representation

Eigen space representation is very popular for compression [11] and recogni-
tion [5,6]. Eigen space compactly represents the appearance in the presence of
variations in instantiation of the object, say human face, due to pose or illumi-
nation [6]. A new set of bases vectors (eigenvectors of the covariance matrix)
along the direction of maximal variance is employed to build the representation.
The decorrelation of features achieved by PCA, allows discarding of features that
contribute less to the content of an image, without significant loss of information.

Given a set of images {I1, I2, . . . , IP }, each of size N = h×w, the eigen space
is obtained as follows: Each image is arranged as a vector by concatenating the
pixels in row order. The image vectors are normalized by subtracting the mean
vector from each of the images, i.e., Ĩi = Ii − μ where μ = 1

P

∑P
i=1 Ii. These

normalized images are arranged to form a data matrix A of dimensions N × P .

A =
[
Ĩ1 Ĩ2 . . . ĨP

]
(1)

The matrix A is multiplied with its transpose, AT , to yield the scaled version of
the covariance matrix Σ. Eigenvectors corresponding to the larger eigenvalues
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Fig. 1. Three different methods to construct Eigenspace representation. Popular
method (a) capture multiple images of the object under different pose. We propose
two alternate methods for eigen space construction. Method (b) constructs eigen space
by synthesis of many additional images. Method (c) does the same without explicit
synthesis of novel views from two views of an object.

act as the basis vectors for the new representation. If the images are not mean
centered, we will get a correlation matrix whose eigenvectors are directly related
to those of Σ.

To build a view-independent recognition system, a large number of images of
an object is needed and the eigenspace is typically constructed [5] from these im-
ages. We propose two alternate schemes for constructing high resolution appear-
ance space from limited number of input images. Recent advances in multiview
geometry [8] permit us to interpolate or extrapolate from two input views I1
and I2 to obtain new views I3, . . . , IP . Incorporation of the geometric informa-
tion into the appearance representation adds the otherwise missing information,
which could not be obtained from limited number of images. We propose to
construct the eigen space from a set including the synthesized ones. On a closer
look, synthesis of novel views seems to be a redundant step in the construction
of the eigen space. In the next section, we demonstrate that without the in-
termediate views, one could directly construct the eigen space and hence carry
out recognition from limited views. A conceptual explanation of these alternate
procedures is presented in Fig. 1. Although appearance of objects from multiple
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views can be learnt with method (a) (Fig. 1); it generally requires sophisticated
camera(s) and/or light(s) setup. There are a good number of scenarios (for ex-
ample surveillance) where such freedom is unavailable. Hence there is a need for
techniques such as proposed in this paper; which can build a denser eigenspace
with limited available views in a computationally efficient manner.

3 Eigenspace Construction for Orthographic Cameras

We start with a simple case, where two orthographic cameras related by a Y -axis
rotation provides the input. Let I1 and I2 be the input images of size h× w. If
x1 and x2 are x-coordinates of corresponding points in the two images, then the
corresponding point x3 in a third (novel) image I3 is given by (see [12])

x3 = ax1 + bx2, (2)

where a and b depend on the translation and rotation that the camera undergoes
to image I1, I2 and I3. The y-coordinate remains the same. Note that it is the
coordinates of the corresponding points, which are linearly related, and this does
not directly imply anything on the eigenspace constructed from the intensity
values. More over, since a and b can be fractional values, x3 need not be an
integer. The intensity at a point in the novel view can be expressed as a linear
combination of intensities in its neighborhood, which can be computed from the
original image.

LetGT
j =
[
I1(j, 1), I1(j, 2), . . . I1(j, w)

]
denote the intensity values in row j of

image I1. If Cl
j =
[
y1 y2 . . . yw

]
represents a vector of interpolation coefficients

for the lth pixel in the jth row, then the intensity at any point in row j can be
expressed as

I3(j, l) =
w∑

k=1

I1(j, k) · yk = GT
j · Cl

j (3)

Let (xk1 , j), (xk2 , j) and (xk3 , j) be corresponding points in I1, I2 and the novel
view I3. These are related by Equation (2). To synthesize the digital image,
we need to interpolate from the synthesized real coordinates. The point (xk3 , j)
contributes to the intensity of I3(l, j) only if the distance between the two points
is less than one unit on the integer grid. The contribution varies inversely with
distance. Thus the element yk, 1 ≤ k ≤ w is given by

1− dist if dist < 1
0 if dist ≥ 1 , (4)

where dist = |aix1k + bix2k − l|. The interpolation vector Cl
j is determined for

each pixel in the novel view. Then, the product GT
j C

l
j is computed for each point

(j, l) in the novel view. These products are arranged to obtain the vector form
of the novel view I3. Hence the novel view I3 is given as[

GT
1 C

1
1 . . . GT

1 C
w
1 . . . GT

hC
1
h . . . GT

hC
w
h

]T
= G
[
C1

1 . . . Cw
1 . . . C1

h . . . Cw
h

]T
= GC3,
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where G is a hw×hw2 matrix obtained by appropriately arranging the Gi’s and
C3 is a hw2×1 vector obtained by column order concatenation of Cl

j ’s. Each row
of G can be considered as the concatenation of hw vectors of size w× 1. In each
row, hw − 1 of these hw vectors are zero. The remaining vector is assigned the
value of Gj . It may be noted that G is highly sparse and the non-zero elements
can be efficiently computed.

Novel views can also be generated in a similar manner for different placements
of the camera and the corresponding values of a and b. A new variable i is
introduced into the notation of the interpolation vector Cl

j to index the novel
views. Thus, the view Ii is synthesized using the interpolation vector Cl

ij as

G
[
C1

i1 . . . C
w
i1 . . . C

1
ih . . . C

w
ih

]
= GCi (5)

Eigen space representation of the set of images involves computation of eigen-
vectors of AAT as explained in Section 2. The data matrix A is rearranged as
product of two matrices,

A = [I1, I2, . . . IP ] = G[C1C2 . . .CP ] = GC (6)

where C is obtained by arranging C1, . . . , CP as columns of a matrix. Even though
the dimension of these two matrices are huge, the number of operations required
to compute the product is small. This is so because both G and C are highly
sparse.

Since we are considering camera rotation around one axis, let α and θ be the
angles between the camera plane for generating I2 and I3 from that of I1. Given
these angles, Ullman and Basri [12] show that

a =
sin(α− θ)

sin(α)
and b =

sin(θ)
sin(α)

. (7)

Given the two input views I1 and I2, and the angle α, a and b are computed for
different values of θ using Equation (7). The choice of resolution of θ depends on
the tradeoff between density of eigenspace needed and the computational effort
needed. Let the value of a and b corresponding to θ = θi be denoted by ai and
bi respectively. For each pair (ai, bi), Cl

ij is computed for each pixel in the novel
image using Equation (4). From the intensity values of the images and Cl

ij , the
matrices G and C are generated and then the eigenvectors corresponding to A
are computed as explained above.

4 Extension to Other Camera Models

Affine Camera The process of construction of eigen space for an object imaged
with an affine camera is similar to an object imaged with an orthographic camera.
The difference is in the determination of the constants a and b, which is done as
follows. We assume that the world is imaged with an affine camera P1 to generate
image I1. The world is imaged again after transforming P1 with a transformation
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T1, which is rotation by an angle α, to yield I2. For a given θ, we compute T2,
the rotation matrix about Y-axis by θ. Now we assume the world is imaged after
P1 is transformed by T2 to yield I3. Since Equation (2) holds for corresponding
points in the three views, we obtain a system of equations in terms of a, b, P1,
T1 and T2. These system of equations can be solved to obtain the values of a
and b. Using this procedure, ai’s and bi’s are generated and the remaining steps
are followed as for an orthographic camera.

Perspective Camera. The novel view synthesis with general perspective cameras
has been explored in [13]. In this technique, trilinear relationships between two
views are created and then a tensorial operator is used to create the tensor
relating the desired and two initial views. This tensor (say αij

k ) is later used to
get the coordinates of a point in new views using the coordinates in the initial
view. The relation used is as follows

x′′ =
x′α31

i pi − α11
i pi

α13pi − x′α33
i pi

, y′′ =
y′α32

i pi − α12
i pi

α13pi − y′α33
i pi

.

This relation can be used to modify dist as dist =
√

(x′′ − x)2 + (y′′ − y)2,
where x′′ and y′′ are given by above equations. Note that in this case, since
the y-coordinate changes as well, the process for creating one pixel would be
modified to include the whole image (as raster scanned row vector), instead of
just one row as earlier. This would also result in an increase in the coefficient
vector of one pixel. This coefficient vector would correspondingly be of hw × 1
size as well. The rest of the process of stacking up pixel to build G and C matrices
remains the same except for the above change. In this case, the dimensionality
of G and C would also increase to hw×h2w2 and h2w2×n respectively. However
the matrices are still highly sparse and their product can be computed efficiently.
It should be noted that perspective novel view synthesis (NVS) relationship is
general and is applicable for general motion and not just y-axis rotation as in
the previous cases.

4.1 Eigenspace Construction from More Than Two Views

If there are more than two views, even then the eigenspace can be constructed
with minor modifications to the algorithm described above. Let there be m views
of an object, I1 . . . Im, imaged with an orthographic or affine camera. We will get
(m−1) pairs of consecutive views. Also, let αn be the angle between the camera
plane for In and In+1 , 1 ≤ n ≤ m− 1. For every pair of consecutive views, the
matrices G and C are computed. For the nth pair of consecutive views, let these
be denoted by Gn and Cn. The data matrix A will be defined as

A = [G1C1 . . .Gm−1Cm−1] = G1[C1,
G2

G1
C2 . . .

Gm−1

G1
Cm−1]

= G1[C1, C̃2 . . . C̃m−1] = GC.
Since we want to express the data matrix as the product of two matrices, G and
C, G1 is brought out as a common factor. After bringing out G1 as the common
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factor, we get GnCn = G1C̃n. To compute C̃n, we multiply with the pseudo-
transpose of G1 on both sides of the above equation and compute the matrix C̃n.
Having arranged A as a product of the matrices G and C, the eigenvectors are
computed.

4.2 Application to Object Recognition

Suppose there are m objects, that need to be recognized. Also, assume there are
at least two views for each object and the angle by which the camera has been
rotated for each pair of consecutive views is known. For the nth object, Gn and
Cn, are computed, 1 ≤ n ≤ m. The data matrix A is arranged as a product of
C and G, by arranging all the Gn and Cn, 1 ≤ n ≤ m, and then performing the
necessary transformations. The eigen subspace for A is constructed by computing
its eigenvectors and discarding eigenvectors corresponding to lower eigenvalues.
Recognition is performed by projecting a test sample into this space and then
classifying.

5 Results and Discussions

To analyze the performance of the proposed formulation, we have considered
synthetic and real-images. Synthetic models allow us to conduct the experiments
in a controlled manner to systematically study the performance. Real-images are
taken from Columbia Object Image Library(COIL) [9] and Surrey Object Image
Library (SOIL) [10].

In all the experiments, eigen space is created using the method described in the
previous section. Though the eigen space can be constructed from any arbitrary
views, for better analysis and understanding, we use input images from cameras
rotated around Y axis and separated by α (explained later). We then construct
eigen space corresponding to images at θ from the first input image. For example,
θ may take values ranging from −20◦ to +20◦ at increments of 1◦. This means
that the eigen space is created for a 40◦ view cone with a resolution restricted
by the 1◦ difference between consecutive views.

5.1 Synthetic Models

The proposed scheme is useful when a reasonably accurate eigenspace is required
when there are few input images available for each object. We conducted exper-
iments with synthetic models to test the accuracy of the eigenspace built with
the proposed method. We used the eigenspace for recognition problem. Five
synthetic objects shown in Fig. 2 (i):(a-e) are considered. These models(O1-O5),
were imaged by rotating the camera around the object about the Y-axis. Out
of these, two images were taken for construction of the eigen space. From these
two images an eigen space corresponding to the images in the range −20 to +20
from the first image (out of these two) is constructed. We found that even in the
presence of similar objects (Fig. 2(i):(c) and (d)), the eigenspace constructed as
per the proposed scheme gives 100% accuracy for a variety of cases (illustrated
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α N O1 O2 O3 O4 O5 Total(%)

5o 2 100 100 100 100 100 100
10o 2 100 100 100 100 100 100
15o 2 100 100 100 100 96.66 99.33
20o 2 100 100 100 82.22 100 96.44
30o 2 100 100 91.11 77.77 100 93.77
20o 3 100 100 100 100 100 100
30o 3 100 100 100 100 100 100

(i) (ii)

Fig. 2. (i): The first row (a-e) shows the five synthetic models considered for the exper-
iment. Second row (f-j) shows the novel views of the Policeman(object 1) corresponding
to the eigen space representation constructed. Final row (k-o) shows the images which
a real-camera could have seen. (ii) Recognition results on objects in (a). As the an-
gle between two views(α) is increased, there is a reduction in performance. But with
minimal additional views, this can be compensated. N is the number of views.

in Fig. 2 (ii) and explained in detail below). This experiment underlines the
accuracy and utility of the eigenspace created by the proposed scheme.

The test set contained 450 images, 90 images per object. The views ranged
from−450 to 44o at steps of 1o. These images were obtained by explicitly rotating
the camera and capturing the views thus obtained. These test images (Fig. 2(k
- o)), in fact, deviate from the synthesized images for the same angle(Fig. 2(f -
j)). The test set was projected into the eigenspace and classified using a Nearest
Neighbor algorithm. Eigen space is spanned by 15 eigen vectors corresponding to
the largest eigen values. The recognition accuracy was equal to or near 100% for
the various values of α. The results of some experiments on this set are provided
in Table 2. When α is increased to 30◦, the accuracy is found to be above 90%
with only two views. When three views were used, 100% accuracy was achieved.

This experiment indicates that for large α the accuracy can be further im-
proved by using additional views. The eigenspace created by using more number
of seed views provides a better estimation of the true eigenspace. Although the
accuracy with two seed views is high, additional views can be used to improve
the performance to suit practical applications.

Interpolated eigenspace Vs Sparse eigenspace. The motivation behind the current
work is to capture the information contained in views from different orientation
by doing Novel View Synthesis (NVS). In many real life applications very few
images per object are available. NVS allows creation of a denser set of images
from a relatively sparse set. Intuitively such an interpolated eigenspace (created
by NVS) would be closer to the actual eigenspace of an image (which could
be created by exhaustively taking images at various orientation). We validated
this intuition by considering a 3D Face model (see Fig. 3 (a)). We considered 48
equally spaced images of this 3D Face model by moving the camera around the
model from −60◦ to +60◦. It can be assumed that these 48 images make up the
true eigenspace of this object. N (∈ {4, 6, 8, 12, 16, 24}) equally spaced images
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Fig. 3. (a) Few images of the 3D Face model used to compare the sparse eigenspace
with interpolated eigenspace. (b) A comparison between the average re-construction
error per image for sparse eigenspace and interpolated eigenspace.

were selected from this set to create a sparse set of images. Each image was
segmented to a uniform size of 70× 60 pixels. We built an eigenspace limited to
this sparse set and calculated the average re-construction error for each of the 48
original images. We performed NVS on this sparse set and synthesized 25× 48

N
new images between every pair of consecutive images in this sparse set. We cre-
ated an eigenspace with these images and calculated the re-construction error for
this interpolated eigenspace. In both cases top eigenvectors corresponding to en-
ergy factor k = 0.99 (k =

∑k
i σi/

∑T
i σi, where σis are the eigenvalues and T is

the total number of eigenvalues) were picked. For the intermediate set of N = 6
initial images the error with interpolated images was 534.4 while with sparse
eigenspace, it was 723.3. This error is over a total of 60 × 70 = 4200 pixels. In
Fig. 3 (b) more detailed comparison of the re-construction errors between sparse
and interpolated eigenspaces is shown. Clearly, the interpolated eigenspace rep-
resents the appearance of objects better than the sparse eigenspace.

5.2 Application to Recognition

We conducted recognition experiments on two datasets (e.g. COIL-20 [9], SOIL-
47 [10]) to show the applicability of the proposed eigenspace in the context of
object recognition. Good performance with recognition accuracy in the range of
> 90% was achieved.

Experiments on COIL images. We verified the performance of the proposed
scheme on COIL [9] images (Fig. 4 (a)). The Columbia Object Image Library was
developed for conducting experiments on object recognition [5]. This database
has been widely used by researchers for verification of object recognition al-
gorithms. This library provides images of objects rotated about the Y-axis at
intervals of 5◦.

The training set consisted of 180 images, with views ranging from −20o to
20o (inclusive) at steps of 5o. In fact, only two images per object are used for
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(a)

(b)

α 5 10 15 α 5 10 15 α 5 10 15

O1 100 100 100 O8 100 100 100 O15 100 84.21 73.68

O2 100 100 100 O9 100 89.47 84.21 O16 100 100 100

O3 100 100 100 O10 100 100 100 O17 89.47 100 100

O4 100 100 100 O11 100 100 100 O18 100 73.68 84.21

O5 73.68 100 100 O12 100 73.68 85.73 O19 100 100 100

O6 100 68.42 84.73 O13 94.74 100 89.47 O20 100 94.74 73.68

O7 100 84.21 52.63 O14 100 100 100 Total(%) 97.89 93.42 91.42

Fig. 4. (a)All COIL-20 Objects used for the recognition experiment. (b) Recognition
results on COIL images. With only two images, most of the images in 90◦ view cone can
be recognized with good accuracies. With minimal increase in the number of images,
100% accuracy is achieved. See text for details.

constructing the eigen space. i.e., in reality only 40 images were used to get an
effective representation, which we could have computed from all the 180. The
test set consisted of 380 images, 19 images for each object at increments of 5o

from −45o to 45o (inclusive). The results of the experiment on the real world
images are provided in Fig. 4 (b).

The recognition accuracy ranging from 88% to 95%, is achieved by using two
images per object. This outperforms the direct methods for recognition by ex-
plicitly constructing eigen spaces. Crowley [14] achieved around 90% recognition
from four views. Their results were verified only for a smaller view cone, com-
pared to that of ours. Additionally, we have exhaustively tested images beyond
the scope of the training images. i.e., even if we construct the eigen space for−20◦

to +20◦, applicability was verified for −45◦ to +45◦. In general, the proposed
method is found to give good results even for such test images. Additionally the
recognition accuracy is found to improve if the number of initial seed images is
increased.

Experiments on SOIL images. The Surrey Object Image Library (SOIL [10])
consists of 25 planar and 22 complex shaped objects (some of which are shown in
Fig. 5 (a)). This dataset is also widely used for testing recognition performance
in literature along with COIL-20. There are 2 sets, SOIL-47A and SOIL-47B
which differ in overall illumination. We conducted our experiments on SOIL-47A.
There are 20 images per object taken at approximately 9◦ intervals spanning
180◦.

We considered 2 images of all 47 objects in the 90◦ middle sector. Here we
varied initial angle α as 9◦ and 18◦ and generated 18 (2α, α = 9) and 36(2α, α =
18) images respectively per object, separated at 1◦ intervals spanning the central
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(a)

(b)

α 9 18 α 9 18 α 9 18 α 9 18

O1 83.66 83.66 O13 100 83.33 O25 100 83.33 O37 100 100

O2 66.67 66.67 O14 83.33 100 O26 100 100 O38 100 100

O3 100 83.33 O15 100 83.33 O27 100 100 O39 100 100

O4 100 100 O16 66.67 83.33 O28 66.67 83.33 O40 100 100

O5 100 100 O17 100 83.33 O29 100 100 O41 100 100

O6 66.67 83.33 O18 83.33 83.33 O30 100 100 O42 100 100

O7 83.33 66.67 O19 100 100 O31 100 100 O43 66.67 83.33

O8 100 83.33 O20 83.33 83.33 O32 100 100 O44 100 100

O9 100 100 O21 83.33 66.67 O33 100 100 O45 100 100

O10 83.33 66.67 O22 83.33 83.33 O34 66.67 83.33 O46 100 100

O11 66.67 100 O23 83.33 83.33 O35 66.67 83.33 O47 100 100

O12 83.33 100 O24 100 83.33 O36 100 100 Total(%) 90.43 90.07

Fig. 5. (a) Few images taken from the SOIL-47 database. (b) Recognition results on
SOIL-47 images. With only two images, most of the images in the 90◦ cone are recog-
nized. See text for details.

2α section. These (47 × 18 = 846, 47 × 36 = 1692) images were taken as the
training set. The testing set consisted of images in the range −2α to 2α (5 and 7
images respectively per object for 47 objects). Recognition accuracies above 90%
validate the use of the proposed technique. More detailed results are in Fig. 5
(b). The recognition experiments show that the eigenspace estimated from view
in a limited range can be used to recognize the views outside the range. It is
evident that the multi-view relationships can be used to enhance appearance
models to enable view independent recognition of objects.

6 Conclusion

The major contribution of this work is in construction of eigenspace from lim-
ited number of views. The algorithms proposed for the construction of eigenspace
involve matrices that are very sparse. Efficient algorithms for performing oper-
ations on sparse matrices are used for implementation. A detailed analysis of
the computational complexity of these algorithms is beyond the scope of the
current work. The reconstruction error per pixel for various camera models are
found to be less than 1%, validating the correctness of eigenspace construction
process. Further, the recognition experiments conducted on both synthetic and
real world data ascertain that the approach presented can be used to build
view independent recognition systems. Future work would focus on the appli-
cability of this for accurate pose estimation from limited views for deformable
objects.
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Face Recognition from Images with High Pose Variations 
by Transform Vector Quantization 
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Abstract. Pose and illumination variations are the most dominating and 
persistent challenges haunting face recognition, leading to various highly-
complex 2D and 3D model based solutions. We present a novel transform 
vector quantization (TVQ) method which is fast and accurate and yet 
significantly less complex than conventional methods. TVQ offers a flexible 
and customizable way to capture the pose variations. Use of transform such as 
DCT helps compressing the image data to a small feature vector and judicious 
use of vector quantization helps to capture the various poses into compact 
codebooks. A confidence measure based sequence analysis allows the proposed 
TVQ method to accurately recognize a person in only 3-9 frames (less than ½ a 
second) from a video sequence of images with wide pose variations. 

1   Introduction 

Pose and illumination variations are the most dominating challenges in face 
recognition and have been the focus of many studies in the past [3][9][8][7].  Holistic 
face recognition methods such as the PCA-based Eigenface method [6]  perform  
nicely for image sets where pose variation is minimal and performs rather poorly 
when there are wide variations of pose (e.g. the MSRI-V1 database shown in  Fig. 1). 

Even if the pose variation is minimal, e.g. for frontal images as shown in Fig. 2, 
there may still be a wide variation of expressions, which also limits the performance 
of several traditional face recognition approaches such as PCA. To overcome the 
challenges of pose and expression variations, several  2D and 3-D pose-normalization 
methods have been proposed, as nicely surveyed in [3]. However, in the same survey, 
it has been noted that most of these methods (which can handle pose variations) are 
quite complex in terms of computation complexity and memory usage. 

Several recent studies [5][11][4][12][13] have shown that face recognition 
performance improves dramatically if a face video, or a sequence of face images of a 
person, is used for recognition, as opposed to using a single image. Several spatial-
temporal methods such as [10], also reported good results. A good review can be 
found in [3]. Once again, due to the complex modeling employed to handle pose 
variations, these methods also require high computational complexity and the 
processing of a reasonably large sets of image frames, before reaching a decision. 
                                                           
1) IIT-Madras MTech  & 2)  IISc-Bangalore MS students,  doing internship at MSR-India. 
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Fig. 1.  Pose Variations in the MSRI-V1 Face Database 

 

Fig. 2. Example of expression variations (MSRI V2 database of frontal face images) 

    We present a novel low-complexity transform vector quantization (TVQ) based 
face recognition method which handles pose variation quite efficiently and to some 
extent can handle illumination variation as well. The use of Discrete Cosine 
Transform [2] in our feature extraction delivers a significant amount of 
dimensionality reduction at much lower complexity than PCA.  Our main contribution 
however is the application of vector quantization [1] in the transform domain, which 
allows the TVQ system to capture the pose variations of a person very effectively as 
multiple code vectors  of a person-specific codebook (see Fig. 6). The proposed TVQ 
method gives a customizable platform, which can be tailored to work well with any 
kind of  face data – with or without pose variations.  For image data with little pose 
variation, TVQ demonstrates 100% identification accuracy with a very small 
codebook (size 4 and dimension 15) per person, compared to the 93% identification 
accuracy offered by  PCA,  using a 416 dimension feature vector per person. We also 
present a confidence-measure based fast face recognition from video, which delivers 
100% accurate results with high confidence very quickly [processing only 3-9 frames 
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or in about 400 ms]. Finally, a set of illumination-variation trials indicate that the 
proposed TVQ is also quite robust to illumination variation. The computational 
complexity and memory requirements of TVQ is significantly less than traditional 
PCA based methods [6][7]. 

2   Face Recognition by Transform Vector Quantization 

The proposed Transform vector quantization (TVQ) face recognition method exploits 
the de-correlating property of the Discrete Cosine Transform [2] to extract a low-
dimension feature vector from the input face image. For classification, we use a 
Vector Quantization [1] based scheme. A confidence-measure based fast-selection 
process further reduces the complexity and speeds up the face recognition process, 
while guaranteeing 100% accuracy.  Details of the pre-processing, feature extraction 
and classification steps are presented next. 

2.1   Preprocessing, Feature Extraction and Face-Transform Space in TVQ 

The input images frames <X1, X2,.. Xk,  .. XM> from the video are converted into gray 
images. From each frame, a N1 x N2 size image is cut (in our experiments we kept 
N1=136 and N2 = 120) from the region of interest (ROI) to create images <I1, I2,.. Ik,  
.. IM>. The ROI is automatically extracted by tracking the face contour in the image 
using vertical and horizontal projections of selected areas of the image. Figure 2 
shows the pre-processing step and resulting processed gray images. 

 

Fig. 3. Preprocessing and feature vector extraction in the proposed TVQ method 

A  2-D DCT is then applied to the gray image Ik and the coefficients of the top left 
m x m corner of the transform coefficient matrix C is selected to form a feature 
vector Fk  of size K=(m2 -1). Note that all the components, except the 1st one (which 
is the DC coefficient C(0,0)), are chosen. Removal of the DC coefficient makes the 
proposed TVQ method somewhat immune to illumination variation.  

  Preprocessing   DCT &  
 Truncation  

K-dim  
Feature  
vector  
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    This way a large amount of the face image information  is stored into a 
significantly low dimension feature vector. In our experiment, our input image size 
was 280x320 or 89600 pixels and we used feature vectors having  dimensions ranging 
from 9 to 63.  Fig. 4 shows images reconstructed after such truncation of DCT 
coefficients for various values of K. Note that here the objective is not to preserve the 
quality of the input image but to pack important discerning attributes of the face 
image into a small feature vector. Thus the images reconstructed from the truncated 
DCT coefficients (our feature vector) do not represent as much spatial detail as the 
original image, but as we will see later, they are quite successful in differentiating the 
face images of different persons. This feature vector dimension K= (m2 -1) will be a 
system parameter in the proposed TVQ face recognition method.  
 
Original    K=15     K=35      K=63 

  

Fig. 4. Impact of the size of K in recon- 
structing back the image 

Fig. 5. Person clusters in the face transform 
space (K=3, 6 person system) 

2.2   Recognition of Face by Transform Vector Quantization 

In the TVQ method, the input face images are converted into the K-dimension feature 
vectors comprising of DCT coefficients. This can be interpreted as follows. The face 
images of all the T persons to be recognized, P1, P2, to PT, are now lying in this K-
dimension “face-transform” space.  The face images (various poses) of each person 
will be occupying a certain “region” of this face-transform space. Vector quantization 
[1] can now be used to design a person-specific codebook, which by a proper Voronoi 
tessellations of this K-dimension face-transform space, will be able to capture and 
define the regions of various persons. Fig. 5 shows the results of a toy example, in 
which TVQ is applied to the face images of 6 different persons. Here K is chosen to 
be only 3 so that we can plot the “person regions” in the 3-D face transform space. 
Six distinct clusters, one for each person, are clearly seen in Fig. 5. 
    All the various face images of  the i-th person, Pi , will now be lying within the i-th  
region in the face-transform space and can be represented by an N-size VQ codebook, 
CBi = [Ci1, Ci2, …, Cij,…. CiN], each Cij, being a K-dimensional code vector. The  
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                                         Input set of face images of various pose  

 

                                          Same images encoded & clustered by TVQ 

Fig. 6. Capture of the various poses of a person’s face by the TVQ codebook. When a set of 
face images of various poses of a person (shown at the top collage) is encoded by the TVQ 
codebook of the same person, the different poses get automatically clustered as shown on the 
bottom collage. In the bottom collage, all the images in the i-th row is closest to the i-th vector 
of the TVQ codebook of the person. K=15 and N=8 are the codebook parameters for this 
example. This demonstrates that in TVQ,  the different code-vectors of a person do capture the 
different poses of the person. Note that in the bottom collage, a maximum of 12 images per row 
is shown, i.e. some code-vectors (e.g. 5,6 and 8) has more than 12 images closest to them. 

various poses of the i-th person will be captured by the various code vectors of this 
codebook C as shown in Figure 6. Here, the face images, which are “closest” to each 
of the 8 code vectors of the codebook of a certain speaker are shown. As seen here, 
the different code vectors do capture the pose variations of the same person. Such 
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codebooks, one for each person, can be designed by any VQ training algorithm such 
as LBG [1]. A large number of pose variations can be captured by a reasonably-sized 
codebook. Thus, representation of each person, in our proposed TVQ method, is 
much more “richer” than traditional PCA based approach [6] in which only one 
representative face data, the M-dimensional weight vector, represents the person. 

Given an input face image, the recognition task by TVQ then becomes the search 
for the best codebook, CBj*, which is “closest” to the feature vector  F, extracted from 
the input image.  We present 3 TVQ algorithms next: a) person identification from a 
single face image, b) person verification from a single image, and c) person 
identification from a video. 
 
Algorithm 1: Person Identification by TVQ 

a) Given an input image X, extract the transform feature vector F. 
b) For each person, Pi, find Di the closest distance of its codebook CBi from the input 
feature vector F: 
    Di = minimum of Dij, where Dij = ||F – Cij ||

2, j=1,2,…,N, Cij being the code vector 
of the codebook CBi 
c) The identified person is person Pk, where Dk is the minimum of all Di, i=1,2,3...T. 

Algorithm 2: Person Verification by TVQ From a Single Image  
 
For person verification, a face image X is presented along with an “identity claim” k. 
The task is now to verify whether the image belongs to the k-th person Pk, or not. The 
TVQ verification algorithm is given below: 
 
1)  Given an input face image X, extract the transform feature vector F. 
b) Given the identity claim, k, compute two distances, d_trgt & d_bkgr, as follows:  

d_trgt = minimum distance of the input feature vector from the codebook CBk of 
claimed person Pk; In other words, d_trgt = minimum of Dij, where Dij = ||F – Cij ||

2, 
j=1,2,…,N, Cij being the code vector of the codebook CBk of the target person Pk. 

d_bkgr  = minimum distance of the input feature vector from the collection of all 
codebooks of all other persons except person Pk. In other words, d_bkgr = minimum 
of Dij, where Dij = ||F – Cij ||

2, j=1,2,…,N; i=1,2,3,..T ; i not equal to k, where Cij is 
the i-th code vectors of  j-th codebook. 
c) Compute a confidence measure λ = d_trgt/d_bkgr, and if λ < θ (θ being a 
predetermined threshold during training) then the presented identity claim  is accepted 
as person Pk; else it is rejected. 

Algorithm 3: Person Identification by TVQ from a Video 

In contrast to earlier methods of face recognition from video, which require 
processing of a reasonably large set of such frames before making a decision, TVQ 
offers a much faster and less complex method as described below: 
a) Given input image sequence X1, X2,...XM ,  extract feature vectors, F1, F2,...FM  
b) At each k-th sequence, for each person, Pi, compute an accumulated distance (AD) 
Ai as follows: 
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   Ai (k) = Di (1) +  Di (2) + Di (3) +  . . . . . + Di (k)  , where  Di (k)  is the minimum 
distance of the feature vector Fk to the codebook CBi of  person Pi 

c) If Aj is the least among all j=1,2,…T, then compute a confidence measure  

βj, which is the difference (Aj – Am) between the best candidate Aj and the next best 

candidate (say Am). If  this confidence measure βj  is greater than a pre-determined 

threshold τj (learned during training), then the j-th person is chosen as the identified 

person.  τj  is calculated by computing the histogram of βj with the training data and 

then setting τj  as a fraction of the mean value of βj .  
 
    We call the number of frames TVQ takes to detect a person as the Time-of-
Detection or ToD, which  is used later in our trials as a performance metric.  

3   Face Recognition Tasks, Databases and Description of Trials 

At Microsoft Research India, we created our own Biometric Person Recognition 
Database called the MSRI database by recording face video as well speech from a 
wide set of people of various nationalities. For face recognition, we used two subsets 
(Table 1) of the MSRI database:  a)  MSRI-V1, consisting of face images with various 
pose variations (Fig. 1) and b)  MSRI-V2, with only frontal face images (Fig. 2).  

Table 1.  Details of the MSRI-V1 &  MSRI-V2  Face Databases 

  MSRI-V1 MSRI-V2 

No of Person in the database 65 52 

Average no of Images/Person for Training  324  55 

Average no of Images/Person for Testing  325 83  

Total number of test trials  16884 5414  
 

The performance metrics used for the tasks of identification, verification and 
verification from video are Percentage of Accuracy, Equal Error Rate (EER) and 
Time to Detect (ToD) respectively. Two system parameters, N (codebook size) and K 
(code-vector dimension), are varied during trials.  The PCA based Eigenface [6] 
method was also ran for comparison and the dimension M of the pattern weight vector 
Ω was varied as the system parameter.  

4   Results and Discussions 

The results, shown in Table 2&3 for MSRI-V1 and MSRI-V2 respectively, clearly 
shows the proposed TVQ method outperforms conventional PCA based method 
significantly when there is high pose variation. 
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Table 2. Identification accuracy of the TVQ and PCA based face recognition methods on the 
MSRI-V1 database having face images with high pose variations 

  K=15 K=35 K=63 M=416 M=240 M=60 

N=4 83.7 86.2 87.0 

N=8 92.4 94.3 94.7 

N=16 96.9 96.8 97.1 

TVQ 

N=32 98.8  99.1 99.4  

PCA 
68.8 68.7 67.6 

Table 3. Identification accuracy of the TVQ and PCA based face recognition methods on the 
MSRI-V2 database having only frontal  face images 

  K=15 M=260 M=60 M=30 M=15 

N=1  90.9 

N=2  99.0 
TVQ 

N=4  100.0 

PCA 
93.9 92.8 90.4 85.7 

 
The performance of TVQ increases dramatically if we increase N (number of code-

vectors) as opposed to increasing K (feature dimension) as evident in these tables. For 
only frontal images, TVQ delivers 100% accuracy at N=4 and K=15 or storage of 
only 60 data points per person and 60*T multiply-add operations, as opposed to 
93.9% performance by PCA which requires 260 data points to store per person, 
requiring 260*T multiply-add operations. The feature extraction process of TVQ is 
also much simpler (2*P*K multiply-add for a PxP image and K-dim TVQ) than PCA 
(P*P*M multiply add for a PxP image and M dimension PCA weight vector).  

4.2   Person Verification  

As seen in Table 4, TVQ is offering an EER of 2.1% for MSRI-V1, which is much 
better than the PCA figure of 48%. For the MSRI-V2 database, TVQ (N=16;K=15) 
delivered 1.5% EER. We did not run PCA for this trial. 

Table 4. Performance comparison (in terms of Equal Error Rate) of the TVQ and PCA based 
face recognition methods on the MSRI-V1 database having high pose variations 
 

  K=15 K=63 M=416

N=4  5.2 4.4 TVQ 

N=16 2.1 2.0 

PCA
48% 

4.3   Person Recognition from Video  

We ran these experiments only on the MSRI-V1 database, as for MSRI-V2 we are 
always getting the correct detection in the first frame itself.  
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Fig. 7. Time to Detect Statistics of TVQ (n=16 K=15) for MSRI-V1 

The goal is to determine how many frames (Time of detection or ToD) does TVQ 
need to recognize a person with total confidence.  We ran two experiments: a) FIRST-
FRAME, where the 1st frame is always the starting frame (this was ran 1 time per 
speaker ), and b) RANDOM, here the starting frame is chosen at random, thereby 
allowing the processing to start from any pose variations (this trial is ran 10 times for 
each speaker) The results are shown in Fig. 7. 
    In case of FIRST-FRAME, the worst-case detection time is 13 frames or approx. 
400 mill-second, although most persons were detected in 3 frames only (90 ms). For 
the RANDOM trial it was found that on average (green circle) the detection time is 
approximately 5 frames or 150 ms, where as the worst case was found to be 9 frames 
or 270 ms. 

4.4   Illumination Variation Trials 

In this experiment, we artificially changed the illumination of the test images from 
80% to 120% in 3 different ways (as shown in Figure 8) : a) L-X: Change only left 
half (multiply by X%), b) C-X: change entire image, c) R-X: Change only right half 
(X=80% or 120%). This reflects somewhat what can happen in a real life situation. 

 
         Original      C-80          C-120       Original       L-80        Original     R-120 

Fig. 8. Example images with 3 types of artificially-created illumination variation 
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Table 5 shows the performance figures (Identification Accuracy) for various 
illumination variations and Figure 7 shows the ToD figures for the L-80. For PCA the 
performance dropped from 68.8% (original) to 63% for R-120.       

 

Fig. 9. Time to Detect results for the L-80 illumination variation trial (N=16; K=15) 

Table 5. Identification accuracy of TVQ for various illumination-variation trials 

 Left Center Right 

N x K L80 Orig L120 C80 Orig C120 R80 Orig R120 

4 x 15  74 83.7 80   78 83.7  81 73 83.7 74 

16 x 15  89 96.9 96   90 96.9  97 84 96.9 88 

 
As seen in Fig. 9 and Table 5, illumination variation is impacting the identification 

accuracy of TVQ to some extent but not to a great extent and especially the ToD 
results are quite good. On average, people are getting detected in less than 7 frame 
(210 ms) and the worst case detection time is 15 frames or 450 ms for the L-80 
condition.  

5   Conclusions  

We presented a novel transform vector quantization (TVQ) face recognition method 
which can be tailored to provide high performance for various extents of pose and 
illumination variations.  Use of transform such as DCT in TVQ helps compressing the 
image data to a small feature vector and judicious use of vector quantization helps to 
capture the various poses into compact codebooks. The computational complexity  
of TVQ is significantly less than a conventional PCA based method as shown in 
Table 6. 
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Table 6. Comparison of TVQ  with PCA for face images with high pose variation  

  TVQ PCA 

System Parameters N=32;k=15 M=416 

Identification-Accuracy for MSRI-V1 98.80% 68.80% 

EER for MSRI-V1 2.10% 48% 

ToD for MSRI-V1-average value 3 frames - 

Feature extraction complexity - 160x160 image  4800 10649600 

Classification complexity / per person 480 416 

Overall Detection Complexity  / per person 5280 10650016 

Memory/user(float number to store) / per person 480 416 

 
In the proposed TVQ method, high extent of pose variation can be handled by 

having more number of code vectors, while more image precision can be obtained by 
increasing the feature vector dimension. A confidence measure based sequence 
analysis allows the proposed TVQ method to accurately recognize a person in only 3-
9 frames (less than ½ a second) from a video sequence of images with wide pose 
variations. 
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Abstract. Digital video databases are widely available in compressed
format. In many applications such as video browsing, picture in picture,
video conferencing etc. data transfer at lower bit rate is required. This
requires downscaling of the video before transmission. The conventional
spatial domain approach for downscaling video is computationally very
expensive. The computation can greatly be reduced if downscaling and
inverse motion compensation (IMC) are performed in Discrete Cosine
Transform (DCT) domain. There are many algorithms in the literature
to perform IMC in the DCT domain. In this paper, we propose an efficient
integrated technique to perform IMC and downscaling in DCT domain.
This new approach results in significant improvement in computational
complexity.

1 Introduction

Due to the day to day advancement in multi-media based applications, more
and more video data are available in digital formats. A digital video is typically
stored in the compressed form to reduce storage space and transmission time.
International Organization for Standardization (ISO) has proposed MPEG stan-
dards [1] for video compression. According to MPEG standard, a video stream
consists of a number of GOPs and each GOP is a pre-specified sequence of dif-
ferent kinds of frames. There are three such different types of frames, namely,
I, P and B. The I frames are intra coded frame and they are followed by P and
B kinds of frames which are known as inter coded frames. They are also called
motion compensated frames. There are quite a few good review papers [2] [3] [4]
dealing with this standard.

There are applications as video browsing, picture in picture, video confer-
encing which requires video to be transcoded at lower bit rates and of reduced
frame size. A straightforward method to perform this transcoding is to decode
each frame in the input video, downscale each frame spatially and re-encode
at a lower bit rate. This technique is known as spatial domain downscaling.
But the spatial domain technique is very time consuming and computationally
inefficient to meet the requirement of real time applications. The DCT/IDCT
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operations and motion estimation during re-encoding of downscaled video are
main bottlenecks of this approach. The computation time can greatly be re-
duced if we perform downscaling in the DCT domain itself, which eliminates
the requirement of costly IDCT operation. There exists many algorithms [5] [6]
[7] [8] [9] [10] [11] that provide different approaches for image/video downscal-
ing in the DCT domain. As stated earlier, many frames in an MPEG stream
(MPEG-1, MPEG-2) are motion compensated to achieve higher degree of com-
pression. One has to reconstruct these motion compensated frames using inverse
motion compensation(IMC) techniques before downscaling. This problem of in-
verse motion compensation (IMC) in DCT domain was studied in the work of
Chang and Messerschmit [9], and subsequently in [12], [13], [14], [15]. Merhav[12]
has proposed an excellent scheme to perform IMC in the DCT domain. He has
also proposed an efficient computational model for performing this task with
the help of factorization of the DCT and IDCT matrices that correspond to
fast eight point winograd DCT/IDCT [16]. In [14], the shared information in a
macroblock is used to speed up the process of IMC. It shows about 19% and
13.5% improvement over the method presented in [12], [13] respectively. In [15],
a Macroblockwise Inverse Motion Compensation (MBIMC) scheme is presented
to predict a complete macroblock in single step. This work is extension to the
work of Merhav [12]. The method presented in [15] has shown 27% improvement
over the Merhav approach.

In this paper, we propose a different approach for video downscaling by com-
bining the downscaling and IMC as a composite operation. This approach is
extention of our previous work [15] reported as Macroblockwise Inverse Motion
Compensation (MBIMC) scheme. This work formulate a single expression for
downscaling and inverse motion compensation. This reduces the computational
complexity. We have computed the complexities in terms of multiplication and
addition operations. Since multiplication operation is always costlier than addi-
tion operation, we assume in our work that a single multiplication is equivalent
to 3 machine instructions and addition as a single machine instruction (as con-
sidered in [17]). The results are recorded using video stream containing I and
P frames only (n=3, m=1 GOP structure is used). However the proposed ap-
proach can easily be extended to videos containing B frames also. In the next
section (section II), we discuss in brief about MBIMC scheme [15]. In the sec-
tion III, the integrated approach for downscaling a video with IMC is discussed.
Subsequently, results are presented and discussed in section IV.

2 Conversion of a P Frame to an I Frame

In an MPEG video stream, motion compensated frame (P) can be converted to
an intra (I) frame by performing the IMC operation. In motion compensation,
each macroblock M in current frame is predicted from the previous encoded
frame. If predicted macroblock is M ′ then error E is computed as E = M −
M ′ and finally this error block E is encoded in the video stream. A motion
compensated frame is called inter coded frame. The inverse motion compensation
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is required to convert an inter coded frame (P-frames) to an intra coded frame
(I-frames).

During motion compensation, the best matching reference macroblock M ′

may not be aligned to any macroblock of its reference frame. In general, the
predicted macroblockM ′ may intersect with nine 8×8 blocks (see Figure 2). Our
aim is to compute DCT(M) of current macroblock using the factM = M ′+E. As
DCT(E) is available directly from the compressed stream, we have to compute
DCT(M ′).

In [15], the MBIMC scheme is presented to perform IMC for a macroblock.
We discuss the MBIMC scheme here for the sake of completeness.

2.1 Macroblockwise Inverse Motion Compensation (MBIMC)

In MPEG video stream, motion estimation and compensation are performed for
each macroblock. A macroblock contains four 8×8 DCT blocks. A motion vector
is generated for each macroblock and each 8× 8 block in the macroblock shares
the same motion vector.

SchemeFn

motion
vector

n

Fn−1
/

F /MBIMC

Fig. 1. Block diagram of MBIMC scheme

The functionality of MBIMC scheme is shown in Figure 1. The F ′
n−1 rep-

resents the (n − 1)th intra/reference frame. Fn is the nth motion compensated
inter frame in the video sequence. The MBIMC scheme uses the motion vector
and macroblocks from reference and current (inter) frames to perform the IMC
for complete macroblock. The IMC operation converts an inter macroblock in to
Intra macroblock which can easily be downscaled by any downscaling algorithm.

E
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c
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Fig. 2. Macroblockwise inverse motion compensation (MBIMC)

As shown in Figure 2, M ′ is the predicted macroblock in the reference frame
which starts from the location (r, c). Macroblock M ′ does not always align with
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the block boundaries and intersects with nine 8 × 8 DCT blocks in general.
In MBIMC scheme, the M ′ is computed from the nine 8 × 8 DCT blocks. If
x1, x2, x3, x4, x5, x6, x7, x8, x9 are the adjacent blocks in spatial domain then a
16× 16 block from the 24× 24 block can be extracted using the Eq. (1).

m′ = cr

[
x1 x2 x3
x4 x5 x6
x7 x8 x9

]
cc (1)

Where m′ is the predicted macroblock in spatial domain and cr is a 16 × 24
matrix, cc is 24× 16 matrix. These matrices are different for different values of
r and c (refer Figure 2). Since 1 ≤ r ≤ 8 and 1 ≤ c ≤ 8, there can be eight
different cr and cc matrices which can be pre-computed and stored.

Since we have DCT blocks X1, X2, X3, X4, X5, X6, X7, X8, X9 and we have to
extract macroblock M ′ from these nine DCT blocks. The macroblock M ′ is a
group of four adjacent 8 × 8 DCT blocks. To achieve this, Eq. (1) is expressed
in the DCT domain as follows:

M′ =
(

S8 0
0 S8

){
cr

[
St
8 0 0

0 St
8 0

0 0 St
8

] [
X1 X2 X3
X4 X5 X6
X7 X8 X9

] [
S8 0 0
0 S8 0
0 0 S8

]
cc

}(
St
8 0

0 St
8

)
(2)

Here ′0′ represents a 8 × 8 matrix of zeros. The matrix multiplication inside
the curly braces results in a 16× 16 matrix, which represent the spatial domain
block. The premultiplication of

(
S8 0
0 S8

)
and post multiplication of

(
St

8 0

0 St
8

)
re-

sults in a 16× 16 macroblock containing four 8× 8 DCT blocks. Let us define S
and St as shown below.

S =
[

S8 0 0
0 S8 0
0 0 S8

]
and St =

[
St
8 0 0

0 St
8 0

0 0 St
8

]
Then St can be written using the well known factorization of 8 point DCT

matrix S as shown in Eq. (3).

S8 = DPB1B2MA1A2A3 (3)

Here D is a diagonal matrix, P is a permutation matrix, B1, B2, A1, A2, A3

are sparse matrices of zeros and ones and M is sparse matrix of real numbers.
The details can be seen in [16].

St =
(MA1A2A3)t 0 0

0 (MA1A2A3)t 0
0 0 (MA1A2A3)t

Qt

Bt
2 0 0

0 Bt
2 0

0 0 Bt
2

B2t

Bt
1 0 0

0 Bt
1 0

0 0 Bt
1

B1t

P t 0 0
0 P t 0
0 0 Pt

Pt

Dt 0 0
0 Dt 0
0 0 Dt

Dt

Similarly, equation for S is factorized also.
Using the above mentioned notations, we can rewrite Eq. (2) as given below.

M′ =
(

S8 0
0 S8

){
crQtB2tB1tPtDt

[
X1 X2 X3
X4 X5 X6
X7 X8 X9

]
DPB1B2Qcc

}(
St
8 0

0 St
8

)
(4)

The Eq. (4) is used to perform IMC for a macroblock in MBIMC scheme. The
MBIMC scheme can be referred in detail in [15].
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3 Video Downscaling and IMC : Integrated Scheme

Interestingly, the IMC in the DCT domain and downscaling can also be clubbed
together in to a single step. The functionality of integrated scheme is described
in Figure 3. F ′

n−1 is (n− 1)th downscaled reference frame and Fn is next inter
frame in the video sequence. Each downscaled reference frame (F ′

n−1) is upscaled
(using [5]) by a factor of two, to reconstruct the next frame (Fn) in the video
sequence. The (n− 1)th upscaled frame is represented as F ′′

n−1. It may be noted
that the upsampling of I frames is not required as it is already available from
the compressed video stream. The integrated scheme takes the four 8× 8 blocks
from Fn and F ′′

n−1, performs IMC and downscaling and generate 8×8 downscaled
intra block F ′

n.

Integrated Scheme

Downscaling + IMC

motion
vector

DCT Domain
Upsampling

Fn−1

Fn Fn
/

/

n−1F"

Fig. 3. Integrated scheme for downscaling+IMC

An equation can be derived to perform IMC and downscaling operations si-
multaneously. But in the integrated approach, we have to perform upsampling
of the downscaled frame to convert next inter frame in the video sequence in
to intra frame. This upsampling requires additional computation. if we combine
the downscaling operation with inverse motion compensation, the Eq. (4) can
be written as

X′ =
(

S8 0
0 S8

){
d
{
crQtB2tB1tPtDt

[
X1 X2 X3
X4 X5 X6
X7 X8 X9

]
DPB1B2Qcc

}
dt
}(

St
8 0

0 St
8

)
(5)

where d is a downscaling filter as shown in Eq. (6).

d = 0.5

⎡⎢⎢⎣
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎦
8×16

(6)

The d and dt matrix multiplication with internal 16 × 16 IMC block, will
yield the 8 × 8 block. Here DCT represent the 8-point DCT of the resultant
block. X′ is the IMC and downscaled version of the actual reference macroblock
which can directly be added to downscaled error macroblock E to get the desired
downscaled intra macroblock. An efficient scheme is derived to perform matrix
multiplication as given in Eq. (5).
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Let us represent

Jr = dcrQt 1 ≤ r ≤ 8
Kc = Qccdt 1 ≤ c ≤ 8

(dcr) and (ccdt) multiplication will generate matrices of size 8×24 and 24×8,
which can be calculated a priory (16 such matrices). The sizes of the Jr and Kc

will be 8× 24 and 24× 8. Since Jr and Kc have similar structure, both require
same number of operations to perform matrix multiplication with an arbitrary
matrix of size 24× 24.

It is observed that Jr has two different structures depending on whether r
is even or odd (similarly it is true for Kc). We will consider two cases when
r = 2 and r = 5, to present our efficient computation model to perform the
matrix multiplication of Jr matrices with an arbitrary matrix. The matrix J2 is
computed and given below.

J2 =

⎡⎢⎢⎣
2 −2 0 0 D 2A E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 −2A −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 −2 0 0 −D −2A −E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 A 1 C 0 −B −1 1 1 A 1 C 0 B 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 −2 0 0 D 2A E 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 2 −2A −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 −2 0 0 −D −2A −E 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 A 1 C 0 −B −1 1 1 A 1 −C 0 B 1

⎤⎥⎥⎦
Where A = 0.7071, B = 0.9239, C = 0.3827, D = .5412 and E = 1.3066

For computing u = J2v where u = (u1, . . .u8)t and v = (v1, . . .v24)t, an
efficient an efficient scheme is provided below. (Here ′ and ′′ are used to represents
variables. It does not represent derivatives.)

Y1 = v1 + v2 Y ′
1 = v9 + v10 Y ′′

1 = v17 + v18
Y2 = v1 − v2 Y ′

2 = v9 − v10 Y ′′
2 = v17 − v18

Y3 = Av3 Y ′
3 = Av11 Y ′′

3 = Av19
Y4 = Dv5 Y ′

4 = Dv13 Y ′′
4 = Dv21

Y5 = Ev7 Y ′
5 = Ev15 Y ′′

5 = Ev23
Y6 = Cv5 Y ′

6 = Cv13 Y ′′
6 = Cv21

Y7 = Bv7 Y ′
7 = Bv15 Y ′′

7 = Bv23
Y8 = Av6 Y ′

8 = Av14 Y ′′
8 = Av22

Y9 = Y6 − Y7 Y ′
9 = Y ′

6 − Y ′
7 Y ′′

9 = Y ′′
6 − Y ′′

7

u1 = 2Y2 + Y4 + 2Y8 + Y5

u2 = 2Y1 − 2Y3 − 2v4
u3 = 2Y2 − Y4 − 2Y8 − Y5

u4 = Y1 + Y3 + v4 + Y9 − v8 + Y ′
1 + Y ′

3 + v12 − Y ′
9 + v16

u5 = 2Y ′
2 + Y ′

4 + 2Y ′
8 + Y ′

5

u6 = 2Y ′
1 − 2Y ′

3 − 2v12
u7 = 2Y ′

2 − Y ′
4 − 2Y ′

8 − Y ′
5

u8 = Y ′
1 + Y ′

3 + v12 + Y ′
9 − v16 + Y ′′

1 + Y ′′
3 + v20 − Y ′′

9 + v24

Similar exercise could be carried out for J4, J6 and J8 matrices. For r = 5,
J5 matrix is given below.
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J5 =

⎡⎢⎢⎣
2 0 −2A −1 −2B −A −2C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 2A 1 2C −A −2B −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 2A 1 −2C A 2B 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 −2A −1 2B A 2C 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 −2A −1 −2B −A −2C 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 2A 1 2C −A −2B −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2A 1 −2C A 2B 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 −2A −1 −2B A 2C 0

⎤⎥⎥⎦
Where A = 0.7071, B = 0.9239 and C = 0.3827.

To compute u = J5v, we calculate according to following steps. (Here also ′

and ′′ are used to represents variables. It does not represent derivatives.)
Y1 = 2Av3 + v4 Y ′

1 = 2Av11 + v12 Y ′′
1 = 2Av19 + v20

Y2 = 2(B + C)(v5 + v7) Y ′
2 = 2(B + C)(v13 + v15) Y ′′

2 = 2(B + C)(v21 + v23)
Y3 = 2Cv5 Y ′

3 = 2Cv13 Y ′′
3 = 2Cv21

Y4 = 2Bv7 Y ′
4 = 2Bv15 Y ′′

4 = 2Bv23
Y5 = Av6 Y ′

5 = Av14 Y ′′
5 = Av22

Y6 = Y2 − Y3 − Y4 Y ′
6 = Y ′

2 − Y ′
3 − Y ′

4 Y ′′
6 = Y ′′

2 − Y ′′
3 − Y ′′

4
Y7 = Y5 + v8 Y ′

7 = Y ′
5 + v16 Y ′′

7 = Y ′′
5 + v24

Y8 = Y3 − Y4 − Y7 Y ′
8 = Y ′

3 − Y ′
4 − Y ′

7 Y ′′
8 = Y ′′

3 − Y ′′
4 − Y ′′

7

u1 = 2v1 − Y1 − Y6 − Y5

u2 = 2v1 + Y1 + Y8

u3 = 2v9 + Y ′
1 − Y ′

8

u4 = 2v9 − Y ′
1 + Y ′

6 + Y ′
5

u5 = 2v9 − Y ′
1 − Y ′

6 − Y ′
5

u6 = 2v9 + Y ′
1 + Y ′

8

u7 = 2v17 + Y ′′
1 − Y ′′

8

u8 = 2v17 − Y ′′
1 + Y ′′

6 + Y ′′
5

Similar exercise can be done for J1, J3 and J7 matrices. By developing simi-
lar implementation schemes of matrix multiplication, the number of operations
required to perform matrix multiplication of Ji matrices with an arbitrary ma-
trix of size 24 × 24 are computed and shown in Table 1. The Kc matrices will
also require same number of operations to perform matrix multiplication due to
similar structures.

Table 1. Multiplication complexities of Ji matrices in integrated scheme

Matrix Computations/column

J1 10m + 34a
J2 17m + 44a
J3 14m + 38a
J4 16m + 43a
J5 15m + 41a
J6 17m + 44a
J7 14m + 38a
J8 15m + 44a

Let us now compute the total computational complexity for Inverse Motion
Compensation and downscaling of a block. Consider a case when r = c = 6 in
Eq. (5). This requires maximum number of computations to perform IMC and
downscaling (refer Table 1). It is considered for finding the computational re-
quirements in the worst case. Total operations required to perform IMC and
downscaling (when r = c = 6) using Eq. (5) for each macroblock are 856m +
3496a. It requires 3.34 multiplications and 13.65 additions operations per pixel
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Table 2. Computational complexities for downscaling a P frame from CIF resolution
to QCIF resolution

Function Complexity
Mults. Adds Shifts Total Cost

Spatial Domain based downscaling
Input CIF frame processing

Inverse Quant. + IDCT (144m, 464a per 8 × 8 block) 228096 734976
Inverse Motion Compensation (256a per 16 × 16 block) 101376

Output QCIF frame processing

Downscale by 2 (3a, 1s per pixel) 76032 25344
Full search ME (±15 pels, 738048a per 16 × 16 block) 73066752

Motion Compensation (256a per 16 × 16 block) 25344
DCT + Quant. (144m, 464a per 8 × 8 block) 57024 183744

Total 285120 74188224 25344
Total Operation count (Add = 1 op, shift = 1 op, Mult. = 3ops) 75068928

DCT domain based downscaling (Using MBIMC)
Input CIF frame processing

Inverse Quant. (64m per 8 × 8 block) 101376
IMC using MBIMC ( (3.43m, 20.5a per pixel) 347720 2078208

Output QCIF frame processing

DCT Downscale by 2 (1.25m, 1,25a per pixel) 126720 126720
AMVR (9m, 30a, 1shift per 16 × 16 block) 891 2970 99
DCT domain MC (3.43m, 20.5a per pixel) 86930 519552

Quant. (64m per 8 × 8 block) 25344
Total 688981 2727450 99

Total Operation count (Add = 1 op, shift = 1 op, Mult. = 3ops) 4794492

DCT domain based downscaling (Using Integrated Scheme)
Input CIF frame processing

Inverse Quant. (64m per 8 × 8 block) 101376
IMC using Integrated Scheme ( (3.34m, 13.65a per pixel) 338595 1383782

DCT Upscale by 2 for intermediate frame processing (1.25m, 1,25a per pixel) 126720 126720
Output QCIF frame processing

AMVR (9m, 30a, 1shift per 16 × 16 block) 891 2970 99
DCT domain MC (3.43m, 20.5a per pixel) 86930 519552

Quant. (64m per 8 × 8 block) 25344
Total 679856 2033024 99

Total Operation count (Add = 1 op, shift = 1 op, Mult. = 3ops) 4072592

of the input video frame. The computations required per pixel in the integrated
approach is less than the MBIMC scheme [15]. In the integrated approach, we
have to upsample the resulting downscaled frame to reconstruct the next in-
ter frame in the video sequence. This requirement will add extra computational
cost to the integrated scheme. We have used the Dugad and Ahuja [5] approach
for upsampling of the frames which requires 1.25 multiplications and 1.25 addi-
tions per pixel of the upsampled frame. If we assume that one multiplication is
equivalent to three machine instructions and one addition is one machine instruc-
tion (refer [17]), the video downscaling using the integrated scheme shows 23%
improvement over the MBIMC scheme (The method presented in [5] is used for
downscaling with MBIMC scheme).

4 Results

We have implemented the MBIMC scheme presented in [15] and integrated
scheme to perform IMC and used Dugad and Ahuja’s approach for downscal-
ing/upscaling wherever required. The integrated scheme discussed above per-
forms downscaling and IMC in DCT domain and convert each interframe (P-
frame) in to an intraframe (I-frame). We have compared the spatial domain video
downscaling system with DCT domain based video downscaling system using the
MBIMC scheme and Integrated scheme. The computational comparison of these
schemes are shown in Table 2. In the DCT domain based video downscaling
methods the AMVR [17] method is used for motion vector re-estimation. The
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Table 3. Comparison of Different Technique

PSNR (dB)
Spatial Domain MBIMC Scheme Integrated Scheme

video Y U V Y U V Y U V
Coastguard 25.17 32.54 32.55 26.84 42.69 44.07 26.68 42.38 43.78
Foreman 28.61 32.20 32.08 31.45 40.84 42.45 30.89 40.38 41.80
Container 25.76 32.49 32.78 27.03 40.95 40.46 26.49 39.88 39.20

Tennis 24.98 32.36 31.58 26.82 40.55 41.88 26.19 39.41 40.19

four different MPEG video streams with only I and P frames are used to record
the results. These video streams are downscaled to QCIF resolution (at 500
kbps) from CIF resolution (at 1.5 mbps). To compute the PSNR, each frame
from downscaled QCIF video stream is upsampled to CIF resolution and then
compared with the original video frame. In spatial domain technique, frames
are upsampled using ’bilinear’ technique and in other DCT domain based tech-
niques, frames are upsampled in DCT domain using Dugad and Ahuja’s tech-
nique [5]. The average PSNR values for different video streams are shown in the
Table 3.

In Table 3, we can observe that average PSNR values of Integrated approach
are much higher than the spatial domain approach and very close to MBIMC
scheme. It is obvious from Table2 that the MBIMC scheme is approximately 15
times faster than the spatial domain technique, however the integrated scheme
shows 23% improvement over the MBIMC scheme.

5 Conclusion

In this paper, we propose a integrated scheme to perform inverse motion compen-
sation (IMC) and downscaling directly on DCT blocks of an MPEG video stream.
This scheme performs IMC and downscaling over a complete macroblock in a
single step. It also uses the factorization of the DCT/IDCT matrices to reduce
computational complexity of the IMC operation. A fast mathematical model is
proposed to perform the computations efficiently. The integrated scheme shows
23% improvement for downscaling operation over the MBIMC scheme.
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Abstract. As the number of different video compression standards in-
crease, there is a growing need for conversion between video formats
coded in different standards. H.264/AVC is a newly emerging video cod-
ing standard which achieves better video quality at reduced bit rate
than other standards. The standalone media players that are available
in the market do not support H.264 video playback. In this paper, we
present novel techniques that can achieve conversion of pre-coded video
in H.264/AVC standard to MPEG-2 standard directly in the compressed
domain. Experimental results show that the proposed approach can pro-
duce transcoded video with quality comparable to the pixel-domain ap-
proach at significantly reduced cost.

1 Introduction

Video transcoding deals with converting a previously compressed video signal
into another one with different format, such as different bit rate, frame rate,
frame size, or even compression standard. Due to the diversity of multimedia
applications and present communication infrastructure comprising of different
underlying networks and protocols, there has been a growing need for inter-
network multimedia communication over heterogeneous networks. Besides the
problem of channel characteristics and capacities, different end devices used in
today’s communication also introduce some problems. For example, people like
to use small handheld devices, such as cellular phones, handheld computers, etc.,
for video communication and Internet access. Most current handheld devices only
have limited computing and display capabilities, which are not suitable for high
quality video decoding and display. In this case, precoded high quality video
may need to be converted into a lower quality one for displaying on handheld
devices.

There are applications such as video on demand, video browsing, picture in
picture and video conferencing which require video to be transcoded at lower
bit rates, reduced frame size and to different codec formats. H.264/AVC is a
new generation video codec that has been replacing all previous standards. But
it consumes enormous computing and storage resources. So there is a need for
transcoding H.264/AVC bitstream to other formats. In this paper, we consider

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 696–707, 2006.
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a problem of converting a bitstream coded in H.264/AVC format to MPEG-2
one. A straightforward approach to achieve this is to completely decode the
H.264/AVC video into pixel domain and re-encode the decoded frames into
MPEG-2 video by performing full-scale motion estimation (FSME) and mo-
tion compensation (MC). However, FSME and MC being computationally the
most expensive part of the overall encoding process, this approach is not suitable
for real time applications. We propose an approach that converts the pre-coded
video in H.264/AVC format to MPEG-2 one directly in the DCT domain. The
proposed approach obtains the motion compensated residual errors, required to
code the transcoded video, directly in the DCT domain and incorporates the
motion vector re-estimation techniques to obtain outgoing motion vectors. The
experimental results show that the proposed approach significantly reduces the
computations while achieving quality comparable to the much costlier pixel-
domain approach.

The rest of the paper is organized as follows. Transform domain transcoding of
H.264 video is briefly discussed in Section 2. The proposed techniques to obtain
motion compensated residual errors in transcoding of I slice and P slice of H.264
video are discussed in Sub-sections 2.1 and 2.2, respectively. Experimental results
are presented in Section 3, before we conclude in Section 4.

2 Transcoding in Transform Domain

A picture or frame is a collection of one or more slices in H.264/AVC coding
standard. Each slice can be coded using different coding types such as I slice,
P slice, B slice, SP slice and SI slice. However, baseline profile uses only two
slice coding types, that is, I slice and P slice. In an I slice all macroblocks of the
slice are encoded using intra prediction. In a P slice, in addition to the coding
types of the I slice, some macroblocks can also be coded using inter prediction
with at most one motion vector for prediction macroblock partition [1]; refer [2]
for issues in H.264 to MPEG-2 transcoding.

2.1 Transcoding an I Slice

Unlike H.264/AVC, the MPEG-2 video does not support intra frame prediction.
To transcode H.264 to MPEG-2 the intra predicted macroblocks in I picture
must be converted to intra macroblocks without prediction. Conversion of an I
frame of H.264 to equivalent I frame in MPEG-2 in the compressed domain is a
two step process. First intra prediction is removed and then 8× 8 DCT blocks
are computed from four adjacent 4× 4 integer transform blocks.

Removing intra prediction: The H.264/AVC comprises of two intra coding
modes denoted as Intra4×4 or Intra16×16 together with chroma prediction and
IPCM prediction modes; see [3] for further details. In Intra4×4 and Intra16×16

macroblock, the predicted block can be obtained in transform domain by using
appropriate transformation matrices. For example, the predicted block for modes
0 and 1 is obtained by Eqn. (1) and Eqn. (2) as follows:
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Mode 0 (Horizontal prediction):

DCT
( x x x I

x x x J
x x x K
x x x L

)
DCT

( 0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

)
= DCT

( I I I I
J J J J
K K K K
L L L L

)
(1)

Mode 1 (Vertical prediction):

DCT
( 0 0 0 1

0 0 0 1
0 0 0 1
0 0 0 1

)
DCT

( x x x x
x x x x
x x x x
A B C D

)
= DCT

(A B C D
A B C D
A B C D
A B C D

)
(2)

Mode 2 (DC prediction): It is the average of all the neighboring pixels in up-
per and left neighboring blocks. To get a predicted block for prediction mode

2 in DCT domain, the upper block is pre-multiplied by DCT
( 0 0 0 1

0 0 0 1
0 0 0 1
0 0 0 1

)
and

post-multiplied by DCT
( 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

)
. Similarly, the left block is pre-multiplied by

DCT
( 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

)
and post-multiplied by DCT

( 0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

)
. The resultant blocks are

then summed up and averaged. Since, the transformation matrices are sparse
and their transform is also sparse, intra prediction for these modes in DCT do-
main requires less computation than pixel domain computation. Similarly, proper
transformation matrices for other macroblocks are obtained. The transform do-
main residual is then added to the predicted blocks so obtained. Table 1 shows
the comparison of the intra prediction techniques with pixel domain processing.
In this table, a, s and d denote addition, shift and division operations, respec-
tively. It is found that transcoding I picture in transform domain is three times
faster as compared to pixel domain transcoding.

Table 1. Computational complexity of transcoding an I slice

Functions Pixel Domain Transform Domain
Mode 0 Mode 1 Mode 2

IDCT 16a+24s 0 0 0

Computing a 0 for mode 0 and 1
predicted block 128a+16d for mode 2 12a+16s 12a+16s 40a+40s+16d

Adding residual 16a 16a 16a 16a

forward DCT 16a+24s 0 0 0

Total 48a+32s+16s for mode 0 and 1
176a+32s+16s+16d for mode 2 28a+16s 28a+16s 56a+40s+16d

Transform and block size conversion: Four 4× 4 adjacent blocks of H.264
bitstream are converted into one single 8× 8 block as follows:

X ′ =
[
S8

]{[ It
4 0

0 It
4

] [
X1 X2

X3 X4

] [
I4 0
0 I4

]} [
St

8

]
(3)

where, ’t’ denotes transposition operation, S8 is an 8 × 8 real 2D DCT matrix
and X1 . . . X4 are 4× 4 transform coefficient blocks of H.264/AVC bitstream. I4
is a 4× 4 integer transform matrix given as:
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1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎤⎥⎥⎦
Let T =

[
S8

] [ It
4 0

0 It
4

]
and T t =

[
I4 0
0 I4

] [
St

8

]
. The matrix T is given as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 a 0 0 0
b f −l p −b f l p
0 g 0 j 0 −g 0 −j

−c h m −q c h −m −q
0 0 a 0 0 0 a 0
d −i n r −d −i −n r
0 −j 0 g 0 j 0 −g

−e k −o s e k o s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

where a = 1.4142, b = 1.2815, f = 0.4618, l = 0.1056, p = 0.0585, g = 1.1152,
j = 0.0793, c = 0.4500, h = 0.8899, m = 0.7259, q = 0.0461, d = 0.3007,
i = 0.4319, n = 1.0864, r = 0.5190, e = 0.2549, k = 0.2412, o = 0.5308,
s = 0.9875. It can be pre-computed and stored. Since, this matrix is sparse and
symmetric it can be computed as similar to the method suggested by [4]. It needs
a total of 704 operations. The pixel domain approach needs 256 multiplications
and 416 additions for DCT(S8). According to [3], each inverse transform (I4)
needs 8 shifts and 32 additions giving a total of 32 shifts and 128 additions for
four I4. The overall computation requirement of the pixel domain processing
is 256 multiplications, 32 shifts, 544 additions, for a total of 832 operations.
Hence, the DCT domain approach with fast transform implementation saves
128 operations for an 8× 8 block, saving about 15% of the computation.

2.2 Transcoding a P Slice

Motion estimation (ME) is the most compute intensive process in video encoding.
The ME component is more complex in H.264 because it uses motion vectors
that can point to areas outside the picture boundary. The H.264 coding also
supports a number of different macroblock partition shapes and sizes for each
macroblock resulting in a maximum of sixteen motion vectors [3]. It also uses
multiple reference frames and quarter-pixel motion vector resolution increasing
the search range thereby the complexity.

To transcode H.264 to MPEG-2, the multi-frame references have to be col-
lapsed to a single-frame reference and motion vectors have to be displaced based
on the macroblock partition size used in H.264 as MPEG-2 does not support
as many macroblock partition sizes for motion compensation. Note that, in this
case of transcoding H.264 to MPEG-2, we have considered only baseline profile
video which uses single reference frame only. Transcoding inter frames involves
three step. First, all the P slices of H.264/AVC are converted into I slices by
inverse motion compensation in 4 × 4 DCT domain. Next, these I slices are
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converted to an equivalent I frames in MPEG-2 using 8 × 8 block DCT and
then finally, converted to P frames by forward motion compensation in DCT
domain.

Converting a P frame to an I frame: A P frame can be converted to an intra
(I) frame by performing the Inverse Motion Compensation (IMC) operation.
The DCT domain IMC was first studied in Chang et al. [5] and subsequently in
Merhav et al. [5], Liu et al. [6] and Assuncao et al. [7]. Their techniques compute
a predicted block in DCT domain. A reference block Bref may intersect with
four neighboring blocks as shown in Fig. 1. The h and w represent vertical

Current Block

Reference Frame Current Frame

B1 B2

B3 B4

E1 E2

E3 E4

Bref

r

c

B

Fig. 1. Single blockwise inverse motion compensation

and horizontal components of the motion vector respectively. If B1, B2, B3, B4

represent the four neighboring blocks in the spatial domain, then block Bref can
be represented by Eqn. (5) as below:

Bref =
4∑

i=1

ci1Bici2 (5)

For a 4×4 block, cij , i = 1 . . . 4 and j = 1, 2 are 4×4 sparse matrices of 0 and 1
that perform window and shift operations accordingly. From Eqn. (5), we have

DCT (Bref ) = S4

(
4∑

i=1

ci1S
t
4S4BiS

t
4S4ci2

)
St

4 (6)

where, S4 represents a 4-point DCT matrix. Since, DCT is an unitary orthogonal
transformation and is guaranteed to be distributive to matrix multiplications,
above equation can be re-written as:

DCT (Bref) =
4∑

i=1

DCT (ci1)DCT (Bi)DCT (ci2) (7)

The DCT of the inverse motion compensated block from the current error resid-
ual block E is then given as:
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DCT (B) = DCT (Bref ) +DCT (E) (8)

Using the approach presented in [5] and [6] to compute the 4 × 4 DCT block
from the reference frame, we require sixteen iterations to completely predict
a macroblock of partition size 16 × 16. In the proposed approach, we extend
these schemes to compute the macroblock partition block in one step. We also
extend it to include half-pixel interpolation using 6-tap FIR filter. We present
IMC for an 8× 8 macroblock partition. The extension to the other partitions is
straightforward.

x1x1x1

x1x1x1x1

x2 x2x2

x2x2x2x2

x3x3x3

x3x3x3x3

x4 x4x4

x4x4x4x4

x5 x5x5

x6x6x6

x6x6

x7x7x7x7 x8x8

x9

x9x9x9

x10

x11x11x11 x14 x15

x16x16x16 x17 x18 x19x19 x20x20

x21x21x21 x22 x23x24 x24 x25x25

16 × 16 16 × 8

8 × 16

8 × 8
4 × 8

8 × 4

4 × 4

Fig. 2. Macroblock partition wise inverse motion compensation

As shown in Fig. 2, X ′ is the predicted macroblock in the reference frame
which starts from the location (r, c) with reference to the first block in the array
of adjacent blocks. If x1 . . . x9 are the adjacent blocks in spatial domain then
an 8× 8 macroblock partition block from the 12× 12 block can be extracted as
follows:

x′ = Lr

(
x1 x2 x3
x4 x5 x6
x7 x8 x9

)
Rc (9)

where, x′ is the predicted macroblock in spatial domain, Lr is an 8× 12 matrix
and Rc is a 12× 8 matrix. These matrices are different for different values of r
and c (refer Fig. 1). Since 1 ≤ r ≤ 4 and 1 ≤ c ≤ 4, there can be four different
Lr and Rc matrices which can be pre-computed and stored. The structure of Lr

matrix is given as:
Lr =

[
08×r−1 I8 08×4−r+1

]
8×12

where, I8 is an identity matrix of length 8 and ’0’ represents a matrix of zero
elements. Similarly, we can derive Rc matrices. Let us define 12 × 12 matrices
S, S

t
and A as follows:

S =

⎛⎝I4 0 0
0 I4 0
0 0 I4

⎞⎠ , S
t
=

⎛⎝It
4 0 0
0 It

4 0
0 0 It

4

⎞⎠ and A =

⎛⎝X1 X2 X3

X4 X5 X6

X7 X8 X9

⎞⎠
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where, I4 is a 4× 4 forward integer transform matrix, ’t’ denotes matrix trans-
position. It

4 is a 4 × 4 inverse integer transform matrix of H.264/AVC and
Xi = DCT (xi). Assuming that we have obtained X1 to X9 by partial decoding,
Eqn. (9) can be re-written to extract macroblock X ′ in DCT domain as:

X ′ =
(

S4 0
0 S4

){
Lr × S

t ×A× S ×Rc

}(
St

4 0

0 St
4

)
(10)

The matrix multiplication inside the curly braces results in an 8× 8 spatial do-
main block. The pre-multiplication of

(
S4 0
0 S4

)
and post-multiplication of

(
St

4 0

0 St
4

)
result in an 8× 8 macroblock partition. With the above procedure, macroblock
partitions of size 16× 16, 16× 8, 8× 16 etc., can also be computed. Since, H.264
uses motion vectors that can point to areas outside the picture boundary, all
adjacent blocks required to compute the predicted block may not be available.
In that case, the reference frame is extrapolated beyond the image boundaries by
repeating the edge samples before interpolation. For example, Fig. 3 illustrates
the need for expansion. The blocks outside the picture boundary are obtained by
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Fig. 3. Motion vectors pointing outside object boundary

copying the boundary row or column pixels. This is achieved by pre-multiplying
the collected adjacent block matrices x1 to x9 in Eqn. (9) for up and down
directions and post-multiplying them for left and right directions with proper
matrices. It is found that total sixteen type of expansion matrices are required.
Eqn. (10) may be re-written to consider expansion matrices as follows:

X ′ =
(

S4 0
0 S4

){
Lr × er × S

t ×A× S × ec ×Rc

}(
St

4 0

0 St
4

)
(11)

where, er and ec are row and column wise expansion matrices.

Half-pixel and quarter-pixel inverse motion compensation: H.264/AVC
uses quarter-pixel accurate motion vectors with 6-tap FIR filter. The motion vec-
tors in MPEG-2 are half-pixel accurate and the half-pixel samples are obtained
by bilinear interpolation of the neighboring four samples. In inverse motion com-
pensation using fractional sample accuracy, the 6-tap FIR filter should be used
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to obtain luma half-pixel samples, bilinear interpolation to obtain quarter-pixel
luma samples and weighted bilinear interpolation to obtain 1

8

th pixel accurate
chroma samples. The fractional pixel predicted luma block is computed by apply-
ing 6-tap FIR filter in horizontal direction only, vertical direction only, horizontal
first and then vertical direction, vertical first and then horizontal direction. This
is achieved by modifying the Lr and Rc matrices in Eqn. (9) and Eqn. (10) to
include the 6-tap FIR filter. For example, Lr and Rc matrices for 4 × 4 mac-
roblock partition using horizontal direction only half samples when r = 3 and
c = 3 are given below:

Lr =

⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 0
2 column

1 −5 20 20 −5 1 0 0 0
0 1 −5 20 20 −5 1 0 0
0 0 1 −5 20 20 −5 1 0
0 0 0 1 −5 20 20 −5 1

9 column

0
0
0
0

1 column

⎤⎥⎥⎥⎥⎦
and

Rc =

⎡⎢⎢⎣
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

⎤⎥⎥⎦
t

Similarly, Lr and Rc matrices for vertical direction only half samples are ob-
tained.

Chroma sub-pixel interpolation in transform domain: Chroma 1
8

th pixel
samples are obtained using Lr and Rc matrices. For r = 3 and c = 3, we have

Lr =

⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 0
2 column

jf0 jf1 0 0 0
0 jf0 jf1 0 0
0 0 jf0 jf1 0
0 0 0 jf0 jf1

5 column

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

5 column

⎤⎥⎥⎥⎥⎦
and

Rc =

⎡⎢⎢⎣
0 0 if0 if1 0 0 0 0 0 0 0 0
0 0 0 if0 if1 0 0 0 0 0 0 0
0 0 0 0 if0 if1 0 0 0 0 0 0
0 0 0 0 0 if0 if1 0 0 0 0 0

⎤⎥⎥⎦
t

where, if0 = xFrac, if1 = 8 − xFrac, jf0 = yFrac, jf1 = 8 − yFrac. The
xFrac and yFrac denote fractional part of x and y component of a motion
vector, respectively. Similar, matrices can be derived for other values of r and c.

In this way, a P frame in H.264 is converted to an I frame without intra
prediction. This I frame consists of DCT blocks of size 4 × 4. The transform
block size and kernel is converted by using the conversion transform kernel in
Eqn. (4). The I frames are then converted back to the P frames in MPEG-2 as
discussed in the following section.
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Conversion of an I frame in MPEG-2 into a P frame in MPEG-2: A P
frame is obtained by performing motion estimation and then motion compensa-
tion. In this case, the motion vectors can be re-estimated by AMVR method [8].
Motion compensation in DCT domain is done using the similar approach dis-
cussed in Section 2.2. The predicted macroblock (16×16) is obtained by applying
Merhav’s scheme [5] for the whole macroblock at once as follows:

X ′ =
(

S8 0
0 S8

){
Lr × Ŝt ×A× Ŝ ×Rc

}(
St

8 0

0 St
8

)
(12)

where, S8 is forward DCT matrix of size 8× 8. Lr and Rc are row and column
transformation matrices, respectively, as explained in Sect. 2.2. Ŝ, Ŝt and A

denote 32 × 32 matrices given as Ŝ =
( S8 0 0

0 S8 0
0 0 S8

)
, Ŝt =

( St
8 0 0

0 St
8 0

0 0 St
8

)
and A =(X1 X2 X3

X4 X5 X6
X7 X8 X9

)
. An 8-point DCT matrix is factorized as S8 = DPB1B2MA1A2A3

where, D is an 8× 8 diagonal matrix and P is an 8× 8 permutation matrix. B1,
B2, A1, A2, A3 are 8 × 8 sparse matrices of 1, 0 and −1. M is an 8 × 8 sparse
matrix of real numbers. Refer [5] for exact entries of D, P , B1, B2, A1, A2, A3

and M matrices.
Then, Ŝt can be re-written using the above factorization as follows:

Ŝt =

⎡⎣Qt 0 0
0 Qt 0
0 0 Qt

⎤⎦
︸ ︷︷ ︸

Qt

⎡⎣Bt
2 0 0

0 Bt
2 0

0 0 Bt
2

⎤⎦
︸ ︷︷ ︸

Bt
2

⎡⎣Bt
1 0 0

0 Bt
1 0

0 0 Bt
1

⎤⎦
︸ ︷︷ ︸

Bt
1

⎡⎣P t 0 0
0 P t 0
0 0 P t

⎤⎦
︸ ︷︷ ︸

P t

⎡⎣Dt 0 0
0 Dt 0
0 0 Dt

⎤⎦
︸ ︷︷ ︸

Dt

(13)

where Qt = (MA1A2A3)t given as:

Qt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 a 1 −c 0 b 1
1 −1 a 0 −c a b 0
1 −1 −a 0 b a c 0
1 1 −a −1 b 0 c 0
1 1 −a −1 −b 0 −c 0
1 −1 −a 0 −b −a −c 0
1 −1 a 0 c −a −b 0
1 1 a 1 c 0 −b 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
a = 0.7071, b = 0.9239, and c = 0.3827. Note that, D̂t, P̂ t, B̂t

1, B̂
t
2 and Q̂t denote

matrices of size 24 × 24. Similarly, Ŝ can also be factorized as Ŝ = D̂P̂ B̂1B̂2Q̂.
The Eqn. (12) can be re-written as:

M ′ =
(

S8 0
0 S8

){
Lr × Q̂tB̂t

2B̂
t
1P̂

tD̂t ×A× D̂P̂ B̂1B̂2Q̂×Rc

}(
St

8 0

0 St
8

)
(14)

The multiplication by Q̂t(Q̂), B̂t
2(B̂2), B̂t

1(B̂1), P̂ t(P̂ ) and D̂t(D̂) can be real-
ized by performing multiplication with corresponding 8× 8 component matrices
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Qt(Q), Bt
2(B2), Bt

1(B1), P t(P ) and Dt(D), respectively. When counting the op-
erations, multiplication by P t and P can be ignored as they cause only changes
in the order of the components. The multiplications by Dt and D can also be
ignored while counting the operations because these can be absorbed in the
quantizer and dequantizer [5]. The multiplication of B̂1(B̂t

1) and B̂2(B̂t
2) matri-

ces with another 24× 24 arbitrary matrix requires 288 addition operations. Let
Jr = Lr × Qt and Kc = Q × Rc. The Jr and Kc matrices are sparse having
similar kind of structure. We adopt a similar strategy as suggested in [5] to per-
form multiplication with Jr and Kc matrices. This in worst case (r = c = 5)
requires 880m+ 5248a operations, where ’a’ denotes addition and ’m’ denotes
multiplication operation. This means 3.59m+ 23.06a operations per pixel to ex-
tract a 16× 16 macroblock. By assuming one multiplication to be equivalent to
three machine instructions and one addition to be equivalent to one machine in-
struction this is 23.52% improvement over 8×8 block based approach of Merhav
et al. [5].

Half-precision motion vectors: With half-pixel precision motion vectors, either
two or four pixels are needed to calculate the actual prediction of single pixel.
This means, in worst case, we need to apply Eqn. (14) four times to extract M ′

with half-pixel precision motion vectors along both the directions as:

M ′ =
(

S8 0
0 S8

){
Lr × Q̂tB̂t

2B̂
t
1P̂

tD̂t ×A× D̂P̂ B̂1B̂2Q̂×Rc

}(
St

8 0

0 St
8

)
(15)

where, Lr = 1
2 (Lr + Lr+1) and Rc = 1

2 (Rc + Rc+1). Multiplication by Lr and
Rc require 384 multiplications and 384 addition operations each. This means
6.09m+ 19.38a operations per pixel to extract a 16× 16 macroblock with half-
pixel precision motion vectors along both the directions. By assuming one mul-
tiplication to be equivalent to three machine instructions and one addition to
be equivalent to one machine instruction this is 79.42% improvement over the
brute-force approach of Merhav et al. [5].

3 Experimental Results

The experimental results are based on our transcoding implementation using
JM reference software version 10.2. To present the results we use Foreman and
Container test sequences. The first 150 frames of these sequences in SIF (352×
288) format are encoded using the baseline profile with I and P frames. Table 2
shows the computation comparison of the proposed DCT domain approach with
the pixel domain approach. To obtain the outgoing motion vectors in transform
domain approach, we have used AMVR method [8]. It is assumed that only 50%
of the 4× 4 transform block has non zero coefficients. It is observed that about
80% of the inter frame blocks have diagonal mode of interpolation. Fig. 4(a)
and (b), show the PSNRs (dB) for individual frames of Foreman and Container
sequences, respectively. As it can be seen, the proposed DCT domain approach
produces the transcoded video with quality comparable with the pixel-domain
approach at substantially reduced computations.
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Fig. 4. Experimental results: (a) Foreman (b) Container

Table 2. Computational complexity

Approach Functions Complexities
Mults. Adds. Shifts

IDCT (32a+8s per 4x4 block) 512 128
IMC interpolation (192m+192a per 4x4 block) 3072 3072

Pixel-Domain AMVR (36m+50a per Macroblock) 36 50
FDCT (256m+461a per 8x8 block) 1024 1844

Total 4132 5478 128

MPIMC interpolation(24a+94s per 4x4 block) 384 1504
8 × 8 DCT conversion (352m+352a per 8x8 block) 1408 1408

DCT-Domain AMVR (36m+50a per Macroblock) 36 50
MC (3.59m+23.06a or 6.09m+19.38a per pixel) 879 5248

Total 2323 7090 1504

4 Conclusions

We have presented a transform domain approach to convert the H.264/AVC
video to MPEG-2 video. In this, we have presented novel techniques to convert
I and P slice in H.264/AVC video to MPEG-2 frames, directly in the DCT
domain. As compared with the pixel domain approach, the proposed approach
significantly reduces the computational requirement. Our experimental results
using baseline profile show that the proposed approach produces MPEG-2 video
with PSNR comparable to the pixel domain approach.
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Abstract. This paper presents a scalable image transmission scheme based on 
the wavelet-based coding technique supporting region of interest properties. 
The proposed scheme scalable WDR (SWDR), is based on the wavelet differ-
ence reduction scheme, progresses adaptively to get different resolution images 
at any bit rate required and is supported with the spatial and SNR scalability. 
The method is developed for the limited bandwidth network where the image 
quality and data compression are mopst important.   Simulations are performed 
on the medical images, satellite images and Standard test images like Barbara, 
fingerprint images. The simulation results show that the proposed scheme is up 
to 20-40% better than other famous scalable schemes like scalable SPIHT cod-
ing schemes in terms of signal to noise ratio values (dB) and reduces execution 
time around 40% in various resolutions. Thus, the proposed scalable coding 
scheme becomes increasingly important.  

1   Introduction 

The multimedia images are coded efficiently using the wavelet transform based tradi-
tional coding techniques. Due to the popularity of multimedia applications, the scal-
able image compression and transmissions are necessary through the heterogeneous 
networks with different processing capabilities and network access bandwidths. The 
images like medical images and  satellite images are focussed on efficient use of 
compressed data without causing the quality of outputted data. Hence, the  code 
scheme should be controlled adaptively to provide flexible bit streams so as to support 
the scalable image processing [ 1]. 

Compression of different types of images with various imaging models like real 
time transmission, image library archival, limited buffer and bandwidth resources etc 
are designed using   image compression standard JPEG2000. Now a days, the object 
based coding scheme have much attention due to the ROI based functionalities of 
JPEG2000 [7]. JPEG2000 utilizes two types of wavelet filter. Daubechies 9/7 floating 
point wavelet filter provides lossy compression. Biorthogonal 5/3 integer wavelet 
filter supports lossless compression at the cost of higher compression bit rate. Here, 
the reverse integer filter is used to produce a scalable bit stream for medical images 
and biorthogonal 9/7 filter for satellite images and standard test images like Barbara, 
fingerprint images etc. which builds up scalable quality image representation.  
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The multi-resolution signal representation using wavelet transform is used in most 
famous embedded coding algorithms like EZW [10] and SPIHT [2] algorithms. Dan-
yali and Mertins proposed a SPIHT [6] algorithm which supports the spatial resolu-
tion scalability in spite of its SNR scalability. But some times, the zero tree coding 
methods are computationally very complex. The wavelet difference reduction method 
of Tian and Well [3] is one of the major alternatives of the SPIHT algorithm which is 
quite useful for fast reconstruction using the  idea of run-length coding technique for 
coding images. The WDR algorithm has been improved by various authors. Among 
them, ASWDR of Walker and Nguan [4] and context-modeling with WDR 
(CMWDR) method by Yuan and Mandal [5] offer better performances than SPIHT 
algorithm even without entropy coding. 

The proposed scalable coding scheme is based on the wavelet difference reduction 
method and incorporates the scalability property. Compression of multimedia images 
like medical images, satellite images etc. and its transmission offers better utilization 
of available bit rate such that high fidelity is maintained for relatively small regions 
rather than for the entire image. The wavelet coefficients of regions of interest  are re-
arranged using the zero tree concepts in accordance with a priority so that the run 
length coding performance can be increased.  

The paper is organized as follows: the extraction of region and the scalability con-
cept is presented in the section 2, the proposed scalable WDR algorithm is presented 
in section 3, the experimental results are discussed in section 4 and conclusion in 
section 5. 

2   Region Extraction and Scalability Concepts 

The traditional coding techniques follow the multi-resolution form of the image. The 
wavelet transform is one mathematical tool for viewing or processing the image at 
multiple resolutions. In addition to being an efficient, highly intuitively framework for 
the representation and storage of multi-resolution images, the DWT provides power-
ful insight into the spatial and frequency characteristics of the images.  Even if the 
wavelet transform is applied to the image, each and every subband maintains not only 
its frequency domain characteristics but its time domain characteristics also. So, here 
we are considering both time and frequency characteristics for locating the wavelet 
coefficients inside the textured regions and edges accurately and remove the back 
ground noise part.  

Consider the multiresolution form of the image, I as 

=
ii

ii

HHLH

HLLL
I                                                       (1) 

The most significant coefficients are clustered in some areas of each subband. The 
corners and textures are to be re-arranged for coding efficiently with proper priority 
assigned to each component. So we applied eigen value analysis to the subbands to 
get the textured regions. Consider the subband B, any one from set {HLi, LHi, HHi} at 
level ‘i’, for eigen value analysis. Apply linear transformation to the subband B to get 
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subband LB which has spatial resolution dependency with the subband LLi. The line-
arly transformed subband LB is divided into fixed size window w for labelling content 
feature inside the subband B. Before starting the eigenspace analysis, the subband 
gradient calculations are carried out, so that the most textured regions can be seper-
ated in terms of edges and corners more accurately. ( )iL B

 is the linearly transformed 

wavelet coefficient value in 2-D window w which has the spatial domain dependency 
with the LLi. ( )iL B∇  is the gradient at each point i in w. 

( ) ( ) ( )( )T
ByBxB iLiLiL ,=∇ ,                                            (2) 

where ( ) xLiL BBx ∂∂= / and ( ) yLiL BBy ∂∂= /  and the autocorrelation matrix is formed as, 

( ) ( ) ( )
( ) ( ) ( )=

iLiLiL

iLiLiL
C

ByByBx

ByBxBx

2

2

                              (3) 

The singular value decomposition is performed on the 2x2 symmetric autocorrela-
tion matrix C in equation (3) , so that we get the normal equation  UDUC T= , where 
U is the orthonormal column vector and D is the diagonal matrix ( )21 , eediag , 

21 ee ≥ , 

where 
ie are the eigen values of the autocorrelation matrix C. 

Based on the meaning of Us and e ’s , there are three different cases regarding the 
visual content of the images. 

1. If
1e is small, ( )iL B

 in w corresponds to smooth regions in w. 

2. If
1e is of predominant magnitude, or equivalently 

2e is of extremely small 

magnitude, then there will be edge(s) in w.  
3. If 

2e is significant, there remains considerable frequency gradients and regular 

patterns and textures in the window w. 

Considering these three typoes of conditions, we can apply particular threshold 
value on eigen values (

1e ,
2e ) of LB so that edges and textures area of B are located 

and extracted [9]. Examples of such extracted texture area of Barbara image, MRI 
head image and satellite image are shown in figure 1 Meaningful extracted areas can 
be obtained by selecting appropriate values for the eigen values above. After the re-
gion extraction process, we consider the processed subband B for applying the zero 
tree concept. Each textured block in B has four child blocks in the next level of sub-
band decomposition and all such child blocks are collected from parent node to lowest 
level child blocks. Moreover, the processed subband block B has the mirror image on 
all other subbands of the same level. Hence, we get the texture regions on the wavelet 
coefficients in all subbands in a single eigen value analysis and this can be encoded as 
fast as possible from lowest frequency to highest frequency. 

The scalable coding technique codes different resolution subbands independently 
one by one in each bit plane. The resolution level of the image is identified from the 
number of wavelet decompositions performed. Let the image be decomposed into N 
levels, the image has the (N+1) levels of spatial resolution subbands [6]. We can also 
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represent the spatial resolution with original resolution as ( )121 −L , where L is the 
level of resolution. Each level of the subband consists of three parts  HLL, LHL and 
HHL. The scalable algorithm considers each subband level as coded separately allow-
ing the decoder or encoder to reconstruct different spatial resolution images.  

Consider the subband level L, the subbands are grouped as 
],,[ LLLL HHLHHL=λ . The algorithm progresses through each level of suband 

groups from ( ) 11 ≤≤+ LN so that a flexible stream of bits will be generated. The 

general structure of scalable encoder bit stream is shown in figure 2.  

    

(a)          (b)   (c)  (d) 

   
(e)   (f)   (g) 

Fig. 1. (a) Multi resolution form of MRI images. (b) Region extraction of MRI images.  (c) 
Multi resolution form of Barbara image. (d) Region extraction of Barbara image. (e) Satellite 
image (f) multi resolution form of satellite image (g) Region extraction of satellite 
image. 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Scalable bit stream structure with progressive quality 
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3   Scalable Wavelet Difference Reduction Method 

The proposed algorithm is a modification of wavelet difference reduction method 
(WDR) [5, 6] incorporating the scalability property. The scalability properties are 
incorporated through multiple resolution dependent lists. The scalable WDR (SWDR) 
coding scheme uses the data structures RGE (coefficients that are collected during the 
adaptive scanning process in Region Growing manner), SNS (Significant Neighbour 
Sub-array, SPS (Significant Parent Sub-array), LIP (List of Insignificant Pixels), LSP 
(List of Significant Pixels), TPS (Temporary Set of Significant coefficients) to divide 
the wavelet coefficients and code efficiently and get good compression results. 

For each spatial subband group
Lλ , the lists are ordered as RGEL, SNSL, SPSL, LIPL 

so that L will be Lmax, L-1,----1 where Lmax is the maximum number of spatial resolu-
tion level supported by the encoder or decoder.  During the processing of wavelet coef-
ficients from the subband level

Lλ , coefficients from outside the subband will be  

included in the next level of list at (L-1) level. Scalable WDR bit stream can easily be 
reordered for multi resolution decoding at any desired bit rate. The total number of bits 
belonging to a particular bit plane is the same for original scheme and its scalable ver-
sion, but they are re-arranged in accordance with their spatial resolution dependency. 
The definitions of sets, symbols and functions are listed below. 

( )ji ,  =      Pixel coordinates. 

ijw      =      Wavelet coefficient at pixel location  

( )ji ,  

( )
=

∈ ij
Iji

wn
,

2 maxlog , maximum number of bit planes. 

nt         = Threshold value at bit-plane n 

( )nm ,  = Pixel coordinate generated from ( )ji ,  

Lmax         = maximum level of spatial scalability to be 
supported by the bit stream (1<= Lmax <=N+1), where N is 
he number of wavelet decomposition levels applied to 
the image.   

{ }
{ } <=<=

+=
= −

NLHHLHHL

NifLLL

LLL

L
L 1,,

11λ  

( ) ( ) nij

nij
nij jitw

tw
tw

n bitplaneat  ,

 scoordinate a oft test  Significan

:

:

0

1
,

<
≥

=σ  

( )
0:

0:

<
≥

−
+

=
ij

ij

ij w

w
wSign   

Neighborhood functions 
1. ( ) ( ){ }nmtwcluster nij ,, = , when 

1. ( ) ( ) ( ) ( )11,11 +≤≤−+≤≤− jnjimi  

2 ( ) ( ) LL jinm λλ ∈∈ ,&,  

2. ( ) ( ){ }nmtwchild nij ,, = , when 
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1. ( ) ( ) ( )
( ) ( )+++

+
∈

12,12,2,12

12,2,2,2
,

jiji

jiji
nm

 

2. ( ) ( ) LL jinm λλ ∈∈ − ,&, 1
 

 
Encoding Procedure is outlined below. 
 

1. Initialization 

max1,, LLLTSPLSP LL ≤≤∀== φφ  

===
≤≤∀

=
φφφ

φ

LLL
L SPSSNSRGE

thatsuchLLL
LIP

,,

1,, max  

1
1 2 +

− = n
nt , 21−= nn tt  

L=Lmax; 
2. Sorting pass 
If ( )( )0,LIP 1L =−nij twσ  

{If ( )( )1,LIPL =nij twσ {Coding ( ijw ,L) ;}} 

If φλ ≠L  

{If ( ) 0, 1 =−nij twσ {If ( )nij tw ,σ  =1 

{Coding ( ijw , L); ( )nijL twclusterRGE ,= ; 

Do {If φ≠LGER  

{If ( ) 0),( 1 =−nijL twRGE σ {{If ( )),( nijL twRGE σ =1  

Coding ( ijw , L); ( )nijL twclusterRGE ,= }} 

           } while (End (RGEL)! =True) ;}}} 
Function coding (

ijw ,L) 

{ Output distance ‘d’ from previous significant  
Send binary representation of ‘d’ without leading 

MSB ‘1’.Send sign information of ijw , ( )ijwSign  

Add ijw  into TPSL. 

} 
3 Index updating pass: 
If φ≠LTPS { 

 ( ) ( ) LnijL TPSjitwclusterSNS ∈∀= ,;,

 ( ) ( ) LnijL TPSjitwchildSPS ∈∀=− ,;,1
} 

LIPL=RGEL+SNSL + SPSL 
4 Refinement Pass: 

If φ≠LLSP { If ( )1),(wLSP 1ijL =−ntσ  

{Add nth MSB of ( )ijL wLSP .}} 

LSPL=LSPL+TPSL.;TPSL=φ ; 

5 Resolution scale updates: 
 Send Header Information; 
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 If (L > 1) L=L-1; Goto step 2. 
Else L=Lmax; 

6 Threshold update: 

 I f tn >1 nn tt =−1    &    2/nn tt =  

Goto step 2. 
End 

The above encoder steps are recapitulated in the decoder side for producing a quan-
tization output. The algorithm produces four symbols: +, -, 1, 0. These symbols are 
coded as in CM-WDR [5] algorithm using 2 bits as 11 for +, 10 for -, 01 for 1 and 00 
for 0. The proposed algorithm Scalable WDR coding scheme also avoids the arithme-
tic coding. 

4   Experimental Results 

The proposed scheme is compared with original SPIHT and its scalable version. The 
simulations were done on 8-bit images like Barbara, Fingerprint etc with size 
512x512, satellite images and 8-bit MRI images of 512x512. 10 classes of medical 
images with 100 frames in each class are also considered for the simulation. The 
original resolutions of these images were (512x512) pixels. The wavelet decomposi-
tion is based on the bi-orthogonal 5/3 integer wavelet filter and 9/7-tap bi-orthogonal 
Daubechies filter with symmetric extension at the image boundary [8]. Six levels of 
wavelet decomposition were first applied to each test image, then the scalable WDR 
encoder was set to encode the coefficients from bitplanemax to bitpane0 supporting 
maximum spatial scalability levels as 7.  

The bit stream for each spatial resolution at different rates and the fidelity was 
measured by the peak signal to noise ratio defined as, 

dB
MSE

PSNR =
2

10

max
log10 ,                                        (4) 

where MSE is mean squared error between the original and the reconstructed image; 
max is the maximum possible magnitude of a pixel inside the image. The integer 
wavelet decomposition produced the max value is 255. and the max value for bior-
thogoanl 9/7 wavelet filter is 255 for an 8 bits/pixel original image (level-1) and 
255*2L-1 for resolution level L This is done by considering the fact that the resolution 
level L is obtained from the original image after applying (L-1) levels of 2-D wavelet 

decomposition with filters having a DC amplification of 2 . The bit rates for all levels 
were calculated according to the number of pixels in the original full size image [6].  

All the results for SPIHT, scalable SPIHT and scalable WDR were obtained by  
decoding the binary bit streams without considering the arithmetic coding. The simu-
lation results obtained using bi-orthogonal 5/3 integer wavelet filter performed on 
medical images are given in Table 1 and the results obtained using bi-orthogonal 9/7 
wavelet filter performed on standard test images and satellite images are given in 
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Table 2. The reconstructed images at different resolution level are shown in figure 3. 
The simulation results show that the proposed coding scheme is much better than the 
existing SPIHT and its scalable version. The performance gain for full resolution is 
meaningless, because both encoders, original and its scalable version, produce almost 
the same number of bit streams. For full resolution MRI image reconstruction, the 
performance gain is from 0.30 dB to 0.40 dB for various bit rates using bi-orthogonal 
5/3 integer wavelet filter.  For full resolution reconstruction, the standard test images 
Barbara, fingerprint images and satellite images have from 0.35 to 0.50 db coding 
gain in various bit rates.  

Table 1. Scalable coding results of MRI using biorthogonal 5/3 tap Integer wavelet transform 

Full Resolution 
(512x512) 

(1/2 Resolution) 256x256 Test 
Image 

Bit rate 
SPIHT SWDR SPIHT SSPIHT SWDR 

0.0313 23.47 23.99 23.29 23.30 23.79 
0.0625 27.41 27.54 27.16 27.36 27.43 
0.125 29.10 29.52 28.99 29.28 30.97 
0.25 33.77 34.13 33.85 37.16 38.29 
0.5 39.08 39.35 39.36 45.84 46.20 

MRI 

1 43.99 44.40 - - - 

Table 2. Scalable coding results of standard test images and satellite image using biorthogonal 
9/7 tap wavelet transform 

Full Resolution 
(512x512) 

(1/2 Resolution) 256x256 Image Bit rate 

SPIHT SWDR SPIHT SSPIHT SWDR 
0.125 21.92 22.27 22.67 22.68 23.04 
0.25 24.65 25.14 25.67 25.90 26.26 
0.5 28.12 28.74 30.18 30.90 31.33 
0.75 30.48 30.91 34.24 36.07 36.41 

Finger-
print 

1 32.04 32.56 35.88 41.80 41.95 
0.125 24.89 25.21 28.56 30.11 30.30 
0.25 27.64 28.20 31.46 34.64 34.95 
0.5 31.62 32.09 36.02 41.39 41.82 
0.75 34.49 34.92 38.82 46.87 47.11 

Barbara 

1 36.80 37.23 41.68 51.57 51.69 
0.125 23.49 23.71 25.61 25.71 25.91 
0.25 25.69 25.89 28.68 29.54 29.85 
0.5 28.55 28.98 31.86 35.93 36.26 
0.75 30.97 31.29 35.54 42.05 42.21 

Satellite 
Image 

1 32.96 33.42 37.09 47.88 47.95 
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But, the performance of coding in PSNR value (in dB) increases when the resolu-
tion scale decreases. For resolution level 2 of medical images MRI, i.e. 256x256, the 
performance gains of SWDR are from 0.26dB to 6.84 dB compared to the normal 
SPIHT and from 0.36 dB to 1.68 dB compared to the scalable SPIHT for various bit 
rates using 5/3 integer wavelet filter shown in table 1. Similar experimental results are 
obtained for the various resolutions for satellite images and standard test images like 
Barbara, Fingerprint images etc. Moreover, around 40% of time is saved for proposed 
scheme as compared to the zero tree coding scheme.  

 

   
(a) Full resolution -1         (b) (½)                    (c) (¼) 

 

   
(d) Full resolution -1         (e) (½)                    (f) (¼) 
 

Fig. 3. Scalable image reconstruction at bit rate 0.0625 (a, b, c) MRI image, (d, e, f) satellite 
image 

 
The original decoder decodes the whole image at each bit rate and then the re-

quested spatial resolutions are reconstructed. The scalable decoder obtained the 
proper bit streams tailored by the parser for each resolution level. All bits in the re-
ordered scalable bit stream for a particular resolution belong only to that resolution; 
while in the original coding scheme stream bits that belong to different resolution 
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levels are interwoven. The performance expected is much better than the existing 
methods for resolution level greater than one. The difference between scalable and 
non scalable methods becomes more and more significant, when the resolution levels 
increases. 

5   Conclusion 

We propose a scalable WDR coding method which supports spatial and SNR scalabil-
ity. The flexible bit stream generated by the encoder can be decoded adaptively to get 
any level of spatial resolution images. The scalable WDR is 20 - 40 % better than the 
scalable SPIHT and original SPIHT at any bit rate in scalable properties and is of low 
complexity than the zero tree coding techniques. The proposed coding scheme is 
applied to the medical images, satellite images and standard test images like Barbara, 
Fingerprint images. The scalability features of proposed method have interesting 
perspectives for numerous visual communications applications. Extensions of this 
work to video coding, and particularly to efficient frame-rate adaptive methods, are 
worth investigating for potential solutions to adaptive video delivery scenarios. 
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Abstract. In this paper, we present a growing and pruning radial basis
function based no-reference (NR) image quality model for JPEG-coded
images. The quality of the images are estimated without referring to their
original images. The features for predicting the perceived image quality
are extracted by considering key human visual sensitivity factors such
as edge amplitude, edge length, background activity and background lu-
minance. Image quality estimation involves computation of functional
relationship between HVS features and subjective test scores. Here, the
problem of quality estimation is transformed to a function approximation
problem and solved using GAP-RBF network. GAP-RBF network uses
sequential learning algorithm to approximate the functional relationship.
The computational complexity and memory requirement are less in GAP-
RBF algorithm compared to other batch learning algorithms. Also, the
GAP-RBF algorithm finds a compact image quality model and does not
require retraining when the new image samples are presented. Experi-
mental results prove that the GAP-RBF image quality model does em-
ulate the mean opinion score (MOS). The subjective test results of the
proposed metric are compared with JPEG no-reference image quality
index as well as full-reference structural similarity image quality index
and it is observed to outperform both.

1 Introduction

The main objective of image/video quality assessment metrics is to provide an
automatic and efficient system to evaluate visual quality. It is imperative that
these measures exhibit good correlation with perception by the human visual
system (HVS). The most widely used objective image quality metrics, namely
mean square error (MSE) and peak signal to noise ratio (PSNR), as widely
observed do not correlate well with human perception [1] besides requiring the
original reference image to compute distortion. Most images on the Internet
and in multimedia databases are only available in compressed form, and hence
inaccessibility of the original reference image, makes it difficult to measure the

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 718–727, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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image quality. Therefore, there is an unquestionable need to develop metrics that
closely correlate with human perception without needing the reference image.

Considerable volume of research has gone into developing objective image/
video quality metrics that incorporate perceived quality measurement with due
consideration for HVS characteristics. However, most of the proposed metrics
based on HVS characteristics require the original image as reference [2,3,4,5].
Though it is easy to assess the image quality without any reference by manual
observations, developing a no-reference (NR) quality metric is a difficult task.
To develop NR metrics, it is essential to have apriori knowledge about the na-
ture of artifacts. Currently, NR quality metrics are the subject of considerable
attention by the research community, visibly so, with the emergence of video
quality experts group (VQEG) [6], which is in the process of standardizing NR
and reduced-reference (RR) video quality assessment methods.

In recent years, neural networks have emerged as powerful mathematical tools
for solving problems as diverse as pattern classification/recognition, medical
imaging, speech recognition etc. The increasing popularity of neural networks
is due to their ability to construct good approximation of functional relation-
ship between the known set of input and output data. In neural networks, the
choice of learning algorithm, number of hidden neurons and weight initialization
are important factors in the learning performance. In particular, the choice of
learning algorithm determines the rate of convergence, computational cost, and
the optimality of the solution. The choice of number of hidden neurons deter-
mines the learning and generalization ability of the network. Another important
problem is that the re-training process involved in the architectures, whenever
we receive a new set of observations (images). Sometimes, the new set of obser-
vations may change complexity of the input-output relationship (complexity of
the model) and in-turn affects the approximation ability of the neural network
model. The process of developing the new neural model with the current training
set may leads to increase in computational time. Sequential learning algorithms,
which do not require retraining whenever new observation is received, helps to
overcome the afore mentioned problems faced by neural network.

In this work, problem of image quality estimation without reference image is
reduced to a function approximation problem using GAP-RBF networks. The
unknown functional relationship between the HVS features and MOS is captured
by the leaning phase of GAP-RBF network. The GAP-RBF quality model is
developed with set of 20 source images and its 134 compressed images. The
generalization performance of the quality model is evaluated using a new set
of 9 source images and its 70 compressed images. The results show that the
proposed GAP-RBF model could emulate the MOS effectively compared to the
existing techniques.

The paper is organized as follows: Section 2 presents the concepts underlying
feature extraction based on various HVS criteria. The basics of GAP-RBFN
Image Quality Model are dealt with, in section 3. Subjective test results and
discussions are presented in Section 4. Finally Section 5 concludes the paper.
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2 HVS-Based Feature Extraction

It is easily deducible that most of the distortion in image/video is due to block
DCT-based compression. The most popular and widely used image format, on
Internet and digital cameras, happens to be, JPEG [7]. Since JPEG uses block-
based DCT transform for coding, to achieve compression, the major artifact that
JPEG-compressed images suffer, is blockiness. In JPEG coding, non-overlapping
8× 8 pixel blocks are coded independently using DCT transform. The compres-
sion (bit-rate) and image quality are mainly determined by the degree of quanti-
zation of these DCT coefficients. The undesirable consequences of quantization
manifest as blockiness, ringing and blurring artifacts in the JPEG coded image.
It turns out that the subjective data for all these artifacts are highly correlated
[8]. Hence, measuring the blockiness in-turn indicates the overall image quality.

The proposed NR metric is designed to take into consideration the various
human visual criteria while quantifying the blocking artifact. These blocking ar-
tifacts would appear as horizontal and vertical edge distortions at the boundaries
of 8× 8 blocks. The visual sensitivity to these edges is affected by the following
parameters [2]: i) Edge Amplitude ii) Edge Length iii) Background Activity and
iv) Background Luminance.

The objective of the proposed metric is to integrate the afore-mentioned hu-
man visual factors to measure the quality of the JPEG-compressed images. First,
we obtain the edges along horizontal and vertical directions using the corre-
sponding ‘prewitt’ edge operators. Activity along, as well as, on either sides of
the horizontal and vertical edges, is captured by high-pass filtering. The final bi-
nary activity mask is obtained by hard thresholding the activity measure. This
mask only permits regions with lower activity to be considered for blockiness
measurements. The background luminance weights are obtained based on the
model proposed by Karunasekera et al., [2]. Here darker regions (0 to 127) are
given less weight and brighter regions (128 to 255) are given higher weights.
Each pixel of the edges that belong to the activity mask is multiplied by the
corresponding luminance weight, in order to obtain the obtain final horizontal
and vertical edge maps. The horizontal and vertical edge profiles are computed
from these weighted edge maps. These profiles indicate the edge strength along
each row and column of the weighted edge map. Since the effect of blockiness is
seen only at block boundaries, every eighth location of the horizontal and ver-
tical profiles is considered for measuring blockiness. The measure of deviation
at every eighth location from the average value of the neighborhood of both
(horizontal and vertical) profiles is used for extracting the features. For detailed
explanation of feature extraction refer [9].

Since image quality is a subjective phenomenon, the human observer plays a
major role in testing image quality metric. The subjective test designates the
opinion of a viewer (opinion score) on a given image based on how it is perceived.
The mean opinion score (MOS) is the average opinion score over all subjects.
The aim of any quality metric is to predict the quality as close as possible to
MOS. Hence, the objective here is to find the functional relationship between
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extracted HSV features and MOS to quantify image quality. In the next section
we explain the network architecture and learning algorithm used for quantifying
image quality.

3 GAP-RBFN Image Quality Model

In recent years, many sequential learning algorithms have been developed to
overcome the problems encountered in neural networks [10,11,12]. Here, radial
basis function network (RBF) is used to approximate the functional relation-
ship. These sequential learning algorithms perform better than the batch learn-
ing algorithms as they do not require retraining whenever new observations are
received. In sequential learning algorithms, the training samples are presented
only once to capture the functional relationship whereas in batch learning al-
gorithms, the samples are presented many times. Hence, the sequential learning
algorithms require less computational effort and memory requirement than the
batch learning algorithms.

Most of the sequential learning algorithms employ some strategy to obtain
a compact network to represent input-output relationship. Recently Huang et
al., [12] proposed a new sequential learning algorithm called ’growing and prun-
ing radial-basis function (GAP-RBF) network. In this algorithm, the criteria for
growing/pruning of hidden neurons is based on the significance of the neurons to
the network output. The algorithm updates only the parameters of the nearest
neuron to minimize the error. Hence this method is economical from computa-
tional as we as memory requirement point of view. Here, we use ‘growing and
pruning radial-basis function network’ to approximate the functional relation-
ship between HVS-based features and MOS. Also, we show that the GAP-RBF
based image quality model adapts its features when new image sets are pre-
sented. Finally, we compare the performance of the proposed GAP-RBF model
with the existing NR and FR image quality metrics [1,13].

The GAP-RBF image quality model is shown in Fig. 1. The basic building
block for GAP-RBF is the radial basis function network. In general, a radial-basis
function network consists of three layers of processing elements. The first layer
linear and only distributes the input signal, while the next layer is nonlinear and
uses Gaussian functions. The third layer linearly combines the Gaussian outputs.
In a GAP-RBF quality model, the inputs are the extracted HVS features (U)
of a given image while the output is the approximated image quality (Q̂). The
objective is to find a the compact model to approximate the MOS using HVS-
based features. The learning algorithm uses ’growing and pruning’ strategy to
decide on the significance of a neuron towards realizing a compact model. The
network parameters such as center vectors, connection weights and widths of
hidden neurons are tuned using extended Kalman filter (EKF) algorithm [12].

The output of an GAP-RBF quality model with K Gaussian neurons has the
following form:

Q̂ =
K∑

i=1

αiexp

(
− 1
σ2

i

‖U − μi‖
)

(1)
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Fig. 1. Overview of the proposed image quality estimation algorithm

where U is the HVS-based feature input vector, αi is the weight connecting the
ith Gaussian neuron to the output neuron, μi is the center vector of ith Gaussian
neuron and σi is the width of the Gaussian neuron.

GAP-RBF is initialized with zero hidden neurons. As new images are received
sequentially, the HVS-based features (inputs) are extracted and the network
builds up based on a ’growth and pruning’ criterion. The algorithm adds/prunes
hidden neurons and also tunes the network parameters. Detailed description of
the the algorithms can be found in [12]. The following are the steps involved in
obtaining a compact network.

3.1 Growing and Pruning Algorithm

Given an approximation error emin, for each observation (Un, MOSn), where
Un ∈ R, and assuming the number of neurons developed using previous n − 1
images to be K, the following steps are used to develop the model:

Step 1 Compute the estimated image quality for a given image using
equation (1)

Step 2 Growth criterion: Compute the criterion using the specified parame-
ters

εn = max {εmaxγ
n, εmin}

en = Q̂n −Qn (2)

Step 3 Adding neuron based on growth criterion and other conditions
IF ‖Un − μnr‖ > εn and (1.8.κ‖Un − μnr‖) |en|/S(U) > emin then
Allocate (K + 1)th hidden neuron with

αK+1 = en

μK+1 = Un

σK+1 = κ‖Un − μnr‖ (3)
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ELSE
Update the network parameters αnr, μnr and σnr for the nearest neuron
only, using EKF algorithm [12].
Criterion for pruning the hidden neurons:
IF |(1.8σnr)lαnr/S(U)| < emin, where S(U) is the estimated size of the
range where the training samples are drawn from,
remove the nrth hidden neuron
reduce the dimensionality by EKF method
END IF
END IF

The parameters of the growing and pruning algorithm εmin, εmax, S(X), γ
and κ critically depends on the functional relationship to be approximated and
also on the specified minimum approximation error (emin).

4 Experiments and Discussions

In our simulations, we have used the live image quality assessment database [14].
Here, 29 JPEG images are used to generate a database of 204 JPEG images
with different compression rates. including the original images, we have 233
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Fig. 2. Hidden neuron development

JPEG images for image quality estimation. First, the study was conducted in
two sessions (first session 116 images with 20 subjects and the next session
117 images with 13 subjects). Each observer was shown the images randomly
and asked to mark the perception quality on a continuous linear scale that was
divided into five equal regions marked with adjectives bad, poor, fair, good and
excellent. The scale was then linearly transformed to 1−10 range. The resulting
MOS was used to develop the GAP-RBF model to predict the image quality.
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Fig. 3. Image quality prediction by (a) proposed GAP-RBF method (b) Wang-Bovik
method and (c) SSIM score for 154 training images

To develop the GAP-RBF image quality model, we have selected two disjoint
sets of images for training and testing. The training set images and its com-
pressed versions are not used in testing set. Out of 29 source images, 20 images
were used for training and the remaining 9 source images were used for testing.
Totally 154 images were used for training (20 original and its 134 compressed
versions) and 79 images for testing (9 original and its 70 compressed versions).
First, we presented 154 training images sequentially to the GAP-RBF algorithm
to develop the model. In our simulations, we set the following network parame-
ters: εmin = 0.001, εmax = 0.05, s(x) = 1, γ = 0.999 and κ = 0.1. The expected
minimum accuracy selected for our modeling is 0.0001. The GAP-RBF network
initialized with zero hidden neuron, builds the network based on the ’growing
and pruning’ strategy mentioned earlier. The neuron history (Fig. 2) shows that
25 neurons are required to approximate the functional relationship. From Fig.
2, we see that the neuron growth saturates at 25 after the 117th training image
sample. The developed GAP-RBF network model is tested with the 79 test im-
ages. The correlation between MOS and GAP-RBF based image quality metric
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Fig. 4. Image quality prediction by (a) proposed GAP-RBF method (b) Wang-Bovik
method and (c) SSIM score for 79 test images

for training and test images are shown in Figs. 3 (a) and 4 (a). Similar study
is carried out using wang’s NR quality metric (see Figs. 3 (b) and 4 (b)) [15]
and full-reference SSIM index (Figs. 3 (c) and 4 (c)) (the SSIM index results
are shown after fitting non-linear logistic function) [13]. The results clearly show
that the proposed GAP-RBF model predicts the image quality better than the
others. This can also be deduced from the quantitative performance analysis.
The root mean square error (RMSE) deviation from MOS for image quality
metric using different methods are given in table 1. From the table, it can be
inferred that the proposed GAP-RBF model predicts image quality better than
the other models.

Table 1. RMSE between MOS and Prediction

Metric Testing Training

GAP-RBF 0.46 0.61

Wang’s 4.32 5.12

SSIM 0.67 0.62
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5 Conclusions

In this paper, we have presented a system for predicting image quality using
GAP-RBF network, considering various human visual characteristics. The func-
tional relationship between the extracted HVS features and MOS is modeled
by GAP-RBF network. Since sequential learning algorithm is used, GAP-RBF
network does not require retraining when presented with a new data set. This
helps us improve the model over time, receiving new sets of subjective results
with minimal computational and memory requirements. The performance of the
proposed metric is found to be better than other previously reported NR/FR
image quality metrics.
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Abstract. Video streaming applications have been gaining interest rapidly in 
various perspectives from entertainment to e-learning. Practically, these 
applications suffer from inevitable loss in the transmission channels. Hence it is 
a challenging task to improve the quality of video streaming over the error 
prone channels. Multiple Description Coding (MDC) is a promising error 
resilient coding scheme which sends two or more descriptions of the source to 
the receiver to improve the quality of video streaming over error prone 
channels. Depending on the number of descriptions received, the 
reconstruction-distortion gets reduced at the receiver. Multiple State Video 
Coding (MSVC) is a MDC scheme based on frame-wise splitting of the video 
sequence into two or more sub-sequences. Each of these sub-sequences is 
encoded separately to generate descriptions, which can be decoded 
independently on reception. Basic MSVC is based on the separation of frames 
in a video into odd and even frames and sending each part over a different path. 
The drawbacks or certain subtleties of the basic MSVC such as lack of 
meaningful basis behind the frame wise splitting, inability to support adaptive 
streaming effectively, less error resiliency are brought out and discussed. Thus 
to overcome them and to improve the quality of video streaming, the design of a 
novel MSVC scheme based on the temporal adjacency between video frames is 
proposed in this paper. This temporal adjacency based splitting of the video 
stream into N sub-sequences also enables the proposed scheme to adapt to 
varying bandwidths in heterogeneous environments effectively. The simulation 
results show that the proposed scheme also outperforms Single State Video 
Coding (SSVC) scheme in terms of the sensitivity of perception of the 
reconstructed video sequence, under various loss scenarios. 

1   Introduction 

The demand for good quality Multimedia services over networks has been growing. 
Particularly Video streaming applications have been gaining interest rapidly in 
various perspectives from entertainment to e-learning. In these applications, since 
video data are voluminous it requires high compression before transmission using 
various encoding schemes. The transmission systems of the video streaming 
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applications rely on the reliability of the networks and impose stringent timing 
requirements as they deal with time based media. But all real networks are unreliable 
despite wired or wireless. Hence practically errors are inevitable and these 
applications suffer from inevitable loss in the transmission channels. This lossy 
transmission affects the quality of the reconstructed video. There exist conventional 
methods for resolving these packet losses and improving the quality of streaming such 
as Retransmission [11] and Forward Error Correction (FEC) [9]. However, if the 
transmission system was not able to afford an additional back-channel, or if the 
additional Round Trip Time (RTT) delay was not bearable, then the Retransmission 
cannot be employed. Also FEC approaches are designed to be effective only for 
losses less than a threshold. Obviously this cannot be guaranteed due to the highly 
dynamic nature of the networks. Since it is almost impossible to guess the threshold 
value, the scheme proves to be inefficient. Thus the demand for an Error resilient 
coding scheme naturally increases. MDC [6] is a promising error resilient coding 
scheme which sends two or more descriptions of the source to the receiver to improve 
the quality of video streaming over error prone channels. Depending on the number of 
descriptions received, the reconstruction-distortion gets reduced at the receiver. 
MSVC is a MDC scheme based on frame-wise splitting of the video sequence into 
two or more sub-sequences. Each one of these sub-sequences can be encoded 
separately to generate descriptions, which can then be decoded independently on 
reception. The advantages of MSVC are that the streams are independently decodable 
and they provide bi-directional data, that is, certain past and future frames are known 
appropriate to any instant of time. This helps in effective reconstruction as the 
received independent frames can recover the state of corrupted streams. The basic 
MSVC scheme [2] suggests the splitting of the given sequence into two sub-
sequences. The original sequence is split frame-wise into two groups. One consisting 
of the odd frames and the other consisting of the even frames. Each of these two 
groups is separately encoded to form two descriptions or sub-sequences, one 
containing the odd and the other containing the even frames. Then these two sub-
sequences are sent to the destination through diverse paths. Due to the diverse paths 
maintained, the reception would be experiencing only the average behavior of all the 
channels through which the descriptions are sent. Naturally this improves the 
performance of the system. The improvement in performance can be justified by the 
argument that the probability that all of the multiple paths will be congested 
simultaneously is less than the probability that the single path is congested. 

Our goal in this paper is to propose a novel Multiple State Video Coding scheme. 
The novelty of the proposed scheme is the way by which the given video sequence is 
split into sub-sequences. In the basic MSVC scheme suggested in [2], [4] the basis of 
splitting the video frames is thze frame number i.e. whether they are odd or even. 
Obviously these subsequences alone or together can provide an acceptable quality of 
reconstruction despite losses. However the notion behind the scheme is purely 
mathematical. Almost the same effect can be got by splitting the video into three sub-
sequences, where one containing the frames which are divisible by 3, the other 
containing the frames divisible by 2, and the third sub-sequences that are not divisible 
by both 2 and 3. Thus the absence of a meaningful notion behind the splitting of the 
video frames place no boundary on, the basis of splitting and the number of sub-
sequences to be generated. The proposed scheme overcomes these subtleties with a 
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meaningful notion as its basis. The notion behind the proposed MSVC scheme is the 
summary and non-summary frames. The summary frames are the snapshots or 
relatively a small number of frames of the original complete video sequence which 
provide the summary of the video content. Naturally the frames that are not summary 
frames are non-summary frames. In short the summary frames are those frames which 
are temporally adjacent, that is they are visually dissimilar or their content difference 
is large. The interesting aspect of this notion is that the summary and non-summary 
frames alone / together can provide a comprehendible reconstructed video. This 
aspect is interesting since it holds despite the fact that the summary frames contain a 
relatively small number of frames of the original video, whereas the non-summary 
frames contain relatively large number of frames. This is due to the characteristics of 
the summary frames, that they can summarize the whole content with relatively small 
number of frames but they are substitutable by the non-summary frames. Through the 
reception of summary frames we can ensure a comprehendible video, however their 
loss are substitutable by the non-summary frames, thereby increasing the error 
resiliency. Also the transmission of summary frames requires less bandwidth 
compared to that of non-summary frames / original sequence, thereby increasing the 
adaptive nature when streaming to heterogeneous clients. Thus a novel error resilient 
temporal adjacency based adaptive MSVC scheme is proposed. Then the performance 
of the proposed scheme is compared with the SSVC scheme, in terms of the 
sensitivity of perception of the reconstructed video sequence. The performance 
analysis is done shot wise under various loss scenarios such as single and burst error, 
when the channel losses are independent and dependent. Finally a discussion on the 
ability of the scheme to adapt to the varying bandwidths is presented. Further the 
discussion investigates the application of the proposed scheme in the context of 
adaptive streaming to heterogeneous clients. 

The remainder of the paper is organized as follows. Section 2 discusses the existing 
schemes, MDC and basic MSVC. In Section 3, the design of the proposed scheme is 
presented. The performance analysis over SSVC is presented in Section 4. This is 
followed by Section 5, where the effectiveness of the proposed scheme over the basic 
MSVC scheme [2] is discussed. Section 6 concludes the paper.  

2   Existing Schemes 

Multiple Description Coding (MDC) has emerged as a power framework for robust 
coding and transmission of the video data over lossy networks. The two main 
problems of the real networks [5] are the limited bandwidth and the packet losses. 
Limitation on bandwidth is natural and can be resolved by duly considering it. The 
conventional methods of resolving packet losses such as retransmission and FEC 
cannot be employed effectively as mention in Section 1. MDC is a promising error 
resilient coding scheme. MDC was invented in Bell Labs primarily for telephone 
conversations. But it is used for image, video/audio transmission. Multiple 
Description Coding “represents a single information source with several chunks of 
data (i.e. descriptions) so that the source can be approximated from any subset of 
chunks” [3]. MDC is applied to some major coding techniques such as scalar 
quantization, vector quantization of motion vectors [10], correlating transforms, or 
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quantized frame expansions. A summary of the state-of-the-art system designs can be 
found in [3]. High rates, low latency requirements, and error drift are however the 
main problems encountered in MDC schemes for video streaming due to possible 
desynchronization of encoders and decoders [4]. 

MSVC is a MDC scheme which is inspired by the frame-wise splitting of the video 
stream into sub-sequences. Each of these sub-sequences can be independently 
decodable. Thus MSVC is a kind of MDC with the novelty of the additional state 
recovery capability [1]. The MSVC scheme is less complex than MDC. The other 
advantages of MSVC include low delay property, nil error propagation, and the bi-
directional information the streams provide. The goal of MSVC is to combine the 
high compression and the high error resilience. The advantage of MSVC over SSVC 
schemes is that in MSVC the streams received provide bi-directional information, that 
is the information about the future and the past frames received through multiple 
descriptions, which help in increasing the state recovery property during 
reconstruction. Whereas in SSVC when a previously decoded frame is lost the quality 
degrades until the state is refreshed by the next I-frame. Basic MSVC is based on the 
separation of video frames into odd and even frames in a stream and sending each part 
over a different path. Here the path diversity is maintained in transmitting the two 
descriptions. This is to achieve a better reconstruction quality since the independent 
loss patterns in the two channels results in only the average path behavior. However 
the basic MSVC have certain drawbacks such as lack of meaningful basis behind the 
frame wise splitting, inability to support adaptive streaming effectively and less error 
resiliency. To overcome them and to improve the quality of video streaming, the 
design of a novel MSVC scheme based on the temporal adjacency between video 
frames is proposed in the next section. Complete information about the basic MSVC 
scheme can be found in [1]. 

3   The Proposed MSVC Scheme  

This section first introduces the basic idea of summary and non-summary frames 
behind the proposed MSVC scheme. The aspects of the proposed scheme’s basic 
notion which increases the error resilience capability and adaptive nature of the 
coding scheme are then discussed. The algorithm for selecting the summary frames 
from a given video stream is presented. This is followed by the design of a two-state 
MSVC following the proposed scheme. Then the necessary details about extending 
this novel MSVC scheme to N states are presented. 

The inspiration for the notion of summary and non-summary frames is got from 
[8], where the summary and non-summary frames were introduced and used for 
developing a disruption tolerant content aware video coding. The proposed scheme 
incorporates the notion of summary and non-summary frames with subtle changes 
into the context of MSVC.  

The ‘summary frames’ in short are the snapshots or relatively a small number of 
frames of the original complete video sequence which provide a summary of the 
video content. As the name suggests, by viewing the summary frames of a video the 
user can comprehend the content of the video. Naturally, if a set of frames are 
summary frames of a video, then the frames that are not summary frames are the set 
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of ‘non-summary frames’. It can be well perceived that the non-summary frames can 
provide a video of quality very close to the original complete sequence. Since only a 
relatively small number of frames of the original sequence form the summary frames, 
the video is not much altered without them.  

The interesting aspect of this notion is that the summary and non-summary frames 
alone/together can provide a comprehendible reconstructed video. This aspect is 
interesting since it holds despite the fact that the summary frames contain relatively 
small number of frames of the original video, whereas the non-summary frames 
contain relatively large number of frames that are not summary frames. This is due to 
the characteristics of the summary frames, that they can summarize the whole content 
with relatively small number of frames but they are substitutable by the non-summary 
frames. This follows that the reception of summary frames ensures the comprehension 
of the video, however their loss are substitutable by the non-summary frames, thereby 
increasing the error resiliency of the scheme. Also the transmission of summary 
frames requires less bandwidth compared to that of non-summary frames/ original 
sequence, thereby increasing the adaptive nature of the scheme when streaming to 
heterogeneous clients. 

3.1   Algorithm - For Selecting the Summary Frames of a Given Video Sequence 

The algorithm for generating two sets of frames i.e. the summary frames and non-
summary frames from a given video sequence is given below. 

Let F be the set containing all the frames in the given sequence. Let Fs denote the 
summary frames set and Fns denote the non-summary frame set. Let L be a list built 
of all the frames in the set F and fi denote the frame i in the list L. Let D be a two 
dimensional array containing the content difference of the frames in the list L. For 
example D(i,j) contains the content difference of the frames L(i) and L(j). 

Initially the set Fs contains all the frames of the 
video and the set Fns has no frames i.e. empty. 

1. Find the minimum content difference D(i,j)in the 
array D and delete the frame fi if the frames fi and its 
predecessor are less temporally adjacent than that of  
fj and its successor. Else delete the frame fj from the 
set Fns. 

2. Include fi or fj to the set Fs depending on whether 
the frame fi or fj of is deleted, respectively. 

3. Update the D array with the content difference 
between the frame deleted and its adjacent frame. 

4. Repeat steps 1 and 2 until there is no frames in Fs 
or when the number of frames in Fns is equal to R.  

The variable R can be defined as the ratio between the total number of frames present 
in the original video to the number of summary frames required. Naturally with this 
variable the number of summary frames and how densely are they required to be 
spaced can be controlled. A basic interpretation may be - if R is large the summary 
frames will be too sparsely spaced and vice versa.   
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3.2   Design of a Two-State MSVC Based on the Proposed Scheme 

For the video sequence to be transmitted two subsequences are generated – one 
containing ‘the summary frames’ and the other containing ‘the non-summary frames’. 
This can be done by processing the given video sequence with the above algorithm to 
generate two sets of frames Fs and Fns .These two sets of frames are encoded 
separately to form two sub-sequences or descriptions that are independently 
decodable. These two subsequences are transmitted to the destination following two 
different paths. When at the reception the summary frame sequence alone is received, 
it can provide the summary of the video. If the non-summary frames sequence alone 
is received it can also provide the video sequence of quality nearly equal to the 
original sequence as said before. If both are received with some losses then they can 
be decoded and combined to get an optimum quality video. Thus we have two 
descriptions of the video and thereby a two state MSVC. Since the proposed notion of 
summary and non-summary frames is used, this forms the design of a two-state 
MSVC based on the proposed scheme. 

3.3   Extending the Design to N Descriptions or State 

In the above algorithm for a video sequence two sets of frames Fs and Fns are got as 
output. Each of these two sets of frames is encoded to generate a description. Thus we 
have two descriptions and hence the two state MSVC. To extend it to more than two 
states say ‘n’, ‘n’ descriptions have to be generated. To generate ‘n’ descriptions, ‘n’ 
set of frames are necessary as it was two sets Fs and Fns for n=2 i.e. in two state 
MSVC. This can be done by applying the above discussed algorithm again with Fns1 
(let Fns1 be the non-summary frames got by applying the algorithm for the first time 
on the original sequence) as F. By this two sets of frames Fs2 and Fns2 can again be 
got. This is continued (n-1) times to get ‘n’ sets: Fn(1), Fn(2),Fn(3)…Fn(n-1) and Fns(n-1). 
Thus we have n-1 summary frame sets and 1 non-summary frame set, totally ‘n’ sets. 
From these ‘n’ sets ‘n’ descriptions can be generated and thereby this leads to an ‘n’ 
state MSVC technique. 

4   Performance Analysis over SSVC 

This section provides the results of performance analysis of the proposed MSVC 
scheme over the SSVC scheme. A 3-state MSVC codec based on the proposed 
scheme is developed using C-Language. The encoder encodes the given video 
sequence into three sub-sequences namely ns, s1 and s2. Where s1 is the sub-
sequence got by summarizing the given video with the summarizing ratio R1 and let 
ns’ be the resulting non-summary frames. s2 and ns are the summary frames and non-
summary frames got by further summarizing the non-summary frames ns’ with the 
summarizing ratio R2. The error patterns while transmitting the sub-sequences to the 
destination through diverse paths are simulated. The error pattern simulation is done 
for various scenarios.  

The comparison is done in terms of Sensitivity Of Perception (SOP), which is a 
number signifying the sensitivity perceived by the user when a transition from one 
frame to the other takes place while streaming a video. The decoder accepts the 
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frames transmitted after error simulation is done manually and it decodes them 
independently. The lost frames are reconstructed by inserting black frames in order to 
improve the sensitivity of perception and thereby making the performance analysis 
clearer. 

When the sub-sequences are transmitted via three diverse paths, the losses in the 
three channels may be independent or dependent. The loss patterns of the three 
channels will be independent if they do not have any partial common path. But the 
losses will be dependent if two or three of them have partial common paths. Now the 
performance is analyzed for both the cases of independent and dependent channel 
losses. And in each of these two cases both the single frame loss and burst frame 
losses are considered. Thus an analysis of SSVC over proposed MSVC is done for 
four scenarios.  

For this a reference video sequence that has 110 frames and 4 shots is considered. 
However our analysis is confined to the first shot which consists of frames 0-38. The 
summary ratios R1 and R2 used are 4 and 2 respectively.  

The graphs got by simulation are given in Fig.1 and Fig.2. Fig 1 corresponds to the 
Scenario 1- Single frame loss in two channels (independent) and Fig 2 corresponds to 
the Scenario 2- Burst frame loss in two channels (dependent).  
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Fig. 1. Scenario-Single frame loss in two channels (independent) 

Scenario 1: In this scenario frame 27 is lost in channel s1. And frame 16 is lost in 
channel s2. The dark thick line corresponds to a streaming of the normal lossless 
video. The dotted line corresponds to the streaming of the reconstructed SSVC – with 
loss. The normal dark line corresponds to that of MSVC. It can be seen that both the 
SSVC (dotted ) and MSVC (normal) are getting deviated at the frame number 16, 
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since it is lost (to improve the SOP this frame is replaced by black frame for analysis 
sake). The MSVC returns to normal streaming at frame 17 but the SSVC returns to 
the normal streaming only after the state is refreshed by the next I-frame (frame 24) 
received. Thus the viewer is subjected to a bad SOP for long time in SSVC, whereas 
it is not so in MSVC. The same argument holds for the loss of frame 27 in channel s2. 
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Fig. 2. Scenario-Burst frame loss in two channels (dependent) 

Scenario 2: In this scenario frames 7, 10, 27 are lost in channel s1 and frames 18 23 
24 30 38 are lost in channel ns. Here too the viewer is subjected to a bad SOP for long 
time in SSVC, whereas it is not so in MSVC. This can be seen from the graph of 
Fig.2. 

5   Effectiveness of the Proposed Scheme over the Basic MSVC 
Scheme 

The effectiveness issues apart from those mentioned in the introduction part of this 
paper is presented in this section. 

The performance improvement of the basic MSVC over SSVC is justified by the 
argument that the probability that all of the multiple paths will be congested 
simultaneously is less than the probability that the single path is congested [7]. 
Following the same argument the proposed scheme extends the two states to N states 
to improve the performance further since the probability that all of the N paths will be 
congested simultaneously is less than the probability that the two paths are 
simultaneously congested. Also the loss of frames in either of the channel where the 
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odd / even frames sub-sequences are sent will just mean loss of frames. Nothing can 
be inferred about the reconstruction quality from the knowledge of losses in these 
channels before transmission by any of the channel look up techniques. But the 
knowledge about the loss of frames in any of the channels through which the 
summary or non-summary sub-sequences are sent convey meaning. Suppose the loss 
is only in the non-summary frames implies that we can have a quality of video that is 
comprehendible. Similarly the loss of frames only in the channel through which the 
summary frames sub-sequence is sent implies that they can be substituted by the non-
summary frames that are receive, thereby implying an acceptable quality of 
reconstruction. 

6   Conclusions 

The work presented in this paper explored the subtleties of the MSVC scheme 
proposed in [2], [1]. The exploration resulted in the conclusion that the basis of 
frame-splitting is purely mathematical. Thus the absence of a meaningful notion 
behind the splitting of the video frames in the basic MSVC [1], [4] placed no 
boundary on the basis of splitting and the number of sub-sequences to be generated. 
Also a drawback of the basic MSVC, that it does not possess effective adaptive 
streaming capability is opened up. To overcome the drawbacks a novel MSVC 
scheme is proposed. The scheme is based on the notion of summary and non-
summary frames. The justification for the better performance of the proposed MSVC 
scheme over the basic MSVC scheme, due to its meaningful notion behind splitting 
the video frames is presented. The performance is better in terms of quality of the 
video streaming over error prone channels and the effectiveness of adaptation when 
streaming to heterogeneous clients. The codec for the proposed MSVC is developed 
and the various loss scenarios when the encoded video stream is transmitted are 
simulated. The simulation results concluded that the proposed MSVC scheme 
outperformed the SSVC, in terms of the Sensitivity Of Perception (SOP). 
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Abstract. In this paper we propose a new adaptive block based com-
pressed domain data hiding scheme which can embed relatively large
number of secret bits without significant perceptual distortion in video
domain. Macro blocks are selected for embedding on the basis of low inter
frame velocity. From this subset, the blocks with high prediction error
are selected for embedding. The embedding is done by modifying the
quantized DCT AC coefficients in the compressed domain. The number
of coefficients (both zero and non zero) used in embedding is adaptively
determined using relative strength of the prediction error block. Experi-
mental results show that this blind scheme can embed a relatively large
number of bits without degrading significant video quality with respect
to Human Visual System (HVS).

1 Introduction

With the enormous advancement of the multimedia technology such as High
definition television (HDTV), Video on Demand (VOD), Video telephony etc,
multimedia security becomes a significant issue nowadays. Video watermarking
is one of possible countermeasure defending the world wide video piracy. Again
secret communication through video stream is another interesting field in most
modern era of information hiding. So data hiding in streaming media become an
important research aspect today. There are number of video watermarking tech-
niques are proposed in the recent literature. Three major trends can be classified
such as extension of still image watermarking scheme, exploiting another tempo-
ral dimension such as motion and using standard video compression techniques
such as MPEG standards. The extension of still image watermarking schemes
are mostly based on spatial domain embedding which is computationally in-
tensive and suffers from lack of robustness due to the inherent lossy nature of
the video compression. According to the recent literature of compressed domain
video watermarking, embedding is generally done either by modifying motion
vector information or using prediction error. The motion vector based video
watermarking is first proposed by F. Jordan et al [1] where motion vector of
MPEG 4 video stream is slightly modified to embed secret message. Some im-
proved version of the motion vector based watermarking schemes are proposed in
[2-5]. These schemes are robust but suffer from lack of payload. Only high value
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motion vectors can be modified to embed secret message without significant vi-
sual distortion. Prediction error based embedding schemes are not very robust
as secret message is truncated during the quantization process especially when
bit rate is very low. In this paper we propose a new prediction error based adap-
tive data hiding scheme that can embed relatively large number of bits without
significant visual distortion. This blind scheme is relatively robust with respect
of the quantization error because embedding is done after quantization. From a
pschyco-visual heuristic, the visual distion for injecting slight noise to the block
with relatively less inter frame velocity is not very perceptually significant. In
proposed scheme, the macro-blocks with less inter frame velocity and with high
prediction error are selected for embedding such that embedding distortion may
not be visually perceptible. The strength of the error block can be tracked by the
quantized DC coefficient of the block. Number of quantized AC coefficients of the
prediction error block, which are used for embedding, is adaptively selected on
the basis of relative strength of the error block i.e. more numnber of coefficients
of the block having higher quantized DC value are used for embedding. Selected
number of quantized AC coefficients of prediction error block are modified to
embed the secret bits. The experimental result reveals that much more secret
bits can be embedded with this proposed scheme than the motion vector based
scheme proposed in [5] without significant visual distortion. The visual quality
performance comparison is made by compairing PSNR and Watson Metric[6].
Watson Metric which is designed on the basis of characteristics of human visual
system, measures the total perceptual error based on frequency sensitivity, lu-
minance sensitivity and contrast masking. The rest of the paper is organized as
follows, in section 2 we experimentally shows that more bits can be embedded
into error blocks with higher energy (i.e., blocks with larger DC coefficients in
transformed domain) without significant perceptual distortion. The details of
embedding and extracting schemes are discussed in the section 3. Experimental
results will be given in the section 4 and section 5 contains conclusion and future
research.

2 Impact of Embedding in the Prediction Error Block

The effect of bit embedding in the quantized DCT error blocks are discussed in
this section. The main notion of our proposed scheme depends on the following
two observations:
– The quantized error blocks with relatively large DC value are more noise

tolerant with respect to the Human Visual system (HVS).
– The total perceptual error is directly proportional to the number of secret

bits being embedded. So more the bits are embedded, larger is the perceptual
error.

In these experimentations, 8x8 quantization matrix is used for inverse quanti-
zation where all matrix elements are sixteen1(16). 8x8 IDCT matrix (defined in
1 As specified for the default quantization table of prediction error used in MPEG 1

standard.
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MATLAB) is used for inverse DCT. The secret bits which are to be embedded
are binary random bit stream.

2.1 Relationship of DC Value and Total Perceptual Error of
Prediction Error Block Due to Embedding with Fixed Payload

In this subsection, we are trying to show that for a fixed embedding change i.e.
payload2, the total perceptual error (due to the embedding) of the blocks with
relatively higher DC value is lesser than the blocks with relatively lower DC
value. To show the above observation experimentally, we collect large number
of 8 × 8 quantized prediction error blocks of a test video sequence. Now for a
fixed embedding change (payload), we calculate the total perceptual error with
different DC value for each of the block. The average TPE (total perceptual
error) of all the blocks for the different DC value with fixed payload is plotted
in figure 1.

Fig. 1. Relationship between Total Perceptual Error and DC value with fixed Payload

The expermental result shows that the total perceptual error of the block is
gradually decreasing with increas of DC value of the block when payload is fixed.

2.2 Relationship of Payload and Total Perceptual Error of
Prediction Error Block Due to Embedding with Fixed DC
Value

In this subsection, we are trying to show that for a fixed DC value, total percep-
tual error is gradually increasing with increase of embedding change i.e. payload.
2 Since secret bit stream is random binary sequence, then the payload i.e. number of

bits to be embedded is generally doubled of the number of embedding change.
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Fig. 2. Relationship between Total Perceptual Error and Payload with fixed DC value

To show this argument experimentally, we collect large number of prediction er-
ror blocks of a test video sequence. Now for a fixed DC value, we calculate
different total perceptual error of the blocks on different payload. The average
total perceptual error of all the blocks for different payload with fixed DC value
is plotted in figure 2.

The experimental result shows that the total perceptual error is gradually
increasing with increase of payload when DC value is fixed. From the above
observations, payload of a block can be adaptively determined by the equation
1 such that we can control the payload depending on given perceptual error
tolerance.

payload =

⎧⎨⎩
0 if dc ≤ 0

min
(⌈

2×dc+2
λ

⌉
, 32
)

if dc > 0
(1)

where λ is a constant and�•� is the Ceiling operator. A small λ leads to a large
payload so that more data can be embedded with greater total perceptual error
to the cover, and vice versa.

3 Embedding and Extraction Scheme

3.1 Embedding Scheme

In embedding process, the macro-blocks with less inter frame velocity and with
high prediction error are selected for embedding such that embedding distortion
may not be visually perceptible. The strength of the error block can be tracked by
the quantized DC coefficient of the prediction error block. Number of quantized
AC coefficients of the prediction error block, which are used for embedding, is
adaptively selected on the basis of relative strength of the error block i.e. more
numnber of coefficients, of the block having higher quantized DC value, are
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used for embedding. Selected number of quantized AC coefficients of prediction
error block are modified to embed the secret bits. The step by step embedding
algorithm is given below:

1. Let the motion vector information of the ith macro block3 (B[i]) of a P frame
in a video sequence is

MV [i], 0 < i < MB (2)

where MB=total number of macro blocks presents in the frame.
2. Calculate the magnitude of the motion vector

|MV [i]| = abs(H [i]) + abs(V [i]) (3)

where, H[i] is the horizontal component of motion vector in the ith mac-
roblock; V[i] is the vertical component of motion vector in the ith macroblock
of the frame.

3. Given threshold ε, select the macroblocks for watermark embedding,

S[i] = F [i]×B[i] (4)

where B[i] =ith macro block of the current frame, S=selected macroblocks
and F [i] is defined as follows:

F [i] =

⎧⎨⎩
1 if |MV [i]| ≤ ε

0 if |MV [i]| > ε
0 < i < MB

A large ε implies the selection of macro blocks with higher motion vector
magnitude for embedding. That leads to greater perceptual distortion.

4. Let dc(j) is the DC coefficient of jth block among four 8 × 8 blocks in the
selected macroblock, the number of coefficients N(j) which are modified
during embedding is calculated as

N(j) =

⎧⎪⎨⎪⎩
0 if dc(j) ≤ 0

min
(⌈

2×dc(j)+2
λ

⌉
, 32
)

if dc(j) > 0
(5)

where λ is a constant and�•� is the Ceiling operator. A small λ leads to a
large N(j) so that more data can be embedded with greater perceptual error
to the cover, and vice versa. Blocks with quantized DC value equal to zero
is not used for embedding.

5. Scan the selected error block for N(j) number of quantized AC coefficients
in zig zag scan order and embed the current secret bit with the current
coefficient in scan order by equation 6. Only quantized AC coefficients are
to be modified during embedding. Quantized DC value is kept unchanged.
Secret bits are asuumed as random binary digits.

C′
j(m,n) =

{
Cj(m,n) if mod(|Cj(m,n)| , 2) = E
Cj(m,n) + 1 if mod(|Cj(m,n)| , 2) �= E

(6)

3 Size of macro block is 16 × 16.



Adaptive Data Hiding in Compressed Video Domain 743

where Cj(m,n) is coefficient positioned in mth row and nth coloum of jth

error block where 1 ≤ m,n ≤ 8. C′
j(m,n) is corresponding modified co-

efficient after embedding. E is the current binary secret bit to be
embedded.

3.2 Extracting Scheme

Extraction scheme is very simple. The step by step extraction algorithm is given
below to extract the hidden bits at the decoder side.

1. The macro blocks are selected at the decoder end by the same equations (3
and 4) as discussed in embedding scheme.

2. The number of modified coefficients can be determined from the unalterd
DC value by the same way using equation 5 as in encoder.

3. Scan these coefficients in the same zig zag order as in embedding and deter-
mine the secret bits using equation 7 as

E′ = Mod(C′
j(m,n), 2) (7)

where C′
j(m,n) is modified coefficients in jth block in a selected macro block

and E′ is secret bit extracted.

By above extraction method, we can extract all hidden bits without any error.

4 Expermental Result

In this section, we will give the experimental results which show that our pro-
posed scheme can embed relatively large number of secret bits without significant
visual distortion. In these experimentations we have used 84 frames of suzie,
Miss America and salesman test video sequences with fixed bit rate of 1.152

Table 1. Payload of Our Scheme and Scheme proposed in [5]

Scheme suzie miss america salesman

Our Scheme 20414 bits 18714 bits 20346 bits

Scheme in [5] 3434 bits 963 bits 423 bits

Mbps, frame rate of 25 frames/sec, PAL video format, 176x144 frame size for
testing. The relative payload of our scheme with respect to the scheme proposed
in [5] is given in table 1. The comparison plot of PSNR and total perceptual
error (by Watson Metric) of Cover 4, Stego5 by our proposed scheme and Stego
by scheme proposed in [5] for is given in figure 3. The comparison between our

4 Innocent video frame without any embedded data.
5 Video frame after embedding secret bits.
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scheme and scheme proposed in [5] are given using another 7 video quality met-
rics[7] such as NMSE(Normalized Mean Square Error), SC(Structural Content),
AAD(Absolute Average Difference), CQ(Correlation Quality), NCC(Normalized
Cross-Correlation), PMSE (Pulse Mean Square Error)and IF (Image Fidelity).
Results shows that our scheme can embed relatively large amount of data main-
taining almost same visual quality as proposed in [5] with respect to the above
video quality metrics. The comparison plot of NMSE and SC is given in figure
4, comparison plot of AAD and CQ is given in figure 5, comparison plot of NCC
and PMSE is given in figure 6 and comparison plot of IF is given in figure 7.

Fig. 3. The PSNR and Total Perceptual Error Plot for Cover, Stego by Our scheme
and Stego by schme in [5]
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Fig. 4. The Normalized mean square error(NMSE) and Structural Content(SC) Plot
for Cover, Stego by Our scheme and Stego by schme in [5]

5 Conclusion and Future Research

In this paper we have proposed a new adaptive block based compressed do-
main data hiding scheme which can embed relatively large number of secret
bits without significant perceptual distortion in video domain. Macro blocks are
selected for embedding on the basis of low inter frame velocity and high predic-
tion error. The embedding is done by modifying the quantized DCT AC coeffi-
cients in the compressed domain. The number of coefficients (both zero and non
zero) used in embedding is adaptively determined using relative strength of the
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Fig. 5. The Absolute Average Difference(AAD) and Corellation Quality(CQ) Plot for
Cover, Stego by Our scheme and Stego by schme in [5]

prediction error block. This blind scheme is relatively more robust with respect
of the quantization error because embedding is done after quantization. There
may be slightly degradation in visual quality in case of low fixed bit rate video.
The proposed scheme is suitable for blind video watermarking where higher
payload is necessary and can be used as video steganography as well. In these
experimentation, we find that some zone of error block are more noise tolerant
so more suitable for embedding. In future, we will concentrate on the problem
of adaptive zone selection such that perceptual error due to embedding can be
minimized.
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Fig. 6. The Normalized Cross-Corellation(NCC) and Peak Mean Square Error(PMSE)
Plot for Cover, Stego by Our scheme and Stego by schme in [5]
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Fig. 7. The Image Fidelity(IF) for Cover, Stego by Our scheme and Stego by schme in
[5]
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Abstract. Most of the state-of-the-art segmentation algorithms are de-
signed to handle complex document layouts and backgrounds, while as-
suming a simple script structure such as in Roman script. They perform
poorly when used with Indian languages, where the components are not
strictly collinear. In this paper, we propose a document segmentation
algorithm that can handle the complexity of Indian scripts in large doc-
ument image collections. Segmentation is posed as a graph cut problem
that incorporates the apriori information from script structure in the ob-
jective function of the cut. We show that this information can be learned
automatically and be adapted within a collection of documents (a book)
and across collections to achieve accurate segmentation. We show the
results on Indian language documents in Telugu script. The approach is
also applicable to other languages with complex scripts such as Bangla,
Kannada, Malayalam, and Urdu.

1 Introduction

Document image understanding algorithms are expected to work with a docu-
ment, irrespective of its layout, script, font, color, etc. Segmentation aims to par-
tition a document image into various homogeneous regions such as text blocks,
image blocks, lines, words etc. [1]. Page segmentation algorithms can be broadly
classified into three categories: bottom-up [2,3], top-down [4,5], and hybrid [6]
algorithms. The classification is based on the order in which the regions in a
document are identified and labeled. The layout of the document is represented
by a hierarchy of regions: page, image or text blocks, lines, words, components,
and pixels. The traditional document segmentation algorithms give good results
on most documents with complex layouts but assume the script in the docu-
ment to be simple as in English. These algorithms fail to give good results on
the documents with complex scripts such as African, Persian and Indian scripts.

1.1 Challenges in Segmentation of Indian Language Documents

In the recent past, the number of document images available for Indian languages
has grown drastically with the establishment of Digital Library of India [7]. The
digital library documents originate from a variety of sources, and vary consider-
ably in their structure, script, font, size, quality, etc. Of these, the variations in
the structure of the script are the most taxing to any segmentation algorithm.
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c© Springer-Verlag Berlin Heidelberg 2006



750 K.S. Sesh Kumar, A.M. Namboodiri, and C.V. Jawahar

Fig. 1. Complexities of Telugu Script: (a) spatial distribution of connected components,
(b) Non-uniform spacing between lines and components

In this paper we deal with documents in Indian languages such as Telugu,
Tamil, Bangla, and Malayalam, which have similar script structure. The com-
plexity of these scripts lie in the spatial distribution of the connected compo-
nents. Unlike English, most characters in Indian scripts are made up of more than
one connected component. These connected components do not form meaningful
characters by themselves, but when grouped together, form different characters
in the alphabet. The components of a character can be classified into:

Main Component: It is either a vowel, a consonant or a truncated consonant.
The main components of characters within a line are nearly collinear.

Consonant Modifier: In the above scripts, a character could be composed of two
consonants, the main component and a consonant modifier or half consonant.
Spatially, the consonant modifier could be to the left, right or bottom of the
main component, and hence lie within a line, or below it.

Vowel Modifier: A character also can have a vowel modifier, which modifies the
consonant. When the vowel modifier does not touch the main component, it
forms separate component, which lies above the main component.

Figure 1(a) shows the spatial distribution of components in Telugu script.
Due to variations in spatial distribution of the components within a the line
structure is non-uniform. This is the primary reason for the failure of many
traditional segmentation algorithms. Due to the positional variation of a modifier
component, the task of assigning it to a line above it or below it is ambiguous.
Heuristics such as assigning a component to its nearest line might fail because
the distances between the components vary depending on the font style, font
size and typeset as shown in figure 1(b).

Variations in scanned books are also introduced due to the change in writing
style of certain character over time, which need to be taken into account while
segmenting a document. Most of the old books are typeset by human and not
machine and hence it is difficult to specify a consistent distance between the
components. We introduce a Spatial Language Model that encapsulates the local
variations in component distribution and use it to perform segmentation.
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2 Document Segmentation Using Graph Cuts

Segmentation is the process of partitioning an image into regions with homoge-
neous properties. Ideally, pixels forming a semantically meaningful object should
be grouped together. Traditional image segmentation approaches usually group
pixels using low level cues such as brightness, color, texture, and motion. How-
ever, the end goal is to have segments that correspond to a particular object,
which is often measured using mid and high level cues such as symmetry of ob-
jects and object models. This warrants a framework, where both low level cues
and high level cues are integrated to segment an image. For document images,
this would mean the use of higher level structure of the document in determining
the grouping of connected components to form characters, words, and lines.

Segmentation can thus be posed as an optimization problem, where low level
cues are used to group the pixels into regions that represent an object, which can
be analyzed using high level cues. A variety of methods have been proposed that
pose segmentation as an optimization problem. Graph cuts is one of the methods
used to perform image segmentation. It promises a near optimal solution; i.e.,
a solution at a known distance from the global optimum. To apply graph cuts
to document images, a graph is built using either the pixels or the connected
components of the image as nodes, which are linked to its neighbors through
edges. During segmentation, a cut is defined on the graph, which labels the
pixels or components on either side of the cut as belonging to different segments.
Boykov et al. [8] proved that minimizing an energy function is equivalent to
minimizing the cost of cut on the graph.

Graph cuts form an effective combination of top-down and bottom-up ap-
proaches for the segmentation [9,10] problem. They also provide a framework
for learning the shape priors [11] and use them to perform effective segmenta-
tion. The traditional page segmentation algorithms do not provide the ability to
learn from or adapt to the nature of images, given a large collection of data. We
pose the page segmentation problem as an optimization problem, which mini-
mizes the energy calculated using graph cuts. This provides the ability to learn
the layout parameters in an incremental fashion.

We propose a segmentation algorithm that partitions a document with com-
plex scripts. We initially assume that the layout not very complex, contains only
text, and the document is skew corrected [12,13]. Later, we show how to extend
the algorithm to work with complex layouts also.

Each connected component forms a node that is linked to its k nearest neigh-
bors, where the nearest neighbors are calculated using the Euclidean distance
between the centers of their bounding boxes. The value of k is selected such that
each component is connected to all the components surrounding it spatially. For
Telugu, the value of k that yielded the best results was 8. Once the neighbors are
identified, a graph is constructed, and an initial estimate of the lines is obtained
using the horizontal projection profile. The initial cut ensures that a majority of
the components that belong to a particular line remain connected. Later we re-
place the projection profile based method with simple heuristics on components
to arrive at a robust initial segmentation of documents with complex layouts.
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2.1 Energy Function

Our goal is to assign a line number (label) to every connected component within
a document. All the connected components that belong to a document (C) need
to be partitioned into mutually exclusive and collective exhaustive subsets, Ci,
where i denotes the line number. The goal is to find a labeling f that labels
each component c ∈ C a label fp ∈ L, where L denotes the label set (here the
line numbers). The labeling should be done in such a way that it is piecewise
smooth. In this framework, a labeling f is computed so as to minimize the total
energy:

E(f) = Esmooth(f) + Edata(f), (1)

where Esmooth gives the measure of the smoothness of the labeling, while Edata

gives a measures of the consistency of labeling with the observed data.

Smoothness Term: If a component along with k nearest neighbors belong to
a single line, the labeling is considered extremely smooth and the contribution
due to the component to the Esmooth term decreases.

Esmooth(f) =
∑

(c,c′)∈N
V(c,c′)(c, c′), (2)

where N denotes the set of neighboring connected components within a docu-
ment. We will require the term Vc,c′ to be a metric for the expansion algorithm
to give near optimal solution using the graph cut.

Data Term: The data term is one of the most important measure in the cal-
culating the energy of the segmentation algorithm. This term enables the im-
provement of the segmentation algorithm by using apriori information, which is
available in the form of spatial language models. This term gives a measure of
disagreement of labeling of a connected component to a line above it or to the
one below it.

Edata(f) =
∑
c∈C

D(f(c)) (3)

The calculation of D(f(c)) denotes the disagreement of the observed data and
the apriori information available. For instance if a particular type of connected
component, according to the apriori information available through the spatial
language model, belongs to the line above it in spite of being nearer to the line
below it, the Disagreement of labeling the connected component to the line above
it is less than the labeling of the connected component to the line below it. Thus
we attain better segmentation with the availability of good spatial language
models of the document. However, if the Edata term is a constant function for
any assignment of labels to a connected component c, the graph cut is same as
a distance based heuristic, i.e., assign the connected component to the line that
it is nearest to.
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2.2 Graph Construction

The problem of segmenting a text block into lines can be viewed as the grouping
of connected components into clusters. Each of the cluster of connected compo-
nents define a line. Hence, the first and the foremost step is to find the number
of clusters. The number of lines within a text block can be calculated using
the projection profile formed by the horizontal projection of foreground pixels.
The number of peaks within the profile gives the number of lines, nl into which
the text block is to be segmented.

Graph cuts need an initial labeling of the connected components. The text
block is first segmented into nl lines using the projection profile based approach.
There exist connected components that lie between two lines. All these com-
ponents are assigned to the lines that lie below it. Thus the text blocks are
segmented into lines, where there are chances that some of the component as-
signments could be wrong. However, an initial labeling of the components is
achieved through this process. Now the cost of graph cuts could be used to per-
form changes of labeling such that the cut is minimal and the energy calculated
using the labeling is minimized.

We start with the initial set of labels for all the connected components com-
puted from the projection-based cut. A graph is constructed using these initial
set of labels. We know all the components that belong to two consecutive lines.
A graph is constructed for every pair of consecutive lines with two extra nodes,
(α, β), representing the labels of the nodes. Every pair of nodes that represent
neighboring components (c, c′) are linked by and edge, e(c, c′) with the weight
V(c,c′)(c, c′), a metric in the label space (i.e. the distance defined between the
labels of the two components). It follows a Potts model defined by:

V (α, β) = K.T (α �= β) (4)

where T (.) is 1 if its argument is true, and 0 otherwise.
Each of the components is also linked to one the two nodes, α, and β, which

represent the labels of the lines. The weights of these edges, denoted by tαc and
tβc , are calculated using the following equation:

tαc = Dc(α) +
∑

q∈Np;qPαβ

V (α, fc), (5)

where Dc(α) is the distance of the connected component to the nearest compo-
nent of the line with the label α, which is calculated using the spatial language
models. tβc is also calculated in a similar manner.

Now we have a graph that is constructed using the connected components as
nodes, along with two extra nodes with labels of the two lines. The α-β swap
algorithm, proposed by Boykov et al. [8], is used to perform the graph cut. If the
cut separates the node representing the component c with the node α, it given
the label α, which specifies the line it belongs to. The α−β swap algorithm tries
to swap the labels of the nodes in such a way that the energy calculated using
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Fig. 2. Zones of a Connected Component

the configuration of the graph is minimum. This graph cut algorithm iteratively
swaps the labels in such a way that the local minima of the energy function
calculated using equation 1 attained for the particular labeling.

3 Spatial Language Models

A large number of document collections are available in the digital library of
India that belong to the different Indian languages. There is no ground truth
available for these documents. Most of the documents available are from a large
number of books that are scanned. The books with same script that are published
by a same publisher may have same font size, font style and similar typeset.
Hence the Spatial Language Models of all these books will be the same. There
could be Spatial Language Models that could be built for a book, a publisher, etc.

Each component can be classified into one of the classes: main component,
vowel modifier and consonant modifier. The main component falls within a line,
the vowel modifier falls above a line, and the consonant falls below a line. Hence
a vowel modifier has higher affinity towards the line below it and a consonant
modifier has higher affinity to the line above it. The affinities can be changed
appropriately by changing the metric (distance between two components), such
that the a vowel modifier falls into a line below it and the consonant modifier
falls into a line above it even if they are farther from the line to which they
belong.

The region surrounding a component is divided into 8 equi-angular regions
labeled in a clockwise direction as shown in the Figure 2. The affinities between
two components is represented by an n×n×8 matrix denoted by K, where n is the
number of classes of the component recognition system. The prior information is
fed into the system by initializing the matrix based on language information. As
noted before, the n classes have three types of components: the main components,
the vowel modifier and the consonant modifier. The affinities that belong to the
classes of the main components are initialized to 1. However if the components
are vowel modifiers, they have higher affinity to lines below it. Hence the zones
5,6,7 and 8 of the particular vowel modifier has lower values. If the component
is a consonant modifier, it has higher affinity to lines above it. Hence the zones
1,2,3 and 4 of the consonant modifier are initialized to lower values.
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Kk
i,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.75 if i is a vowel modifier and

j takes all values from 1 to n and k ranges from 5 to 8
0.75 if i is a consonant modifier

and j takes all values from 1 to n and k ranges from 1 to 4
1 remaining i,j and k

(6)

3.1 Distance Based Graph

The connected components attained by connected component labeling are first
classified using a naive classifier. We define a metric to calculate the distance
between two components based on the affinity between them as follows.

wij = Kk
i,j ∗ dij , (7)

where dij denotes the nearest distance between the components, i denotes the
class the first component belongs to, j denotes the class the second component
belongs to and k denotes the zone of the first component through which the line
joining both the component passes through.

A graph is created with the components as the nodes the distance between
the components as the weight of the edge joining the components. The distance
between the components is calculated using the equation 7. The components
that belong to a line are within a particular distance threshold. Thus line seg-
mentation of the document image is performed.

3.2 Learning to Segment

The matrix K denotes affinity of a particular component to another component
in a particular direction. In a particular book a modifier component are generally
placed at a constant distance from a particular main component in the complete
book. When a component that belongs to a particular line is encountered, which
is still at a large distance from the main component, we reduce the distance
between the components by reducing the value of Kk

i,j . Here, i denotes the class
label of the main component, j denotes the class label of the modifier component,
and k is the zone of the main component, where the second component lies.

The segmentation of the documents can be learnt over time across documents.
The values of the matrix K are initialized as shown in Equation 6. A graph is
built using the components in the document image as shown in section 3.1.
The line segmentation is performed using graph cut proposed in section 2 and
the quality of segmentation is calculated using the segmentation quality metric
equation 8 proposed in [14].

Jl(.) =
1

1 + σ1
+

1
1 + σ2

−BLD + ILD, (8)

where σ1 denotes the variance of height of the lines, σ2 denotes the variance of
distance between the lines, BLD density of black/foreground pixels between two



756 K.S. Sesh Kumar, A.M. Namboodiri, and C.V. Jawahar

lines and ILD the density of black/foreground pixels within a line. Jl(.) takes
values between {−1, 3}.

This gives an estimate of the performance of line segmentation. If the perfor-
mance is low i.e the value of J(.) calculated is less than 2 then we perform the
line segmentation . The segmentation is projection profile based, and has a tun-
able set of parameters. The best segmentation results are achieved by learning
the best set of values for the parameters using the segmentation quality metric
in equation 8.

The line segmentation algorithm detects line boundaries that gives the set of
edges in the graph that cross the line boundaries. The weights of all such edges
are increased by changing the values of Kk1

i,j and Kk2
j,i as shown in equation 9.

The weights of all the missing edges within a line are reduced by changing the
values of Kk1

i,j and Kk2
j,i as shown in equation 10.

Kk1
i,j = Kk1

i,j + 0.05; Kk2
j,i = Kk2

j,i + 0.05 (9)

Kk1
i,j = Kk1

i,j − 0.10; Kk2
j,i = Kk2

j,i − 0.10, (10)

where i and j gives the class labels of the components, k1 denotes the zone that
component j belongs to with respect to i, and k2 denotes the zone that the
component i belongs to with respect to j. The weights of the graph are recalcu-
lated using the above equation and the lines segmentation is again performed as
suggested in section 3.1. The segmentation quality metric is then recalculated.
This is performed iteratively until the segmentation quality metric improves to
an acceptable value. This gives the learning phase of the document, where the
corrections made by a segmentation algorithm automatically is learnt and stored
in the form of the matrix K. The procedure to perform segmentation iteratively
on a document is give in Algorithm 1. To improve the performance across doc-
uments the K is retained for further documents.

Algorithm 1. Learning Spatial Language Models and Segmentation.
1: Initialize the Spatial Language Models K
2: while Change in K do
3: Find components with ambiguous Orientation(TOP/BOTTOM)

and initialize with arbitrary orientation
4: Calculate the distances between components using K
5: Create a graph and calculate the edges of the graph using the distances and

initial labels
6: Perform Graph Cut to give new labels to the components
7: if Errors in segmentation then
8: Correct them and update K
9: end if

10: end while
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4 Results and Discussions

There are large number of Indian language documents available at the Digital
Library of India. In this work, we used the documents that were scanned from
a Telugu book titled “Aadarsam”, which was printed in the year 1973 and con-
tains 256 pages. The goal is to learn the spatial language model of a particular
book from a few initial pages and use it to segment the remaining pages in the
book. There are two important steps involved in the process: i) adaptation of
segmentation to a single document, and ii) learning the spatial language model
from the sample documents.

Adaptation. We take a sample page from the above mentioned book. This
sample page is segmented without using any apriori information. This leads to
poor results of segmentation. When the segmentation is corrected either manu-
ally, or using ground truth, or using another segmentation algorithm, the spatial
language models that belong to the particular page are updated. On segmenting
the same page with the updated spatial language models, it is observed that the
performance of the segmentation is improved. This is done iteratively to improve
the accuracy of the segmentation.

Figure 3 shows that the segmentation of the document improves over iterations
because spatial language models are adapted to the document with iterations.
The components marked by the oval are the dangling components that need to
be assigned an appropriate line number. It can be observed that all the simi-
lar looking components that were assigned a wrong line initially, are assigned
to the correct lines over iterations. The affinity of a component in a particu-
lar direction is learnt during segmentation correction of the previous iterations.
Figure 4(a) shows the improvement in performance of segmentation on a par-
ticular document over iterations. The performance of segmentation is calculated
using the Equation 8. From Figure 4(b) it can also be observed that the number
of corrections that need to be made on the document decreases over iterations.

Fig. 3. Segmentation of a single document after 1st, 24th and final iterations
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Fig. 4. (a):Performance of segmentation on a particular document over iterations, (b):
Number of corrections made after each segmentation

Learning: We take all the pages of the book and perform segmentation on each
page iteratively adapting the spatial language models to the initial pages of the
book. After a few pages, there is no necessity to adapt the documents because the
spatial language models have completely learnt the characteristics of the book
and it can be used directly to perform segmentation on the remaining pages
of the book. Figure 5 shows that the algorithm can learn the spatial language
model of documents with different styles and give good results on segmentation.

Figure 6(a) shows that the performance of the segmentation eventually im-
proves on every page as information gathered from every page is used to perform
segmentation on later pages of the book. Figure 6(b) shows that the number of
segmentation corrections that need to be made on a new page is close to zero
after adapting to the first 44 pages of the book. The remaining 212 pages could
be segmented without any errors for the book under consideration.

The algorithm can also handle text with arbitrarily complex layouts as long
as an initial estimate of lines can be found. We use the component classifier
to identify the main components and use it to find an initial assignment of
components to lines. Performance of segmentation on a wavy text can be seen
in Figure 7 and semi-circular text in Figure 8.

Fig. 5. Segmentation results on three documents of different styles
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Fig. 6. (a): Performance of the algorithm over the pages in the book, (b): Number of
segmentation corrections made for each document

Fig. 7. Segmentation results on a page with wavy layout

Fig. 8. Segmentation results on a page with semi-circular layout

The algorithm is also fast in practice, since the graphs that are formed using
the k-nearest neighbor algorithm are sparse. However, if the graph is completely
connected, the time complexity can rise up to O(n2). To segment a document
with around 1200 components and 25 lines, the graph cuts takes an average time
of 0.268 seconds on a PC with 512 MB RAM and 3GHz single core processor.

5 Conclusions and Future Work

We have presented a graph cut based framework for segmentation of document
images that contain complex scripts such as in Indian languages. The framework
enables learning of the spatial distribution of the components of a specific script
and can adapt to a specific document collection, such as a book. Moreover, we are
able to use both corrections made by the user as well as any segmentation qual-
ity metric to improve the quality of the segmentation. We have demonstrated,
albeit on a limited set of examples, the ability of the framework to work with
complex scripts, where the traditional algorithms fail completely. Currently, we
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are working on extending the algorithm to be able to learn a generic spatial
model from a varying collection of documents to so as to give a good initial
guess for a specific script. Moreover, the algorithm also needs to be extended to
other region types such as words, paragraphs, etc.
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Abstract. Signature verification is a common task in forensic document
analysis. It is one of determining whether a questioned signature matches
known signature samples. From the viewpoint of automating the task it
can be viewed as one that involves machine learning from a population
of signatures. There are two types of learning to be accomplished. In
the first, the training set consists of genuines and forgeries from a gen-
eral population. In the second there are genuine signatures in a given
case. The two learning tasks are called person-independent (or general)
learning and person-dependent (or special) learning. General learning
is from a population of genuine and forged signatures of several indi-
viduals, where the differences between genuines and forgeries across all
individuals are learnt. The general learning model allows a questioned
signature to be compared to a single genuine signature. In special learn-
ing, a person’s signature is learnt from multiple samples of only that
person’s signature– where within-person similarities are learnt. When a
sufficient number of samples are available, special learning performs bet-
ter than general learning (5% higher accuracy). With special learning,
verification accuracy increases with the number of samples.

Keywords: machine learning, forensic signature examination, biomet-
rics, signature verification, digital document processing.

1 Introduction

The most common task in the field of forensic document analysis [1, 2, 3, 4, 5]
is that of authenticating signatures. The problem most frequently brought to a
document examiner is the question relating to the authenticity of a signature:
Does this questioned signature (Q) match the known, true signatures (K) of this
subject? [6] A forensic document examiner– also known as a questioned docu-
ment (QD) examiner–uses years of training in examining signatures in making
a decision in case work.

The training of a document examiner involves years of learning from signa-
tures that are both genuine and forged. In case-work, exemplars are usually
only available for genuine signatures of a particular individual, from which the
characteristics of the genuine signature are learnt.

Algorithms for visual signature verification are considered in this paper. The
performance task of signature verification is one of determining whether a ques-
tioned signature is genuine or not.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 761–775, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Visual signature verification is naturally formulated as a machine learning
task. A program is said to exhibit machine learning capability in performing a
task if it is able to learn from exemplars, improve as the number of exemplars in-
crease, etc. [7]. Paralleling the learning tasks of the human questioned document
examiner, the machine learning tasks can be stated as general learning (which
is person-independent) or special learning (which is person-dependent) [8].

In the case of general learning the goal is to learn from a large population
of genuine and forged signature samples. The focus is on differentiating be-
tween genuine-genuine differences and genuine-forgery differences. The learning
problem is stated as learning a two-class classification problem where the input
consists of the difference between a pair of signatures. The verification task is
performed by comparing the questioned signature against each known signature.
The general learning problem can be viewed as one where learning takes place
with near misses as counter-examples [9].

Special learning focuses on learning from genuine samples of a particular per-
son. The focus is on learning the differences between members of the class of
genuines. The verification task is essentially a one-class problem of determining
whether the questioned signature belongs to that class or not.

There is scattered literature on automatic methods of signature verification
[10, 11, 12, 13, 14]. Automatic methods of writer verification– which is the task
of determining whether a sample of handwriting, not necessarily a signature,
was written by a given individual– are also relevant [15]. Identification is the
task of determining as to who among a given set of individuals might have
written the questioned writing. The handwriting verification and identification
tasks parallel those of biometric verification and identification for which there
is a large literature. The use of a machine learning paradigm for biometrics has
been proposed recently [16].

The rest of this paper is organized as follows. Section 2 describes feature ex-
traction in general. Section 3 describes the two methods of learning. Section 4
deals with how the learnt knowledge is used in evaluating a questioned signature
(called the performance task). A comparison of the accuracies of the two strate-
gies on a database of genuines and forgeries, along with the particular feature
description is described in Section 5. Section 6 is a paper summary.

2 Feature Extraction and Similarity Computation

Signatures are relied upon for identification due to the fact that each person
develops unique habits of pen movement which serve to represent his or her
signature. Thus at the heart of any automatic signature verification system are
two algorithms: one for extracting features and the other for determining the
similarities of two signatures based on the features. Features are elements that
capture the uniqueness. In the QD literature such elements are termed discrim-
inating elements or elements of comparison. A given person’s samples can have
a (possibly variable) number of elements and the combination of elements have
greater discriminating power.
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A human document examiner uses a chart of elemental characteristics [6]. Such
elements are ticks, smoothness of curves, smoothness of pressure changes, place-
ment, expansion and spacing, top of writing, base of writing, angulation/slant,
overall pressure, pressure change patterns, gross forms, variations, connective
forms and micro-forms. Using the elemental characteristics such as speed, pro-
portion, pressure and design are determined. These in turn allow rhythm and
form and their balance are determined.

Automatic signature verification methods described in the literature use an en-
tirely different set of features. Some are based on image texture such as wavelets
while others focus on geometry and topology of the signature image. Types of fea-
tures used for signature verification are wavelet descriptors [17], projection distri-
bution functions [18,14,19], extended shadowcode [18] and geometric features [20].

The features are considered representative characteristics of the signature. In
order to compare two signatures and to quantify their similarity, a similarity
measure or a distance measure is used to compute a score that signifies the
strength of match between the features of the two samples. Eventually, irrespec-
tive of the method used, one can arrive at a distance space representation of
the data that characterizes the strength of match between two signatures. It is
usefull to note here that, the learning strategies that ensue are general and are
applicable not just to signature veriication but to any bio-metric. As long, as
there exist a similarity measure that maps the feature values between a pair of
samples, to a score, the below mentioned learning strategies can be used. The
particular set of features used for signature verification are described in detail
in the experiment and result section 5.

3 Learning Strategies

Person-independent or general learning is a one-step approach that learns from
a large population of genuine and forged samples. On the other hand person-
dependent(person specific) learning focuses on learning from the genuine samples
of a specific individual.

3.1 Person-Independent (General) Learning

The general learning approach uses two sets of signature pairs: genuine-genuine
and genuine-forgery. Forgeries in forensic document examination can be either
simulated or traced. In this sense task is analogous to learning from near misses
in the machine learning literature.

Features are extracted for each pair of signatures and a similarity measure
is used to compute the distance between each pair. Let DS denote the vector
of distances between all pairs in set one, which represents the distribution of
distances when samples truly came from the same person. Similarly let DD

denote the vector of distances between all pairs in set two, which represents
the distribution of distances when samples truly came from different persons.
These distributions can be modeled using known distributions such as Gaussian
or gamma. The Gaussian assigns non-zero probabilities to negative values of
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distance although such values are never encountered. Since this problem in not
there with the gamma it is to be preferred. The probability density function of
the gamma distributions is as follows: Gamma(x) = xα−1 exp(−x/β)

(Γ (α))βα Here α and
β are gamma parameters which can be evaluated from the mean and variance
as follows α = μ2/σ2 and β = σ2/μ. ‘α’ is called the shape parameter and ‘β’
is the scale parameter. The parameters that need to be learnt for such a model
are typically derived from the sufficient statistics of the distribution, and are
namely μ (mean) and σ (variance) for a Gaussian, or α (shape) and β (width)
for a gamma. These distributions are referred to as genuine-genuine and genuine-
impostor distributions in the domain of biometrics.

3.2 Person-Dependent Learning (Person Specific Learning)

In questioned document case work there are typically multiple genuine signatures
available. They can be used to learn the variation across them– so as to determine
whether the questioned signature is within the range of variation. First, pairs of
known samples are compared using a similarity measure to obtain a distribution
over distances between features of samples — this represents the distribution of
the variation/similarities amongst samples — for the individual. The correspond-
ing classification method involves comparing the questioned sample against all
available known samples to obtain another distribution in distance space. The
Kolmogorov-Smirnov test, KL-divergence and other information-theoretic meth-
ods can be used to obtain a probability of similarity of the two distributions,
which is the probability of the questioned sample belonging to the ensemble of
knowns. These methods are discussed below.

Within-person distribution. If a given person has N samples,
(
N
2

)
defined

as N !
N !(N−r)! pairs of samples can be compared as shown in Figure 1. In each

comparison, the distance between the features is computed. This calculation
maps feature space to distance space. The result of all

(
N
2

)
comparisons is a

{
(
N
2

)
×1} distance vector. This vector is the distribution in distance space for a

given person. For example, in the signature verification problem this vector is the
distribution in distance space for the ensemble of genuine known signatures for
that writer. A key advantage of mapping from feature space to distance space is
that the number of data points in the distribution is

(
N
2

)
as compared to N for a

distribution in feature space alone. Also the calculation of the distance between
every pair of samples gives a measure of the variation in samples for that writer.
In essence the distribution in distance space for a given known person captures
the similarities and variation amongst the samples for that person. Let N be the
total number of samples and NWD =

(
N
2

)
be the total number of comparisons

that can be made which also equals the length of the within-person distribution
vector. The within-person distribution can be written as

DW = (d1, d2, . . . , dNWD ) (1)

where ( denotes the transpose operation and dj is the distance between the pair
of samples taken at the jth comparison, j ∈ {1, . . . , NWD}.
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Fig. 1. Person-dependent (special) learning involves comparing all possible genuine-
genuine pairs, as shown for four genuine samples, to form the vector DW , which in
this example is of length NWD = 4

2
= 6 comparisons

4 Performance Task

The performance task of signature verification is to answer the question whether
or not a questioned signature belongs to the genuine signature set. The person-
independent method uses knowledge from a general population to determine
whether two samples, one a questioned and the other a genuine, belong to the
same person. This task is called 1:1 verification. Person-dependent classification
tasks involves matching one questioned sample against multiple known samples
from the person. Details of the two performance algorithms are given below.

4.1 Person-Independent Classification

The process of 1 : 1 verification(one input sample compared with one known
sample) starts with feature extraction and then computing the distance d be-
tween the features using a similarity measure. From the learning described in
Section 3.1, the likelihood ratio defined as P (DS |d)

P (DD |d) can be calculated, where
P (DS |d) is the probability density function value under the DS distribution
at the distance d and P (DD|d) is the probability density function value un-
der the DD distribution at the distance d. If the likelihood ratio is greater
than 1, then the classification answer is that the two samples do belong the
same person and if the ratio is less than 1, they belong to different persons.
If there are a total of N known samples from a person, then for one ques-
tioned sample N , 1 : 1 verifications can be performed and the likelihood ratios
multiplied. In these circumstances it is convenient to deal with log likelihood-
ratios rather than with just likelihood ratios. The log-likelihood-ratio (LLR) is
given by logP (DS |d) − logP (DD|d). The decision of same-person is favored if
logP (DS |d) − logP (DD|d) > 0, and the decision of different-person chosen if
logP (DS |d)−logP (DD|d) < 0. When N of these 1 :1 verifications are performed
these LLR’s are summed and then the decision is taken.

4.2 Person-Dependent Classification

When multiple genuines are available then the within-person distribution is ob-
tained in accordance with equation 1. A questioned can be compared against
the ensemble of knowns for verification. The classification process consists of
two steps.
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(i) obtaining questioned vs known distribution; and
(ii) comparison of two distributions: questioned vs known distribution and

within-person distribution.

Questioned vs Known Distribution. In Section 3.2 and with equation 1 the
within-person distribution is obtained by comparing every possible pair of sam-
ples from within the given persons samples. Analogous to this, the questioned
sample can be compared with every one of the N knowns in a similar way to ob-
tain the questioned vs known distribution. The questioned vs known distribution
is given by

DQK = (d1, d2, . . . , dN ) , (2)

where dj is the distance between the questioned sample and the jth known
sample, j ∈ {1, . . . , N}.

Comparing Distributions. Once the two distributions are obtained, namely the
within-person distribution, denoted Dw (Section 3.2, equation 1), and the Ques-
tioned Vs Known distribution, DQK (Section 4.2, equation 2), the task now is to
compare the two distributions to obtain a probability of similarity. The intuition
is that if the questioned sample did indeed belong to the ensemble of the knowns,
then the two distributions must be the same (to within some sampling noise).
There are various ways of comparing two distributions and these are described
in the following sections.

Kolmogorov-Smirnov Test. The Kolmogorov-Smirnov (KS) test can be applied
to obtain a probability of similarity between two distributions. The KS test is
applicable to unbinned distributions that are functions of a single independent
variable, that is, to data sets where each data point can be associated with a
single number [21]. The test first obtains the cumulative distribution function of
each of the two distributions to be compared, and then computes the statistic,
D, which is a particularly simple measure: it is defined as the maximum value
of the absolute difference between the two cumulative distribution functions.
Therefore, if comparing two different cumulative distribution functions SN1(x)
and SN2(x), the KS statistic D is given by D = max−∞<x<∞ |SN1(x)−SN2(x)|.
The statistic D is then mapped to a probability of similarity, P , according to
equation 3

PKS = QKS

(√
Ne + 0.12 + (0.11/

√
Ne)D

)
, (3)

where the QKS(·) function is given by (see [21] for details):

QKS(λ) = 2
∞∑

j=1

(−1)j−1e−2j2λ2
, such that : QKS(0) = 1 , QKS(∞) = 0 , (4)

and Ne is the effective number of data points, Ne = N1N2(N1 + N2)−1, where
N1 is the number of data points in the first distribution and N2 the number
in the second. The following sections discuss other methods of comparing two
distributions.
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Kullback-Leibler Divergence and other methods. The Kullback-Leibler (KL) di-
vergence is a measure that can be used to compare two binned distributions. The
KL divergence measure between two distributions is measured in bits or nats. An
information theoretic interpretation is that it represents the average number of
bits that are wasted by encoding events from a distribution P with a code which
is optimal for a distribution Q (i.e. using codewords of length − log qi instead of
− log pi). Jensen’s inequality can be used to show that DKL = KL(P‖Q) ≥ 0
for all probability distributions P and Q, and DKL = KL(P‖Q) = 0 iff P = Q.
Strictly speaking, the KL measure is a divergence between distributions and
not a distance, since it is neither symmetric nor satisfies the triangle equality).
The KL divergence so obtained can be converted to represent a probability by
exp (−ζDKL) (for the sake of simplicity we set ζ = 1 in this article). If the di-
vergence DKL is 0, then the probability is 1 signifying that the two distributions
are the same. In order to use this method and other methods discussed in the
following sections it is first necessary to convert the two unbinned distributions
to binned distributions with a probability associated with each bin. The KL di-
vergence between two distributions is given in equation 5 below, where B is the
total number of bins, Pb and Qb are the probabilities of the bth bin of two distri-
butions respectively. PKL denotes the probability that the two distributions are
the same. Other related measures between distributions P and Q that we will
examine are given in equations 6, 7 and 8

Kullback-Leibler: DKL =
B∑

b=1

Pb log(
Pb

Qb
) PKL = e−ζDKL (5)

Reverse KL:DRKL = KL(Q‖P ) =
B∑

b=1

Qb log(
Qb

Pb
)PRKL = e−ζDRKL (6)

Symmetric KL: DHKL =
1
2
KL (P‖Q) +

1
2
KL (Q‖P ) =

DKL + DRKL

2
PHKL = e−ζDHKL

(7)

Jensen-Shannon KL: DJS =
1
2
KL

(
P

∥∥∥∥P + Q

2

)
+

1
2
KL

(
Q

∥∥∥∥P + Q

2

)
PJS = e−ζDJS

(8)

Combined KL and KS measure. A combination of the Kolmogorov-Smirnov and
Kullback-Leibler measure, denoted KLKS, has been found to outperform the
individual measures as will be analyzed in the performance evaluation section
following this. The method to combine is very simple and is obtained by aver-
aging the probabilities defined in equations 3 and 5.

PKLKS =
PKL + PKS

2
(9)
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5 Performance Evaluation

The particular set of features used for signature verification are mentioned below.

5.1 Multiresolution Features

A quasi-multiresolution approach for features are the Gradient, Structural and
Concavity, or GSC, features [22, 23]. Gradient features measure the local scale
characteristics (obtained from the two-dimensional gradient of the image), struc-
tural features measure the intermediate scale ones (representing strokes), and
concavity can measure the characteristics over the scale of whole image (rep-
resenting concavities and topology). Following this philosophy, three types of
feature maps are drawn and the corresponding local histograms of each cell is
quantized into binary features. Fig. 2(a) shows an example of a signature, which
has a 4x8 grid imposed on it for extracting GSC features; rows and columns of
the grid are drawn based on the black pixel distributions along the horizontal
and vertical directions. A large number of binary features have been extracted
from these, as shown in Fig. 2(b), which are global word shape features [24];
there are 1024 bits which are obtained by concatenating 384 gradient bits, 384
structural bits and 256 concavity bits.

(a) Variable size grid (b) 1024-bit binary feature vector

Fig. 2. Signature feature computation using a grid: (a) variable size 4x8 grid, and (b)
binary feature vector representing gradient, structural and concavity features

A similarity or distance measure is used to compute a score that signifies the
strength of match between two signatures. The similarity measure converts the
pairwise data from feature space to distance space.

Several similarity measures can be used with binary vectors, including the
well-known Hamming distance. Much experimentation with binary-valued GSC
features, has led to the correlation measure of distance as yielding the best
asccuracy in matching handwriting shapes [25]. It is defined as follows. Let Sij

(i, j ∈ {0, 1}) be the number of occurrences of matches with i in the first vector
and j in the second vector at the corresponding positions, the dissimilarity D
between the two feature vectors X and Y is given by the formula:
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D(X, Y ) =
1
2
− S11S00 − S10S01

2
√

(S10 + S11)(S01 + S00)(S11 + S01)(S00 + S10)

It can be observed that the range of D(X, Y ) has been normalized to [0, 1].
That is, when X = Y , D(X, Y ) = 0, and when they are completely different,
D(X, Y ) = 1.

A refined method to compute the features and obtain the distance values is
discussed in [26].

5.2 Experiments

A database of off-line signatures was prepared as a test-bed [13]. Each of 55
individuals contributed 24 signatures thereby creating 1320 genuine signatures.
Some were asked to forge three other writers’ signatures, eight times per subject,
thus creating 1320 forgeries. One example of each of 55 genuines are shown in
Figure 3. Ten examples of genuines of one subject (subject no. 21) and ten
forgeries of that subject are shown in Figure 4. Each signature was scanned at
300 dpi gray-scale and binarized using a gray-scale histogram. Salt pepper noise
removal and slant normalization were two steps involved in image preprocessing.
The database had 24 genuines and 24 forgeries available for each writer as in
Figure 4. For each test case a writer was chosen and N genuine samples of that
writer’s signature were used for learning. The remaining 24−N genuine samples
were used for testing. Also 24 forged signatures of this writer were used for
testing. Figure (Fig. 5) shows the image of a questioned signature is matched
against multiple images of known signatures in figure.

Fig. 3. Genuine signature samples Fig. 4. Samples for one writer: (a) gen-
uines and (b) forgeries

Two different error types can be defined for any biometric person identification
problem. False reject rate (Type 1) is the fraction of samples classified as not
belonging to the person when truly there were from that person. False acceptance
rate (Type 2) is the fraction of samples classified as belonging to the person when
truly the samples were not from that person. In the domain of signatures, Type
1 is the fraction of samples classified as forgeries when truly they were genuine
and Type 2 the fraction of samples classified as genuine when truly they were
forgeries.
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5.3 Person-Independent(General) Method

Fig. 5. Signature verification with mul-
tiple knowns

The classification decision boundary dis-
cussed in Section 4.1 is given by the
sign of the log likelihood-ratio, LLR,
log P (DS |d) − log P (DD|d). A modified
decision boundary can be constructed us-
ing a threshold α, such that log P (DS |d)−
log P (DD|d) > α. When α is varied, we
can plot ROC curves as shown in Figure 6.
The different subplots in the figure corre-
spond to the ROC curves as the number of known samples is increased from
5 to 20. For each plot, the total error rate defined as (False acceptance+False
reject)/2 is minimum at a particular value of α. This is the best setting of α
for the specified number of known samples, denoted the operating point, and is
indicated with an asterix ‘*’. When 20 samples are used for learning the error
rate is approximately 79%. Figure 7 shows the distribution of LLRs when the
questioned samples were genuine and when they were forgeries. A larger region
of overlap indicates a higher error rate.

5.4 Person-Dependent Method

The person-dependent classification discussed in Section 4.1 mentioned six dif-
ferent statistics for comparing the two distributions to obtain a probability of
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Fig. 6. ROC curves parameterized by α is varied. Each subplot is titled with the
number of knowns used for training and the optimum error rate that is possible. The
asterix ‘*’ denotes the optimal operating point α for that model.
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Fig. 7. LLR’s obtained from each test case plotted as histograms. The probability (y-
axis) that the LLR falls into a range of LLR values (x-axis) is shown for the results of
truly genuine (solid) and forgery cases (dotted). Each subplot corresponds to training
on a different number of knowns.

Table 1. Error rates for signature verification. Measures are Kolmogorov-Smirnov (KS),
Kullback-Leibler (KL), reverse KL (RKL), symmetrized KL (HKL), Jensen-Shannon
(JS), and combined KL and KS (KL and KS). These are graphed in Figure 8(a).

No. of Knowns KS KL RKL HKL JS KL and KS
5 25.88 24.70 25.61 24.96 25.26 23.87
6 23.54 25.10 25.40 24.57 24.60 22.52
7 22.71 23.35 23.83 23.57 23.31 21.54
8 21.67 23.76 24.60 23.58 23.39 21.20
9 22.17 23.31 24.01 23.03 23.03 20.94
10 21.36 21.93 22.79 21.94 21.63 20.58
11 19.27 20.74 20.96 20.28 20.18 19.02
12 21.13 20.96 21.71 20.42 20.10 19.58
13 20.14 21.73 20.81 21.25 20.78 19.72
14 19.06 20.03 20.84 19.46 19.33 18.41
15 18.28 18.88 19.15 18.10 17.76 17.32
16 19.27 19.08 20.08 18.50 18.38 17.56
17 17.37 17.28 17.36 16.68 16.43 16.07
18 17.79 17.88 18.31 17.58 17.52 17.17
19 17.39 18.09 18.42 17.75 17.37 16.97
20 17.31 17.15 18.58 16.90 17.23 16.40

match between the questioned sample and the ensemble of knowns. In order to
measure error rates for this classificaton technique, once again a decision needs
to be made based on the probability of whether or not the questioned sample
belongs to the ensemble of knowns. If the probability of match > α, then the de-
cision is in favour of the questioned signature to be genuine, and if the probability
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Fig. 8.

of match < α, the decision is in favor of a forgery (this α should not be confused
with that used in the person-independent method). By varying the parameter
α, once again ROC curves (False Accept vs. False Reject) can be plotted for
each of the six measures. The best setting of α is termed as the operating point.
This setting of α corresponds to the least total error rate possible. Note that the
ROC curves are plotted for the test data set and the operating point determined
on them. These test data set can be considered as a validation set that helps
to determine the operating point. In the curve, the operating point is the point
closest to the origin. Table 1 shows the least total error rate possible when dif-
ferent number of known samples were used for training for each of the 6 different
measures. Figure 8(a) shows the same table as a graph comparing the different
measures and it can be seen that the combined KL and KS measure performs
the best. The reason for this can be intutively explained by the fact that KS
statistic has low false accept rates whereas the KL statistic has low false reject
rates. The combination of these two in the KL and KS measure works the best.

Figure 8(b) shows how the operating point (best setting of α) varies with the
number of known samples used. It can be seen that in order to obtain the least
total error rate, the value of α changes with the number of knowns for certain
measures. The value of α explains a lot about what each statistic learns from
the known samples. For example, the high value of α for the KS statistic when
large numbers of known samples were used explains that the KS statistic focuses
on learning the variation amongst the known samples. Presence of large known
samples accounts for greater variation amongst them. Hence if KS focuses on
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Fig. 9. Error rates as the percentage of allowed rejected (no decision) cases increases.
The rejection rate is indirectly controlled by varying the β which assigns the probability
region 50 − β and 50 + β where no decisions are made and considered as rejects. The
different subplots show the plots for different number of knowns used for learning. We
have plotted only the trend for the combined KL and KS measure.

learning the variation, then almost every questioned sample ends up receiving
a high probability of match as the majority of questioned samples (genuines
and forgeries) invariably fall within the variation. Thus by setting a high value
of α the decision that a sample is truly genuine is made only if probability is
really high. In simple terms this means that when more samples are used for
training the KS statistic will declare a sample as genuine only if the probability
of match is really high. In contrast to this measure the KL measure captures the
similarities amongst the known samples a lot. This is evident by the low value of
α for large number of knowns. Presence of large number of samples accounts for
observing more similarities. The KL measure focuses on learning the similarities
amongst the samples and it returns a high probability of match very rarely and
only when every similarity that is learnt amongst the known samples is present
in the questioned sample. Hence the majority of questioned sample receive a
low probability of match by the KL measure. To counter this a low value of
α ensures that the KL measure will declare a sample as forgery only if the
probability of match is really low. Similar comments can be made about other
measures and it is important to note that those measures for which the operating
point does not vary with the number of knowns and those which are around the
50% mark can be a useful property. This basically shows that irrespective of the
number of knowns used for training, one can make a decision using the same
operating point, and also if the operating point is around the 50% mark there is
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an equal range of probabilties across which the two different decisions fall. And
it is also intuitive that the combined KL KS measure has this fine property. It
can be seen that the operating point for the combined KL and KS measure is
closest to the 50% mark amongst other measure and is also independent of the
number of known samples to some extent. Proceeding with the conclusion that
the combined KL KS measure has a few desired properties and also outperforms
other measures in terms total error rate, we can now consider allowing rejections
to reduce the error rates even further. Consider probabilities between .5−β and
.5+β for some β > 0 as the region for reject probabilities. No decision is made if
.5− β < Probability < .5 + β. This can significantly reduce the total error rate.
Figure 9 shows the total error rate as it the rejection percentage is changed by
changing the value of β. This analysis enables the operator to select a value of
β that will induce a certain rejection rate and in turn result in a certain desired
error rate. For example, in order to obtain a error rate of 10% with 20 knowns
in this data set one should set β to .15 and that accounts for 35% reject rate.
Similarly for an error rate of 5% for 20 knowns, β needs be set to .30 which
accounts for 62% reject rate.

6 Summary and Discussion

Automatic signature verification is a task where machine learning can be used as a
natural part of the process.Two different machine learning approaches, one involv-
ing genuines and forgeries in a general set and another involving only genuines for
a particular case were described. The first approach is analogous to using counter-
examples with near misses in the learning process. Both approaches involve using a
similarity measure to compute a distance between features of two signatures. Spe-
cial learning outperforms general learning particularly as the number of genuines
increases. General learning is useful when the number of genuines is very small
(less than four). A refined method of extracting features for signatures was also
discussed which can further increase verification accuracy. Future work should con-
sider combining the two types of learning to improve performance.
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Abstract. We propose two texture-based approaches, one involving Ga-
bor filters and the other employing log-polar wavelets, for separating text
from non-text elements in a document image. Both the proposed algo-
rithms compute local energy at some information-rich points, which are
marked by Harris’ corner detector. The advantage of this approach is
that the algorithm calculates the local energy at selected points and not
throughout the image, thus saving a lot of computational time. The al-
gorithm has been tested on a large set of scanned text pages and the
results have been seen to be better than the results from the existing
algorithms. Among the proposed schemes, the Gabor filter based scheme
marginally outperforms the wavelet based scheme.

1 Introduction

The advancement in science and technology has increased the need for informa-
tion from the document images. Automatic conversion of paper into electronic
document simplifies storage, retrieval, interpretation and updating processes.
However, prior to such a conversion , we need to separate the text and non-text
regions of the page. This enables proper conversion and interpretation of a doc-
ument image. Besides, such separation of text and non-text regions, finds many
other useful applications in document processing [1]. Moreover, the performance
of a document understanding system, such as an optical character recognizer,
greatly depends on this separation task.

Numerous approaches on text localization have been reported in the liter-
ature. Smith [2] uses vertical edge information for localizing caption text in
images. Jung [3] used a neural network based filtering scheme to classify the
pixels of input image as belonging to text or non-text regions. Jiang et al. [4]
have applied merging bounding blocks, which are using special color features,
edge features and morphology operator. These features are used to eliminate the
false text candidates. However, this method is script dependent and is reported
to be working well for Chinese documents. Yuan & Tan [5] have used edge in-
formation to extract textual blocks in Manhattan layout. Messelodi et. al. [6]
extract connected components (CC) to characterize text objects in book cover
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color images. This is based on the (i) size information of the connected blocks,
(ii) geometrical features of a single component, and (iii) spatial relationship of
the connected block with other such connected components. Jain and Yu [7]
extract a set of images by analyzing the color spaces of the input image. They
employ connected component analysis (CCA) on each of the derived images to
locate possible text regions. Finally, they merge the information so obtained to
locate text regions in the original image. Strouthpoulos et. al. [8] have proposed a
technique to separate text from non-text elements based on the optimal number
of color components present in the input image. In the first step, an unsupervised
neural network clusters the color regions. Subsequently, using a tree-search pro-
cedure and split-and-merge conditions, they decide whether color classes must
be split or merged. They use a page layout analysis technique, on each of the ob-
tained optimal color images. Finally, they merge the information obtained from
each of the optimal color images to extract the text regions. Sabari et. al. [9]
have employed a multi-channel Gabor filter bank approach for separating text
from non-text elements in gray images. In the first level, they separate the obvi-
ously non-text objects by a statistical analysis of the connected components of
the text page. Following this, they extract a Gabor feature vector at each pixel
position. Based on these feature vectors, they decide if the pixel belongs to a
text region. Antani et. al. [10] and Jung et. al. [11] present two comprehensive
surveys for text separation and its information extraction in document images
and videos.

2 System Description

Here, we propose a texture based text extraction scheme. Figure 1 demonstrates
a schematic block representation of the scheme. It is assumed that text regions
of an image contain more of abrupt changes in the gray values, in various di-
rections. This makes such regions rich in edge information. An ideal feature to
discriminate between text and non-text areas should invariably involve direc-
tional frequency. So, the idea of this paper is to separate text areas by applying
some direction selective functions. Gabor function based filters are well known
for their direction-frequency selectivity. Log-polar wavelet energy signature has
also been widely used for texture classification tasks [12]. So it is proposed to

Fig. 1. Figure demonstrating a schematic representation of the proposed text separa-
tion algorithms. One of the approaches uses Gabor filters for local energy evaluation
while the other uses log-polar wavelets.
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Fig. 2. Figure demonstrating a point p and its neighbors the number of neighbors are
n and the Figure shows the connectivity between point p and its neighbors

test its efficacy in distinguishing text and non-text regions of a document image
and compare it against that of the Gabor functions.

Previously reported works have used the above mentioned texture descriptors
in the following ways: (i) extract the local energy signatures at a pixel level
throughout the image, (ii) divide the image into smaller uniform blocks and ap-
ply the technique at such a block level. The local energy computation is done
uniformly throughout the image in both of the above mentioned ways. However,
in the present work, we propose to apply these texture descriptors in a non-
uniform fashion, i.e., in some selected information rich points of the image. Such
information rich locations are marked by Harris’ corner detector [13]. Each of
this information rich Harris’ corner points are classified as either a text point
or non-text point by a Nearest Neighbor classifier (NNC)in the feature domain.
The database consists of two classes, text and non-text, formed from english
document images. The size of each class is 2000. The extraction of the features
at selected points, for text/non-text separation, reduces the computational com-
plexity of the algorithm by many times.

Subsequently, Delaunay triangles are formed using these labeled corner points
in the image domain. Lets consider a corner point P in the image, as shown in
figure 2. A number of triangles originate from P. Thus, P is associated with a
number of other such corner points, P1, P2 · · · Pn, by the Delaunay triangles.
All such points, P1, P2, · · · Pn are connected to the point P by the Delaunay
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triangles are said to be the neighbor points of the point P. All these points are
already labeled as text/non-text points. For any given P, the labels of all such
neighbor points are considered. For any P, if 75% of the neighboring corner points
have a different label, the label of P is altered. Finally, a windowed portion of
the original image is retained around all the points which have text label. The
rest portions of the image are suppressed to the background.

2.1 Harris Corner Detector

The Harris corners [13] are located as follows:

1. For each pixel located at (x, y) in the image, I, calculate the autocorrelation
matrix M.

M(x,y) = Gσ ∗
(

( ∂I
∂x )2 ( ∂I

∂x )(∂I
∂y )

( ∂I
∂x )(∂I

∂y ) ( ∂I
∂x )2

)
(1)

where G is a Gaussian blurring function with variance σ.
2. Construct a cornerness C(x, y)

C(x, y) = Det(M) − k ∗ Trace(M)2 (2)

Here k is a constant (i.e 0.4-0.6).
3. Threshold the cornerness map C(x, y) – set all values in C(x, y) below a
threshold T to zero. Here, the threshold T is taken to be 10 percent of the
maximum corner response.
4. Perform non-maximal suppression to find local maxima.
All non-zero points that remain after step 4 are declared as the corners.

2.2 Multi-channel Gabor Filtering

Sabari et. al. [9] have used Gabor filter banks for text localization and extraction.
The technique involves multi-channel filtering with Gabor function based filters,
for page layout analysis. Such a method is reported to detect text regardless of
the type of script, size of font or the layout the text is embedded in. It is also
claimed to be more robust than other kinds of feature detection models. The
bank of Gabor filters reported by Sabari et al. [9], with minor changes to the
parameters, is used for the presented work. Here, we are using 8 orientations and
5 different radial frequencies.

2.3 Delaunay Triangulation

The definition of the Delaunay Triangulation [14] is based on the Voronoi dia-
gram through the principle of duality. Given a set of points, the plane can be
split in domains for which the first point is closest; the second point is closest,
etc. Such a partition is called a Voronoi diagram. If one draws a line between
any two points whose Voronoi domains touch, a set of triangles is obtained,
known as the Delaunay triangles. Generally, this triangulation is unique. One of
its properties of this triangulation rule is that the enclosing circle of a Delaunay
triangle does not contain another point. This is demonstrated in figure 3.
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Fig. 3. Figure demonstrating the definition of the Delaunay triangulation between the
3 points pi, pj, pk. Here, the triangle T1 is a Delaunay triangle while the triangle T2
is not because the point Pj lies inside enclosing circle C2. This violates the Delaunay
triangulation criteria.

2.4 Log-Polar Wavelet Energy Signature

Pun and Lee [12] have proposed log-polar wavelet energy signatures for rota-
tion and scale invariant texture classification. Their scheme applies a log-polar
transform to attain rotation and scale invariance. This produces a row shifted
log-polar image which is then passed to an adaptive row shift invariant wavelet
packet transform. This is done to eliminate the row shift effects. Thus, the out-
put wavelet coefficients are both rotation and scale invariant. A feature vector
consisting of the most dominant log-polar wavelet energy signatures, extracted
from each sub-band of wavelet coefficients, is constructed. This feature vector
is used for texture classification. We use 25 most significant coefficients to form
the feature vector at each point for text/non-text separation.

3 Experimental Results

Document images are scanned using (a) Hewlett Packard Scanjet 2200c, and (b)
UMAX ASTRA 5400 scanners and stored with Windows Device Independence
Bitmap (BMP) format. The database contains about 100 such scanned document
images. The images have variation in document layout and scripts (3 scripts
Persian, English and Kannada) and have been taken from newspapers, journals
and books. Some images are downloaded from the www net. The input to all
the algorithms are gray images. However, we have presented the results with the
corresponding color images for better visibility.

Figure 4 shows the outputs of the proposed algorithm at various stages. The
colored version of the original input image is presented in (a). The output of the
Harris’ corner detection algorithm is presented in (b). Here, the detected corner
points are marked on the original image. Each of these corner points are classi-
fied as either text or non-text points, using a nearest neighbor classifier (NNC)
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a b c

d e f

Fig. 4. Figure demonstrating the various stages of the proposed algorithms. (a) Orig-
inal input image, (b) output of the Harris’ corner detection algorithm, (c) labeled
text/non-text points - labeling done by NNC on either the Gabor features, (d) De-
launay triangulation using the Harris corner points, (e) classification of the document
page using the Delaunay triangles, and (f) the final output.

(a) (b) (c)

Fig. 5. Comparison of results of the algorithm using the Gabor features (b) and the
log-polar wavelet features (c) for the input image (a)

on either the Gabor features or the log-polar wavelet features. Here, this classifi-
cation task has employed Gabor features and the results are presented in (c). (d)
presents the Delaunnay triangulation using the corner points. (e) demonstrates
the results of re-classifying the corner points after the Delaunay triangulation
and class label consideration of the neighboring corner points. Finally, the output
of the proposed algorithm, with the detected text areas, is presented in (f).
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a b

c d

Fig. 6. Figure demonstrating the comparison between result of the algorithm and
two previously existing techniques.(a) Original image, (b) the output of the proposed
scheme, (c) output of scheme proposed by Sabari et. al., and (d) output of scheme
proposed by Xiao et. al.

A comparison of the results generated by use of (a) the Gabor features and
(b) the Log-polar wavelet features has been demonstrated in figure 5. The above
mentioned features have been extracted at the corner points and a near-neighbor
classifier has been employed to classify such points to text and non-text points,
as has been described in the section 2. Here, it could be observed that the
result of employing the Gabor feature has yielded a better output than the ones
employing the wavelet features. This has been observed with consistency when
tested on other images as well. So, we have used Gabor features for generating
the output of our proposed algorithm, in all cases of reported results.

The comparison of the results of the proposed algorithm with those two of the
previously proposed algorithms have been demonstrated in figure 6. The two pre-
viously proposed algorithms are: (i) page layout analysis using Delaunay Tessela-
tions [15], and (ii) the layout analysis technique proposed by Sabari et. al. in [9].
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a b

c d

Fig. 7. Figure demonstrating the result of the algorithm for different documents. (a)
input image with text in Kannada script, (b) output of the input image in (a), (c) web
text image of Persian script and (d) the output of (c).
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In this figure, (a) shows the original input image. The output of the proposed algo-
rithm, using the Gabor features, has been presented in (b). (c) and (d) represent
the output of the text analysis schemes proposed by Sabari et. al. and Xiao et. al.,
respectively. It could be noted that the result of the proposed algorithm has gener-
ated output, which is better than the results generatedby the other two techniques.

Figure 7 presents the results of our proposed algorithm, using Gabor features,
on some more images. The right column of each row of the figure shows the
output of the algorithm for the input image, shown in the left column of the
same row.

4 Conclusion and Discussion

The proposed algorithm has been tested on a large set of images. Such images
have a lot of variation in the non-text elements present in them. They also have
variations in font style, size and script used in the document image. The results
have also been verified against two other existing algorithms and the results, in
all cases, have either been found to be better than the existing algorithms or
as good as their output. Thus, it can be concluded that the proposed algorithm
works fine for separation of text from non-text elements in a document image.

A comparison of the results generated by use of Gabor features with those
generated by the use of Log-polar wavelet features, has also been done. Here,
it is observed that the results of employing Gabor features generates better
text/non-text separation in most cases. In some other cases, it is as good as the
ones generated using the wavelet features. We never came across a case where
result of the wavelet feature was substantially better than the one of Gabor
features. This result substantiates the claim made by Sabari et. al. that the
Gabor functions generate the optimal feature set for text/non-text separation.

The major advantages of the algorithm are:

(i) handles multi-scripted documents,
(ii) invariant to any arbitrary skew,
(iii) accommodates complex layout, and non-Manhattan documents,
(iv) works on poor quality images with acceptable result, and
(v) computationally more efficient than the other proposed techniques.
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Abstract. Telugu is one of the oldest and popular languages of India spoken by 
more than 66 million people especially in South India. Development of Optical 
Character Recognition systems for Telugu text is an area of current research.  

OCR of Indian scripts is much more complicated than the OCR of Roman 
script because of the use of huge number of combinations of characters and 
modifiers. Basic Symbols are identified as the unit of recognition in Telugu 
script. Edge Histograms are used for a feature based recognition scheme for 
these basic symbols. During recognition, it is observed that, in many cases, the 
recognizer incorrectly outputs a very similar looking symbol. Special logic and 
algorithms are developed using simple structural features for improving 
recognition accuracies considerably without too much additional computational 
effort. It is shown that recognition accuracies of 98.5 % can be achieved on 
laser quality prints with such a procedure.  

1   Introduction 

During the past few decades, substantial research efforts have been devoted to Optical 
Character Recognition (OCR) [1,2]. The object of OCR is automatic reading of 
optically sensed document text materials to translate human-readable characters into 
machine-readable codes. Research in OCR is popular for its application potential in 
banks, post-offices and defense organizations. Other applications involve reading-aid 
for the blind, library automation, language processing and multi-media design [3].  

Commercial OCR packages are already available for languages like English. 
Considerable work has also been done for languages like Japanese and Chinese [1]. 
Recently, work has been done for development of OCR systems for Indian languages. 
This includes work on recognition of Devanagari characters [4], Bengali characters 
[5], Kannada characters [6] and Tamil characters [7]. Some more recent work on 
Indian languages is also reported [8,9,10,11,12].  

Telugu is one of the popular languages of India that is spoken by more than 66 
million people especially in South India. Work on Telugu character recognition is not 
substantial [13,14]. Vasantha Lakshmi et al. [17] have recently reported the 
development of a Telugu OCR System for Printed text (TOSP) based on identification 



 OCR of Printed Telugu Text with High Recognition Accuracies 787 

of symbols defined as Basic Symbols by them. A Basic Symbol is a single connected 
entity in Telugu script and is treated as the unit of segmentation. The system works in 
three steps as described. Recognition rates of over 97% have been reported over a 
wide variety of fonts and sizes. Their approach is essentially a feature based approach 
where features of all the basic symbols in several different fonts and sizes are stored 
and symbols of same fonts but different sizes are recognized on the basis of these 
features. The features used by them are the local gradients at various pixels called the 
Radial Direction Features [17, 18].  

Recent work in the context of MPEG-7 features has shown the utility of Edge 
Histograms to aid the recognition in various image processing applications [22]. 
These are utilized in this work. Further improvement in recognition accuracies is 
achieved by identifying pairs of symbols that are frequently confused for each other. 
The logic for determining the correct basic symbol and the results of OCR before and 
after incorporation of this logic are given.  

The sets of symbols that are confused for each other are a characteristic property of 
the script. They are confused for each other because they are similar. These sets 
remain more or less same irrespective of the feature extractor and recognizer that 
operates over the whole set of Basic Symbols. Therefore, many of the ideas presented 
in this paper could be used with advantage in improving the recognition accuracy with 
any OCR system for Telugu. Another important point is that Confusion Logic is 
called into play only when one of the confusing symbols is recognized in order to 
verify or contradict it. Further, simple features are used to resolve the confusion. 
Therefore, this does not add substantially to the computational requirements. 

The rest of the paper is organized as follows. The approach adopted in this work is 
presented briefly in section 2. In section 3, the Confusion Table is presented. Detailed 
logic for resolving the confusion in each set is presented in section 4. Results of OCR 
after incorporation of additional logic are presented in section 5. Some conclusions 
and pointers toward future work are highlighted in section 6. 

2   Recognition of Printed Telugu Text 

The recognition works by isolating and recognizing Basic Symbols. Basic Symbols 
are connected regions in the image. If a modifier is physically attached to the 
character it modifies, they together constitute a single basic symbol. It has been 
shown [17] that such an approach is extremely useful in reducing the number of 
symbols that the recognizer has to deal with to manageable levels (around 400) from 
the lakhs of combinations of characters and modifiers possible. Therefore, the task in 
segmentation is to isolate such basic symbols.  

The processing starts with the conversion of the gray scale image of a page of text 
into a binary image using thresholding. Any small blobs introduced due to scanning 
noise are removed to clean the image. 

The actual basic symbol is represented by black pixels and background is 
represented by white pixels. Any skew in the image is detected and removed using a 
modified Hough transform method adapted for Telugu text [19]. 
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Table 1. Steps in recognition of printed Telugu text 

1. Conversion of a gray scale image of input text to binary image. 
2. Image rectification 
3. Skew detection and its removal 
4. Separation of text into lines, words, and basic symbols. 
5. Preliminary classification using size property for each basic symbol. 
6. Computation of Edge Histogram Features for each basic symbol. 
7. Recognition by means of Nearest Neighbour (NN) classifier. 
8. Output. 

Table 2. Confusion Table depicting Symbols that are confused for each other 

 

Profiling is used to segment the text image into lines and words. This is done 
taking advantage of the spacing between lines and between words. In every word, 
each basic symbol is identified by determining connected components. For each basic 
symbol, a preliminary classification scheme is implemented on the basis of the 
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relative sizes of the symbols. All the symbols are converted to size corresponding to 
36 columns and the row sizes for this column size is used to classify the basic 
symbols into 14 different sets. 

The features used are the Edge Histogram features. The database is created with 
three popular fonts i.e. Harshapriya, Godavari and Hemalatha [21] and three different 
sizes i.e. 25, 30 and 35. The feature vectors are divided into 14 sets as described 
above and stored in the database. The algorithm for feature extraction is represented 
succinctly in the following pseudo-code. 

1. For each word in every line of a scanned printed page of Telugu text, 
2. Isolate the next basic symbol from the word as given above. 

Repeat steps 3 to 10 for each basic symbol. 
3. Obtain the bounding box eliminating the blank surrounding space. 
4. Partition the bounding box into N1 x N2 blocks. In this work N1 and N2 are 

taken as 4 each.  
5. Determine the edges of the symbol using the Canny edge operator.  
6. Calculate the gradient magnitude and direction at each pixel location on the edges 

within each block. 
7. Quantize the edge directions into K ranges. K=9 in this work i.e. 0-20, 20-40,…, 

160-180. Directions 180-360 are mapped again onto 0-180 range of directions. 
8. Calculate the adaptive threshold of gradient magnitude and perform thresholding 

to obtain the new threshold gradient direction at each pixel location. 
9. Calculate the relative edge histogram by dividing the edge direction values in 

Step 6 by total number of pixels in that block. 
10. Concatenate the feature vectors from all the partitions to obtain the complete 

feature vector. 

The OCR of a text page begins with the scanned image. The segmentation steps 
described above are performed on this image to isolate the image of each basic 
symbol. The feature vector of the symbol to be recognized is computed as given 
above. This is then provided to the recognizer. The recognizer uses a preliminary 
classification scheme and a Nearest Neighbour (NN) classifier scheme on the feature 
vectors stored in the database to identify the basic symbol. 

The preliminary classification classifies a basic symbol based on its height into one 
of the 14 different sets. The classifier considers only the basic symbols in the set 
identified by the preliminary classification scheme. This results in a considerable 
saving in the computational expense. However, it does not result in a degradation of 
the recognition performance. The process is repeated till all the basic symbols are 
recognized.  

This approach has been implemented and tested over a variety of images with 
different fonts i.e. Harshapriya, Hemalatha and Godavari and sizes 15, 18, 20, 23, 25, 
28, 30, 32, 35. Recognition accuracy by directly using the above scheme is 95.4 % as 
presented in Tables 3, 4, and 5. This recognition accuracy needs to be improved 
further for actual use. 

In computing this recognition accuracy, if a particular basic symbol appears three 
times in the text and it is mis-recognized all the three times it is taken as three errors  
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Table 3. Raw and improved results on DS1 to DS9 with Hemalatha font 

Data  
Set # 

Type Size # of  
BS 

NN 
 

    Initial Recognition 
Ratio 

Recognition ratio with 
additional logic 

DS1 Hm 15 127 0.937 0.976 
DS2  18 127 0.969 0.992 
DS3  20 127 0.969 1.000 
DS4  23 127 0.969 0.992 
DS5  25 127 0.953 0.976 
DS6  28 127 0.945 0.992 
DS7  30 127 0.937 0.961 
DS8  32 127 0.945 0.992 
DS9  35 127 0.953 0.984 

TOTAL 1143 0.953 0.985 

Table 4. Raw and improved results on DS10 to DS18 with Harshapriya font 

Data  
Set # 

Type Size # of  
BS 

NN 
 

    Initial Recognition 
ratio 

Recognition ratio with  
additional logic 

DS10 Hr 15 127 0.921 0.976 
DS11  18 127 0.945 0.992 
DS12  20 127 0.969 1.000 
DS13  23 127 0.929 0.992 
DS14  25 127 0.945 0.984 
DS15  28 127 0.961 0.992 
DS16  30 127 0.969 1.000 
DS17  32 127 0.969 1.000 
DS18  35 129 0.946 0.969 

TOTAL 1145 0.950 0.990 

and not one. So actual misrecognized symbols are even lesser than what this number 
indicates. This also provides the motivation for deeper analysis into why a particular 
symbol is misrecognized every time it appears because if logic can be found to rectify 
this then at one stroke several of the errors could be eliminated. Such an effort is 
made in the next section.  

3   The Confusion Table 

As mentioned above, an analysis of the results shows that some symbols are often 
recognized incorrectly. The reason for mistakes in recognition can be scanning noise, 
defect in the paper where the symbol is printed that leads to extra dark pixels, spread 
of ink on the paper etc. These are, however, random causes and cannot be the reason  
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Table 5. Raw and improved results on DS19 to DS27 with Godavari fon 

Data  
Set # 

Type Size # of  
BS 

NN classifier 
 

    Initial Recognition 
ratio 

Recognition ratio with 
additional logic 

DS19 Go 15 126 0.976 0.984 
DS20  18 127 0.961 0.984 
DS21  20 128 0.961 0.984 
DS22  23 129 0.938 0.977 
DS23  25 127 0.953 0.984 
DS24  28 127 0.976 0.984 
DS25  30 127 0.969 0.984 
DS26  32 127 0.945 0.969 
DS27  35 127 0.953 0.984 
TOTAL 1145 0.959 0.982 

for consistent wrong recognition of a particular symbol as another symbol. It is 
observed that, in many cases, a symbol is recognized erroneously because the 
recognizer incorrectly outputs a very similar looking basic symbol. The low level 
features that are used in the recognition process are not able to distinguish between 
the two. Recourse is taken, therefore, to higher level structural features that can 
provide the distinction.  

The sets of similar symbols are arranged in the form of a table with each row 
corresponding to a set. This is referred to as the Confusion Table [Table 2]. Though 
the symbols in each set of the Confusion Table look very similar, on closer 
observation, it is seen that each basic symbol has some unique feature that 
distinguishes it from the other(s) in the set. This feature is identified and made use of 
in correctly identifying it. 

4   Resolution of Confusions 

In this section, an attempt is made to identify a distinguishing feature that can be used 
to distinguish between the elements of each set. This is non-trivial because the 
distinction may be very fine, especially for the smaller sized characters. 

4.1.1   Confusions 1 to 4 
The confusion among the first four row entries in the Table 2 are resolved using a 
similar logic. This is possible because there is no possibility of confusion across sets 
reported in different rows. It is observed from column 3 of the table for all these 4 
entries that there is a small closed loop at the bottom near the left end for these 
symbols. However, as is seen in column 4 for the corresponding entries, the 
characters with which they are confused are open near the bottom left end. An 
algorithm is designed to detect the presence or absence of the closed loop. Care is 
taken to ensure that the logic works for a variety of fonts and sizes. 
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Figure 1 shows the images of two Telugu characters /pa/ and /sa/. Long lines in 
these figures divide each of the images into two halves i.e. the top half and the bottom 
half therefore, only the bottom half of the image is considered for resolving the 
confusion. The figure also shows a short line inside the loop of /pa/. The ends of this 
line, denoted by ‘a’ and ‘b’, indicate the beginning and end of the possible loop in the 
image. The point ‘a’ is the left most pixel found in the bottom half of the image. The 
logic for determining the existence of loop is given succinctly in Algorithm 1. 

 
Bottom half of the image is the 

image falling below  this line 
‘a’ is the left most point of the 
loop. ‘b’ is the end of the loop 

 

Fig. 1. Images of Telugu characters /pa/ and /sa/ 

Although the algorithm is explained for the pairs reported in the table only, the 
same can also be used for resolving confusion among the pairs generated by attaching 
same modifier symbols.  

Algorithm 1 

1. Split the image into two halves. Consider only the bottom half of the image for 
further processing. 

2. Find the left most pixel position ‘a’. Let ‘i’ denote its row number and ‘j’ the 
column number.  

3. By moving along the row ‘i’ to the right from the pixel ‘a’ identify the pixel at 
position ‘b’ as shown in Figure 1.  

4. For each of the pixels between ‘a’ and ‘b’ scan down to the bottom row of the 
image starting from row ‘i’. In this process, if for any column, a foreground pixel 
is not encountered at all, the element belongs to column 4 of Table 2. A single 
gap is sufficient as the characters are thick enough. 

5. If no gap is found for any column, the symbol belongs to column 3 of the same 
Table. 

4.1.2   Confusion Between /ra/ and /la/ Families of Consonants 
These form the fifth row of Table 4. The /ra/ and /la/ families are quite similar 
because attaching modifiers to each of these, i.e., /ra/ and /la/, results in similar 
compound characters. The concept of Zero Crossings (ZC) is made use of in 
differentiating between these two basic symbol families. A ZC is a transition from a 
character or foreground pixel to a background pixel or vice-versa. The images of /ra/ 
and /la/ consonants are identical near the bottom and differ near their top ends. /la/ has 
a loop at the top left end whereas /ra/ has a tick mark. The images of /la/ and /ra/ are 
shown in Figures 2(ii) and 2 (iii) respectively.  

For differentiating between these two or any pairs in their families, the bottom 
most pixel of the image, labeled as ‘a’ in Figure 2 (i) is taken as the starting point.  
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Fig. 2. Images of basic symbols (i) rA (ii) la 

The thickness of the character starting from the bottom most point is avoided in 
searching for ZC. For this purpose, the pixel labeled as ‘b’ in Figure 2 (i) is identified 
by scanning up in the same column as ‘a’ and stopping at the last foreground pixel 
among the continuous foreground pixels. From here onwards a count of ZC is noted 
for every row starting with the row above this row. The ZC count for both the 
consonants /ra/ and /la/ is 4 for all the rows in the beginning. This is clearly indicated 
by the line ZC=4 in Figure 2. The ZC count for consonant /la/ increases to 6 and that 
for /ra/ decreases to 2, as the rows above ‘b’ are scanned. 

The same logic is also applicable for the members of the two consonant families 
generated by attaching the vowel modifiers of /i/, /I/, /e/, /E/, /AW/ on the two 
consonants. However, this algorithm does not work as such for the members of /ra/ 
and /la/ families that are formed by attaching the vowel modifiers of /A/, /o/ and /O/. 
These compound characters assume shapes that contradict the logic given above.  

Consider the image of consonant /ra/ modified by the vowel modifier of /A/ shown 
in Figure 2(i). For this image a loop is encountered and the corresponding ZC count is 
6. Therefore, as per the above logic, it will be treated as /lA/ and not /rA/, as the ZC 
count is greater than 4. However, it is observed that in this case the ZC count 
increases because of the loop in the right portion of the compound character and not 
because of a loop in the left portion as in /la/. Similar is the case with modifiers of /o/ 
and /O/. Therefore, the logic given above is suitably modified to work for pairs of 
symbols generated by all the vowel modifiers. The ZC count is not taken for all the 
columns. Only, the columns in which the left side loop is possibly encountered are 
considered. With this modification the above logic is useful for distinguishing 
between all the members of the two families. Since noise has already been removed 
for small specks and isolated larger ones would be recognized as separate characters, 
zero crossings do not create any problem. 

Algorithm 2 

1. Find the bottom most pixel ‘a’ of the image, as shown in Figure 2(i). 
2. Find the pixel marked as ‘b’ in the same figure that is in the same column as ‘a’.  
3. Let startrow be the row above the row in which ‘b’ is located.  
4. Consider the left portion of the image from startrow upwards.  
5. For startrow, find ZC. Store it as previous ZC. 
6. For each row above startrow, find ZC. 

if ZC >previous ZC, id=/la/ else if ZC<prevZC, id=/ra/ else continue.  
7. end. 

Similarly, logic based structural differences is designed for distinguishing between 
the rest of the sets of basic symbols. 
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5   Computational Results 

OCR experiments were carried out on a number of data sets of laser quality prints 
containing text in three fonts and nine different sizes. Results of OCR experiments on 
27 data sets DS1 to DS27 without additional improvement logic for Confusing 
Symbols were analyzed and the correction logic incorporated for rectifying the 
commonly occurring errors. An important point to be noted is that the correction logic 
for a particular pair of confusing symbols is executed only when the recognizer 
recognizes one of the symbols in the set as being present in the image under 
consideration. Thus, the computational burden is not enhanced too much with the 
inclusion of this logic. Still, the correction of the commonly occurring errors enhances 
the recognition rate. Results of OCR experiments are presented on the same data sets 
DS1 to DS27 in Tables 3 to 5 but this time with the incorporation of the logic 
described above for the correction of errors due to the presence of confusing symbols. 
Edge Histogram features are still used. Recognition accuracies are enhanced in all 
cases going up to 99 % in the case of Harshapriya font. Overall recognition accuracy 
in the case of all the fonts is improved from 95.4% to 98.5 %. 

6   Conclusion 

This paper is concerned with achieving better recognition rates in OCR of printed 
Telugu text by use of Edge histogram features and additional logic for resolving 
confusion among similar symbols. Simple structural features are utilized to improve 
recognition accuracies. Incorporation of this logic does not add too much to the 
computational requirements. This is in direct to contrast to the more computationally 
intensive dictionary matching schemes. But, still, recognition accuracies show 
considerable improvement. The logic presented in this paper can be incorporated to 
improve recognition accuracy with any OCR system for Telugu, as it is quite general 
and works with different fonts and sizes i.e. the structural features used to aid 
resolution of confusion are font independent. The approach is novel as it utilizes 
simple structural features instead of commonly employed complicated dictionary 
matching procedures towards the same result.  

Work is being pursued in improving the recognition accuracies further by 
incorporation of additional post-processing logic based on the frequency of 
association of symbols that are found together in the text. For example, it is known 
that the some modifiers occur very frequently with some characters and some 
modifiers occur very infrequently. Development of better feature sets by better choice 
of features is also another direction being pursued.  
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Abstract. This paper concerns automatic recognition of both printed and 
handwritten Bangla numerals. Such mixed numerals may appear in documents 
like application forms, postal mail, bank checks etc. Some pixel-based and 
shape-based features are chosen for the purpose of recognition. The pixel-based 
features are normalized pixel density over 4 X 4 blocks in which the numeral 
bounding-box is partitioned. The shape-based features are normalized position 
of holes, end-points, intersections and radius of curvature of strokes found in 
each block. A multi-layer neural network architecture was chosen as classifier 
of the mixed class of handwritten and printed numerals. For the mixture of 
twenty three different fonts of printed numerals of various sizes and 10,500 
handwritten numerals, an overall recognition accuracy of 97.2% has been 
achieved. 

1   Introduction 

Recognizing handwritten numerals is an important area of research because of its 
various application potentials. Automating bank cheque processing, postal mail 
sorting, job application form sorting and other applications where numeral recognition 
is necessary. Impressive research has been done on the recognition of Roman, Arabic 
and Chinese numerals which is excellently reviewed in[1]. Le Cun et al [2] has 
developed an algorithm for identifying Arabic numerals, which has a high recognition 
rate that.  

Limited amount of research has been done in the recognition of Indian numerals. In 
this paper, we concentrate on the recognition of Bangla numerals. Bangla is the 
second most popular language in India and is the fifth most popular in the world. We 
are considering recognition of both Handwritten and Printed Bangla numerals. 
Mixture of these two types of scripts may appear in a single document. A typical 
example is as shown in figure 1. To get an idea of the variability of Indian numerals, 
10 sets of printed fonts and 10 sets of handwritten characters are shown in Figure 2.a 
and 2.b.  

Till now to the best of our knowledge effort had been on the recognition of either 
handwritten Bangla numerals only [3-6] or printed fonts. But, in the actual world 
forms, checks and mailing addresses are encountered where there are both 
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handwritten as well as printed numerals. For example a person may write a cheque by 
hand, but when an organisation pays its employees by cheque, the salary amount is 
printed on the cheque. A similar situation might arise for postal addresses also. A 
typical form where both handwritten and printed numerals may be encountered is 
provided in Figure 1. In this paper, the concentration will be on the recognition of 
both handwritten and printed numerals by a single system. 

 

Fig. 1. Sample form 

Neural Networks had been one of the most widely used approaches for numeral 
recognition. It has been used both for the recognition of non-Indian [2, 7-9] as well as 
Indian [3-6, 10, 11] digits. In this paper, a multi-layer neural network will be 
employed for the recognition of Bangla numerals. Here we concentrate only on 
isolated numerals.  

The rest of the paper is organized as follows. The data sets used for the training 
and testing of the neural networks is described in the following section. In section 3 
the preprocessing required for optical character recognition will be discussed. This 
will be followed by section 4 that will describe in detail the feature selection 
techniques. In section 5 the discussion will be on Neural Network implementation. 
Section 6 will present the results obtained from the experiments and in the final 
section, 7, conclusions and future scope of work will be discussed.  

2   Data Set 

Neural Networks had been one of the most widely used approaches for numeral 
recognition. It has been used both for the recognition of non-Indian [2, 7-9] as well as 
Indian [3-6, 10, 11] digits. In this paper, a multi-layer neural network will be  
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(a) 

 
(b) 

Fig. 2. (a) Numerals in various printed fonts.(b) Handwriting examples. 

employed for the recognition of Bangla numerals. Here we concentrate only on 
isolated numerals.  

The rest of the paper is organized as folows. The data sets used for the training and 
testing of the neural networks is described in the following section. In section 3 the 
preprocessing required for optical character recognition will be discussed. This will 
be followed by section 4 that will describe in detail the Neural Network 
implementation. Section 5 will present the results obtained from the experiments and 
in the final section, 6, conclusions and future scope of work will be discussed.  

Handwritings of 105, each having written 0-9 ten times comprises the handwritten 
numeral dataset. The writers were mostly university students and employees in a 
private software company. Only a few samples belonged to shopkeepers, children, 
domestic maid and peons. The majority of the writers were male. There was no 
restriction on the type of pen used and its ink colour or the paper sheet on which the 
wrtings were taken.  

23 fonts were considered for training and testing the neural network. The fonts 
considered here are: 1. SolaimanLipi, 2. Aakash, 3. Bangla, 4. Likhan, 5. Amar Bangla, 
6. Ekushey Azad, 7. Ekushey Durga, 8. Ekushey Godhuli, 9. Ekushey Mohua, 10. 
Ekushey Puja, 11. Ekushey Punarbhaba, 12. Ekushey Saraswati, 13. Ekushey Sharifa, 
14. Ekushey Sumit, 15. Mukti Narrow, 16. Rupali and  17. BN TT Durga 18. Ekushey 
Lohit 19. Sagar 20. Mitra Mono 21. Aharoni 22. Bangla Samay 23. Bangla Digital. 
For, the printed numerals, font-sizes 10, 12, 14, 18, 24, 32, 40, 48, 60 and 72 points 
were used for training and testing.  All the digits of the seventeen fonts were printed on 
A4 size papers and scanned at 300 dpi.  
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3   Preprocessing 

The first step in pre-processing was to normalize the images to a suitable size. All the 
digit-images were normalized to 24 X 24 pixels using Bicubic resizing. After 
normalizing the input, the image was binarised using the Otsu Algorithm [12]. 
However for noisy images Niblac Algorithm [13] could be used. 

While writing it sometimes occurs that a hole is not completed as in an ‘8’ (Bangla 
‘Four’) or ‘0’ or ‘9’ (Bangla ‘Seven’). Some examples of handwritten numerals with 
gaps are provided below 

 (zero)      (five)       (seven) 

After binarisation, a morphological bridging operation was carried out to connect 
previously unconnected pixels. Black pixels which were separated by at most two 
pixel positions were bridged. For example certain regions having the form 

0 1 1      0 1 1 
 0 1 1                           were converted to   0 0 0 
 1 1 0      1 1 0 

Another irregularity that is noticeable in handwritten numeral is that certain strokes 
are not ended at points where they are intended to. They continue as spurs. As is seen 
in the following examples 

        

Pixels in a certain region of the form  

 1 1 1 1      1 1 1 1 
 1 1 0 1    was converted to   1 1 1 1 
 0 0 1 1       0 0 1 1 
 0 0 1 1      0 0 1 1. 

The morphological bridging and spur removing operation had been implemented in 
the Matlab Image Processing Toolbox function reference. Help was taken of these 
built in functions to perform these operations.  

4   Feature Selection 

A list of structural features like the position of holes, intersection points, terminal 
points etc. were used to identify a numeral. A major work in Bangla handwritten 
numeral recognition has already been done [6], where Bangla handwritten numerals 
were classified by certain topological and structural features like loops, junctions, 
positions of terminal nodes, etc. and then recognized by Multi Layer Perceptron 
networks. By using such a scheme, correct recognition rate of 93.26% was achieved. 

4.1   Hole Position 

Any enclosed area will be considered as a hole. There are certain numerals that have 
very distinct hole positions, as in the numerals below: 
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 (Zero)      (One)   (Four)    (Five)     (Seven)      (Eight).  

Zero and Five have holes that encompass the entire image. One has a whole that is 
either in the bottom left corner or in the bottom half of the figure, and similar is the 
case for Eight. For Seven, the position of hole is on the upper half of the image.  

There can be seven positions in the image where there can be a hole. A hole can 
encompass the entire image, or it can be in the top or bottom half, or it can be in any 
of the four quadrants (upper-right, upper-left, bottom-left, or bottom-right).  

4.2   Position of Terminating and Intersecting Points 

The terminating and intersecting points also play an important part in identification of 

Bangla numerals. It can be seen from the figures above that Zero  has no 

terminating or intersecting point. One  has 1 terminating point in the upper left 

corner and two terminating points in the bottom half. Five  has three terminating 
points along the right side. Similarly the other numerals (not shown here) can be seen 
to have distinct terminating points.  

4.3   Curves 

Each digit can be considered to be composed of a number of curves, having specific 
starting - ending points and radius of curvature. The curves were extracted from the 
image based on the curve detection technique proposed by He and Hung [13]. The 
start and end points of the detected curves, and their radius of curvature were 
extracted and provided as inputs to the neural network. The start points of the curves 

detected in Two is . 

4.4   Block-Wise Proportion 

The entire image was divided into 16 blocks of 4 rows and 4 columns (as shown in 
Figure 3). The proportion of black pixels (pixels pertaining to the foreground, i.e. the 
digit) falling in each of the blocks were calculated. Values of these proportions were 
provided as inputs to the neural network.  

4.5   Block-Wise Corner Position 

Position of intersecting and terminating points were found earlier. In the previous sub 
section it was discussed how the entire image was divided into 16 blocks. Number of 
terminating and intersecting points falling in each block was calculated. And these 
numbers were also provided as inputs to the neural network.  
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Fig. 3. Bangla numeral Seven divided in blocks 

5   Neural Network Implementation 

This section will be containing four sub-sections. In the first sub-section the inputs to 
the neural network will be discussed; in the second, the discussion will be on the 
neural network architecture, on the third section the training algorithm will be 
discussed in brief and finally the logic for deciding the output from the neural 
network will be discussed in the fourth sub-section.  

5.1   Network Architecture 

The neural network consists of One Input Layer, Two intermediate Hidden Layers 
and One Output layer (marked in the figure).  

There is no theoretical development based on which, the optimal number of hidden 
layers and the number of neurons in the hidden layer can be determined. The number 
of hidden layers required for a particular problem is determined experimentally. It is 
best to start the training process with a single hidden layer and if the network does not 
perform suitably, extra hidden layers are added [15]. With two hidden layers we 
obtained the least classification error. Similar results were also observed in [16, 17]. 
A plausible reason behind this has been provided by Chester [18]. He explained that 
the problem with a single hidden layer was that the neurons interacted with each other 
globally, making it difficult to improve an approximation at one point without 
worsening it elsewhere. With two hidden layers, the effects of the neurons are isolated 
and the approximations in different regions can be adjusted independently of each 
other, much as is done in the Finite Element Method for solving partial differential 
equations or the spline technique for fitting curves.  

5.2   Training Algorithm 

As discussed before the neural network architecture used here consists of two hidden 
layers. In such a case the Neural Network remains ill-conditioned initially [21].In 
 

 

Fig. 4. Neural Network Architecture 
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such a case algorithms that use only first-order information, such as steepest descent 
and standard Backpropagation, are notoriously slow for ill-conditioned problems. In 
such a case, the more use an algorithm makes use of second-order information, the 
better it will behave under ill-conditioning. Algorithms like steepest descent, 
conjugate gradients, quasi-Newton, Gauss-Newton and Newton-Raphson, makes use 
of second order information. Of these, the conjugate gradient algorithms were the best 
in terms of speed of operation and memory utilization. We used the Scaled Conjugate 
Gradient [22] training algorithm which converged in the least number of iterations.  

5.3   Output 

When the neural network is used for testing a particular digit, a transfer function 
obtains the output vector from the output layer of the neural network. All the elements 
from the output vector are checked and the element with the highest value is decided 
to be the winner. However, before declaring upon the output, it is checked if the 
winner is greater than a pre-determined threshold. If the value of the winner falls 
below this threshold the input numeral remains unrecognized. Otherwise, if the 
winner crosses this threshold, the winner is declared to be the recognized character. 

0 1 2 3 4 5 6 7 8 9
0 97.31 0.45 0.3 0.23 0.18 0.57 0.19 0.21 0.37 0.19
1 0.42 97.24 0.16 0.33 0.4 0.18 0.23 0.16 0.37 0.51
2 0.51 0.47 96.93 0.35 0.23 0.35 0.14 0.38 0.36 0.28
3 0.28 0.3 0.16 97.37 0.22 0.44 0.31 0.39 0.27 0.26
4 0.56 0.4 0.26 0.3 97.27 0.27 0.33 0.24 0.12 0.25
5 0.42 0.51 0.32 0.21 0.17 97.25 0.38 0.14 0.27 0.33
6 0.21 0.33 0.23 0.3 0.32 0.67 96.96 0.3 0.52 0.16
7 0.25 0.27 0.24 0.31 0.45 0.16 0.22 97.42 0.37 0.31
8 0.33 0.29 0.22 0.21 0.44 0.24 0.25 0.31 97.34 0.37
9 0.33 0.71 0.35 0.24 0.19 0.32 0.34 0.48 0.13 96.91  

Fig. 5. Confusion Matrix 

6   Results 

Our entire dataset consisted of 10,500 samples of handwritten numerals and 2300 
samples of printed numerals belonging to 23 different fonts, each of 10 different font-
sizes. In each of the experiments, the training set comprised of an even mix of printed 
and handwritten numerals, so that the network did not become biased towards 
handwritten numerals. But as the data set corresponding to printed numerals is smaller 
than the handwritten one, the training set comprised of duplicate instances of printed 
numerals.  

The network was trained with 8,000 samples of Handwritten numerals and 16 
different fonts. 500 samples of handwritten numerals and three fonts were for 
validating the training of the neural network, so that the network did not overfit the 
training data. The network was tested with 2000 samples of handwritten numerals and 
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4 different fonts. The combined accuracy of the network classifier was 97.2%. The 
confusion matrix is provided below. 

It can be seen that One has been repeatedly misidentified as Nine, also Nine had 
been mis-identified as one. The reason behind this is, handwritten Nine of one person 

can be mistakenly identified as One of somebody else’s. For example  (nine) of 

one person is much like  (one) of another person. Similar confusion may arise 

between  (three) and  (zero) as also between  (five) and  (zero).  

7   Conclusion 

The aim of this work was to identify handwritten and printed Bangla numerals. We 
have achieved a maximum accuracy of 95.7% for handwritten numerals and an 
accuracy of 99.2% for identifying printed numerals. To the best of our knowledge 
such a block based approach was not used for identification of Bangla numerals. The 
approach is new, and the recognition accuracy may be increased by extracting more 
features from each of the blocks.  
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Abstract. Recognition of handwritten characters is a challenging task because 
of the variability involved in the writing styles of different individuals. In this 
paper we propose a quadratic classifier based scheme for the recognition of off-
line Devnagari handwritten characters. The features used in the classifier are 
obtained from the directional chain code information of the contour points of 
the characters. The bounding box of a character is segmented into blocks and 
the chain code histogram is computed in each of the blocks. Based on the chain 
code histogram, here we have used 64 dimensional features for recognition. 
These chain code features are fed to the quadratic classifier for recognition. 
From the proposed scheme we obtained 98.86% and 80.36% recognition 
accuracy on Devnagari numerals and characters, respectively. We used five-
fold cross-validation technique for result computation. 

1   Introduction 

Recognition of handwritten characters has been a popular research area for many 
years because of its various application potentials. Some of its potential 
application areas are Postal Automation, Bank cheque processing, automatic data 
entry, etc. There are many pieces of work towards handwritten recognition of 
Roman, Japanese, Chinese and Arabic scripts, and various approaches have been 
proposed by the researchers towards handwritten character recognition [1, 6-11].  
Although there are many script and languages in India but not much research is 
done for the recognition of handwritten Indian characters.  In this paper, we 
propose a system towards the recognition of unconstrained off-line handwritten 
Devnagari characters. 

Many pieces of work have been done towards the recognition of Indian printed 
characters and at present OCR systems are commercially available for some of the 
printed Indian scripts [3]. Although several pieces of research work exist on Indian 
printed characters but only a few attempts have been made towards the recognition 
of Indian off-line handwritten characters [2]. Among off-line handwritten work of 
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Indian scripts, maximum research has been done for Bangla. Systems are available 
for unconstrained off-line Bangla isolated numerals and characters. Also some 
systems have been developed for unconstrained Bangla handwritten word 
recognition for Indian postal recognition [19, 21].  Although first research report 
on handwritten Devnagari characters was published in 1977 [17] but not much 
research work is done after that. At present researchers have started to work on 
handwritten Devnagari characters and few research reports are published recently. 
Hanmandlu and Murthy [13] proposed a Fuzzy model based recognition of 
handwritten Hindi numerals and they obtained 92.67% accuracy. Ramteke et al 
[14] proposed an isolated Marathi handwritten numeral scheme based on invariant 
moments. They employed a Gaussian Distribution Function for classification and 
obtained only 87% accuracy. Bajaj et al [15] employed three different kinds of 
features namely, density features, moment features and descriptive component 
features for classification of Devnagari Numerals. They proposed a multi-classifier 
connectionist architecture for increasing the recognition reliability and they 
obtained 89.6% accuracy. Kumar and Singh [16] proposed a Zernike moment 
feature based approach for Devnagari handwritten character recognition. They 
used an artificial neural network for classification. Sethi and Chatterjee [17] 
proposed a decision tree based approach for recognition of constrained hand 
printed Devnagari characters using primitive features. Bhattacharaya et al [18] 
proposed a Multi-Layer Perceptron (MLP) neural network based classification 
approach for the recognition of Devnagari handwritten numerals and obtained 
91.28% results. They considered a multi-resolution features based on wavelet 
transform in their proposed system. 

In this paper, we propose a scheme for unconstrained off-line handwritten 
Devnagari numeral and character recognition using quadratic classifier, based on the 
feature obtained from chain code histogram. Here the bounding box of a character is 
segmented into blocks and chain code histogram is computed in each blocks. This 
chain code features are then fed to the classifier for recognition. 

Rest of the paper is organized as follows. In Section 2 we discuss about Devnagari 
language, its character set and the preprocessing of the data used for the proposed 
scheme. Feature extraction procedure is presented in Section 3. Section 4 details the 
classifier used for the recognition. The experimental results are discussed in Section 5. 
Conclusion on the paper is given in Section 6. 

2   Devnagari Language and Data Collection 

Devnagari is the most popular script in India and the most popular Indian language 
Hindi is written in Devnagari script. Nepali, Sanskrit and Marathi are also written in 
Devnagari script. Moreover, Hindi is the national language of India and Hindi is the 
third most popular language in the world [2]. Thus, the work on Devnagari script is 
very useful for the country. 
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The alphabet of the modern Devnagari script consists of 14 vowels and 37 
consonants. These characters may be called basic characters. The basic characters of 
Devnagari script are shown in Fig.1. Writing style in Devnagari script is from left to 
right. The concept of upper/lower case is absent in Devnagari script.  In Devnagari 
script a vowel following a consonant takes a modified shape. Depending on the 
vowel, its modified shape is placed at the left, right (or both) or bottom of the 
consonant. These modified shapes are called modified characters. A consonant or 
vowel following a consonant sometimes takes a compound orthographic shape, which 
we call as compound character. Compound characters can be combinations of two 
consonants as well as a consonant and a vowel. Compounding of three or four 
characters also exists in these two scripts. There are about 280 compound characters 
in Devnagari [2].  

A Devnagari text line can be partitioned into three zones. The upper-zone denotes 
the portion above the head-line, the middle zone covers the portion between head-line 
and base-line, the lower-zone is the portion below base-line.      

 

(a) 

 

(b) 

Fig. 1. Samples of handwritten Devnagari basic characters (a) Vowels, (b) Consonants 
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Because of the writing styles of different individuals, characters can have different 
shapes. As a result recognition of unconstrained handwritten characters becomes a 
difficult task. To get an idea about such shape difference between printed and 
handwritten text, printed Devnagari numerals and their coresponding handwritten 
samples are shown in Table 1.  

Table 1. Examples of printed and handwritten Devnagari numerals 

 

In this work we are concerned with the recognition of Devnagari numerals and 
basic characters only and data used in the present work has been collected from 
different individuals.  For numeral recognition we considered the data discussed in the 
paper [20]. For the experiment of Devnagari character recognition we collected 11270 
samples of vowels and consonants (at least 210 samples of each vowels and 
consonants). A flat bed scanner was used for digitization. Digitized images are in gray 
tone with 300 dpi and stored as TIF format. We have used a histogram based global 
binarizing algorithm to convert them to two-tone (0 and 1) images (Here ‘1’represents 
object point and ‘0’represents background point). For removing noises from the 
images, we have used a method discussed in [3].  
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3   Feature Extraction 

Histograms of direction chain code of the contour points of the characters are used as 
feature for recognition [12]. Here we use 64 dimensional features for our recognition 
purpose. The feature extraction techniques are described below. 

3.1   64 Dimensional Feature Extraction 

Given a two-tone image, we first find the contour points of the image by the 
following algorithm. For all object points in the image, consider a 3 x 3 window 
surrounded to the object point. If any one of the four neighboring points (as shown in 
Fig.2(a)) is a background point then this object point (P) is considered as contour 
point. Otherwise it is a non-contour point. 

 

Fig. 2. (a) For a point P and its four neighbors are shown by ‘X’, (b) For a point P the direction 
codes for its eight neighboring points are shown 

The bounding box (minimum rectangle containing the character shown in Fig. 
3(b)) of an input character is then divided into 7 x 7 blocks (as shown in Fig.3(c)). In 
each of these blocks, the direction chain code for each contour point is noted and the 
frequency of the direction codes is computed. Here we use chain code of four 
directions only [directions 0 (horizontal), 1 (45 degree slanted), 2(vertical) and 3 (135 
degree slanted)]. See Fig.2(b) for illustration of four chain code directions. We 
assume chain code of direction 0 and 4, 1 and 5, 2 and 6, 3 and 7, are same. Thus, in 
each block we get an array of four integer values representing the frequencies and 
those frequency values are used as feature. Histogram of the values of these four 
direction codes in each block of a Devnagari numeral is shown in Fig.3(e) . Thus, for 
7 x 7 blocks we get 7 x 7 x 4= 196 features. To reduce the feature dimension, after the 
histogram calculation in 7 x 7 blocks, the blocks are down sampled with a Gaussian 
filter into 4x4 blocks. As a result we have 4 x 4 x 4 = 64 features for recognition. 
Histogram of all the direction obtained after down sampling is shown in Fig.3(f). 
Example of feature extraction process on a Devnagari character is shown in Fig.4. To 
normalize the features we compute maximum value of the histograms from all the 
blocks. We divide each of the above features by this maximum value to get the 
feature values between 0 and 1.  
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Fig. 3. Pictorial representation of the 64 dimensional feature extraction process for a sample 
Devnagari numeral. (a) Two tone image of a Devnagari numeral ‘five’, (b) Bounding box of the 
numeral. (c) Contour of the numeral shown in black color and the bounding box is segmented 
into 7 X 7 blocks. (d) Chain code of a block shown in zoomed version. (e) 196 dimensional 
Chain code features of each block. (f) 64 dimensional features obtained after down sampling 
using a Gaussian filter. 
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Fig. 4. Pictorial representation of the 64 dimensional feature extraction process for a sample 
Devnagari character. (a) Two tone image of a Devnagari character, (b) Bounding box of the 
character. (c) Contour of the character shown in black color and the bounding box is segmented 
into 7 X 7 blocks. (d) Chain code of a block shown in zoomed version. (e) 196 dimensional 
Chain code features of each block. (f) 64 dimensional features obtained after down sampling 
using a Gaussian filter. 
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4   Recognition Classifier 

Many classifiers have been used by the researchers for handwritten character 
recognition. Here we used a quadratic classifier for our recognition purpose because 
we noted from the work [12] that this classifier gives better results than other 
classifiers like Bayes classifier, subspace method etc. Descriptions of the quadratic 
classifier used for our recognition purpose are given below. 

A Modified Quadratic Discriminant function (MQDF) is used by the quadratic 
classifier [12] which is defined by,  
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Where, X is the feature vector of an input character, M is a mean vector of samples, 
φ  T

i  is the ith eigen vector of the sample covariance matrix, λi is the ith
 eigen value of 

the sample covariance matrix, n is the feature size, σ2 is the average variance of all 
classes, N is the average sample of all classes, and N0 is selected experimentally and 
we consider N0 = 3N/7 for 64 dimensional feature. We do not use all eigen values and 
their respective eigen vectors for the classification. We sort the eigen values in 
descending order and take first 20 eigen values and their respective eigen vectors for 
classification. Rejection in the system is done if for a character the difference of 1st 
and 2nd value of g(X) is smaller than a threshold. 

5   Result and Discussion 

Data used for the present work was collected from different individuals. We digitized 
11270 samples of Devnagari characters (vowels as well as consonants) for the 
experiment of the proposed work. For the experiment of Devnagari numerals we 
consider the data discussed in [20] and this dataset contains 22,556 handwritten 
samples.      

From experiments we noted that the overall recognition accuracy of the proposed 
scheme for numerals is 98.86% and for characters is 80.36% with zero percent 
rejection. 99.80% accuracy was obtained if we consider first two top choices of the 
recognition results for numerals and 90.56% accuracy was obtained considering the 
first two top choices for characters. The detail recognition results with different top 
choices are given in Table 2. Here we have used five-fold cross validation scheme for 
recognition result calculation. Here database is divided into 5 subsets and testing is 
done on each subset using rest of the subsets for learning. The recognition rates for all 
the subsets are averaged to get accuracy. 

From the experiment we noticed that for Devnagari numeral recognition, we can 
achieve 99.73% accuracy when we reject 4.25% of the numeral samples. Also from 
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the experiment we noticed that for Devnagari character recognition we obtained 
86.41% accuracy when we reject 7% samples.  

We computed accuracy of the individual Devnagari numerals and their accuracy is 
given in Table 3. From the experiment we noted the maximum accuracy of 99.81% 
was achieved for the Devnagari numeral  (zero). The next highest accuracy of 
about 99.66% was achieved for the numeral  (four).  We also noted that the lowest 
accuracy of 97.15% was achieved for numeral  (three). 

The accuracy of individual Devnagari characters was also computed. Maximum 

accuracy of 90.48% was achieved for the Devnagari characters  and this is because 
of its unique shape. The next highest accuracy of about 90.13% was achieved for the 

character . 
We also noticed the main confusing pairs of Devnagari characters and their error 

rates are shown in Table 4. The characters   and   confused the most, having an 
error rate of 0.62%. The next most confusing pair is   and , having an error of 
about 0.35%. From the experiments we noticed that mainly similar shaped characters 
are confused by the system at higher rate. 

Table 2. Recognition results for Devnagari numerals and characters based on different choices 
from top (without any rejection) 

Top 
choices 

Accuracy for 
Numerals  

Accuracy for 
Characters  

1 98.86% 80.36% 

2 99.80% 90.56% 

3 99.92% 94.28% 

4 99.96% 96.17% 

5 99.98% 97.77% 

Table 3. Recognition results of individual numerals 

Numeral Accuracy Numeral Accuracy 

1 99.49% 2 98.21% 

3 97.15% 4 99.66% 

5 98.57% 6 98.69% 

7 98.79% 8 99.63% 

9 98.77% 0 99.81% 
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Table 4. Main Confusing pairs among Devnagari characters 

Class Classified as % of error 

  0.62% 

  0.35% 

  
0.34% 

  0.23% 

  0.22% 

We compared our results with the existing pieces of work on off-line handwritten 
Devnagari numerals and characters. To the best of our knowledge, Hanmandlu and 
Murthy [13] reports the highest recognition accuracy of about 92.67% for numerals. 
But we have obtained an accuracy of about 98.86%, which is 6.19% better than the 
results reported by Hanmandlu and Murthy [13]. For Devnagari characters we 
obtained 80.36% accuracy using 11270 samples of data, but Kumar and Singh [16] 
reported 80% accuracy and they tested only 200 data samples. The details about the 
comparison results on Devnagari numerals and characters are given in Table 5 and 
Table 6, respectively. 

Table 5. Comparison results for Devnagari Numerals 

Sl. No. Method proposed by Accuracy 
obtained 

1. Hanmandlu and Ramana Murthy [13] 92.67% 

2. Ramteke et al. [14] 87% 

3. Bajaj et al. [15] 89.6% 

4. Bhattacharaya et al.[18] 91.28% 

5. Our proposed method 98.86% 

Table 6. Comparison results for Devnagari Characters 

Sl. 
No. Method proposed by Data 

size 
Accuracy 
obtained 

1. Kumar and Singh [16] 200 80% 

2. Proposed method 11270 80.36% 
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6   Conclusion 

India is a multi-lingual and multi-script country comprising of twelve different 
scripts. But not much work has been done towards off-line handwriting recognition. 
In this paper we present a quadratic classifier based system for the recognition of 
unconstrained off-line Devnagari handwritten characters. Dimension of the feature 
vector was 64, and the features are obtained based on the directional chain codes of 
the contour of the character. From the experiment we obtained encouraging results. 
This work will be helpful for the research towards the recognition of other Indian 
script characters. 
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Abstract. Recently, a few works on recognition of handwritten Bangla
characters have been reported in the literature. However, there is scope
for further research in this area. In the present article, results of our
recent study on recognition of handwritten Bangla basic characters will
be reported. This is a 50 class problem since the alphabet of Bangla
has 50 basic characters. In this study, features are obtained by comput-
ing local chain code histograms of input character shape. Comparative
recognition results are obtained between computation of the above fea-
ture based on the contour and one-pixel skeletal representations of the
input character image. Also, the classification results are obtained after
down sampling the histogram feature by applying Gaussian filter in both
these cases. Multilayer perceptrons (MLP) trained by backpropagation
(BP) algorithm are used as classifiers in the present study. Near exhaus-
tive studies are done for selection of its hidden layer size. An analysis
of the misclassified samples shows an interesting error pattern and this
has been used for further improvement in the recognition results. Final
recognition accuracies on the training and the test sets are respectively
94.65% and 92.14%.

1 Introduction

India is a multilingual country of more than 1 billion population with 18 con-
stitutional languages and 10 different scripts. Bangla is its second most popular
script next to Devanagari. It is the script of two other Indian languages, viz.,
Assamese and Manipuri. On the other hand, Bangla is the official language and
script of Bangladesh, a neighbour of India. Thus, handwritten character recog-
nition research for Bangla script has a lot of significance.

Significant research works on optical character recognition (OCR) for printed
Indian scripts including Bangla [1] are found in the literature. A survey of Indian
script character recognition research can be found in [2]. However, not much
research work towards recognition of handwritten characters of Indian scripts is
available. The technology of printed OCR cannot unfortunately be extended to
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recognition of handwritten characters due to the enormous variability in people’s
handwriting styles. However, if a suitable technology for off-line recognition of
handwritten characters of Indian scripts can be developed, automatic processing
of hand-filled-in forms can be done in the Indian scenario.

Only a few studies [3,4,5,6] on off-line recognition of handwritten Bangla char-
acters are available in the literature. However, there are several works on off-line
recognition of handwritten Bangla numerals which include [7,8,9,10]. Also, there
exists research work on recognition of handwritten Devanagari [11], Telugu [12],
Tamil [13] and Oriya [14] characters.

Many diverse algorithms/schemes for handwritten character recognition
[15,16] exist and each of these has its own merits and demerits. Possibly the
most important aspect of a handwriting recognition scheme is the selection of
an appropriate feature set which is reasonably invariant with respect to shape
variations caused by various writing styles. A large number of feature extraction
methods are available in the literature [17].

In the present article, a study on recognition of handwritten Bangla basic
characters is presented. This study is based on a large database of real-life hand-
written samples. Local chain code histogram features are computed based on
both contour and skeletal representations of the input character image. During
simulation it has been observed that the chain code histogram feature computed
from the character contour provides better recognition results compared to the
same corresponding to the character skeleton. This is justified by the fact that
contour provides more information about a character shape than its skeleton.
Classification results are also obtained after down sampling chain code histogram
features in each of the above cases using Gaussian filter. MLP classifiers are used
for classification purpose. In each of the above classification attempts, all the fifty
classes are considered and not in a single case satisfactory recognition perfor-
mance is achieved. However, an analysis of the misclassified samples show that
most of the misclassifications occur within several subgroups of character classes.
So, for each of these subgroups separate classifiers (for fewer classes) are trained
and each sample is classified for the second time by a smaller MLP classifier
according to the result of initial sub-grouping by the 50 class MLP classifier.

The rest of this article is organized as follows. In Section 2, the database used
for training and test of the proposed recognition methods has been described.
Recognition methodology is described in Section 3. Some details of our experi-
mental results are provided in Section 4. Section 5 concludes the article.

2 Handwritten Bangla Character Database

All major Indian scripts including Bangla are mixtures of syllabic and alphabetic
scripts. They are varied in character and form. Like most of the Indian languages
the script of Bangla came from the ancient Indian script, Brahmi. This script
runfrom left to right and has no equivalent to capital letters of Latin scripts.

The difficulty in automatic recognition of these handwritten Bangla characters
arises from the facts that this is a moderately large symbol set, shapes are usually
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extremely cursive even when written separately and there exist quite a few groups
of almost similar shape characters in their handwritten forms. Basic characters of
Bangla alphabet consist of 11 vowels and 40 consonants. However, the shapes of
two consonant characters are the same. Thus, there are 50 different shapes in the
Bangla basic character set. Shapes of Bangla basic characters are shown in Fig. 1.

Most of the existing off-line recognition studies on handwritten characters
of Indian scripts are based on different databases collected either in laboratory
environment or from smaller groups of the concerned population. However, it is
an accepted fact that any genuine research work in this area primarily needs at
least one representative database. In the present work, we have used a moderately
large representative database of handwritten Bangla basic characters.

2.1 Data Collection

Samples of the present database were collected by distributing several standard
application forms among different groups of population of the state of West
Bengal in India. Subjects were asked to fill-up these forms in Bangla. Since
data collected through such forms are not evenly distributed among the char-
acter classes, another specially designed form consisting of 2-dimensional array
of rectangular boxes had been used for data collection purpose. Subjects were
requested to write one single character of Bangla alphabet per box. No other
restriction was imposed on the writers. The purpose of data collection was not
disclosed to them so that they could produce samples reflecting their natural
handwriting styles. In approximately 60% cases, the same subject was asked to
write on both types of forms on two different occasions using his/her own writ-
ing instrument. In case writing instrument was not available with the subject,
it was supplied at random from a set of different types of such instruments. All
the above forms were printed on papers of different brands and the samples have
been collected over a span of more than two years.

2.2 Data Preparation

The above filled-in forms were scanned at 300 d.p.i. resolution using a state-
of-the-art HP flatbed scanner. These are stored as grayscale images using 1
byte per pixel. A software was used for extraction of isolated characters from
individual boxes. Since such a software is bound to produce some erroneous
results, all the TIF files of isolated character images were checked manually
through their thumbnail view and manual extraction (using an image editor)
was done whenever certain error in automatic extraction was detected.

2.3 Database Statistics

The present database of Bangla handwritten basic characters consists of 20187
isolated basic character images unevenly distributed over different classes. The
main reason of this uneven distribution is that a major part of the data was
collected using several standard forms in which entries are proper nouns and
there are several characters in the Bangla alphabet which are rarely used in
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proper nouns. However, this problem could only be partially tackled by using
the specially designed form described above. The distribution of samples in 50
classes of this database is shown in Fig. 1.

Fig. 1. Number of samples against each basic character shape is shown; within paren-
theses pronunciations are shown in English; * indicates that this shape occurred before

A small sample set consisting of a few handwritten basic character images
from the present database is shown in Fig. 2.

This image database is divided into training and test sets. The training set for
Bangla basic characters is composed of 200 samples taken randomly from each
of the 50 classes. Thus the total size of the training set for basic characters is
10,000. The remaining 10187 samples form the test set of Bangla basic characters
and the minimum number of samples in a class of this test set is 60.

3 Recognition Methodology

3.1 Smoothing and Binarization

The first step of the present recognition scheme is smoothing of the graylevel
character image. This is a common preprocessing operation of any character
recognition approach for the purpose of removing possible artifacts present in
a character image. In the present work, we consider a restricted mean filtering
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Fig. 2. Samples from the present database of handwritten Bangla characters; three
samples in each category are shown

approach for the above purpose. Use of the ordinary mean filter may often con-

nect two disjoint components of a character like causing significant loss in
shape information. However, in the restricted mean filter approach, a pixel value
is changed by the usual mean provided this does not result in joining two dis-
joint components existing in the binarized image before smoothing. In Fig. 3, an
example of this situation has been shown. After smoothing of the input image
it is binarized using Otsu’s global thresholding technique [18].

(a) (b)

Fig. 3. (a) Ordinary mean filtering joins two disconnected components; (b) Restricted
mean filtering does not join originally disconnected components

3.2 Removal of Extra Long Headline

Many Bangla alphabetic characters in their printed/ideal form have a horizontal
line (called matra or headline) at the upper part of the symbol; a few characters
have a curve-like extension above the headline and several other characters do
not have any part above it. Examples of both these cases are shown in Fig. 4.
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Fig. 4. Headline or matra is shown

Detection of the headline in a handwritten Bangla character is often found
crucial whenever it is elongated enough (such as in Fig. 5) increasing the width of
the character image substantially. In such situations, normalization of subsequent
feature values gets affected. So, before computation of features, headlines are
detected using simple heuristics. Example of successful removal of extra long
headline according to these heuristics is shown in Fig. 5(a). Also, a situation
when our heuristics failed to remove extra long headline is shown in Fig. 5(b).

(a) (b)

Fig. 5. (a) Removal of headline or matra is shown; (b) Headline cannot be removed

(a) (b) (c)

Fig. 6. Shape representations of character image: (a) An input character image (bina-
rized); (b) skeletal representation of the character image; (c) contour representation of
the character image

3.3 Feature Extraction

In the present study chain code histogram features of an input character image
have been computed from its both the skeletal (thinning as in [19]) and contour
representations. The skeletal and contour representations of a character image
are shown in Fig. 6. From this example, it is seen that the skeletal representation
are often affected by the presence of hair(s) removal of which is usually difficult.

Chaincode Representation of the shape of an input character image is ob-
tained by using Freeman codes [20] while tracing its skeleton or contour. The
scheme of Freeman’s chain code and the shape representation following this
scheme are shown in Fig. 7.



On Recognition of Handwritten Bangla Characters 823

(a) (b) (c)

Fig. 7. (a) Scheme for chaincodes; (b) chain code representation of the shape in Fig.
6(b); c) chain code representation of the shape in Fig. 6(c)

Chaincode Histogram Features [21] are the main features used in the
present recognition task and these are obtained as follows. The smallest rect-
angular frame (bounding box) enclosing the character skeleton or its contour is
computed and this is divided into 5 or 7 equal horizontal and vertical strips. If
any of the number of rows or columns of the above rectangular frame is not a
multiple of 5 or 7, the rightmost vertical or bottommost horizontal strip should
have fewer number of rows or columns respectively. Thus, the said frame is di-
vided into 25 or 49 rectangular blocks (Fig. 8) of equal areas save for a few
possible extreme blocks with less areas. In each block, a local histogram of the
chain codes is calculated. Since the directions along the skeleton or contour
should be effectively quantized into one of 4 possible values, viz. 0 or 4, 1 or 5, 2
or 6 and 3 or 7, the histogram of each block has four components. The feature
vector is composed of these local histograms computed either from the skeletal
or contour representation of the input image. Thus, the feature vector has either
4 × 5 × 5 = 100 or 4 × 7 × 7 = 196 components. For size normalization, each
component of the feature is divided by the sum of the height and width of the
bounding box of the skeleton or contour of input character image depending
upon the particular case. In the present study, we also considered feature vector
by down sampling the above 7× 7 blocks into 4× 4 blocks using Gaussian filter.

3.4 Designing Classifier

Multilayer Perceptrons (MLPs) have been chosen as the classifiers of the
present study of recognition of handwritten Bangla basic characters. The well
known backpropagation (BP) algorithm [22] is used for the training of MLP clas-
sifiers. However, in many applications like the present one, the proper training
of an MLP largely depends on the choice of the parameter (learning rate and
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Fig. 8. Division of rectangular frame into 7 × 7 rectangular zones

momentum factor) values and also it often converges too slowly. There exist a
number of modified BP algorithms which take care of these problems of the orig-
inal BP algorithm. In the present classification task, we considered a modified
BP algorithm [23] using self-adaptive learning rate values.

Another issue associated with the use of an MLP classifier is the choice of
the size of its hidden layer(s). In fact, it is difficult to get an idea of an optimal
size of the hidden layer(s). We experimented with several different choices of
hidden layer size in each case and classification results will be reported in the
next section corresponding to the best among these choices.

Finally, the strategic selection of the point of termination of the iterative learn-
ing of BP algorithm is another important issue. Often a validation set of samples
is used to avoid overtraining, and thus a better generalization performance of the
network is ensured. Usually, during the initial stages of training of an MLP us-
ing BP training algorithm, it gradually decreases the system error [22] on both
the training and validation sets. However, after a certain amount of training, this
error further decreases on the training set while it starts increasing on the valida-
tion set (as shown in Fig.9). The point of time when the error on the validation
set increases for at least three consecutive sweeps for the first instance is noted
and the weight values before the error starts increasing, are stored.

Since the present database described in the previous section does not exclu-
sively provide any validation set, we have synthetically generated a validation
set consisting of 150 samples from each class. These samples have been gener-
ated by taking 50 random samples of each class from the training set. These
samples are randomly rotated between −10◦ to +10◦. Gaussian blurring kernel
(standard deviation 2) has been applied on these rotated samples and finally
these are binarized using three different threshold values.

An Analysis of Misclassifications after the above first stage of the present
recognition scheme, shows that a significant percentage of misclassifications
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Fig. 9. Increase in error on validation set indicates termination of learning; here, system
error is the mean square error between the target and computed output vectors

occurred within several small groups of character classes. In Table 1, these groups
of Bangla basic characters corresponding to the recognition results based on
chain code histogram features (7 × 7 blocks down sampled into 4 × 4 blocks)
computed from contour representations of their handwritten shapes are listed.
The above situation provided the best recognition performance among our var-
ious other choices.

For each of these sub-groups, a distinct MLP classifier with fewer hidden nodes
was trained. Samples initially classified as a member of such a group is presented
to the relevant smaller MLP architecture for its classification in the second stage.
Contour representation based chain code histogram features computed on the
7 × 7 blocks after their down sampling (with Gaussian filter) to 4 × 4 blocks
had been used in our simulation as the feature vector of the second stage of
the present recognition scheme. This second stage of classification, improves the
recognition accuracy of the first stage.

In the above context, it is apparent that if an input sample in the first stage
of its classification is misclassified in a group other than its own (as shown in
Table 1), then the second stage of classification cannot do any help for its correct
classification. Only if an input sample is misclassified as a character of its own
group, then it gets a second chance of being properly classified by the second
stage of classification.

4 Experimental Results

We used six different but related feature sets for the present recognition study of
handwritten Bangla basic characters. These are chain code histogram features
on 5× 5 blocks, 7× 7 blocks and histogram on 7× 7 blocks down sampled (with
Gaussian filter) to 4×4 blocks. Each of the above three sets of features was com-
puted using both skeleton (obtained by thinning) and contour representations
of the input character image.
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Table 1. Recognition results (best situation) within and outside groups of confusing
character shapes after the 1st stage of the present recognition approach

Table 2. Comparative recognition performance (1st stage) of six feature sets (chain
code histogram based) on the present database

Different MLP classifiers were trained using the above six feature vectors. In
each case, the near optimal size of the hidden layer was obtained by extensive
simulations and these are shown in Table 2. The best results obtained by the
first stage of our classification scheme correspond to the feature vector consisting
of histogram values on 7 × 7 blocks computed from the contour representation
of an input character followed by its down sampling to 4 × 4 blocks.

We simulated a second stage of classification for all the eleven groups of char-
acters as shown in Table 1. After the second stage of classification, the final
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recognition accuracy corresponding to the best situation of the first stage was
92.14% on the test set and 94.65% on the training set.

5 Conclusions

In the present recognition study, we observed that if chain code histogram fea-
tures are used for recognition of handwritten basic characters, then acceptable
recognition performance may be obtained by computing these features using a
division of character contour into 7 × 7 blocks followed by down sampling the
resulting feature components into 4 × 4 blocks.

Based on the above recognition results, we identified a few groups of characters
within which misclassifications are significant. Further classifications within each
such group improved the final recognition accuracy.

In future, we plan to study similar recognition performance by using a different
feature vector in the second stage for further improvement of the classification
accuracy.
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Abstract. In this work, we present a recently developed evaluation
framework for video OCR specifically for English Text but could well
be generalized for other languages as well. Earlier works include the de-
velopment of an evaluation strategy for text detection and tracking in
video, this work is a natural extension. We sucessfully port and use the
ASR metrics used in the speech community here in the video domain.
Further, we also show results on a small pilot corpus which involves 25
clips. Results obtained are promising and we believe that this is a good
baseline and will encourage future participation in such evaluations.

1 Introduction

The importance of indexing and retrieval technologies in video is poised for a big
leap. There is an ever growing need to do search, based on the text appearing
in video. There are more systems coming out with algorithms specifically recog-
nizing text in video content. Evaluating this is equally important to check the
progress and also give developers feedback on what scenarios they have difficul-
ties in the transcription.

In this work, we present an evaluation framework specifically designed for
evaluating English text recognition in video. While detection and tracking are
necessary, they are not evaluated here. Please refer to [1] for a similar evaluation
scenario involving detection and tracking text in video. The contributors of the
system output were only scored on the recognition performance. For the system
to recognize text mean that they are also able to detect the words spatially in
the video frame and potentially track them across frames.

2 Text Recognition Task

The goal of the text recognition task is to recognize text objects in a video
sequence. This task does not require the system to track these text blocks in a
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video frame; that part of the task is relegated to the text detection and tracking
task. The text will be annotated at the word level according to the annotation
guidelines.

The performance of the task is scored at the frame level and be based on how
accurate the system recognizes the characters in each word in the frame. The sys-
tem input and output tags are pre-determined earlier. The text is transcribed at
the word level. Text which is annotated as unevaluable by the evaluators and an-
notators will not be evaluated. To keep things simple in this initial phase, only
alpha-numeric characters will be considered, capitalization and word-external
punctuation will be filtered from both the system output and reference tran-
scripts. Word-internal punctuations such as hyphens and apostrophes are not
filtered. Also, line breaks constitute word boundaries, so wrapped words are
treated as separate text tokens. At a higher level, special cases which are not
evaluated are:

1. Scrolling text.
2. Dynamic Text
3. Reference Text with Readability Levels Greater Than 1. (See Section 3

For this particular task, annotation tags will include:

1. Video Filename.
2. Object id (unique for the frame).
3. BBox location parameters upper left corner, height, width and rotation at-

tributes for each word.
4. The transcription of each word (each BBox contents).

3 Ground Truth Annotations

For any evaluation, it is important and highly critical to have good quality
annotations. There are many ways to annotate a text object and one of the
standard method to do so in the OCR community: each text word is bounded by
a rectangular box. If the words are occluded then the boxes are approximated
and also the specific attributes are marked as occluded so that they can be
removed from evaluations if necessary. Additionally as required each individual
word box is transcribed so that the error rates can be computed.

There are many free and commercially available tools which can be used for
ground truthing videos such as Anvil, VideoAnnex, ViPER [2] and many others.
In our case, we used ViPER 1 (Video Performance Evaluation Resource), a
ground truth authoring tool developed by the University of Maryland.

Fig 1 shows a sample annotation using ViPER for text in a broadcast news
segment. Observe that each word is enclosed in a Bounding box and further, the
actual annotations have a unique ID for each box along with their transcriptions.

1 http://viper-toolkit.sourceforge.net
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Fig. 1. Sample Annotation Frame showing Word boundaries in a Broadcast News Clip

3.1 Annotation Guidelines

To ensure quality in-terms of these annotations, a well defined set of guidelines
are established which are strictly enforced and adhered by each annotator. Fur-
ther, some of the clips are doubly annotated (two different annotators annotate
the same clip) and their performances compared visually as well as being sub-
jected to rigorous software checks. The software checks are too detailed to list
here but essentially the philosophy is that all attributes are compared (each ob-
ject ID has many attributes) and any inconsistencies are ironed out by fine-tuning
the annotation guidelines. This process by itself undergoes numerous iterations.

Every new text area is marked with a box when it appears in the video.
Moving and scaling the selection box tracks the text as it moves in succeeding
frames. This process is done at the line level (with offsets specified for word
boundaries) until the text disappears from the frame.

There are two types of text:

– Graphic text is anything overlaid onto the picture. Example, the ”CNN”
logo in Fig 1.

– Scene text is anything in the background/foreground of what is actually
being filmed.

Text readability consists of three levels. Completely unreadable text is sig-
nified by READABILITY = 0 and is defined as text in which no character is
identifiable. Partially readable text is given READABILITY = 1 and contains
characters that are both identifiable and non-identifiable. Clearly readable text
is assigned READABILITY = 2 and is used for text in which all letters are
identifiable.
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The OCCLUSION attribute is set to TRUE when the text is cut off by the
bounds of the frame or by another object. The LOGO attribute is set to TRUE
when the text region being marked is a company logo imprinted in stylish fonts.
Example, the text “CNN” in Fig 1.

Of all the objects of interest in video, text is particularly difficult to be uni-
formly bound. For this reason, text regions are marked meticulously based on a
comprehensive set of rules, namely,

– All text within a selected block (word) must contain the same readability
level and type.

– Blocks of text (word) must contain the same size and font. Two allowances
are given to this rule. A different font or size may be included in the case
of a unique single character and the font color may vary among text in a
group.

– The bounding box should be tight to the extent that there is no space be-
tween the box and text. The maximum distance from the box to the edge of
bounded text may not exceed half the height of the characters when Read-
ability = 2 (clearly readable). When Readability = 0 or 1 the box should be
kept tight but does not require separate blocks for partial lines in a para-
graph.

– Text boxes may not overlap other text boxes unless the characters themselves
are specifically transposed atop one another.

The additional set of attributes described above is used in deciding whether a
particular text region should be evaluated. The specific settings for evaluating a
text region used in this evaluation are - TEXT-TYPE = Graphic, READABIL-
ITY = 2, OCCLUSION = FALSE and LOGO = FALSE.

All other regions are treated as ”Don’t Care” where the system output is nei-
ther penalized for missing nor given credit for detecting. It has to be noted that
each of these attributes can be selectively specified to be included in evaluation
through the scoring tool that we have developed.

4 Performance Measures

The performance measure for the recognition task is based on insertion, deletion
and substitutions errors at the word level. The measure requires a unique one-to-
one mapping of ground truth and detected text object using some optimization
(see Section 4.1). The mapping will be performed using spatial information and
also WER (Word Error Rate) score obtained. Both of these have equal weighting
in the internal matching algorithm. By this strategy, we make sure that the
system generated and the reference words are closest to each other both in the
spatial sense and also in the language sense. The Word Error Rate is defined as:

WER(t) =
(Insertion + Substitution + Deletion)

(Total Reference Words)
(1)

where t indicates the particular frame. The WER(t) is then averaged for the full
clip and on the whole dataset to obtain the Word Error Rate (WER).
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On each mapped word, we also compute the Character Error Rate (CER). The
true CER is then averaged out for the entire set of words in the whole dataset.
The WER and CER are both standard error metrics in the Speech Recognition
Evaluations [3]. Fig 2 shows an example explaining the impact on WER measure
resulting from Insertion, Substitution and Deletion errors.

Fig. 2. Example WER Computation on different system generated errors

4.1 Matching Strategies

The maximal scoring is obtained for the optimal ground-truth and system output
pairs. Potential strategies to solve this assignment problem are the weighted bi-
partite graph matching [4] and the Hungarian algorithm [5].

DT1 DT2 . . . DTM

GT1 x
GT2 x

...
GTN x

Assume that there are N ground truth (GT) objects and M detected (DT)
objects. A brute force algorithm would have an exponential complexity, a result
of having to try out all possible combination of matches (n!). However, this is
a standard optimization problem and there are standard techniques to get the
optimal match. The matching is generated with the constraint that the sum of
the chosen function of the matched pairs is minimized or maximized as the case
may be. In usual assignment problems, the number of objects in both cases are
equal, i.e, when N = M . However, this is not a requirement and unequal number
of objects can also be matched.

There are many variations of the basic Hungarian strategy most of which ex-
ploit constraints from specific problem domains they deal with. The algorithm
has a series of steps which is followed iteratively and has a polynomial time
complexity, specifically some implementations have O(N3). Faster implemen-
tations have been known to exist and have the current best bound to be at
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O(N2logN + NM) [6]. In our case, we take advantage of the fact that the ma-
trix is mostly sparse by implementing a hash function for mapping sub-inputs
from the whole set of inputs.

5 Results and Conclusions

The results are obtained on 25 clips in the Broadcast News domain. These clips
contain both CNN and ABC newsfeeds. The total time of video evaluated is
about 62 minutes. The total number of word objects that occurred in this entire
dataset is 4178. The total number of word frame instances is 68,738. Since this
is a pilot study, we had only one participant (anonymized here). This is helpful
in setting a baseline for this task before beginning a formal evaluation.
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Fig. 3. WER Score Distribution on all 25 Clips (with different normalizations) ’+’
indicates the mean value

The WER obtained over the entire dataset is 0.423 and the CER is 0.282. Fig 3
shows the boxplots of the WER obtained using different normalizations. We can
infact compute the error rates with respect to the total number of words occuring
in a particular clip: the distribution of which is shown in the first boxplot. The
second boxplot shows the scores obtained after normalizing with respect to the
total number of frames in the entire clip.

We should also note that some of these errors could potentially occur due to
the system locating the word at a wrong location (since detection is inherently
assumed). We could re-evaluate the performance by giving prior knowledge of
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Fig. 4. WER Score Distribution on only the CNN Clips (12 clips) ’+’ indicates the
mean value
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Fig. 5. WER Score Distribution on only the ABC Clips (13 clips) ’+’ indicates the
mean value

the word locations and get the recognition error rates. Nevertheless, we again
re-iterate that the scores obtained here are good baselines that can be improved.

Figs 4 and 5 shows the performance based on the CNN and ABC newsfeeds.
As can be seen, the performance on CNN clips is worse than the performance



836 P. Soundararajan et al.

on ABC clips. This can be attributed to the fact that there are less captions in
the ABC newsfeeds compared to the CNN for this dataset.

We have shown a practical OCR evaluation framework in video. Useful anno-
tations and metrics have resulted in making this evaluation framework possible.
In future, more challenging forms of text including other languages can also be
evaluated. We could also include harder to read as well as dynamic and scrolling
text. Further, we could also extend the evaluation to include semantic knowl-
edge where a system has to include a knowledge model for better performance.
Challenges arise in the form of defining newer metrics, refine the annotations
and also the interpretations of the systems for scoring.
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Abstract. For the first time, search is enabled over a massive collec-
tion of 21 Million word images from digitized document images. This
work advances the state-of-the-art on multiple fronts: i) Indian language
document images are made searchable by textual queries, ii) interactive
content-level access is provided to document images for search and re-
trieval, iii) a novel recognition-free approach, that does not require an
OCR, is adapted and validated iv) a suite of image processing and pat-
tern classification algorithms are proposed to efficiently automate the
process and v) the scalability of the solution is demonstrated over a
large collection of 500 digitised books consisting of 75,000 pages.

Character recognition based approaches yield poor results for devel-
oping search engines for Indian language document images, due to the
complexity of the script and the poor quality of the documents. Recog-
nition free approaches, based on word-spotting, are not directly scalable
to large collections, due to the computational complexity of matching
images in the feature space. For example, if it requires 1 mSec to match
two images, the retrieval of documents to a single query, from a large
collection like ours, would require close to a day’s time. In this paper we
propose a novel automatic annotation based approach to provide textual
description of document images. With a one time, offline computational
effort, we are able to build a text-based retrieval system, over anno-
tated images. This system has an interactive response time of about 0.01
second. However, we pay the price in the form of massive offline com-
putation, which is performed on a cluster of 35 computers, for about
a month. Our procedure is highly automatic, requiring minimal human
intervention.

1 Introduction

Large collections of document images are being created from the various digi-
tisation projects across the globe. These include the Universal Digital Library
(UDL) [1], Digital Library of India (DLI) [2], Google Books, etc. [3]. Much effort
is being put into the digitisation of massive quantities of documents. The popu-
larity of these digital libraries will depend on their usability, especially through
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content level search. For printed-document images, content level access was tradi-
tionally provided by using Optical Character Recognition (OCR) [4,5], to recog-
nise the text. A text retrieval system would then be built over the recognised
text. This approach produced satisfactory systems for the English language [6].
However, despite considerable effort, robust OCRs are not available for many
Indian, Arabic and African languages. This is mostly becasue of the inherent
complexity of the language owing to an extended character set, writing style
and printing variations. Besides, the accuracy of OCRs reduces rapidly with
degradations [5], which are common in scanned documents. The obtained text
is thereby, not well-suited for indexing and retrieval.

On the other hand, recently proposed recognition free approaches, avoid ex-
plicit character recognition [7,8,9,10,11] by performing Word Spotting of a query
in the image collection. The retrieval time using this approach is large since im-
age matching in feature space is computationally intensive. If N is the number of
documents, and M is the number of words in each document, then, the compu-
tations required for retrieving a single query would be of O(N ·M · l2) (l is length
of feature vector for each word). If we assume that matching a pair of images
requires 0.01 second, the retrieval time for each query, from a collection of 21
million images would be three days. Thus, a purely recognition-free approach is
not scalable to large collections of images and queries.

The drawbacks of the previous approaches can be overcome by an Annotation
based approach. Annotation is the process of assigning relevant keywords to a
given image. With an annotated collection, an image can be represented in the
text domain, enabling us to build an efficient retrieval system. Conventionally,
annotation is performed by analysing a given image to identify the keywords that
annotate it. It can be observed that recognising the text using an OCR corresponds
to annotating the image with the obtained text. In this paper, we propose a novel
approach called Reverse Annotation, where we analyse each word and find the
corresponding images that it could annotate. Textual words are converted to
the image domain and the generated images are matched with the words in the
document. The matched documents are annotated by the textual keyword.

However, to annotate images, accurate image matching is required, which is
computationally intensive. These computations need to be performed for every
pair of generated and real word images. Given a vocabulary of k words the order
of comparisons would be O(k · N · M). To make annotation feasible, we employ
the clustering technique. In text-retrieval, clustering is used to arrange the doc-
uments in a manner that facilitates immediate retrieval. Similarly, we arrange
the images such that the image matching could be performed in a hierarchy of
increasing complexity and decreasing number. Images are first clustered using
a coarse feature representation and a matching algorithm. These clusters are
then used to index the word images for quick annotation. With this scheme, the
complexity of annotation reduces to approximately O(log(N · M) · logk).

The significance of our work is that we provide an interactive content level
access to a massive collection of document images. Our approach is recognition-
free, where images are accessed in the text domain through the proposed Reverse
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"ma" "ya"

(b)

Conjunct
for "ra"

Jointly define basic shape
for "da"

(a)

Consonant 
"pa" modifier "o"

(c)

"ke" "kee" "ki" "kii"

Fig. 1. Examples demonstrating the subtleness of the Telugu language. In (a) the
consonant modifier is shown to be displaced from the consonant in different ways (b)
the two characters ma and ya are distinguished only by the relative size of the circle
(c) the small stroke at the top changes the vowel that modifies the consonant.

Annotation framework. The annotation is made computationally feasible by em-
ploying efficient clustering techniques. We demonstrate the power and scalability
of our solution by creating a search engine over 500 books of Telugu language
document images. The collection contained 75,000 pages with 21 million words.
The search engine that was built searches the document collection in a mere 0.01
seconds.

2 The Challenges Faced

Language-specific Issues. Telugu, like most Indian languages, has a complex
script, where the consonant could be modified by a vowel, consonant and/or
a diacritic. A snippet of the complexity is demonstrated in Figure 1. Due to
this inherent complexity of the language’s script and writing style, accurate
segmentation and matching of words (and characters) is a very difficult task [12].

Issues in Scanning. Scanned document images contain a large number of
artifacts, which are cleaned on a large scale using a a semi-automatic process [3],
by using various image processing operations. Owing to the variation in quality
across the images, a single setup of image processing parameters would not be
suitable for all. Consequently, the overall quality of the processed images is poor,
thereby matching and recognising such words is very difficult.

Scalability. The massiveness of the digital library collections, is a serious chal-
lenge for automation of the processes. Due to this magnitude, even the quick
image processing routines require large amounts of time. Despite considerable
optimisations, the computation required is enormous, and the processing has
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to be distributed over a cluster of computers. Managing such a cluster and
transfering of large amounts of data across the network were some of the major
bottlenecks in the system development.

3 Reverse Annotation

Content based image retrieval (CBIR) systems have thus far focused on enabling
search and retrieval over relatively small image collections. With the massive in-
crease in image collections, the scalability, performance and computational com-
plexity issues need to be further addressed. In traditional CBIR, image matching
is performed online to retrieve similar images to a given query. This online match-
ing of queries results in large retrieval time and is thus not scalable. Indexing in
the image feature space was explored in literature [13,14]. The indexing struc-
tures, such as k-d trees, are not scalable to large number of features and images.
On the other hand, users are accustomed to sub-second retrieval of web pages
by commercial search engines. The performance of text retrieval could be repli-
cated for images, only by having a text-based system at this stage. This requires
a textual representation for each image, which corresponds to an annotation of
the images with text [15].

In the early years of image retrieval systems, images were annotated manu-
ally. For automatic annotation, the images are analysed to identify the anno-
tation keywords, by performing image segmentation, object recognition, scene
analysis etc. In recent years, cross-media relevance models have been used to
annotate images based on co-occurrence of features and associated textual de-
scriptions [16,17]. Annotations could also be learned from user feedbacks [18]
or from search results over the Internet [19]. However, these techniques are not
easily applicable to the domain of document images.

In our approach, instead of identifying the keywords for a given image, we
identify the images that correspond to a given keyword. This scheme is called
Reverse Annotation. In reverse annotation, we built an example image for a given
keyword, and identify the images in the collection that are visually similar to it.
When there is a match, the keyword is used to annotate the matched image.

This scheme is especially suitable for document images, where the knowl-
edge of the vocabulary provides us with the possible annotations (in contrast to
generic images, where annotations depend on subjectivity). For the document
images, an exact keyword has to be identified for a given word image. This cir-
cumvents the problems of synonymy and polysemy, and semantic annotations
which are required in the case of generic images.

3.1 Image Matching for Annotation

The reverse annotation problem can be stated as “given a set of word images,
identify all the word images that match a given keyword image”. The correspon-
dence between word- and keyword-images can be established by computing a
similarity measure between each such pair. An accurate feature description and
similarity measure is used for this purpose and the word is annotated with the
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keyword whenever there is considerable match between the two. However, any
accurate matching procedure is a computationally intensive process. If it requires
about 0.05 seconds to compute the similarity between two word images, the an-
notation of a collection of 21 million words with a set of 30,000 keywords would
require close to a thousand years. This is impractical and infeasible. To make this
process feasible, we use an efficient solution derived from text retrieval, which is
described in the next section.

4 Clustering for Annotation

In a text retrieval system, documents are indexed with the words present in
them. Given a query, the documents are immediately read out of the index. It
can be seen that the documents are clustered by the indexing procedure, based
on the words in them. Following this strategy, we index the large collection of
word images, such that similar words belong to one cluster.

At the finest level, the clusters would contain all instances of a given word
in the collection, with all the variations in font type, style and size. At a coarse
level, a large number of similar-looking words would be present in the same
cluster. The feature description and similarity measure should be chosen such
that they are invariant to font type, style and size changes, while being able
to quickly cluster the images. Accordingly, word profile features were chosen,
since they have been very useful for clustering word images [10]. The features
used here are the upper word profile, lower word profile, projection profile and
transition profile. The features are normalised to provide invariance to font size.
Features are compared using a Dynamic Time Warping (DTW) approach since
it inherently handles font type and style variations [7]. DTW is essentially a
dynamic programming technique, that calculates a distance between two feature
vectors, by accumulating local distances d(i, j) between the i th and j th features
of the two vectors, using the following formula:

D(i, j) = min

⎧⎨⎩
D(i − 1, j − 1)
D(i − 1, j)
D(i, j − 1)

+ d(i, j)

Hierarchical Clustering. The feature representation and similarity compu-
tations between images yield non-metric pairwise distances. In such cases, the
popular choice of clustering is the Hierarchical Agglomerative Clustering (HAC).
HAC begins with individual clusters for each point and proceeds by merging the
closest clusters until a stopping-criterion is met. However, this would require
the computation of similarity between every pair of words, which is O(N2). To
quicken the clustering, we only cluster those points that were not previously clus-
tered. With such a technique, the pairwise distances need to be computed for
only those words that have not yet been clustered. This results in a O(N · logN)
algorithm, and the running time depends on the size of the clusters. With a large
cluster size, we obtain coarse clusters quickly, since the number of points to be
clustered decreases rapidly at each iteration. With smaller cluster size, the time
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Fig. 2. Depiction of Clustering Procedure. In the first iteration, the data is partitioned
to large clusters, quickly. Smaller clusters are then found within the larger clusters. A
hierarchy of three levels of fine-ness is shown in the figure.

increases rapidly. To obtain good clusters quickly, the points are first clustered
(or partitioned) coarsely and then refined to finer clusters. The assumption is
that, two points cannot be found in a fine cluster, if they do not belong to a
coarse cluster. The clustering is depicted in Figure 2. The cluster centroid is
defined as the word with the least sum distance from the other points in the
cluster.

By clustering at multiple levels, a hierarchy of clusters are built, where the
number of points in the clusters reduces at each level, while the number of
clusters increases. This is depicted in Figure 4. With such a hierarchy, we could
identify the clusters relevant to a given keyword, and match for exact annotation
within the cluster. By clustering, we eliminate a large number of comparisons
which would not yield a match, thereby remarkably speeding up the annotation
process. With this scheme, the number of comparisons for annotation are of
O(logk · logN) (K being number of keywords and N the number of words). The
annotation of 21 million words can now be performed in about 260 days (instead
of the 1000 years required otherwise).

About 500 random clusters were manually evaluated to estimate the accuracy
of clustering and the results are presented in Table 1.

Table 1. Precision-Recall of the clustering procedure, evaluated manually from 500
randomly picked clusters

Width of centroid word 30 - 500 500 - 1000 1000 - 1500 1500 - 2000 Total
(in pixels)

Precision 92.54% 73.91% 73.76% 68.53% 72.66%

Recall 62.72% 76.69% 80.44% 72.39% 75.45%
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5 Building the System

In this section we describe the stages involved in building the search system
using the approach described above.

Data Collection. The data for our project was obtained from the digitisation
under the Digital Library of India project. The books are available for free
access at [20]. The books are digitised on a large scale at a resolution of
600dpi. Our collection consists of 500 books of the Telugu language, with
76, 425 page images.

Segmentation. The document images are segmented using the docstrum [21]
algorithm. The large number of segmentation errors are corrected using the
techniques described in Section 5.1.

Feature Extraction. Coarse features are extracted from each of the word
segments. These features are the profile and transition features, which are
described in Section 4.1

Clustering. Words are clustered using the hierarchical agglomerative clus-
tering procedure detailed in Section 4.1. The time for clustering increases
quadratically with the number of points to be clustered. To ensure that
the clustering is tractable, we perform clustering over each individual book,
which on an average, contains 50K words.

Merging Clusters. The clusters from different books are merged by compar-
ing the cluster centroids of the respective books.

Annotation. The obtained clusters are annotated by finding the closest word
match the cluster centroid, as elaborated in Section 5.2.

Search Index Building. Annotations for the clusters are used to identify
the documents that correspond to each keyword. The search index is built
using this correspondence. The details of the search system are described in
Section 5.3.

5.1 Segmentation

To annotate each word, we require a segmentation of the document at word level.
Due to the writing pattern of Telugu, as described in Section 2, the segmentation
algorithms that work well on English documents, yield very poor results. An
example is shown in Figure 3 (a), where the vowel modifiers are segmented
separately from the word they belong to. In general, about 25% extra segments
arise due to noise and the displaced vowel modifiers. Manual correction of these
segmentation errors is infeasible, taking about three minutes per page.

The error patterns that occur in the segmentation are handled using an au-
tomatic correction scheme as

– In cases where the vowel modifier is displaced, intra-word segments occur,
which generally overlap or are closer to each other than inter-word segments.
The segmentation correction scheme identifies adjacent segments and merges
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(a) (b)

Fig. 3. (a) Example of segmentation errors (above) and corrected segmentation (be-
low). The errors are encircled and some of the corrected ones are highlighted below, (b)
Over correction of poor segmentation (above), Sample page image with heavy degra-
dations (below).

those that are closer than the average distance. An example is shown in
Figure 3 (above).

– Segments from noise are considerably small in size. Accordingly all segments
with dimensions less than 30 pixels are removed, which corresponds to one-
twentieth of an inch, when scanned at 600 dpi.

– Segments from illustrations are generally larger than the average word size.
Segments greater than 2000 pixels (three-and-half inches at 600 dpi) are,
therefore, removed.

However, in some pages, due to the close proximity between successive words/
lines of text, the scheme over-corrects, as shown in Figure 3 (b). The outliers from
incorrect segmentation, increase the computation required, but, the improvement
in segmentation accuracy justifies this additional expense.

5.2 Annotation

For Reverse Annotation, we begin with the words of the language that are present
in the document collection. These words are used to build the templates that
shall be used for annotation. However, the document images do not have a
parallel text. A text corpus is used to identify the words and proper nouns that
are generally present in the documents of the given language. Moreover, it is
well known in the information retrieval (IR) domain, that the frequency of word
occurrence is roughly inversely proportional to its rank in terms of frequency,
i.e., the frequency of the k-th most frequent word would have a frequency f0/k,
where f0 is the frequency of the most frequent term. This is called the Zipf’s
law [22]. The index terms should be taken from the middle of this distribution.
Highly frequent words are stop words and low frequency are not queried for
often. With an appropriate set of words, a considerable percentage of the text
and queries would be covered. Accordingly, we obtain words that are found in the
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Fig. 4. Depiction of Annotation built above the clustering procedure

frequency range 10 to 200. The obtained set of keywords are rendered to form
word images using the Eenadu font. These keyword images are also clustered
using the profile features and DTW distance.

To annotate the word images, a hierarchy of comparisons are performed be-
tween the keyword- and word-images. Firstly, the cluster centroids of the word
images are matched with the cluster centroids of the keyword images. The clos-
est keyword-centroid is assigned to each word-centroid. This is performed for
the two levels of hierarchy of word image and keyword clusters. We now have a
correspondence between a keyword cluster and a word image cluster. An exact
comparison of images can now be performed to identify the appropriate anno-
tation for each word image. The procedure is depicted in Figure 4.

5.3 The Search Engine

From the word annotation, the documents that contain a given keyword can
be obtained by identifying the words that are annotated by the keyword. This
allows us to build the search index for the document collection. The index would
contain the keywords that were used for annotation. A query is searched for in
this index file and the documents containing the keyword are retrieved for the
user. Since the search is in the text domain, the matching of query and index
term is very quick. The system allows for querying using a transliteration scheme
called omtrans, where the Telugu language query is entered in a Roman format.
The search system has a response time of about 0.01 seconds per query. The
relevant document images are retrieved for the user. Since the delivery is in the
image format, the delivery of the image requires close to 3.4 seconds.

5.4 Computing Resources

The clustering and annotation phases require large computation resources. To
make the process feasible, we distributed the computation over a cluster of 35
machines. Each machine was assigned a set of books, which were processed in
a semi-automatic manner, with minimal manual intervention. One of the ma-
jor challenges in this project was the handling of large amounts of data, and
transferring the data across different machines.
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6 Performance Evaluation on Ground Truth

The system built using the techniques described in this paper, was tested against
a ground truth of five books, consisting of 1030 pages. The ground truth was
created by manually typesetting the content of each page. The number of words
in the text were 100,000, consisting of 50,000 unique words. The segmentation
algorithm yielded more than 211,000 words. Following the merging of segments
for segmentation-correction, the word count was 300,000. These words were clus-
tered to 16,000 clusters. The number of words in a cluster indicates the number of
words similar to the centroid in all the documents, which ideally corresponds to
the word occurrence frequency in the text documents. The clusters were matched
against the frequency of occurrence of each individual word in the text. The per-
centage of match was found to be 58.77 %.

The annotation performance was tested against the real text documents. The
accuracy of annotation was calculated as the number of matching words divided
by the total number of words in the given document, averaged over all docu-
ments. The accuracy of annotation was found to be 48.63%, while 24.75% of
the words were annotated with a word form variation of the actual word. This
is allowable, since the retrieval system would perform stemming and index a
word by only its stem word. The search systems built separately over text doc-
uments and the annotated images. In case of the ground truth collection, all
words were indexed, ensuring a near-perfect precision-recall. The two search en-
gines were evaluated against 20 queries picked randomly from the keyword set.
The retreival results are evaluated using the R-precision measure, which is the
precision of the system at R documents retrieved, R being the number of known
relevant documents for the given query in the collection. R is obtained from
the result of the groundtruth search system. The top 20 results were evaluated
for retreival performance and the overlap in the retrieved documents was found
to be about 77.38%. Thus the annotated documents are able to replciate text
retrieval perfcormance to upto an accuracy of 77%. The difference between the
accuracies of the two systems comes from the inaccuracies in the image process-
ing domain. The errors in segmentation, clustering and annotation propogate
from one stage to the next and contribute to this mismatch in the performance
between purely-text based and annotated image based systems.

7 Related Work

Our work is similar to many of the feature indexing methods [14] and espe-
cially [7,10]. However, we annotate each of the clusters, instead of directly using
them to build the index. An attempt at manual annotation of word image clus-
ters was reported in [23], which is generally un-affordable. The motivation to use
an annotation based approach comes from recent interest in automatic annota-
tion [16,17,15]. Especially [15] uses an annotation based approach for images
and videos using their textual content. Our work improves upon existing image
matching systems and provides a scheme for building practical search systems
for image collections.
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8 Conclusion and Future Directions

We have demonstrated the power and effectiveness of an annotation based ap-
proach toward building search systems for document images. We tested our
approach on the Indian language – Telugu, which is considered one of the most
challenging to build a search system on (using conventional approaches). We
built a system on 75,000 page images consisting of 21 million words, which is the
largest test set used thus far in the known literature. The retrieval performance
was found to be satisfactory. The approach is scalable to large collections, as
is shown by our work, with the annotation time increasing linearly with the
collection, while the retrieval time remains unchanged.

Since the system depends heavily on word image matching, robust and quick
techniques could speed up the process. Better features and similarity measures
could improve the performance of clustering, and thus of the entire system. Ef-
ficient clustering and indexing schemes could be further explored for speeding
up the process. The applicability of the techniques could be tested for document
images of other languages. The scalability of the approach to large digital li-
braries of tens of thousands of books needs to be evaluated. Finally, the results
of annotation could be used to refine the segmentation of the page at word level,
which could be used to learn better segmentation techniques.
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Abstract. A unique way in which content based image retrieval (CBIR)
for remote sensing differs widely from traditional CBIR is the widespread
occurrences of weak textures. The task of representing the weak textures
becomes even more challenging especially if image properties like scale,
illumination or the viewing geometry are not known.

In this work, we have proposed the use of a new feature ‘texton his-
togram’ to capture the weak-textured nature of remote sensing images.
Combined with an automatic classifier, our texton histograms are robust
to variations in scale, orientation and illumination conditions as illus-
trated experimentally. The classification accuracy is further improved
using additional image driven features obtained by the application of a
feature selection procedure.

1 Introduction

For many years, information extracted from remote sensing image archives has
been exploited for specialized applications like monitoring land cover and land
usage, identifying cases of floods or fires, urbanization, deforestation, and so on.
Building such applications have been relatively easy with existing domain
knowledge and readily available information about image properties like scale, ori-
entation, and illumination conditions. This scenario is changing rapidly as tech-
nological advances such as Google Earth demand a generic framework to satisfy
unpredictable ‘casual’ user queries with possibly unknown image properties.

Remote sensing images are essentially textured images with lands, grass,
forests, mountain ranges, water, clouds, snow, buildings, and the like. Major-
ity of these categories exhibit weak textures and a highly irregular structure.
Hence the focus of remote sensing CBIR systems should be on identifying the
texture features correctly. In the past, many CBIR systems have tried capturing
characteristic textures using features like local texture patterns [1], Gabor multi-
scale features [2,3,4], Markov random field (MRF) textures [5,6], Gibbs Markov
models [7], and wavelet features [8,9]. The SIMPLIcity (Semantics-Sensitive Inte-
grated Matching for Picture Libraries) [10] system uses a combination of texture
and color features.

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 849–860, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Based on our experiments, we find that the success of these methods limited
owing to the problems in handling unknown imaging conditions and the inability
to capture weak textures effectively. Gabor features for example, respond well to
strong textures but are not able to capture the weak textures effectively. Multi-
scale filter based techniques, like Gabor or wavelet based approaches, extract
features at multiple scales and try to find the best match across them. Consider-
ing the weak-textured nature of remote sensing images, it is often difficult to get
distinguished texture readings across scales. Moreover, features from different
texture categories at different scales may falsely appear similar, thus limiting
the classification accuracy further. MRF features represent weak textures well,
but they are not scale independent.

A classic problem faced by most of the existing systems is the misleading
image appearances. The color and texture appearances of the same surface vary
significantly with the changes in illumination and camera angle properties. Fig. 1
shows an example where water appears green in one image and blue in another.
To a human observer, there is no confusion regarding the presence of water.
However this similarity will not be detected if only low level features are used.

Fig. 1. The color of ocean water exhibits a spectrum from green to dark blue

The effect of imaging condition on textures is explained in [11,12,13] using the
CUReT textures database. Different textures might appear very similar resulting
in large inter-class similarities or the same surface might exhibit different textures
leading to large intra-class variations. Misleading image appearances is a common
problem for remote sensing applications as the illumination varies with the time
and season. The pose of camera does not vary much for the satellite images
taken from great heights but it plays a significant role for aerial images taken
from surveillance helicopters.

1.1 Our Contributions

1. We propose a new texture feature, the ‘texton histogram’ to represent the
characteristic weak textures of remote sensing images. We have shown that
this feature is largely robust to the problems of unknown scaling, orientation,
and global illumination.

2. We develop a classifier system to identify image contents semantically, using
the texton histogram as the base feature. The accuracy of semantic classifica-
tion is further improved using additional features obtained from an extensive
feature selection procedure. We show that our system can handle the problems
of misleading image appearances as well as that of unknown image properties.
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3. We develop an efficient end-to-end system that retrieves results containing
similar semantic contents in about 100ms (Matlab based, database size of 400
images).

1.2 Proposed Approach

The problem of similarity retrieval is posed as a semantic matching problem
where an image is represented as a composition of high level concepts. We use
six frequent remote sensing categories, viz., bushes (forest), clouds, plains, snow,
urban, and water as the high level concepts. The application of a semantic ap-
proach helps in identifying image contents independent of the scale, orientation
conditions as well as the intra-class feature variations and the inter-class feature
similarities.

The mapping from low-level features to high-level concepts is done by Sup-
port Vector Machine (SVM) classifiers trained using multiple-instance learning
approach. A feature selection technique, the gain-ratio method is used to choose
concept-specific selective low-level features from the feature-space of color and
texture features.

1.3 Organization of Paper

The paper is organized as follows. Sec. 2 discusses the features chosen to represent
remote sensing imagery. The focus of this section is on the construction of the
texton histogram, followed by a discussion of its ability to detect weak textures,
irrespective of illumination, scale and orientation conditions. Sec. 3 discusses
our semantic learning approach. The overall system architecture is described in
Sec. 4. Experimental results are given in Sec. 5 followed by concluding remarks
in the last section.

2 Features

The accuracy of a CBIR system can only be as good as the features used to
represent images. If only gray-scale texture features are used, water and snow
covers might be indistinguishable. Similarly, if only color is used, snow and clouds
might appear indistinguishable. Hence, it is better to use a combination of care-
fully chosen multiple features to distinguish a category from another. In our
experiments, we selected category-specific features from a feature-space of color,
weak textures and strong texture features and used them to train a single SVM
classifier for that category.

2.1 Texton Histogram

Textons are the putative units of preattentive human texture perception [14].
Different definitions are given in different works to compute textons. [15] gives an
operational definition where textons are computed as the frequently co-occurring
combinations of oriented linear filter responses. [13] defines textons as the joint
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distribution of intensity values over extremely compact neighborhoods. Our def-
inition of textons is inspired by the work in [13]. Our design is equally focused
on local property that is a function of a 3 x 3 neighborhood and the texton his-
togram which is more global in nature. Based on an extensive set of experiments
with one thousand seven hundred 128 x 128 image tiles, a texton dictionary is
learned using an unsupervised process. Each item in the dictionary (a texton)
is a pixel label computed from a large number of 3 x 3 local neighborhoods of
various pixels. The process is summarized in Fig. 2 and Fig. 3.
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Fig. 2. Constructing a texton dictionary
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Fig. 3. Constructing a texton histogram. A texton histogram captures the local prop-
erty of weak texture, but is also invariant to various effects.

Details. For a pixel p under consideration, the 3 x 3 local neighborhood without
p is linearized to form an 8-element string representation s. This string is circu-
larly shifted to yield a canonical form S. The canonical representation satisfies
two properties:

1. For any string representation s′ of the same neighborhood, S is lexicograph-
ically smaller than or equal to s′.

2. The left and right neighbors for every element in S are the same as in s,
under circular shift condition.

Pixel p is then appended at the end to form a 9 element vector for the next step.
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The canonical representations for a large number of pixels are clustered using
the K-means algorithm, where K is found automatically. The cluster centers
are chosen as the representative textons to form the dictionary. Each texton is
thus a 9-element array of tuples (mean, variance) corresponding to each of the
9 dimensions of the 3 x 3 local neighborhood. The textons in the dictionary
are identified by a unique identifier, the texton-id. This procedure is depicted in
Fig. 2. It is performed offline, and done exactly once in the system.

To summarize the weak textures for any candidate image, we build a proba-
bilistic model, the texton histogram. After an image is intensity normalized, each
image pixel is labeled with the closest item in the texton dictionary. The tex-
ton histogram feature is computed as the fraction of the total number of image
pixels assigned per texton. The procedure for computing the texton histogram
is shown in Fig. 3.

2.2 Texton Histogram Properties

1. Invariance to global illumination changes: Preprocessing images using
mean-center intensity normalization makes the process more robust to illu-
mination effects.

2. Invariance to local neighborhood orientations: Using a canonical form
to represent a pixel neighborhood ensures that any orientation of the 3 x 3
neighborhood still maps to the same texton. Strictly speaking, we must scan
convert a circle and use a circular neighborhood. The 3 x 3 neighborhood we
use is simply a practical measure that works well.

3. Invariance to noise in local neighborhoods: Clustering ensures that the
textons are well separated from each other in space. By binning pixel neigh-
borhoods to closest textons, the problem arising from small noise and inten-
sity fluctuations is overcome. Even if some pixels are mapped to the wrong
textons, it does not have a significant effect on the final texton histogram
representation.

4. Invariance to scale: Combining a local representation with an unsupervised
voting process enables scale tolerance. Unlike ours, the texton histogram fea-
ture described in [13] is capable of resolving the misleading texture problem;
however, it is not scale-independent. The scale associated with a remote sens-
ing image is quasi-global [16]. This global nature is captured in a histogram
model whereas the basic unit texton captures the local textures.
Experimental proof for this appears in Fig. 4 which shows the behavior of
texton histogram feature for a sample image under scaling. The plots show
the behavior of texton histograms at zoom-in factors 1.5, 2.0 and 2.5 and
3.0 of the original image size. Observe that the overall shape of the texton
histogram remains similar under scaling, and especially note that the peak
positions match nicely. Fig. 5 demonstrates the behavior of texton histogram
for the same image at a zoom factor of 0.2 marking its robust nature under
zoom-out situations. After observing a similar behavior for a large number
of images we conclude that the texton histogram feature is robust to image
scaling to a large extent.
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Fig. 4. Effect of scaling on texton histograms. The red and blue colors correspond to
the texton histograms at the original scale and at the zoom factor respectively.

Fig. 5. Effect on texton histogram under “zoom-out” (factor=0.2)
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2.3 Color and Strong Texture Features

To boost the identification of categories, we selected additional features from
a feature-space encompassing color and strong texture features. In addition to
the texton histogram (termed TH), we chose six color features, the dominant
Y, Cb, Cr (DY, DCb, DCr) and the average Y, Cb, Cr (AY, ACb, ACr) values.
The choice of YCbCr color space over RGB and HSV was made experimentally.
We computed the strong texture features using a thresholded response of pixels
to Sobel masks corresponding to the edges in directions 0, 45, 90, 135 degrees
(termed EH0, EH45, EH90, EH135).

3 Learning Semantics

The association of distinguishing low level features to semantic categories is
learned using a multiple instance learning (MIL) approach [17].

3.1 Multiple Instance Learning

In the multiple instance learning approach, an image is labeled positive for all
the categories present in it. For a category, the task of learning distinguish-
ing features reduces to identifying features which are common to the positively
labeled images and absent from the negative images along with their relative
weights. We use the ‘gain-ratio’ attribute selection [18] procedure to select an
initial subset of useful features for each category. The gain-ratio method returns
a ranking of all features for their discriminative capacity for the dataset under
consideration. The SVM classifiers are tuned using a greedy selection [19] for
these feature subsets . A binary SVM classifier is learned using the dominant
features for each category. The final classifier package consists of 6 SVMs, one
for each category.

For our experiments, we annotated 1700 image tiles of size 128 x 128 with
positive/negative labels for each of the 6 categories. Full feature vectors and
the corresponding labels were input to the feature selection process. The final
feature dimensions selected for each concept are given in Table 1.

We observed that the inaccuracies in classification were mainly caused due to
the variations in appearances of categories. The accuracy for clouds category is

Table 1. Table of concept-wise dominant features-set and classification accuracy

Concept Dominant feature dimensions Accuracy

bushes(forest) TH,AY,ACb,ACr,DY 96.18
clouds TH,DY,AY,ACr,DCb 87.19
plains TH,ACr,ACb,DCr,DCb 90.11
snow TH,DY 98.47
urban TH,ACb,EH0,EH90,ACr 92.81
water TH,ACb,ACr,AY,DY,DCr 93.23
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relatively low, owing to the occasional sparse cloud nature where cloud detection
is difficult and the occasional dense nature where it is confused with snow.

4 System Architecture

Fig. 6 shows the overall block diagram of the proposed retrieval system. The
system can be explained in terms of three main modules: a) Learning module,
b) Semantic profiles generation module and c) Query retrieval module.

Semantic

Creation
Profile

SVM
Category
Labeler

Query

Module
Processing

Semantic
Database

Extraction
Feature

Module

Query

Results

Image
Database

Fig. 6. Block diagram of the proposed system

Learning Module: The job of the learning module (not explicitly shown in
Fig. 6) is to build the texton dictionary and the SVM category classifiers through
learning. Both these tasks are done offline. The quality of texton dictionary and
SVM classifier play a decisive role in assuring high quality results for the task
of image classification and retrieval.

Semantic Profiles Generation: An image is divided in tiles of size 128 x
128 pixels. Features are computed for each tile and input to the SVM classifier
package containing classifiers for the selected semantic categories. The output
(i.e., label ‘1’ if semantic concept is detected, ‘0’ otherwise) of all the six classifiers
is put together to construct a 6-element semantic profile for the tile. The semantic
profile of the entire image is a 6-element vector where each element corresponds
to the fraction of tiles voting positive for a concept. For example, if 3 out of 10
tiles vote for water and 8 out of 10 tiles contribute to land, then the semantic
profile of image is {0.3 water, 0.8 land}. A tile may vote for any number of
categories under consideration. A similar approach is described in [20] where
an image is divided in 10 x 10 regions, each voting for a single category. Our
framework differs in this aspect from [20], as for large sized images, a region is
bound to contain more than one category. Hence it makes more sense to detect
all of them and not restrict a region to a single label.

Query Retrieval Module: The semantic profiles for all the database images
are stored in a semantic profile database. Given a user query, its semantic profile
is constructed. The results are ordered based on the Euclidean distance between
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the semantic profiles of the query and the candidate database image. Our ap-
proach also enables us to develop a framework for fuzzy queries, e.g., ‘retrieve
images containing largely water’ or ‘do not retrieve images containing any cloud
cover’.

5 Experimental Setup and Results

To test the proposed technique, we developed a heterogeneous image database
consisting of images from different on-line resources. Images showing none, one
or more of the selected concepts were downloaded from the freely available image
galleries of commercial satellite companies like Orbimage and Spaceimaging, and
government organizations NRSA (India) and US-based NASA’s ‘Earth Obser-
vatory. The image database consists of 400 natural color satellite images, which
are stored in JPEG format with sizes varying from 500 x 500 up to 25000 x
25000. The image resolutions vary from a few inches per pixel to a few meters
per pixel. The images have been taken from across the globe, at different times
of the day and across seasons making the illumination properties different. We
have kept no metadata information about resolution, scale or orientation.

We evaluated the performance of the proposed system in two ways. First we
computed the system performance statistically giving precision values. We also
compared the retrieved results with the results of ‘SIMPLIicity’ system using the
same underlying image database. Like in most region-based retrieval systems, in
SIMPLIicity, an image is represented by a set of regions, roughly corresponding
to objects, which are characterized by color, texture, shape, and location. This
system classifies images into semantic categories such as textured-nontextured,
city-landscape, and so on. It uses a wavelet-based approach for feature extraction
and an integrated region matching technique to match the image regions.

5.1 Performance of Query Retrieval

To provide numerical results, we asked 5 human annotators to manually check
the relevance of results for 18 randomly chosen sample query images. For the
same images, relevance of results given by SIMPLIcity is also evaluated by the
same annotators. The top ten results are considered for evaluation and the pre-
cision is computed as the fraction of images retrieved correctly as per human
judgment. For each of the eighteen query images, the average precision of results
given by both systems are plotted in Fig. 7. We find that on an average, the
precision of the proposed system is greater than that of SIMPLIcity by 0.342.

5.2 Query Comparison

Fig. 8 shows the comparison of results between the proposed system and the
SIMPLIcity for a query image in which water appears green. The top row shows
our experimental results and the bottom row shows retrieval results of SIMPLIc-
ity. The leftmost image in each row is the query image. Due to the limitation of
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Fig. 7. Comparison of average precision values (best seen in color)

space, we have shown only top 10 matches for each query comparison. Our sys-
tem has successfully identified that the query contains water and corresponding
images involving water are returned irrespective of the intra-class variations in
appearances.

More (favorable) results of the comparison do not appear in this version due
to space limitations but are available at our website.

Fig. 8. Using semantic retrieval to overcome intra-class differences in appearances of
a concept. The top row shows the first ten results of our system and the bottom row
shows the results obtained using SIMPLIcity technique.

6 Concluding Remarks

Texton histogram is a robust feature capable of capturing the weak textured
nature of remote sensing images in a scale, orientation and illumination inde-
pendent manner. This feature along with other features can effectively learn the
high level concepts present in remote sensing domain. Using such a semantic ap-
proach effectively counters the intra-class image variations and inter-class image
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similarities. Hence, the proposed framework is able to characterize remote sens-
ing images in a generic manner. However it should be noted that our framework
does not handle spatial adjacency constraints.
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Abstract. This paper proposes a region based approach for image re-
trieval. We develop an algorithm to segment an image into fuzzy regions
based on coefficients of multiscale wavelet packet transform. The wavelet
based features are clustered using fuzzy C-means algorithm. The final
cluster centroids which are the representative points, signify the color
and texture properties of the preassigned number of classes. Fuzzy Topo-
logical relationships are computed from the final fuzzy partition matrix.
The color and texture properties as indicated by centroids and spatial
relations between the segmented regions are used together to provide
overall characterization of an image. The closeness between two images
are estimated from these properties. The performance of the system is
demonstrated using different set of examples from general purpose image
database to prove that, our algorithm can be used to generate meaningful
descriptions about the contents of the images.

1 Introduction

Effective searching of relevant images using information derived from the visual
contents (color, texture, shape etc.) is the focus of interest for most research
on image databases. In the recent past, Content-Based Image Retrieval (CBIR)
techniques became popular [1], [2], [3], [4],[5], [6], [7], [8] for retrieving relevant
images from an image database by measuring similarity between the automat-
ically derived features (color, texture, shape etc. ) of the query image and the
images stored in the database [5]. But even with the most sophisticated design,
it is often not possible to achieve satisfactory results, because the image features
may convey different meanings under different context (semantic gap). There are
ongoing efforts by the researchers for bridging the gap between human intuitive
understanding and information derived from image features.

Apparently different set of features are suitable for different purposes. For ex-
ample, shape related features are not suitable to extract textured pictures only.
The features like color, texture, shape as well as the spatial relationship between
the individual regions play a significant role in depicting the overall meaning as-
sociated with the scene. The properties of individual regions can be coupled with
spatial relationships between them, to provide more realistic matching between
two images. Methodologies to compute spatial relationships of the objects have

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 861–871, 2006.
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been proposed by [9], [10], [11]. However the methods mostly deal with the ge-
ometric attributes of a region like (area, shape adjacency, surroundedness etc.).
Fuzzy similarity measure between regions have been introduced in FIRM [12]
where the properties of all regions are integrated by a family of fuzzy features.
The geometric relationships between the regions are not considered.

Extracting significant features using wavelets have been proved to be promis-
ing [13]. Wavelet transform provides a suitable framework for analysis and char-
acterization of images at different scales [14], [15]. As significant texture
information requires over complete decomposition, wavelet packet frames which
comprise of all possible combinations of subband tree decomposition, can serve
better representation of textural analysis than standard dyadic wavelets. Not
all the bases are equally important. Hence finding out computationally efficient
optimal basis based on the some statistical criteria becomes important [13].

In this paper, we propose a simple technique to identify uniform color textured
regions. The approximate boundary regions are also extracted for detecting the
differences of textures in adjacent regions. We use Fuzzy C- means algorithm
for assigning multiclass membership values to each pixel, for approximate seg-
mentation into homogeneous regions. We use wavelet packet frames to extract
features for segmentation, and obtain the best basis based on entropy measure.
The centroids of the segmented regions depict the color and textural properties.
To estimate the intersection between the fuzzy partitions a property namely In-
dex of fuzziness [16] is computed. Fuzzy Topological relation known as, shape
distance [17] is computed between the fuzzy regions of the segmented image.
The proposed algorithm shows fairly promising performance in case of retriev-
ing perceptually similar images from benchmark databases. The performance is
compared with other approaches like (a) Color, texture histogram similar to [18]
(b) gabor texture features, to prove the efficiency of the proposed scheme.

The remaining sections are organized as follows. The segmentation algorithm
and the feature extraction process is described in section 2. The Experimental
results and comparative studies are made in section 3. The paper is concluded
in section 4.

2 Integrating Wavelet Features for Extraction of Colored
Textures

Features extracted from different frequency bands of wavelet coefficients are
shown to be effective for representing texture properties [15]. This can be ex-
plained from the fact that coefficients in different frequency band show variation
in different scales and directions. An input color image can be looked as a 3-D
energy function E(x, y, λ) where (x,y) denotes the spatial coordinates and λ de-
notes the wavelength of light energy. The local spatial frequency characteristics
of E(u, v, λ) can be used to capture texture characteristics. The properties can
be combined in the wavelet domain by convolution with a wavelet filter in the
spatial domain with the independent color channels [19].
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M̂(u, v, λ) = h(u, v) ∗
∫

E(u, v, λ)dλ (1)

The filter bank h(u, v) is a set of band pass filters with frequency selective
properties. The original image is available in RGB format. The RGB values en-
code the color information. Each of the individual components are transformed
separately. The discrete normalized scaling and wavelet basis functions are de-
fined as [13],

φi,k(l) = 2i/2hi(2il − k)
ψi,k(l) = 2i/2gi(2il − k)

(2)

where i and k are the dilation and translation parameters and hi and gi are
respectively the sequence of lowpass and bandpass filters of increasing width
indexed by i. The full discrete wavelet expansion of a signal that forms an or-
thonormal basis for L2(R2) is given as,

x(l) =
∑
k∈z

c(d0)(k)φd0,k +
d0∑

i=1

∑
k∈z

d(i)(k)ψi,k (3)

d(i) are the wavelet coefficients and c(d0) are the expansion coefficients of the
coarser signal approximation x(d0). The c(d0) and d(i) can be interpreted in terms
of simple filtering and down sampling operations. The 2-D DWT is computed by
applying a separable filter bank to the image where ci(x, y) corresponds to low
frequencies (LL) d1

i (x, y) corresponds to the vertical high frequencies (horizon-
tal edges, LH), d2

i (x, y) horizontal high frequencies(vertical edges, HL), d3
i (x, y)

the high frequencies in both directions (the corners, HH). The image I(x, y) is
represented at several scales by { cd0, dn

i (x, y) , n= 1,2,3, i=1,..., d0 }. The 2D-
DWT transform of an 2i × 2i image is represented as a set of shifted and dilated
wavelet function resulting into subbabnd images,each of size 2i−1 × 2i−1. The
standard dyadic transform are not suitable for analysis of high frequency sig-
nals with relatively narrow band because the subband decomposition is applied
on the low pass component plane of the input image. To obtain efficient tex-
ture properties, multiscale overcomplete packet transform is necessary. Wavelet
packets comprises all possible combinations of subband decomposition applied
recursively to the lowpass and high pass filter results of the previous wavelet
transform step. As a result, it is possible to create arbitrary tree structures that
generates various combinations of orthonormal bases [20]. As an example, a 2-
level decomposition on the orthogonal subspaces generates bases, P2,i,k(l), i=
0,1,2,3 p1,1,k(l)=1/2ψ(l/2− k), p2,0,k(l)=1/4ψ(l/4− k), p2,1,k(l)=1/4ψ(l/4− k)
forms orthogonal sets. The significant nodes are computed and the optimal ba-
sis is obtained based on entropy minimized tree, where the entropy function is
computed between a parent and quad child. Only those nodes are considered for
which the entropy exceeds the predefined threshold. The entropy minimized tree
forms a nested sequence of subspaces, V1 ⊂ V2 ⊂ ...Vn.
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2.1 Multiresolution Feature Extraction

Having obtained the entropy minimized tree, multiresolution analysis is per-
formed considering the spatial similarities across subbands. In general there are
spatial similarities across subbands [20]. The pixels in each subband are linked
to the pixels of the adjacent subband at the next lower level. Each pixel (x, y)
from the former set of subbands acts as the root of pixels (2x , 2y) , (2x +1 , 2y),
(2x , 2y + 1 ), (2x + 1 , 2y + 1 ). For a (n) level decomposition the same rule links
the pixels of the adjacent subbabnds starting from LHn, HLn, HHn, respectively.
The selected bases Vn are interpolated by factor (n), to ensure the identity to the
sampling spaces. This approach is computationally effective. It helps in reducing
blockyness arising in case of the block based methods and the computational
cost involved in pixel wise segmentation. The local features of the filter output
(wavelet domain) around each (x,y) th pixel is estimated from the selected bases.
The moments of the wavelet coefficients of various frequency bands have proven
effective for discriminating textures [21]. To obtain the moments a Daubechies-4
wavelet transform is applied. Around the (x,y) pixels of a certain subband a
W ×W window is centered. The raw moments m00,m10,m01,m20,m02,m11 are
computed. From which the centralized moments μ20,μ02,μ11 are computed on
each window, [22], as follows.

μ20 = m20 − m102

m00

μ02 = m02 − m012

m00
μ11 = m11 − m10∗m01

m00

(4)

For a color input image, the moments computed along the individual channels
are represented as, Fkλ =[μ20,μ02,μ11] The feature computed along the three
channels are considered as linearly independent and represented as,

Fk(x, y) =
∑

Fkλ (5)

The segmentation obtained with the moments are shown in Figs.1(b), 2(b), 3(b).
Apart from μ20,μ02,μ11, the variance of the coefficients of the selected window

is computed from the (R) plane across the dimension of rows. Classifying these
features we approximately segment the boundaries between the homogeneous
region as shown in Figs.1(c), 2(c).

Fk(x, y)var = (
W∑

x=1

W∑
y=1

wk(x, y) − F̄k(x, y))2 (6)

where F̄k(x, y) is the local mean and wk(x, y) is the coefficients at different scales
k. The size of the window is an important parameter. Accurate texture measure-
ment demands larger window size and better localization of region boundaries
require smaller window size. The extracted features are integrated in the feature
space to produce approximate segmentation into homogeneous regions. The fea-
tures need to be clustered into different categories. We have used the standard
fuzzy C- means algorithm [23]for pattern classification. Let X= {x1, x2, ..,xN}
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be a finite subset of n dimensional vector space Rn where xi is a feature vector
for a pixel in the image. For an integer C,2 ≤ C ≤ N , a C×N matrix U=[uik] is
called the fuzzy C partition of X whenever the entries U satisfies the following
conditions. uij ∈ [0, 1] for all i and j, uij is the degree of membership of xi in
the cluster j,

∑C
i=1 uij =1 for all j and 0 ≤

∑N
j=1 uij ≤ N for all i.

2.2 Attributes of Fuzzy Sets on Segmented Image

Index of fuzziness : From fuzzy C-means clustering of Fk(x, y), orFk(x, y)var
a fuzzy partition matrix U of size C by N is obtained, where C is number of
clusters and N is number of data points. The feature vector usually belongs to
multiple regions with different degrees of memberships as opposed to classical
region representation in which the feature vector belongs to exactly one region.
The measure of fuzziness between the C fuzzy partitions of X , as obtained from
the fuzzy C-means clustering is considered. Let the fuzzy partitions (u1, u2, ..
uC) on X be defined by the set of C menbership functions, μuj(x) for all x ∈ X
and j = 1, 2, ...C. The intersection between two fuzzy partitions um and uj ,
(m �= j ) from the C collections is defined from [16]

I(uj ∩ um) =
1
|X |
∑
x∈X

[min(μuj(x), μum(x))] (7)

Shape distance : The pixels of the fuzzy partition are assigned distinct class la-
bel for which the membership is maximum. As a result, we obtain the segmented
image. Each segmented region can be looked upon a bounded fuzzy set where
the membership is zero outside the region. We consider the shape properties of
the fuzzy regions of the segmented image, as proposed in [17],

If μ(x, y) is the membership of the fuzzy set μ at the point (x, y) in R2,
the center of gravity of μ is the point (x0, y0) where x0 = s

xμ(x,y)ds

A(S) and y0

= s
yμ(x,y)ds

A(S) where A(S) =
∫

s u(x, y)ds . The dissimilarity between two fuzzy
sets u and v is defined as,

D1(u, v) =
∫

s

|u − v|ds (8)

The shape distance between two fuzzy sets u and v ( here u and v corresponds
to individual segmented regions) are defined as,

D3 = min[D1(u, vα1−α2), D1(u, vα1−α2+π)] (9)

where α1 and α2 are the orientations defined as the angles that the major axis
of u and v make with the x axis. D1(u, vα) is the dissimilarity with respect to
rotation of v by angle α. The major and minor axes are perpendicular to each
other and passes through the center of gravity. D3 is the smaller of the D1 values
in these two orientations. The orientation θ of a fuzzy set can be obtained from
the relation as follows,
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tan2θ =
2
∫
s
(x − x0)(y − y0)μ(x, y)ds∫

s(x − x0)2μ(x, y)ds −
∫
s(y − y0 )2μ(x , y)ds

(10)

It can be proved that D3 is a metric. This metric can be used in pattern recog-
nition and matching problems in a fuzzy framework. We have not considered
the relations like left to , above etc. as the segmented regions may not represent
the image at object levels. The feature representation of the segmented image
can be looked as a collection of features [F1, F2, ...FC ] representing the variance
of the centroids where C represents the number of classes. The index of fuzzi-
ness Imj for m �= j between any two partitions of the C separable classes are
considered. Also the shape distance Sm1m2 between any two segmented fuzzy
regions (m1, m2) are computed to generate the effective characterization of an
image. In order to compute feature similarities between two images, Euclidean
distance metric is used to compute the dissimilarity value between the centroids.
If X = [x1, x2, · · · , xi] and Y = [y1, y2, · · · , yi] are two feature vectors then the
Euclidean distance metric between X,Y is given by,

Ed =
√∑

(xi − yi)2 (11)

The intuitive similarity between two regions are computed from shape distance.
The rank is computed as follows. The similarity is performed on each type of
features separately. Finally the rank obtained from each individual set of fea-
tures are combined to get the final result. The rank obtained from matching the
centroids and index of fuzziness features are decided by measuring Euclidean
distance between the features of the query and the target images. The total
similarity is calculated as follows :

dqt =
n∑

k=1

(rtk)/n (12)

where dqt is the similarity distance of the query image q to image t. n is the total
number of features rtk is the rank of the image t in feature k.

3 Experimental Steps

We test our algorithm on a database consisting of 1000 images with 100 images
from ten different categories down loaded http://wang.ist.psu.edu/docs/rela-
ted. The experimental results are shown from Figs. 1 to Fig. 6. We grossly parti-
tion the image into three meaningful classes to analyze the region attributes and
spatial relations between these regions. Fixing the number of classes may not
effectively partition all database images at individual object level. It is expected
that similar partitions will be generated for images with similar semantics for
use in computing overall image to image similarity. If the segmentation becomes
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(a) (b) (c)

Fig. 1. (a) original image (b) segmented output (3 regions) (c) segmented output (3
class, boundaries assigned a common black label)

(a) (b) (c)

Fig. 2. (a) original image (b) segmented output (3 regions) (c) segmented output (3
class, boundaries assigned a common black label)

(a) (b)

Fig. 3. (a) original image (b) segmented output (3 regions)

finer, the uncertainty in characterizing the perceptual contents increases due to
detailed classifications within regions. This degrades the overall impression of
the object nature. The segmentation results are shown from Figs. 1 to Fig. 3.
The image shown as Fig. 1(b) is the segmented output of Fig.1(a) into three re-
gions. Individual regions are characterized with different gray values. Fig.1(c) is
the segmented output which broadly classifies the boundary between the regions
using the features obtained from (6). The regions boundaries are assigned a com-
mon class label ( plotted as dark boundary pixels). The segmented output of Fig.
2(a) is shown in Fig. 2(b) using the features computed from (4). The classified



868 M. Banerjee and M.K. Kundu

Fig. 4. Retrieval results. With top left image as the query image.

Fig. 5. Retrieval results. With top left image as the query image.

regions boundaries plotted as dark pixels are shown in Fig. 2(c). Similarly the
segmented output for Fig. 3(a) is shown in Fig. 3(b). The segmentation results
shown are quite satisfactory in classifying the images into the assigned regions.
By intelligent selection of the basis the number of features have been reduced
for the desired segmentation. In our problem the description of the entire image
is used in querying rather than taking the attribute of individual regions. We
have taken query examples from all categories of images and tested the perfor-
mance with the proposed features. We try two explain the results obtained on
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(a) (b)

Fig. 6. (a) Recall, Precision curve from results with individual features (b) Compara-
tive results

images with some distinctive properties. Images in Fig. 4 are constituting of a
significant object with some background object. The main object almost occu-
pies the major portion of the scene. We have tested the results considering the
features (centroids ) and other two spatial features separately. The combined
result is shown in Fig. 4 with the top left image as as the query. The results
obtained from the combined features outer performed the the individual feature
retrieval. It has been found that shape distance and index of fuzziness provides
a better attribute in such case. Intuitively the shape of the object itself is more
meaningful than the color or texture information in the example. This provides
evidence that our approach for computing relations between the regions is ef-
fective for such cases. In the second example, both the background and object
are important. The object region has quite a common color and texture. The
centroid features which carry the region attributes in terms of color and texture
provide a better index than the shape distance. In this case the color and texture
carried most of the useful information. Combining shape distance did not make
significant difference to the query results. The retrieval results after combining
all the features together is shown in Fig. 5 with top left image as the query.
The final similarity of the combined features is found better than each of the
individual feature ranking.

With each test set image as the query, the average precision and recall for
individual feature retrieval is shown in the Fig. 6(a). If the system retrieves r
images that belongs to the same class C1 as the query (r ≤ n). If there are Nc1

images in the class C1 of the query, then P=r/n is the precision and R = r/Nc1

the recall for this query. We found that the similarity as obtained from index of
fuzziness alone is not satisfactory. Intuitively this feature measures the fuzziness
in clustering and indirectly captures dissimilarity between the regions. However
the combined results improves the precision. We benchmark our results with
retrieval algorithms using global color texture histograms as used in [18]. Color
is represented using a 2D histogram over the HS coordinates of the HSV space.
Texture is represented by two histograms (coarseness and directionality), of the
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image. The similarity distance between two color histograms is computed by
histogram intersection. The similarity between two textures of the whole image
is determined by a weighted sum of the Euclidean distance. We also provide a
comparison in retrieval results with Gabor features computed around randomly
selected points. We tested the results in almost all categories of images as shown
in Fig.6(b). Histogram gave satisfactory results for images objects having sig-
nificant objects with quite a common color and texture. In case case of general
scenes our algorithm generated better results. This proves that the proposed
features captures additional spatial information of the segmented regions.

The experiment is performed in ( SUN microsytems Ultra 60 ) system us-
ing MATLAB package. The average cputime time required for computing the
feature vector is 10 seconds.

4 Conclusion

In this work we have developed an image segmentation algorithm using wavelet
packet based features and the fuzzy C- means statistical clustering algorithm.
The color and texture attributes of the fuzzy regions are unified with the topolog-
ical features effective in capturing spatial relation between the regions. However
we have not incorporated the topological properties extracted from the region
boundaries in retrieval. Using these features we intend to incorporate some more
spatial relation properties in order to capture crucial semantic details.
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Abstract. This paper proposes a content based image retrieval system
that uses semantic labels for determining image similarity. Thus, it aims
to bridge the semantic gap between human perception and low-level fea-
tures. Our approach works in two stages. Image segments, obtained from
a subset of images in the database by an adaptive k-means clustering al-
gorithm, are labelled manually during the training stage. The training
information is used to label all the images in the database during the
second stage. When a query is given, it is also segmented and each seg-
ment is labelled using the information available from the training stage.
Similarity score between the query and a database image is based on the
labels associated with the two images. Our results on two test databases
show that region labelling helps in increasing the retrieval precision when
compared to feature-based matching.

1 Introduction

Research in Content Based Image Retrieval (CBIR) steadily gained momentum
in recent years consequent to the dramatic increase in the volume of digital im-
ages. Image databases containing thousands and sometimes millions of images
are available in many fields such as remote sensing, medical imaging and bio-
metrics (e.g., fingerprints). The main difference between data retrieval from a
conventional database and CBIR is that the former is based on predefined key-
words (or keys) associated with each stored record, while the latter utilises visual
cues. A good survey of CBIR field may be found in the review paper by Sameer
Antani, Rangachar Kasturi and Ramesh Jain[1].

CBIR systems mainly use colour[2,3,4,5], texture[6,7,8], shape[9,10,11] and
other low-level features to assess similarity while human beings rely on high-
level symbolic (e.g., chair, Taj Mahal) and abstract (e.g., war, happy occasions)
concepts. Such a difference between computer and human perception of similar-
ity, often called the semantic gap, led researchers into exploring methods that
fall broadly into three categories: relevance feedback, modeling human percep-
tion and linguistic indexing.

Relevance feedback is an on-line learning strategy where user provides feed-
back on the retrieved images which adapts the response from the CBIR system.
Usually, the user responses are used either to modify the query or the simi-
larity measures[12,13]. Several attempts have been made to incorporate human
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perception into CBIR systems by developing computational models for early hu-
man vision[14,15,16] or similarity functions consistent with human perception
[17,18,19]. In lingusitic indexing, images are categorized into different types and
annotated (or labelled) by using a trained classifier. The problem of CBIR is
thus reduced to the problem of text-based retrieval. Examples of such work are
found in the paper by Chen and Wang[20].

There are two major approaches to linguistic indexing. The first is region-
based and initially segments images into regions. If the segmentation process is
ideal each region is treated as a semantically meaningful object and retrieval is
based on similarity between regions. UCSB NeTra[7], Berkeley’s Blobworld[21]
and Stanford’s SIMPLIcity[22] are examples of such systems. Integrated Region
Matching (IRM) [23] (and used in [22]) and its enhancement using fuzzy mem-
bership functions for more perceptual segmentation and region matching[24]
illustrate how sophisticated region-based similarity measures may be defined for
CBIR applications.

The second approach is to organize the digital library in a semantically mean-
ingful manner using image classification. Such classification is also useful to in-
dex images automatically. Unfortunately, there is no effective method yet to
obtain good semantic categorization from low-level features. A compromise is
manual annotations, which are potentially subjective and ambiguous and some-
times difficult because image data is rich in detail. In specific domains, however,
classification provides a powerful set of semantic features for CBIR.

In this paper, we describe a CBIR system based on semi-automatic region
labelling for remote sensing images. Remote sensing images have the advantage
that their classification is well-researched, and well-defined with several standard
schemes in existence. We also used the same method on a miscellaneous database
containing different categories of objects such as flowers, aeroplanes, flags, etc.
Our results indicate that region-labelling, even though it is sometimes incorrect,
leads to improved precision in retrieving images.

The rest of the paper is organized as follows. Section 2 describes feature
extraction and segmentation. Section 3 describes the two-stage segment labelling
process and subsequent query processing. Section 4 illustrates the results on two
test databases and Section 5 concludes the paper.

2 Feature Extraction and Segmentation

Our system segments images using an adaptive k-means algorithm based on
colour and texture features. We follow the same approach described in [22] and
[23]. An image is divided into 4 × 4 blocks from which three colour and three
texture features are computed. The colour features are the average L, U and
V components where LUV colour space is used for its perceptually uniform
properties. The three texture features are obtained from Daubechies-4 wavelet
transform on the L component. The 4 × 4 block is decomposed into four 2 × 2
frequency bands after a one level wavelet transform. The HL texture feature
fHL is then given by
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fHL(k, l) =

⎛⎝1
4

1∑
i=0

1∑
j=0

C2
k+i,j+l

⎞⎠
1
2

where C00, C01, C10 and C11 are the four values in each 2 × 2 block. The HH
and LH band features are similarly calculated.

k-means algorithm is used for segmenting the images by clustering the feature
vectors. If the number of 4 × 4 blocks in the image is B, the goal of k-means
algorithm is to partition the set of feature vectors fi, 1 ≤ i ≤ B into k groups
with means f1, f2, . . . , fk such that

D(k) =
L∑

i=1

min
1≤j≤k

(fi − f j)
2

is minimized.
We adaptively choose the number of clusters by starting with k = 2 and

increasing it until one of the following three criteria is met: D(k) is below a
specified threshold indicating that the clusters are tight; change in D(k) between
consecutive iterations is below a threshold indicating convergence; and, k exceeds
an upper bound indicating too large a number of clusters.

3 Region Labelling

Region labelling step assigns a semantic label to each segment obtained from k-
means clustering. The labelling is done in two stages. A subset of images from the
database that illustrate the semantic concepts important in querying is chosen
in the first, manual or training, stage. The different segments in the images
are shown to the trainer and are assigned labels manually. As there exist many
regions that have identical labels, the average feature vector of such regions along
with the associated label are stored in a label database. Some sample regions and
labels are shown in Figure 1 from a test database of approximately 1200 low-
resolution remote sensing images obtained from the National Remote Sensing
Agency (NRSA), Hyderabad. An example of a segmented image that is labelled
manually is shown in Figure 2.

In the second stage, all the segmented images in the database are automat-
ically assigned labels utilizing the label database created in the training stage.
The feature vector corresponding to an unlabelled segment is compared with
the mean feature vectors in the label database. The label associated with the
nearest feature vector in the label database is assigned to the unlabelled region.
An example of automatic labelling is shown in Figure 3. It may be noticed that
the labelling is not fully correct in that snowy regions are labelled as a water
body. Such inaccuracies have an impact on the precision and recall values of the
CBIR system as we shall see in the next section.

When a query image is given, it is segmented and automatically labelled using
the approach described above. Image similarity is measured on the labels and not
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Fig. 1. Image segments and associated labels

on the feature vectors leading to retrieval using semantics rather than low-level
characteristics. Similarity score is given by

S =
nm

n

where n is the number of regions in the query image and nm is the number of
identical labels between the query and the database images. S ranges from 0 to
1.0. Many variants of the above similarity score exist in literature[25] although
they have not been tried yet by us.

4 Experimental Results

We initially experimented with a database of remote sensing images from NRSA,
Hyderabad. The retrieved results for a query image showing waterbody along
with some clouds are shown in Figure 4. Similarity score is based on the labels
automatically assigned to the images (as explained in the previous section). It
may be seen that all the top eight images are relevant. However, several of the
images contain clouds while there are many other images in the database that
are not cloudy.

More sophisticated queries allowed by our system specify the location, extent
or absence of a class in conjunction with a query image. In this case, additional
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Fig. 2. Example of a segmented image that is manually labelled

Fig. 3. Example of a segmented image that is automatically labelled

information about the bounding box and area of the segment is included along
with the similarity measure. One example of such queries is extremely useful
to NRSA and involves retrieving cloud-free images similar to a given query.
Figure 5 shows the results for the same query image of Figure 4 but with the
additional condition that the results do not contain cloudy regions. It may now
be noticed that the query image is not the first image to be retrieved but the
third. The first two images are less cloudy leading to higher similarity score than
for the query image itself because its cloudy regions lower the similarity with
the query. Overall, the resulting images are of better quality than the earlier set
but some of them still contain clouds. The reason is that the wispy clouds seen
are misclassified as water bodies with sedimentation and are hence retrieved.

We also experimented with a much larger and more varied database contain-
ing approximately 8000 images. These show objects such as flowers, aeroplanes,
sunsets, fireworks and others. Figure 6 shows an example query image of fire-
works and the retrieved images. Again, all the top eight images are relevant. We
compared our results against the Integrated Region Matching (IRM) method
proposed in [23]. The results from the IRM method are shown in Figure 7. It
may be seen that three of the images do not show fireworks and are therefore
irrelevant.

A more detailed comparison of the performance of the region-labelling method
and IRM is shown in Figure 8. We took 10 query images each from seven
categories — remote sensing (C1), flags (C2), flowers (C3), landscapes (C4),
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Fig. 4. Retrieved images for waterbody class using region-labelling method. Query is
the first image.

Fig. 5. Retrieved images when an additional cloud-free constraint is specified. Query
is the same as in Figure 4.

Fig. 6. Query results using region-labelling for the fireworks image shown at the top
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Fig. 7. Query results for the same query image as in Figure 6 using IRM method

automobiles (C5), aeroplanes (C6), and fruits and vegetables (C7) — and com-
puted the average precision for each category. We first used region-labelling and
then the IRM method. From the Figure 8 it may be seen that for Category C1,
the average precision for region-labelling method (identified as labelling in the
figure) is approximately 0.9 while it is about 0.8 for IRM. The average precision
for all categories (except C4, i.e., landscape images) is higher than 0.7 indicating
good overall performance.

It may also be seen that for all categories except C3, i.e. flower images, region-
labelling results in a higher average precision than IRM.

Finally, we show a recall-precision graph (Figure 9) that compares the perfor-
mance of the region-labelling approach with IRM and its fuzzy extension UFM
in retrieving remote sensing images. It may be seen that the region-labelling
approach is better than both IRM and UFM.

An image contains many colours and regions, but a human user generally
focusses on only a few high level concepts while ignoring the finer details. Con-
sequently, in our system, we restricted the maximum number of segments in an
image to six. The performance of our system on low-resolution remote sensing
images and on images containing flags, fireworks and other such easily distin-
guishable objects justifies the choice of a small value for the number of segments.
We noticed that our system gives consistently high precision and recall when the
images contain one or two dominant objects.

We used simple colour and texture features in our approach. They may not be
adequate to distinguish between certain semantic classes. An example is Figure 5
where images containing clouds are present in the results even though the query
specified otherwise. The 6 features are not capable of distinguishing between
water containing large levels of sedimentation and clouds, both of which are
greyish white in colour and contain no texture.
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Fig. 8. Comparison of average precision between region labelling and IRM methods
over 7 categories of images
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Fig. 9. Recall-precision graph comparing region labelling with IRM and UFM

Sometimes, however, it is not easy to label the segments in an image. For
example, landscapes are particularly difficult if they involve a panoramic view of
the countryside with few dominant features. There are two problems with such
images: there are more than 6 semantically meaningful segments, and it is not
easy to associate a label with low-level features. The latter problem causes our
classification method based on nearest neighbour approach to fail.
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To summarise, our proposed CBIR system based on supervised classifica-
tion gives higher precision in retrieval when images contain a small number of
meaningful segments and a few dominant objects. In other cases, either the seg-
mentation or the labelling becomes inaccurate. Inaccuracy in segmentation does
not seriously affect the performance as the similarity measure is based mainly
on labelling and not on region properties. However, poor segmentation can lead
to inaccurate labelling. Labelling has a direct impact on precision and good
classification algorithms should be used.

5 Conclusion

In the paper, we presented a CBIR system that retrieves images based on high-
level semantics that are assigned using a trained classifier. The results indicate
that even our simple approach based on only 6 colour and texture features in
conjunction with a supervised nearest neighbour classification scheme can lead
to higher precision in retrieving several types of images. Our approach, demon-
strated on remote sensing images, may be extended to querying other image
databases provided that the images contain a small number of regions and dis-
tinct features that act as cues for matching.
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Abstract. This paper addresses the problem of obtaining an accurate 3D recon-
struction from multiple views. Taking inspiration from the recent successes of
using strong prior knowledge for image segmentation, we propose a framework
for 3D reconstruction which uses such priors to overcome the ambiguity inherent
in this problem. Our framework is based on an object-specific Markov Random
Field (MRF)[10]. It uses a volumetric scene representation and integrates con-
ventional reconstruction measures such as photo-consistency, surface smoothness
and visual hull membership with a strong object-specific prior. Simple parametric
models of objects will be used as strong priors in our framework. We will show
how parameters of these models can be efficiently estimated by performing infer-
ence on the MRF using dynamic graph cuts [7]. This procedure not only gives an
accurate object reconstruction, but also provides us with information regarding
the pose or state of the object being reconstructed. We will show the results of
our method in reconstructing deformable and articulated objects.

1 Introduction

Obtaining 3D reconstructions of objects from multiple images is a fundamental prob-
lem in computer vision. Reflecting the importance of the problem, a number of methods
have been proposed for its solution. These range from methods such as shape from sil-
houettes [14] and space carving [11] to image based methods [12]. However, the prob-
lem of obtaining accurate reconstructions from sparse multiple views still remains far
from being solved. The primary problem afflicting reconstruction methods is the inher-
ent ambiguity in the problem (as shown in figure 1(a)) which arises from the many-one
nature of the mapping that relates 3D objects and their images.

Intuitively the ambiguity in the object reconstruction can be overcome by using prior
knowledge. Researchers have long understood this fact and weak priors such as surface
smoothness have been used in a number of methods [8,13,15]. Such priors help in re-
covering from the errors caused by noisy data. Although they improve results, they are
weak and do not carry enough information to guarantee a unique solution. At this point,
the question to be asked is: Can we make use of stronger prior knowledge? A possible
source for a strong prior could be the knowledge of the shape of the object we are trying
to reconstruct. In other words, if we know which object we are trying to reconstruct,
we can use a strong object-specific prior to force the reconstruction to look like that
object.
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(a) (b)

Fig. 1. a) Ambiguity in object reconstruction from sparse multiple views. The figure shows how
two completely different objects can have the same visual hull. Further, if both objects have
the same colour, the photo hull and their projections on multiple viewpoints would also be the
same. b) Example of an articulated model. The figure shows a simple stick-model of a human
in different poses and the corresponding priors as its 3D distance transforms used to set up our
energy described in Section 2.

Strong Object-Specific Priors. Kumar et al. [10] proposed a method for using strong
priors for solving image segmentation. They introduced the “Object-Specific Markov
Random Field” model which combined Markov Random Fields (MRFs) with an object-
specific shape prior. This shape-prior was defined by a Layered Pictorial Structures
(LPS) model. The LPS model provided them with a strong prior able to model shape
variations parameterized by a set of latent shape parameters. They obtained good object
localization and segmentation results using their approach. However, their method re-
quired a large library of exemplars for different parts for the LPS model. Bray et al. [4]
suggested using a simple articulated model. This makes the problem easier to solve
computationally while still giving excellent segmentation results.

Parametric Models of Strong Prior Knowledge. In this work we will investigate the
use of parametric models of objects as strong priors on the reconstruction, together
with the weak prior of surface smoothness. The models are parameterized by a set
of latent shape parameters which inherently characterize the state of the object to be
reconstructed. Specifically we illustrate our ideas in terms of two model categories:
articulated and deformable. Models belonging to the first category are used as strong
priors for reconstructing articulated objects such as humans. They are parameterized by
a set of pose parameters which characterize the pose of the object. Figure 1(b) shows an
example of an articulated human model. Models belonging to the second category are
used as strong priors on active-shape or deformable objects. The individual instances of
these objects might be different from each other but they can be described by a common
high-level parametrization. For example, objects like chairs can be parameterized in
terms of parameters like height, width of seat etc. A deformable model for a vase is
shown in figure 3(a).

Framework for Integrating Strong Prior Knowledge. A Bayesian approach to solve the
3D stereo reconstruction problem would typically be to formulate it in terms of a MRF.
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This offers us the advantage of a seamless integration of strong priors (as defined above)
with data, in this case conventional reconstruction measures such as photo-consistency,
surface smoothness and visual hull membership. Inference on the random variables
constituting the MRF can be seen as an energy minimization problem. If this energy
function is regular (explained in Section 3) then its solution can be obtained in polyno-
mial time using efficient graph-cut algorithms [9].

Inference of Model Shape Parameters. To guarantee an object-like reconstruction, our
prior should have latent variables that model the shape variability of our object of inter-
est. Then we optimize the energy of the object-specific MRF with respect to all these
latent variables. Thus obtaining at the same time an accurate reconstruction as well as
an estimate of the latent parameters. As explained in section 3, such an optimization
procedure is extremely computationally expensive since it requires a graph cut to be
computed multiple number of times. While performing this inference procedure, we
make the observation that as we optimize over the model parameters, the energy func-
tion of the MRF we were trying to minimize changes minimally. This motivates us to
use the recently proposed dynamic graph cut algorithm [7], which enables fast mini-
mization of regular energy functions which change minimally from one instance to the
next.

Organization of the Paper. The outline of the paper is as follows. We start by describing
the object-specific MRF which forms the basis of this work. We explain how recently
proposed methods for reconstruction can be explained in terms of this framework. The
details of the efficient algorithm for performing inference over this MRF is given in
section 3. In section 4, we will illustrate the use of this framework in reconstructing
deformable and articulated objects, and provide results of experiments performed on
real data. The conclusions and directions for future research are given in section 5.

2 Bayesian Framework

Within this section we provide a Bayesian formulation of the object reconstruction
problem. This framework allows for the integration of strong object-specific priors with
widely used data based terms such as photo-consistency and visual hull membership.
We will also show how existing methods for object reconstruction such as [8,13,15] can
be explained in this framework.

Object-Specific Markov Random Field for Reconstruction. A MRF comprises of a set
of discrete random variables {X1, X2, . . . , Xn} defined on the index set V , such that
each variable Xv takes a value xv from the label set X = {X1,X2, . . . ,Xl} of all
possible labels. We represent the set of all variables xv, ∀v ∈ V by the vector x. Unless
noted otherwise, we use symbols i and j to denote values in V . Further, we use Nv to
denote the set consisting of indices of all variables which are neighbours of the random
variable xv in the graphical model.

For the reconstruction problem, the set V corresponds to the set of all voxels in
the volume of interest, N is a neighbourhood defined on this set1, the binary variable

1 In this paper, we have used the standard 6-neighbourhood i.e. each voxel is connected to the 6
voxels surrounding it.
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xv denotes the labeling of the voxel v ∈ V , and the set X comprises of two labels
(‘obj’,‘empty’) representing whether the voxel belongs to the empty space or not. We
will use H to denote the set of all voxels present in the visual hull obtained from object
silhouettes. Every configuration x of such an MRF defines a 3D object reconstruction.

Given a set of images I and (or) a visual hull H (obtained using silhouettes), col-
lectively constituting the data D, D could be images, measurements and it could also
include the result of some other algorithm e.g. a visual hull, we wish to reconstruct a
known object. This can be done by labelling each voxel v in the volume of interest V
as belonging to the object reconstruction, or belonging to the scene. Taking a Bayesian
perspective, the optimal labels for the voxels are those which maximize the posterior
probability p(x|D), which can be written in terms of a Gibbs distribution as:

p(x|D) =
p(D|x)p(x)

p(D)
=

1
Zx

exp(−Ψ(x)), (1)

where Ψ(x) is the energy of the configuration x of the MRF. The most probable or
maximum a posteriori (MAP) reconstruction solution can be found by computing the
least energy configuration x∗ = argminx Ψ(x). The energy Ψ(x) corresponding to the
configuration x consists of likelihood and prior terms. These can be written in terms of
individual and pairwise interaction functions as:

Ψ(x) =
∑
i∈V

(ψ(xi) + φ(D|xi) +
∑

j

(ψ(xi, xj) + φ(D|xi, xj))) + const. (2)

Specifying the Likelihood Terms. Given the data D, the unary likelihood term φ(D|xi)
specifies the penalty (or cost) for assigning the label xi to the voxel vi. Assuming D =
H, we can define φ(D|xi) in terms of the visual hull as:

φ(D|xi = ‘obj’) =
{

α if i ∈ H,
β otherwise,

(3)

where α and β are arbitrary constants and satisfy the property α < β. Snow et al. [13]
used raw images along with their binary segmentations to develop a generalized version
of these terms. Their likelihood function incorporated the absolute difference in the in-
tensities of the pixels which intersected at a voxel. Their approach can be viewed as
using a visual hull where each voxel has an associated confidence value. In contrast to
the above approach, Kolmogorov et al. [8] only used image information and assumed
the segmentation to be unknown. They took (D = I) and used an image based photo-
consistency measure to define φ(D|xi) as: φ(D|xi = ‘obj’) = min{0, (Ip − Iq)2 − K}
where p and q are pixels in the images, which lie near the projection of the voxel i, and
Ip and Iq are their intensities.

In their recent work on multi-view stereo, Vogiatzis et al. [15] took D = {I and H}
i.e. they used both the visual hull H and object images I as the data D. They used a
photo-consistency term that was obtained from the images. Further, instead of using the
entire volume of interest, they only performed inference on the labels of voxels between
two specific surfaces Sbase and Sin. They defined Sbase as the surface of the visual hull,
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and defined Sin as the locus of voxels which are located at a specific distance din inside
Sbase. This is equivalent to using the unary likelihood term:

φ(D|xi = ‘obj’) =

⎧⎨⎩
−∞ if i ∈ H−,
+∞ if i /∈ H,
0 otherwise,

(4)

where H− is the volume enclose by Sin and is in effect a contraction of the actual
visual hull H. Although the use of various measures for the unary likelihood have been
investigated, the pairwise likelihood φ(D|xi, xj) has remained relatively ignored by
researchers. This term reflects the compatibility of two neighbouring latent variables
in the MRF, and has been shown to be extremely useful in the context for the image
segmentation problem, where it is called the contrast term [3,10]. We define this term
as:

φ(D|xi, xj) = λ exp
(
−g2(i, j)

2σ2

)
1

dist(i, j)
(5)

where g2(i, j) measures the difference in the estimated intensity values of the voxels
i and j and dist(i, j) gives the spatial distance between i and j. Such as estimate can
be obtained either by using voxel colouring methods or directly from the object images
in a manner analogous to the photo-consistency term. The effect of this term will be to
favour discontinuities aligning with the object surface.

2.1 Incorporating Priors

We now describe how weak and strong prior information can be incorporated in our
MRF framework.

Surface Smoothness as a Weak Prior. The pairwise interaction term ψ(xi, xj) has been
used in a number of methods as a weak prior to encourage smoothness in the recon-
struction surface [8,13]. This is done by penalizing dissimilar label assignments in
neighbouring voxels. The pairwise prior term takes the form of a Generalized Potts
model:

ψ(xi, xj) =
{

Kij if xi �= xj ,
0 if xi = xj .

(6)

Parametric Models as Strong Priors. Suppose we know the object we are trying to
reconstruct. Such information could be used to constrain the reconstruction result to
look like the object and intuitively improve the reconstruction. However, we face two
key problems at this juncture: (1) It is difficult to know what should be an appropri-
ate representation for such knowledge. (2) How could we integrated such information
in our Bayesian framework for the reconstruction problem? Our solution to the first
problem is the use of generative parametric models to represent knowledge about the
object. These models are parameterized by a set of parameters θ, which define the state
of the object. The MRF formulation is shown in the graphical model shown in figure 2.
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Fig. 2. The Bayesian framework for Object Reconstruction

In this framework the parameters of the object model are considered as latent (or hid-
den) variables. The energy function of the MRF is:

Ψ(x, θ) =
∑
i∈V

(ψ(xi|θ) + φ(D|xi) +
∑

j

(ψ(xi, xj) + φ(D|xi, xj))). (7)

For a particular value of θ, the model could be used to generate a coarse reconstruction
of the object. This reconstruction is used to define the unary prior term ψ(xi|θ). The
function ψ(xi|θ) is chosen such that given an estimate of the location and shape of the
object, voxels near to that shape are more likely to be included in the reconstruction,
the term used by us is: ψ(xi|θ) = − log p(xi|θ) where p(xi|θ) is defined as:

p(xi = ‘obj’|θ) =
1

1 + exp(μ ∗ (d(i, θ) − dsur))
(8)

where d(i, θ) is the distance of a voxel i from the surface generated by the parametric
model and dsur is the average distance from the model surface to the surface voxels in
the true object reconstruction. The distance for all the voxels in the volume of interest
is efficiently computed by performing a 3D distance transform [5]. An example of a 3D
distance transform is shown in figure 1(b). The parameter μ determines the ratio of the
magnitude of the penalty that points outside the shape prior have compared with points
inside the shape.

3 MAP-MRF Inference Using Dynamic Graph Cuts

We next describe how to find the optimal configuration of the object specific MRF. As
stated earlier this problem can be solved by minimizing the energy function defined by
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the MRF. Energies like the one defined in (7) can be solved using graph cuts if they
are regular [9]. In our case, this is indeed the case and thus for a particular value of θ,
we can find the optimal configuration x∗ = minx Ψ(x, θ) using a single graph cut. The
labels of the latent variable in this configuration give the optimal reconstruction.

3.1 Optimizing over the Parametric Model Parameters

Since our strong object-specific model prior is defined in terms of latent variables, we
would like to make sure that it reflects the correct pose of the object. To do this we solve
the problem: θopt = arg minθ minx Ψ(x, θ). In our experiments we observed that the
energy function projection Ψ(x∗, θ) is locally uni-modal and can be optimized using
standard techniques like gradient descent. The plots of this projection can be seen in
figure 5(i). Our algorithm starts with an initial guess of the latent variables pose and
optimizes it using standard minimization methods. Once an estimate of θopt has been
found we can find the optimal reconstruction xopt = argminx Ψ(x, θopt) using a single
graph cut.

Minimizing Energies using Dynamic Graph Cuts. The minimization procedure for es-
timating θopt involves computing the value of minx Ψ(x, θ) for different values of θ.
Each such computation requires a graph cut to be computed and if the time taken for
computing this cut is high, it would make our optimization algorithm quite slow. Here
we make the following observation: Between different iterations of the optimization
algorithm, the change in the value of θ is small. This is reflected in the change in the en-
ergy function we are required to minimize, which is small as well. For such a sequence
of energies, the graph cut computation can be made significantly faster by using the
dynamic graph cut algorithm recently proposed in [7]. This algorithm works by using
the solution of the previous graph cut computation for solving the new instance of the
problem. In our experiments, we found that the dynamic algorithm was 15-25 times
faster than the algorithm proposed in [2], which recomputes the st-mincut from scratch
and has been shown to be the fastest algorithm for graphs commonly used in computer
vision problems.

4 Applications

Within this section, we will show some results obtained by using the Bayesian frame-
work defined in section 2. We apply our approach on two object categories to show
how strong object-specific priors can help in obtaining accurate reconstructions from
ambiguous and noisy data.

4.1 Deformable Models

Deformable models as the name suggests can alter their shape and in the process gener-
ate different instances of the object. These can be used while reconstructing objects with
high intra class variability. The latent variables θ characterizing these models dictate the
exact shape that the model takes. We illustrate their use in obtaining 3D reconstructions
of a vase, from a few images shown in figure 3(b).
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(a) (b)

Fig. 3. a) The Parametric Deformable Vase Model. b) Object Reconstruction using Deformable
Models. The images used for reconstruction are shown in row 1. The second row shows two
views of the visual hull obtained using noisy silhouettes of the vase. In the third row, we show the
results obtained by our method before/after optimizing the parameters of the deformable model.
It should be noted here that the reconstruction results obtained by our method are smoother and
do not suffer from discontinuities such as the cut seen in the visual hull.

The Parametric Vase Model. We use a rotationally symmetric model (shown in figure
3(a)) for the vase. The model is described in terms of circles in the horizontal plane as:
x2 + y2 = ‖f(z)‖ where f(z) is a n-degree polynomial. In our experiments, we bound
the degree of f(z) to four, making it take the form:

f(z) = C4z
4 + C3z

3 + C2z
2 + C1z + C0. (9)

The coefficients {C0, . . . , C4} of the function constitute the set of latent parameters θ
characterizing the shape of the model. We optimize over the values of these coefficients
(as explained in section 3) to obtain a shape that acts as a coarse reconstruction of
the actual object. The model can be strengthened by making it more object-specific. It
can be observed that the vase surface has two inflection points. This constraint can be
incorporated in our model by making sure that the second derivative of f(z), which is
defined as f

′′
(z) = 12C4z

2 + 6C3z + 2C2 has two unequal real roots. This gives us
the constraint: 36C3

2 − 96C4C2 > 0.

Experiments. We use the images and silhouettes of the vase as data. These are obtained
from four cameras which are uniformly distributed around the object as shown in figure
3(b). We quantize the volume of interest into 3 × 105 voxels. The object-specific MRF
formulated for the reconstruction problem has 1.5 × 105 binary latent variables. The
energy Ψ(x∗, θ) of this MRF is constructed as described in section 2. We then minimize
it with respect to the shape model parameters θ to obtain an estimate of θopt. The results
from the experiment are shown in figure 3(b).
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(i) (ii)

Fig. 4. i) Camera Positions and Reconstruction. The figure show the position and orientations of
the four cameras which were used to obtain the images which constituted the data-set for our
first experiment. We also see the reconstruction result generated by our method. ii) 3D Object
Reconstruction using Strong Object-Specific priors. The first and second rows show the images
and silhouettes used as the data. Two views of the visual hull generated using the data are shown
in the first two columns of the bottom row ((a) and (b)). The visual hull is noisy and contain
artifacts like the spurious third arm caused by the ambiguity in the problem. We are able to
overcome such problems by using strong prior knowledge. The reconstructions obtained by our
method are shown in column 3 and 4 ((c) and (d)).

4.2 Articulated Models

Articulated models not only help in reconstructing the object, but also provide infor-
mation about its pose. In this section, we will use an articulated stick-man model to
solve the challenging problem of reconstructing and estimating the shape (and pose) of
humans. The problem is especially hard because humans have many joint angles and
thus the parametric model needed to describe them will have a high number of latent
variables.

The Stick-man model. We use a simple articulated stick-man model (shown in figure
1(b)) in our experiments to generate a rough pose-specific prior on the reconstruction of
the human. The model is parameterized by a 26 dimensional pose vector θ that describes
absolute position and orientation of the torso, and various other joint angle values. There
are no constraints or joint-limits incorporated in our model.

Experiments. We use real and synthetic video sequences of humans as data. The data-
set for our first experiment consists of videos sequences of four views of a human
subject walking in a circle. This data-set is used in [1]. It comes with silhouettes of the
human subject obtained using pixel-wise background intensity modeling. The cameras
position and orientations with respect to the object are shown in the figure 4(i).
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(i) (ii)

Fig. 5. i) The plots shows how the value of minx Ψ(x, θ) is affected by changes in the pose
parameters of the stick model used to generate the reconstruction prior. The first plot shows the
values obtained by varying the global translation and rotation parameters of the stick-man model
in the x-axis. The second plot shows the values while varying the joint angles of the left shoulder
in x and z axes. Observe that the effect of changing the joint angles of the left shoulder is less than
the effect caused by changes in the global translation and rotation parameters. ii) Pose Inference
and 3D Object Reconstruction results. The data-set is the same as used in [1] and consists of 4
views of a human subject walking in a circular path. Middle row: Reconstruction result. Bottom
row: Pose estimate. Observe that we are able to get excellent reconstruction and pose estimation
results even when the visual hull contains large errors (as seen in frame 60 and 74).

The first step in our method is the computation of the visual hull. The procedure
starts with the quantization of the volume of interest as a grid of cubical voxels of equal
size. Once this is done, each voxel center is projected into the input images. If any of the
projections falls outside the silhouette, then the voxel is discarded. All remaining voxels
constitute the visual hull. Some visual hull results are illustrated in figure 4(ii). It can
be observed that because of the skewed distribution of cameras, the visual hull is quite
different from the true object reconstruction. Further, as object segmentations are not
accurate, it has large errors. The prominent defects in the visual hull results include: (i)
The presence of holes because of segmentation errors in the object silhouettes (bottom
row (b)), (ii) the presence of auxiliary parts caused by shadows, (iii) the third-arm
effect resulting from self-occlusion and ambiguity in the reconstruction due to small
number of views (bottom row (a)). It can be seen that our reconstruction results do not
suffer from these errors (bottom row (c) and (d)).
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Analysis of the Inference Algorithm. Once the visual hull has been computed, we for-
mulate the object-specific MRF as described in section 2. Only visual hull based terms
are included in the MRF energy construction, and no image based term is used. We
estimate the optimal parameters θopt for the stick-man model by minimizing the MRF
energy given in equation (7). Figure 5(i) shows how minx Ψ(x, θ) changes with differ-
ent parameters of the stick-man model. It can be clearly seen that the energy surface
is locally uni-modal. We use the Powell minimization [6] algorithm for optimization.
The graph constructed for the energy minimization procedure has a million nodes con-
nected in a 6 neighbourhood. The time taken by the algorithm of [2] to compute the
st-mincut in this graph is 0.3 seconds. In contrast, the dynamic graph cut algorithm
only takes 0.01 seconds. For each frame of the video sequence, the Powell minimizer
needs roughly 500 function evaluations of minx Ψ(x, θ) to obtain the solution for θopt.
Further, as each function evaluation takes roughly 0.15 seconds, we are able to get the
pose and reconstruction results in a minute.

Results. Our method is able to obtain accurate object reconstruction results. Addition-
ally, we also obtain an accurate estimate of the pose parameters of the subject. The
reconstruction and pose estimation results for a few frames are shown in figure 5(ii).

5 Conclusions

This paper sets out a Bayesian framework for 3D object reconstruction which allows
for the integration of ‘strong’ object-specific and ‘weak’ smoothness priors with a data
based likelihood term. We showed how simple deformable and articulated models can
be used as strong priors to overcome the ambiguity plaguing the reconstruction prob-
lem. The results of our experiments show that this formulation is not only able to obtain
good reconstruction results from noisy data, but also provides us with an accurate esti-
mate of the state of the object, which is quite useful in applications such as human pose
inference.
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Abstract. This paper presents an efficient algorithm for disparity map
computation with an adaptive window by establishing two frame stereo
correspondence. Adaptive window based approach has a clear advan-
tage of producing dense depth maps from stereo images. In recent years
there has not been much research on adaptive window based approach
due its high complexity and large computation time. Adaptive window
based method selects an appropriate rectangular window by evaluating
the local variation of the intensity and the disparity. Ideally the win-
dow need not be rectangular but to reduce algorithmic complexity and
hence computation time, rectangular window is taken. There is a need
for correction of errors introduced due to the rectangular window which
is not dealt by the existing algorithm. To reduce this error, a method
has been proposed which not only improves the disparity maps but also
has a lesser computational complexity. To demonstrate the effectiveness
of the algorithm the experimental results from synthetic and real im-
age pairs (provided by middlebury research group) including ones with
ground-truth values for quantitative comparison with the other methods
are presented. The proposed algorithm outperforms most of the existing
algorithms evaluated in the taxonomy of dense two frame stereo algo-
rithms. The implementation has been done in C++. The algorithm has
been tested with the standard stereo pairs which are used as benchmark
for comparison of algorithms in the taxonomy implementation.

1 Introduction

Stereo correspondence for obtaining dense disparity map in two frame stereo is a
classical problem in computer vision. Various algorithms have been proposed for
the disparity map computation in past whose taxonomy was very well presented
by Scharstein and Szeliski [3]. Most of these techniques utilize intensity variation
to compute disparity map. The most common amongst them are SSD (Sum of
Squared intensity Difference) based, which compute the window with minimum
SSD to estimate the disparity. One Common problem these algorithms face is
the computation of support region or window size. Each pixel has neighborhood
(support region/window) with different intensity and disparity variations. So
selecting an efficient window becomes a difficult task. The region enclosed by
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window must be large enough to include enough intensity variations and small
enough to avoid the effect of projective distortion. We need to adaptively com-
pute the window dimensions for each pixel based on the intensity and disparity
variations around the pixel.

The algorithms gaining popularity now-a-days are Graph cut based [4]. These
are global algorithms which make explicit smoothness assumptions.

2 Adaptive Window Algorithm

M. Okutomi and T. Kanade [1] proposed a method to compute adaptive window
for each pixel which iteratively updates window size and disparity estimate in
each run. Adaptive Windows can be considered a form of local segmentation,
as they divide the image into logical units to be considered separately. Here
the logical unit is an image area with enough visual interest for a good match
but not too much depth variation. The major problem in computing a locally

Fig. 1. Gaussian Distribution of Certainty in Disparity Estimation

adaptive window is in computing and using disparity variances. All we can mea-
sure directly is intensity variation. Two major algorithms proposed so far are
based on rectangular window [1] and arbitrary shaped window [2]. The algorithm
with arbitrary shaped window requires a higher computation time in compari-
son to the former. [1] employed a statistical model of the disparity distribution
within the window with the assumption that difference of disparity at a point in
the window from the center point (0, 0) has a zero-mean Gaussian distribution
with variance proportional to the distance between these points as shown in Fig-
ure (1). As we move farther from the center pixel, the uncertainty of disparity
estimate as compared to that of center pixel increases. The Disparity estimate
and its uncertainty for a given window W can be calculated by:
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Δ̂d =

∑
i,j∈W

(f1(ξi,ηj)−f2(ξi+d0(0,0),ηj))
∂

∂ξ f2(ξi+d0(0,0),ηj)

2σ2
n+αf αd

√
ξ2

i +η2
j∑

i,j∈W

( ∂
∂ξ f2(ξi+d0(0,0),ηj))2

2σ2
n+αf αd

√
ξ2

i +η2
j

(1)

σ2
Δd =

1∑
i,j∈W

( ∂
∂ξ f2(ξi+d0(0,0),ηj))2

2σ2
n+αf αd

√
ξ2

i +η2
j

(2)

where, f1(x, y) and f2(x, y) are the intensity functions of reference and matching
image respectively, d0(x, y) is the initial disparity estimate, σ2

n is the power of
noise of error per image. The parameters αf and αd represents the disparity
and intensity fluctuation respectively. We can compute the values of αf and αd

within the window as:

αd =
1

Nw

∑
i,j∈W

(d0(ξi, ηj) − d0(0, 0))2√
ξ2
i + η2

j

(3)

αf =
1

Nw

∑
i,j∈W

(
∂

∂ξ
f2(ξi + d0(0, 0), ηj))2 (4)

where Nw is the number of samples within the window. Therefore given all the
required parameters, equations 1 - 4 will enable to calculate a better estimate
of disparity at the center of the window as d0(x, y) + Δd with the minimum
uncertainty. So we can improve the disparity estimate given initial estimate
by minimizing its uncertainty and simultaneously replacing the new disparity
estimate by incrementing the current disparity estimate by Δ̂d.

2.1 The Algorithm

Let us go through the algorithmic approach given by [1] for computing better
disparity estimates, given the input stereo pair and their initial disparity esti-
mate:

1. Start with an initial disparity estimate d0(x, y).
2. For each pixel (x, y) in f1,

(a) Place a 3 x 3 Window centered at x, y and compute uncertainty by using
equation 2.

(b) Expand the window by one pixel in one direction, e.g., to the right x+,
for trial, and compute the uncertainty for the expanded window. If the
expansion increases the uncertainty, the direction is prohibited from fur-
ther expansions. Repeat the same process for each of the other three
directions x−, y+, and y− (excluding the already prohibited ones).

(c) Compare the uncertainties for all the directions tried and choose the
direction which produces the minimum uncertainty.

(d) Expand the window by one pixel in the chosen direction.
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(e) Iterate steps (b) to (d) until all directions become prohibited from ex-
pansion or until the window size reaches a limit that is previously set.

(f) Update the disparity d0(x, y) by adding Δd computed by equation 1 for
the modified window.

3. Iterate the above process until the disparity estimate d(x, y) converges, or
up to a certain maximum number of iterations.

The algorithm truly justifies its approach. Flat surfaces have very less dispar-
ity variation but taking large window may blur the edges. In contrast, a smaller
window gives sharper disparity edges at the cost of noisy surfaces. The adaptive
window algorithm takes care of flat surfaces as well as sharp edges, however,
there are two major problems with the above algorithm:

1. When window size is increased by a row or a column, the new row or col-
umn might have some pixels, although in lesser quantity, which increase the
uncertainty of the disparity estimate. This causes errors in disparity estima-
tion.

2. The above algorithm requires a lot of computation especially when there is
a large area of flatness in the image.

Although researchers have tried to solve the first problem by taking arbitrary
shaped (non-rectangular) window, but computation of such windows increases
the computation time even more and hence makes the second problem even
worse. Also applying the above algorithm till convergence of disparity makes it
unsuitable for real-time applications.The next section solves these problems of
the adaptive window.

3 The Proposed Efficient Adaptive Window Algorithm

On the basis of major pitfalls identified for the algorithm described above, the
new approach is categorized into two parts viz. Reducing the errors in disparity
estimate and Reducing the computation time, although the solution to the first
one also reduces the computation time. Then the approach is compiled into an
algorithm succeeding the two sections. Thereafter the results of the improved
algorithm are compared and analyzed with the existing algorithms.

3.1 Reducing the Errors in Disparity Estimate

The errors introduced by rectangular window tend to be large specially when
image contains less flat surfaces or more curved surfaces. This is because, when
the optimum rectangular window is computed, it may consist of pixels which
have less intensity correspondence but other pixels in the row or column nullify
its effect leading to errors in disparity estimation. This my introduce error in
prediction up to three-four pixels. Therefore, there is a need for correction of
this error. A new method to correct the error is proposed.

For each pixel take the optimized adaptive window as computed by the adap-
tive window algorithm. Now, for this window compute SSD by shifting the
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window in the range −d to +d around the disparity predicted by the above
algorithm.d may be 0, 1, 2, 3, 4... . Let di be the value between −d and +d at
which SSD comes out to be minimum. Now update the new value of disparity
as:

dr(x, y) = dr(x, y) + di

This value is the new value of the disparity of pixel of interest. By shifting
the window over the range −d to +d we compute the disparity which further
reduces the error as by doing the above process we compute the best possible
match of the pixel in the reference image with the matching image within the
neighborhood of the disparity estimate. Thus the disparity estimate computation
by this algorithm will converge faster as compared to adaptive window algorithm
of [1]. Hence it also reduces the computation time and increases convergence rate.
The next section deals with reducing the computation time of the optimum
window for the pixels in image.

3.2 Reducing the Computation Time

In the adaptive algorithm of [1] we take the initial window of size 3 x 3 and
increase the size of the window in the direction of minimum uncertainty. And
then for the next pixel we again start from 3 x 3. By the property of disparity
smoothness for most of the region in the image, we can start with the window size
averaged over the surrounding left, upper-left and diagonal-left, diagonal-right,
i.e., the window size of surrounding pixels which are already computed.

Fig. 2. Initial window estimate: Direction-wise Average of already computed neighbor-
ing window sizes

Now taking this window size contract the window by one pixel in each direction
and check if the uncertainty decreases for any direction. If for a direction the
uncertainty σ2

Δd decreases then from next iteration start contracting in that
direction(i.e. reduce the window size in that direction) otherwise start expanding
in that direction. This approach applies to all the directions. After this, if at a
particular iteration, the uncertainty does not decrease, then that direction is
prohibited from further expansion/contraction.
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3.3 The Proposed Algorithm

Given below is the complete algorithm for the improved adaptive window ap-
proach described in the previous two sections:

1. Start with an initial disparity estimate d0(x, y).
2. Make label for all the pixel as ‘NW’.
3. For each pixel (x, y) in f1,

(a) Place a Window centered at x, y of dimensions average of windows of
all the neighboring pixels having label ‘W’ and compute uncertainty by
using equation 2. If all the neighboring pixels have label NW then take
the initial window size as 3 x 3, label all the edges of this window as ‘E’
and skip the next step.

(b) Contract the one of window edge by one pixel and compute the uncer-
tainty. If it decreases the uncertainty then label the edge as ‘C’ else label
the edge as ‘E’. Repeat the process for all the edges.

(c) Expand/Contract the edge by one pixel (Depending on whether label
associated with it is ‘E’ or ‘C’) in one direction, e.g., to the right x+, for
trial, and compute the uncertainty for the expanded/contracted window.
If the expansion/contraction increases the uncertainty, the direction is
prohibited from further expansions and label the edge as ‘P’. Repeat
the same process for each of the other three directions x−, y+, and y−
(excluding the edges with ‘P’ label).

(d) Compare the uncertainties for all the directions tried and choose the
direction which produces the minimum uncertainty.

(e) Expand/Contract the window by one pixel in the chosen direction.
(f) Iterate steps (c) to (e) until all the edges become prohibited with label

‘P’ or until the window size reaches a limit that is previously set.
(g) Store the final window size and label the pixel as ‘W’.
(h) Update the disparity d0(x, y) by adding Δd computed by equation 1 for

the modified window.
(i) Compute the SSD for the disparity set {d0(x, y) − d, d0(x, y) + d} (d is

the maximum disparity error to be rectified) and update d0(x, y) with
the disparity with minimum SSD.

4. Iterate the above process until the disparity estimate d(x, y) converges, or
up to a certain maximum number of iterations.

The above algorithm computes the new disparity map in much less time.
This is because, in general, the window sizes comes out to be nearly same to the
neighboring window sizes. Also as in each step, the disparity is also improved by
computing disparity corresponding to minimum SSD, the algorithm converges
in less number of iterations. The results which top each category are shown in
bold face. This algorithm converges faster for the images with large planar or
textured surfaces. The results of the proposed algorithm are examined in the
next section.
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4 Experiment and Results

The evaluation criteria used for the experiments is based on the propositions
given in [3]. BO stands for occluded pixels, BŌ stands for non occluded pixels,
BT stands for textured pixels, BT̄ stands for non-textured pixels and BD stands
for pixels at discontinuity. For complete description of evaluation criteria, refer
[3]. In all of the experiments, the window size threshold has been kept as 16, due
to increased time complexity. The value of d (Range of disparity for correction)
is taken as 6 for all the results. For a complete set of input images, please refer
[5]. The section proceeds with the results of the algorithms on images followed
by the comparison with other existing algorithms.

4.1 Improvement in Results

Results with Tsukuba Image: Tsukuba image contains non-planar surfaces
with occlusions. So the window sizes computed comes out to be lower. Figure 3
show the ground truth image, disparity image computed with SSD 9x9 window,
disparity image of adaptive window algorithm using initial disparity estimate of
the ground truth image, and disparity image of proposed algorithm. Clearly the
proposed algorithm outperforms the other two algorithms as clear with the data
shown in the Table 1 and 2.

The result shown in Table 1 and 2 are tested with value of d = 3 and only two
iterations are performed. Obviously, the proposed improved adaptive algorithm
will converge faster than the existing adaptive window algorithm. Clearly, the
edges of the objects have sharpened and errors textured and non-textured have

Table 1. Root mean square error comparison of simple SSD 9x9 window algorithm,
adaptive window algorithm and the Proposed Adaptive Window Algorithm of tsukuba
image based on several parameters.The results which top each category are shown in
bold face.

Algorithm Iterations BO BŌ BT BT̄ BD All

SSD 9x9 Window - 5.06 1.67 1.72 1.60 3.27 1.84

Adaptive Window 2 5.06 1.60 1.69 1.46 3.18 1.77

Proposed Adaptive Window 2 4.96 1.43 1.57 1.21 2.96 1.62

Table 2. Bad pixel percentage (with disparity error greater than 1 pixel) comparison
of simple SSD 9x9 window algorithm, adaptive window algorithm and the Proposed
Adaptive Window Algorithm of tsukuba image based on several parameters. The results
which top each category are shown in bold face.

Algorithm Iterations BO BŌ BT BT̄ BD All

SSD 9x9 Window - 87.95% 9.88% 9.55% 10.33% 37.25% 11.89%

Adaptive Window 2 88.49% 9.12% 8.59% 9.85% 34.56% 11.17%

Proposed Algorithm 2 83.53% 7.25% 7.15% 7.38% 30.84% 9.21%
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(a) Ground Truth (b) 9x9 Window SSD

(c) Adaptive Window (d) Proposed Adaptive Window

Fig. 3. Result of image tsukuba with Proposed Adaptive window Algorithm (2 Itera-
tions)

improved a lot. This is because the errors are expected to be in the vicinity
of the current estimation. So even if correct result is not predicted in the first
iteration, it is likely to converge in the second iteration. Further the bad pixel
percentage have decreased in all the areas. If the initial estimate was better, the
new estimate could have been much better.

Results with Venus Image: Venus image contains planar surfaces with occlu-
sions. It has 5 planes, some slant, untextured regions and one crease. Figure 4
show the ground truth image, disparity image computed with SSD 9 x 9 window,
disparity image of adaptive window algorithm using initial disparity estimate of
the ground truth image, and disparity image of the proposed algorithm.

The result shown in Table 3 and 4 are tested with value of d = 3 and only
two iterations are performed. Although, with this image, the proposed algorithm
does not perform so well in the occluded regions, but it performs considerably
well in textured as well as non textured region. As we can see from Figure 4(a),
the algorithm has improve the results considerably in the top right region of the
image, which is textured region. Obviously the proposed algorithm outperforms
the other two algorithms, as it is clear with the data shown in the succeeding
tables.



902 N.K. Shukla, V. Rathi, and V. Chakka

(a) Ground Truth (b) 9x9 Window SSD

(c) Adaptive Window (d) Proposed Adaptive Window

Fig. 4. Result of image venus with Proposed Adaptive window Algorithm (1 Iteration)

Table 3. Root mean square error comparison of simple SSD 9x9 window algorithm,
adaptive window algorithm and the Proposed Adaptive Window Algorithm of Venus
image based on several parameters.The results which top each category are shown in
bold face.

Algorithm Iterations BO BŌ BT BT̄ BD All

SSD 9x9 Window - 6.81 2.31 1.65 3.27 1.70 2.47

Adaptive Window 1 7.73 2.01 1.43 2.84 3.01 2.25

Proposed Adaptive Window 1 8.18 1.71 1.27 2.36 2.21 2.02

4.2 Time Complexity Analysis

As proposed in section 3.2, the time analysis has been done for the four image
sets viz. Map, Sawtooth, Tsukuba, Venus. Table 5 shows the computation time
taken for the four images including the initial disparity estimation time. The
experiments have been performed on 2.6 GHz, Pentium 4 computer running
windows XP operating system.

Table 5 clearly shows the large reduction in computation time. Note that it
does not include SSD optimization as proposed in section 3.1, because at each
iteration SSD has its own computation time at the same time helps the results
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Table 4. Bad pixel percentage (with disparity error greater than 1 pixel) comparison
of simple SSD 9x9 window algorithm, adaptive window algorithm and the Proposed
Adaptive Window Algorithm of Venus image based on several parameters. The results
which top each category are shown in bold face.

Algorithm Iterations BO BŌ BT BT̄ BD All

SSD 9x9 Window - 85.95% 14.11% 6.96% 28.70% 10.24% 15.43%

Adaptive Window 1 93.75% 11.13% 6.35% 20.88% 40.68% 12.65%

Proposed Algorithm 1 92.42% 7.36% 4.54% 13.12% 24.44% 8.93%

Table 5. Time Taken to compute disparity estimate without ssd optimization including
initial disparity estimation time

Image Computation Time of existing al-
gorithm (in secs.)

Computation Time of Proposed al-
gorithm (in secs.)

Map 86.387 13.343

Sawtooth 338.25 51.248

Tsukuba 229.474 21.234

Venus 345.312 52.232

converge faster then existing adaptive window algorithm. So SSD reduces overall
time but increases the iteration time. As iteration time and overall time are
not related in the direct way, therefore analysis has been done without SSD
optimization. Also note that the window size has been limited to 16 x 16 so
the optimization gives errors at some point. It is intended to improve this in the
future. Although the time has considerably reduced with the proposed approach,
further optimizations are required to make the algorithm work for real-time
applications.

4.3 Comparison with Other Algorithms

An important feature of adaptive window algorithm proposed by [1] is that it
is completely local and does not include any global optimization. Also, the al-
gorithm does not use any post-processing smoothing, but smooth surfaces are
recovered as smooth while sharp disparity edges are retained. Therefore, it per-
forms better in most of the region than existing algorithms. A comparison of
proposed algorithm has been done with the other algorithms based on the re-
sults given in [3]. The parameters used are BŌ (RMS Error in non occlude
pixels), BT̄ (RMS Error for non textured pixels) and BD (RMS error at discon-
tinuity).The proposed algorithm with reduced computation time has not been
compared with existing algorithm due to unavailability of computation results
of other algorithms. Figure 5 show the comparison of proposed algorithm with
other algorithms. The results of the proposed algorithm are underlined. Clearly
the algorithm outperforms most of the algorithms, given that a good initial dis-
parity estimate is taken. The correctness of this comparison is subject to the
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Fig. 5. Initial window estimate: Direction-wise Average of already computed neighbor-
ing window sizes

data of other algorithms given in [3]. The algorithm is performing a bit worse at
discontinuity in Venus image due to slanted regions, but overall it is better. After
a set of experiments most of the stereo pairs gave best results with minimum
limiting window size of 16 x 16 and value of d as 6, however, the value of d must
be decreased with the number of iterations, as the disparity error reduce in each
iteration.

5 Conclusion

We have presented an improved and efficient iterative stereo matching algorithm
using adaptive window in this paper. The algorithm selects a window adaptively
computed by the algorithm proposed by [1] and performs WTA for SSD around
each pixel to reduce disparity errors introduced by usage of rectangular window
and floating point disparity errors. The proposed algorithm helps improving the
disparity estimate at each iteration over the image which in turn helps the dis-
parity estimate to converge faster. The adaptive window algorithm proposed by
[1] has been taken because, it is completely local and does not include any global
optimization. Also, the algorithm does not use any post-processing smoothing,
but smooth surfaces are recovered as smooth while sharp disparity edges are
retained. Given a good initial disparity estimate, the proposed algorithm will
reduce the disparity errors. However, the number of iterations and computation
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time depends on the algorithmic parameters. The experimental results demon-
strate a clear advantage of the proposed algorithm over the algorithms with a
fixed window size and existing adaptive window based algorithm for standard
stereo pairs. Also the proposed algorithm improves the computational complex-
ity by a large factor. We are working towards further reducing the computation
for the real-time applications.

References

1. Takeo Kanade and Masatoshi Okutomi, A stereo matching algorithm with an adap-
tive window: Theory and Experiment, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(9):920 932, September 1994.

2. O Veksler, Stereo correspondence with compact windows via minimum ratio cycle,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12):1654-1660,
December 2002.

3. Daniel Scharstein and Richard Szeliski, A Taxonomy and Evaluaion of Dense Two-
Frame Stereo Correspondence Algorithms, International Journal of Computer Vi-
sion, Vol. 47, Numbers 1-3, pages 7-42, April 2002.

4. V. Kolmogorov, Graph Based Algorithms for Scene Reconstruction from Two or
More Views. PhD thesis, Cornell University, 2004.

5. http://cat.middlebury.edu/stereo/, Middlebury Stereo data and basic implementa-
tion.



Robust Homography-Based Control for Camera

Positioning in Piecewise Planar Environments

D. Santosh Kumar and C.V. Jawahar

Center for Visual Information Technology
International Institute of Information Technology

Hyderabad 500032, India
{santosh@students., jawahar@}iiit.ac.in

Abstract. This paper presents a vision-based control for positioning a
camera with respect to an unknown piecewise planar object. We intro-
duce a novel homography-based approach that integrates information
from multiple homographies to reliably estimate the relative displace-
ment of the camera. This approach is robust to image measurement er-
rors and provides a stable estimate of the camera motion that is free from
degeneracies in the task space. We also develop a new control formula-
tion that meets the contradictory requirements of producing a decoupled
camera trajectory and ensuring object visibility by only utilizing the ho-
mography relating the two views. Experimental results validate the effi-
ciency and robustness of our approach and demonstrate its applicability.

1 Robotic Vision

The use of computer vision techniques to control robotic systems has received
great popularity in recent times [1]. Images captured by cameras attached to
a robot provide ample information about its surroundings that assists it in ef-
ficiently navigating the environment. This field, known as Visual Servoing [2],
has gained recent prominence due to the widespread availability of high quality
cameras and low cost microprocessors. In addition to robotics, visual servoing
algorithms also find interesting applications for interactive vision systems such
as video conferencing, tracking, active vision, augmented reality etc. The vi-
sual feedback increases the accuracy of the overall vision system and relaxes the
requirement of high precision accessories.

Many servoing techniques have been proposed and extensively studied in liter-
ature. In [3], optical flow is used to control the pose of the camera in conjunction
with a Jacobian-based adaptive controller. In [4], 3D object pose is estimated and
utilized to regulate the camera pose error. The class of algorithms similar to the
former method constitute the popular Image-based Visual Servoing techniques
while the latter pertain to Position-based approaches. For the relative merits
and demerits of the above techniques, the reader may refer to [2]. Recently, a
new group of algorithms have been proposed [5,6,7] that exploit a combination
of the above methods to estimate the camera displacement between the desired
and the current pose. They combine the traditional Jacobian-based control with
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other techniques to form the class of Hybrid Visual Servoing algorithms. These
methods yield a decoupled, straight-line camera trajectory and possess a large
singularity-free task space.

Hybrid algorithms can essentially be classified into two primary categories.
Algorithms in the first category are generally based on the computation of the
essential matrix relating the two camera views [7,8]. Although the relative cam-
era displacement can be obtained even for unknown (non-planar) scenes, a prob-
lem with epipolar geometry is that, it degenerates in certain critical cases (for
example, when the target is planar or when the relative displacement is a pure
rotation) and hence is not suitable for servoing. Note that a positioning task is
accomplished only when the current and the desired images of the scene are sim-
ilar, which corresponds to the degenerate case. The second class of algorithms
determine the relative camera displacement by computing the homography in-
duced by a scene plane relating the two views. However, a major drawback of
these methods is the implicit assumption of the planarity of the scene, which pre-
vents their application to real world scenarios as the world is often made up of
non-planar regions. It must be emphasized that in either cases, the degeneracies
critically affect the convergence and predictability of the system. Thus dealing
with such degeneracies is of vital importance in the design of a stable system.

In summary, the desirable characteristics of a hybrid visual-control algorithm
are

– Absence of degeneracies in its task space
– Applicability to both planar and non-planar environments
– Robustness to image measurement errors
– Continuity in velocity instruction and smooth convergence behavior
– Independence from prior knowledge of the object model and initialization of

parameters

In this paper, we propose a new homography-based servoing algorithm that
achieves the above features. Our method integrates homographies induced by
multiple scene planes using geometric and subspace constraints to efficiently
estimate the motion and structure parameters (Fig. 1). Another contribution
of this paper is the development of a modified control law that provides the

Decompose HresEstimate (See Sect. 3)
Obtain Robust Homography

for each Plane
Compute Homography

Extract Features

Modified Control Law
(See Sect. 4)

F

F*

R,t/d,nHHi res

Feedback

Velocity Command V

Desired Image

Features

Non−Planar Object

Fig. 1. Visual-feedback control: Multiple homographies are integrated to obtain a ro-
bust homography, which is used in the modified control law to gain superior perfor-
mance
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complementary characteristics of producing a decoupled camera trajectory and
ensuring object visibility by only using the homography transformation relating
the two camera poses.

2 Homography-Based Visual Control

A visual servo control compares the current image of a target with the desired
image and the difference (or ‘error’) is used to drive the camera towards the goal
position. Often the task is not just to regulate the image error but also to ensure
a realizable camera trajectory. In such scenarios, homography-based control acts
as a convenient option as it regulates the error in camera pose by estimating the
3D motion parameters only using image information.

If all the object points lie on a 3D plane, their coordinates in the current
image I and the goal image I∗ are related by a ‘collineation’ [9]. Assume that a
point P lies on a plane whose normal vector is n as shown in Fig. 2. The point

πn

P

d

F*

F

t

R

p

p*

d*

Fig. 2. Homography-based Visual Servoing

expressed in current camera frame F is related to goal camera frame F∗ by a
rotation matrix R and translation vector t as

P ∗ = R P + t = (R + t
nT

d
)P, (1)

where d = nT P is the distance of the plane π from the current camera center.
Assuming the camera intrinsic parameters are known, the image coordinates of
the 3D points are given by p = P

Z and p∗ = P∗
Z∗ respectively. This transforms (1)

to
Z∗

Z
p∗ = (R + t

nT

d
)p, (2)
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which can be rewritten as αp∗ = Hp where H3×3 = R + tnT

d is called the
‘homography’ matrix up to a scale factor α [9].

The recovered homography can be decomposed to obtain the rotation matrix
R, the scaled translation vector t

d and the plane normal n using the procedure
described in [10]. Unfortunately, in the most general case the decomposition of
H yields four different solutions (two of them being the ‘opposites’ of the other).
They can be reduced to two solutions by applying the visibility constraint (i.e.,
all the features must lie within the camera field of view). Further ambiguity
can be resolved by decomposing an additional homography induced by another
scene plane. Two pairs of solutions (S1, S2) and (S

′
1, S

′
2) are obtained respectively

and a compatible pair (Si, S
′
j) among them is found, i.e., a pair with common

motion (R, t
d). In general, there is only one compatible pair, and hence the unique

solution can be obtained. Thus using information from multiple planes, H can
be decomposed unambiguously to obtain the motion and structure parameters.
These parameters are used in the control law to generate the optimal velocity
instruction.

2.1 Degenerate Configurations and the Use of Multiple Planes

Some of the limitations of the existing hybrid techniques to estimate the relative
camera displacement were reviewed in Sect. 1. Recently, another method was
proposed by Malis et al. [6] to compute the relative orientation between the two
camera views for a non-planar object using the concept of ‘virtual parallax’ [11].
By defining a plane using three arbitrary points on the object, they estimate the
homography using this virtual plane and perform the positioning task.

A single homography estimate is not sufficient when a camera has to undergo
large displacements in visual servoing as the control can be affected by degenerate
configurations. Degeneracies in the task space can result either due to occlusion
of the feature points, the camera center approaching the world (virtual) plane,
the camera centers and the feature points arriving in a singular configuration [9]
or due to singular homographies. In either of the cases, when a degeneracy is
reached, the plane in consideration is switched i.e., the points used to define the
virtual plane are changed and a new plane using three different points is defined.
This switching causes a discontinuity in the velocity command and leads to the
instability of the control system. In Fig. 3, the effect of switching is demonstrated,
where a positioning task with respect to a piecewise planar object was studied.

The other drawbacks in defining a non-planar object using arbitrary planes
include

– Unfavorable for planar scenes. The methods using virtual parallax are
theoretically inefficient to deal with planar objects as the epipolar geometry
degenerates in this case [6].

– Initialization of plane parameters. In order to resolve the ambiguity in
homography decomposition, a priori information about the normal vector of
the virtual plane is required.

– Assumption of point features. Point correspondences are not available in
many practical situations or could be noisy. Since the virtual plane is defined
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Fig. 3. Velocity Screw using virtual parallax algorithm: (a) Servoing begun using plane

A reaches a degeneracy at F
′
whose origin intersects the plane (b) Discontinuity in the

velocity screw is due to the switching of planes (A to C) at F
′

explicitly using the non-coplanar points on the object, these methods may
not be applicable when such features are not available.

– Effect of measurement errors. Homography estimation is affected due to
measurement errors (‘drift’) in the correspondences. By choosing a different
set of points (that are error-free) to define the virtual plane, one can obtain
better results.

It must be emphasized that the above limitations are caused by the fact that
only information from a single plane is being utilized to perform the positioning
task. The bottleneck has been the fact that there exists no single homography
relating the two camera views that can be absolutely relied upon. Nevertheless,
by selectively exploiting the information available from multiple planes, one can
avoid the above drawbacks and achieve superior performance.

3 Homography Estimation Using Multiple Planes

The objective of the servoing task is to drive the disparity between the current
and the desired camera configurations to zero. The homographies relating the
two camera poses induced by different planar regions are used to guide the
positioning task.

Our approach proceeds initially by partially tessellating the non-planar scene
into piecewise planar patches. This is done by a simple partitioning of the image
features into homogeneous planar regions (See Fig. 6(a)). Interest regions are
detected and the regions subject to planarity constraint form a set of matching
regions [12]. The seed regions act as a ‘driver’ to guide the evolution of planar
patches in the image. Any interest region detector with the ability to detect ro-
bust and stable regions can be employed here. For each pair of matching regions,
a plane-induced homography is calculated.

Even though a single homography is sufficient to determine the motion pa-
rameters (rigidity constraint), information from multiple homographies can be
combined to obtain a reliable estimate of the camera displacement. However, to
avoid the estimation of multiple homographies at each instant, the constraints
on homographies can be exploited to reduce the computations. Recall from (2)
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that any H induced by a 3D scene plane is described by H3×3 ≈ R+ tnT . Given
a homography matrix Hπ induced by some 3D plane π, all other homographies
Hi can be described as λiHπ + tnT

i for a fixed pair of cameras [9]. This obser-
vation results from the fact that all the homographies differ only in their scale
λi and plane ni parameters. Consider k homography matrices H1, H2, . . . , Hk,
each expressed as a column vector in a 9 × k matrix. The rank of this matrix
is known to be utmost four [13]. Hence the space of all homographies between
two fixed camera views is embedded in a 4-dimensional linear subspace of 9.
This observation follows the fundamental fact that multiple planar patches in
the scene share the common global camera geometry (i.e., R, t).

3.1 Computation of the Reliable Homography

Given the rank-4 constraint, any new homography can be computed as a weighted
combination of four linearly independent homographies. The four homographies
are in general selected such that they are induced by planes that possess largest
area and best visibility (if the centroid of the features in a planar region is
within a threshold distance from the nearest image boundary, then it satisfies
the visibility constraint) since they are the most reliable.

The resultant homography Hres is defined as

Hres = λ1H1 + λ2H2 + λ3H3 + λ4H4, (3)

where the weights λi are assigned such that good homographies receive higher
weights while the degenerate or errored estimates are given low priority. By
appropriately choosing the λi’s, a reliable homography can be deduced. Recall
that, in general, any homography in the subspace can be expressed as a linear
combination of four base homographies. In our case, Hres is one such ‘valid’
homography possessing certain desired characteristics.

The principle behind the weight assignment is to prefer valid homographies
and reject singular ones in order to prevent abrupt switching of planes during
a degeneracy. It must be emphasized that most of the degeneracies are not
arbitrary changes and in general, can be predicted in advance. For instance,
distance between a camera and a (virtual) plane gradually regresses to zero.
Likewise, occlusion of planes can be anticipated by the persistent decrease in
area of the planar region (or the number of features). Other degenerate cases
can also be predicted in a similar manner and thus homographies that are likely
to confront a degenerate configuration can be rejected.

Assignment of weights. Let us define the constraints to assign the weights
and hence the parameter λi that is used in the computation of Hres.

– Re-projection Error. This constraint measures the accuracy of the es-
timated homography. A high error in re-projection indicates a poor esti-
mate and such H should receive less weight as parameters obtained from
it will be unreliable. Thus the weights are set inversely proportional to
the re-projection error. This ensures that planar regions that are affected



912 D.S. Kumar and C.V. Jawahar

by the cumulative tracking errors (‘drift error’) are avoided and thereby
guaranteeing the robustness of Hres to image measurement errors. The ex-
act weight λe

i is defined by first calculating the re-projection error i.e.,
e =
∑

k d(p∗k, Hpk) =
∑

k ||
p∗

k

||p∗
k||

− H∗pk

||H∗pk|| || and then assigning it using a
one-sided Normal distribution N(ethres, σe) where ethres is the tolerable re-
projection error and σe is the variance.

– Homography Determinant. This quantity signifies the ‘goodness’ of a
homography estimate. If the determinant is tending toward zero, it suggests
the arrival of a degeneracy and hence such a homography should acquire
low weight. Therefore the weights are set directly proportional to the value
of the determinant D. This constraint ascertains the resultant homography
to be free of singularities. Here again, the weights λD

i are set using a one-
sided Normal density function N(Dthres, σD) where Dthres is the minimum
acceptable determinant.

– Area of the Plane. Occlusion of a plane can be detected by measuring
the gradient of the plane area dA. If the area of the planar region decreases
drastically, then it indicates a possible occlusion of this plane in the near
future. Thus the λi’s are to be set inversely proportional to the value of dA.
More precisely, the weight λdA

i is set using a one-sided Normal distribution
N(dAthres, σdA) where dAthres is the minimum acceptable gradient.

These weights are normalized and summed together to obtain the resultant
weight λi. The final expression for Hres is calculated as

Hres =
4∑

i=1

λiHi, where
∑

i

λi = 1.

Hence a judicious assignment of weights using the above constraints helps in
deducing a ‘virtual’ homography with the desirable characteristics. A change of
bases might be required in case one of the Hi degenerate. However, the degener-
ate homography would automatically procure a low λ value and its replacement
does not affect the stability of the system. This approach is applicable even if
the scene consists of less than four planar regions. In such a case, the unavail-
able homographies in (3) acquire zero weight. It must be emphasized that the
method utilizes additional homographies to obtain a reliable homography es-
timate rather than computing the optimal estimate. The parameters obtained
from decomposition of Hres are used in the modified control law to compute the
camera trajectory.

4 Modified Control Design

Given the stable estimate of the motion and structure parameters, our focus is
to design a robust control that not only produces a decoupled camera trajec-
tory but also guarantees feature visibility. Classical approaches such as the 3D
control algorithms compute an optimal camera trajectory but very often violate
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the visibility criteria. 2D controls ensure the features to remain in the camera
field of view, although they suffer from non-optimal trajectory, computational
complexity of calculating the Jacobian pseudo-inverse and the demand for 3D
depth estimates. Note that providing the contradictory requirements of either
controls poses a daunting challenge in the design of an optimum control scheme.
Though a few attempts in this direction have been made [5,6,14], the devised
controls do not satisfy all the above requirements.

Much of the information that is required for performing the positioning task is
readily available from the homography transformation. The presence of multiple
planes in the scene further compliments this fact. We exploit this result to fulfill
the requirements of the desired optimal control.

Proposed Control. We first introduce the Cartesian (3D) control law and
then proceed to derive the robust control. Given the parameters obtained from
homography decomposition, the translational velocity to go directly to the goal
is determined as −λv( t

d ) d, where λv is a gain factor and d is the distance to the
plane (See Fig. 2). The rotational velocity is computed as −λωuθ, where λω is
again a gain factor and u, θ denote the rotation axis and angle that are obtained
using the Rodriguez formula for the rotation matrix R as θ = arccos(1

2 (tr(R)−1))
and [u]× = R−RT

2 sinc(θ) [4].
However, a direct control in the Cartesian space might result in the features

leaving the camera field of view. To enforce the visibility constraint, we use a
single image point to control two axes of rotation (around x and y) and the final
axis of rotation is controlled directly using the rotation matrix. This is done as
follows: We know from the image-based visual servoing control [2][

u − u∗

v − v∗

]
2×1

=
[
− 1

Z 0 u
Z

0 − 1
Z

v
Z︸ ︷︷ ︸

Lν

uv −(1 + u2)
1 + v2 −uv︸ ︷︷ ︸

Lωxy

v
−u︸︷︷︸
Lωz

]
2×6

[
ν3×1

ω3×1

]
6×1

, (4)

where p = [u v 1]T = [x 1]T , p∗ = [u∗ v∗ 1]T = [x∗ 1]T , Z = Z(P ) (See
Fig. 2) and [ν ω]T denotes the camera velocity. Equation (4) relates the motion
of image features i.e., x − x∗ to the camera motion using the 2 × 6 Jacobian
matrix L. It can be rewritten as x − x∗ = [Lν Lωxy Lωz ][ν ωxy ωz]T . Observe
that a simple rearrangement of terms yields

ωxy = L−1
ωxy

[(x − x∗) − Lνν − Lωzωz], (5)

where ν = ( t
d)d̂ and ωz = uzθ. In (5), the rotational motion ωxy is controlled not

only to minimize the differences between the current and the goal image features
but also to compensate the effects caused by translation on the image. This
ensures a straight-line feature trajectory in the image and thereby guarantees
object visibility. Estimates of the values Z and d are required in (4) that can be
obtained as follows: Firstly, observe that

det(H) = det(R +
tnT

d
) = det(R +

t(n∗T R)
d

) (6)
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= det(I +
tn∗T

d
)det(R) =

d + n∗T t

d
(7)

where (6) uses the fact that n∗ = Rn (See Fig. 2). Equation (7) can be further
simplified using the result d∗ − d = n∗T P ∗ − nT P = n∗T (P ∗ − RP ) = n∗T t.
Hence we have d̂ = d̂∗

det(H) . Using (7), Z can be calculated as

Z

d∗
=

Z

d∗
d

nT P
=

1
nT p

1
det(H)

. (8)

Thus we have Ẑ = d̂∗
nT p

1
det(H) , where d̂∗ is an estimate of the constant distance

to the plane in the desired camera frame. In general, this quantity is considered
as a gain ratio [6] and a coarse estimate obtained from a simple stereo technique
is adequate. Consequently, all the parameters required for the control are now
available directly from the homography decomposition.

In summary, the resultant expression for the velocity v is given as

v=

[−λvI3×3 03×2 03×1

02×3 −λωxyI2×2 02×1

01×3 01×2 −λωzI1×1

][
ν

ωxy

ωz

]⎛⎝=

⎡⎣ ( t
d
) d̂

L−1
ωxy

[(x − x∗) − Lνν − Lωz ωz]

uzθ

⎤⎦⎞⎠
(9)

Equation (9) has only one singularity that occurs at Z = 0 (See expression for
Lν). However, as discussed in the earlier section, this degenerate configuration
is avoided by the reliable homography computation algorithm. Thus by incor-
porating image features into the 3D control, an efficient control offering the
complimentary features of object visibility and decoupled trajectory has been
developed.

5 Experimental Results

In our experiments, we constructed an arbitrary configuration of planes as shown
in Fig. 4(a). The projection of points belonging to these planar regions onto the
image were considered as features. A perspective camera projection model was
assumed. The basic implementation of the proposed algorithm given below was
used to perform the positioning task.

1. Extract features from the current image and partition them into piecewise
planar regions

2. Compute homography Hi induced by each region
3. Select four independent homographies induced by the regions that have the

largest areas and best visibility (Only the selected regions need to be tracked
in the successive iterations)

4. Determine the weights using the geometric constraints and compute the
normalized weight λi for the selected homographies (Sect. 3.1)

5. Determine the robust homography Hres using (3)
6. Decompose Hres to obtain the motion and structure parameters (Resolve

ambiguity using an additional homography)
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7. Use the control law to obtain the velocity instruction v (See (9))
8. Repeat above steps until convergence

We analyzed the performance of our algorithm by generating several random
initial camera configurations and then moving the camera to a fixed desired
pose in a multi-plane scenario as shown in Fig. 4(a). Observe that a camera
can frequently encounter degenerate cases during the positioning task in such a
scene. However, in almost all the cases, the proposed algorithm was uninfluenced
by degeneracies. In Fig. 4(c), the velocity command generated by the proposed
approach for the particular scenario as tested in Fig. 3(a) is shown. Fig. 4(b)
shows the variation in weights corresponding to the homographies. Observe that
the weight corresponding to degenerate H tends towards the minimum value as
the camera approaches the degeneracy. The smooth velocity screw in Fig. 4(c)
demonstrates the stable behavior of the algorithm unlike in Fig. 3(b). Fig. 4(d)
displays the camera trajectory. Note that the expression for Z in (8) requires at
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Fig. 4. (a) Non-Planar scene considered in the experiments. (b) Normalized weight
values (c) Velocity Screw and (d) Camera Trajectory obtained for the scenario described
in Fig. 3(a) . Smooth convergence even in presence of degeneracies confirms the stable
behavior of the proposed approach.

least one feature p belonging to the planar region. However as a virtual homog-
raphy is being used in our case, it might not correspond to any physical plane
in the scene. In our method, we obtained this feature by finding the intersection
of the plane inducing the virtual homography Hres with other scene planes as
described in [15].

Analysis of the Control Law. The performance of the control law was an-
alyzed in simulation. Fig. 5 shows the velocity screw and the image feature
trajectory obtained during a positioning task using the proposed, 3D and the
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Fig. 5. Analysis of proposed control: Fig.(a),(b),(c) show the velocity screw obtained
in case of proposed, 3D and 21/2D controls respectively while (d),(e),(f) display the
feature trajectory. Similarity of velocity screws in (a) and (b) confirms the optimal
trajectory behavior of the proposed control while near straight-line image feature tra-
jectory in (d) ascertains the feature visibility.

(a) (b)

Fig. 6. Planar scene reconstruction using inter-image homographies: (a) A sample
frame along with the detected interest regions on the scene planes (b) Reconstruc-
tion result

21/2D [6] controls respectively. The velocity screw obtained using the proposed
control is very similar to the one obtained using the 3D control. Further, the fea-
ture trajectory almost follows a straight line. These two observations ascertain
our claims of decoupled (straight-line) camera trajectory and object visibility
using the proposed control. Inter-image homographies are an interesting tool
for reconstruction of planar surfaces. The decomposition of homographies pro-
vide the 3D plane parameters required to reconstruct the scene. By considering
a common feature belonging to two planes ni and n, a relationship could be
derived between their distances using (8) as

Z =
di

nT
i p

1
det(H)

=
d

nT p

1
det(H)

i.e., di =
nT

i p

nT p
d, (10)
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where p denotes the common image feature. Thus given the plane normals ni,
the 3D scene could be reconstructed up to a scale factor d (See Fig. 6(b)). Given
an estimate of d, the exact scene can be reconstructed.

6 Conclusion

A novel homography-based control capable of positioning a camera even in pres-
ence of non-planar objects has been developed for the first time in this paper.
A robust homography estimate was efficiently computed using multiple homo-
graphies by employing geometric and subspace constraints. This homography
estimate was used in a modified control law to compute the optimal camera
trajectory. The method performed better in comparison to existing servoing al-
gorithms and avoided their critical drawbacks. In future, we plan to investigate
further the utility of multi-plane homography-based formulations for efficiently
solving other classical computer vision problems.

References

1. DeSouza, G., Kak, A.: Vision for mobile robot navigation: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 24 (2002) 237–267

2. Hutchinson, S.A., Hager, G.D., Corke, P.I.: A tutorial on visual servo control.
IEEE Transactions on Robotics and Automation 12 (1996) 651–670

3. Chaumette, F., Espiau, B.: A new approach to visual servoing in robotics. IEEE
Transactions on Robotics and Automation 8 (1992) 313–327

4. Wilson, W.J., Hulls, C.C.W., Bell, G.S.: Relative end effector control using carte-
sian position based visual sovoing. IEEE Transactions on Robotics and Automation
12 (1996) 684–696

5. Taylor, C.J., Ostrowski, J.P., Jung, S.H.: Robust visual servoing based on relative
orientation. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 2 (1999) 574–580

6. Malis, E., Chaumette, F.: 2 1/2D visual servoing with respect to unknown objects
through a new estimation scheme of camera displacement. International Journal
of Computer Vision 37 (2000) 79–97

7. Rives, P.: Visual servoing based on epipolar geometry. IEEE/RSJ International
Conference on Intelligent Robots and Systems 1 (2000) 602–607

8. Basri, R., Rivlin, E., Shimshoni, I.: Visual homing: surfing on the epipoles. IEEE
International Conference on Computer Vision (1998) 863–869

9. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge
University Press (2003)

10. Faugeras, O., Lustman, F.: Motion and strucutre from motion in a piecewise
planar environment. International Journal of Pattern Recognition and Artificial
Intelligence 2 (1988) 485–508

11. Boufama, B., Mohr, R.: Epipole and fundamental matrix estimation using the
virtual parallax property. IEEE International Conference on Computer Vision
(1995) 1030–1036

12. Fraundorfer, F., Bischof, H.: Detecting distinguished regions by saliency. Scandi-
navian Conference on Image Analysis (2003) 208–215



918 D.S. Kumar and C.V. Jawahar

13. Shashua, A., Avidan, S.: The rank-4 constraint in multiple view geometry. Euro-
pean Conference on Computer Vision 2 (1996) 196–206

14. Deguchi, K.: Optimal motion control for image-based visual servoing by decoupling
translation and rotation. IEEE/RSJ International Conference on Intelligent Robots
and Systems 2 (1998) 705–711

15. Johansson, B.: View synthesis and 3D reconstruction of piecewise planar scenes
using intersection lines between the planes. IEEE International Conference on
Computer Vision 1 (1999) 54–59



Direct Estimation of Homogeneous Vectors:

An Ill-Solved Problem in Computer Vision

Matthew Harker and Paul O’Leary

Institute for Automation, University of Leoben, A-8700 Leoben, Austria
matthew.harker@stud.unileoben.ac.at

http://automation.unileoben.ac.at

Abstract. Computer Vision theory is firmly rooted in Projective Ge-
ometry, whereby geometric objects can be effectively modeled by homo-
geneous vectors. We begin from Gauss’s 200 year old theorem of least
squares to derive a generic algorithm for the direct estimation of homoge-
neous vectors. We uncover the common link of previous methods, showing
that direct estimation is not an ill-conditioned problem as is the popular
belief, but has merely been an ill-solved problem. Results show improve-
ments in goodness-of-fit and numerical stability, and demonstrate that
“data normalization” is unnecessary for a well-founded algorithm.

1 Introduction

Geometric objects which can be modeled by homogeneous vectors range from
implicit curves and surfaces, to the fundamental matrix describing epipolar ge-
ometry, and projective transformations such as camera matrices and homogra-
phies. Metric Vision tasks have real-time constraints, so it is critical to have fast
and robust techniques for the estimation of homogeneous vectors. The basis of
this paper is a plethora of seemingly unrelated techniques for the direct (i.e. non-
iterative) estimation of homogeneous vectors. Direct estimation techniques have
several advantages, namely, that the minimization yields the global minimum of
the cost function, and they are computed in a finite number of steps. Three of
the most commonly encountered methods for direct estimation are:

1. Normalization: The algorithm proceeds by normalizing the data, followed
by minimization of the algebraic error subject to a unit norm constraint [1].
While the method has the advantage of simplicity, Hartley notes that with-
out normalization, the algorithm is guaranteed to perform extremely poorly,
which indicates the algorithm is poorly founded, not ill-conditioned. The
unit norm constraint is typically justified by the homogeneity of the vector;
however, we show that it is rarely a mathematically justifiable constraint.
Specifically, for linear geometric models, the algorithm returns meaningless
results. An algorithm that cannot handle linear models clearly cannot suffice
for a generic methodology.

2. Invariant Fitting: This entails the least-squares minimization of algebraic
error subject to a geometrically invariant constraint. Invariant fitting was
originally proposed by Bookstein [2] to fit conics independent of the chosen
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coordinate frame, and was later adapted to fundamental matrix estimation
by Torr [3]. Other variations include fitting conics of specific types [4]. At
this point in time, algorithms are limited to these applications, since viable
invariant constraints must be quadratic [5]. This too corresponds to minimiz-
ing an algebraic distance, however, the results differ from the normalization
scheme because a different constraint is imposed.

3. Gradient-Weighted Fitting: Sampson [6] proposed that the so-called al-
gebraic distance weighted by its gradient would provide an improved metric
for fitting conics, although his approach to attempt to minimize said cost
function was iterative. Taubin [7] showed that an approximation to the min-
imum of the cost function can be found directly by generalized eigenvectors,
which is often referred to as Gradient-Weighted Fitting. Here we show that
while it has the potential to provide a better approximation, the algorithm is
fundamentally unstable from a numerical point of view; in fact, it is far too
unstable to yield useful results in Computer Vision applications (i.e. with
pixel coordinates). Introducing data normalization alleviates, but does not
rectify this instability.

In the present work, we derive a generic algorithm for the direct estimation
of homogeneous vectors which (i) has the goodness-of-fit properties of gradient
weighted fitting, however, with immeasurably improved stability, (ii) is largely
invariant to the choice of coordinate frame and (iii) circumvents the need for
data normalization. Simply put, it amalgamates the desirable properties of the
most relied-upon techniques for the direct estimation of homogeneous vectors.

2 Gauss’s Theorem of Least Squares

We hearken back to a two hundred year old theorem, Gauss’s theorem of least-
squares [8], which is central to estimation in the presence of uncertainty. Sadly,
we find that it is largely misused, and the original theorem all but forgotten, save
in a handful of Numerical Analysis literature. Gauss proposed various models
for errors in measurements; the most fruitful was exponential-based, providing a
realistic model that can be treated analytically. A measurement error is modeled
as a random n-vector, δ, which behaves according to the probability distribution

P (δ) = ((2π)n|Λ|)−
1
2 exp−1

2
δTΛ−1δ, (1)

where Λ is the n × n covariance matrix [9,10]. This has come to be known as a
Gaussian distribution.

Least Squares as a Maximum Likelihood Criterion. Gauss begins with a
set of observations (i.e. measurements), which should conform to a linear model,⎡⎢⎣x11 x12 . . . x1n

...
...

...
...

xm1 xm2 . . . xmn

⎤⎥⎦
⎡⎢⎢⎢⎣

a1

a2

...
an

⎤⎥⎥⎥⎦ =

⎡⎢⎣e1

...
en

⎤⎥⎦ . (2)
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Each error, ei, is assumed to be an independent random variable that follows the
Gaussian distribution, ψ(ei) = hπ− 1

2 exp−h2e2
i , where h is a positive constant;

this assumes that all errors are mean-free and have the same variance. The
function Ω is proposed, Ω =

∏n
i=1 ψ(ei), the motivation being that for a normal

distribution, the smallest error is the most probable: the function Ω should
therefore be maximized. This function gives rise to the principle of maximum
likelihood. Under the above assumptions, we have,

Ω = hnπ− 1
2 n exp−h2

(
e2
1 + e2

2 + . . . + e2
n

)
. (3)

Hence, to maximize the likelihood, Ω, we must minimize,

ε � e2
1 + e2

2 + . . . + e2
n =

n∑
i=1

e2
i , (4)

the sum of squared errors. Gauss later proved that if the variances of the errors
are all scaled to unity, then the least squares solution is such that the estimation
errors have minimal variance. Summarizing the postulates:

1. Errors in measurements behave according to Gaussian distributions.
2. The errors are mean-free and scaled such that they have a unit variance.

The significance of the two postulates is clear. If the errors are not mean-free
and normally distributed with equal variances, the least-squares solution is no
longer a maximizer of the likelihood function Ω.

3 Linear Models

Linear models of geometric objects in two, three, and n dimensions, are respec-
tively lines, planes, and hyperplanes. The following theory applies generally to
these models, but for simplicity and visualization, we specifically address lines
in the plane. The homogeneous equation of a line in the plane is given as,

pTz = ax + by + c = 0, (5)

where
p =
[
x y 1

]T and z =
[
a b c
]T

. (6)

In practice, we measure points (x̂, ŷ), which do not lay on the line, but deviate
by some error which we model as the random variables (δx, δy), such that

(x̂, ŷ) = (x + δx, y + δy). (7)

For mathematical convenience, we model the random coordinate pair δ = (δx, δy)
as mean-free and correlated according to the Gaussian distribution,

P (δx, δy) =
1
2π

(∣∣∣∣[σxx σxy

σxy σyy

]∣∣∣∣)− 1
2

exp−1
2
[
δx δy

] [σxx σxy

σxy σyy

]−1 [
δx

δy

]
, (8)
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defined by the covariance matrix, Λ. Since the ideal point (x, y) fits the model,
we may write,

a(x̂ − δx) + b(ŷ − δy) + c = 0. (9)

Rearranging yields,
ax̂ + bŷ + c = aδx + bδy. (10)

The left hand side is the familiar algebraic residual error associated with a point
and a line, which we denote as, ra, such that

ra(x̂, ŷ, z) � ax̂ + bŷ + c. (11)

The right hand side tells us how the error in the algebraic residual behaves
according to the random errors in the point coordinates (δx, δy); we denote the
right hand side as rs, the stochastic form of the residual, such that

rs(δx, δy, z) � aδx + bδy. (12)

Since we have assumed a mathematical model for the error (δx, δy), we may
analytically compute the expected value and variance of the error [9],

E[r] =
∫ ∞

−∞

∫ ∞

−∞
P (δx, δy)rs(δx, δy, z)dδxdδy = 0, (13)

and

Var (r) =
∫ ∞

−∞

∫ ∞

−∞
P (δx, δy)(rs(δx, δy, z) − E[r])2dδxdδy (14)

= a2σxx + 2abσxy + b2σyy. (15)

There are a few important points to note:

1. The stochastic form of the residual is independent of the constant term, c,
hence so are the mean and variance. In the case of some linearized models,
such as homographies or camera matrices, there are multiple constant terms.

2. The variance is clearly a quadratic form in the statistically dependent coef-
ficients, which will always be the case since variance is quadratic.

In light of these facts, we first partition the vector of unknowns into its statisti-
cally dependent and independent terms as

z =
[
zA

zB

]
where for the line, zA =

[
a
b

]
and zB = c. (16)

As will be seen, this partitioning is critical, although it is largely ignored in the
literature. We may therefore write the variance of the error, r, as the quadratic
form, Var (r) = zT

AΛzA. Now, if we are to properly implement a least-squares
solution, each error should be weighted such that it has unit variance. We hence
write the ith error as,

ĕi =
ri√

Var (ri)
=

pT
i z√

zT
AΛizA

, (17)
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where the notation ĕ, is to stress the fact that ĕ �= e, but is however an error with
unit variance1. We may now use the least-squares criterion; the cost function is

ε(zA, zB) =
n∑

i=1

ĕ2
i =

n∑
i=1

(
pT

i z
)2

zT
AΛizA

(18)

The function ε is now in appropriate form such that minimizing ε corresponds
to maximizing Ω.

On the Unit Norm Constraint. For argument’s sake, if we assume each error
has the identity matrix as covariance matrix, i.e., Λ = I, then the variance of
each residual is Var (r) = a2 + b2. The variance is clearly a function of the line
direction; to ensure that the variance of the errors is independent of the line
direction, we impose the constraint, a2 + b2 = α2 = constant. The resulting vari-
ances of the residuals are constant with respect to the direction of the line. This
uncovers the first fault in imposing a unit norm constraint on a homogeneous
vector. For the line, this would mean a2 + b2 + c2 = 1. The resulting variance of
each residual would be, Var (r) = 1− c2; since c is the scaled distance of the line
to the origin, this means that the variance of the error is functionally dependent
on the position of the point in the plane, which is preposterous.

3.1 Minimizing the Least-Squares Cost Function

For convenience of manipulation, the cost function ε in Equation (18) can be
written in matrix form, namely, as the squared 2-norm of a residual vector, i.e.,

ε(zA, zB) = ‖WADAzA + WADBzB‖2
2 , (19)

where
WA = diag

((
zT

AΛ1zA

)− 1
2 , . . . ,

(
zT

AΛnzA

)− 1
2
)

, (20)

and the subscript indicates the functional dependence WA = WA(zA). For the
case of the line, we have

DA =

⎡⎢⎣x̂1 ŷ1

...
...

x̂n ŷn

⎤⎥⎦ and DB =

⎡⎢⎣1...
1

⎤⎥⎦ . (21)

The residual vector is linear in zB, hence, ε is minimal when,

zB = − (WADB)+ WADAzA, (22)

where (WADB)+ is the Moore-Penrose pseudo-inverse [11]. Substituting Equa-
tion (22) into the cost function, it takes the general form,

1 This variance weighted error is also known as the Mahalanobis distance from the
point to the line, plane, or hyperplane.
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ε(zA) =
∥∥∥WADAzA − WADB (WADB)+ WADAzA

∥∥∥2
2
. (23)

Note the functional dependence of the cost function; this reduction corresponds
to an oblique form of the Eckart-Young projection onto the constrained portion
of the residual vector [12]. The reduced cost function corresponds to the Variable
Projection (or VARPRO) method, whereby proof that z∗A attaining the global
minimum of ε(zA) with zB given as in Equation (22) is equivalent to finding the
global minimum of the function ε(zA, zB) can be found in [13]. Minimizing the
cost function depends on the nature of the covariance matrices; we enumerate
the three special cases as follows:

Identical Covariance Matrices. If all covariance matrices are identical, then
the weighting matrix WA can be written as WA =

(
zT

AΛzA

)− 1
2 I. The cost func-

tion simplifies to,

ε =

∥∥DAzA − DBD+
BDAzA

∥∥2
2

zT
AΛzA

=
zT

ADT
A

(
I − DBD+

B

)
DAzA

zT
AΛzA

, (24)

If we define the matrix S � DT
A

(
I − DBD+

B

)
DA, then the cost function takes the

form

ε =
zT

ASzA

zT
AΛzA

, (25)

which is known as the Rayleigh quotient [11]. Indeed, we are interested in the
extrema of this quotient, which in turn will yield the global minimum of the
cost function. The extrema are, in fact, the eigenvalues and eigenvectors of the
corresponding generalized eigenvalue problem,

(S − εΛ) zA = 0. (26)

The global minimum is attained with the generalized eigenvector, z∗A, corre-
sponding to the minimum eigenvalue, ε. Previously, to solve this problem it was
recommended to apply an affine transformation to the data such that the covari-
ance matrices were identity matrices, then perform a geometric minimization [9].
Clearly, this solution is algorithmically simpler and more direct.

Approximately Equal Covariance Matrices. In the ideal case, the variance
of each residual is unity, which poses difficulty when each covariance matrix is
unique. We may, however, impose the constraint that on average, this is the
case. This amounts to the assumption that Λi ≈ E[Λ] for i = 1, . . . , n. Given the
variance of the ith residual, we compute the mean variance to be

E[Var (r)] =
1
n

n∑
i=1

zT
AΛizA = zT

A

(
1
n

n∑
i=1

Λi

)
zA, (27)

by which we define, Λm � E[Λ] = 1
n

∑n
i=1 Λi. Solving the eigenvalue problem

in Equation (26) with Λ = Λm, will, on average, weight each error correctly.
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This minimization can be justified as an approximate solution to the global
minimum by the fact that it yields the exact global minimum when all covariance
matrices are the same. The bias of this solution can be calculated along with the
solution, since each covariance matrix deviates from the mean by δΛ = Λm −Λi,
and therefore the bias, βi, of an estimate zA is,

βi =
zT

A (Λm − Λi) zA

zT
AΛmzA

= 1 − zT
AΛizA

zT
AΛmzA

. (28)

If Λi ≈ Λm, then clearly βi ≈ 0.

Unique Covariance Matrices. It may be that each covariance matrix varies
dramatically and the bias will be large. This case requires a non-linear algorithm
to find the true global minimum of the cost function ε(zA). The formulation of the
cost function in Equation (23) enables the use of Gauss-Newton minimization.

4 Linearized Models

We investigate the estimation of homogeneous vectors of linearized models using
the example of a circle, since it is equivalently a plane fitting problem in three
dimensions. Geometrically speaking, fitting a linearized model is in general a
hyperplane fitting problem. The homogeneous equation of a circle is given as

a
(
x2 + y2

)
+ bx + cy + d = 0. (29)

Substituting the model coordinates (x, y) = (x̂ − δx, ŷ − δy) and rearranging,

a
(
x̂2 + ŷ2

)
+ bx̂ + cŷ + d = −aδ2

x − aδ2
y + ax̂δx + aŷδy + bδx + cδy. (30)

That is, the functional dependence of the algebraic residual on the random vari-
ables δx and δy is described as,

rs(δx, δy, x̂, ŷ, z) � −aδ2
x − aδ2

y + ax̂δx + aŷδy + bδx + cδy. (31)

For simplicity, we assume that the errors in the point coordinates behave with
covariance matrices, Λ = σ2I, although general covariance matrices may also be
used. The mean value and variance of the residual error are,

E[r] = −2aσ2 (32)

and

Var (r) = zT
ACzA =

[
a b c
]⎡⎣4σ4 + σ2

(
x̂2 + ŷ2

)
2σ2x̂ 2σ2ŷ

2σ2x̂ σ2 0
2σ2ŷ 0 σ2

⎤⎦⎡⎣ab
c

⎤⎦ . (33)

The following are artifacts of linearizing non-linear problems, all of which un-
dermine Gauss’s least-squares theorem:
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1. The variance of the residual is dependent on the measured point (x̂, ŷ). That
is to say, the variance of the residual depends not only on the error in the
measured quantity, but also on measured quantity itself.

2. The random variables δx and δy follow Gaussian distributions, but the terms
δ2
x and δ2

y in Equation (31) do not. Specifically they behave according to the
Bessel function of the second kind, K0 [10].

3. The residuals are not mean-free; this is an artifact of the non-Gaussian terms
δ2
x and δ2

y.

It is these effects which link the common direct estimation techniques to Gaus-
sian Least Squares:

Relation to “Normalization”. Hartley’s argument for normalization was that
it improves the conditioning of the design matrix [1], which is indeed true; how-
ever, this is not the true problem at hand. From a statistical point of view,
normalization improves the error structure of the statistically dependent por-
tion of the design matrix, DA. In consequence, the problem which normalization
aims to correct (unbeknownst to its propenents) is the dependence of the vari-
ances of the residuals on the measured point. For argument’s sake, say we apply
normalization to the circle fitting problem. We transform the data such that the
centroid is the origin, and 1

n

∑n
i=1(x̂

2
i + ŷ2

i ) =
√

2. If we solve the minimiza-
tion with the unit norm constraint, zTz = 1, then the average variance of the
residuals behaves according to the quadratic form, E[Var (r)] = zTC′z, with

C′ = diag
(
4σ4 + 4

√
2σ2, σ2, σ2, 0

)
(34)

The average variance of the residuals is consequently bounded by the eigenvalues
of the matrix C′, which are λ(C′) = 0, σ2, σ2, 4σ2(σ2 +

√
2). The bound on the

average variance is therefore

0 ≤ E[Var (r)] ≤ 4σ2(σ2 +
√

2). (35)

Normalization, hence bounds the average variance of the residuals to values
close to the actual noise level of the data. By this argument, circle fitting would
be better implemented with data normalization followed by partitioning the
statistically dependent and independent portions, which would correspond to the
method of Nievergelt [14]. This would make the error behaviour of the residuals
closer to an isotropic distribution; however, Equation (35) reveals the problem
that the result quality would be dependent on the choice of the scaling factor.

Relation to “Invariant Fitting”. The methods of Bookstein [2], Torr and
Fitzgibbon [3], and Harker et al. [4] effectively partition quadratic terms from the
linear and constant terms. That is, they effectively partition the non-Gaussian
errors from the Gaussian and error free portions of the residual vectors. However,
what is not treated is the fact that each residual depends on the measured point
itself. This means that the residuals are each weighted irregularly (i.e. by some
weighting not related to its variance), which is why the methods often lead to
inappropriate fits. Effectively, the algorithm circumvents the normalization step,
but is still minimizing an algebraic error.
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Relation to “Gradient Weighted Fitting”. To weight each algebraic error
by the local gradient is equivalent to weighting each error by the first order
Taylor approximation to its variance under the assumption of isotropic errors in
the coordinates. Hence, the Gradient-Weighting scheme minimizes the algebraic
error subject to the constraint that the average first order approximation to the
variance is equal to unity. There is, however, an important caveat: the gradient
constraint is degenerate because the derivative of the constant term is zero. This
leads to gross numerical instability in the generalized eigenvectors [11], making
the results heavily dependent on the conditioning and configuration of the data.
This instability produces unusable results even in cases when the data exactly
fits the model. Taubin himself noted that the method would yield useless results
in some cases, but obviously did not correctly identify the cause as poor problem
formulation [15].

5 Stable Direct Statistical Fitting

We previously showed that with “data normalization,” the average variance of
the residuals is bounded, but not constrained. In a manner analogous to fit-
ting lines to heteroscedastic data (Section 3), we may perform the minimization
subject to the constraint that the average variance is unity. This assumes that
each individual covariance matrix is well approximated by the average covariance
matrix. This corresponds to solving the minimization with

DA =

⎡⎢⎣x̂2
1 + ŷ2

1 x̂1 ŷ1

...
...

...
x̂2

n + ŷ2
n x̂n ŷn

⎤⎥⎦ and DB =

⎡⎢⎣1...
1

⎤⎥⎦ � 1, (36)

with the constraint matrix

C =
1
n

n∑
i=1

⎡⎣4σ4 + 4σ2
(
x̂2

i + ŷ2
i

)
2σ2x̂i 2σ2ŷi

2σ2x̂i σ2 0
2σ2ŷi 0 σ2

⎤⎦ . (37)

The related eigenvalue problem2 is

DT
A

(
I − 11+

)
DAzA = εCzA. (38)

This approach is numerically stable in comparison to the standard Gradient
Weighting scheme by the following reasoning: For the case of a circle, some ma-
nipulation shows that, detC = 4σ6

(
σ2 + Var (x̂) + Var (ŷ)

)
. This shows that

the constraint is, analytically speaking, not degenerate unless the data itself is
ill-conditioned (i.e. very “point-like”). With the Gradient Weighting scheme, in
contrast, the constraint is always degenerate making the eigenvectors always un-
stable. Worse yet, is if the data fits the model then both matrices are degenerate.
This means that the algorithm is most unstable for best-case data sets, which is
hardly desirable.
2 This should be solved using the GSVD, but space limitations preclude just discussion.
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Summary of the Algorithm. The algorithm can be summarized as follows,
whereby steps 1 and 2 are undertaken once, offline, whereas steps 3 and 4 are
the online portion of the fitting algorithm.

1. Formulate the linearized model of the geometric object, dTz = 0.
2. Partition the coefficient vector into its statistically dependent and inde-

pendent portions, dT
AzA + dT

BzB = 0, such that the analytic expression
for the variance of the ith residual can be written as the quadratic form,
Var (ri) = zT

ACizA.
3. Compute the average covariance matrix, Cm, and solve the generalized eigen-

value problem,
DT

A

(
I − DBD+

B

)
DAzA = εCmzA. (39)

4. Backsubstitute the minimizing eigenvector to find zB = −D+
BDAzA.

6 Numerical Testing

To test the new algorithm, we have applied it to the Metric Vision task of
material tracking and measurement. Metric calibration of the planar scene is
accomplished with circular targets to determine the homography. Figure 1 shows
the scene, and the results of circle fitting. The gradient-weighted circle fit is
useless due to the aforementioned numerical instability.

The position, orientation and dimensions of the steel plate can be determined
by fitting a fourth order curve, or quartic. In Figure 2, the left hand images
show the results of each algorithm to the edge data obtained with a contouring
algorithm. The right hand images show the quartic fits after perturbing the
data with a small amount of Gaussian noise (σ = 1pixel). This test shows
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Fig. 1. (LEFT) The Metric Vision task of material tracking and measurement in a steel
mill. (RIGHT) Circle fitting to a calibration target. The Gradient-Weighted solution
(−−) is nonsense due to numerical instability. All other algorithms (−), including a
non-linear geometric fit, return the same circle.
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Fig. 2. Fitting quartic curves to determine the position, orientation, and dimensions
of steel plates. Row-wise are the solutions obtained with “Gradient-Weighting”, “Nor-
malization”, and the New Method. In the left column the curves are fitted to the edge
data obtained by contouring. In the right column, a small amount of Gaussian noise
(σ = 1pixel) is added to demonstrate the sensitivity of each solution.

that the gradient-weighting and normalization solutions are very sensitive to
perturbations in the data, which indicates instability of the solution vector. The
new algorithm is not only insensitive to the large values and offsets of the image
coordinates, but it is also relatively insensitive to Gaussian noise perturbing the
coordinates.

7 Conclusion

We have proposed a generalized approach to the direct estimation of homo-
geneous vectors which has improved goodness-of-fit properties and numerical
stability, whilst circumventing data normalization. The normal vector of the
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hyperplane fit is constrained to a hyperellipsoid, which is aimed at statistically
regularizing the error metric in the space of linearized models.
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Abstract. In this paper, we propose a novel Octantal Nearest-neighbor 
Structure and core points based fingerprint matching scheme. A novel 
fingerprint feature named the octantal nearest-neighbor structure (ONNS) is 
defined. Based on the ONNS, the minutiae pairing algorithm is conducted to 
find the corresponding minutiae pairs, and a novel algorithm is developed to 
evaluate the translational and rotational parameters between the input and the 
template fingerprints. Core point based orientation pairing is performed 
thereafter. Matching score is calculated. Experimental results on the FVC2004 
fingerprint databases show the good performance of the proposed algorithm. 

Keywords: Core point; Corresponding minutia pair; Fingerprint alignment; 
Fingerprint matching. 

1   Introduction 

Most of the fingerprint matching approaches introduced in the last four decades are 
minutia-based [1]. However, minutiae matching faces a series of challenges such as 
the location and orientation errors of detected minutiae, as well as the presence of 
spurious minutiae and the absence of genuine minutiae. One of the most difficult 
problems to overcome is the nonlinear distortion introduced when the three-
dimensional surface of the finger is mapped onto a two-dimensional surface by the 
fingerprint acquisition technique. 

Many researchers have tried to address the problem of nonlinear distortion to make 
the minutiae matching method more robust [2-10]. In [2], a minutiae matching 
method based on both the local and global structures is proposed. The local structure 
of a central minutia is used to find the correspondence of two minutiae sets. The best 
matching pair is then selected and used for registering the input and the template 
fingerprints. The global structure is used to enforce the result of local matching and a 
final score is computed to determine the uniqueness of a fingerprint. Similarly in [5], 
the defined local topological structure (LTS) includes the minutiae circled around the 
central minutia within r radius. 

Different from the above two methods, a fingerprint feature named the adjacent 
feature vector (AFV) is proposed for fingerprint matching in [3]. For a central 
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minutia, its four adjacent points with the same distance ‘ADis’ to the central minutia 
are selected to compute four adjacent relative orientations and six ridge counts, which 
are rotation and translation invariant. It is worth to notice that ADis is also a constant. 
If ADis is small, the orientation field in a small region becomes less discriminable. 
Even two different small regions may have the similar AFV. If ADis is large, the 
nonlinear distortion can severely impact the distance between two AFVs. In such 
case, the same central minutia in different impressions may not be considered as a 
genuine minutia pair. 

In this paper, we propose a novel fingerprint matching scheme, which is based on 
the octantal nearest-neighbor structure (ONNS) and core points. For each central 
minutia, the nearest neighboring minutia (NNM) in each octant is extracted to 
construct the local feature structure. Based on the ONNS, the minutiae pairing 
algorithm is conducted to find the corresponding minutiae pairs. To reduce alignment 
error, a novel algorithm is developed to evaluate the translational and rotational 
parameters between the input and template fingerprints. The core points are used to 
register the orientation fields of input and template fingerprint images. The final 
matching score measures both the similarity level of two sets of minutiae and two 
orientation fields. It helps to decrease both the false acceptance rate (FAR) and the 
false reject rate (FRR). This paper is organized as follows. Section 2 describes the 
proposed ONNS in detail. Section 3 presents the novel fingerprint matching 
algorithm. The experimental results are reported in Section 4. Section 5 concludes this 
paper. 

2   Octantal Nearest-Neighbor Structure 

Let 1,2, ,{ ( , , , )}i i i i i i NM x y qθ ==  denote the extracted minutiae from the given 

fingerprint, where ),( ii yx  is its coordinate, iθ  is the local ridge orientation, and the 

quality iq  has the range ]100,1[ : 100=q  implies the neighborhood of the minutia 

has higher possible quality while 1=q  represents the lowest possible quality. 

Although the ridge orientation has the range )180,0[ , the minutia can be directed 

into the range )360,0[  to increase its discrimination [2]. 

To simplify the description of the ONNS, the difference between two angles iθ  and 

kθ  is defined by a function ( , )
i k

d θ θ : 

, 180 180

( , ) 360 , 180

360 , 180

i k i k

i k i k i k

i k i k

if

d if

if

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

− − ≤ − <

= − + − ≥

+ − − < −

 (1) 

For a minutia ( , , , )i i i i iM x y qθ= , its octant is defined as follows: 

{ }8

1
[ ( 1) 45 , 45 )

i i j
j jθ θ

=
+ − × + ×  
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Denote ( , )if jθ  as the j th octant of iM . Let ( 1) 45
i

jβ θ= + − × , then 

( , ) [ , 45 )
i

f jθ β β= + . Because β  and 45+β  may be bigger than 360 , ( , )
i

f jθ  

should be modulated as follows: 

[ , 45 ), 45 360

( , ) [ , 360 ) [0 , 45 360 ), 360 45

[ 360 , 45 360 ), 360

i

if

f j if

if

β β β

θ β β β β

β β β

+ + <

= ∪ + − < ≤ +

− + − ≥

 (2) 

For the central minutia iM , its j th NNM “ ijP ” within ( , )if jθ  is defined as 

follows: 

( , )
min

i k
k i

ij M M
M f j

P D
θ∈

= , 1, 2, , 8j =  (3) 

where 
i kM MD  denotes the distance between the central minutia iM  and minutia kM . 

The definition of the novel feature structure named the ONNS is given as follows: 

1,2, ,8{( , , ( , ), ( , ), ( , ))}
i i ij i ijM M P M P i ij i j i j jF D C d d h q qθ α θ θ ==  (4) 

where 
i ijM PD  denotes the distance between central minutia iM  and minutia ijP , 

i ijM PC  

denotes the ridge-counts between iM  and ijP , ijα  denotes the direction of the 

directed line segment i ijM P , and ( , )i jh q q  denotes the joint quality between the 

quality iq  of iM  and that of ijP . Refer to Fig.1 for clarification.  

 

Fig. 1. Illustration of octantal nearest-neighbor structure 

The number of ridges between two minutiae and the quality of each minutia should 
be calculated in the minutiae detection phase. In this work, the joint quality between 

iq  and jq is calculated by ( , )i j i jh q q q q= × . 
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3   Fingerprint Matching 

Using the proposed ONNS, we develop a new fingerprint matching algorithm making 
use of both fingerprint minutiae and core points.  

3.1   Corresponding Minutiae Pairs Identification 

To identify whether two minutiae are corresponding minutia pair, we need to 
calculate the similarity level between their ONNSs first: 

Suppose
i

I
MF  and 

j

T
MF  are the ONNS of minutia I

iM  from the input fingerprint and 

that of minutia T
jM  from the template fingerprint, respectively. The following 

algorithm is used to calculate the similarity level ( , )I T
i jS M M  between I

iM  and T
jM . 

Step 1: Compute the similarity level ( , )I T
k i jS M M  at the k th octant between I

iM  

and T
jM : 

If the k th NNM I
ikP  and T

jkP  both exist and the following conditions are satisfied: 

| |I I T T
i ik j jk

ijk DM P M P
D D D T= − <  (5) 

| |I I T T
i ik j jk

ijk CM P M P
C C C T= − <  (6) 

 | ( ( , ), ( , )) |I I T T
ijk i ik j jkd d d Tθγ θ α θ α= <  (7) 

| ( ( , ), ( , )) |I I T T
ijk i k j kd d d Tθη θ θ θ θ= <  (8) 

then the similarity level ( , )I T
k i jS M M  is calculated as follows: 

( ) ( ) ( )( )
( )

, , , , 1
2

ijk ijkD ijk C ijk

D CI T I I T T
k ik jk i k j k

D C

ww D w C

T T T
S M M h h q q h q q

w w w

θ

θ

θ

γ η+
+ +

= −
+ +

 (9) 

If I
ikP  or T

jkP  does not exist, or the conditions Equation(5)-(8) are not all satisfied, 

( , )I T
k i jS M M  should be set to zero. The coefficients (i.e., Dw � Cw �and� wθ ) 

specify the weights associated with the corresponding component of the ONNS. The 

three thresholds(i.e., DT � CT �and Tθ ) are the size of matching box, which change 

according to the distance ijkD , as described in [5]. For example: 

,

,

( ),

DL ijk L

D DH ijk H

DH DL
DL ijk L

H L

T if D T

T T if D T

T T
T D T otherwise

T T

<

= >

−
+ −

−
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Here, LT � HT � DLT ����� DHT  are four pre-established parameters. 

Step 2: Calculate the similarity level ( , )I T
i jS M M  between I

iM  and T
jM :  

( )
8

1

( , ) ( , ),I T I T

i j k i j

k

I T
i jS M M S M Mh q q

=

=  
(10) 

The similarity level ( , )
I T

i j
S M M  describes a matching certainty level of an ONNS 

pair instead of simply matched or not. ( , ) 1
I T

i j
S M M =  implies a perfect match while 

( , ) 0
I T

i j
S M M =  represents a total mismatch. From Fig.2 to Fig.4, we show an example 

of the proposed ONNS.  

 

Fig. 2. A fingerprint image named “33 6.tif” 
from FVC2004 DB1A. 

 

Fig. 3. Extracted minutiae and their directions 
of the image “33 6.tif” 

 

Fig. 4. An example of the ONNS: the NNM 
of the central minutia in each octant all exists 

 

Fig. 5. Another example of the ONNS: there 
is not a NNM in the 1st and 7th octants of the 
central minutia 

If ( , )I T
i j sS M M T>  ( sT  is a threshold), iM  and kM are considered a corresponding 

minutiae pair. Let {( , ) : 1,2, , }
j j

I T
p qM M j L=  ( L K≤ ) denote the detected 

corresponding minutiae pairs. 
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3.2   Translational and Rotational Parameters Estimation 

After the corresponding minutiae pairs are identified, the global translational and 
rotational parameters between the input and the template fingerprints can be evaluated 
as follows: 

1) Calculate the mass center of the corresponding minutiae: 

10

0

1

1 j

j

L
I

I p

j

I L
I

p

j

x
x

Ly
y

=

=

=
, 

10

0

1

1 j

j

L
I

T q

j

T L
I

q

j

x
x

Ly
y

=

=

=
 

2) Compute the translational parameters xΔ  and yΔ : 

0 0

0 0

T I

T I

x xx

y y y

−Δ
=

Δ −
 

3) Evaluate the rotational parameter θΔ : 

0 0

0 0

( , )

max ( 1 ( , ) )
d

d Sθ
θ

θ θ α

θ α θ θ
≤

Δ = + −  

     where 0α  is a parameter(in this work 0 15α = ), and 

0 ( , )
j j

I T
p qdθ θ θ=  

0 , 1,2, ,

( , )
j j

I T
p q

j L

S S M Mθ
θ θ= =

=  

After obtaining the translational and rotational parameters ( , , )x y θΔ Δ Δ , the new 

location 
' '

( , )I I
i ix y  for minutia I

iM � 01, 2, ,i K= ��can be calculated as follows: 

'
cos( ) sin( ) 0

' sin( ) cos( )
0

I I I Ix x x x x
i i i

I I I Iy y y y y
i i i

θ θ
θ θ

− + ΔΔ Δ
= +

− Δ Δ − + Δ
 

The direction of each minutia of the input fingerprint is also aligned: 

'I I

i i
θ θ θ= + Δ  

Let 
' ' ' ' '{ , , , }I I I I I

i i i i i
M x y qθ= �denote the new minutia of the input fingerprint after 

transformation with the estimated translation and rotation parameters. 

3.3   ONNS Based Pairing 

For the transformed minutiae set 
0

'
1,2, ,{ }I

i i KM = , we re-compute the ONNS of each 

minutia. Using the improved algorithm described above, we find the corresponding 
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minutiae pairs between the transformed minutiae set 
0

'
1,2, ,{ }I

i i KM = �and the originally 

extracted minutiae set 
1

1, 2 , ,
{ }

T

j j K
M

= . '

'

1,2, ,
{ , }

k k

I T
c c k K

M M
=

�� '

10min( , )K K K≤ , denote the 

corresponding minutiae pairs. 

3.4   Core Point Based Orientation Pairing 

A core is defined as a point in the orientation field where the orientation in a small 
local neighborhood around the point presents semi-circular tendency. It is a salient 
feature in a fingerprint image. In this work, the Poincaré index introduced by [13] is 
used to extract core points. Fig. 6 shows example of an extracted core point. 

Notice that there may be one or two core point(s) in one fingerprint image, we 
discuss the one core point cases first. 

 

Fig. 6. An extracted core point 

Assume ( , , )I I I ICore x y θ  and ( , , )T T T TCore x y θ  are core points from input 

fingerprint and template fingerprint, respectively. Calculate the translational and 
rotational parameters ( , , )c c cx y θΔ Δ Δ  as follows: 

T I
c

T I
c

T I
c

x x x

y y y

θ θ θ

Δ −
Δ = −
Δ −

 

By translating and rotating the input fingerprint image according to parameter 
( , , )c c cx y θΔ Δ Δ , a new transformed input fingerprint image is obtained. 

Divide the transformed input fingerprint image and the template fingerprint image 
into a number of sub-blocks, then calculate the orientation of each sub-block[11]. Let 

'

( , )I T
i iB B  denote the corresponding orientation block pair, block 

'I
iB  from the 

transformed input fingerprint, block T
iB  from the template fingerprint, respectively, 

1,2, , Bi N= , BN is the number of blocks in one image. The similarity level 
'

( , )I T
i iS B B  of the two blocks 

'I
iB  and T

iB  is calculated as follows:  
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'

'
'

( ) ( )
( ) ( ) ,( , )

0 .

I T
B i i I T

I T i i B
i i B

T O B O B
if O B O B TS B B T

otherwise

− −
− <=  (11) 

where BT  is a threshold, and ( )O •  denotes the orientation of a block. 

If there are two core points in the input image or template image, or two core points 
in both fingerprint images, each core point in one image would pair with all the core 
point(s) in the other image to get a set of transform parameters. Repeat the pairing 
procedure described above. The core point pair with the maximal summatory 
similarity level is considered as the corresponding core point pair.  

3.5   Matching Score Computation 

The final matching score Ms  between input and template fingerprints can be 

determined by minutia matching score mM  and core point based matching score c
M . 

The minutia matching score mM  can be calculated according to the following 

equation: 
'

'

1

( , )
k k

K
I T

m c c
k

M S M M
=

=  

where '( , )
k k

I T
c cM M  is the corresponding minutiae pair, one from the transformed input 

fingerprint and another from the original template fingerprint, respectively. 
The core point based matching score cM  is defined by 

'

1

( , )
BN

I T
c i i

i

M S B B
=

=  

where 
'

( , )I T
i iB B  is the corresponding orientation pair, one from the transformed input 

fingerprint and another from the original template fingerprint, respectively.  
If there are no core points or over two core points detected in input or template 

fingerprint due to poor quality or other reasons, cM  should be set to zero. 

The final matching score Ms  is computed as follows: 

m m c cMs M Mα α= +  (12) 

where mα and cα  are weights, and 1m cα α= − (in this work, if 0cM = , then 0cα =  

otherwise 0.4cα = ). 

4   Results 

The proposed scheme has been evaluated by applying to DB1A and DB3A of 
FVC2004, because the distortion between some fingerprints from the same finger in 
these two databases is large. The fingerprints of DB1A are acquired through 
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CrossMatch “V300” optical sensor, and each fingerprint is with 640 480 pixels and 
500 dpi. The fingerprints of DB3A are acquired through thermal sweeping sensor 
“FingerChip FCD4B14CB” by Atmel, and each fingerprint is with 300 480 pixels 
and 512 dpi. Both databases contain 800 fingerprints captured from 100 different 
fingers, eight impressions for each finger. 

Table 1. Comparison of the proposed scheme with algorithm P026 on FVC2004 DB1A 

Algorithm EER FMR 
100 

FMR 
1000 

Average 
enroll time 

Average 
match time 

Our scheme 5.36% 7.44% 12.40% 2.11s 2.32s 
P026 5.54% 9.25% 19.11% 2.60s 3.56s 

Table 2. Comparison of the proposed scheme with algorithm P004 on FVC2004 DB3A 

Algorithm EER FMR 
100 

FMR 
1000 

Average 
enroll time 

Average 
match time 

Our scheme 1.86% 2.25% 5.23% 0.84s 1.02s 
P004 1.89% 2.61% 7.14% 0.76s 0.80s 

 

Fig. 7. The ROC curves obtained by the proposed scheme on FVC2004 DB1A and DB3A 

In Table 1 and Table 2, We compare the results of the proposed scheme on DB1A 
with that of the algorithm called “P026”, and compare the results of the proposed 
scheme on DB3A with that of the algorithm called “P004”, which have been 
participated in FVC2004, and ranked the ninth and the sixth places respectively. 
According to the ranking rule in terms of EER in FVC2004, the proposed scheme is 
better than the two algorithms, which means a good performance both for the DB1a 
and DB3a. In FVC2004, the maximum time cost for each enrollment and each 
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matching is 10 seconds and 5 seconds, respectively[12]. Table 1 and Table 2 show 
that the time cost of the proposed scheme satisfies the conditions of the open category 
on FVC2004. The receiver operating characteristic (ROC) curves obtained by the 
proposed scheme on FVC2004 DB1A and DB3A are illustrated in Fig.7. 

5   Conclusions 

In this paper, we propose an ONNS and core point based fingerprint matching scheme. 
A novel feature structure ONNS is defined, which is translation and rotation invariant. 
Based on ONNS and core points, fingerprint matching is performed. Because both 
minutiae information and core points information are used in this work, it is more 
robust than minutiae-based methods. The usefulness of our proposed approach is 
confirmed in the experiments conducted, which show good performance. However, 
there are still some difficulties to be overcome in the future, such as how to locate 
minutiae and core points in poor quality fingerprints more reliably, and how to solve 
the problems introduced by nonlinear distortion. Those would be our future directions. 
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Abstract. This paper presents a Dempster Shafer theory based classi-
fier fusion algorithm to improve the performance of fingerprint verifica-
tion. The proposed fusion algorithm combines decision induced match
scores of minutiae, ridge, fingercode and pore based fingerprint verifi-
cation algorithms and provides an improvement of at least 8.1% in the
verification accuracy compared to the individual algorithms. Further,
proposed fusion algorithm outperforms by at least 2.52% when compared
with existing fusion algorithms. We also found that the use of Demp-
ster’s rule of conditioning reduces the training time by approximately 191
seconds.

1 Introduction

Fingerprint verification systems are widely based on minutiae and ridge informa-
tion [1], [2]. Some algorithms use pattern information to recognize an individual
[3]. Forensic experts rely on level-3 information such as pores and high level
ridge information [4] for making a comparison. Further, many researchers have
combined the outputs of two or more classifiers to improve the performance
compared to a single classifier [5], [6], [7], [8]. The output of different classifiers
can be fused at different levels such as image level, feature level, match score
level, and decision level. However, fusing the output of different classifiers at
match score level or at decision level makes the output independent of the type
of classifier used.

Several different techniques such as sum rule [5], [6] and kernel based tech-
nique [8] have been proposed for biometric information fusion at match score or
decision level. Most of these techniques rely on heuristic information extracted
from the training data. Generally, these techniques do not update the priors reg-
ularly with the presence of new evidences, i.e. these techniques do not update the
prior every time a new data is added in the database which is not pragmatic in
high security applications. Another technique which is widely studied in classical
classifier fusion but less addressed in biometrics is Dempster-Shafer (DS) theory
[9], [10]. DS theory is a powerful method of combining accumulative evidences or
for changing priors in the presence of new evidences. In [7], a match score fusion

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 941–949, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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algorithm is presented to fuse the information of face and voice using theoretic
evidence of k-NN classifiers based on DS theory. Although authors have used DS
theory, they did not use the conditioning scheme to regularly update the sys-
tem based on new data. In this paper, four fingerprint verification algorithms;
minutiae based [1], ridge based [2], fingercode based [3] and pores based [4] algo-
rithms are used as different classifiers. Proposed Dempster-Shafer theory based
fusion algorithm fuses decision induced match scores obtained from fingerprint
verification algorithms. Further, conditioning algorithm is used to update the
priors when new data is added in the database. On a fingerprint database ob-
tained from different law enforcement agencies, experimental results show that
the proposed algorithm is at least 2.52% better than the existing fusion algo-
rithms. Section 2 presents an overview of DS theory and Section 3 presents the
proposed classifier fusion algorithm. Section 4 shows the experimental results
followed by conclusion in Section 5.

2 Overview of Dempster-Shafer Theory

Let Θ be a finite set of mutually exclusive and exhaustive proposition or com-
monly known as frame of discernment. The power set 2Θ is the set of all subsets
of Θ including itself and null set ∅. Each subset in the power set is called focal
element. A value between [0, 1] is assigned to each focal element which is based
on the evidence. 0 shows no belief and 1 shows total belief. Basic belief assign-
ment (bba), in DS theory, is assigned to the individual proposition which is also
known as mass of the individual proposition. It is assigned to every subset of
the power set. If bba of an individual proposition A is m(A) then,∑

A⊂Θ

m(A) = 1 (1)

Also, bba of a null set is zero, i.e.

m(∅) = 0 (2)

Ignorance is represented by assigning the complementary probability to m(Θ).
Measure of total belief committed to A, Bel(A), is computed using Equation 3.

Bel(A) =
∑
B⊂A

m(B) (3)

According to Smets [10], formal notation of Bel is given as,

BelΘ,

Y,t [EY,t](ωo ∈ A) = x (4)

This equation denotes the degree of belief x of the classifier Y at time t when
ωo belongs to set A, where A is the subset of Θ and A ∈ ;  is a Boolean algebra
of Θ. Belief is based on the evidential corpus EY,t held by Y at time t where



Dempster-Shafer Theory Based Classifier Fusion 943

EY,t represents all what Y knows at time t. For simplicity BelΘ,

Y,t [EY,t](ωo ∈ A)

can be written as Bel[E](A) or Bel(A).
Plausibility function of A is defined as,

Pl(A) = 1 − Bel(¬A) =
∑

B∩A �=∅
m(B) (5)

Bel(A) represents the lower limit of probability and Pl(A) represents the upper
limit. The difference between belief function and plausibility function represents
the ignorance and Bel(Θ) = 1, Pl(Θ) = 1 .

In most of the cases, it is required to update the belief based on new evidences
or data. Let E ⊂ Θ and Ev be the evidence which states that the actual world is
not in ¬E. Now suppose that the new data or evidence provides the exact value
of Ev. Belief function is revised using the Dempster’s rule of conditioning,

Bel[Ev](A) = Bel(A ∪ ¬E) − Bel(¬E) (6)

Further, multiple evidences can be combined using Dempster’s rule of com-
bination. Let A and B be used for computing new belief function for the focal
element C, Dempster’s rule of combination is written as

m(C) =
∑

A∩B=C m(A)m(B)
1 −
∑

A∩B=∅ m(A)m(B)
(7)

3 DS Theory Based Classifier Fusion

In the proposed classifier fusion algorithm, DS theory [9], [10] is applied to
combine the output of individual fingerprint verification algorithms to improve
the verification performance shown in Figure 1. Minutiae based fingerprint ver-
ification algorithm [1], ridge based verification algorithm [2], fingercode based

Minutiae
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Ridge

Algorithm

Fingercode

Algorithm

Pores

Algorithm
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DS Theory
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Match
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Match
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Match

Score

Match
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Induced

Match Score

Induced

Match Score

Induced

Match Score

Fig. 1. Fusing the outputs of four fingerprint verification algorithms using proposed
DS Theory based classifier fusion algorithm
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verification algorithm [3] and pores based verification algorithm [4] are used as
the primary classifiers. For every input fingerprint image, each classifier assigns
a label true or 1 to proposition i, i ∈ Θ and the remaining classes are labeled
as false or 0. Thus there are two focal elements for each fingerprint verification
algorithm i and ¬i = Θ − i. i is for confirming and ¬i is for denying a single
proposition for mass assignment in the DS theory. For every verification algo-
rithm, we compute the respective predictive rates which are used to assign their
bba. For a c class problem, let us assume that an input pattern belonging to
class j (j ∈ c) be classified as one of the k (k ∈ c + 1) classes including the
rejection class, i.e. (c + 1)th class. So, the predictive rate of a classifier Pk for an
output class k is the ratio of the number of input patterns classified correctly to
the total number of patterns classified as class k where input patterns belonging
to all classes is presented to the classifier.

In the proposed approach, when the jth fingerprint verification algorithm
classifies the result k ∈ (c + 1) over the normalized matching score Sj , it is
considered that for all instances the likelihood of k being the actual class is Pk

and the likelihood of k not being the correct class is (1−Pk). For the jth finger-
print verification algorithm, first the decision induced match score is computed
by multiplying Pkj with the respective normalized match score Sj . This score is
then used as the basic belief assignment or mass mj(k) (Equation 8).

mj(k) = Pkj · Sj (8)

where j = 1, 2, 3, 4, corresponds to the four fingerprint verification algorithms.
Similarly disbelief is assigned to mj(¬k); with m(Θ) = 1. Further, mass of each
evidence or classifier is combined recursively using Equation 9,

mfinal = m1 ⊕ m2 ⊕ m3 ⊕ m4 (9)

where ⊕ shows the Dempster rule of combination. Since we are dealing with two
class problem (true, false), we do not have to deal with the increasing computa-
tional complexity of DS theory [9]. Final result is obtained by applying threshold
t to mfinal,

Result =
{

Accept, if mfinal ≥ t
Reject, otherwise

(10)

Finally, the Dempster rule of conditioning given in Equation 6 is used to
update the belief assignment associated with each fingerprint algorithm as and
when required. With this rule, only new or updated bba is used for modification.
This rule makes the update process easy as it is not required to train the complete
classification algorithm when a new training data is added.

4 Experimental Results

Proposed DS theory based classifier fusion algorithm is validated using a finger-
print database obtained from different law enforcement agencies. The database
contains five rolled fingerprints and five slap fingerprints from 500 different
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classes. All the fingerprints are scanned at 1000 ppi. From each class, two rolled
fingerprint images are randomly selected as training data. Rest of the images
from each class are used as the test data. As stated earlier, minutiae based al-
gorithm [1], ridge based algorithm [2], fingercode based algorithm [3] and pores
based algorithm [4] are used as the primary classifiers. In the experiments, we
compute the verification accuracy of all the algorithms at 0.001% false accept
rate (FAR). Experimental results are divided into four subsections. In the first
subsection, we compute the verification accuracies when test image is rolled fin-
gerprint image, i.e. matching a rolled fingerprint with rolled fingerprint. In the
next experiment, explained in Section 4.2, we compute the verification accuracies
with slap fingerprints as the test images, i.e. matching rolled fingerprint with slap
fingerprint. There are approximately 20 - 25 minutiae in a slap fingerprint which
is less than the number of minutiae in rolled fingerprints (60 - 80 minutiae). Thus
this experiment evaluates the performance when limited amount of information
is present. The third experiment, which is the comparison of proposed fusion
algorithm with existing fusion algorithms, is presented in Section 4.3. Finally,
Section 4.4 presents the advantage of using Dempster rule of conditioning to
reduce the training time.

4.1 Matching Rolled Fingerprints

For matching two rolled fingerprints using the four individual fingerprint veri-
fication algorithms, the best performance of 90.04% is obtained from minutiae
based verification algorithm followed by 88.45% accuracy from pores based al-
gorithm. Ridge and fingercode based algorithms give an accuracy of 84.61% and
85.39% respectively. Figure 2 shows the ROC plot of this experiment. It also
shows that the verification accuracy of 98.14% is obtained when outputs of all
the four verification algorithms are fused using the proposed DS theory based
classifier fusion algorithm. Thus, the fingerprint verification performance is im-
proved by 8.1%. Further, the verification accuracy of all the combinations of
individual verification algorithms is computed by fusing the outputs of different
verification algorithms using proposed fusion algorithm. Results are shown in Ta-
ble 1. It shows that any combination with minutiae and pores based algorithms
give better accuracy in comparison with other combinations.

4.2 Matching Rolled Fingerprint with Slap Fingerprint

In this experiment, the database images are rolled fingerprints and the testing
dataset consists of slap fingerprints. Verification performance is computed for
all combinations of four verification algorithms. Results of this experiment are
shown in Table 2. It shows that the verification accuracy for all the combinations
decreases by 2 - 3% in comparison to the verification accuracy of matching rolled
to rolled fingerprints. In this experiment, fusion of outputs of all the four veri-
fication algorithms gives best result with 97.34% followed by fusion of minutiae
and pores based algorithms with 95.85%.
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Fig. 2. ROC plot showing the performance of proposed fusion algorithm and individual
fingerprint verification algorithms

Table 1. Verification accuracies of possible combinations using proposed fusion algo-
rithm at 0.001% FAR (Matching rolled fingerprints)

Fusion Combination Verification Accuracy

Minutiae + Ridges 94.70 %

Minutiae + Fingercode 94.66 %

Minutiae + Pores 96.43 %

Ridge + Fingercode 92.78 %

Ridge + Pores 93.89 %

Fingercode + Pores 93.56 %

Minutiae + Ridges + Fingercode 94.74 %

Minutiae + Ridges + Pores 96.07 %

Minutiae + Fingercode + Pores 95.69 %

Ridges + Fingercode + Pores 95.15 %

Minutiae + Ridges + Fingercode + Pores 98.14 %

Further, we cropped the testing fingerprint images (slap fingerprints) such
that no minutiae is present in the image with the constraint that the size of
input testing image is 64 × 64. Using these images as testing images, we found
that only pores based algorithm gives best performance with 87.93% whereas
other verification algorithms give 0% accuracy. When the outputs are fused,
any combination which includes the output of pores based algorithm give an
accuracy of 87.93% and rest of the combinations give 0% verification accuracy.
This experiment shows that with limited information pores based algorithm
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Table 2. Verification accuracies of possible combinations using proposed fusion algo-
rithm at 0.001% FAR with slap fingerprint images (Matching rolled fingerprints with
slap fingerprints)

Fusion Combination Verification Accuracy

Minutiae + Ridges 92.62 %

Minutiae + Fingercode 92.23 %

Minutiae + Pores 95.85 %

Ridge + Fingercode 90.46 %

Ridge + Pores 91.27 %

Fingercode + Pores 90.91 %

Minutiae + Ridges + Fingercode 93.12 %

Minutiae + Ridges + Pores 94.76 %

Minutiae + Fingercode + Pores 93.51 %

Ridges + Fingercode + Pores 94.08 %

Minutiae + Ridges + Fingercode + Pores 97.34 %

is more useful and the proposed fusion algorithm is able to correctly fuse the
outputs without compromising the verification performance.

4.3 Comparison with Existing Fusion Algorithms

In this experiment, a comparison of the proposed DS theory based classifier
fusion algorithm with existing fusion algorithms is performed. For comparison,
rolled fingerprint images are used as both training and testing images and fusion
is performed with the outputs of minutiae and pores based algorithms only. Ex-
isting algorithms which are used for comparison are: Min/Max rule [5], Product
rule [5], Sum rule [5], [6], and SVM fusion [8]. Figure 3 shows the ROC plot of
this experiment. In this experiment, we found that Min/Max rule gives verifi-
cation accuracy of 91.17%, product rule gives 92.01%, sum rule gives 92.76%,
SVM fusion gives 93.91% whereas the proposed fusion algorithm outperforms
these four fusion algorithms by at least 2.52% and gives an accuracy of 96.43%.
This shows that the proposed fusion algorithm leads to greater improvement in
performance compared to the other fusion algorithms.

4.4 Experiments with Dempster Rule of Conditioning

Another advantage of the proposed classifier fusion algorithm is low time com-
plexity due to the Dempster’s rule of conditioning. With this rule, the training
time is reduced by splitting large dataset into smaller parts and updating mass
assignments using the conditioning rule. Table 3 shows that when database size
is 100, training time with and without conditioning rule is 245 seconds. This in-
cludes the time taken by four fingerprint verification algorithms and the proposed
classifier fusion algorithm. When conditioning rule is not used, time required for
training increases significantly with the increase in database size. However, the
increment in time taken to train the database is much less when the conditioning
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Fig. 3. ROC plot showing the performance comparison of proposed fusion algorithm
with existing fusion algorithms

Table 3. Reducing training time of proposed fusion algorithm using Dempster’s rule
of conditioning

Database Size Training time of fusion Training time of fusion
without conditioning (seconds) with conditioning (seconds)

100 245 245

200 459 392

300 631 538

400 829 685

500 1022 831

rule is used and is in the range of 146 - 147 seconds. This experiment shows
that the use of conditioning algorithm can reduce the time complexity of fusion
algorithm.

5 Conclusion

Improving the performance of fingerprint recognition algorithms is of paramount
interest. In this paper, we proposed Dempster-Shafer theory based classifier fu-
sion algorithm for improving fingerprint verification performance. Decision in-
duced match scores of individual classifiers are used to compute the belief func-
tion in the DS theory based fusion algorithm. Further, multiple evidences are
fused using Dempster’s rule of combination. Four fingerprint algorithms are used
as primary classifiers. Using a fingerprint database obtained from law enforce-
ment agencies, verification accuracies of individual algorithms range from 84.61%
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to 90.04%, whereas the proposed fusion algorithm gives an accuracy of 98.14%
which is an improvement of around 8%. Further, performance of the proposed
fusion algorithm is evaluated when limited information is presented and experi-
mental results show that the proposed fusion algorithm is able to give consistent
performance. A comparison of proposed fusion algorithm with existing fusion
techniques is also performed, which demonstrates that the proposed fusion al-
gorithm gives best results with 96.43% verification accuracy followed by SVM
based fusion algorithm [8] with 93.91% accuracy. Finally, Dempster’s rule of
conditioning is used to reduce the time taken for training the database. Using
this rule, time taken for training the database is reduced by approximately 191
seconds. This level of results shows the usefulness of proposed fusion algorithm
for fingerprint recognition systems.
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Abstract. In this paper we proposed a new enhancement technique that
is based on the integration of Decimation Free Directional responses of
the Decimation Free Directional Filter Banks (DDFB), adaptive mean
filtering and the eigen decomposition of the Hessian matrix. By decom-
posing the input fingerprint image into decimation free directional im-
ages, it is easy to remove the noise directionally by means of adaptive
mean filtering and further eigen decomposition of the Hessian matrix
was used for the segmentation purpose. As the input fingerprint im-
age is not uniformly illuminated so we have used the bandpass filter for
the elimination of non-uniform illumination and for the creation of fre-
quency ridge image before giving it to DDFB. The final enhanced result
is constructed on a block-by-block basis by comparing energy of all the
directional images and picking one that provides maximum energy.

1 Introduction

Fingerprint is the first biometric system adopted by law enforcement agencies,
and now is also the most widely used system. A fingerprint is believed to be
unique to each person. Fingerprints of even identical twins are different thats
why they have gained so much popularity for the identification purpose. Any
fingerprint identification system highly depends on the quality of the fingerprint
image. As the fingerprint images are corrupted by different kinds of noise so the
need of enhancement is always there. Several techniques have been proposed in
the literature for fingerprint image enhancement but there is still need of im-
provement.

Researchers in recent years have used different methods for the enhancement
of the fingerprint. In a recent study[1] fingerprint enhancement, feature extrac-
tion and matching [2] has been proposed using directional filter banks. One most

P. Kalra and S. Peleg (Eds.): ICVGIP 2006, LNCS 4338, pp. 950–961, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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commonly used directional filter for fingerprint enhancement and matching is a
Gabor filter [3,4]. They have both frequency-selective and orientation-selective
properties and have optimal joint resolution in both spatial and frequency do-
mains. They have been used in [5], where the gradient direction of the pixels
have been identified and then the image is being filtered according to the gra-
dient direction and combined to get an enhanced image. The use of the second
directional derivatives has been proposed in [6] where the positive second direc-
tional derivative was used to detect the ridges in the image.

In this paper we have used DDFB for the directional analysis of the input
image and then adaptive mean filtering was used for the noise removal. After
applying adaptive mean filtering on each of the directional image as an output
of DDFB, the eigen decomposition of the Hessian matrix was computed at each
image pixel. Rest of the paper is organized as follows: in Section II, the proposed
system is discussed whereas reconstruction of the enhanced image, some of the
experimental results and a comparison is presented in Section III.

2 Fingerprint Image Enhancement

The proposed system takes the fingerprint as an input for the enhancement as
shown in Fig. 1. The main steps involved in the proposed system are described
below in a sequential order.

Fig. 1. Proposed Fingerprint Image Enhancement System

2.1 Illumination Adjustment and Creation of Ridge Frequency
Image

The fingerprint can be approximated by a two-dimensional sinusoidal of different
orientations as proposed in [7,5]. It is shown in Fig. 3, that a periodic sinusoid
of a particular orientation in the spatial domain is represented by two points in
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Fig. 2. Fingerprint Test Image

(a) (b)

(c) (d)

Fig. 3. a,c) Periodic Sinusoidal of a particular direction in Spatial Domain b,d) Periodic
Sinusoidal represented by two points in frequency Domain

the frequency domain. As the fingerprint image is a two dimensional sinusoids of
different orientations, so the ridge frequencies are represented by the points in a
circular region in the frequency domain as show in in Fig. 4. As we are interested
in the enhancement of the ridges only rather than the background, we have used
the bandpass filter whose passband allows the ridge frequencies represented by
the circular region in the frequency domain to pass through it. The bandpass
filter not only allows us to have a ridge frequency image but also helps in the
removal of non-uniform illumination. As the non-uniform illumination is present
as low frequency content in the frequency domain, so we have applied the non-
ideal butterworth bandpass filter. It is filtered out by the lower stop-band region
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(a) (b)

Fig. 4. a) Representation of image in Frequency Domain. b) Frequency Response of
Bandpass Filter.

(a) (b)

Fig. 5. Illumination Adjustment: a) Non-uniformly illuminated image. b) Simply pro-
cessed to eliminate the effects of non-uniform illumination and having ridge frequencies
only.

of the bandpass filter. High frequency noise is treated by the upper stop-band
region of the bandpass filter. The equation of the bandpass filter is given below

H(u, v) =

⎧⎨⎩
1 if D(u, v) < D0 − W

2

0 if D0 − W
2 ≤ D(u, v) ≤ D0 + W

2

1 if D(u, v) > D0 + W
2

(1)

where D(u, v) is a radial distance from the origin., W is the width of the band,
and D0 is the radial center. The bandpass filter was applied by taking the discrete
fourier transform (DFT) of the input image as shown in Fig. 4. After filtering
the image, inverse DFT has been applied to transform the filtered image from
fourier domain back to spatial domain. Finally we got a uniformly illuminated
image having the ridge frequencies only as shown in Fig. 5. One important benefit
of using bandpass fltering is that the segmentation of Fig. 5.b in order to find
the fingerprint area is easier as compared to the original image and we can use
the local variance to segment the image. We used the bandpass filter whose pass-
band is designed in such a way that only the ridge frequencies can pass through
it as shown in Fig. 4.
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Fig. 6. Schematic Diagram of DDFB

(a) (b)

(c) (d)

Fig. 7. Four out of eight Directional Images
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Fig. 8. Frequency partition map for 8-band DFB

2.2 Creation of Decimation-Free Directional Images

We have used the Decimation Free Directional Filter Banks (DDFB) for the
directional analysis of the input image as proposed in [1]. The reason for using
the DDFB rather than the Directional Filter banks(DFB), is that the output of
the DDFB is of the same size as of the input image, so we can avoid extra step
of interpolation which was required for the output of DFB for the enhancement
purpose. DDFB decomposes the spectral region of the input image into wedge-
shaped passband regions shown in Fig. 8. It is easily shown that these wedge-
shaped regions correspond to directional components of an image. The filters
related to wedge-shaped regions are commonly referred to as fan filters [8]. The
block diagram of DDFB structure is shown in Fig. 6. Four out of eight directional
images are shown in Fig. 7.

2.3 Noise Removal Using Adaptive Mean Filtering

We have used the adaptive mean filtering [9] for the removal of the gaussian
noise in each of the eight directional outputs of the DDFB as shown in Fig. 9.
As noise is a random variable, so it can be measured statistically by using its
mean and variance which are closely related to the appearance of an image. The
average gray level is represented by the mean in the local region Sxy over which
it is computed, and variance gives the measure of average contrast in that local
region Sxy. The equation of adaptive mean filter is given below

output = g(x, y) −
σ2

η

σ2
L

[g(x, y) − mL], (2)

Our filter operates locally in a region, Sxy. The response of the filter at any
point (x, y) on which the region is centered is to be based on four quantities:

1. g(x, y), the value of the noisy image at (x,y).
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Fig. 9. Noise represented by Gaussian Distribution

(a) (b)

(c) (d)

Fig. 10. Creation of noise-free images: (a) Noise-free image of Fig. 7. a, (b) Noise-free
image of Fig. 7 b, (c) Noise-free image of Fig. 7. c, (d) Noise-free image of Fig. 7. d

2. σ2
η, the variance of the noise corrupting f(x,y) to form g(x,y)) and can be

calculated as
σ2

η =
∑

ziεSxy

(zi − μη)2p(zi) (3)

μ can be calculated as
μη =

∑
ziεSxy

(zi)p(zi) (4)

3. mL, the local mean of the pixels in Sxy.
4. σ2

L, the local variance of the pixels in Sxy.
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where zi is the value of the gray level in Sxy and p(zi) is the probability of each
gray level in Sxy. The results after applying the adaptive mean filtering is shown
in Fig. 10. It can be seen that the filter has removed the noise directionally.

2.4 Segmentation of Decimation Free Directional Images

In this section, noise-free images obtained as an output of DDFB are segmented
in a way that whole ridge structure can easily be discriminated from the back-
ground.

In recent years there has been a fair amount of research on fingerprint and
vessel enhancement. One popular way is to use eigen decomposition of the Hes-
sian computed at each image pixel [10], [11], [12], [13], [14]. We proved that this
enhancement which was initially used for detecting blood vessels in the medical
images can be successfully used to enhance ridges. Eigenvalues are used in rules
to decide if a particular location is a ridge pixel or not. When a pixel passes
this test, the eigenvector corresponding to the smaller (in absolute value) eigen-
value points along the vessel. The signs of the eigenvalues determine bright or
dark structures. Vesselness measures are defined in [11]and [12]. Frangi et al. [11]

(a) (b)

(c) (d)

Fig. 11. Results obtained by applying Frangi’s method on Fig. 7 at different values of
β2 but at constant β1. (a) Segmented image of Fig. 10. b with β1 = 2 and β2 = 4,
(b) Segmented image of Fig. 10 b with β1 = 2 and β2 = 6, (c) Segmented image of
Fig. 10. b with β1 = 2 and β2 = 8. (d) Segmented image of Fig. 10. b with β1 = 2
and β2 = 10.It is clear from all the results that by increasing the value of β2 we have
managed to reduce noise but on expense of low-contrast ridges which also diminished
along with noise. Where β1 and β2 are thresholds which control the sensitivity of the
measures RA and RB.
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(a) (b)

(c) (d)

Fig. 12. (a) Segmented image of Fig. 10. a, (b) Segmented image of Fig. 10 b, (c)
Segmented image of Fig. 10. c, (d) Segmented image of Fig. 10. d.

proposed using ratios of the eigenvalues |λ1| ≤ |λ2| ≤ |λ3| to determine scores
RB = |λ|/|λ2λ3| and RA = |λ2|/|λ3| and computing the Frobenius norm, S, of
Hessian to measure overall strength. For tube-like structures, including vessels,
RB should be low and RA should be high. Since there is an involvement of sec-
ond order derivatives the presence of noise is significant. For eliminating noise
Frangi et. al. introduce parameters. We have employed the Frangi’s method on
the directional images obtained as an output of the previous step as shown in
Fig. 12. We also implemented the Frangi’s method direct to the input image
as shown in Fig. 11, it is clear from the Fig. 11 that for the fingerprint image
enhancement we cant use the Frangi’s method directly, we need to remove the
noise directionally, so we can say that the noise present in the fingerprint image
was a directional noise which needs to be removed directionally by means of
adaptive mean filtering.

3 Reconstruction of Enhanced Image

We have used directional energy of the cleaned directional images for construc-
tion of enhanced image. In DDFB we can compare energy estimates for samples
which correspond to the same spatial regions due to the same size of directional
images. Overlapping block-by-block directional energy is computed for each di-
rectional image by using the formula given below:

Di
energy(x, y) = Σ(Σ(|Di

image(x : x + B(1), y : y + B(2)) − mB|)), (5)
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(a) (b)
Final Result

(c) (d)

Fig. 13. (a),(b) Images of the same subject from the FVC2002 Database.(c),(d) En-
hanced Images of (a),(b).

where B is a vector which defines the block size B(1) × B(2) for which the
energy is to be calculated, and (x, y) represents pixel positions in an integer image
lattice. Di

image(x : x+B(1), y : y+B(2)) represents block from directional image
i and mB represents the mean of that block. Here mB is subtracted from each
block to remove the effect of local non-uniform illumination. In this manner we
will have eight directional energy images Di

energy (i = 1, 2, 3, 4, 5, 6, 7, 8), where
each directional energy image correspond to one of the eight directional images.

Energy equation used in this paper gives the rate of change among pixel
values. Enhanced image Henh can be constructed from the directional energy
images by using following steps.

1. For each pixel (x, y) find the energy image having maximum directional en-
ergy. For example, for pixel position (x, y), we would find maximum
(max(Di

energy(x, y))) in all Di
energy images. Here (x, y) are pixel positions

in an image lattice. Mathematically we can say that,

[m, ind] = max(Di
energy(x, y)) (6)

where i = 1,2,3,4,5,6,7,8.

where m is the value of maximum energy for a particular pixel position (x, y) and
ind is the index of Denergy image from which pixel (x, y) is declared as maximum.
After calculating maximum energy for each pixel we form a new image Eimage

having only maximum energies. This Eimage is the final enhanced fingerprint.



960 M.T. Ibrahim et al.

(a) (b)

Fig. 14. (a) Result of Binarization of original image. (b) Result of Binarization of
enhanced image.

The final enhanced fingerprint image Eimage obtained is shown in Fig. 13c.
Comparing the result with the original image shown in Fig. 2 reveals that all the
ridge structure is intact while the spatial noise has been cleaned substantially.
Fig. 14 show the results of binarization of the original image and that of the
enhanced image respectively. We see that enhanced fingerprint image results in
a binary image with clear ridges and valleys. The quality of the fingerprint image
enhancement system depends on how it enhances the fingerprint images of the
same person. We have tested our proposed approach on the fingerprint images
from FVC2002 and the comparison between Fig. 13c,d with the images shown
in Fig. 13a,b reveals that the proposed system has enhanced both the images in
the same manner which is the requirement of any fingerprint recognizing system
for the identification.
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