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Preface

The conference of the 1st IEEE Pacific-Rim Symposium on Image and Video
Technology (PSIVT 2006) was held at Hsinchu, Taiwan, Republic of China, on
December 11-13, 2006. This volume contains papers selected for presentation
at this conference. The aim of this conference was to bring together theoretical
advances and practical implementations contributing to, or being involved in,
image and video technology.

PSIVT 2006 featured a comprehensive program including tutorials, keynote
and invited talks, oral paper presentations, and posters. We received 450 sub-
missions from 22 countries and accepted 141 papers among those (i.e., defining
an acceptance rate of 31.3%). The intention was to establish PSIVT as a top-
quality series of symposia. Decisions were difficult sometimes, but we hope that
the final result is acceptable to all involved.

Besides keynotes and invited talks, PSIVT 2006 offered 76 oral presentations
and 58 posters, according to the proper registration of these papers by the defined
deadline. We deeply appreciate the help of the reviewers, who generously spent
their time to ensure a high-quality reviewing process. Useful comments were
provided by reviewers, often quite detailed, and they certainly offered authors
opportunities to improve their work not only for this conference, but also for
future research.

We thank Springer’s LNCS department and IEEE’s Circuits and Systems
Society for efficient contacts during the preparation of the conference and these
proceedings. Their support is greatly appreciated. This conference would never
have been successfully completed without the efforts of many people. We greatly
appreciate the effort and the cooperation provided by our strong Organizing
Committee. We would also like to thank all the sponsors for their considerable
support including the National Tsing Hua University (NTHU), National Chung
Cheng University (NCCU), The University of Auckland (UoA), National Science
Council (NSC), Ministry of Education (MoE), Sunplus Technology Co., National
Center for High-Performance Computing (NCHC), and Institute for Information
Industry (III).

October 2006 Long-Wen Chang
Wen-Nung Lie
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Abstract. For real-time disparity estimation from stereo images the
coordinates of feature points are evaluated. This paper analyses the in-
fluence of camera noise on the accuracy of feature point coordinates of a
feature point detector similar to the Harris Detector, modified for dispar-
ity estimation. As a result the error variance of the horizontal coordinate
of each feature point and the variance of each corresponding disparity
value is calculated as a function of the image noise and the local inten-
sity distribution. Disparities with insufficient accuracy can be discarded
in order to ensure a given accuracy. The results of the error analysis are
confirmed by experimental results.

1 Introduction

Disparity estimation algorithms compute disparities from the coordinates of se-
lected corresponding feature points from images in standard stereo geometry.
For the use of these estimated disparities in computer vision systems it is desir-
able to specify their accuracy. Therefore, in this paper the error variance of a
disparity estimator is determined analytically and experimentally.

In previous work Luxen [1] measures the variance of feature point coordi-
nates, taking image noise into account. The result is a mean error variance of all
feature points in an image at a specific level of image noise. Local intensity distri-
butions at specific feature points are not taken into account. Rohr [2] introduces
an analytical model of a corner and calculates the feature point coordinates of
different feature detectors for this corner. Thus he characterizes the different
detectors but does not consider the errors of the coordinates due to camera
noise. Szeliski [3] has analytically calculated the accuracy of displacement esti-
mators like the KLT-Tracker [4]. The resulting covariance matrix describes the
variance of the displacement error for each displacement. Other approaches do
not estimate displacements but nevertheless apply similar covariance matrices
to describe the accuracy of feature point coordinates [5,6,7,8]. However, these re-
sults have not been analytically proven or evaluated in experiments. Thus, so far
the accuracy of feature point coordinates from image gradient based detectors
similar to the Harris Detector [9] has not been calculated analytically.

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 1-12, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 P.A. Mikulastik et al.

This paper analyses the influence of camera noise on the accuracy of a feature
point detector for disparity estimation. It is based on a modified Harris Detec-
tor [9]. The accuracy is defined by the error variance of the feature coordinate.
In a second step the error variance of the disparity estimation is derived.

In section 2 the feature detector considered in this paper is described. In
section 3 an error analysis for feature coordinates and disparity is presented.
Section 4 describes experiments for measuring the error variance of feature co-
ordinates. Conclusions are given in section 5.

2 Feature Point Detector

The feature detector considered in this paper is based on the Harris Detector [9].
In stereo vision only disparities in horizontal direction of the stereo image are
considered. Therefore, the process of feature detection is simplified so that only
gradients in direction of the x-axis are measured. This also results in a reduced
computational complexity.

For detection of feature points the following equation describes the edge re-
sponse function R for vertical edges:

R(xu y) = ) QG = [17 2, 1] (1)

1
Z Ia:(xa Yy + i)ai

i=—1

where = and y are coordinates in the image. I, is an approximation of the
horizontal intensity gradient:

IL(z,y)=—-I(x—2,y)—2I(x — L,y)+ 2 (z+ 1,y) + I(x + 2,y) (2)

A feature point is detected, if R(z,y) is greater than a predefined threshold Tr
and if R(@m,, Ym) is a local maximum in horizontal direction:

R(mmv ym) > TR

R(Trms Ym) > R(zm — 1, ym) (3)
R(Zm, Ym) > R(xm + 1, ym)

Estimation of subpel coordinates. In horizontal direction a subpel coordi-
nate is estimated for every feature point. A parabola is fitted to the edge response
function (see figure 1):
L oo
R(z,y) =a+bx + 5C% (4)

To achieve a compact notation the coordinate system is chosen so that z,, = 0.
The three parameters a, b, ¢ are calculated with:

R(-1,ym)=a—b+ ;c
R(0,ym) = a ()

1
R(+1L,ym)=a+b+ oC
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Fig. 1. Interpolation of R(z,y) with a parabola. The maximum defines the subpel

coordinate of the feature point xg.

Solved for a, b, c:

a= R(0,ym)
b= ; (R(+1, ym) — R(=1,ym)) (6)

c= R(—L ym) - 2R<07 ym) + R(+17 ym)

In order to find the maximum of the parabola the derivation of equation 4 is set
to zero:

OR(z,y)

P =b+cx . 0 (7)
The null of equation 7 marks the subpel coordinate x( of the feature point:
b
o = _C
1 R(-1.ym) - R(+1.ym) ®)

T 2R(~1,yn) — 2R(0,yn) + R(+1,y.)

3 Variance of the Horizontal Coordinate

To consider the influence of image noise on the subpel coordinates of feature
points, noisy intensity values I(z,y) with:

I(z,y) = I(z,y) + n(z,y) (9)
are considered. n(z,y) is white, mean free and Gaussian distributed noise with
a noise variance of o2. The gradient of the image noise is defined as:

ne(x,y) = —n(x—2,y) —2n(x — L,y) + 2n(z + 1,y) + n(x + 2,y) (10)
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Therefore, the measured image gradient is I, (z, y):

=IL(z,y) —n(z —2,y) — 2n(z — L,y) + 2n(z + 1,y) + n(z + 2,y)
~ ~ -~
g (2,)

} (11)
The measured cornerness response function R(x,y) can be written as:

N 1
R(z,y) =

a: y—i—z

Z acy—i—zozl—&—anxy—i—z)

i=—1 i=—1

(12)

I, can be positive or negative if the edge has a gradient in the positive or
in the negative direction. The influence of the image noise is the same in both
cases. Therefore only edges with positive gradients are considered in the following
calculations and it is assumed that I, is always positive:

1

> L(z,y+i)a; >0 (13)
i=—1

Generally, the intensity values are much larger than the image noise:
1 1
Z L(x,y +i)a; > Z ng(z,y + i) (14)
i=—1 i=—1

With equations 13 and 14 R(x,y) can be written as:

1

+ Z ng(x,y + i)

i=—1 i=—1 (15)
~ ~ PAERS ~ -
R(z,y) Ry (z,y)
with: X
Ru(z,y) = Y na(,y+i)a (16)

i=—1

R(x,y) is computed for every point-position. The calculation of the feature
point’s subpel coordinates is carried out according to equation 3 to 7. £y can be
calculated with equation 8:

1 R<_17ym) _R(laym)

) ' ' (17)
2 R(_]-a ym) - 2R(07 ym) + R(]-v ym)

To =
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and: - ~
Fo = 1 R(—=1,ym) — R(1,ym)
2¢c+ Ru(=1,ym) — 2Rn(0,ym) + Rn(1, ym)
- ~ -
Ac

For a more compact notation Ac is introduced:
Ac = Ry (—1,ym) — 2Rn(0,ym) + Rn(L,ym)

as well as the normalized value Ac':

Ad — Ac
c

(20)

c is a sum of intensity values and Ac is a sum of noise values. Therefore Ac’ is

a small value. With Ac and Ac’ equation 18 simplifies to:

_ 1 R(_laym) - R(Lym)

2 c+ Ac
_ 1 R(_laym) - R(Lym)
2 c(l4+ Ad)

Multiplication of nominator and denominator with (1 — Ac’) equals to:

=~ 1R(_1’ym) _R(Lym) _ 1R(_1’ym) _R(Lym)

To = - Al
072 c(1— Ac?) 2 c(1— Ac?)
Since Ac’ is a small value it can be assumed that
1>> Ad?
With this assumption, equation 22 is simplified to:
1 R _1 m) R 1 m R - m) R m
g~ LIl ym) = B(Lym)  LR(=Lym) = R(Lym) 4,
2 c 2 c
With equation 16:
o Ama
T RO1, ) — R(Lys) N 7 Ra(—1 Ro(1,ym)\
.i‘()%( (—,Z/m)— ym)+( n ym_ n(a]/m))
2c
_ (R(—l,ym) = R(1,ym) Rn( 1 ym) - Ry, (l,ym)> AL
2c

Az, is defined:
Ama — <Rn(_1, ym) - Rn(la ym))
2c

With Az, we can write:

Fo = x0 + Axq — To AL — Az A

(23)

(24)

(26)

(27)
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Az, Ad is the procduct of sums of noise values. Therefore it is very small. Tt
will be neglected in the following calculation:

To = To + éxa — onc/’ (28)
~
Axg

Axq describes the error of the undistorted coordinate xg:
Axg = Az, — zo A (29)

It has been verified that experimentally that Axzg has a zero mean. With this
assumption the variance of the coordinate’s error 0% equals the root mean square
E[Az3):

0% = E[Az}] {(Ama - moAc’)Q}

F
E [Axaz — 2x0 Az, Ac + x%Ac/Q} (30)
FE

[Amaz] — E[200Az, Al + E {x%Ac’z]

The terms of equation 30 are evaluated individually:

2
E [Axa2] - E <Rn(_lvym) - Rn(lvym)) ]
2¢c
(31)
- 402E [(Rn( 1uym) - R’rL(]-uym)) }
With equation 15:
1 1 1 2
2 _ N )
E[A$a ] - 402E (i_zl n:v<_]-7ym + Z)az igl na:(]-vym + Z))
Evaluation of the square gives:
1 2 1
2 1 . .
E[Az,”] = 402E[ (Zz_:l Ng (=1, ym + 2)0@) - Qigl Mg (=1, ym + 1)
- - (32)

1 1 2
Z na:(Lym + i)ai + (Z nw(laym + Z)az> ]

i=—1 i=—1
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With E[n(z,y1)n(z,y2)] = 0, for y1 # y2 and E[n(z1,y)n(z2,y)] = 0, for z1 #
Iao:

i=—1

1 2
E (Z ng(x,y + i)ai>

1
=F lz n2(z,y +i)as

i=—1 (33)
1
=F lz (n*(x =2,y +i)+4n°(x — 1,y + i) + 4n*(z + 1,y + )
i=—1
+n?(z + 2,y + i)) a?]
and
1 1
E Z nz(—1,y + 1) - Z na(L,y +1i)a
i=—1 i=—1
1
=E| Y ne(-Ly+i) ni(Ly+ial (34)
i=—1
1
=E| > —4n’(0,y+i)a}
i=—1

Equation 32 simplifies to:

1
> (0P(=3, ym + 1) + 40> (=2, ym + 1) + 40> (0, ym + 1)

i=—1

1
E[Az,?] = 22 P

1
+ 02 (L ym +1))0f =2 > —4n®(0, ym + 1)o7}

i=—1

1
+ > (PP(=1Ly+i) +4n(0,y + ) + 4n>(2,y + 1)
1=—1
+n*(3,y +1)) a?]
(35)

For the expectation the terms n?(z, ) become the variance of the image noise o2 :

1 1 1
1
27 _ 2 2 2 2 2 2
ElAz] = |, l;l 100202 — 2 (;1 —4anai> - igl 10anai] (36)
Evaluation of the sums gives:

o2 4202

ElAz,% = gop [60+48+60] = " (37)
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The second term in equation 30 can be expanded to:

E[2Az,20A] = E [2 (Rn(—l’ym) - Rn(l,ym)) - Acc]

2c
=F [2 (Rnél’(yméc }:n(laym:) | ( ))} .
Ro(—1,ym) — 2Rn(0,ym) + Rn(1, ym
o) .

— Y E[(Ra(=1,4m) — Ru(1,ym))

(Rn<_17 ym) - 2Rn<0’ ym) + Rn(L ym))]

A calculation similar to that from equation 31 to 36 leads to:

1 1
E2Az,20Ad] = acg [Z 100202 — Z 1007210[?1 :
c

i=—1 i=—1

[—2 <§1: 40,%%2) +2 (21: 403%2)1 (39)

i=—1 i=—1
=0
The third term in equation 30 can be expanded to:

B [3a¢) = VB [(Ru(—1) ~ 2Ral03) + RuLy)?] (40)

Once again, a calculation similar to that from equation 31 to 36 leads to:

2,2
B [i3a¢] = 120700 (41)
c
Insertion of equations 37, 39 and 41 in equation 30 leads to:
o2 — 4202 1200223
A 2 2
42 + 12022
=2 (42)
42 + 12023
— 52 + 120z5

" (R(=1,ym) = 2R(0, ym) + R(+1, ym))”
This equation will be used to calculate the error variance 0% of the feature point

coordinate. The disparity d is the distance between a feature point in the left
image and the corresponding feature point in the right image:

d = Tjefy — Tright (43)
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The variance 0%  of the disparity error Ad is:

2
E[Ad] =04, =F [(Afﬂleft - Awright) }
—E [Axfeﬁ — 20210 Ay + Amfight] (44)
= E [Antg] - E [2A014 Avigr | + B [Ac?ig]

The distortions of the feature point’s coordinates in the two images are statisti-
cally independent, therefore equation 44 simplifies to:

2 _ 2 2
07, = B [Arjg] + B [Axright] (45)
2 2
= Oleft T 9 Aright

The variance of the disparity error is given by the sum of the error variances of
the feature point coordinates.

4 Experimental Results

The following experiments have been carried out to evaluate the derivation from
the preceding chapter 3. An image sequence consisting of a static scene with
constant lighting is taken with a 3-Chip CCD camera (Sony DXC-D30WSP).
In order to determine the size of 02 the average intensity value at each pixel
from 1000 frames is calculated to produce a noise free image for the sequence.
By subtraction of the noise free image and the original images, difference images
containing only the camera noise can be obtained. A camera noise variance
of 02 = 4.8 which equals a PSNR of 41.3dB was measured for the sequence.
Figure 2 shows an example of an image from the sequence.

Using the feature detector described in section 2 feature points are detected in
every image of the sequence. Now, correspondences between the feature points in
the sequence are established. A correspondence is given, if a feature point in one
image is located at the coordinates x,y and in another image at the coordinates
xte, yte, with e < 0,5 pel If a feature point has correspondences in all images of
a sequence, the measured variance of its horizontal coordinate 5% is calculated.
This value can be compared with the results from the derivation in section 3.

Figure 3 shows the measured variances 6% over the variances 0% calculated
as described in section 3. The figure shows that the measured variances %
have nearly the same values as the calculated ones. Therefore the calculation is
confirmed by the experiment. Also the values lie in the same regions observed
by other researchers [1].

A second experiment with a synthetic image shows the dependence between
subpel position of a feature point and the error variance of its coordinate. The
image shown in figure 4 is used for this experiment. A feature detection in
this image results in feature points with subpel positions in the whole range
—0.5 < 29 < 0.5 because the edge in the image is slightly slanted.
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Fig. 2. Example image from the test sequence with a camera noise variance of o2 = 4.8
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Fig. 3. Measured error variances 6% over analytically calculated error variances o for
each feature point in the image sequence taken with a real camera

Because the image shown in figure 4 is noisefree, synthetic noise was added
the the images intensity values to generate 1000 noisy images with the original
image as basis. Now the same procedure to calculate 5% and 0% as described
with the real image is conducted.

Figure 5 shows the measured and the calculated noise variances of the feature
point’s coordinates 6% and % over the subpel coordinate. It can be observed
that the coordinate error variance of feature points at a full-pel position is smaller
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a) Original image b) Detail

Fig. 4. Synthetic image used in the experiment. The edge is slightly slanted, so that
feature points with a range of subpel coordinates can be detected.
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Fig. 5. Measured error variance 5% and calculated error variance 0% as function of the
subpel coordinate xo

than that for feature points at half-pel position. The variances vary by a factor
of about three. Also it can be observed that the calculated variances 0% match
the measured variances % which supports the correctness of the calculation.

5 Conclusions

A feature point detector using horizontal intensity gradients and offering subpel
accuracy was described in section 2. It was shown that typically most of the
feature points have an error variance of less than 0.01pel® for the horizontal
coordinate. An analysis of the error of the horizontal feature point coordinate
revealed the interrelationship between the image noise o2, the local image con-
tent, given by the local image intensity values I(z,y), and the variance of the
feature point’s horizontal coordinate error 2. A formula for the disparity error
variance based on the feature coordinate error variance has been derived. In an
experiment (section 4) it was shown that the results of the analytical derivation
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match measured results obtained using synthetic images and images from a real
camera. A second experiment has shown that the coordinate error variance of
feature points at a full-pel position is smaller by a factor of three than that for
feature points at half-pel position.

The calculation presented in this paper allows to benchmark feature points
and disparities during feature detection on their expected error variance. This is
a great advantage compared to methods that try to eliminate bad feature points
at a later stage in the process of disparity estimation.

In the future this work will be expanded to a feature detector that measures
gradients in all directions in the image, i.e. the feature detector of Harris et. al.[9)]
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Abstract. Structure from motion (SfM) comprises techniques for esti-
mating 3D structures from uncalibrated 2D image sequences. This work
focuses on two contributions: Firstly, a stability analysis is performed
and the error propagation of image noise is studied. Secondly, to stabilize
SfM, we present two optimization schemes by using a priori knowledge
about collinearity or coplanarity of feature points in the scene.

1 Introduction

Structure from motion (SfM) is an ongoing research topic in computer vision
and photogrammetry, which has a number of applications in different areas,
such as e-commerce, real estate, games and special effects. It aims at recovering
3D (shape) models of (usually rigid) objects from an (uncalibrated) sequence (or
set) of 2D images.

The original approach [5] of SfM consists of the following steps: (1) extract
corresponding points from pairs of images, (2) compute the fundamental matrix,
(3) specify the projection matrix, (4) generate a dense depth map, and (5) build
a 3D model. A brief introduction of some of those steps will be presented in
Section 2.

Errors are inevitable to every highly complex procedure depending on real-
world data, and this also holds for SfM. To improve the stabilization of SfM, two
optimizations are proposed using information from the 3D scene; see Section 3.
Section 4 presents experimental results, and Section 5 concludes the paper with
a brief summary.

2 Modules of SfTM

This section gives a brief introduction for some of the SfM steps (and related al-
gorithms). For extracting correspondent points, we recall a method proposed in
[14]. Then, three methods for computing the fundamental matrix are briefly in-
troduced. To specify a projection matrix from a fundamental matrix, we describe
two common methods based on [3,4]. In this step we also use the knowledge of
intrinsic camera parameters, which can be obtained through Tsai calibration
[12]; this calibration is performed before or after taking the pictures for the used
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© Springer-Verlag Berlin Heidelberg 2006



14 G. Liu, R. Klette, and B. Rosenhahn

camera. It allows to specify the effective focal length f, the size factors k, and
k, of CCD cells (for calculating the physical size of pixels), and the coordinates
ug and vg of the principal point (i.e., center point) in the image plane.

2.1 Corresponding Points

We need at least seven pairs of corresponding points to determine the geometric
relationship between two images, caused by viewing the same object from dif-
ferent view points. One way to extract those points from a pair of images is as
follows [14]:

(i) extract candidate points by using the Harris corner detector [2], (ii) utilize
a correlation technique to find matching pairs, and (iii) remove outliers by using
a LMedS (i.e., least-median-of-squares) method.

Due to the poor performance of the Harris corner detector on specular objects,
this method is normally not suitable.

2.2 Fundamental and Essential Matrix

A fundamental matrix F' is an algebraic representation of epipolar geometry
[13]. It can be calculated if we have at least seven correspondences (i.e., pairs
of corresponding points), for example using linear methods (such as the 8-Point
Algorithm of [8]) or nonlinear methods (such as the RANSAC Algorithm of [1],
or the LMedS Algorithm of [14]).

In the case of a linear method, the fundamental matrix is specified through
solving an overdetermined system of linear equations utilizing the given corre-
spondences. In the case of a nonlinear method, subsets (at least seven) of cor-
respondences are chosen randomly and used to compute candidate fundamental
matrices, and then the best is selected, which causes the smallest error for all
the detected correspondences.

According to our experiments, linear methods have a more time efficient and
provide reasonably good results for large (say more than 13) numbers of corre-
spondences. Nonlinear methods are more time consuming, but less sensitive to
noise, especially if correspondences also contain outliers.

For given intrinsic camera parameters K and K5, the Essential matrix £ can
be derived from F' by computing

E=KJ]FK,
2.3 Projection Matrix
A projection matrix P can be expressed as follows:
P =K[R| —RT]

where K is a matrix of the intrinsic camera parameters, and R and T are the ro-
tation matrix and translation vector (the extrinsic camera parameters). Since the
intrinsic parameters are specified by calibration, relative rotation and translation
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can be successfully extracted from the fundamental matrix F'. When recovering
the projection matrices in reference to the first camera position, the projection
matrix of the first camera position is given as P, = K;[I | 0], and the projection
matrix of the second camera position is given as P, = K3[R | —RT].

The method proposed by Hartley and Zisserman for computing rotation ma-
trix R and translation vector T’ (from the essential matrix E) is as follows [3]:

1. compute E by using E = KI FK;, where

fku 0 U
Ki = 0 fk'v Vo
0 0 1

(note: K1 = K if we use the same camera at view points 1 and 2),
2. perform a singular value decomposition (SVD) of E by following the template
E = Udiag(1,1,0)VT]
3. compute R and T (for the second view point), where we have two options,
namely
Ry =UWV"'  Ry=UwW"vV"
T1 = Uus T2 = —Uus
where ug is the third column of U and

0-10
W=1100
001

Another method for computing R and T from E (also only using elementary
matrix operations) is given in [4], which leads to almost identical results as the
method by Hartley and Zisserman.

2.4 Dense Depth Map

At this point, the given correspondences allow only a few points to be recon-
structed in 3D. A satisfactory 3D model of a pictured object requires a dense
map of correspondences. The epipolar constraint (as calculated above) allows
that correspondence search can be restricted to one-dimensional epipolar lines,
it supports that images are at first rectified following the method in [10], and
that correspondence matching is then done by searching along a corresponding
scan line in the rectified image. We also require a recovered base line between
both camera positions to calculate a dense depth map.

3 Optimization with Prior Knowledge

Since computations of fundamental and projection matrix are sensitive to noise,
it is necessary to apply a method for reducing the effect of noise (to stabilize
StM). We utilize information about the given 3D scene, such as knowledge about
collinearity or coplanarity.
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3.1 Knowledge About Collinearity

It is not hard to detect collinear points on man-made objects, such as buildings or
furniture. Assuming ideal central projection (i.e., no lens distortion or noise), then
collinear points in object space are mapped onto one line in the image plane. We
assume that lens distortions are small enough to be ignored. Linearizing points
which are supposed to be collinear can then be seen as a way to remove noise.

Least-square line fitting (minimizing perpendicular offsets) is used to iden-
tify the approximating line for a set of “noisy collinear points”. Assume that
we have such a set of points P = {(x;,y;)]¢ = 1,...,n} which determines a
line l(a, B,7) = ax + By + 7. The coefficients a, 3 and ~ are calculated as
follows [7]:

_ Hay
o =
\/,U’%y + (A = pzz)?
A — TT
IB B 2 g 2

v = —(az + By)

where 1
A= 9 (Mze + Hyy — \/(NM - Nyy)Q + 4;“9:,1/)
oo = En:(w- —a = En:(y* -y)?
g 1 & 1 &
ey = D (wi—w)yi—y), o= > @ and y= 3
=1 =1 =1

After specifying the line, the points’ positions are modified through perpen-
dicular projection onto the line.

3.2 Knowledge About Coplanarity

Coplanar points can be expected on rigid structures such as on walls or on a
tabletop. For a set of points, all incident with the same plane, there is a 3 x 3
matrix H called homography which defines a perspective transform of those
points into the image plane [11].

Homography. Consider we have an image sequence (generalizing the two-image
situation from before) and py; is the projection of 3D point P; into the kth image,
i.e. P; is related to py; as follows:
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Pri = wii K R (P — T} (1)

where wy; is an unknown scale factor, K denotes the intrinsic matrix (for the
used camera), and Ry and T} are the rotation matrix and translation vector.
Following Equation (1), P; can be expressed as follows:

P; = wi B K pra + T (2)
Similarly, for point p;; lying on the [th image, we have
Pi=w,'ROK i+ T (3)
From Equations (2) and (3), we get
pri = wii K R (wp, ' Ry VK p + Ty — Ty (4)

With Ry = RipR; ' we define H® = KRy K; '. We also have epipole ey =
KR (T; — Ty,). Equation (4) can then be simplified to

Pri = wiwy;  (He P + wiiekt) (5)

Hpy is what we call the homography which maps points at infinity (w;; = 0)
from image [ to image k. Consider a point P; on plane AT P, —d = 0. Then, from
Equation (3), we have

AlP—d=n"w; 'R, 'K \py + 2T —d =0
Then we have o
Wli:n B ;Kl b
d—nTT
what can be rewritten as follows:
wi =d; "0 R K py

where dl_1 =d—nTTj is the distance from the camera center (principal point) of the
Ith image to the plane (7, d). Substituting w;; into Equation (5), finally we have

Pri = wriwy; (HEY +dy ten RV K pus
Let
H = wywy;  (Hy +d; e Ry VKY)

This means: points lying in the same plane have identical H which can be utilized
as coplanarity constraint; see [11].

Coplanarity optimization. Coplanar points satisfy the relation described by
homography. We use this relation for modifying “noisy coplanar points,” using
the following equation:

Pri = Hiapui

Here, Hy; is the homography between kth and /th image in the sequence, and
Pki, Pi; are projections of point P; on the kth and /th image, respectively.
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4 Experiments and Analysis

To analyze the influence of noise, we perform SfM in a way as shown in Figure
1. At Step 1, Gaussian noise is introduced into coordinates of detected corre-
spondences. At step 2, three different methods are compared to specify which
one is the best to compute the fundamental matrix. At Step 3, a quantitative
error analysis is performed.

(image 1)
Corre%pondences @

8-Point \ LMedS | [RANSAC] (2)

(Fundamental Matrix)

( Essential Matrix )

[ Hartley’s Method | [ Horn’s Method | (3)

|—Extra::t R&T Extract R&TJ
Projection Matrix
]

C Dense Point Cloud )
¥

( 3DModel )

Fig.1. The way we perform SfM

This section shows at first experiments of the performance of different methods
for computing the fundamental matrix, and second the effect of those optimiza-
tions mentioned in the previous section.

4.1 Computation of Fundamental Matrix

Three algorithms (8-Point, RANSAC and LMedS) are compared with each other
in this section. To specify the most stable one in presence of noise, Gaussian
Noise (with mean 0 and deviation 6 = 1 pixel) and one outlier are propagated to
given correspondences. Performances of the three algorithms are characterized
in Figure 2: due to the outlier, the 8-Point Algorithm is more sensible than the
other two.

4.2 Optimizations

To test the effect of the optimizations mentioned in the previous section, the
results of splitting essential matrices (rotation matrices and translation vectors)
are utilized to compare with each other. Two images of a calibration object are
used as test images (shown in Figure 3). The data got from calibration (intrinsic
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g 13 18 23 28
Number of point

Fig. 2. Performance of three algorithms in presence of noise

s

Fig. 3. The first (left) and second (right) candidate images

parameters and extrinsic parameters of camera) are used as the ground truth.
Roll angle «, pitch angle $ and yaw angle v are used to compare the rotation
matrices in a quantitative manner. These angles can be computed from a rotation
matrix R by following equations [9]:

o= atan2(si:f(3,y)7 SZ.:L%))

= atan2(,jif)s winty)

v = atan2(\/r§1 +125,733)

where r;; is the element of R at ¢th row and jth column, and

atan(?) (x >0)
Y oo(m—atan(| Y |)) (z <0)
atan2(y,z) = ¥ r
) |Z|'2 (y #0,2=0)
undefined (y=0,2=0)

Since splitting the essential matrix only results in a translation vector up to a
scale factor, all translation vectors (include the ground true one) are transformed
into a normalized vector (length equal to one unit) to compare with each other
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Fig. 4. Errors in rotation matrices (left) or translation vectors (right). First row: errors
from non-noisy data. Second row: noisy data. Third or fourth row: errors from noisy
data after optimization with collinearity or coplanarity knowledge, respectively.
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Fig. 5. Epipolar lines result from different data sets. The green lines (dash lines) from
data without generated noise; the red lines (straight lines) are from noisy data; the
blue lines (dash-dot lines) and yellow lines (dot lines) are from noisy data which has
been optimized with collinearity and coplanarity knowledge, respectively.

in a quantitative manner. The comparison of rotation matrices and translation
vectors are shown in Figure 4. The errors are mean error of ten times iteration
when different number of correspondences are given. The noise propagated is
Gaussian noise (with mean 0 and deviation § = 1 pixel). The method used
to compute the fundamental matrix is the 8-Point Algorithm, which is more
sensitive to noise than RANSAC and LMedS Algorithm. The method of Hartley
and Zisserman is used to split essential matrix.

According to the results shown in Figure 4, the coplanarity knowledge gives
a better optimization than collinearity knowledge. One possible reason is that
the collinearity optimization is performed on uncalibrated images, in which the
true correlation of collinear points are not strictly lying in a straight line.

For arbitrary images, the effect of optimizations can be seen from Figure 5
through looking at relative positions of epipolar lines computed from different
data sets. It shows that the two optimization strategies bring positive effects on
reducing the influence of noise, and the coplanarity optimization performs bet-
ter than the collinearity optimization. Figure 6 shows the reconstructed point
cloud of the CITR-building in Auckland and Figure 7 visualizes the texture
mapped surface model. The main edges of the building are reconstructed with
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Fig. 6. Two different views of reconstructed points from the optimized SfM algorithm

Fig. 7. Triangulated surface mesh with textures

near-perfect 90° angles. Slight image noise (less then 1 pixel) already leads to
angles between 20° and 140° which indicates the sensitivity of classic SfM ap-
proaches. By incorporating the collinearity and coplanarity constraints, the re-
construction quality improved.

5 Conclusion

Modules relating to structure from motion have been discussed in this paper.
According to experiments, structure from motion is sensitive to noise and it
is necessary to improve its stability. Two optimizations, using collinearity and
coplanarity knowledge, have been proposed, and the relating experiments show
that the two proposed optimizations, especially the coplanarity one, bring posi-
tive effects on reducing influences of noise.
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Abstract. This paper presents a scheme to detect building regions, followed by a
reconstruction procedure. Airborne LIDAR data and aerial imagery are integrated
in the proposed scheme. In light of the different buildings, we target the ones with
straight and curvilinear boundaries. In the detection stage, a region-based
segmentation and object-based classification are integrated. In the building
reconstruction, we perform an edge detection to obtain the initial building lines
from the rasterized LIDAR data. The accurate arcs and straight lines are then
obtained in the image space. By employing the roof analysis, we determine the
three dimensional building structure lines. Finally, the Split-Merge-Shape method
is applied to generate the building models. Experimental results indicate that the
success rate of the building detection reaches 91%. Among the successfully
detected buildings, 90% of the buildings are fully or partially reconstructed. The
planimetric accuracy of the building boundaries is better than 0.8m, while the
shaping error of reconstructed roofs in height is 0.14 m.

Keywords: LIDAR, Aerial Image, Building Models.

1 Introduction

Building modeling in cyber space is an essential task in the application of three-
dimensional geographic information systems (GIS) [1]. The extracted building
models are useful for urban planning and management, disaster management, as well
as other applications.

Traditionally, the generation of building models is mainly performed by using
stereo aerial photography. However, the airborne LIDAR (Light Detecting And
Ranging) system is proving to become a promising technological alternative. As the
airborne LIDAR integrates the Laser Scanner, Global Positioning System (GPS) and
Inertial Navigation System (INS) together, it is able to provide direct georeferencing.
Its high precision in laser ranging and scanning orientation renders possible decimeter
level accuracy of 3D objects. The three-dimensional point clouds acquired by an
airborne LIDAR system provide comprehensive shape detail, while aerial images
contain plentiful spectral information. Thus, the integration of the two complementary
data sets reveals the possibility of an automatic generation of building models.
Several data fusion methods have been proposed to generate building models, e.g.,
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LIDAR and aerial images, [2] LIDAR and three-line-scanner images [3], LIDAR and
satellite images [4], LIDAR, aerial images and 2D maps [5].

The physical mechanism in the model generation includes the identification of the
buildings region, and the reconstruction of the geometric models. To automate the
identification procedure, a classification process using remotely sensed data should be
employed to detect the building regions. The reconstruction strategy can be classified
into two categories, i.e., model-driven and data-driven. The Model-driven approach
is a top-down strategy, which starts with a hypothesis of a synthetic building model.
Verification of the model’s consistency with the LIDAR point clouds is then
performed. In the strategy, a number of 3D parametric primitives are generated by the
segmentation of the LIDAR data. Afterwards, the best fitting primitives is selected
from the aerial image. The building model is obtained by merging together all the 3D
building primitives [6]. This method is restricted by the types of 3D parametric
primitives. The Data-driven approach is a bottom-up strategy, which starts from the
extractions of the building primitives, such as building corner, structure lines and
roof-tops. Subsequently, a building model can be grouped together through a
hypothesis process. A general approach is to extract the plane features from the
LIDAR point clouds, and detect the line features from the aerial image. The plane and
line features are combined to develop the building models [7]. The reported results
are limited to buildings with straight line boundaries. Buildings with curvilinear
boundaries are seldom discussed. Furthermore, there is no report in the literature on
3D curvilinear building modeling from LIDAR and image data.

From a data fusion’s point of view, we propose a scheme to reconstruct building
models via LIDAR point clouds and aerial image. The proposed scheme comprises of
two major parts: (1) detection, and (2) reconstruction. Spatial registration of the
LIDAR data and aerial imagery is performed during the data preprocessing. The
registration is done in such a way that the two data sets are unified in the object
coordinate system. Meanwhile, we calculate the exterior orientation parameters of the
aerial imagery by employing ground control points. Afterwards, a region-based
segmentation and object-based classification are integrated during the building
detection stage. After the segmentation, the object-based classification method detects
the building regions by considering the spectral features, shape, texture, and elevation
information. For the building reconstruction stage, the building blocks are divided and
conquered. Once the building regions are detected, we analyze the coplanarity of the
LIDAR point clouds to obtain the 3D planes and 3D ridge lines. We use the edge
detection method to obtain the initial building lines from the rasterized LIDAR data.
Through the back projection of the initial lines to the image space, the accurate arcs
and straight lines are obtained in the image space. The edges extracted from the aerial
image are incorporated to determine the 3D position of the building structure lines. A
patented Split-Merge-Shape [8] method is then employed to generate the building
models in the last step.

This article is organized as follows. Section 2 discusses the methodology of the
building detection. In section 3, the building reconstruction strategy is presented. We
validate the proposed scheme by using aerial image and LIDAR data acquired by the
Leica ALS50 system in section 4. Finally, a summary of the described method is
given at the last segment.
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2 Building Detection

The primary objective of this section is to extract the building regions. There are two
steps in the proposed scheme: (1) region-based segmentation, and (2) object-based
classification. The flow chart of the detection method is shown in Fig. 1.

There are two ways to conduct the segmentation. The first is the contour-based
approach. It performs the segmentation by utilizing the edge information. The second
is the region-based segmentation. It uses a region growing technique to merge pixels
with similar attributes. We select the region-based approach, because it is less
sensitive to noise. The proposed scheme combines the surface variations from the
LIDAR data with the spectral information obtained from the orthoimage in the
segmentation. The pixels with similar geometric and spectral properties are merged
into a region.

After segmentation, each region is a candidate object for classification. Instead of
a pixel-based approach, an object-based approach is performed. Considering the
characteristics of elevation, spectral information, texture, roughness, and shape, the
classification procedure is performed to detect the building regions. The considered
characteristics are described as follows.

(1) Elevation: Subtracting the Digital
Terrain Model (DTM) from the Digital pre
Surface Model (DSM), we generate the
Normalized DSM (NDSM). The data
describes the height variations above
ground. By setting an elevation threshold,
one can select the above ground objects,
which include buildings and vegetation.

(2) Spectral information: The spectral info-
rmation is obtained from color aerial image.

A greenness index is used to distinguish the

Non Building
vegetation from non-vegetation areas. 3
(3) Texture: The texture information is re-

trieved from aerial image via a Grey Level
Co-occurrence Matrix (GLCM) [9] texture
analysis. GLCM is a matrix of relative Candidate

frequencies for pixel values occurring

within a specific neighborhood. We select v Buiding
the entropy and homogeneity as indices to

quantify the co-occurrence probability. The
role of the texture information is to separate Fig. 1. Flowchart of building detection
the building from the vegetation, when the
objects have similar spectral responses.

(4) Roughness: The roughness of the LIDAR data aims to differentiate the vegetation
regions from non-vegetation ones. The surface roughness is similar to the texture
information of the image data. The role of the surface roughness is to separate the
building and vegetation, when the objects have similar spectral responses. We choose
the slope variance as the roughness index.

Knowledge-based classification

N

Building
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(5) Shape: The shape attribute includes the size and length-to-width ratio. An area
threshold is used to filter out the overly small objects. This means regions smaller
than a minimum area are not taken into account as a building. The length-to-width
ratio is suitable to remove the overly thin objects. The objects would not be
considered as a building, when the length-to-width ratio is larger than a specified
threshold.

3 Building Reconstruction

The reconstruction stage begins by isolating each individual building region. The
stage includes three parts: (1) detection of roof planes, (2) extraction of 3D structure
lines, and (3) 3D building modeling. The flow chart of the building reconstruction is
shown in Fig. 2.

LIDAR Aerial Image
v/\ S~
>
Detection Extraction of 3D \/
of roof Structure
Planes TIN—based Lines Edges Detection
region growing

<G>

v v v

Extraction for Extraction for Extraction for
Ridge Lines Curvilinear Lines Straight Lines
_— |
Modeling i
Split-Merge-Shape Method »ILE
| Models

Fig. 2. Flowchart of building reconstruction

3.1 Detection of Roof Planes

A TIN-based region growing procedure is employed to detect the roof planes. The
point clouds are first structured to a TIN-mesh built by Delaunay triangulation. The
coplanarity and adjacency between the triangles are considered for the growing TIN-
based regions. The coplanarity condition is examined by the distance of the triangle
center to the plane. When the triangles meet the coplanarity criteria, the triangles are
merged as a new facet. The process starts by selecting a seed triangle and determining
the initial plane parameter. The initial plane is determined from the seed triangle. If
the distance of the neighbor triangle to the initial plane is smaller than a specified
threshold, the two triangles are combined. The parameters of the reference plane are
recalculated using all of the triangles that belong to the region. The seed region starts
to grow in this manner. When the region stops growing, a new seed triangle is chosen.
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The region-growing stops when all of the triangles have been examined. Due to the
errors of the LIDAR data, the detected regions may consist of fragmental triangles.
Thus, small regions that have the closest normal vector will be merged in its
neighborhood. After the region growing, we use the least squares regression to
determine the plane equations. A sample result of the detection is illustrated in Fig. 3.

(a) (b)

Fig. 3. Illustration of detection for roof planes (a) triangles mesh (b) extracted planes

3.2 Extraction of 3D Structure Lines

Two types of building structure lines, namely, ridge lines and step edges are targeted
in this study. The ridge line is a building feature, where two planes intersect. It can be
determined by the extracted planes. The step edge represents a building structure,
where roofs have height jumps. A step edge may be straight or curvilinear.
Considering the difference in the spatial resolution, each initial step edge is estimated
from the LIDAR data, while the precise step edge is extracted from the image.

In the extraction of ridges, the line is obtained by the intersection of the
neighboring planes. Mathematically, the intersection line computed from the plane
equations is a 3D straight line without end points. Thus, we use the shared triangle
vertices to define the line ends. That means the final product of a ridge line is a
straight line with two end points.

In the extraction of step edges, we detect the initial building edges from the
rasterized LIDAR data. The rough edges from the LIDAR data are used to estimate
the location of the step edges in the image space. Building edges around the projected
area are detected through the Canny Edge Detector [10]. At this stage, there is no pre-
knowledge about the lines being straight or curvilinear. In order to distinguish the
straight lines from the curvilinear ones, we develop a scheme to identify the different
line types. The basic mechansim is to determine the most probable radius of a
segment. First, we perform the line tracking to split all the edges into several line
segments. A sample of the extracted edge pixels are shown in Fig. 4a. Fig. 4b
demonstrates a sample result of the split line segments. Afterwards, we merge the
adjacent line segments by the criterion of length and angle. The merged lines are
treated as an arc candidate. Fig. 4c presents a sample result of the arc candidate. The
last step is to test the rationality of the radius for each arc candidate. We randomly
select three points from an arc candidate to calculate a radius. All the points are tested
to generate a radius histogram like Fig. 4d. The horizontal axis is for the radii of
possible circles, while the vertical axis presents the accumulated number of the radii.
The arc candidate is accepted when the radius shows the highest concentration.
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Fig. 4. Illustration of curvilinear lines separation (a) extracted edges (b) split line segments (c)
arc candidates (d) radius histogram

For the classified straight lines, we use the Hough Transform [11] to extract the
target lines in a parameter space. Eq. 1 shows a straight line being transformed in the
Hough space. On the other hand, the classified curvilinear lines are extracted by a
modified Hough Transform [12]. The circle equation is shown in Eq. 2. Notice that
the circle’s radius is calculated from the radius histogram, as described above. Given
the image coordinates and the height information from the 3D planes, we calculate the
3D structure lines in the object space via exterior orientation parameters.

x,cosf@+y,sind=p . (D
where,
X;,yi: the pixel coordinate in location i,
0: angle, and
p: distance.
(x,—a)’ +(y,—b)’=r>. (2)
where,

Xi,yi: the pixel coordinate in location i,
a,b: the center of a circle, and
r: radius of circle.

3.3 3D Building Modeling

The extracted 3D structure lines are processed by a patented method, i.e., Split-
Merge-Shape method [8], for building reconstruction. The Split and Merge process
sequentially reconstructs the topology between the two consecutive line segments,
and then reforms the areas as enclosed regions. The two procedures are performed in
a two dimensional space. During splitting, a line segment is chosen for reference. We
split all the line segments into a group of roof primitives. All of the possible roof
primitives are generated by splitting the area of interest from all the line segments. In
the merging procedure, the connectivity of the two adjacent roof primitives is
analyzed successively. If the boundaries shared between them do not correspond to
any 3D line segment, the two roof primitives will be merged.

The Shape step uses the available 3D edge height information to determine the
most appropriate rooftop. The Shape process is performed in a three dimensional
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space. The first step of shaping is to assign a possible height for each roof edge from
its corresponding 3D edge. Every 3D edge is first automatically labeled as a shared
edge or an independent edge. The height for an independent edge can then be
assigned from its corresponding 3D edges. The second step is to define the shape of a
rooftop, according to the height of the independent edges. If more than two
independent edges exist, and are sufficient to fit into a planar face, a coplanar fitting is
applied. Fig. 5 demonstrates the modeling procedure.

() (b) (©) (d)

Fig. 5. Procedure of building modeling (a) 3D line segments (b) results of splitting (c) results of
merging (d) results of shaping

4 Experimental Results

The LIDAR data used in this investigation covers a test area situated within the
Industrial Technology Research Institute in northern Taiwan. The LIDAR data is
obtained by the Leica ALS 50 system. The average density of the LIDAR point
clouds is 2pts/m”. The LIDAR data is shown in Fig 6a. The ground sampling distance
of the aerial image is 0.5m. Fig 6b shows the image of the test area. The test area
contains complex buildings, such as straight lines and curvilinear boundary buildings.
The roof type is either flat or gable. There are 23 buildings in the test area.

We use stereoscopic measurements to derive the building models, as references for
validations. The experiments include three different aspects in the validation
procedure. The first evaluates the detection rate for building regions. The second
checks the planimetric accuracy of building corners. The third assesses the height
discrepancy between the roof top and the original LIDAR point clouds.

4.1 Building Detection

During building detection, the surface points and ground points from the LIDAR data
are both rasterized to DSM and DTM with a pixel size of 0.5m. The aerial image is
orthorectified by using the DSM. A 1/1,000 scale topographic map is employed for
ground truth. The classified results, which are superimposed onto a topographic map
is shown in Fig. 6¢. It is found that 21 out of the 23 buildings are successfully
detected, where the detection rate is 91%. The missing buildings are, in general, too
small for detection. Both of the two missing buildings are smaller than 30 m>.
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(a) (b) ()

Fig. 6. Results of building detection (a) LIDAR DSM (b) aerial image (c) detected building
regions with vector maps

4.2 Building Reconstruction

During building reconstruction, we categorize the buildings into three types: (1) straight
line buildings with flat roofs, (2) straight line buildings with gable roofs, and (3)
curvilinear boundary buildings with flat roofs. Two selected examples with different
building complexities are given in Fig. 7. Fig. 8 shows all the generated building models.

In the accuracy evaluation, we compare the coordinates of the roof corners in the
reconstructed models with the corners acquired by the stereoscopic manual
measurements. The Root-Mean-Square-Errors (RMES) are 0.71m and 0.73m in the X
and Y directions, respectively. The ground resolution of the aerial image is 0.5m.
Thus, the accuracy is roughly 1.5 pixels in the image space. In Fig. 9, we provide
error vectors that are superimposed onto the building boundaries.

(d)

(e) ® (2 (h)

Fig. 7. Results of reconstruction for complex buildings (a) building regions of case 1, (b) detected
planes of case 1, (c) extracted lines of case 1, (d) generated building models of case 1, (e) building
regions of case 2, (f) detected planes of case 2, (g) extracted lines of case 2, (h) generated building
models of case 2
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Fig. 8. The generated building models Fig. 9. Error vectors of building corners

Table 1. Success rate of building reconstruction

Reconstruction Straight line boundaries Curvilinear boundaries Success
results Flat roof Gable roof Flat roof rate (%)
Correct 9 5 2 76
Partially correct 2 0 1 14
Erroneous 0 2 0 10

The fidelity of the building reconstruction is validated in terms of the success rate.
The success rate of the reconstruction is divided into three categories, namely, correct,
partially correct and erroneous. Reconstructed buildings that have the same shape
with their actual counterpart are deemed correct. For the partially correct, they
represent the group of connected buildings, where only a portion is successfully
reconstructed. The reconstruction is erroneous, when the building model is inherently
different in shape with the actual one. Table 1 shows the success rate for the three
types of buildings. Seventy six percent of the buildings is correctly reconstructed.
The buildings that failed in the reconstruction, i.e., the erroneous category, are the
small ones that do not have enough available LIDAR points. The mean value of the
height differences between the LIDAR points and roof surface, which is called the
shaping error, is 0.12 m. The discrepancies range from 0.06 m to 0.33 m.

5 Conclusions

In this investigation, we have presented a scheme for the extraction and reconstruction
of building models via the merging of LIDAR data and aerial imagery. The results
from the tests demonstrate the potential of reconstructing the buildings with straight
lines and curvilinear boundaries. The building models generated by the proposed
method take advantage of the high horizontal accuracy from the aerial image, and
high vertical accuracy of the LIDAR data. More than 91% of the building regions are
correctly detected by our approach. Among the successfully detected buildings,
ninety percent of the buildings are fully or partially reconstructed. The planimetric
accuracy of the building boundaries is better than 0.8m, while the shaping error of the
reconstructed roofs in height is 0.14 m. This demonstrates that the proposed scheme
proves to be a promising tool for future applications.
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Abstract. Three-dimensional tree modeling is an important task in the
management of forest ecosystems. The objective of this investigation is to
reconstruct 3D tree models using LIDAR data and high resolution images. The
proposed scheme comprises of three major steps: (1) data preprocessing, (2)
vegetation detection, and (3) tree modeling. The data preprocessing includes
spatial registration of the airborne LIDAR and high resolution images,
derivation of the above ground surface from LIDAR data, and generation of a
spectral index from high resolution images. In the vegetation detection, a
region-based segmentation and knowledge-based classification are integrated to
detect the tree regions. Afterwards, the watershed segmentation is selected to
extract the tree crown and heights. In the last step, we use the tree height, tree
crown and terrain information to build up the 3D tree models. The experimental
results indicate that the accuracy of the extracted individual tree is better than
80%, while the accuracy of the determined tree heights is about 1m.

Keywords: LIDAR, High Resolution Image, Tree Model.

1 Introduction

Forests are an important and valuable resource to the world. Furthermore, research in
relevant environmental issues, such as the ecosystem, biodiversity, wildlife, and so
forth, require detailed forest information. In light of this, there is an increasing
urgency to obtain a comprehensive understanding of forests. Thus, the 3D tree model
plays an important role in forest management.

Remote sensing technology has been applied to forest ecosystem management for
many years [1]. Most of the research utilizes the spectral characteristics of optical
images to detect the forest, and delineate the independent tree crown [2] [3]. Previous
studies used high resolution images to estimate tree locations, canopy density, and
biomass [4]. However, optical images are easily influenced by the topography and
weather conditions. In addition, as the ability of optical images to penetrate through
the forest area is weak, it is unable to directly capture the 3D forest structure.

Nowadays, LIDAR (LIght Detection And Ranging) systems have become a mature
tool for the derivation of 3D information. The LIDAR system is an integration of the
Laser Scanner, Global Position System (GPS) and Inertial Navigation System (INS).
Its high precision in laser ranging and scanning orientation makes the decimeter

L.-W. Chang, W.-N. Lie, R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 34—43, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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accuracy for the ground surface possible. The LIDAR technology provides horizontal
and vertical information at high spatial resolution and vertical accuracy. Forest attributes
like tree heights can be directly retrieved from LIDAR data. Early studies of LIDAR
forest measurements used LIDAR to estimate forest vegetation characteristics, such as
canopy cover, forest volume, and biomass [5]. However, although the LIDAR data
contains abundant 3D shape features, it lacks the spectral information.

The individual tree extraction from LIDAR data is an important topic for 3D tree
modeling. The strategy of individual tree delineation can be divided into the following
categories: (1) Pixel-based method [6], (2) Region-based method [7], (3) Contour-
based method [8], and (4) Empirical method [9]. In the region-based approach, such
as the watershed segmentation, it applies mathematical morphology to explore the
geometric structure of trees in an image. The advantage of this approach is that the
method may selectively preserve the structural information, while also accomplishing
the desired tasks within the image. In the region-based approach, homogeneity
regarding the shape and color in the neighborhood is examined in a region growing
process. The contour-based approach minimizes the internal energy by weighting the
parameters. In the empirical method, it collects a large amount of ground truth
pertaining to various forest parameters, such as the tree crown width, tree height, and
tree age. Afterwards, the relationship among the tree properties is analyzed. A typical
result shows that the tree height and tree crown width is revealed to have a linear
relationship after a regression analysis is performed. A review of the rapidly growing
literature on LIDAR applications emphasizes the need for data fusion in the
processing phase of LIDAR data, which may serve as a method in improving the
various features extraction task. Therefore, we conducted an integration of the
LIDAR data and high resolution image to build up the forest canopy model.

The objective of this investigation was to construct a 3D forest canopy model using
LIDAR data and high resolution image. The proposed method was a data fusion
scheme with a coarse-to-fine strategy. The proposed scheme comprised of three major
steps: (1) data preprocessing, (2) vegetation detection, and (3) tree modeling. The data
preprocessing included space registration of the LIDAR and high resolution image,
derivation of the above ground surface from LIDAR data, and generation of a spectral
index from high resolution image. In the vegetation detection, a region-based
segmentation, followed by the knowledge-based classification was integrated to
detect tree regions. Subsequently, we performed a tree crown extraction in the
vegetation regions. The watershed segmentation and local maximum search were
selected to extract the tree crowns. In the last step, we used the tree height, tree
crown, and terrain information to build the 3D tree models. The validation datasets
included an orchard test site in Taiwan, located in Tai-Chung, and a forest test site in
Finland, situated in Espoolahti.

2 Methodology

The proposed scheme encompassed three parts: (1) data preprocessing, (2) vegetation
detection, and (3) tree modeling. The preprocessing included a geometric and
radiometric processing. A divide-and-conquer strategy was then incorporated to
detect the vegetation followed by the tree modeling. Fig.1 shows the flowchart of the
proposed method.
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Fig. 1. Flowchart of the proposed method

2.1 Data Preprocsessing

The data preprocessing was composed of three major procedures: (1) space
registration, (2) derivation of above ground surface, and (3) generation of a spectral
index. The LIDAR data was used to generate a Digital Terrain Model (DTM) and
Digital Surface Model (DSM) in grid form. In the space registration, the aerial images
were orthorectified using the DSM and ground control points. The orthorectified
images were essentially co-registered with the LIDAR data. We subtracted the DTM
from the DSM to generate the Normalized DSM (NDSM). The NDSM represented
the above ground surface that was used to separate the ground and above ground
objects. The formula of NDSM is shown in Eq. (1). Fig. 2 demonstrates a sample
result of NDSM. For the multispectral aerial image, we used the red and green bands
to calculate the greenness index [10]. Eq. (2) shows the formula of the greenness
index. The greenness index was mostly used to identify the vegetation areas. Fig. 3
illustrates a sample result of the greenness image. For cases where the near infrared
band was available, the NDVI (Normalized Difference Vegetation Index) was
utilized, as it was deemed a better index in accessing the greenness level. The
calculation of the NDVI is shown in Eq. (3).

NDSM =DSM -DTM . (1)
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Greenness=(G—-R)/(G+R). )

NDVI=(IR-R)/(IR+R). 3)

(a) (b) (c) (a) (b)

Fig. 2. LIDAR data preprocessing (a) Digital Terrain Mo-  Fig. 3. Aerial image preprocessing
del (b) Digital Surface Model (c) Normalized Digital (a) aerial image (b) greenness image
Surface Model

2.2 Vegetation Detection

The objective of the vegetation detection was to extract the vegetation areas, in which
the non-vegetation areas would not interfere in the tree modeling. We integrated the
region-based segmentation and knowledge-based classification during this stage. The
elevation from the LIDAR data and radiometric features from the orthoimages were
combined in the segmentation. Thus, pixels with similar height and spectral attributes
were merged into a region. After the segmentation, each separated region was a
candidate object for classification. Considering the height and spectral characteristics,
the vegetation areas were extracted by a fuzzy logic classification.

We first used a multiple data segmentation technique to perform the region-based
segmentation. It could identify objects with correlated characteristics in terms of
reflectance and height. In this step, we fused the NDSM and the greenness level for
segmentation. This method identified geographical features using scale homogeneity
parameters [11], which were obtained from the spectral reflectance in the RGB and
elevation value in the NDSM. The homogeneity was described by a mutually
exclusive interaction between the attribute and shape. Eq. (4) shows the formula of
the homogeneity index. The composed homogeneity index was based on the attribute
and shape factor, where it considered the attribute and shape information
simultaneously. The formulas of the attribute and shape factor are shown in Eq. (5)
and Eq. (6), respectively. The weights of the attribute and shape factor should be set
properly. The attribute factor used the standard deviation of the region as a
segmentation criterion. The shape factor selected the smoothness and compactness of
the region boundary for weighting. The formulas for the calculations of smoothness
and compactness are shown in Eq. (7) and Eq. (8), respectively.

After the segmentation, we employed the object-oriented classification in the
vegetation detection. The classification was based on a fuzzy logic classification
system, where the membership functions employed thresholds and weights for each
data layer. The above ground and high greenness objects were classified as
vegetation. Fig. 4 shows an example of the segmentation and classification.
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H=w * hyyibue + (1 - W) * hshape .

4)
where,
H: homogeneity index,
h,ibute: attribute factor,
hghape: shape factor, and
w: weighting for attribute and shape factor.
hamibute = Z w_¢C * G¢ . (5)
where,
h,ibute: attribute factor,
w_c: weighting among layers, and
o.: standard deviation of pixel attribute in a region.
hshape =W * hsmooth + ( 1- Ws) * hcompact . (6)
hsmooth =L/B. (7)
0.
Neompace = L/ N2 ®)

where,
hypape; shape factor,
w,: weighting for smoothness and compactness,
hgmootm: Smoothness of region,
heompace: cOmMpactness of region,
L: border length of region,
B: shortest border length of region, and
N: area of region.

2.3 Tree Modeling

After the vegetation detection, we focused on the vegetation areas for the extraction
of tree models. The primary process included individual tree segmentation and tree
parameterization. We first applied the watershed segmentation method [12] on the
DSM in the vegetation regions. To avoid the errors of the DTM, we perform
segmentation in the DSM rather than the NDSM. As it could detect the changes of the
individual tree height, it was able to extract the boundary of each individual tree. We
assumed that the maximum point in the boundary was the tree position. The local
maximum method was applied to extract the tree location and tree height. In this
study, a least squares circle fitting was applied to extract the tree crown radius. The
tree parameters for each individual tree included the tree crown radius, position and
height. The 3D tree models were represented by using a tree model database. Once
the tree type was selected, the 3D tree model could be generated by the tree
parameters [13]. In this study, the tree types are selected manually. Fig. 5
demonstrates a sample procedure of tree modeling.
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(a) (b) (a) (b) (c)

Fig. 4. Vegetation detection (a) seg- Fig. 5. Tree modeling (a) watershed segmentation results
mentation results (b) classified (b) parameterized tree crowns (c) 3D tree models
results

3 Experiment Results

Two test sites were selected for validation---an orchard area and a forest area. The
orchard area was located in Taiwan’s Tai-Chung city, and the LIDAR data was
obtained via the Optech ALTM2033. The average density of the LIDAR data was
roughly 1.7 points per square meter. Color aerial photo with a scale of 1:5,000 were
used in test area 1, where it was scanned in a 20 um per pixel mode. Thus, the ground
resolution of the digital images was around 0.1m. The second test area was located in
Espoolahti of Finland. The Finland data was released by the European Spatial Data
Research (EuroSDR) and International Society for Photogrammetry and Remote
Sensing (ISPRS) as a sample test site. The LIDAR data was also obtained by the
Optech ALTM2033, and the average density of the LIDAR data was about 2 points
per square meter. The Vexcel Ultracam-D image with a 1/6,000 scale was selected
for the forest area. The ground resolution of the digital images was about 0.2m. The
test data sets are shown in Fig. 6. Since the image included the near infrared band,
the NDVI was employed in the Espoolahti case.

In the region-based segmentation, we first set the weights of the image layers on
the homogeneity segmentation using eCognition [11]. The weighting of the LIDAR
part and aerial photo was 2:1. Considering that the shape of the forest was irregular,
the attribute factor was more important than the shape factor. Hence, the attribute and
shape factors were 0.8 and 0.2, respectively. After segmentation, we performed the
object-oriented classification to determine the tree regions. We used the extracted
tree regions in the individual trees extraction. Assuming that the highest point in the
boundary was a treetop, one segmented boundary was selected to represent one tree
crown. Afterwards, we used the least squares circle fitting to extract the tree crown
radius. Finally, the 3D tree models were generated by the tree parameters.

We used stereoscopic measurements to determine the tree heights and tree crowns,
as references for validations. The experiments included three different aspects in the
validation. The first evaluated the detection rate for an individual tree. The second
checked the correctness of the tree crown. The third assessed the accuracy of the tree
heights.
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(a) (b) (c) (d)

Fig. 6. Test area (a) aerial image for Tai-Chung area (b) NDSM for Tai-Chung area (c) aerial
image for Espoolahti area (d) NDSM for Espoolahti area

3.1 Tai-Chung Case

In the Tai-Chung case, we identified objects with correlated characteristics in terms of
the reflectance and height. After the vegetation detection, we used tree areas to
perform the watershed segmentation on the DSM. Fig. 7a shows the classification
results. Fig. 7b reveals the block results, which were derived from the watershed
segmentation. The background image is the corresponding DSM. Subsequently, we
used the least squares circle fitting to extract the tree crown radius. The results are
shown in Fig 7c, and the generated 3D tree models are shown in Fig 7d.

During the evaluation, we checked each segmentation boundary to examine the
reliability of the tree crown determination. For the validated patches, we compared
the tree heights for accuracy assessments. In this case, we had 197 trees in the
reference data. The number of detected trees was 210. The correctness was, thus,
95%. The commission and omission errors stood at 10% and 4%, respectively. Fig.
7c shows the locations of those trees. We then used the 197 matched boundaries to
determine the local maximum height for the analysis of the tree crown accuracy.
Comparing the automatic results and manual measurement tree crown, the accuracy
of the tree crown reached 92%. The commission and omission errors were 29% and
7%, respectively. The RMSE of the tree height was 0.62 m. The result demonstrated
a great potential in employing multi-sensor data for 3D tree modeling.

(a) (b) (c) (d)

Fig. 7. Results of Tai-Chung area (a) classified results (b) individual tree segmentation
results (c) parameterized tree crowns (d) 3D tree models

3.2 Espoolahti Case

The Espoolahti case was a forest area with complex trees. The vegetation results are
shown in Fig 8a. The result indicates that most of the areas in the Espoolahti case
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were tree areas. Fig. 8b is the results of the individual segmentation from DSM. We
then selected a small area, as shown in Fig 8b to do the tree crown parameterization. The
tree crown is shown in Fig. 8c, and the generated 3D tree models are revealed in Fig 8d.

(a) (b) () (d)

Fig. 8. Results of Espoolahti area (a) classified results (b) individual tree segmentation
results (c) parameterized tree crowns (d) 3D tree models

In this case, we had 105 trees in the reference data. The number of detected trees
was 97. The number of matched trees was 78, where the correctness was 80%. The
commission and omission errors stood at 19% and 25%, respectively. Afterwards, we
used the 78 matched boundaries to determine the local maximum height in accessing
the accuracy. Comparing the automatic results and manual measurement tree crown,
the accuracy of the tree crown reached 78%. The commission and omission errors
were 37% and 21%, respectively. The RMSE of the tree height was 1.12 m. As this
location was more complicated than the orchard area, the accuracy was lower than the
previous case.

Table 1. Summary of tree modeling accuracy

Evaluation Item Tai-Chung Espoolahti
Accuracy (%) 95.4 80.4

Tree detection rate Commission Error (%) 10.5 25.7
Omission Error (%) 4.6 19.6
Accuracy (%) 92.8 78.4

Tree crown evaluation Commission Error (%) 29.8 37.7
Omission Error (%) 7.1 21.6

Tree height evaluation Root-Mean-Squares Error (m) 0.62 1.12
Error Range (m) 2.0~1.8 -1.9~2.0

3.3 Summary

The accuracy and reliability of our study is shown in Table 1. The experimental
results are summarized as follows.

(1) The coarse-to-fine strategy detects the vegetation areas in the first stage. The
detected areas are then pinpointed to extract the individual trees. This strategy
may reduce the amount of errors involved in the individual trees extraction. The
detection rate reaches approximately 80%.
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(2) In the individual tree segmentation, we select a morphology filter to extract the
tree boundaries from the Digital Surface Model rather than optical image data.
The reliability of tree crowns may reach 80%.

(3) Comparing the extracted tree heights and manually measured tree heights. The
accuracy of the tree height is about 1m.

(4) The results show the potential of 3D tree model generation by fusing the LIDAR
and image data.

4 Conclusions

This investigation presents a scheme of 3D forest modeling by the fusion of spectral
and height information. The results indicate that the correctness of the tree extraction
reaches 80%, and the accuracy of extracted tree heights is about 1m. Considering the
errors in the photogrammetric measurements for the reference data set, the accuracy
could be underestimated. The results demonstrate that the proposed scheme may be
used to estimate the tree height on individual tree level basis.

Acknowledgments. This investigation was partially supported by the National
Science Council of Taiwan under Project No. NSC94-2211-E-008-027. The authors
would like to thank the Council of Agriculture of Taiwan, European Spatial Data
Research (EuroSDR) and International Society for Photogrammetry and Remote
Sensing (ISPRS) for providing the test data sets. The authors also wish to thank the
anonymous reviewer for helpful comments and suggestions.

References

1. Lefsky, M.A., Cohen, W.B., Spies, T.A.: An Evaluation of Alternate Remote Sensing
Products for Forest Inventory, Monitoring, and Mapping of Douglas-Fir Forests in
Western Oregon. Canadian Journal of Forest Research. 31 (2001) 78-87.

2. Gong, P., Mei, X., Biging, G.S., Zhang, Z.: Improvement of an Oak Canopy Model
Extracted from Digital Photogrammetry. Photogrammetric Engineering and Remote
Sensing. 63 (2002) 919-924.

3. Wang, L., Gong, P., Biging, G.S.: Individual Tree-Crown Delineation and Treetop
Detection in High-Spatial-Resolution Aerial Imagery. Photogrammetric Engineering and
Remote Sensing. 70 (2004) 351-357.

4. Sheng, Y., Gong, P., Biging, G.S.: Model-Based Conifer Canopy Surface Reconstruction
from Photographic Imagery: Overcoming the Occlusion, Foreshortening, and Edge
Effects. Photogrammetric Engineering and Remote Sensing. 69 (2003) 249-258.

5. Popescu, S.C., Wynee, R.H., Nelson, R.F.: Measuring Individual Tree Crown Diameter
with Lidar and Assessing Its Influence on Estimating Forest Volume and Biomass.
Canadian Journal of Remote Sensing. 29 (2003) 564-577.

6. Yu, X., Hyyppd, J., Kaartinen, H., Maltamo, M.: Automatic Detection of Harvested Tees
and Determination of Forest Growth using Airborne Laser Scanning. Remote Sensing of
Environment. 90 (2004) 451-462.



10.

11.
12.

13.

The Generation of 3D Tree Models by the Integration of Multi-sensor Data 43

Sudrez, J.C., Ontiveros, C., Smith, S., Snape, S.: Use Of Airborne Lidar and Aerial
Photography in the Estimation of Individual Tree Height in Forestry. Computer and
Geosciences, 31 (2005) 253-262.

Persson, A., Holmgren, J., Soderman, U.: Detecting and Measuring Individual Trees using
an Airborne Laser Scanner. Photogrametry Engineering and Remote Sensing. 68 (2002)
925-932.

Popescu, S.C., Wynne, R..H.: Seeing the Trees in the Forest: Using LIDAR and
Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating
Tree Height. Photogrametry Engineering and Remote Sensing. 70 (2004) 589-604.
Niederost, M.: Automated Update of Building Information in Maps using Medium-Scale
Imagery (1:15,000). In: Baltsavias, E., Gruen, A., van Gool. L. (eds.): Automatic
Extraction of Man-Made Objects from Aerial and Space Images. 3 (2001) 161-170.
Definiens: eCoginition User’s Guide. (2004) 79-81.

Luc V., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on
immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence.
13 (1991) 583-598.

Dunbar M.D., Moskal, L.M., Jakubauskas, M.E.: 3D Visualization for the Analysis of
Forest Cover Change. Geocarto International. 19 (2004) 103-112.



LOD Generation for 3D Polyhedral Building Model

Jiann-Yeou Rau', Liang-Chien Chen?, Fuan Tsai’,
Kuo-Hsin Hsiao*, and Wei-Chen Hsu*

'Specialist, > Professor, *Assistant Professor,

Center for Space and Remote Sensing Research,
National Central University, Jhong-Li, Taiwan
{jyrau, lcchen, ftsai}@csrsr.ncu.edu.tw
*Researcher, Energy and Environment Lab.,
Industrial Technology Research Institute, Chu-Tung, Taiwan
{HKS, ianhsul}@itri.org.tw

Abstract. This paper proposes an algorithm for the automatic generation of
Levels-of-Detail (LODs) for 3D polyhedral building models. In this study a
group of connected polyhedrons is considered as “one building”, after which
the generalization is applied to each building consecutively. The most detailed
building models used is the polyhedral building model which allows for an
elaborate roof structure, vertical walls and a polygonal ground plan. In the work
the term “Pseudo-Continuous LODs” is described. The maximum
distinguishable “feature resolution” can be estimated from the viewer distance
to a building and is used to simplify the building structure by the polyhedron
merging and wall collapsing with regularization processes. Experimental results
demonstrate that the number of triangles can be reduced as a function of the
feature resolution logarithm. Some case studies will be presented to illustrate
the capability and feasibility of the proposed method including both regular and
irregular shape of buildings.

Keywords: Levels-of-Detail, Generalization, 3D Building Model.

1 Introduction

The creation of a digital 3D city model is a generalization procedure from a complex
world to digital geometric data that can be stored in a computer. Important spatial
features such as roads, buildings, bridges, rivers, lakes, trees, etc. are digitized as two
or three dimensional objects. Among them, the most important one is the 3D building
models. From the application point of view, the more detail provided by a building
model the greater the amount of geometrical information available for spatial analysis
and realistic visualization. However, since the computer has limited resources for
computation, storage and memory, the geometry of building models has to be
generalized to reduce their complexity and increase their efficiency of demonstration
or analysis. This means that th.e generation of different LODs of 3D building models
for real-time visualization applications must be a compromise between structural
detail and browser efficiency.

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 44 -53, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In computer graphics, the efficiency of 3D browsing is highly dependent on the
number of triangles and textures to be rendered. Many algorithms regarding terrain
simplification have already been developed in the field of computer vision and
computer graphics. For example, Hoppe [1] and Garland & Heckbert [2] introduced
an edge collapse transformation to simplify surface geometry, resulting in continuous
LODs that can be applied for progressive meshing applications. In the case of 3D
building models generalization, Sester [3] proposed a least squares adjustment method
to simplify building ground plans. Kada [4] adopted a similar concept and applied it
to 3D polyhedral building models. Based on the scale-spaces theory, Mayer [5] has
suggested using a sequence of morphological operations to generalize 3D building
models. However, the method is suitable for orthogonal building models only. In case
of non-rectangular buildings they have to be squared in advance before
generalization.

In this paper, the concept of “Pseudo-Continuous LODs” (PCLODs) is utilized for
the generalization of 3D polyhedral building models. The generation of Continuous
LODs for a 3D city model is impractical for the following two reasons. The first
reason is that the buildings are mostly separated by some distance so their geometry is
different from a digital terrain model. The second reason is that buildings have
vertical walls and the topology has to be maintained during geometric simplification.
Thus in this work we treat a group of connected or contacted polyhedrons as “one
building model” and the generalization is applied to each building model respectively.

The idea for PCLODs comes from the digital camera. The computer screen
corresponds to the camera's focal plane with a fixed CCD sensor size, frame area and
focal length. In computer rendering and simulation of a virtual landscape is similar to
the photo imaging process. A building’s structural details make it easy to recognize
when the viewer distance is closer to the target, which is similar to rendering on the
computer screen. On the contrary, when the viewer distance to the target gets longer,
the smaller structure of buildings become indistinguishable they can thus be ignored
during computer rendering.

Here we focus on the generalization of 3D polyhedral building models. The most
detailed “3D polyhedral building model” is generated semi-automatically based on
the SPLIT-MERGE-SHAPE (SMS) algorithm [6]. The SMS algorithm utilizes 3D
building structure lines that have been measured from aerial stereo-pairs. The 3D
structure lines can be either derived from semi-automatic stereo-measurements [8] or
extracted from high-resolution satellite images and/or aerial imagery [9]. Buildings
with gable roofs, flat roofs, and regular or irregular ground plan can be described.
Two neighboring buildings will not overlap due to the SPLIT process provided by the
SMS algorithm.

In a 3D visualization system, the viewer distance can be used to estimate the
maximum distinguishable “feature resolution”. The feature resolution is used to detect
small 3D features in one building model. Since the distance variation in dynamic 3D
browsing is continuous, the corresponding PCLOD 3D building models can thus be
generated immediately. However, in order to reduce the computational load during
generalization, we can adopt out-of-core processing, by generating all the LODs of a
building model before 3D visualization. Some case studies will be presented to
illustrate the capability and feasibility of the proposed method for both regular and
irregular type of buildings.
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2 Methodology

The proposed scheme for generating PCLODs for a 3D building model can be divided
into two parts, i.e. polyhedron merging and wall collapsing with regularization. Fig. 1
illustrates a flowchart of the proposed approach. In which we iteratively simplify the
original detailed building model or generalized building model by enlarging the
values of the feature resolution. The result is a sequence of different LODs of 3D
building model from fine to coarser. The method can be used for out-of-core
processing or real-time visualization, depending on the power of the computer, the
number of building models to be generalized, and the required rendering frame rate.
In the following sections, the definition of feature resolution and the two major
procedures are described.

2.1 Feature Resolution

In the proposed generalization, only one parameter is adopted for geometry
simplification, i.e. the feature resolution (R). During 3D browsing, we can calculate
the distance between the viewer and the building. The center of a group of
polyhedrons is used in the distance calculation to maintain consistency within a
building. According to the perspective projection geometry, we can simulate the
computer screen as a CCD frame or a digital camera. Using the viewer distance and
the camera’s focal length, we can estimate the scale between the object space and the
image plane. The feature

resolution can thus be /

obtained using the scale and / 3D Polyhedral
the CCD cell size. It is also ___.f Building Model ;
similar to a ground sampling ) '
distance (GSD) of one pixel Assign Feature le
during the photo imaging Resolution (R) >
process. e o gmT

In 3D computer graphics, v
ground features with a size Polyhedron Merging
smaller than the feature ' '
resolution are Wall Collapsing with
indistinguishable and may be Regularization

eliminated in order to simplify
the geometry and increase the
rendering efficiency. In this
study, the feature resolution is
given and insignificant
geometrical ~ structures are
detected and eliminated.

¥ PCLOD 4
3D Building Model /

Fig. 1. The proposed generalization scheme

2.2 Polyhedron Merging

The polyhedron merging process includes the following three procedures, i.e. (1) the
flattening of sloped roofs, (2) the merging of two connected polyhedrons with a small
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height difference, and (3) the elimination at small polyhedrons contained within a
bigger polyhedron. The first two steps are performed only on the building’s roof
structure. Two visual important features are considered, i.e. the length of the sloped
roof-edge and the height difference between two neighboring flat-roofs.

The flattening of sloped roofs is processed before the merging of two neighboring
flat-roofs. There are many kinds of roof types, gable, hipped, tent-shaped, hexagonal,
pyramid-shaped roofs and so on, that have to be considered as visual important
features. In the polyhedral building model, these roof structures are constructed by
sloped triangles with height variations which are different from those at horizontal
rooftops. In cases when the length of the edge of a roof-triangle is smaller than the
feature resolution, the sloped roof-triangle will be flattened. This means that their roof
height is replaced by the average of the original ones. For example, Fig.2 (A) shows a
building with two gable roofs and two flat roofs. Utilizing a feature resolution of 3
meters, these two gable roofs will be flattened at first, as shown in Fig.2 (B).

The second step is to merge two neighboring flat-roofs with an insignificant height
difference. If their height difference is smaller than the feature resolution, the
neighboring polyhedrons will be merged as one. As
illustrated in Fig.2 (C), there are five polyhedrons
that are merged into one polyhedron. The final roof-
height will be close to the roof with the larger area,
as obtained by the weighting average of two roof-
heights via the horizontal projection area.

In order to compare the height difference
between two polyhedrons, the topology of all the
polyhedrons has to be constructed first. The
topology of a polyhedron provides information
regarding its neighboring polyhedrons and its

(A)

corresponding walls. The walls can be categorized :

as either independent walls or shared walls. A

shared wall means there is a corresponding

neighboring wall, but this is not true for independent ©)
walls.

In an island type of building, one small
polyhedron will be contained within a bigger
polyhedron. The third step is thus designed to
eliminate the interior small polyhedron. If the length
of all the walls of the interior polyhedron and the
height difference between these two polyhedrons
are all smaller than the feature resolution, the
interior one will be directly removed.

Fig. 2. Example of polyhedron
merging

2.3 Wall Collapsing with Regularization

Since most of buildings are composed of at least four walls, i.e. a tetrahedron, a
building with less than six walls is not considered in the proposed generalization
scheme. In order to preserve the principal structure of a building during
generalization, the longest walls have to be detected and used for shape
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regularization. Using the independent walls as described in the previous section, we
can construct the building’s boundaries. The principal structure analysis is applied on
the boundary only. Adopting the concept of visual importance, the longest walls are
considered as the principal structure of a building. Thus, all independent walls are fist
sorted according to length so that a threshold to separate them from major and minor
structures can thus be determined. The threshold is determined by the average length
of the fourth and the fifth longest walls. Any wall with a horizontal length longer than
the threshold is assigned as the principal structure of the building. In the
simplification process, the principal structure will be maintained, in order to maintain
the visual importance of a building between two consecutive LODs.

The purpose of the above polyhedron merging process is mainly to generalize the
rooftop structure. The result maintaining a detailed building ground plan, including
intrusions or pillars located at building corners. In 1996, Hoppe [1] introduced an
edge collapse transformation method to eliminate two neighboring triangles resulting
in the merging of two vertices into one. This operation cannot be directly applied to
simplify a 3D polyhedral building model. For example, Fig.3 (A) illustrates three
connected vertical walls where each wall is composed of two triangles. If the roof-top
edge on the middle wall is contracted by merging two corners into one, the wall
becomes sloped and destroys the topology as a vertical wall, as shown in Fig.3 (B). In
this paper, we adopt the same concept by contracting the whole wall not only one
edge. The effect is illustrated in Fig.3 (C)-(D) using the same example. The purpose
of wall collapsing is to simplify the geometric building structure by detecting and

eliminating insignificant features.
) m &@ @ N\
A) (B) : (’)
Before the wall collapsing procedure, we need to detect insignificant geometric

(. (©)

structures by searching for all short walls in one polyhedron. The shortest wall is
eliminated one by one up to a certain threshold length, which is the same as in
principal structure analysis. However, in order to retain main structure of the building,
additional co-linear processing is necessary. During wall collapsing independent walls
and shared walls are treated separately.

Fig. 3. Wall collapse operation for 3D building model

e For a sequence of shared walls neighboring the same polyhedron has to be
processed at the same time. A fixed point is first determined at the center of an
insignificant wall, as shown in Fig.3 (D) denoted by the symbol “®”. The
endpoint of the previous wall and the starting-point of the following wall are
merged at the fixed point. In cases where the previous wall or the following wall is
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related to different polyhedron, the fixed point is determined by the junction point
of the two walls which correspond to two neighboring polyhedrons. This will
avoid a gap between them when a center location is used as a fixed point.

For example, Fig. 4 illustrates three polyhedrons projected on the horizontal
plane. In Fig. 4(A), the shared walls are denoted by red lines, in which El is the
detected insignificant wall to be eliminated. In Fig. 4(B), if we directly extract E1
by its center, i.e. T1, a gap will be occurred between the left polyhedron and the
right two polyhedrons. So, during wall collapsing we choose the junction point
T2, as indicated in Fig. 4(C), as the fixed point to avoid the gap effect.

T2
11
E1l

(A) (B) ©

Fig. 4. Prevention of gap effect during wall collapsing

For independent walls, we have to maintain the principal structure of a building.
Thus, the vertices of a wall that belong to the principal structure cannot be moved
during the wall collapsing process. This means that the fixed point is set at the
junction of the insignificant wall and the principal wall. Since independent walls
construct the building boundary, the visual effect will be better and the number of
walls can be reduced further by applying co-linear processing along the principal
structure. A piping technique is utilized to accomplish this procedure. A wall that
belongs to the principal structure is chosen as the pipe axis. The radius of the pipe
is the same as the feature resolution. Any wall that was contained in the pipe is
projected onto the pipe axis, except for wall vertices that are connected to a shared
wall, again to avoid the gap effect.

For example, Fig.5 illustrates two polyhedrons projected on the horizontal
plane. The red lines denote the principal structure. In Fig. 5(A), E1~E3 are three
detected insignificant walls to be eliminate. Since T1 is a termination point
related to the principal structure the movement is not allowed, during collapsing
of E1 the fixed point is set at T1. The elimination of E2 has the same situation as
eliminating E1 that T2 is set as a fixed point. However, for the extraction of E3,
the fixed point is set at the center of E3, i.e. T3. Fig. 5(B) demonstrates the wall
collapsing result. In the following regularization process, we choose EO as the
pipe’s axis. The pipe is denoted by two green dashed lines, as shown in Fig.
5(B). Although E4 and ES5 are all contained in the pipe, E4 is connected to a
shared wall the movement is not allowed. On the other hand, E5 has to be
projected onto the pipe’s axis to finish the co-linear process, as show in Fig.
5(B-C) T3 has moved to T5.



50 J.-Y.Rauet al.

I s R
_‘R\El 2 T3 @)
ER e Tl ORISR
""" E_S_/z T3 ®)
- =
©)

Fig. 5. Wall collapsing with regularization

3 Case Study

The total number of triangles is an important index for evaluating the efficiency of
computer graphics rendering. This is especially crucial when the viewer distance
becomes longer that the number of buildings within the view frustum will be
increased significantly. In this section we like to estimate the reduction rate for when
the feature resolution (R) is getting larger, which corresponds to the viewer moving
farther away from the target.

In the experiment, the total number of triangles is the sum of all roofs [9] and
walls triangles. Four complex building models are utilized as examples, as shown in
Fig. 6. The feature resolution is changed from one meter to 35 meters, in which
only six of 50 LODs are illustrated for demonstration. In the figure, the original
elaborate 3D polyhedral building model is denoted by R equal to zero, while the
other LODs are generated using a feature resolution of 2, 5, 15, 25, and 35 meters,
respectively. The results demonstrate that the principal structure of the building is
preserved for all LODs. In addition, two irregular shaped buildings are test in the
experiments, i.e. case 2 and case 3, the feasibility of the proposed scheme is also
demonstrated.

Since the generalization result is dependent on the complexity of the building
models two consecutive LODs may have the same geometry, i.e. same number of
triangles. For example, the generalization results are exactly the same when using R
equals to 15 and 25 in Case 4. In Fig.6, the maximum and minimum number of total
triangles is also illustrated. From which, one may notice that the ratio of the
maximum and the minimum are from 27 to 53. This means that the total number of
triangles is reduced by more than 27 times compares to the original one. The
implication is that during 3D visualization of a city model, more than 27 times the
number of building models could be rendered in real-time when the viewer is at long
distance away.
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R Case 1 Case 2 Case 3 Case 4

(]

15

25

35

Max. 535 721 731 434
Min. 10 16 19 16

Fig. 6. Four case studies of generated PCLODs of 3D building models, where R is the feature
resolution in meters, and Max./Min. indicate the maximum and minimum number of triangles
for all PCLODs of 3D building models
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Fig.7 illustrates the total number of triangles (y-axis) vs. the feature resolution (x-
axis). A logarithmic function (Ln) is chosen to fit the relation between the feature
resolution and the total number of triangles in the building model. The fitting is
applied only in the range between the maximum and minimum total of triangles, for
each case respectively. The results are indicated in Fig.7 with a dashed line. The
correlation coefficients after regression for all cases are above 0.8. This demonstrates
that the triangle reduction rate is high especially at smaller feature resolution.

——Case 1 —=— Case 2 Case 3 Case 4
——LnCasel ----LnCase?2 Ln Case 3 Ln Case 4
800 Case 1 :y =-131.85Ln(x) + 531.36
K R’ =0.9054
700 Case 2 :y =-170.95Ln(x) + 557
600 E | R*=0.8736
. \ Case 3 :y =-172.14Ln(x) + 533.14
" ™ R’ = 08532
2 500 e Case 4 : y = -131.39Ln(x) + 322.08
) 2_
§ 400 F R*=0.815
St
F
S 300 [
=)
Z 200
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0 |
1
-100

Feature Resolution R (Meters)

Fig. 7. Total number of triangles vs. feature resolution R for each case. The logarithmic
function and its fitting results are indicated by a dashed line with a corresponding correlation
coefficient (R?).

4 Conclusions

This paper presents an automatic generalization approach for 3D polyhedral building
models where only one parameter, i.e. the feature resolution, is used. Since a
continuous generalization is not applicable to 3D building models, we propose to
generate Pseudo-Continuous LODs by changing the feature resolution. The feature
resolution can be estimated from the image scale and the virtual CCD size. The
number of triangles for a complex building can be significantly reduced as a function
of the feature resolution logarithm. As well, the principal structure of the building can
be preserved, avoiding the popping effect produced when the LOD is changed. The
proposed algorithm can be applied for the generalization of irregular shaped
buildings. The experimental results demonstrate that the proposed algorithm is
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effective in terms of reducing the number of triangles needed and also maintaining the
principal structure of a building. A greater than 27 time reduction rate can be achieved
for complex building models. The result is applicable for 3D real-time visualization
applications of a digital city model. The proposed algorithm can also be used for out-
of-core processing or real-time visualization depending on the power of the computer
and the number of building models to be generalized. However, the method is not
designed for view-dependent generalization or the aggregation of two non-connected
buildings. The combination of aggregation in the generalization for adjacent buildings
is necessary for future research to further reduce the amount of geometric data. As
well, the automatic generation of multi-resolution facade texture from the
corresponding building models LOD is necessary for photo-realistic visualization
applications.
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Abstract. This study presents a novel rapid and effective point simplification
algorithm based on point clouds without using either normal or connectivity in-
formation. Sampled points are clustered based on shape variations by octree
data structure, an inner point distribution of a cluster, to judge whether these
points correlate with the coplanar characteristics. Accordingly, the relevant
point from each coplanar cluster is chosen. The relevant points are recon-
structed to a triangular mesh and the error rate remains within a certain toler-
ance level, and significantly reducing number of calculations needed for recon-
struction. The hierarchical triangular mesh based on the octree data structure is
presented. This study presents hierarchical simplification and hierarchical ren-
dering for the reconstructed model to suit user demand, and produce a uniform
or feature-sensitive simplified model that facilitates rapid further mesh-based
applications, especially the level of detail.

1 Introduction

Due to the continuing development of computer graphics technology, diversified virtual
reality applications are being increasingly adopted. Exactly how three dimensional (3D)
objects in the real world can be efficiently and vividly portrayed in virtual scenes has
recently become a crucial issue in computer graphics. A triangular mesh is one of the
most popular data structures for representing 3D models in applications. Numerous
methods currently exist for constructing objects using surface reconstruction, and recon-
structing a point cloud as a triangular mesh. The data for sampled points are generally
obtained from a laser scanner. However, the extracted sampled points are frequently
affected by shape variation, causing over-sampling in the flat surface (Fig. 1). The num-
ber of triangles created rises as the number of points sampled from the surface of a 3D
object rises, helping to reconstruct the correct model. However, subsequent graphics
applications, such as morphing, animation, level of detail and compression, increase the
computation costs. Appropriate relevant points should be chosen to retain object
features and reduce storage and calculation costs.
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Hence, reducing the number of triangles while retaining surface characteristics
within a certain error value is worthy of research. The main research on object simpli-
fication can be divided into two fields, mesh-based simplification [1, 2, 3, 7, 9, 14]
and point-based simplification [5, 6, 8, 10, 12, 13]. Mesh-based simplification re-
quires connectivity relations to be obtained in advance. Hence, the sampled point data
acquired by a scanner must perform triangulation by a reconstruction algorithm before
simplification. Surface reconstruction extracts sampled points from a 3D object, and
reconstructs the triangular mesh from an original object within a certain tolerance
level [4]. The mesh-based simplification then attempts to reduce the number of trian-
gles in triangular mesh while maintaining the object quality. Numerous good mesh-
based simplification algorithms have been presented, including vertex decimation
[14], edge contraction [1], triangle contraction [2], vertex clustering [7], vertex pair
contraction [9] and feature extraction [3]. Traditional methods such as Quadric Error
Matrices (QEM) [9] have decimation operations that are generally arranged in a prior-
ity queue according to an error matrix that quantifies errors caused by decimation.
Simplification is performed iteratively to reduce any smoothing of point pairs caused
by the decimation operation. This greedy technique can obtain the simplified model
with the minimum error of the original model. However, these algorithms all achieve
good simplification effect in application, but need a triangular mesh and connectivity
in advance of simplification. Restated, the algorithms are burdened with a large num-
ber of computations before simplification processing. Consequently, this process is
prohibitively expensive.

Fig. 1. Over-sampling in the flat region needlessly increases the number of calculations. The
simplified model produces the same effect of solid representation.

Therefore, point cloud simplification is an attractive approach. Point-based simpli-
fication is applied before reconstruction. If suitable relevant points can be extracted
from a point cloud that represent surface variation, then the number of calculations
needed for reconstruction can be significantly reduced. Dey [13] presented the first
point cloud simplification approach. Dey adopted local feature sizes to detect redun-
dancy in the input point cloud and ensure relevant point densities, thereby exploiting a
3D Voronoi diagram for a densely distributed original point set in advance of simpli-
fication. However, this method also requires many computations. Boissonnat and
Cazals [6] presented a coarse-to-fine point simplification algorithm that randomly
calculates a point subset and builds a 3D Delaunay triangulation. Additional points
are inserted iteratively based on their distance to the closest 3D facet until the simpli-
fied surface mesh conforms to the restricted error value. Allegre [12] presented a
convex hull for all points that adopts a decimation scheme to merge adjacent points
according to geometrical and topological constraints. These algorithms must adopt
pre-processing to retain the original surface data before simplifying the point set, and
therefore require many computations.
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Pauly [10] applied the four mesh-based simplification techniques to point cloud
simplification. A uniform incremental clustering method is computationally efficient,
but leads to a high mean error. The hierarchical clustering method can reduce calcula-
tion and memory, but has a marginally better mean error value than the uniform in-
cremental clustering method. The quadric error-based iterative simplification method
obtains the best error rate, but has a major disadvantage in that its execution time is
sensitive to the input point set size. The particle simulation method obtains a good
error rate, but requires many calculations. Alexa [8] proposed to uniformly simplify
the point set by estimating the distance from a point to the Moving Least Square
(MLS) surface. Alexa also presented a re-sampling method to ensure the distribution
of density. Moenning and Dodgson [5] presented an intrinsic coarse-to-fine point
simplification algorithm that guarantees uniform or feature-sensitive distribution.
They adopted the farthest point sampling and a fast marching algorithm to choose
relevant points and set density threshold to ensure point set density. However, their
method requires expanding the computational 3D Voronoi diagram, and consequently
requires many computations and a large memory.

This study presents a novel rapid and effective point simplification algorithm based
on a point cloud without normal and connectivity information. This study initiates
with a scattered sampled point set in 3D, and the final output is a triangular mesh
model simplified according to restrictive criteria. The proposed method reduces the
number of calculations between triangulation and establishing the connectivity rela-
tion, and includes three main steps, point simplification, reconstruction guarantee and
hierarchical simplification. In the point simplification step, sample points are obtained
using 3D acquisition devices that fully represent the object surface variation. This step
investigates how to best choose the most appropriate number of relevant points from
the sampled points to reduce the complexity of operation and obtain an acceptable
simplified result. Sampled points are clustered, based on shape variation, by using the
octree data structure, which is an inner point distribution of a cube, to judge whether
these points correlate with the coplanar properties. The local coplanar method causes
the simplified model to have a feature-sensitive property. The feature-sensitive distri-
bution can achieve a small simplification-based error rate, but does not permit suc-
cessful reconstruction. Consequently, considering the scattered relevant points in the
levels of the hierarchical tree are dynamically adjusted. Moreover, the distribution
density is increased by dummy vertices in the region with excessive difference be-
tween adjacent levels, helped by hierarchical tree information. The problem of under-
sampling is thus successfully solved, obtaining a good simplified, reconstructed
model. Finally, a hierarchical triangular mesh suitable for multi-resolution is obtained
after successfully reconstructing the simplified point set.

This study presents a novel method for extracting the relevant points for a dense
input point set, and adopts the reconstruction algorithm presented by Jong [4] to gen-
erate a simplified model. Experimental results confirm that a good simplified model,
with the advantages given below, can be quickly obtained.

1. Connectivity relations do not need to be recorded. Hence, the reconstruction al-
gorithm can be adopted, significantly reducing the computational cost.

2. The calculations for extracting the relevant points ensure that the simplified
model has a good error rate.

3. Using an octree data structure maintains multi-resolution.
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4. The hierarchical rendering and imaging can be interactively changed by auto-
matically assigning local sampling constraints.

2 Algorithm Overview

The following steps are crucial to simplifying the sampled point cloud and completely
reconstructing the triangular mesh.

2.1 Choose the Coplanar Variable

In this study, the point cloud is subdivided iteratively according to the space coordi-
nates until each cluster meets its respective restricted criterion. The local neighbor of
a point set for a cluster was identified by the formula presented by Pauly [10], based
on the following equations:
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where, given a cluster, ¢; denotes the gravity center; C; denotes the covariance matrix;
g denotes the point in a cluster, and /N;/ denotes the number of points.

According to Eq. (2), the covariance matrix C; is a symmetrical positive semi-
definite 3x3 matrix with three eigenvalues 1y, 4; and 4,. These eigenvalues measure
the variation of points in the direction of their corresponding eigenvectors e, e;, ;.
Eigenvector ¢, is a vector characteristic of the minimum eigenvalue 4, which denotes
the normal vector of a cluster. A cluster conforms to coplanar characteristics if 4,<<1,;
and A,<<4,. Equation (3) determines whether a cluster is subdivided according to the
coplanar variable f.

The subdivision criterion for the octree is based on the coplanar variable f, which
determines whether a node must be subdivided. This step ensures that dynamic subdi-
vision is performed according to model surface variations. The rough part of model is
subdivided, and then additional relevant data can be obtained to refine regions includ-
ing the object feature regions. For the flat area, a large number of sampled points are
reduced to a single point (Fig. 2).

e by

Fig. 2. The Bunny model (34838 points) as an example using different thresholds. When the
coefficient = 0.005 (a), the number of relevant points is 5676; when f= 0.001, the number of
relevant points is /2307 (b).
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2.2 Choose the Relevant Point of Each Cluster

The point set is subdivided into clusters According to the coplanar variable £, and the
relevant point from each cluster is then selected. This point denotes the local surface
characteristic for the entire cluster. If the selected point is the gravitational center of a
cluster, then either it is not the original point, or a major error has occurred, in which
case some unexpected triangles may protrude from and concave into the surface
(Fig. 3(a)). This study chooses the original point that is the closest to the gravitational
center as the relevant point (Fig. 3(b)), because selecting the closest point can effec-
tively reducing the probability of producing errors.

N _ closest
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Fig. 3. (a) The gravitational center of cluster c is chosen as the relevant point; (b) P is chosen as
the closest point to the gravitational center ¢, and set to the relevant point

2.3 Identify the Near Surface and Adjust the Appropriate Relevant Points

Another potential problem caused when space subdivision occurs on the near surface,
revealing that the two surfaces are extremely close to each other. The near surface in
Fig. 4(a) may lead to an incorrect judgment of flatness and cause non-manifold occur-
rences, because the respective points belonging to two surfaces may be merged into
one relevant point (Fig. 4(b)). This mistake causes inconsistent curvature and errors in

topology (Fig. 4(c)).
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Fig. 4. (a) The near surface may lead to incorrect judgment; (b) Incorrect judgment for a near
surface may cause non-manifold occurrence; (¢) Reduction of the near surface to p causes
inconsistent curvature and topology errors

The proposed near surface identification method has two parts. The first part com-
prises auxiliary points (#) that are used to detect the near surface inside the cluster.
These auxiliary points are located at the cluster center ¢; and the corners g; (the centers
of sub-clusters). For each auxiliary point u;, the k closest points (p;) are selected, and

the cluster normal 50(1\7) is calculated to obtain a reliable estimate of the signed inner
product. The near surface can be easily distinguished according to the inner product

sign (p;u; ® N ), (Fig. 5(a)). The second part assumes that the nearest neighbor r of
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each point p; in a cluster is found according to the value of its inner product
l'r

(p;¥; ® N) in order to detect the near surface (Fig. 5(b)). If a cluster may have a near
surface, then it is subdivided to ensure that the near surface does occur (Fig. 5(c)).
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Fig. 5. (a) Auxiliary points at the cell center and corners are adopted to detect a near surface;
(b) The inner product of the normal vector and adjacent points is adopted to determine whether
a near surface exists; (c) The cluster containing a possible near surface is subdivided to avoid
non-manifold occurrence; (d) Produced correct surface

2.4 Adaptively Add Dummy Vertices to Avoid Under-Sampling

Space subdivision can result in the obvious phenomenon of irregular density distribution
between adjacent flat and feature areas. Unexpected holes during reconstruction result-
ing from under-sampling, due to insufficient information about for neighboring points in
the local region (Fig. 6(a)). To avoid unexpected holes, the cluster based on the coplanar
characteristic is again subdivided to produce dummy vertices, and increase and adjust
the density of adjacent nodes. Therefore, information for adjacent points must be con-
sidered during reconstruction, and the levels for neighboring nodes must be restricted
when constructing the tree structure. The nodes satisfying the coplanar restriction are
affected by their neighboring sub-trees and subdivision continues.

(b)

Fig. 6. (a) Unexpected holes during reconstruction resulting from under-sampling. (b) Recon-
structed correct base model.

To avoid irregular density distribution and under-sampling caused by the coplanar
restriction, subdivision continues until the level difference of adjacent clusters is
within n/2, where n denotes maximum level of the octree even when the cluster is in
accordance with the coplanar. The refined model is called the base model, and auto-
matically represents different density distributions according to model variation. The
density can be adjusted asymptotically at the points where different densities change,
thus guaranteeing the accuracy of reconstruction. The experiment indicates that the
number points in the base model are roughly 30% of that in the original model, re-
vealing that the cost of reconstructing the base model is 30% of that of reconstructing
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the original model. This method ensures that the final triangular mesh is in accor-
dance with object’s topology (Fig. 6(b)). The subdivided dummy vertex then reduces
to its original level in the following step.

2.5 Merge Dummy Vertex

Following correct reconstruction, the hierarchical tree-structure information can re-
cover the base model simply and efficiently to a level based on the coplanar restric-
tion. This efficient merging of a sub-tree brother reduces to its father node’s location
at the previous level. The experimental results indicate that using the coplanar vari-
able f =0.005 can yield a reconstructed model using roughly /0% of the original
points. Error rates for the reconstructed scheme, the scheme by QEM and the scheme
by uniform subdivision pure space subdivision without restricting coplanar value)
were compared (Fig. 7).
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Fig. 7. The experimental results obtained by (a) QEM, (b) uniform subdivision and (c) the
proposed method to simplify the same models with similar numbers of reconstructed model
points. The QEM method achieves the best error rate, since it has mesh information; the
proposed method adopts a coplanar restriction to simplify the original point cloud without
additional information and to perform reconstruction, therefore maintaining a good error rate.
Uniform subdivision has a regular distribution, but causes under-sampling in the feature area.

3 Hierarchical Simplification and Hierarchical Rendering for
Multi-resolution Applications

The model can be displayed dynamically and quickly based on the octree data struc-
ture after reconstruction according to the coplanar restriction. Using the octree struc-
ture for space subdividing produces multi-resolution, and adjusting the octree level in
various ways generates different display results. User-control dynamically adjusts the
resolution level that can be displayed without further computations. As long as the
octree data structure obtained by the previous calculation is adopted, sufficient simpli-
fied data can be provided to achieve rapid and effective simplification and update the
connectivity information. The following methods can be adopted to obtain different
rendering effects, where the user controls the number of relevant points.
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Depth First reduction: The relevant points of a uniform distribution are produced.
The nodes on the deepest level are first deleted and reduced to the relevant points of
the previous level. Returning to the deepest level each time results in the simplifica-
tion effect for a uniform distribution (Fig. 8(a)).

Reduction by one ring neighbor coplanar measurement: Each simplified relevant
point can denote the surface information for each small region. The variation error
denotes normal differences between adjacent relevant points, and can be adopted to
estimate the coplanar degree of a relevant point for its adjacent region. Simplification
operations are arranged in a priority queue according to the variation error (Q*,,;) of
each relevant point pair. The value of the coplanar and the relevant point of the se-
lected point pairs are recalculated to ensure a good error rate (Fig. 8(b)).
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Fig. 8. (a) Depth First reduction reduces the deepest level each time; (b) Reduction by one ring
neighbor coplanar measurement reduces the points according to the variation error of each
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4 Experimental Results

The following simplified models were obtained by the proposed method. This study
confirms that the coplanar variable /= 0.005 obtains a good simplification result. The
number of relevant points is slowly reduced (Fig. 9) when the coplanar variable f
exceeds 0.005. Restated, 0.005 is an effective value for the degree of flatness in a
model. The proposed algorithm adopts 0.005 as a default value, and can obtain a good
error range (Table 1). The results of the proposed method are show in Figure 10 to
Figure 12.
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Fig. 9. The number of relevant points is slowly reduced when f'exceeds 0.005
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Table 1. The size generated by different models and simplified error measurement by Metro
tool [11] and the flatness is using 0.005

Original base reconstructed  Mean Error Mean Error

points model model (absolute) (relative)
Dragon 437645 90374 (21%) 56302 (12.9%) 0.000058 0.000217306
Budda 543644 135205 (24%) 96967 (17.8%) 0.000032 0.000139719
Armadillo 172974 45077 (26%) 43981 (25.0%) 0.044266 0.00019346
Venus 134345 25479 (19%) 16276 (12.1%) 0.000083 0.000530694
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Fig. 10. The reconstructed results of the Dragon model on various levels after adopting the
Depth First reduction. From left to right, Base model (90374points), reconstructed model
(56302 points), 55287 points, 49663 points, 30832 points, and 13237 points (3% of original).

Fig. 11. The reconstructed results of the Budda model on various levels after using the one ring
neighbor coplanar measurement. From left to right, Original model, Base model (/35205
points), reconstructed model (96967 points), 70204 points, 50178 points, 40155 points, 20066
points; and 4963 points (0.9% of original).

Fig. 12. The different point distribution of hierarchical rendering. (a) The depth first reduction
obtains uniform distribution (11154 points) and (b) the one ring neighbor coplanar measure-
ment product the feature-sensitive result (10014 points).

5 Conclusions and Future Work

This study presents a novel method the simplifying a point set using an octree structure
to calculate the coplanar variable f, and spatially subdivide the sampled points in 3D.
The input data only contains point coordinates. The final output includes a triangular
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mesh and octree data structure. Reducing the level of the octree can dynamically
adjust its result without needing additional calculations. This proposed method facili-
tates producing a uniform and feature-sensitive simplified model for further mesh-
based applications.

Further work will integrate point simplification and reconstruction algorithms; try
to permit under-sampling and produce an appropriate simplified point set, and cor-
rectly reconstruct simplified point sets without increasing the dummy vertex.
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Abstract. 3D gesture recognition offers more details data but leads to
computational hurdles which do not support real-time gesture recognition
application. In this paper, we introduce a method of dimension reduction for 3D
gesture recognition. Our method uses meshless parameterization to perform
dimension reduction in modeling process and extracts gesture data, in order to
reduce the computation complexity. In addition, this method also maintains the
3D gesture information and result novel features vectors for 3D gesture
recognition. The computational efficiency of dimension reduction and by using
novel features vectors makes 3D gesture recognition more possible to achieve
real-time performance.

Keywords: Dimension reduction, 3D gesture recognition, gesture data,
meshless parameterization.

1 Introduction

Gesture is a meaningful form of body motions used in daily life as a means of
communication. We wave to stop the taxi, we nod our head when agree, we raise a
hand to get attention, or even we point at things we want. These all are called gesture.
Human body can express a variety of gestures to communicate.

Since computer usages in our daily lives rapidly increase, gesture is becoming
popular for interaction media in human computer interaction (HCI) environment to
provide more natural and intuitive interaction among people and computer. The
traditional interaction media such as keyboard or mouse is not well suited and
inherently limit the speed and naturalness for interaction. Thus, novel devices and
techniques of gesture recognition have emerged over the past two decades [4 — 17].

Gesture recognition is a process to identify user’s gestures and the system responds
to them accordingly. The first attempts to solve the problem resulted in developing
mechanical devices that allow gestures to be used as a form of input for HCI.
However the use of mechanical devices such as a special data glove [6] requires the
user to wear a cumbersome device and the cost is expensive therefore vision-based
techniques have been brought into use and provide more naturalness and immersive
interaction in HCI environment.

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 64 -73, 2006.
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Till now, most researches have focused on 2D representation gesture recognition.
The main reason for this bias towards 2D gesture recognition was because the data are
simple, sufficient for gesture recognition and reasonably computational processing
time [8, 13, 14]. However currently 3D gesture recognition is a challenging task,
where it gives more accurate features data such as human body orientation and shape.
However, the 3D representation recognition leads to expensive computational
processing time and complexity of features extraction [7, 15].

There are few problems must be considered in the process of implementing the
gesture recognition system. The first process is choosing the gesture model where the
model may consider spatial and temporal characteristics of human actions. The
second process is gesture data extraction to determine the type of data representation.
The third process is gesture recognition, where the gesture parameters are classified
and interpreted [9, 17]. Definition and selection of the gesture data are one of the
problems in vision-based recognition, hence, it attracts our interest and some related
works are presented in Section 2.

This paper only focuses on two processes — gesture modeling and gesture data
extraction (see Fig. 1), and we believe these are the preliminary and more important
than other processes. Although 2D representation is simple and reasonably
computational processing time, however, it faces difficulties for estimating human
posture due to lost information caused by self-occlusion and image projection [16].
Therefore, we choose 3D representation model as a form of input gestures for gesture
modeling, which offers more details of modeling but leads to computational hurdles
that do not support real-time application. Therefore, this paper aims to overcome the
computation complexity and preserve the 3D gesture for recognition. As we use a
meshless parameterization method [2] for gesture modeling and gesture data
extraction, we can get a reasonable processing speed and preserve the 3D features for
3D gesture recognition.

Meshless Parameterization

1
3D Model ! ' 3D Gesture
Initialization & —P'I Gestu.re Gesture —»  Recognition
Tracking Process ' Modeling Data '
! Extraction '
| |
1 1
1

Fig. 1. Overview of gesture recognition process

Generally, meshless parameterization is defined as a one-to-one mapping process
into some convex parameter domain in the plane. This method provides a simple, fast
and robust ways, yields good results in numerical tests and triangulations with better
shaped triangles [1, 2, 3]. The meshless parameterization of 3D surface is commonly
used for texture mapping, morphing, surface fitting and etc. However, we use this
method for reconstructing the 3D volume data into some convex parameter of gesture
data representation, which results an image-based representation.

We discuss how to reduce dimension of 3D volume data using meshless
parameterization algorithm in Section 3. In Section 4 we present novel features that
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resulted from meshless parameterization for 3D gesture recognition. The experimental
results and novel gesture features are showed in Section 5. Some thoughts about
future work and conclusion are remarks in Section 6.

2 Related Work

In this section, we discuss about some approaches that had been proposed for 3D
gesture recognition of vision-based. The most straightforward one is using multiple
cameras to acquire visual information of human in some specify environment and try
to extract the necessary gestures. However, this approach faces several difficulties in
the process of features extraction for 3D gesture recognition, such as a choice for
feature vectors computed from the 3D gesture data output by the vision system,
hindered by complexity of feature extraction and model parameter estimation. Most
features vectors are generated by computing the absolute and relative ellipse
positions, orientations, velocities and accelerations.

Lee W. Campbell et al. [11] study on ten different features vectors for 3D gesture
recognition. A set of 18 T’ai Chi gestures recognition performance are tested and
compared the performance of ten different feature vectors based on 3D hand and head
tracking data. From the results, they highlight several important issues associated with
the general problem of choosing features for gesture recognition systems. The right
set of choosing features affect recognition performance. Therefore, a careful
consideration of features extraction design can lead to significantly improved results.

The 3D gesture data representations are divided into two types: object-based or
model-based representation like point, box, silhouettes or blob, and image-based or
appearance-based representation like spatial, spatio-temporal, edge or features [17].

With object-based approach [5, 10, 11], it is possible to capture human gesture in
high dimensionality than 2D. However, it is too complex to be rendered in real-time
and reconstruct the 3D model. S. Malassiotis et al. [5] using 3D sensor to generate
range data for gesture recognition. The system improved efficiency and robustness
through 3D information. However, the usage of special camera or 3D sensor, and the
difficulty and computational complexity of visual 3D localization and robust tracking
leads us toward other possible approach for gesture recognition.

H.K. Shin and et al. [10] proposed 3D Motion History Model (MHM) for gesture
recognition. The method using stereo input sequences which contain motion history
information in 3D space and overcome the 2D motion limitation like viewpoint and
scalability. Nevertheless, Motion History Image (MHI) is more easy and fast
algorithm. Therefore, 3D appearance or view-based representation is widely used for
3D gesture recognition [4, 7]. R. Fablet and M.J. Black proposed automatic detection
and tracking of human motion with view-based representation. They developed a
novel representation of human motion using low-dimensional spatio-temporal models
that are learned using Principal Component Analysis (PCA) [4].

Guangqi Ye and et al. [7] present 3D gesture recognition scheme that combines the
3D appearance and motion features. They reduce the dimensionally of the 3D features
by employing unsupervised learning. The proposed method is flexible and efficient
way to capture the 3D visual cues in a local neighborhood around the object.

The main difference between our approach and the existing methods is that we
propose a method to reduce dimension of object-based into image-based
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representation using meshless parameterization, without loss of the 3D shape
generality and information. Then, we introduce a novel feature vector that extracted
from the image-based representation, which is a reasonable feature vector for 3D
gesture recognition.

3 Gesture Modeling: Meshless Parameterization

3D model representation is complex and causes difficulties for gesture data extraction
and parameter estimation. Therefore, for gesture modeling process, instead of 3D
model triangulation, we represent the model into a 2D representation.
Parameterization of 3D model without mesh information into some convex parameter
of 2D representation is called meshless parameterization [1, 2]. The meshless
parameterization determines a sequence of parameter points from the 3D model
without any given structure topology. The method works well on surface patch with
one boundary. Formerly, the bottom part of 3D human body is rarely used for gesture
recognition. Therefore, we choose only the upper part of human body for gesture
model that sampled on single surface patch with one boundary.

The upper part of human body is defined as open surface S in R’, which means a
single surface patch with one boundary. Set a domain D in a unit square, as planar in
R’, we use meshless parameterization method to find one to one mapping function, F:
S — D, where the 3D gesture points of S (x,y,z) is mapped into 2D pixels of D (u,v).

The basic idea of meshless parameterization for dimension reduction is presented
in this paper. This method is required to determine the boundary points and
appropriate choice of radius for ball neighborhood. First, we assume the 3D gesture
points as a set of P. This set of P has N points, it consists of two disjoint subsets,
Pi={p1,p2s,-...p,} as a set of interior points with n points, and Pg={p,+1,Pn+2----Pn} aS @
set of boundary points with N-n points. The boundary points need to be in ordered
sequence before mapping. The algorithm for splitting the set P into two disjoints
subsets and maps the boundary points into the domain D, explain in next section.

Meshless parameterization method involves two basic steps. The first step is to
map the boundary points Py into the boundary of domain D plane. Then, the
corresponding parameter points U = {u,,;, U,42-..,uy/ are laid around the domain D in
counter-clockwise order. The distribution of parameter points U are based on the
chord length parameterization.

The second step, we map the interior points into the domain D plane. However,
before mapping, we have to choose a neighborhood p; for each interior point in P,
where the points are some sense close by, and let &V; as a set of neighborhood points of
p;. In this case, we choose a constant radius r, by computing average distance of two
boundary points, for a ball neighborhood. The points that fall within the ball are
considered the neighborhood points. Fig. 2 shows a ball neighborhood with constant
radius r.

Then, we compute the weights for the point to the corresponding neighborhood
points using the reciprocal distance weight, which means that weights of
neighborhood points must be equal to one, to guarantee the convex combination. To
get the interior points U = {u;, uy,...,u,} of the corresponding point P;, the linear
system of n equations are solved.
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3.1 Boundary Splitting and Ordering

In our approach, the set of P consists of unordered vertices sequences. In order to split
the set of P into boundary set Pp, and interior set P;, we assume the model is open
surface which consist of only one boundary. The 3D model volume is given x-axis
and y-axis as base plane, and z-axis is referred to the height of the model. Therefore,
we can determine the model boundary points using the z-axis information. As a result,
we get a point with minimum value of z-axis, then search for the point that has same
minimum value of z-axis, set the point as boundary and ordered these points using
boundary-following algorithm. These boundary points are mapped in counter-
clockwise order onto the domain D plane. Each parameter point is computed based on
chord length parameterization.

The basic algorithm for splitting data set and mapping boundary points can be
described as follow:

1. Cut the human body into two parts, the cutting edge of upper part’s points are
set as boundary points

2. Order the boundary points using boundary-following algorithm

3. Get the first point from boundary set and place it to the 2D domain origin

4. Follow by the next boundary point, compute the chord length between the
previous point and the current point, then map the point to the 2D domain in
counter-clockwise order

5. Repeat the step 4 until all boundary points are mapped to the 2D domain

3.2 Neighborhoods, Weights and Linear System

In this section, we refer to Floater and Reimers [2] methods for choosing the
neighborhoods Ni and weights ll.j for each interior point pi. A ball neighborhood is
used to determine set of Ni for neighborhood points of pi (see Fig. 2). Then, the
reciprocal distance weights method is to compute the weight /ﬁil.j for each interior
point pi. To determine the radius r of ball neighborhood, we set the radius r constant.
The equation below explains the theory for choosing neighborhoods and weights.

Let N, be the ball neighborhood (D)

N ={j:0<|p;=p|<r},

for some radius r >0

and let the 4, be the reciprocal distance weights

1 1
A = .
! "p,_p,"/kszN, "pk_pz"

The choice of weights is positive /?,ij, for je N, such that Z ﬂ,l.j =] where the
Jen,

parameter interior point, ¥; is some convex combination of its neighbor’s u;. In order

to compute the n parameter points U={u;u,,...,u,} for the corresponding to the

interior point p;, we solve the linear system of n equations:
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u, = Z ﬂ’ijuj’ i=1,...,l’l . )

JeN;

From above equation, we rewrite the linear system in the form of Au=b, where A is a

matrix of weight 7xn , u is parameter points and b is the sum of neighbor points of u.

The linear system could be express in the matrix form,

— A, o (3
1 , j=1

a,=3y-4, ., Jje N,

0 ,otherwise

-2 1 .
where A = 2 . . an

A, - 1

We use Gauss Elimination to compute the inverse of matrix A. Then, the equation
(2) is solved and obtained the parametric value U for all interior points, which are
used to represent gesture data, and novel features are extracted for gesture
recognition.

Fig. 2. A ball neighborhood with constant radius r and total the number of neighborhoods
Nifu;}=5 for u;

4 Gesture Data Extraction

Definition and selection of gesture data are important because it greatly affects the
recognition performance. Thus, we are focusing on how to choose a good feature for
recognition.

This paper use meshless parameterization for gesture modeling, which reduces the
dimensional complexity and maintains most information of 3D without loss of the
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shape generality. Our method extracts the gesture data after the dimension reduction
using meshless parameterization. The method results novel features vectors like pixel
location (u; v;), pixels distribution based on the interior points and number of local
neighborhoods for each pixel, which refer to a ball neighborhood of each interior
points, these features vectors make 3D gesture recognition is possible to achieve real-
time performance.

Our proposed features are totally different from the existing features like feature
moments, orientation, areas, which need additional process for extracting. The
proposed features vectors are computed during the process of dimension reduction
using meshless parameterization, therefore the computational times are reduced. The
idea of gesture features extraction and matching are shown in our experimental
results, in section 5.

5 Experimental Results

Initially, we tested our proposed method to an artificial data set to show our principal
idea. The artificial open cube data set consists of 89 gesture data points. Fig. 3(a)
shows the 3D representation of open cube as input. Fig. 3(b) shows the boundary
points are detected. Here, the boundary points are located at minimum value of z-axis,
which shown by connected lines. After the boundary points are detected, these points
are map into the 2D unit square domain using the chord length parameterization in
Fig. 3(c). The Fig. 3(d) shows the result of meshless parameterization, where the
interior gesture data points map into the 2D unit square domain, which result an
image-based representation of 3D gesture data.

(b) © (d)

Fig. 3. (a) 3D volume of open cube; (b) boundary points are detected; (c) mapped boundary
points on 2D unit square domain; (d) mapped the interior points on 2D unit square domain

The open cube in Fig. 3(a) with some deformation is assumed as a gesture.
Fig. 4(a) shows initial position of the open cube model in image-based representation,
which introduces some novel features like pixel location (u; v;), pixels distribution
and number of local neighborhoods for each pixel. Fig. 4(b) shows image-based
representation of open cube after deformed, where the points of top surface are moved
downwards, notice that the most internal pixels are represented the top surface points.
From this experiment result, the features are extracted from the image-based
representation and shown reasonable features for gesture recognition. In Fig. 4(c)
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shows another example, the both corners on the top front surface were deformed, the
features are extracted for matching, shown in small rectangle window size. This
image-based representation consists of 3D gesture information, where each pattern
distribution features is unique and possible for matching and recognition.

Diaiet [ ]I ] et
L PE e s, L oifE:
@ (b) ©

Fig. 4. (a) Image-based representation of initial posture; (b) top surface deformation gesture; (c)
front top corners deformation gesture

Further more, we tested on actual human data sets, downloadable at
http://hci.ssu.ac.kr/yllee_research.html, to show our method works well in human
model. Fig.5 (a) shows the capturing system architecture with four cameras setting
within the box volume. The human model is located within the box volume are
captured and generate a 3D volume data set Fig.5 (b). Then, our propose method is
used to reduce the dimension of this 3D volume data set into image-based
representation.

e N
2 _—

Tw (b ©

o

Fig. 5. (a) The capturing system architecture, four cameras set within the box volume; (b) four
images captured from the system of human gesture posture; (c) 3D volume data set

The results in Fig.6.(c) and Fig.6.(f) represent two different gestures in image-
based representation. We can compare both gestures using extracted features vectors
like number of neighborhoods for each interior gesture data. Each gesture image-
based representation has unique pattern distribution. Therefore, it is reasonable for
gesture recognition and matching purpose.
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Fig. 6. (a) and (d) show four images captured from the system with corresponding gesture; (b)
3D volume of upper body for (a) gesture, where both hands raise vertically toward top position;
(c) image-based representation of (b) volume data; (e) 3D volume of upper body for (d) gesture,
where both hands raise horizontally toward front position; (f) image-based representation of (e)
volume data

6 Conclusions and Future Work

Our primary aim is to reduce the 3D volume complexity without loss of the
information generality and satisfy the critical requirements of speed and robustness in
features extraction for 3D gesture recognition. This paper has described an approach
includes possible main steps in dimension reduction for 3D model and extract novel
features for 3D gesture recognition. The simple, fast and efficient of meshless
parameterization method leads the idea to parameterize the gesture model and features
extraction. In addition, this method map 3D volume data by one to one into 2D
domain plane, thus most 3D features are maintained in image-based representation.

Our experimental results show potential of meshless parameterization for gesture
modeling and features extraction of 3D model. The method reduces the model
dimension without loss of data generality or maintains 3D gesture information. The
number of neighbor points, location and pattern distribution are extracted as gesture
features vectors. These features are used for matching and recognizing purpose. Base
on the results of feature extraction, we will continue to implement the gesture
recognition system and develop more gestures data for testing. Further, we also plan
to construct automatic features extraction for interested part instead of the whole
model to achieve better performance and recognition accuracy.
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Abstract. This paper is about real-time refinement of the 3D positions
of a large number of stationary point-targets from a sequence of 2D im-
ages which are taken by a hand-held, calibrated camera group. To cope
with the large data quantity arriving rapidly, an efficient iterative algo-
rithm was developed. The problem and solution are expressed entirely
within the computational framework of conformal geometric algebra. The
iterative solution requires a pose estimation step of which two strategies
are investigated. Experiments are performed to evaluate the algorithm
based on synthetic and real data.

Keywords: conformal geometric algebra, pose estimation.

1 Introduction

Recovering the positions of many point-targets over a large area is computa-
tionally expensive. This paper describes an efficient iterative algorithm to refine
target positions from a sequence of 2D images. The targets used in this project
are point-lights (left Figure 1) and form part of a flexible 6D positioning sys-
tem. A group of rigidly co-located calibrated cameras (right Figure 1) is moved
along an arbitrary path and takes images of the targets. The image points of
the targets are transformed to 3D lines which are used by the algorithm to up-
date the 3D positions of the targets. The algorithm is expressed entirely within
the computational framework of conformal geometric algebra (CGA). The pre-
viously developed target calibration algorithm described in [9] is non-iterative
and requires all the line data to be gathered before the algorithm can proceed. It
can be used to obtain an initial estimate of the target positions for the iterative
algorithm described in this paper. This work is a continuation of work reported
in [9] in the application of the conformal model of geometric algebra.

1.1 Geometric Algebra and Conformal Model

In this section, the basic concepts and operations of geometric algebra that
are required in this paper are briefly introduced. For a detailed introduction to
geometric algebra, refer elsewhere e.g. [1,2,3].

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 74-83, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Left: targets; six of them are encircled. Right: camera group.

Geometric algebra (GA) is the application of Clifford algebras to geometric
problems. It integrates many concepts and techniques, such as linear algebra,
vector calculus, differential geometry, complex numbers and quaternions, into a
coherent framework. A geometric algebra over R is denoted G, ; with p positive
and g negative basis elements. Let x1, x2, ..., x, be vectors. X = 1 Axy A
... Az, is referred to as an r-blade where A’ is called outer product. r is the
grade which indicates the dimensionality of the blade. A linear combination of
multiple r-blades constructs an r-vector. G, . denotes the r-vectors in G, ,. A
linear combination of a set of elements with different grades is a multivector. For
example, if A is a multivector then it can be written as A = )" (A), where (A),
represents the grade r part of A. (A) or (A), represents the scalar part of A. The
part of A containing the grades in another multivector B is denoted as (A) 5.
A|B = X, ((A),(B),),_, is defined as the left contract inner product of A and
B. The outer product can be related with the inner product by the following
equation: A|(B|C) = (AAB)|C. Reverse of X is defined as X = z, A.. . AxaAx1.
The dual of a blade X is defined as X* = X |I~!, where the pseudo-scalar I is
an n-blade e1 A ... Ae, based the orthogonal basis ({e;: i=1...n},¢e;-¢; =0
for i # j, e; - e; = 1) of R® within G,,. The norm of a multivector A can be

calculated by |A4| = \/ ‘<XA>‘ If S is a linear operator, the outermorphism S

is defined by S(X) = S(z1) A S(z2)... A S(x;). The derivative of multivector
valued function F with respect to multivector X is denoted dx F. Ox FG means
differentiate G = G(X) with respect to X while regarding F' as a constant. The
following result [10] is required in later developments,

Ox (XYXTZ)=(YX'Z), — (X' ZXYX ),

where X, Y, Z be multivectors where Y and Z are independent of X.

GA expresses a number of models of 3D Euclidean space (%), such as 3D
Euclidean model, 4D homogeneous model and 5D conformal model. In this paper
we use the conformal model of geometric algebra (CGA) based on Ga 1. Ga1 is
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based on the orthonormal basis {e1,e2,e3,e4,e_} where e = e = 1 and

e? = —1. It is usually more convenient to use the basis {e,, €1, €2, €3, e} as it has

a better geometric interpretation, where e, = - ;e+ is associated with the origin
and e = e_ + e; with the point at infinity. CGA allows a diversity of objects to
be represented directly as blades (e.g. point, line, plane, circle, sphere, tangents
and orientations) and allows a variety of operations to be represented as versors
(e.g. rotor, translator, motor). A vector is represented as v = vie; + voeq + vzes
where vy, vg, v3 are scalars. A point with location at the Euclidean point p € G3
is represented as p = p+e,+ %p Ze € gi)l. A line is represented by A = pAvAe
where p € G} | is a point and v € Gj is a direction vector. A line is normalised by
the mapping A — Hjll\l' A dual sphere centered at point p with radius p is given

by s =p— éer. A Euclidean motion is represented by a motor M = exp (—éB)
where B = B — te where B € G2 and t € Gi. A motor M has properties which
are important for deriving the algorithm: (i) M € 92:12’4, (i) MM =1, (iv) if
Xe gj;l then the transformation of X is given by MXM € gij.

1.2 Problem Description

The targets are defined in a world coordinate system denoted by CSW. Since
the geometric relationship between the individual cameras which comprise the
camera group is fixed and known, the camera group can be associated with a
single moving coordinate system denoted by C'SM.

An initial estimate of the positions of n targets {p? € gil, i=1...n}is given
[9]. The initial pose of the camera group C'SM is also given and represented as
a motor M,. The camera group C'SM is moved to m positions on the path
in CSW. The movement of CSM is tracked and represented by a sequence of
motors My, k = 1...m. At each position in CSW, a set of images are captured
and the image points of the targets are extracted and converted to normalised
lines {A¥ € G§,,i=1...n,k =1...m} in CSM. These lines are processed to
refine the initial target position estimates. When C'SM is moved to the next
position, the new estimate of target positions will be calculated based on the
previous estimate and a new set of lines. For m positions on the path, m updates
are performed.

The problem can now be summarised as follows: Given a group of lines in
CSM, a previous estimate of a set of points and a previous pose, we wish to
update the coordinates of these points in C'SW.

2 Target Refinement Using Geometric Algebra

The solution to the problem is analysed and developed in this section. At the
beginning of the motion of the camera group we are given initial positions of
targets and the initial pose of CSM. At each position we are given a new set
of lines between optical centers and visible targets in CSM. The following steps
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need to be done during camera motion: (i) pose estimation of C'SM; (ii) trans-
formation of corresponding lines from C'SM into CSW; (iii) update of target
positions.

2.1 DPose Estimation: Objective Function Versus Point-Line
Constraint

We estimate the pose of C'SM by two alternative iterative strategies (i) non-
linear optimisation of an objective “error” function. (ii) root finding of a 4-blade
point-line constraint equation.

Non-linear optimisation of an objective function. The distance d between
a point p and a line A is defined [10] by d?(p, A) = —} (ApAp). The total distance
between all points and their associated lines is defined as follows:

ZZaz (pis 45)) (1)

where a; € {0,1} indicates whether the target is visible by any of the cameras.
p; is a target point and A; is assumed to be a line which connects p; to different
cameras (i.e., their optical centers) in C'SW. If the lines are given in CSM and
the pose of C'SM is represented by M then A in Equation (1) is replaced by

MAM giving

POD = = 375 o (A (M A ) @)

J

This objective function produces a scalar with a well-defined geometric meaning.

The poses of C'SM are estimated using a Quasi-Newton optimization technique
which is described in [6] (pages 425-430). We use a non-linear minimisation rou-
tine (called ”dfpmin”) which implements the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update.

The optimization routine requires an objective function and its gradient. The
motor M representing the pose of C'SM is parameterised M = M (z) where
x € RS. We use M (z) in the objective function d? in Equation (2) to express the
objective function as g(z) = d?(M(z)). The gradient is given by [V,g(x))]; =
0z, 9(x) = Oy, M * Oprd?. The derivative dyrd? is calculated as follows:

1 — —
Ond® = = O <MAMpM/1Mp>
_ <AJ\7pMAMp> + <MpMAMpMAJ\7> (3)
M M
where M must be a motor so M = M~1. The operator (...),, denotes the

projection of a general multivector onto the grades being present in multivector
M. The optimisation returns the estimated parameters = of the motor M (z).
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Root finding of a point-line constraint equation. An alternative distance
measure is expressed in an implicit way by the equation

p/\(MAM)zO (4)

which indicates point p is on line A. We call this the point-line constraint.
For all target points, the point-line constraint becomes

S [ Swara | o )

where «; € {0,1} indicates whether the target is visible by any of the cam-
eras. This point-line constraint expresses a geometric distance measure and is
commonly applied in computer vision, see [5,8].

This technique uses the point-line constraint in Equation (4) for distance
measurement. Given the previous motor My_1, My can be estimated as My =
AM My 1. Assume the previous pose M and line A are known. Let us update
the current pose AM M. The constraint becomes

(ZMWAM)AAzO (6)

where p/ = M pM represents a point in the previous CSM. AM needs to be
estimated.

In order to solve for AM, it is necessary to linearise the motor part (i.e.,
AM p' AM) of the equation. The motion of the camera group is considered as a
general motion, which is formulated using an exponentiated bivector (2-vector);
AM is expressed in the form

< AB—Ate)
exp | — 5

where AB is a Euclidean bivector and At is a vector.
The Euclidean transformation (i.e., AM) of a point p’ can be approximated

as follows:
AB — Ate
2

%<1 AB - Awip( AB—Aw)
(

mp/AM = exp (AB Ate

2
~p —p'|AB +p'|(Ate) (7)

In Equation (7), two approximations are involved. The first approximation
involves truncating the Taylor series for exp(X) (i.e., exp(X) =~ 1+ X+ )5,2 +--0).
The second approximation involves removing second order terms from the final
product; this works well only when the motion AM is sufficiently small (say,
its rotation angle is smaller than 10 degree). This condition is satisfied when
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the camera group moves “smoothly” along its path and is sampled sufficiently
frequently.

A similar linearisation of a transformation for a single point using different
expressions is described in [8]. By substituting the approximated expression of
AMp' AM given by Equation (7) back into constraint Equation (6), the con-
straint becomes

P ANA—(p'|]AB)ANA+ (p'|(Ate)) NA=0 (8)

with two unknowns: AB and At. Therefore, AM is calculated by estimating AB
and At. A set of point-line correspondences are required to solve for AB and
At in Equation (8). As any linear geometric algebra equation can be expressed
in matrix form, we solve the equation by solving the associated matrix system
of the form Az = b. This can be solved by any standard technique such as LU
decomposition. From x we obtain AB and At and hence AM. Each calculated
AM provides a step towards the desired motor and this process is repeated until
convergence. The first step towards the target motor is denoted by AM;. By
repeating this procedure, Myo, ..., My, are estimated, which converge towards
My, where n iterations are necessary. AM is calculated as AM,, ... AMsAM;.
The convergence rate depends on the “speed” of the expected transformation
(i.e., the movement of the cameras within the space where images are taken).
We stop the approximation (iteration) if ||AM;|| < € (e.g., ¢ = 107%), which
indicates that no further improvement can be achieved. Several iterations are
usually sufficient to obtain the next pose of the camera group.

2.2 Update Target Positions

With the estimated pose M of CSM, the given lines A in C'SM can be trans-
formed to CSW by M AM. Given all the lines in CSW for all poses, the current
target positions can be calculated by Lemma 1 [9],

Lemma 1. Let A; € G}, j € J be a set of normalised lines and S(x) =
> jeg S(x, Aj) where S(x, A;) = x—(x|A;)]A;. If STz # 0 then the point q € Gia
closest to all the lines in the least squares sense is given by the center of the

normalised dual sphere

S| L
T TSI | I )

where I3 = ey Neg Neg and Iy = e, Nep Aex Aes.

As the target positions are estimated in real time, an increasingly large number of
lines and frequently repeated calculations would require too much computational
resource. Rather than storing all the lines we update some summary variables
to implement an iterative algorithm.

In Lemma 1, S(I3) and S(I4) depend on all lines and vary with each update.
As S(I3) = S(e1) A S(e2) A S(es) and S(Is) = S(eo) A S(er) A S(ez) A S(es)
it is only necessary to store and update S(e,), S(e1), S(e2) and S(es). During
the iterations, the information contained in the lines needed for estimating the
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target positions, are accumulated in S(e,), S(e1), S(ez2) and S(es). Recall S is
defined as S(q) = Y., (¢ — (¢)A;)]4;). The current estimate of S(e;) can be
updated based on previous Sk—_1(e;), and new lines A;, ¢ € I, arriving at current

time k as
Sklej) = Sk-1(e;) + > (e — (e5]A4) | Ai) (10)

i€ly

It is not necessary to update the targets on every pose update iteration. For
example, the targets may be updated after CSM has been moved by some
specified distance.

3 Experiments

Experiments were carried out using both simulated data and real data. Both
kinds of data allowed us to test the validity and performance of our algorithm
using both the point-line constraint and the objective function (Quasi-Newton
optimisation) pose update. Noise was added to test the stability of the algorithm.

3.1 Simulated Data

In order to test and evaluate the iterative algorithm for estimating target posi-
tions, we generated simulated line data. We have the ground truth target position
obtained using a total station. We generated a synthetic path for C'SM in a real
scene (a lab at Industrial Research Ltd.). Synthetic lines were created using this
path and projecting the known targets through the real calibrated camera group
model. In order to test the behaviour of the algorithm in the presence of noise
we generated simulated data with different levels of noise. The stability of the
algorithm is investigated by adding Gaussian noise with deviation o € [0.2, 1.0]
pixels (see Figure 2).

With the minimum noise, the errors of estimation decrease smoothly by
around 30%. With more noise, the error curve fluctuates within a wider range.
But the error is still reduced as the update process continues. Even with the
maximum noise, the target position is refined by around 20%. We applied the
simulated data to both algorithms. Both algorithms are validated by a compar-
ison of experimental results with ground truth, and also between both. Table 1
shows comparisons for estimating different poses of CSM along a 3D path.

Comparisons showed that both pose update strategies achieve almost the
same results. The strategy using the point-line constraint was nearly twice as
fast as Quasi-Newton strategy. This can be partly attributed to the fact that
the point-line constraint method make no effort to guarantee global convergence.
The Quasi-Newton method proved more robust under all considered conditions,
and the point-line constraint method is limited to the condition that differences
between subsequent poses are small because no global convergence protection
was implemented.
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Fig. 2. The RM S (Root Mean Square) of errors in targets vs update iterations with
different levels of noise

Table 1. Comparison of results for the two alternative pose estimation strategies for
the kth pose (rotation and translation). 61 and t; are rotation angle (in degree) and
translation vector (in millimeter) of the pose using the quasi-Newton method; 02 and
to are those for the line-target constraint method.

k (91 — 92) x 1074 |t1 — t2| x 1074
1 1.23 1.44
5 2.11 0.84
10 0.67 2.10
15 1.01 1.25
20 0.19 0.09
26 3.61 0.56

3.2 Real Data

Real data sequences of images captured by the camera group are shown in Fig-
ure 1, right. The lab room is visualised using VRML software; see Figure 3.
Results for real data were not as good (for both pose update strategies) as for
simulated data.

We believe that this can be partially explained by small errors in the camera
group model. A better camera group calibration should reduce these errors.
During simulation the same camera group model is used for projection (targets
mapped to image points) and backprojection (image points mapped to lines) so
any calibration errors have no influence.

Estimated poses and target positions are also visualised in Figure 3. Com-
ments about performance comparisons between both estimation methods apply
qualitatively for real data the same way as for simulated data. The target up-
date algorithm run run at 30Hz on a standard 3GHz PC using either of the pose
update schemes.
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Fig.3. A model of the lab space used. Disks are estimated targets; the figure also
shows a few C'SM coordinate systems along the path of the camera group.

4 Conclusion

We developed an iterative algorithm for refining 3D target positions over a large
number of images. We acquire (from 2D images) lines pointing towards 3D tar-
gets. The use of the conformal model of geometric algebra (CGA) benefits the
development of the solution in both theory and practice. CGA provides a com-
pact symbolic representation of objects and their transformations. A variety of
objects (e.g., vectors, points, lines, spheres) and operations (e.g. motors) can
be represented in a single algebra which simplifies the implementation. The use
of a single motor element to represent a Euclidean transformation (instead of
separate rotation and translation), further simplified the implementation.

The iterative target update algorithm performed well over a wide variety of
conditions. Two iterative strategies are used for pose estimation. The point-line
constraint strategy proved to be more efficient than the Quasi-Newton optimi-
sation strategy, but less robust in stability.
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Abstract. Estimating the pose of a rigid body means to determine the rigid body
motion in the 3D space from 2D images. For this purpose, it is reasonable to make
use of existing knowledge of the object. Our approach exploits the 3D shape and
the texture of the tracked object in form of a 3D textured model to establish 3D-
2D correspondences for pose estimation. While the surface of the 3D free-form
model is matched to the contour extracted by segmentation, additional reliable
correspondences are obtained by matching local descriptors of interest points be-
tween the textured model and the images. The fusion of these complementary
features provides a robust pose estimation. Moreover, the initial pose is automat-
ically detected and the pose is predicted for each frame. Using the predicted pose
as shape prior makes the contour extraction less sensitive. The performance of
our method is demonstrated by stereo tracking experiments.

1 Introduction

This paper addresses the task of estimating the pose of a rigid body in the 3D space from
images captured by multiple calibrated cameras. For solving this problem it is a natural
approach to exploit the available information on the object as far as possible. In [1] the
knowledge of the 3D shape was integrated in a contour based 3D tracker. Knowing the
3D model, the estimating process relies on correspondences between some 2D features
in the images and their counterparts on the 3D model. Our approach extends the work
by incorporating also the texture of the object. The additional information allows to
extract more reliable correspondences that makes the estimation more robust.

Fig. 1. 3D mesh and rendered textured model used for tracking

There are numerous features that have been used for establishing correspondences,
e.g., matching lines [2], blocks [3], local descriptors [4], and free-form contours [5].
They all work well under some conditions, however, none of them can handle general
situations. The most approaches assume that the corresponding image features are visi-
ble during the whole sequence. They either completely fail when the number of features

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 84-95, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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is very low caused, for example, by occlusion or they reinitialize the pose after some
frames when enough features are again detected [6]. Whereas the contour extraction as
described in [1] is robust to occlusions. However, the contour does not provide enough
information for smooth and convex objects to estimate the pose uniquely. Furthermore,
the contour extraction is only suitable for movements that are slow enough such that
the segmentation does not get stuck in a local optimum. Hence, more than one feature
is needed for robust tracking.

Combining the object contour with the optical flow between successive frames has
been proposed in [7]. Although it performs well, it assumes that the initial pose is
known and cannot recover from a significant error. Furthermore, the optical flow is
easily distracted by other objects moving in front of the observed object. Our work
instead combines the object contour with image features between a frame and a 3D
textured model projected onto the image plane. We assume that the textured model
of the object is available where the lightning conditions for capturing the texture are
allowed to differ from the conditions during tracking, i.e., the model construction is
independent of the tracking sequence.

Since lightning conditions between the object and its textured model are inhomo-
geneous and the object is transformed by a rigid body motion (RBM), we use local
descriptors that provide robust matching under changes in viewpoint and illumina-
tion. A comparison of local descriptors [8] revealed that SIFT [9], PCA-SIFT [10], and
GLOH [8] perform best. The descriptors build a distinctive representation of a so-called
keypoint in an image from a patch of pixels in its neighborhood. The keypoints are local-
ized by an interest point detector. We use the detector proposed by Lowe [11] based on
local 3D extrema in the scale-space pyramid built with difference-of-Gaussian filters.
It has the advantage that it runs faster than other detectors [12], e.g., like the slower
Harris-Affine detector [13]. The DoG representation, however, is not affine invariant.
Hence, we cannot use GLOH that requires an affine-invariant detector. Therefore, we
used PCA-SIFT that reduces the dimension of the descriptor by principal component
analysis. This speeds up the matching process and produces less outliers than SIFT but
also less correspondences.

In the next section, we give an overview of the whole pose estimation process that
will be discussed in detail in the following sections. Experiments in Section 5 with a
3D textured model as shown in Fig. 1 demonstrate the performance of the proposed
technique. A brief discussion is given at the end.

2  Overview

Our approach for pose estimation is illustrated by the flow chart in Fig. 2. Knowing
the pose of the object for frame ¢ — 1, we generate a 3D textured model in the same
world coordinate system used for the calibration of the cameras, see Section 4.1. Ren-
dered images of the model are obtained by projecting the model onto the image plane
according to the calibration matrix for each camera.

In a second step, the PCA-SIFT [10] features are extracted from the rendered im-
ages and from the new images of frame t. The features are used for establishing cor-
respondences between the 3D model and the 2D images for each view as described in
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Fig. 2. Correspondences extracted by PCA-SIFT and correspondences between the contour of the
projected 3D model and the contour obtained by segmentation are used for pose estimation. If
not enough keypoints are detected by PCA-SIFT, an autoregression is performed to predict the
pose for the next frame.

Section 4.2. In [6] and [14], RANSAC is used to estimate the pose from the matches
that include outliers. RANSAC, however, is not suitable for integrating correspondences
from the contour and cannot handle inaccuracy of the keypoint localizations, e.g., aris-
ing from texture registration. Therefore, we use a least-squares approach as used in [5],
see Section 3. If not enough correspondences are extracted by PCA-SIFT, the pose is
predicted by autoregression as discussed in Section 4.3.

The next step consists of extracting the contour by a variational model for level set
based image segmentation incorporating color and texture [15] where the predicted
pose is used as shape prior [1], see Section 4.4. New correspondences between the 3D
model and the 2D image are then established by matching the extracted contour with
the projected contour of the model via an iterated closest point algorithm [16]. Finally,
the correspondences obtained from PCA-SIFT and from the segmentation are used for
estimating the pose in frame ¢.

3 Pose Estimation

For pose estimation we assume that correspondences between the 3D model (X;) and
a 2D image (z;) are already extracted and write each correspondence as pair (X;, z;)
of homogeneous coordinates. In order to estimate the 3D rigid body motion M that fits
best the correspondences, M is represented as exponential of a twist [17]

) S 0 —W3 W2
95 =0 . W= w3 0 —wi |, ||W||2 = 1, (1)
00
—Ww2 W1 0

ie., M = exp(6€). A twist with varying 6 € R describes a screw motion in R? where
6 corresponds to the rotation velocity and pitch. The function exp(6¢) can be efficiently
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computed by the Rodriguez formula [17] and linearized by exp(6€) = Yool (0) /")
~1+ é , where I denotes the identity matrix.

Each image point z; defines a projection ray that can be represented as Pliicker line
[17] determined by a unique vector n; and a moment m; such that x x n; —m; = 0
for all x on the 3D line. Furthermore, ||z X n; — m;||2 is the norm of the perpendicular
error vector between the line and a point x € R3. Hence, the pose estimation consists of
finding a twist such that the squared error for (exp(#€)X;)3x1 is minimal for all pairs,
where (-)3x1 denotes the transformation from homogeneous coordinates back to non-
homogeneous coordinates. Using the linearization, we obtain for each correspondence
the constraint equation

(exp(0€) X;)3x1 X ni —m; =0 )

which can be rearranged into the form A¢ = b. The resulting overdetermined linear
system is solved by standard methods like the Householder algorithm. From the re-
sulting twist &, the RBM M is computed and applied to all X;. The pose estimation
is iterated until the motion converges. After n iterations, usually 3-5 are sufficient, the
concatenated rigid body transformation M = M,, ... Mo Mj is the solution for the pose
estimation. In a multi-view setting as in our experiments, the correspondences for each
camera are added to one linear system and solved simultaneously. Our implementation
takes about 4ms for 200 correspondences.

4 Correspondences

4.1 Textured Model

We assume that a 3D model including textures is already constructed independently
of the tracking sequences, i.e., we do not require that the textures are extracted from
the tracking sequences. Hence, the modelling process is done only once and the model
can be reused for any sequence provided that the texture remains unchanged. In order
to render the 3D model in the same coordinate system as used for camera calibration,
the calibration matrices are converted to the modelview and projection matrix repre-
sentation of OpenGL. Since OpenGL cannot handle lens distortions directly, the image
sequences are undistorted beforehand. However, the step could also be efficiently in-
cluded by a look-up table. In a preprocessing step, PCA-SIFT is trained for the object
by building the patch eigenspace from the object textures. Moreover, we render some
initial views of the 3D model by rotating and store the extracted keypoints, strictly
speaking the PCA-SIFT descriptors of the keypoints, with the corresponding RBM.
From the data, our system automatically detects the pose in the first frame.

4.2 Matching

After the 3D model is rendered and projected onto the image plane for each camera
view, the keypoints are extracted by PCA-SIFT. The keypoints are also extracted from
the captured images. The effort is reduced by bounding cubes for each component of
the 3D model. Projecting the corners of the cubes provides a 2D bounding box for each
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Fig. 3. Initialization. Left: Both camera views of the first frame. Best initial view for initialization
is shown in top left corner. Right: Estimated pose after initialization.

image. Since we track an object, we can assume that the object is near the bounding
box except for the first frame. Hence, the detector is only performed on a subimage.
2D-2D correspondences are then established by nearest neighbor distance ratio match-
ing [8], where we use as additional constraint that two different located points cannot
correspond to points with the same position. Since the set of correspondences contains
outliers, the rudest mismatches are removed by discarding correspondences with an
Euclidean distance that exceeds the average by a multiple.

Fig. 4. Left: Correspondences between projected model and image. Center: Displaying the
points of the projected model (yellow squares) corresponding to points in the image (green
crosses). Two outliers are in the set of correspondences. Right: After filtering only the outliers
are removed.

The 3D coordinate X of a 2D point z in the projected image plane of the model is
obtained as following: Each 2D point is inside or on the border of a projected triangle of
the 3D mesh with vertices vy, va, and vs. The point can be expressed by barycentric co-
ordinates, i.e., x = ZZ «; v;. Assuming an affine transformation, the 3D point is given
by X = >". o; V;. The corresponding triangle for a point can be efficiently determined
by a look-up table containing the color index and vertices for each triangle. After that
the pose is estimated from the resulting 2D-3D correspondences. In a second filtering
process, the new 3D coordinates from the estimated pose are projected back and the last
outliers are removed by thresholding according to the Euclidean distance between the
2D correspondences and the reprojected counterparts.

During initialization, the keypoints from the images are matched with the keypoints
extracted from the initial views beforehand. According to the number of matches, a best
initial view is selected and the pose is estimated from the obtained correspondences.
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4.3 Prediction

The logarithm of a RBM: In [17] a constructive way is given to compute the twist
which generates a given RBM: Let R € SO(3) be a rotation matrix and ¢t € R? a
translation vector for the RBM. For the case R = I, the twist is given by

(O
= t 0 = ||t||». 3
i ()0 =lele ®
For the other cases, the motion velocity § and the rotation axis w is given by
t R)—1 1 T32 — T'23
6 =cos™! race(R) Lw=_ . T3 =73 |- 4)
2 2sin(0)
T21 — T12
To obtain v, the matrix
A= (I —exp(dd))& + wwl, 5)

obtained from the Rodriguez formula needs to be inverted and multiplied with the
translation vector ¢, i.e., v = A~1t. This follows from the fact, that the two matri-
ces which comprise A have mutually orthogonal null spaces when § # 0. Hence,
Av = 0 & v = 0. We call the transformation from SE(3) to se(3) the logarithm,

log(M).

The adjoint transformation: It is not trivial to derive a formula for the velocity of a
rigid body whose motion is given by g(t), a curve parameterized by time ¢ in SE(3),
since SE(3) is not Euclidean. In particular, § ¢ SE(3) and § ¢ se(3). But by repre-
senting a rigid body motion as a screw action, the spatial velocity can be represented by
the twist of the screw, see [17] for details. This allows for motion interpolation, damping
and prediction.

Later we will take the motion history P; of the last N frames into account. For a
suited prediction we use a set of twists §; = log(PZ-Pi__ll) representing the relative
motions. To generate a suited average rigid body motion we make use of the adjoint
transformation to represent a screw motion with respect to another coordinate system:
If £ € se(3) is a twist given in a coordinate frame A, then for any G € SF(3) which
transforms a coordinate frame A to B, is GEG_1 a twist with the twist coordinates
given in the coordinate frame B, see [17] for details. The mapping é — GEAG_1 is
called the adjoint transformation associated with G.

Given a set of world positions and orientations P; the twists &; can be used to ex-
press the motion as local transformation in the current coordinate system M;: Let
& = log(P Py 1) be the twist representing the relative motion from P; to Ps. This
transformation can be expressed as local transformation in the current coordinate sys-
tem M, by the adjoint transformation associated with G = M; P, ! The new twist is
then given by éj = Gé 1G 1. The advantage of the twist representation is now that the
tyvists can pe scaled by a factor 0 < \; < 1 to damp the local rigid body motion, i.e.,
€ =ané&a

The average RBM from N given local rigid body motions can then be written as
consecutive evaluation of such local rigid body motions scaled with \; = 1/N.
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Fig. 5. Transformation of rigid body motions from prior data P; in a current world coordinate
system M;. A proper scaling of the twists results in a proper damping.

4.4 Segmentation

The images are segmented by a level set based method incorporating color and tex-
ture [15]. It splits the image domain £2¢ of each view into object region 2% and back-
ground region (2% by level set functions ¢ : 2! — R, such that &(x) > 0if z € 2!
and @' (x) < 0if z € 2. The contour of an object is thus represented by the zero-level
line. The approach described in [1] uses a variational model that integrates the contour
of a prior pose @} (7 ) for each view 1 < i < r as shape prior. It minimizes the energy
functional E(z,®*,...,0") =3 !, E(z,d") where

E@,¢)=— | H(@®)np, + (1 - H(P"))Inphdx
(91l

+1// |VH (9| dx+)\/ (qsi—qag(f)f dx (6)
Q'L %

and H is a regularized version of the step function.

Minimizing the first term corresponds to maximizing the a-posteriori probability of
all pixel assignments given the probability densities p¢ and pi of §2¢ and 25, respec-
tively. These densities are modeled by Gaussian densities whose parameters are esti-
mated from the previous level set function. The second term minimizes the length of
the contour and smoothes the resulting contour. The last one penalizes the discrepancy
to the shape prior that is obtained by projection of the predicted pose. The relative in-
fluence of the three terms is controlled by the constant weighting parameters v = 0.5
and A = 0.06.

After segmentation, the 3D-2D correspondences for each view are given by the pro-
jected vertices of the 3D mesh that are part of the model contour and their closest points
of the extracted contour determined by an iterated closest point algorithm [16].

4.5 Fusion of Correspondences

Although it has been shown that the segmentation as previously described is quite robust
to clutter, shadows, reflections, and noise [1], a good shape prior is essential for tracking
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Fig. 6. 4 successive frames of a rotation sequence (only one view is shown). Top row: Pose is pre-
dicted by autoregression for lack of PCA-SIFT matches. Black: Predicted pose. Gray: Previous
pose. Middle row: Contour extracted by segmentation. Bottom row: Estimated pose.

since both matching between the contours and the segmentation itself is prone to local
optima. The predicted pose by an autoregression usually provides a better shape prior
than the estimated pose in the previous frame. In situations, however, where the object
region and the background region are difficult to distinguish, the error of the segmenta-
tion and the error of the prediction are accumulating after some time. The shortcoming

Fig. 7. Rotation sequence with a moving person. Left: Number of matches from PCA-SIFT (dark
gray). After filtering the number of matches is only slightly reduced (black). When the number
is below a threshold, the pose is predicted by an autoregression (gray bars). Right: The rotating
box is occluded by a moving person.
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is compensated by PCA-SIFT, but it is also clear that usually not enough keypoints
are available in each frame. Hence, the correspondences from contour matching and
from descriptor matching are added to one linear system for the pose estimation. Since
the contour provides more correspondences, the Equations (2) for the correspondences
from PCA-SIFT are weighted by § Corrscontour/5-

5 Experiments

For evaluating the performance of our approach, we used the 3D textured model as
shown in Fig. 1. The textures were captured under different lightning conditions from
the conditions for the image sequences that were recorded by two calibrated cameras.
Although the size of the images is 502 x 502, the object is only about 100 x 100. The
initial position was automatically detected for each sequence as shown in Fig. 3.

Fig. 8. Pose estimates for 10 of 570 frames. The sequence contains several difficulties for track-
ing: a rich textured and non-static background, shadows, occlusions, and other moving objects.
Only one camera view is shown.

The tracked object is partially covered with two dissimilar customary fabrics and
the printed side reflects the light. It is placed on a chair that occludes the back of the
object. The background is rich textured and non-static. Shadows, dark patterns on the
texture and the black chair make contour extraction difficult even for the human eye.
Furthermore, a person moves and occludes the object. These conditions make great
demands on the method for pose estimation.

In the first sequence, the chair with the object rotates clockwise. When the back of
the chair occludes the object, there are not enough distinctive interest points for pose
estimation. Therefore, the pose is predicted by an autoregression for the next frame
as shown in Fig. 6. Due to the shape prior, the segmentation is robust to the occlu-
sion such that the estimates are still accurate. The number of matches from PCA-SIFT
with respect to time is plotted in Fig. 7. During the sequence, the object rotates counter-
clockwise while the person orbits the object clockwise. As we can see from the diagram,
PCA-SIFT produces only few outliers that are removed after the filtering. The gray bars
in the diagram indicate the frames where an autoregression was performed. Since the
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Fig. 9. Comparison with a contour-based method. From left to right: Pose estimates for frames
5, 50, 90, 110. Rightmost: Result of our method at frame 110.

number of matches range from 1 to 77, it is clear that an approach based only on the
descriptors would fail in this situation.

Pose estimates for a third sequence including rotations and translations of the object
are shown in Fig. 8. When only the contour is used, the pose estimation is erroneous
since both segmentation and contour matching are distracted by local optima, see Fig. 9.
For comparison, the result of our method is also given.

Finally, we simulated disturbances of the sequence in order to obtain a quantative
error analysis. Since the object is placed on the chair, the y-coordinate of the pose is
approximately constant. During the sequence, however, the object shifts slightly on the
chair. The peak at frame 527 in the diagram of Fig. 10 is caused by a relocation of
the object. For one sequence, we added Gaussian noise with standard deviation 35 to
each color channel of a pixel. Another sequence was disturbed by 80 teapots that were
rendered in the 3D space of the tracked object. The teapots drop from the sky where the
start positions, material properties, and velocities are random. Regarding the result for
the undistorted sequence as some kind of ground truth, the diagram in Fig. 10 shows
the robustness of our approach. While an autoregression was performed only twice for
the unmodified sequence and the average number of filtered matches per frame from
PCA-SIFT was 50.9, the numbers fell down to 27.9 and 13.1 for the teapots sequence
with 132 predictions and the noisy sequence with 361 predictions.

520

500

y-coordinate (mm)
IS I = &
5 = 2 32

=
=]
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Fig. 10. Left: Quantative error analysis for a sequence with disturbances. Black: Undisturbed
sequence. Red: Gaussian noise with standard deviation 35. Blue: 80 teapots dropping from the
sky with random start position, material properties, and velocity. Right: Top: Stereo frame 527
of the noisy sequence (image details). Bottom: Two successive frames of the teapot sequence.
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6 Conclusions

In this work, we have suggested a textured model based method for 3D pose estimation.
It fuses two different features for matching, namely contour and local descriptors, where
the influence of the features is automatically adapted during tracking. The initial pose
is identified without supervision. In our experiments, we have demonstrated that our
approach overcomes the drawbacks of the single features and that it can be applied
to quite general situations. In the case of a homogeneous object without distinctive
keypoints, our approach operates as a pure contour-based method. Furthermore, we
have provided visual and quantative results showing that our approach is able to deal
with a rich textured and non-static background and multiple moving objects. Moreover,
it is robust to shadows, occlusions, and noise. Although our experiments considered
only rigid bodies with a simple geometric surface, our method works with any kind of
free-form objects. The pose estimation can be straightforward extended to articulated
objects [18]. This will be done in future.
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Abstract. This paper reviews 3D-modeling activities at the German
DLR Institute of Robotics and Mechatronics, carried out within the
last decade in cooperation with partners in Germany (Z+F, Illustrated
Architecture, DLR Institutes of Optical Information Systems, and of
Planetary Research) and international partners. The main focus is on
multisensory (e.g. push-broom or rotating stereo line cameras, laser range
finders) information containing (at least) geometry and texture. The pa-
per describes systems which acquire such information at different scales
of scenery, ranging from indoor scenes to planetary explorations. It also
covers principles and methods for preprocessing, geometric reconstruc-
tion, texture mapping, or matching.

1 Introduction

Photogrammetry (originally a method for recording and monitoring architecture)
dates back to the work of Albrecht Meydenbauer. He was a German architect,
who used a graphic intersection method for 3D analysis as early as in 1867. Pho-
togrammetry is a measurement technology in which 3D coordinates of objects
are determined by measurements, made in two or more photographic images
taken at varying attitudes (i.e., position or viewing direction).

Modeling a 3D scene based on captured images, possibly including further
sensors or interaction with the scene, can be achieved in different ways. The
classical method in photogrammetry is (calibrated) binocular stereo analysis.
Another, widely applied approach for 3D object or scene modeling is structured
lighting. Structure from motion (SM) is one of the more recent approaches within
computer vision, which aims on estimating 3D structure from uncalibrated 2D
image sequences.

A laser rangefinder (LRF) or laser scanner determines distances to opaque
objects; it is also known as LIDAR (Laser Imaging Detection and Ranging). Such
a device determines the distance to an object or surface using laser pulses (similar
to radar technology, which uses radio waves instead of light). LRFs have been
used for close-range photogrammetry (e.g., acquisition of building geometries)
for several years, see [11].

Each of these approaches comes with particular limitations, and flexible solu-
tions towards 3D scene recovery often apply multiple tools, do not restrict itself

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 96-107, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. DLR Multisensory 3D-Modeler and a scanned bust

to the use of cameras as the only sensor option, and merge different approaches
as well; see, for example, [8]. 3D scene modeling based on using an LRF (active
system) together with different digital cameras (texturing and stereo processing
in different scales), and laser line projectors (structured light) are an example for
multiple 3D recovering. Combining different sensors allows for acquiring any ob-
ject with different levels of detail, e.g. fast digitization of a large object at medium
resolution and refining some parts with higher accuracy afterwards. For example,
in many robotics areas, depth information is used to avoid collisions, to navigate
through an environment or to plan a grasp of an object. Texture information
is used to auto-locate a robot in its environment as well as to find and identify
objects. Various types of sensors and methods are needed for modeling different
sized cultural objects. They range from small objects, like busts or statues, over
medium scaled objects, like rooms and interiors of buildings, up to large terrains.

This paper gives an overview about recent (say, last decade) work at DLR In-
stitutes (in cooperation with partners as stated in the abstract). Projects involve
a large variety (by size, shape, or texture) of 3D objects [5].

2 3D Modeling Systems

This section deals with the first step when documenting 3D data about cul-
tural heritage: the selection of the appropriate sensor technology. We categorize
sceneries by sensing distances into three scale levels:

Small scale: 50 mm to 2,000 mm, with resolution of maximally 1 mm — 5 mm.
Medium scale: 2 m to 50 m, with a resolution in 0.5 cm — 10 cm.
Large scale: larger than 50 m, with a resolution from 0.2 m up to 1 m.

2.1 Multisensory 3D-Modeler

The DLR Multisensory 3D Modeler is a small-scale modeling system with dif-
ferent sensor components [14]. The system’s strength lies in multisensory data
acquisition. Currently, the system integrates: a laser-range scanner, a texture
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sensor, a laser-stripe sensor, and a stereo sensor. The laser-range scanner is based
on the triangulation principle. Its main features are a low weight, robustness,
and its large angle of view. The measurement distance is 50 mm to 300 mm. The
texture sensor consists of a single calibrated miniature head camera. The laser-
stripe sensor uses a line-laser module in combination with a calibrated miniature
head camera, implementing a sensing range from 150 mm to 450 mm. Geometric
information at larger distances is acquired with the stereo sensor.

These sensors are integrated into a specially designed, low weight and er-
gonomic housing (Figure 1). Pose measurement is either done by a passive ma-
nipulator (i.e., a robotic arm) or an optical tracking system.*

Merging multiple sensors with multiple interfaces is a major problem in sensor
synchronization. We chose a two level strategy: First, hardware synchronization
allows synchronous measurements. This is implemented by supplying all sensors
with a common video synchronization pulse. Secondly, data sets are merged by
using the CAN bus as the master software synchronization bus for exchanging
timestamps and poses. The acquisition of 3D-data of all sensors is done in the
same global coordinate system. The system is very much suitable for digitizing
small objects.

2.2 Z+F Imager and DLR Panoramic Camera

This section deals with a description of medium scale sensors (designed at DLR
and Z+F) which are already commercially available.

Z+F Imager 5003. The visual laser scanner Imager 5003 of Z+F (see Fig-
ure 2) is an optical measuring system based on the transmission of laser light
[1]. The laser scanner consists of a one-dimensional (1D) measuring system in
combination with a mechanical beam-detection system. Due to the large field of
view of the scanner, 360° horizontally (azimuth) and 310° vertically (elevation),
a scene to be modeled has to be surveyed from a few points of view only. Besides
the 2D intensity information, the Imager 5003 provides additionally 3D range
information. Both - intensity and 3D range information - correspond to each
pixel. By extracting features in an accurate way, the combination of image pro-
cessing methods and 3D geometric information is possible. The system itself has
different scanning modes, which differ in spatial point distance [from Super High
Resolution (20,000 pixel per 360° horizontally and vertically) to Preview (1,275
pixel per 360° horizontally and vertically) mode]. Regarding acquisition time,
we report a mode which is popular in industrial environments: 10,000 points
horizontally and 5,000 vertically takes 3.22 minutes for a full 360° scan.

DLR Panoramic Camera. A panoramic camera (see left of Figure 3) was
developed at DLR, Berlin between 1999 and 2001, which allows the acquisition
of high-resolution texture maps. A single image is several 100s Megapixel, up to
multiples of Gigapixel. The camera is basically a rotating CCD line sensor. Three
CCD lines (i.e., for the Red, Green, or Blue channel) form a linear CCD array,

! See Advanced Realtime Tracking at http: //www.ar-tracking.de.
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Fig. 2. Z+F Imager 5003 and a point cloud of a scanned room (preview mode)

which is mounted vertically on a focal plane and rotates clockwise, describing a
cylindric surface during a full 360° rotation. Scanned data are stored in cylindric
coordinates, line by line, and according to the sensor geometry [12]. By using
three line CCD chips with 10,200 elements each, very high image resolution can
be archived. The resulting image consists of a maximum of 10,200 by 500,000
pixels each containing three 14 Bit RGB values. A typical scan (10,200 x 30,000)
using a special optical lens system of 35mm focal length takes about 3 min
at daylight, and up to 60 min at dark indoor illumination. The software also
includes a package for the geometric and radiometric calibration, which enables
the recalculation of the raw data into calibrated images.

Off-Axis Rotation and Principle Angle. If R is set (see Figure 3) to a non-
zero value, then the cameras principle point is at off-axis position, which is one
possibility to acquire stereo images (using different values of w). The cameras
principle point is moving on a circle with radius R. As defined in [6], this circle
specifies the base cylinder, parameters R and w are characterized in particular
how to optimize these for stereo viewing of a scene characterized by closest and
furthest distance between objects of interest and the camera. R and w are two
important parameters of this camera, and their parameter intervals are crucial
for specifying the accuracy or flexibility of the camera. For example, the aim
might be to have R = 0, but it is important to calibrate the actual deviation
from this ideal case. Figure 3 shows the DLR panoramic camera and illustrates
the parameters R and w (as studied in PhD projects at CITR [7]).
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Fig. 3. Panoramic camera and illustration of the camera parameter R and w
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2.3 HRSC - High Resolution Stereo Camera

The High Resolution Stereo Camera (HRSC) has been developed by the DLR
Institute of Planetary Research for the exploration of the Martian surface from
orbit [15]. The airborne version HRSC-AX is currently used for capturing land-
scape on Earth, as well as cities from flight altitudes between 1,500 m to 5,000 m.
The camera contains nine sensor arrays, which are arranged (in different viewing
angles) orthogonally to the flight direction. All arrays have a resolution of 12,000
pixels and record 12 bit per pixel. Five arrays are panchromatic. The other four
capture red, green, blue and infrared light. Figure 4 shows the geometry.

FARRY I ) 0 T 58
Vel T Nd Re
st/ 2! Gr

Fig. 4. Basic geometry of HRSC-AX and parts of corrected 2D pushbroom images,
with a resolution of 15 cm per pixel

The position and orientation of the camera is continuously measured by a
sophisticated GPS/IMU system. Current post-processing includes radiometric
corrections as well as refinements of all camera positions, orientations and time
offsets by means of photogrammetric methods based on HRSCs multi-stereo im-
age information [13]. A geometric correction step projects the pixels of each array
at all camera positions onto an artificial plane, resulting in nine 2D images, in
which effects caused by high or low frequency orientation variations are elimi-
nated, while disparities caused by terrain and buildings still remain. Epipolar
lines are “almost” straight parallel lines in these images. The reason for “almost”
is the (in general) non-linear flight path of the camera. The resulting 2D images
and the inherent disparity ranges are typically huge (e.g. several 100 MPixel
with 1,000 pixel disparity range).

3 Principles and Methods for 3D Modeling

This section elaborates on principles and methods for generating 3D models.
Preprocessing of laser data is neglected in this brief note. A method for 3D sur-
face reconstruction, suitable for arbitrary sized raw data sets, is outlined. Then,
the task of texture mapping is addressed (needed because color information is re-
quired in the context of cultural heritage preservation or visualization). Medium
scale objects require that the sensor system is relocated for full coverage. There-
fore, these data sets from different view points need to be matched [10]. Finally,
stereo matching for the creation of large scale models is discussed.
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Fig. 5. Reconstruction pipeline

3.1 Surface Model Generation

In order to generate models from different modeling systems, an algorithm is
needed that is not specific to the sensor’s data format. Furthermore, it has to
cope with large input data sets. Therefore, an online triangulation tool is used,
that is able to generate and improve a triangle mesh directly from unorganized
3D sets of points. The algorithm processes sensor data by incremental insertion of
3D points, which suits generic 3D sensors. The reconstruction pipeline is divided
into four steps, input reduction, normal estimation, vertex selection, and re-
triangulation, as illustrated in Figure 5. The input points and the vertices of the
mesh are stored into separate point sets, each implemented in a hierarchical data
structure that allows fast insertion and search of local point neighborhoods. The
implemented structure only requires a small memory overhead, so it is perfectly
suited for very large data sets [2].

3.2 Mesh Optimization

The quality of the mesh, generated by the described method, is improved as
follows:

(i) Fiulters: Basically we consider two types of filters for improving 3D data.
Firstly, the system specific noise (e.g., measuring noise of the LRF) is reduced
by various filters (e.g., median filter, histogram filters, spike filters, Gaussian
pyramids, etc.), before we turn to the meshing algorithm. Errors not caused
by the system noise (e.g., errors caused by an unfavorable incident angle) and
known object geometry are expected. They are fixed subsequent to generating
the first initial dense mesh in a second filtering process. This is, in fact, the step
of repairing the mesh.

(ii) Filling Holes: Reasons for visible holes in triangle meshes are either missing
or false triangulation. If there are vertices with false normals or triangles with
false triangulation orientation, then they will be displayed as holes. Therefore,
the task is divided into filtering out “illegal” triangles, and filling by a recursive
algorithm considering the 3D relation between vertices and edges.

(iii) Mesh Reduction: The normal vectors of the surrounded triangles of
each vertex are analyzed. If their difference is below a certain threshold, the
vertex is deleted and the resulting hole is newly triangulated. (Experiments
showed that about 90% of triangles and vertices are reduced when reconstructing
Neuschwanstein Castle.)
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(iv) Smoothing: Because the topology is changed after mesh reduction, we use
a scale depended fairing algorithm to smooth the mesh.

3.3 Texture Mapping

Texture mapping adds a (photo-)realistic impression to a given 3D model by
linking each of its surface patches with an image, called texture. Often, pre-
defined synthetic textures are used for 3D models. Here, the real texture of the
model is gathered by moving a camera around the object in question. The se-
quence of texture images is then subsequently mapped to the real 3D model
acquired by the scanning device. The texture mapping process requires known
intrinsic (including distortion) and extrinsic camera parameters relative to the
3D model. This “image-to-model” registration is accomplished by measuring, i.e.
tracking the camera position in a world coordinate system, or by photogram-
metric determination of those. By knowing the exact position and direction of
the camera, the images can be projected onto the 3D-model. The determination
of texture coordinates for off-axis rotating cameras corresponding to a 3D model
is described in detail in [9]. The texture mapping for integrated cameras, as used
for the 3D-modeler is shown in [5], and for the Imager 5005 in [1].

3.4 Stereo Matching by Semi-Global Matching (SGM)

Corrected 2D pushbroom images can be used for stereo reconstruction. The re-
quired stereo matching method has to be efficient for operating on huge images
and disparity ranges. Furthermore, stereo matching must be accurate for main-
taining sharp object boundaries that are common in the anticipated scenes of
urban areas. Hierarchical, correlation-based stereo methods are often used in
these scenarios [15], due to their efficiency. However, these approaches are well
known for blurring sharp object boundaries [3]. However, global methods are
typically slow and memory intensive, which makes them unsuitable for the an-
ticipated application. The problem of accurate and efficient stereo matching is
solved by the Semi-Global Matching (SGM) method [4]. SGM aims to determine
the disparity image D, such that the cost E(D) is a minimum.

E(D) = ZC(p, Dp) + Z PIT[|Dy — Dg| = 1] + Z PT[Dp — Dg > 1]
P qEN, qEN,

This cost function evaluates pixelwise matching costs C(p, Dp) at the pixel p
with the disparity D). Piecewise smoothness of the disparity image is supported
by adding a small cost P; for all small disparity changes and a higher cost P
for all higher disparity changes. Adding a constant cost for all higher disparity
changes preserves discontinuities. Finding the minimum of this energy is an NP-
complete problem. The SGM algorithm approximates the global minimization
by pathwise minimizations from all directions.

The complexity is only O(ND) like correlation based approaches, but the
memory consumption is also proportional to ND ( = number of pixels times the
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disparity range). The pixelwise matching cost C(p, Dj) is based on hierarchically
computing Mutual Information (M) instead of intensity differences. This makes
it robust against recording differences and illumination changes, which is possible
since pushbroom cameras capture corresponding points at different times (during
the flight).

The SGM method has been adapted for matching huge HRSC images. Firstly,
the generally “curved epipolar lines” of aerial pushbroom images are explicitly
calculated in contrast to other methods [15]. This reduces the disparity range
from a 2D area to a 1D segment of the epipolar line and saves run time as well as
memory. Secondly, the huge images are split into manageable tiles for matching.
Tiles are defined slightly overlapping, and pixels near image borders are rejected,
because they receive support only from one side by the global cost function.
Thirdly, multi-baseline matching [4] is used for matching the five panchromatic
images of the HRSC, weighted by their recording angle. Optionally, the red and
green images are also matched against the panchromatic nadir image, which
is possible with MI matching. Finally, the disparity range is determined auto-
matically, by first processing downscaled images (e.g., by factor 16) with a very
large disparity range that is known to cover all situations. A reduced range is
determined from the result and used for higher resolutions. The disparity range
determination is done during the hierarchical computation of MI. The matching
result is used for calculating Digital Elevation Models (DEM), and subsequently
for the generation of true ortho-images based on the DEM.

4 Applications

This section illustrates applications for small (busts, using 3D Modeler), medium
(castle Neuschwanstein, using Z+F Imager and panoramic camera), and large
scale (the city of Berlin, using HRSC).

4.1 Small Scale Models

An example of a 3D Modeler result was shown in Figure 1 (right). Here, the focus
is on hand-guided acquisition. The operator sweeps the system manually over
the surface of the object, and the 3D-model is reconstructed simultaneously by
the surface generation algorithm in the above section. Immediate visual feedback
helps the user during the process of a complete digitization of the object; see [2]
for details. Images from the texture sensor are integrated into a visual feedback.

4.2 Medium Scale Models

The digitization of historic buildings is an example in this category. On the
historic site of castle Neuschwanstein near Fiissen, Germany, maps and views
of approximately 450 rooms of the castle (see Figure 6) have been generated.
Multiple high resolution scans at several positions in the rooms are performed.
Number of scanner positions depends on the size and the complexity of each
room (i.e., occlusions by objects like stone columns).
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Preprocessing steps are applied before the data of a room can be merged to a
single 3D model. First, the raw scanner data is transformed into equidistant grids
(i.e., to an image with equidistant pixels) using the intrinsic parameters. Then
the camera transformation using the camera’s intrinsic parameters (distortion,
scale, color shift, and white balance) is applied to every picture, resulting in
calibrated cylindrical images; see Figure 6 (right).

Afterwards, the extrinsic parameters (i.e. camera and scanner positions and
orientations, as well as range scale, if necessary) are estimated. Now, all scans
of a room are transformed to a 3D point cloud in the world coordinate systems.
The 3D points are triangulated using the surface generation tool from Section
3.1. Afterwards, a mesh optimization process (hole filling algorithm and mesh
reduction from Section 3.2 are applied to further improve the mesh; see results
in Figure 7. Finally, the 3D model is textured with either the intensity image of
the scanner or the high resolution color image of the panoramic camera.

Starting in 2002, approximately 9 - 1019 3D-points in 1,800 scans of the Z+F
Imager have been acquired in multiple campaigns. The accuracy of the scanner
data after adjustment is about 2mm. A 3D-model of the King’s office in castle
Neuschwanstein is shown in Figure 7 whereas the figure (bottom-right) illustrates
the same model textured using panoramic camera images and intensity images
from the LRF itself.

4.3 Large Scale Models

Cities and landscapes have been reconstructed using the SGM stereo method
(Section 3.5), applied to pre-processed (Section 2.3) HRSC images. 3D visual-
izations are created directly from DEMs using ortho-images as top-view texture;

Fig. 6. Left: 450 rooms of Neuschwanstein Castle have been scanned with approxi-
mately 9 - 10'° 3D-points in 1,800 scans of the Z+F Imager. Right: a laser scan of
the calibrated Z+F Imager 5003 (local polar coordinate system 360° x 180°), and a
cylindrical calibrated panoramic image.
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Fig. 7. Floor plan of Ludwig II’s office, with orthophotos (top-left), a detail of a room
corner (top-right), the 3D-model (bottom-left), and the textured model (bottom-right)

see Figure 8. Additionally, side-view textures of buildings and other objects are
taken from the forward and backward looking stereo images; see Figure 4. For
a better quality of side-view textures, tests of data fusion with the panoramic
camera and the HRSC have started; see Figure 9.

The whole process of stereo matching, DEM, ortho-image, side-view texture
creation and visualization is fully automatically. A 110 km? area of the city of
Berlin (see Figure 8) has been recorded in 6 parallel, partly overlapping flights
at an altitude of 4,100 m over ground. The images were scaled for a ground res-
olution of 20 cm per pixel, although the true resolution is less, due to the high

Fig. 8. Automatically generated 3D model of Berlin (different zoomings)



106 K. Scheibe et al.

Fig. 9. Extracted 3D model of the DEM data (HRSC) with (partially) mapped textures
captured by a terrestrial panoramic camera

recording altitude. Each flight contributed approximately 1 billion height values
and pixels to the DEM and ortho-image, which have a total size of around 2.7 bil-
lion values. The total processing time was 18 days on a 2.8 GHz Xeon computer.

5 Conclusions and Future Work

This paper briefly presented all aspects for recording, modeling and visualization
of cultural heritage. We stressed the methodical similarity between 3D model-
ing in robotics and or cultural heritage. Systems, algorithms and results were
presented for all scales of objects as defined in Section 2. For the acquisition of
small scale objects, a 3D modeling framework was developed, integrating tex-
ture mapping, mesh optimization, hole filling, and a generic sensor interface, as
well as providing visual feedback on surface reconstruction and color (texture)
acquisition. Future research is directed towards the improvement of algorithms
and sensor systems, in respect to accuracy and efficiency in generating photo-
realistic 3D-models. Currently, modeling of medium scale objects still involves
manual interference. The mesh optimization process needs to be simplified. Fu-
ture research in stereo processing deals with a comparison of DEM’s against
ground truth and DEM’s from other sources. Large scale model generation re-
quires high-performance computing, motivating the implementation of methods
on a processing cluster. A cluster of 12 double processor computers will finally
reduce the computation of huge areas (e.g. 400 km?) to reasonable times such
as a few days only.
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Abstract. The computation of a shape’s orientation is a common task
in many areas of computer vision and image processing applications.
It is usually an initial step or a part of data preprocessing. There are
several approaches to the problem — most of them could be understood
as the ‘area based’ ones. In spite of many unavoidable problems where
working with shape boundaries in discrete space, the demand for a pure
‘boundary based’ method, seems to be very reasonable. Such a method
for shapes having polygonal boundaries is presented in this paper. We
define the shape orientation by the line that maximises the total sum of
squared lengths of projections of all the shape boundary edges onto this
line. Advantages and disadvantages of the method are discussed.

Keywords: Shape, orientation, image processing, early vision.

1 Introduction

Many image processing and shape analysis tasks start with a normalisation pro-
cedure [4,5,6]. For a successful application (in robotics, medical imaging, industry
inspection tasks, etc) it is important that the reference frame is properly deter-
mined. Shape position and orientation define the frame of reference. Usually,
the shape position is defined by its gravity center and that is a very common
approach. On the other side, the computation of orientation is not a straightfor-
ward task and there are many approaches in defining the shape orientation.

Due to the variety of shapes as well as the diversity of applications there is not
a single method for computing the shape orientation that could be successfully
applicable to all shapes. For that reason, several methods have been developed
([1,3,7,8,12,13,14]). Different techniques have been used, including those based
on geometric moments, complex moments, and principal component analysis,
for example. Suitability of those methods strongly depends on the particular
situation in which they are applied, as they each have their relative strengths
and weaknesses.

The majority of existing methods for the computing orientation are ‘area
based’ — i.e. the computation takes into account all the points that belong to

* The author is also with the Mathematical institute of Serbian Academy of Sciences,
Belgrade.
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the shape, not only the boundary points. Among area based methods, the most
standard one says that shape orientation is determined by its axis of the least
second moment of inertia ([4,5,6]). The axis of the least second moment of inertia
of a shape is defined as a line that minimises the integral of the squared distances
of the shape points to the line. When working in discrete space where shapes are
represented by finite sets of points (set of pixels, for example) then the ‘integral’
should be replaced with the ‘sum’. Obviously, the method is motivated very
naturally and is simple to compute in both (‘real” and ‘discrete’) versions.

Because the standard method is area based it is very robust with respect
to noise and boundary defects. The problem is that there are many situations
where the method does not give any answer what the shape orientation should
be. There are many regular and irregular shapes where this standard method
does not work ([14,15]). Also, in many situations the robustness of a method is a
desirable property, but sometimes it could be a disadvantage (in high precision
inspection tasks, for example). Further, it could happened that some shapes are
“nonorientable” (see [16] ) by the standard method, but they could be easily
oriented if narrow intrusions or scribble details on them exist. Those details cor-
respond to a relatively small percentage of pixels (when working with digital
images) and are not detectable by robust methods. In this paper we present a
method where the orientation is computed based on the shape boundary. Con-
sequently the method could overcome some of the mentioned problems. In a
typical situation, the new method takes into account the complete boundary —
not only parts belonging to the convex hull of the considered shape, as in [2,9],
for example. But the method can be applied to shapes whose boundaries are
partially detected and to shapes where scrabble details are considered as the
boundary parts.

The paper is organised as follows. Section 2 introduces the new method and
analyses its basic properties. Examples and related comments are in Section 3.
Concluding remarks are in Section 4.

2 Boundary Based Shape Orientation

In this section we define a new method for computing the orientation of shapes
with polygonal boundaries. The method is boundary based and takes into ac-
count all the boundary points. Let us mention that there are naive methods
that are also boundary based. For example, the orientation of a polygonal shape
having vertices Py, Ps,..., and P, could be defined as the average value of the
angles between the edges P,P,y1 (1 < i < n and P,11 = P1) and the z-axis.
The method is extremely simple but it has many disadvantages. From such a
definition, each two shapes whose edges make identical angles with the z axis
must have the same computed orientation. But this is not a desirable property.
Edges of polygonal shapes presented on Fig.1 make identical angles with the
z-axis but their assigned orientations should be different.

It is not a surprise that such a trivial method would not give good results. It
is pretty presumable that the edge lengths have to play a significant role in the
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Y

Fig. 1. The edges of presented polygons make identical angles with the x-axis but their
assigned orientations should be different

X

orientation definition. Here we define the orientation of a polygonal shape by the
direction that maximises the total sum of the squared lengths of the projections
of all boundary edges onto a line defined by this direction — see Fig.3 for an
illustration. We give the following formal definition.

Definition 1. Let a shape with a polygonal boundary P. The orientation of the
shape is defined by the angle o = g for which the total sum

F(a, P) = > pr,(e)® (1)
e is an edge of P

of squared lengths of projections of edges of P onto a line having the slope «
reaches its maximum.

x

Fig. 2. Projections of the edges of the polygonal shape (having vertices P1, P2, P3, Py1)
onto lines having the slope a are presented

It is an adventage that the new definition is motivated naturally. Also, in canon-
ical cases, where the orientation of polygonal shapes seems to be very distinct,
the method gives expected results. For instance, the orientation of a rectangle
is expected to be coincident with its longer edge, while the orientation of a very
elongated triangle having exactly one axis of symmetry should be coincident with
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such a symmetry axis, etc. That is exactly what happens if the new method is
applied. Without loss of generality we can assume that an edge of the consid-
ered rectangle and one of the edges of the considered triangle are parallel to the
x-axis — for notations we reffer to Fig.3.

y
P3
P, P,
P, P, P B
(a) (b) o

Fig. 3. The computed orientation of AP;P>Ps is 90°. The computed orientation of
AP, P, Py is 0°. The computed orientation of the rectangle Py P, P3Py is 0°.

— For the rectangle P having the vertices Py, P2, Ps, and Py, let |PPs| =
|PsPy| = pand |P P3| = |PyP;| = g. The sum F(a, P) of the squared lengths
of projections of the edges onto a line having the slope « is

F(a,P)=2-p*cos®a+2-¢*sin®a =2 (p* — ¢*) -cos® a + 2 - ¢*.
Consequently:

e If p > ¢ then the maximum of F(a, P) is 2 - p? and it is reached for
a = 0, i.e., the rectangle is oriented in accordance with the longer edges;

e If p < ¢ then the maximum of F(a, P) is 2 - ¢ and it is reached for
a = /2. Again, the rectangle is oriented in accordance with the longer
edges;

e If p = g then the rectangle degenerates into a square and the method
does not suggest what the orientation should be. The sum of the squared
lengths of projections of all the edges is the same for all a, i.e. F(a, P) =
constant.

— FOI' the triangle T = AP1P2P3 let ﬂ = Z(P2P1P3) = A(Plpgpg)) The sum
F(a,T) of the squared lengths of projections of all the edges of T onto a line
having the slope « is

F(a, P) = ¢* - cos® a + p* - cos? (B 4 ) + p? - cos? (8 — a)
where p denotes the length of the edges P3P, and P, P3 while ¢ denotes the
length of P;P,. Taking into account cos( = 2q and by using elementary
p
transformations F'(«, P) can be expressed as

2
F(a, P) = (¢2 — p?) - cos?a + p? - (1 - fpz) -
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So,

e If ¢ < p then the maximum of F(«, P) is reached for a = /2 — i.e. the
computed orientation coincides with the axis of symmetry;

e If ¢ > p then the maximum of F'(a, P) is reached for o = 0 and the
computed orientation is orthogonal to the axis of symmetry; The ob-
tained orientation is debatable if p is close to g, but it is very acceptable
if ¢ is much bigger than p. Particularly, in the limit case when p — ¢/2
the triangle degenerates into a horizontal line segment whose measured
orientation should be 0 degrees (as computed by the method);

e If ¢ = p then F(a, P) is a constant function and does not depend on a.
Thus, the method does not tell what the orientation should be.

It is worth to mention that the exactly same orientations are obtained if
AP, P, P; is oriented by the standard method.

In the previous two simple cases the orientation was easy to compute. The
question is: Is the orientation easy to compute in the case of an arbitrary polyg-
onal area? We will show that the method can be applied easily to all polygonal
shapes. Even more, it could be applied to not necessarily closed polygonal lines,
what can be of an importance if working with incomplete data, i.e. if some bound-
ary parts are missed or not extracted properly. We proceed with the following
theorem.

Theorem 1. Let an n-gon P with edges e;, i =1,...,n. Also, let a; denote
the angle between e; and the x-axis. If the total sum

> Ipraen)l’
i=1

of the squared lengths of projections of the edges e; onto a line having the slope
« reaches its mazimum for a = ag then

o

Il
—

lei|? sin(2c;)
K2

tan(2 - ap) =

(2)

ol

Il
-

le;|? cos(2a;)
1

Proof. Let e; and «; (1 < i < n) are as in the statement of the theorem. The
length |pr,,(e;)| of the projection of the edge e; onto a line having the slope « is

|pr,(e:)| = |ei| - |cos a; cosa+ sina; sin | = |e;] - | cos(a; — @]

and the function that should be maximised is

Fla.P) = Y lpra(e)ff = 3 leif? cos(0 — ). Q)
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The maximum of F(a, P) can be computed on a standard manner. The first
derivative dF'(«a, P)/do can be expressed as

dF (o, P) n 2 . 4
i = ; lei]” sin(2a; — 2a)
= Z |es]? (cos(2a;) sin(2ar) — sin(2e;) cos(2a)). (4)
i=1

Setting dF(«a, P)/do = 0 we obtain that the angle g where F(a, P) reaches
its maximum satisfies (2) . This establishes the proof. O

Now we give three remarks that follow directly form the proof of Theorem 1.
Those remarks clarify situations where the method can be applied.

Remark 1. Since F'(«, P) is a continuous function it reaches its extreme values
on the closed interval [0, 27]. For each given polygon P those extreme values are
easy to compute (in accordance with (2)). Obviously, if the maximum is reached
at a = o then the minimum is reached at o = o + 7/2.

Remark 2. Due to the simplicity of the method, it is expected that there
are situations where the method does not give an answer to what the shape
orientation should be. By the way, it was already shown in the case of a regular
triangle and in the case of a square. Now we can give a formal characterisation
of shapes that cannot be oriented by the new method. Looking at (4) we can see
that for each n-gon P with

n n

Z lei|? cos(2a;) = 0 and Z les]? sin(2a;) = 0 (5)

i=1 i=1

the first derivative dF'(a, P)/da is identically equal to zero. Further, this implies
that F(a, P) is constant and consequently, it does not suggest any particular
direction as the orientation of P.

Remark 3. Theorem 1 holds if P is an arbitrary polygonal curve (not necessarily
a closed polygon). The proof does not need any modification.

3 Discussion and Some Examples

In this section we illustrate how the method works in practice. For each shape
presented on Fig.4 both, orientation computed by the new method and orien-
tation computed by the standard method (the numbers in the brackets) are
given. It is obvious that in the case of essential intrusions or in the case of
long thin details a big difference between two computed orientations is possi-
ble. For instance, the new method gives that the orientation of the sketch of
rabbit strongly depends on the position of its ears — such an impact is lower if
the standard method is applied (see the first column). Also, the impact of the
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trunk position is much higher if the sketch of elephant is oriented by the new
method than if it is oriented by the standard method (see the second column).
The change in the intrusion position of the shape from the third column cannot
be detected by the standard method, while such a change has a big impact on
the computed orientation if the new method is applied. The last two shapes

b 5 8D

172° 93° 113° 140° 103°
(73%) (165°) (110°) (152°9) (100°)
132° 100° 104° 72°

(67°) (162°) (110°) (134") (83%)

Fig.4. Computed orientations by the new method. Orientations computed by the
standard method are in brackets.

from the first row, as well as the last shape in the second row, have reasonable
computed orientations in the sense of both methods. The sketch of Africa has
not distinct orientation and that is a reason for so big difference in computed
orientations.

Since the new method is boundary based, it has to be very sensitive to the
boundary defects caused by a noise or by boundary defects, for example. On
Fig.5 a shape is presented in order to illustrate possible noise effects to the com-
puted shape orientation. Some noise effects can be corrected by a suitable choice
of polygonal approximation (shape in the middle), but once again, big bound-
ary defects (third shape) must to lead to an essential change in the computed
orientation. The change in the computed orientation if the standard method
is applied (the numbers in brackets) are much smaller (as expected) since the
method is area based, what implies its robustness.

As stated in Remark 3, objects composed by one or more (not necessarily
closed) polygonal lines can be oriented by the new method. All the edges that
belong to the appearing poly-lines must be taken into account and the orienta-
tion is determined with the direction that maximises the total sum of squared
lengths of the projections of those edges onto a line coincident with this di-
rection. Of course, the area based methods (e.g the standard method) are not
directly applicable to such objects. A few examples are given on Fig. 6. The first
object is a poly-line by its nature. The second and third objects consist of several
poly-line parts — also by their nature. The last shape presents a microorganism
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172° 174° 110°
(0°) (176%) (4°)

Fig. 5. Noise effects illustration

)

84° 43° 17° 20°

Fig. 6. Polygonal line orientations computed by the new method

whose boundary is not extracted completely due to the fact that there was not
an essential contrast between the object pixels and the pixels that correspond
to the background .

At the end of this section we prove a very desirable property of the new
method which preserves that the computed orientation of reflective symmetric
shapes is either consistent or orthogonal to their symmetry axes. The result is
in accordance with the earlier discussion related to the triangles from Fig.3.

Lemma 1. Let a reflective symmetric polygonal shape P whose symmetry axis
has the slope 3. Then the function F(a, P) reaches its mazimum (minimum)
either for « = 8 or for a = B+ /2.

Proof. Without loss of generality we can assume that § = 0 i.e., P is reflective
symmetric with respect to the z-axis. The edges eq, es, ..., e, of P can be divided
into two disjoint groups that belong to two half planes determined by the z-axis.
(If an edge intersects z-axis it should be split onto two parts each one belonging
to the opposite half planes.)

Let €], €5, ..., e, be edges lying above z-axis and let o, be the corresponding

’rm

angles between those edges and the z-axis.

Also, let e ef, ... el be edges lying below the z-axis and let o be the

»Em

corresponding angles between those edges and the z-axis. Since P is symmetric
with respect to the xz-axis, we have

lefl = lef| and o =180—«) forall i=1,2,...,m.
Then,

F(a,P) = Z les]? cos? (o — @)

e; is an edge of P
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|
.ME

s
Il
-

m
leil? cos®(af —a) + Y lef[? cos(af — )
i=1

l€f]? (cos? (e — a) + cos?(180 — o — )

|
.ME

i=1

1% (cos® af - cos® a + sin® o - sin® a)

lef|? sin® o 4 2 - Z|e ? (cos® af — sin® o)) - cos® a
=1

= Z le;|?sin® a;  +

e; is an edge of P

Stk
5

2 2 : 2 2
§ 7 i i) .
|€ ‘ (COS « Sl ) COS™ «v
e; is an edge of P

So, we distinguish three situations:

(1) Zei is an edge of P leq|? (005 o; — sin ozz) <0

then F'(a, P) reaches its maximum for o = 0. The minimum is reached for
a = 7/2. (Note: The symmetry axis corresponds to the computed shape
orientation.)

(2) Zei is an edge of P leq|? (COb o; — sin ozz) >0

then F'(a, P) reaches its minimum for o = 0. The maximum is reached for
a = /2. (Note: The symmetry axis is orthogonal to the computed shape
orientation)

(3) Zei is an edge of P |ei‘2 (COS2 Qi — Sin2 ai) =0
then F'(a, P) is a constant function. The minimum and maximum are the
same and reached at each point — what is also (formally speaking) in accor-
dance with the statement of the lemma. (]

4 Concluding Remarks

In this paper we focused on the orientation of shapes presented by polygonal
boundaries. That is not a strong restriction. Indeed, In computer vision appli-
cations we work with discrete data and consequently there is always an inherent
loss of information. Many difficulties would appear if trying to recover informa-
tion about boundaries of original shapes. The curvature computation as well as
the curve length estimation (from the corresponding discrete data) are already
know as very difficult problems. On the other hand there are many efficient algo-
rithms for polygonal approximation of shapes (see [11]) and a suitable choice of
such an algorithm would increase the efficiency of the new method in practical
applications.

Particular problems that arise if the method is applied to many-fold rotation-
ally symmetric shapes will be discussed in furthcoming papers by the author.
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Just to notice that rotationally symmetric shapes appear very often in the in-
dustry (as machine made products) but also in the nature (e.g. microorganisms,
crystals) and that is a reason for an ongoing research interest ([7,8,10,13,14]).

The method can be applied to open polygonal lines or to the objects that are
composed of several polygonal lines. That is of an particular interest when work-
ing with incomplete data and with shapes whose boundaries are not extracted
completely.
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Abstract. In this paper, we concentrate on graph clustering by us-
ing graph spectral features. The leading eigenvectors or the spectrum
of graphs and derived feature inter-mode adjacency matrix are used.
The embedding methods are the Locality Preserving Projection(LPP)
and the mixtures of LPP. The experiment results show that although
both of the conventional LPP and the LPP mixtures can separate the
different graphs into outstanding clusters, the conventional LPP outper-
forms the LPP mixtures in the sense of compactness for graph clustering.

Keywords: Graph Clustering, Locality Preserving Projection, Mixture
models, Graph Spectra.

1 Introduction

Many pattern recognition and computer vision tasks can be charactorised by
relational graph analysis and recognition. These include image segmentation,
data-base organisation, object recognition and clustering. Although evolved for
several decade pattern recognition is powerful enough to handling many prob-
lems in practice, it is still difficult to deal with relational structures. The reasons
are two-fold. First, graphs are not in nature vectors. While conventional pattern
recognition techniques constructs shape-spaces from vectors. It is not straight-
forward to convert graphs into vectors. Second, In practical, usually there exists
structural noise or disturbance, and graphs are in difference size. Hence, graph
matching is inexact in nature, and graph clustering faces the difficulty of different
dimensional vectors.

Graph similarity and graph distance have attracted enormous research for
more than two decades. The idea of using graph edit distance was first explored
by Fu and his co-workers [7,17]. Here edit distances are computed using separate
costs for the relabeling, the insertion and the removal of both nodes and edges.
Recently, Bunke [1] has shown that the graph edit distance and the size of the
maximum common subgraph are related under certain restrictions on the edge
and node edit costs. Torsello and Hancock [19] have exploited this observation
to efficiently compute tree-edit distance. Another approach to computing graph
similarity is to adopt a probabilistic framework. Here there are two contributions

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 118-127, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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worth mentioning. First, Christmas, Kittler and Petrou [3] have developed an ev-
idence combining framework for graph-matching which uses probability distribu-
tion functions to model the pairwise attribute relations defined on graph-edges.
Second, Wilson and Hancock [20] show how to measure graph-similarity using a
probability distribution which models the number of relabelling and graph-edit
operations when structural errors are present.

A number of vector space embedding techniques can be found in literatures.
These include traditional Principle Component Analysis(PCA), Independent
Component Analysis(ICA) and Multidimensional Scaling. Locally Linear Em-
bedding method has been published by Roweis and Saul[16]. More recently, He
and his coworkers proposed the Locality Preserving Projection(LPP) method
[10]. To embed graphs in feature space, Luo, Wilson and Hancock[13] extracted
some graph features based on graph spectra. The spectral features are used to
embed graphs in the feature space. Several concrete examples of graph clustering
applications can be found in literatures. For example, the organisation of large
structural data-bases [18] or the discovery of the view-structure of objects [4].

In this paper, we propose a mixtures of LPP based on the conventional LPP
and the PCA mixture models. The LPP mixture model is used for graph clus-
tering together with the conventional LPP. The vector features are the graph
spectrum and the inter-mode adjacency matrix. Experiments on three model
house images are conducted. The Davies-Bouldin index serves for the cluster
validation.

2 Spectral Graph Representation

In this paper, we are concerned with a set of graphs G1,Ga, .., Gk, ..., Gn. The
kth graph is denoted by Gy = (Vi, F)), where V}, is the set of nodes and Ej C
Vi x Vi is the edge-set. Our approach in this paper is a graph-spectral one. For
each graph Gy, we compute the adjacency matrix Ay. This is a |V| x |Vi| matrix
whose element with row index 4 and column index j is

. 1 if (i,7) € By
Ag(i,j) = { ’ . 1
k() 0 otherwise ()
From the adjacency matrices Ag, k = 1...N at hand, we can calculate the eigen-
values \; by solving the equation |A; — A, I| = 0 and the associated eigenvectors
@% by solving the system of equations Ar¢y = Ay @Y%, where w is the eigenmode
index. We order the eigenvectors according to the decreasing magnitude of the
eigenvalues, i.e. [A\L| > [AZ] > ... ‘)\Ikal |. The eigenvectors are stacked in order to
construct the modal matrix @5 = (¢}, |d7]. .. |¢|kv’“|).
With the eigenvalues and eigenvectors of the adjacency matrix to hand, the
spectral decomposition for the adjacency matrix of the graph indexed k is

[ Vil

A= Xiow(g0)" (2)
w=1
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If Ay = diag(A, ..., /\lkv’“l) is the diagonal matrix with the eigenvalues of Aj, as
diagonal elements, then the spectral decomposition of the adjacency matrix can
be written as

Ay = Op Ny B} (3)
Associated with the eigenmode with index w is the adjacency matrix
Si =R (e0)" (4)

For each graph, we use only the first n eigenmodes of the adjacency matrix. The
truncated modal matrix is

Dy, = (Dplokl - - 16%)- ()

2.1 Leading Eigenvalues

Our first vector of spectral features is constructed from the ordered eigenvalues
of the adjacency matrix. For the graph indexed k, the vector is

This vector represents the spectrum of the graph Gy.

2.2 Inter-mode Adjacency Matrix

The second representation is found by projecting the adjacency matrix onto
the basis spanned by the eigenvectors. The projection or inter-mode adjacency
matrix is given by

Uy, = &} Ap®y, (7)

The element of the matrix with row index u and column index v is

Uk(uvv) = Z Z gpk(i’u)@k(j7v)‘4k(i’j) (8)

i€Vy j€EVE

These matrices are converted into long vectors. This is done by stacking the
columns of the matrix Uy in eigenvalue order. The resulting vector is By =
(Uk(1,1),Ux(1,2), ..., Up(1,1), Ug(2,1)....., Ur(2,n, ), ...UL(n,n))T. Each entry
in the long-vector corresponds to a different pair of spectral eigenmodes.

3 Locality Preserving Projection(LPP)

Given a set of n-dimensional training samples z;,i = 1,2,..., N, a similarity
matrix S is constructed, which can be Gaussian weight or uniform weight of
Euclidean distance using k-neighborhood or e-neighborhood. Considering the
problem of mapping a point in n-dimensional (Euclidean) space to a point in
d-dimensional space, connected points stay as close together as possible and the
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intrinsic geometry of the data and local structure is preserved. Let y; = w” z;
be the one-dimensional representation of original data vector x;. A reasonable
criterion for choosing this map is to minimize the following objective function

(8][9]:
min Z(yz —;)°Sij, 9)

By simple algebra operation, we see that Ziq Sii(yi —y;)? = w' XLXTw,
where X = [z1, 29, ...,2n5] and L = D — S is a Laplacian matrix. D is a diagonal
matrix with D;; being column (or row) sum of S, D;; = Zj Si;. Matrix D
provides a natural measure on the vertices of the graph, corresponding to the
original images. The bigger the value D;; (corresponding to the ith sample) is,
the more ”important” is the vertex y;. Furthermore, to remove an arbitrary
scaling factor in the embedding, a constraint is imposed as the following:

> Diyl =1=w"XDX"w=1. (10)

?

Now the minimization problem is reduced to be:

arg min wl XLXTw. (11)
wT XDXTw=1
The transformation vector w that minimizes the objective function is given by
the minimum generalized eigenvector solution to the generalized eigenvalue prob-
lem:
XLXTw=AXDXTw. (12)

Note that the matrices X LXT and XDX7 are both symmetric and positive
semidefinite. And the vectors w;(i = 1,2, ..., d) that minimize the objective func-
tion are the generalized eigenvectors associated with the d smallest generalized
eigenvalues.

4 LPP Mixture Models

In a mixture model, a set of n-dimensional data z1,...xx is partitioned into
several clusters. They are assumed to be random observations generated inde-
pendently from a mixture of M-component probability density function with
unknown proportion my, ..., wps

M
f@;0) => w0 fi(x:6;), (13)
=1

where mixing proportions 7; are nonnegative and sum to one and where f;(z;6;)
denotes the conditional probability density function (p.d.f.) of x belonging to the
jth component parameterized by 6;. Usually these f;(z;6,) are assumed to be
Gaussian density, that is

B0 = gz X S0y @~ )5 @ ) (1)
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where p; and X; are the mean and covariance of the jth component (cluster),
respectively.

The number of data required to estimate the parameters of density func-
tions defined on high dimensional spaces increase at least proportionally to
the square of the dimensionality, which is curse of dimensionality. So we use
the PCA technique here to reduce the dimensionality of the feature space. Let
E(z) be the expectation of the random vector x. Then by PCA, a set of n-
dimensional data z;,7 = 1,..., N is reduced to a set of m-dimensional feature
data s; = TT (2; — BE(x)),i = 1,..., N, where m < n, T = (wy, ..., wy,,) and w;
is the eigenvector corresponding to the ith largest eigenvalue of the sample co-
variance C = (1/N) ZZ (@i — E(x))(z; — E(x))T. Two properties of PCA are
maximizing retained variance and minimizing the squared reconstruction error.

We construct PCA mixture model which combines the above mixture model
and PCA technique in a way that the component density of the mixture model
can be estimated on the PCA transformed space as

f(2:0) = 00, 7 fi(w;0;)
{fm; 6) = J.(5,:6) (15)

where s; = T (x — 11;). Due to the orthogonality of the transform matrix T}, s
are decorrelated and have diagonal covariance X} = E(s; s y=diag(Nj1, .oy Njm)s
where A;; is the ith largest eigenvalue of the feature covariance matrix X7 in the
jth cluster. So the conditional density f;(s;; ;) of the PCA feature vectors in the
jth cluster can be simplified as

1 1o
fis5:05) = (27r)m/2|2$|1/2 x exp{— 57 277 "s;} (16
J
ﬁ (- 0y (1)
exp{—
S ( 1/2/\1/2 2)\]1

Here no Gaussian error term is occurred and can be considered as a simplified
form of the Tipping and Bishop model [14].

The parameters of PCA mixture model can be estimated by an EM algorithm
[6]. E-step and M-step are executed alternately until the likelihood undergoes
no further changes. Suppose @) is the estimation of @ obtained after the kth
iteration of the algorithm. Then at the (k + 1)th iteration,

E-step: The posterior probability that x; belongs to the jth component z;; is
computed as

A(k) (k)

i .731‘,9

5H = fj( 3 ) . (18)
Zz 1771 fl(xu )
M-step: The mixing proportions 7; are updated as
N

A (k41 (k

A =37 2N, (19)

i=1
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And the estimates of p; and X; are updated as

N (k)
A (k1) _ Dz Zig Li (20)
H SN 50
i=1“ij
N A(k ~(k+1 ~(k+1
k1) _ 2= Zi(j)(xi - “5‘ )i - “5‘ myr (21)
T N W '
i=1 “ij

The new eigenvalue parameters A; ;and the new eigenvector (PCA basis) param-
eters w;,; are obtained by selecting the largest m eigenvalues as

S < e
foralli =1,....,m, 7 = 1,..., M. Repeat the above two steps until convergence
and we will get the parameters of the mixture model.

LPP has only one transformation matrix over all data, which is not enough
for the recognition of complex data with many classes and high variations. To
improve the performance of LPP, we propose to use LPP mixture model that
uses several transformation matrices over all data. PCA mixture model is used
to partition the set of all data into an appropriate number of clusters and LPP
is applied to each cluster, independently.

After applying PCA mixture model, we obtain several clusters of training
samples by posterior probability. For each cluster, we then apply the locality
preserving projections algorithm via QR decomposition (LPP/QR)[2]. Note that
QR decomposition is more efficient than SVD numerically. It takes QR decompo-
sition of original data matrix and turns to solve generalized eigenvector problem
of matrices with (N x Nj) size at most, where Ny, is the number of training sam-
ples in the kth cluster. This algorithm is especially efficient for under-sampled
problem of high dimension data such as images and text data, where the dimen-
sion of sample n is greater than the number of training samples N.

5 Cluster Validities

To compare the performances of different clustering methods, researchers have
developed many cluster validation methods. These include Davies-Bouldin
index[5], Silhouette index[15], Dunn index[11] and C index[12]. The cluster val-
idation indices measure the quality of clusterings. The smaller the index value,
the more compact the clusters, the well separated the clusters, and hence the
better performance the clustering.

In this paper, we only used traditional k-means clustering. Instead of com-
paring different clusterings, we compare difference graph features and projection
methods by using the clustering validation indices. The validation index values
reflect the quality of the graph features and the projection methods.

We adopt Davies-Bouldin index in this paper. Given a set of graph feature vec-
tors G = g1, g2, ---, gn. and a k-means clustering of G stored in C' = ¢y, co, ..., s,
where M is the number of clusters, the Davies-Bouldin is defined as follows:
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M

1
bB = M ;jzl,z.r.r.l,%/}fiandj;ﬁi dig (23)
where .
o o
di‘ = v J s 24
J d(Ci,Cj) ( )

o; is the average distance of all the points in cluster ¢ to it’s cluster centre ¢;
in the projected feature space, d(c;, ¢;) is the distance between the two cluster
centres ¢; and c;. If the clustering is good, the validation index will be small.

6 Experiments

The aim in this section is to test the proposed LPP mixtures and the LPP
projecting methods on graph clustering. The two graph spectral features used
are the graph spectrum or the eigenvalues and the inter-mode adjacency matrix
of the graphs which were suggested by Luo and Hancock[13]. Two kinds of
projecting methods LPP and LPP mixture models are used for the experiments.

The graphs are generated from three model house images. Corner points are
extracted as the feature points serving as the nodes of the graphs. The edges
of the graphs are generated by using Delauney triangulations on the node set.
Examples of the model house images are shown in Figure 1. The first row is the
CMU house images, the second row is the INRTA MOVI house images and the
last row is the chalet images. The generated graphs are shown in Figure 2 as the
same order of Figure 1.

Two sets of experiment are conducted in this paper. The first experiment
aims to compare the performance of the two projecting methods LPP and
LPP mixtures on the graph spectrum or leading eigenvalues of the graphs.

Fig. 1. Test images of the three house sequences. The first row is the CMU sequence,
the second row is the MOVT sequence, the last row if the chalet sequence.
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Fig. 2. Graph representation of the three house sequences. The first row is the CMU
sequence, the second row is the MOVI sequence, the last row if the chalet sequence.

Eigen-decomposition is conducted on the graph adjacency matrices. The leading
eigenvalues are used for graph embedding. The configuration of the projected
feature points in 3D space is shown in Figure 3. From the plot we can see that the
three types of houses are well separated in both cases, but the compactness and
the separation of different clusters of the results from LPP is generally better
than the LPP mixtures.

The next experiment uses the spectral feature of the inter-mode adjacency
matrix for the embedding. From Figure 4, we can see that both of the embedding
are less as compact as the one from the LPP embedded graph spectrum.

To compare the different methods quantitatively, Davies-Bouldin index cluster
validation is used to verify the compactness of the resulting clusters. From Table
1 we can see that in both cases of the graph spectrum and inter-mode adjacency
matrix features, LPP outperforms LPP mixture for graph clustering in the sense
of cluster compactness. Although in some cases the process of LPP is slower than
that of the LPP mixture model.

Fig. 3. Graph spectrum feature space embedding (a)LPP (b)LPP mixture
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002 To02

Fig. 4. Inter-mode adjacency matrix feature space embedding (a)LPP (b)LPP mixture

Table 1. Comparison of the LPP amd LPP mixtures for graph clustering

Features Graph Spectrum  Inter-mode Adjacency Matrix
Embedding LPP LPP Mixtures LPP LPP Mixtures
DB 0.4288 0.5172 0.4934 0.8431
Time(s) 3.3750 2.4840 2.6710 2.8120

7 Conclusions

In this paper, we proposed the mixtures of Locality Preserving Projection based
on He’s LPP model. We aim to use LPP and LPP mixture for graph embed-
ding which is an important issue for structural pattern recognition. We pursue
a spectral method of extracting graph spectrum and inter-mode adjacency ma-
trix. The experimental results show that although both of the conventional LPP
and the LPP mixtures can separate the different graphs into outstanding clus-
ters, the conventional LPP is outperforms LPP mixtures in the sense of cluster
compactness and cluster separations.
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Abstract. An approach to analyzing the degrees of invariance of chromatic
characteristics is proposed in this paper. In many vision applications, it is
desirable that the chromatic characteristics of objects in images taken under
different lighting conditions could remain constant. However, the invariance
properties of chromatic characteristics are subject to the lighting conditions. In
order to be able to apply to dynamic scenes, we consider three fundamental
lighting sources: diffuse, ambient, and directed lightings. Any illumination
condition can be approximated as a combination of the three lighting sources.
The proposed degree of chromatic invariance is defined based on the chromatic
characteristic behaviors under different illumination conditions. A lot of image
samples under different illumination conditions are utilized, and from
experimental results, we conclude that chromatic characteristics {H, C, C,} are
most stable and suitable for the vision applications.

Keywords: Chromatic characteristic invariant, photometric reflectance model,
degree of chromatic invariance.

1 Introduction

The colors of an object in images provide lots of information for vision applications,
such as object recognition [2], scene interpretation [4], intrinsic images extraction [3],
and visual surveillance [9]. The colors in images are determined by the receiving
lighting energy in the camera, and actually the intensity of images reflects the
brightness of the object that in turn is determined by two essential factors: the amount
of light incident on the object and the albedo of the object. It is obviously that even if
the same object is pictured, the colors may vary under different illumination
conditions.

In many vision applications, it is desirable that the chromatic characteristics of
objects could be constant under different lighting conditions. For the purpose to vision
applications, we usually want to keep colors of the same object under varying
illumination conditions be constant. For example, the license plate recognition
algorithm may depend on the colors of the license plate [2], and land mark detection
algorithm may rely on the colors of the land marks [4]. In vision applications, the
reliable color information under different illumination conditions is important.

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 128 — 137, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Many chromatic characteristics that are invariant to scene geometry and incident
illumination have been reported in literature [1, 5, 7]. In this paper, four groups,
denoted by {H, C, W, and N} of chromatic characteristics [7] are considered, which
can be effectively calculated from the input image. The fundamental invariant
chromatic characteristics of the above groups are discussed in later sections. These
chromatic characteristics are invariant under some specific imaging conditions. There
were five imaging conditions considered in this paper, including uniform
illumination, equal energy illumination, colored illumination, matte, dull surfaces, and
uniformly colored surfaces. The first three conditions are related to illumination, and
the remaining two conditions are associated with object surfaces. We have 11
associated chromatic characteristics from the above imaging conditions, i.e., {H, H,
C, Cy, Cp, Cpp, W, Wy, Wy, N, and Ny}

In order to be able to apply to dynamic scenes, instead of directly considering the
specific illumination conditions, we turn to three fundamental lighting sources:
diffuse, ambient, and directed lightings. Any illumination condition can be
approximated as a combination of the three lighting sources. We provide a method to
verify the stabilities of the 11 invariant chromatic characteristics under varying
illumination conditions. The proposed method calculates the degree of chromatic
invariance.

The degree of chromatic invariance is defined based on the chromatic characteristic
behaviors under different illumination conditions. In addition, a lot of image samples
under different illumination conditions are utilized to verify the degree of chromatic
invariance. Finally, from experimental results, we conclude that chromatic
characteristics {H, C, C;} are most stable and suitable for the vision applications. After
first introduction section, we detail the image formation model in Sec. 2, and
photometric reflectance model in Sec. 3. Sec. 4 is devoted to the discussion of invariant
chromatic characteristics. We then present the experimental results of the degree of
chromatic invariance in Sec. 5 and finally give concluding remarks in Sec. 6.

2 Image Formation Model

To illustrate the properties of the chromatic characteristics, we start with an image
formation model of a color CCD camera.

1(p)=T [ | q(An(A.d,)EQA p)dpdA- k=r.g.b, M

A peD,

where I is the response of the k” camera sensor, p is any image pixel, A is the light
wavelength, T is the exposure time, D, is the spatial domain of the image pixel p, p is
a scene point in D,, gi(A) is the spectral sensitivity of the k™ camera sensor, (A, dy)
specifies the spectral energy attenuation of the atmosphere, and E(4, p) is the amount
of spectral energy reflected from scene point p.

In the above image formation model, function g (A1) relating incident spectral
energy to camera response is often modeled as gu(1) = aiG(A-4), where q; is a
positive constant and G(A-4;) is the Gaussian positioned at 4;. The atmosphere energy
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attenuation function 77(4, d,) depends on both the light wavelength A and the distance
d, between the scene point p and the camera. According to Allard’s law of

attenuation, 77(A, d,,) = AV, d;, where f(A) is the scattering coefficient. Assu-

ming homogeneous medium, S(A) is constant and as a consequence 7(A, d,) is
independent of 4, i.e., (4, d,)=1(4, d,), VA. Furthermore, if the scene’s relief is small
compared to the average distance from the camera, the scene point p’s within the
spatial domain D, of image pixel p can be assumed having similar distances from the
camera, i.e., dy=d, VpeD,, and as a consequence 7)(d,)=17, VpeD,. In reality, the
above assumptions seem to be justified. We hence simplify Eq. (1) as

I*(p)=c, j j E(A, p)G(A— A )dpd - 2)
A

peD,

where ¢, =Tamn.

3 Photometric Reflectance Model

Many photometric reflectance models [1, 8, 7, 10] have been proposed for describing
the spectral energy E(A4, p). In this study, the model introduced by Geusebroek et al.
[7] is recruited. The reason we choose the Geusebroek et al. model is in view that it
generalizes several existing models, including Lambertian reflectance model, Shafer’s
dichromatic reflectance model [10], and Lambert-Beer transmissive absorption
model. The Geusebroek er al. model was primarily grounded on the Kubelka-Munk
theory [6], which has been shown to be applicable to a wide variety of materials and
is well-suited for describing material properties from color measurements. The
Kubelka-Munk theory models the reflection and transmission of light in colored
layers based on a material dependent scattering and absorption function, through
which spectral color formation for both reflecting and transparent materials is
integrated into one photometric model. According to Geusebroek et al., the reflected
spectral energy E(A, p) is described as

E(4,p)=i(4, p)l1-p(p)’R(A, p)+ p(p)] 3)

where i(4, p) is the illumination spectral energy, p(p) is the Fresnel surface
reflectance, and R(A, p) is the material reflectivity depending on the surface geometry,
and the viewing and incidence angles of light. Inevitably, the Geusebroek et al.
reflectance model is still ideal because of diverse complex scenes. Several
assumptions have been incorporated in the Geusebroek et al. model, including
1) thick materials, 2) planar surface patches, and 3) uniform colored patches. For
outdoor scenes, these assumptions seem to be feasible. In addition to the above
assumptions, different imaging conditions were imposed when Geusebroek er al.
deriving invariant chromatic characteristics based on their proposed model. The
imaging conditions considered include equal energy illumination, matte, dull surfaces,
uniform illumination, colored illumination, and uniformly colored surfaces.
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Accordingly, five groups of invariant chromatic characteristics, denoted by H, C, W,
N, and U, are derived. Each group consists of a fundamental invariant chromatic
characteristic and a hierarchy of spectral and spatial derivatives of the fundamental
characteristic.

4 Chromatic Characteristics

Many chromatic characteristics that are invariant to scene geometry and incident
illumination have been reported in literature [1, 7]. In this paper, four groups, denoted
by H, C, W and N, of chromatic characteristics are considered, which can be
effectively calculated from the input image. The fundamental invariant chromatic
characteristics of the five groups are given below.

cwb, oy =EuEEE, )
E,, E E E?

They are invariant under different imaging conditions. For example, assuming an
equal energy illumination, the spectral components of the light source, i(4, p), are
constant over the wavelengths, i.e., i(4, p)= i(p). Eq. (3) becomes

E(4,p)=i(p)[1-p(p))’R(A.p)+p(P)]- (5)
Differentiating the above equation with respect to A twice, we obtain
E,(A,p)=i(p)(1-p(p)’R,(A,p) and E,; (4, p)=i(p)1-p(p))’R;; (A, p)- (6)

Substituting these equations into H=E;/E;, we obtain H =R,(A,p)/R,,(4,p)- It

is clear that H depends only on the material reflectivity R(A4, p). If we repeatedly
differentiate H with respect to A and p, a hierarchy H,, of spectral and spatial

derivatives of H can be obtained. The hierarchy H,, also depends on R(4, p)

only.

Let us continue to further assume matte, dull surfaces constituting the scene. Since
the Fresnel reflectance coefficients of matte, dull surfaces are close to zero, i.e.,
p(p)=0, Eq. (5) is reduced to E(A, p)=i(p)R(A, p) - Differentiating this equation

with respect to 4 gives rise to E, (4, p) =i(p)R, (A, p) - Substituting this equation into
C=E, /E, we arrive at C = R, (4, p)/R(4,p) and know that characteristic C and its

hierarchy depend only on the material reflectivity R(A, p) too. The same discussions
can be applied to the other groups of chromatic characteristics under different
imaging conditions.

Rather than using all the invariant chromatic characteristics suggested by
Geusebroek et al., eleven chromatic characteristics, H, H,, C, C;, C,, Cz,, W, Wy, Wy,
N, and N, are shown for study. Their mathematically formulations are given below
and in Eq. (4).
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H,= /Hr2 +H?, where H, = EnEy __EﬂEMi ,i=r,c,

E;+E3,
C :EA,CP= C2+C? , where C:M,izr,c,
fTE ! E?
E . E-FE_ E .
C/l,,:v/ 2 +C2 , where Cliz%,lzr’c, (7
W, = W2 +W2 , where WM:EAi,i:r’C’

E
E,.. .
Wy = Wi, + W}, . where W, Z%’ L=rc,

N, = /—er T N2 where y - EMI.EZ_EMEI.E;SEMEAE+2E42E,. =
Note that the hue component of a color is defined as tan'4 _ Wwhere

s

Ao =—E, 1E,;- The characteristic H expressed as H=E,/E,, is related to the hue and

max
the dominant color of the material. The characteristic H,, which is the spatial
derivative of H, is hence associated with the hue gradient and can be used to detect
color edges. The characteristic C defined as C=E,/E stands for normalized color; its
spectral derivative C;, spatial derivative C,, and spatio-spectral derivative Cj, can be
use to detect spectral/spatial transitions in object reflectance. The chromatic
characteristic W formulated as W=E, /E indicates intensity normalized edge
magnitude. The associated W, and W, reflect the spectral slope and curvature of
normalized edge magnitude, respectively. Finally, the characteristics N and N,
determine material transitions by detecting changes in object reflectance.

4.1 Measurements

The above chromatic characteristics can be effectively calculated from the input
image. Referring to Eqs. (4) and (7), all the formulations of the chromatic
characteristics are formed from the terms of E, E;, E,; and their spatial derivatives.
The spatial derivatives of E, E,, and E;; will easily be obtained by convolving the
values of E, E;, and E,;with spatial derivative filters. Therefore, once we determine
E, E;, and E,; all the chromatic characteristics are readily calculated. In the
following, we concentrate on how to evaluate E, E;, and E,; from the input image.
Referring to Eq. (2), this equation states that the response of the k" camera sensor,
I(p), is obtained by integrating the reflected spectral energy E(A, p) over a certain
spatial extend and a certain spectral bandwidth. Along the inverse line of thought,
Geusebroek et al. introduced a chromatic measurement model characterized by a
Gaussian aperture function G(A4;4,,0;) to estimate the spectral energy g(4,) from

image intensity I(A), i.e.,

E(A)= [I()G(4:4,,0,)dA- ®)
A
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The first-order E,(4,) and second-order E,, (A, ) spectral derivatives of E(4,)

are then

E,(4) = [IQ0)G, (4 4,0,)dA 4 E,,(4) = [I(D)G,,(4:4,,0,)dA- ©)
A A

In discrete cases (k=r,g,b), E, E; and E,; are actually estimated by linear

combinations of given (R, G, B) values. It is also found that E, E; and E,, are close to
the CIE XYZ basis when taking 0, =55nm for G A4,,0;)- Explicitly,

E] [006 063 027 ][R
E, |=| 03 004 —035|G
E,| |034 —06 017 | B

Based on the above equation, we compute the (E, E;, E;;) values of any image
pixel when given its (R, G, B) values.

5 Experimental Results

In the previous sections, a number of chromatic characteristics were introduced, and
the calculation involves a number of uncertainties. First, approximate imaging,
photometric reflectance, and chromatic measurement models were employed for
calculating chromatic characteristics. Second, high-order spatial and spectral
derivatives were involved in the calculation of chromatic characteristics. Third, the
invariance properties of chromatic characteristics depend on imaging conditions.

The chromatic characteristics introduced in Sec. 4 include H, H,, C, C;, C,, C4,, W,
W, Wi, N, and N,. Each characteristic can only be invariant under certain imaging
conditions. There were five imaging conditions considered in this study, including
uniform illumination, equal energy illumination, colored illumination, matte, dull
surfaces, and uniformly colored surfaces. The first three conditions are related to
illumination, and the remaining two conditions are associated with object surfaces.
Since general scenes are considered in this study, the objects constituting a scene can
not be known a priori. The imaging conditions concerning object surfaces become
impractical and so do the chromatic characteristics, whose invariance properties are
subject to the conditions.

Instead of directly considering the three illumination conditions, we turn to three
fundamental lighting sources: diffuse, ambient, and directed lightings. Any
illumination condition can be approximated as a combination of the three lighting
sources. Diffuse lighting comes from the lights refracted from environmental objects.
Ambient lighting results from surrounding light sources. Directed lighting comes
from a single intense light source. Fig. 1 shows three images of a doll illuminated by a
diffuse, an ambient, and a directed light, respectively. The images came from the
RVL SPEC-DB database available in the Robot Vision Laboratory at Purdue
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University [11]. There are more than 300 color images in the database, which were
taken for 100 objects under the three lighting conditions. Objects were made of
various kinds of materials. We study the properties of chromatic characteristics using
the images provided by the RVL SPEC-DB database.

Fig. 1. A doll under (a) diffuse, (b) ambient, and (c) directed lighting conditions

Let I, I, and I; be the images of the same scene S taken under diffuse, ambient and
directed lighting conditions, respectively. Let C specify any chromatic characteristic
and C(p), Cy(p) and C;(p) represent the values of the chromatic characteristic at pixel
p of the three images, respectively. Ideally, C,(p) = Cy(p) = C3(p), i.e., the chromatic
characteristic of the same material should be invariant under different lighting
conditions. Let 6¢(p) denote the standard deviation of C(p), C,(p) and C;(p), i.e.,

1 : al 2q1/2
0c(p) =[5 2 (C(p)=C(p)'1" (10)

_ 13
where Cp)=22.C.(p)-

i=1
We define the degree of invariance of chromatic characteristic C for scene S as
Q‘c ( S) — p ) (1 1 )
£+ Z o.(p)
14

where n, is the number of image pixels and & is a small positive number for
preventing the denominator from zero.

Figure 2 shows the calculated degrees of invariance of distinct chromatic
characteristics. In this figure, the horizontal and the vertical axes represent “scene
object” and “logarithm of degree of invariance”, respectively. There are eleven curves
in the figure, each corresponding to a particular chromatic characteristic. The curves
can be roughly divided in terms of variation of degrees of invariance into two groups,
one including the curves associated with the characteristics {C,, Cz,, W, W, Wy, N,
N,.} and the other including the curves associated with {H, H,, C, C;}. The former
group has a much larger variation of degrees of invariance than the latter group. A
large variation indicates a large instability in degree of invariance with respect to
different scene objects. Accordingly, we choose the characteristics {H, H,, C, C;} for
further experiments.
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Fig. 2. Degrees of invariance of chromatic characteristics of the same objects under different
lighting conditions

The above experiment investigated the invariance properties of chromatic
characteristics with the same objects under different lighting conditions. In the next
experiment, we examine the invariance properties of chromatic characteristics with
different objects under the same lighting conditions. Let 7, I, and I3 be the images of
three different objects under the same lighting condition L. First of all, we compute
the standard deviation, ¢_(p), of the values of chromatic characteristic C at pixel p of

the three images. Next, compute the degree of invariance, A (L) » of chromatic

characteristic C by A (L) = 1 .
£+ z o.(p)
4

Figures 3 show the calculated 2A,.(L) values of chromatic characteristics {H, H,, C,

C;} under diffuse, ambient and directed lighting conditions, respectively. In this
figure, the vertical axes represent “degree of invariance” and the horizontal axes
represent “set of three distinct objects”. There are four curves corresponding to the
four chromatic characteristic {H, H,, C, C;}, respectively, in each of the four plots in
the figure. In all the plots, the curve associated with the characteristic {H,} has a
larger variation of degree of invariance than those associated with {H, C, C,}.
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Fig. 3. Degrees of invariance of chromatic characteristics of distinct scene objects under (a)
diffuse lighting condition, (b) ambient lighting condition, and (c) directed lighting condition
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Fig. 3. (Continued)

The similar situation is also observed for the case of distinct scene objects under
different lighting conditions (see Fig. 4). We then conclude that chromatic
characteristics {H, C, C;} are most stable and suitable for the vision applications.
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Fig. 4. Degrees of invariance of chromatic characteristics of distinct scene objects under
different lighting conditions

6 Concluding Remarks

In this paper, we presented an approach to analyzing the degrees of chromatic
invariance. The imaging conditions concerning object surfaces become impractical
and so do the chromatic characteristics, whose invariance properties are subject to the
conditions. In order to be able to apply to dynamic scenes, we consider three
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fundamental lighting sources: diffuse, ambient, and directed lightings. Any
illumination condition can be approximated as a combination of the three lighting
sources. The degree of chromatic invariance is defined based on the chromatic
characteristic behaviors under different illumination conditions. The degrees of
chromatic invariance are examined with more than 100 sets of image samples. The
chromatic characteristics set includes {H, H,, C, C;, C,, Cy,, W, W3, Wy, N, and N}
is tested, and finally, we conclude that chromatic characteristics {H, C, C;} are most
stable and suitable for the vision applications. The procedure of degree of chromatic
invariance calculation can be applied to other chromatic characteristic set, and it is
suggested to exam the stabilities of the chromatic characteristics before utilizing them
into vision applications.
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Taiwan, Republic of China under contract NSC-94-2213-E-003-008.
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Abstract. In this paper we introduce a new scale invariant curvature
measure, similarity curvature. We define a similarity curvature space
which consists of the set of all possible similarity curvature values. An
estimator for the similarity curvature of digital surface points is devel-
oped. Experiments and results applying similarity curvature to synthetic
data are also presented.

1 Introduction

There exist numerous well known practical 3D shape applications in computer
vision including 3D scan matching, alignment and merging [1], 3D object match-
ing, and 3D object classification and recognition [2]. 3D object databases are an
active research area.

It is generally useful to seek invariant properties when characterizing 3D ob-
jects. At a minimum, translation and rotation invariant characterization are
desired as clearly neither of these transformations alters the essential shape
property of an object. Surface curvature, a rotation and translation invariant
property, meets this requirement [3].

Any characterization that is additionally scaling invariant enables determin-
ing the equivalence of shapes independent of size. Perhaps not so obvious, prac-
tically speaking, this scale invariance would also enable the use of uncalibrated
measurement units in 3D digitization (e.g. scanning).

1.1 Curvature

A number of different curvature measures are defined in differential geometry.
Curvature is well defined for continuously differentiable lines and surfaces [3].
Planar lines have only a single curvature measure whilst surfaces have a number
of curvature measures, all of which are based on normal curvature.

On surfaces, two principle curvatures, k1 and ks, are defined, where 1 is the
minimum normal curvature and x5 is the maximum normal curvature at a given
point.

Historically, the mean curvature has then been defined as

H = (Iﬁ +I€2)/2

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 138-147, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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and the Gaussian curvature defined as
K= KR1K2

Additionally, the curvature measure curvedness has been defined as

C = /(s34 532

Nomne of the above curvature measures are scale invariant. Also note that,
with digital data, there is inherent discontinuity and curvature can only be
estimated [4].

1.2 Geometric Invariants

As previously noted, with existing surface curvature definitions we already have
translation and rotation invariance. What we now seek is scaling invariance.
Shape characterization based on moments has been studied since [5], with vary-
ing emphasis on invariance with respect to translation, rotation, reflection, or
scaling.

Related work [6], among other things, generalizes and extends the invariance
concepts contained in affine differential geometry. Affine invariance is stronger
than what we seek in that it includes, for example, squash and stretch transfor-
mations.

A number of authors touch on scaling invariant properties in their exploration
of multi-scale properties. For example, in [2], firstly surface feature points such
as maximum curvature locations are identified. Then triples of feature points are
combined using a geometric hashing algorithm in a way that is scaling invariant.
Hash tables for various objects of interest are statistically compared to check for
similarity matches between different objects.

2 A Scale Invariant Curvature Measure

In this paper, we present a scale invariant curvature measure that can be assigned
at every point on a surface. We keep in mind that any definition of scale invariant
surface curvature must be related to geometric similarity in which it is well known
that 1) angles are preserved and 2) ratios of lengths are preserved.

2.1 Similarity Curvature

We begin with some definitions.

Definition 1. The curvature ratio k3 is defined as

_ min(|k1], [K2])
max(|r, |rz2)
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In the case when k1 and ko are both equal to zero, k3 is defined as being equal
to zero. Note that 0 < k3 < 1.

Definition 2. The curvature measure R at a frontier point p is defined as

K3,0) if signs of k1 and ko are both positive,
—ks3,0) if signs of k1 and ko are both negative,
,K3) if signs of k1 and ko differ, and |ka| > |k1],

,—kg) if signs of k1 and ko differ, and |k1| > |K2].

Note that R(p) € R2.

We define a smooth compact 3D set such that it is compact (i.e., connected,
bounded and topologically closed) and curvature is defined at any point of its
frontier (i.e., its surface is differentiable at any point).

Theorem 1. The curvature measure R is (positive) scaling invariant, for any
smooth 3D set.

Proof. Consider a point on a surface and any associated normal curvature x, as
well as the resultant normal curvature " after scaling the surface by a factor s.
Since, by definition, k = da/dl, and scaling alters length but not angle, we have
k' = k/s. (Note that the proof could also proceed by considering the effect that
scaling has on the osculating circle associated with planar curvature.) Therefore,
after scaling, both of the principle curvatures change by the same factor, and
the ratio of the principle curvatures is unchanged. Also, neither the signs, nor
the relative magnitudes of the principle curvatures are changed by scaling. O

Henceforth, we will refer to the curvature measure R as the similarity curvature.

2.2 The Similarity Curvature Space

Since the set of all possible values of the similarity curvature R is a subset of R?,
it is natural to consider a two-dimensional plot representation. Also recall, from
differential geometry, that all surface patches on continuous smooth surfaces are
locally either elliptic, hyperbolic (saddle-like) or planar.

We introduce the similarity curvature plot template in Figure 1. The horizon-
tal E-axis is for curvature values at locally elliptic surface points. The vertical
H-axis is for curvature values at locally hyperbolic surface points. Plotted simi-
larity curvature values will never be off the axes.

Note that the similarity curvature at every point on all spheres from the
outside is constant and equal to (1,0). The similarity curvature on all spheres
from the inside is (—1,0). The similarity curvature on every planar surface, every
cylinder and every cone is constant! and equal to (0, 0). Note that this is exactly
where the Gaussian curvature is equal to zero.

! Excluding the cylinder and cone edges and the cone apex.
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6 (0-1)

Fig. 1. EH-plot space for similarity curvature

Continuous motion through points on a smooth surface, taking the similarity
curvature at each point, results in a related continuous motion in the similarity
plot space. We observe, for example, that it is not possible to traverse from
similarity curvature (-1,0) to similarity curvature (1,0) without going through
similarity curvature (0,0).

However, it is possible to traverse from (0,1) directly to (0,-1). This can be de-
scribed by saying that the H axis wraps around. An example where this wrapping
occurs will be given later in this paper.

2.3 Similarity Curvature Estimation

Similarity curvature is estimated using the following process. Firstly the mean
and Gaussian curvatures are estimated. The principle curvatures are calculated
from the mean and Gaussian curvatures as follows:

ki=H—VH2 - K

ko= H+VH?2 - K

Then the (estimated) similarity curvature is calculated from the principle
curvatures using the definition given earlier in this paper.

The mean and Gaussian curvatures are estimated as done by other authors
[7]. Firstly, with reference to the left side of Figure 2, we consider a scan point
and, say, six adjacent points. The points are thought to be connected by edges,
and edges enclose, in this case, six faces. We also identify a central angle a,,
associated with each face f,, and each face f, has area A(f,).

The Gaussian curvature is estimated by

. 3@r-Y an)
K= s Al

On the right side of Figure 2, we identify a surface normal vector associated
with each face from an edge-on view point. The angle between adjacent face
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Fig. 2. Curvature estimators: point adjacency on the left and face normals on the right

normals is designated as (3. Angle 3 is positive if the faces form a convex surface
(i-e., when viewed from the outside) and 3 is negative if the faces form a concave
surface (i.e., when viewed from the outside).

The mean curvature is estimated by

3 lenl B
T= s At

3 Similarity Curvature Experiments

Synthetic digital data has been created for a number of objects. Each object was
digitized by orthogonally scanning from above using a hexagonal grid pattern.
The hexagonal scan grid has a pitch dimension as shown in Figure 3. Note that,
with this scanning method, only the portion of an object that faces towards the
scanning source direction gets digitized.

Reference shapes included a sphere, cylinder, ellipsoid and torus. To evaluate
the similarity curvature estimation, we considered each reference shape in turn
with a scan pitch of 1, then a 10X scaling, and finally a 10X scan resolution. For
the 10X scaling, all dimensions and the scan pitch were increased by a factor of
10. For the 10X resolution, the scan pitch was decreased by a factor of 10.

pitch

Fig. 3. Scan grid
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Fig. 4. Sphere EH-histogram: reference, 10x scale, 10x resolution

The resultant similarity curvature values have been accumulated for summary
in associated E-axis and H-axis histograms.

Sphere results are shown in Figure 4. The reference sphere has a radius of 5.
Observe that the similarity curvature has the constant value of 1 in the E his-
togram regardless of scale. There are a small number (approximately 0.5 percent)
of noise values in the high resolution H histogram.
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Fig. 5. Cylinder EH-histogram: reference, 10x scale, 10x resolution

Cylinder results are shown in Figure 5. The reference cylinder has a radius of
5 and a height of 4. As expected, in all cases the E and H values are constant at
zZero.



144 J. Rugis and R. Klette

100 100
12000
80 80
60 60 8000
40 40
4000
20 20
075 -0 05 104 085 0 05 10
20
10

-1 -05 0 0.5 -1 -05 0 0.5 O-

e
-

Fig. 6. Ellipsoid EH-histogram: reference, 10x scale, 10x resolution

Ellipsoid results are shown in Figure 6. The reference ellipsoid has axes equal
to 6 and 12. As expected, the E values are bounded by 0.5 and 1. Approximately
2 percent noise has accumulated in each of the H histograms.
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Fig. 7. Torus EH-histogram: reference, 10x scale, 10x resolution

Torus results are shown in Figure 7. The reference torus has an inner radius
of 6 and an outer radius of 14. As expected, based on the associated minimum
and maximum curvatures, the E values are bounded by 0 and 0.29, and the H
values are bounded by 0 and 0.67.
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-1

Fig. 8. Shading coded EH-plot axis. (For color see the online version of this LNCS
publication.)

3.1 Shading Coded Similarity Curvature

It is possible to assign color coding to similarity curvature values. A color coding
of EH-plot axis is shown in Figure 8 where negative E values are green, positive
E values are red, negative H values are blue and positive H values are yellow.
Shading coded values for similarity curvature can also be used to color each
surface point on test objects.

Fig. 9. Shading coded similarity curvature maps: sphere, cylinder, ellipsoid, torus

Shading coded curvature maps have been introduced in previous work by
the authors [8,9]. A shading coded similarity curvature map for each of the
test shapes is shown in Figure 9. The constant curvature of the sphere and
the cylinder as well as the smooth transition through curvature values in the
curvature maps of the ellipsoid and the torus are readily apparent.

Figure 10 shows the case of a torus having an inner radius of zero. Note the
H-axis wrapping near the center of the torus. The bright yellow color transi-
tions change abruptly to bright blue when the H-axis similarity curvature wraps
around, changing sign.

3.2 3D Object Detection

Similarity curvature can be used to identify and extract 3D shapes from within
complex 3D scan scenes. We may wish to, for example, identify all spheres and
spherical patches within a scene no matter what the sphere size or scan resolution.
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Fig. 10. Torus cross section on left and shading coded similarity curvature

Fig. 11. Test scene depth map, curvature map, and extracted spherical patches

We have constructed a test scan scene containing a surface with five each
spherical, ellipsoid and toroid bumps as well as five pits having those same
shapes. Some of the pits and bumps overlap. Several representations of the scene
are shown in Figure 11. On the left is a shading coded depth map in which points
closer to the scan source are white color shaded, and more distant points are
shaded black. A color coded similarity curvature map is shown in the middle.
Spherical bumps are bright red and spherical pits are bright green. Finally, all
of the spherical bump surface patches have been identified and color coded as
white in the image on the right.

4 Conclusion

Similarity curvature measure has been defined and an estimator has been intro-
duced and tested. EH-plots as well as a color shaded coding have been presented.
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Experiments have demonstrated that similarity curvature can be used to charac-
terize and identify simple synthetic digitized shapes. Further work is anticipated
to include applying similarity curvature measure to real world scans and ad-
dressing the issue of noisy data.
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Technology.
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Abstract. We propose an extension of the three-point Randomized Hough trans-
form. Our new Hough transform, which permits a continuous voting space with-
out any cell-tessellation, uses both one-to-one mapping from an image plane to
the parameter space and from the parameter space to the image plane. These
transforms define a parameter from samples and a line from a parameter, re-
spectively. Furthermore, we describe the classical Hough transform, the random-
ized Hough transform, the three-point randomized Hough transform and our new
Hough transform in a generalized framework using geometric duality.

1 Introduction

In this paper, we propose an extension of the three-point Randomized Hough transform.
Our method permits a continuous voting space without any cell-tessellation. Three-
point Randomized Hough transform speeds up the computation time and shrinks a
search space by selecting randomly three collinear points for the parameter compu-
tation in the Randomized Hough transform. There are two possibilities for the selec-
tion of three-collinear points. The first method selects three-collinear points for the
preprocessing of voting. The second method selects the third point on the line es-
timated from the first two points as illustrated in Fig. 1 (a). Our method is an ex-
tension of the second method, that is, we evaluate the cardinality of sample points
on the line estimated from the first two samples as illustrated in Fig. 1(b). In this
sense, it is possible to categorize our method into N-points Randomized Hough trans-
form.

The Hough transform, HT in abbreviated form, provides an efficient strategy for the
detection of many lines in noisy images [1,2,3,4]. The main idea of the HT is the es-
timation of parameters of lines by voting. The voting enables us to classify samples in
the original image by accumulating the voting and detecting the peaks in the accumu-
lator. Therefore, the detection of the peaks in the accumulator transforms the param-
eter estimation to search problem. For the detection of the peaks in the accumulator,
we traditionally use the accumulator with finite resolution, that is, the accumulator is
tessellated to a collection of cells. Therefore, the computation of numbers of accumu-
lation on the cells enables us to detect the peaks of the voting and derive the parameter
of lines. The robustness and accuracy of the detected lines depend on the resolution,
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Select the third point "~ Compute the cardinality
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Fig. 1. The three-point randomized Hough transforms and backvoting. (a) The three-point ran-
domized Hough transform with backvoting selects the third point on the line estimated from the
first two points. (b) Our method is an extension of (a), that is, we evaluate the cardinality of
sample points on the line estimated from the first two samples.

that is, the size of cells. Therefore, the determination of the cell size of the voting
space [5,6,7] is a fundamental problem in the derivation of an accurate system for line
detection.

The randomized Hough transform, RHT in abbreviated form, is proposed by Oja
[8,9] and the three-point Randomized Hough transform is proposed by [10] as an ex-
tension of the Randomized Hough transform. The Hough transform is mathematically
based on the geometric duality [3,4], which defines one-to-one correspondence between
a line on an image plane and a point in the parameter space as illustrated in Fig. 2 (a).
Furthermore, conversely geometric duality defines one-to-one inverse correspondence
between a line on the parameter space and a point on an image plane as illustrated in
Fig. 2 (b). The first mapping derives the Randomized Hough transform, which vote
points, and the second inverse mapping defines the classical Hough transform, CHT in
abbreviated form, which votes lines. Therefore, the RHT for line detection estimates
the parameters using a pair of samples in the original image and a point in the voting
space as illustrated in Fig. 3 (a), though the CHT, uses a sample in the original image
and a line in the voting space as illustrated in Fig. 3 (b).

In the RHT, the pre-screening process in the sampling phase guarantees the robust
estimation of parameters. The three-point RHT is a version of RHT with pre-screening
process in the sampling phase [10]. In voting process of the RHT, there exists the vot-
ing which are yielded by meaningless selection of samples in the original image, since
any two points yield a point in the voting space. For avoiding the meaningless sam-
plings, the three-point RHT tests the collinearity of the selected three points because
the samples, which express a line in the original image, must satisfy the collinearity.
This preprocessing before voting avoids selecting the meaningless sampling of points
in the original image.

Our new Hough transform uses both one-to-one mappings from an image plane to
the parameter space and from the parameter space to the image plane as illustrated in
Fig 4. The first and second transforms in this process defines a parameter from sam-
ples and a line from a parameter, respectively. In the following, we first describe the
randomized Hough transform and the three-point randomized Hough transform in our
terminology. Second, we define a new randomized Hough transform.
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(b)

Fig. 2. Geometric duality of a point and a line. (a) If we affix a point in S%, f(a, &) = 0 defines
a line on the plane z = 1. (b) If we affix a point in R?, f(a, &) = 0 defines a half of a great circle
on S%.

Fig.3. Hough transform expressed by geometric duality. (a) The randomized Hough transform
selects pairs of points on the original image. In the voting space, the randomized Hough transform
uses points. (b) The classical Hough transform selects points on the original image. In the voting
space, the classical Hough transform uses lines.

2 Hough Transform for Images on a Plane
For ¢ = (v,y,1)T € R®anda = (a,b,c)" € S2, we define a function

fla,&) =a't. (1)

If we affix a € S2, f(a,&) = 0 defines a line on the plane z = 1 as illustrated in Fig.
2 (a). Conversely, if we affix £ € R?, f(a,&) = 0 defines a half of a great circle on
Si in Fig. 2 (b). This property is called geometric duality. Hereafter, we call a half of
a great circle on Si as a great circle on Si. Using this geometric duality, we formulate
the CHT and RHT, and show these advantages. Since the plane z = 1 is topologically
equivalent to R?, we can deal with the lines on the plane z = 1 as lines on R? when we
set& = (x7,1)" forx = (z,y)" € R%
Let the function u(7) be

U(T):{l,iszo, @)

0, otherwise.

Setting P = {&; = (v;,v:,1)" }7_, to be samples in the image plane, u(a'&;) = 1
defines a plane @ " §; = 0 which passes through the origin of (a, b, c)-space. Since, for
A # 0, (Aa, Ab, Ac) defines the same line, we normalize (a,b,¢) as |a| = 1, ¢ > 0 on
Si. A system of equations,

a’& =0, |a| =1 (3)



N-Point Hough Transform Derived by Geometric Duality 151

Fig. 4. The randomized Hough transform with a continuous voting space. Our randomized Hough
transform uses both one-to-one mappings from an image plane to the parameter space and from
the parameter space to the image plane.

expresses the common curve with a plane, which passes through the origin, and the
sphere. This geometrical property is called duality of a line and a point on S2.
For a given point ;, the solution of the system of equations,

u(aTéi) =1, a€ Si, 4)

defines a great circle on S2 , which is a line on the positive constant-curvature manifold.
Furthermore, the solution of the system of equations,

u(@’é) =1, u(a'§) =1, (5)
that is equivalent to the system of equations,
a'g =0, a'¢ =0, (6)

where a = (a,b,¢)" € 52, defines a point as the common point of a pair of the great
circles on Si. This geometrical property defines the transform from (z, y)-plane to a
point on S2, for

& x§&;
& % &

where ) is selected so that a;; € Si. These mathematical properties derive the voting
for RHT expressed by

ai; =\ A=+, (7

g(a) = Zu(aTaij), ac Si (8)
i

as a transform from Si to Z. These processes are a mathematical expression of point-
to-point voting. This procedure provides the RHT for the detection of many lines.

Algorithm 1. RHT for Line Detection

I ForP = {w; = (a;, )}l

2 Compute Eq. (7) for randomly selected x; and x; € P. Repeat this step for
N-times where N is a given constant.

Compute Eq. (8) as the results of Step 2.

4 Detecta € S? such that g(a) > T for a given real constant T.

w
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In Egs. (7) and (8), elimination on the meaningless sampling and voting enables us
to detect robustly the lines. For the robust computation of parameter a, we modify Eq.
(8) to the function,

gla) = Z u(a"ayr), ac i )

i#i 7k

where )
a;ji = 3(aij + aji + ari), (10)

for three sample points on R2. Furthermore, Steps 2 and 3 in Algorithm 1 is modified
as follows.

Sub Algorithm 1-1. Three-Point RHT

2’-1 Repeat Step 2’-2 and Step 2’°-3 for N-times where N is a given constant.

2’-2 Select three point x;, x; and xj, randomly.

2’-3 If (& x £j)T£k\ < 4, then compute a;;, a;; and ay; on Eq. (7) and output
a;ji on (10). Else go to Step 2”-1.

3> Compute Eq. (9)

These modified steps select a triplet of collinear points which may lie on the same
line. The RHT with step 2’ is called three-point RHT [10].

On the basis of the geometric duality, it is possible to draw a line on the original
image plane using a point on the voting space such that, for a € Si and € = (z,y,1) 7,

a'€=0. Y

This process is called the back-voting. For the selection of the third point, it is possible
to use the back-voting operation. In practical applications, we select a point in string

¢

<, 12
Va2 +b2 12)

fora € S?r, &€ = (x,9,1)" and a fixed parameter §. By adapting the back-voting oper-
ation, Step 2’ in Sub Algorithm 1-1 is modified as follows.

Sub Algorithm 1-2. Back-Voting Three-Point RHT

27-1 Repeat Step 2”-2 to 2”-4 for N-times where N is a given constant.
27-2 Compute Eq. (7) for randomly selected ; and x; € P.

27-3 Select xj, such that &), # x; and x), # x;.

274 If la' & < 6, then compute a ;. and ay;, output a;;; on (10), and go to Step

Va2+b2
2”-1. Else repeat going to Step 2”-3 for N’-times where N’ is a given constant.

Three-point RHT selects a triplet of points which may lie on a line. However, the
three-point RHT with the back-voting selects the third point, which passes through a
line yielded by the first pair of points. This additional operation enables to shrink the
search space for the third point.
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3 RHT with a Continuous Voting Space

For samples P = {(x;,;,1)" }™_, in the image plane, the RHT with the tessellated-
cell accumulator is constructed by three procedures as follows.

(a) Sampling and voting based on Eq. (7), that is, transform from a pair of points in the
original image to a point on S%.

(b) Accumulation of the voting to tessellated cells based on Eq. (8).

(c) The peak detection in the accumulator.

For the construction of RHT with the continuous voting space, we employ the three
procedures as follows.

(A) Sampling and voting based on Eq. (7), that is, transform from a pair of points in
the original image to a point on S3.

(B) Back-voting and computation of the cardinality of sample points in the back-voted
strip for the estimation of the reliable voting point.

(C) Selection of the reliable voting points on Si for the determination of lines in the
original image.

On the RHT with the continuous voting space, first, we operate the sampling and voting
in (A) in the same way of the RHT with the tessellated-cell accumulator in (a). In this
procedure, the voting space Si is continuous. Second, instead of the accumulation in
(b), we operate the back-voting and the computation of the cardinality of sample points
in the back-voted strip in (B). On the basis of Eq. (11), it is possible to draw a line on
the original image plane using a voting point on Si computed by Eq. (7). For the line
drawn by the back-voting, we generate a strip expressed by Eq. (12) as illustrated in
Fig 4. Using this strip, we compute the numbers of points, which lie on the strip, in the
original image. We express the computation of cardinality as follows.

laT¢]
Va2 + b

This cardinality of sample points in the back-voted strip enables us to express the reli-
ability of the parameter of the line generated from a pair of points. If this cardinality is
large, the line may exist as a line in the original image. Conversely, if the cardinality of
sample points in the back-voted strip is less than three, the line may not exist as a line
in the original image. Finally, instead of the peak detection in (c), we select the points
on 57, that satisfy the relation, C(P, a, ) > T, for a given real constant T.

If there do not exist noises in the sample points and the selection of the meaningless
sampling of pairs of points, § in Eq. (13) satisfies § = 0. Furthermore, for each line,
the points a in Si become identical. Therefore, the cardinality of sample points in the
back-voted strip yielded by the points a@ in Si, which express the same great circle,
have the same number.

C(P,a,s) = |Pn{¢ <5} (13)
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Since we assume that the sample points in the original image have noise, a line in the
original image might be expressed as collection of points in the voting space. However,
it is possible to determine a point from the collection of points as the parameter of a
line using the cardinality in Eq. (13). The point, which has the largest cardinality, in
the voting space is the most reliable as parameter of a line in the original image. On
the basis of this reliability, we determine the parameter of lines step-by-step. First, we
compute Eq. (13) for all points in the voting space. Second, we select the point, which
has the largest cardinality, as the parameter of a line. Third, we remove the collection
of points, which lie on the strip defined by the selected point in the voting space, in the
original image. This operation merges the collection of points, which may express the
same line, in the voting space. Finally, we repeat these operations for the rest of points
in the voting space and collection of points in the original image.

These properties based on the geometric duality provide the RHT with the continu-
ous voting space for line detection.

Algorithm 2. RHT with Continuous Voting Space

1 For P ={x; = (2;,4:) )}y

2 Compute Eq. (7) for randomly selected x; and x; € P. Repeat this step for

N-times where N is a given constant.

Compute Eq. (13) for all points a;; on Si.

Select @max € S such that max(C(P, a, d)).

5 If C(P,@max,d) > T for a given real constant T, then output @ax, remove
x, from P which lie on the strip yielded by a,.x and go to Step 2. Else exit.

B~ W

The back-voting three-point RHT in Sub-Algorithm 1-2 selects the third point,
which passes through a line yielded by the first pair of points, and avoids the selec-
tion of the meaningless sampling of points in the original image. We extend this idea
on the RHT with a continuous voting space. For a point a;; computed by Eq. (7), we
operate the back-voting and generate the strip in the original image. If the cardinality of
sample points in this back-voted strip is larger than three, the point a;; is voted to the
voting space Si. Therefore, for a point a;; computed by Eq. (7), this procedure operates
the back-voting and computation of the cardinality of sample points in the back-voted
strip before the determination of the voting to the voting space Si. For adapting this
back-voting before voting Step 2 in Algorithm 2 is rewritten as follows,

Sub Algorithm 2-1. Back-Voting Before Voting

2’-1 Repeat Step 2’-2 and Step 2’-4 for N-times where N is a given constant.
2’-2 Compute Eq. (7) for randomly selected x; and z; € P.

2’-3 Compute Eq. (13) for a;;.

2’-4 If C(&; a;j) > 3, then vote a;; on S3.

We summarize the RHT with a continuous voting space for the detection of many
lines as follows.



N-Point Hough Transform Derived by Geometric Duality 155

Algorithm 3. Back-Voting RHT with Continuous Voting Space

1 For P ={z; = (2i,yi) }i-y

2-1 Repeat Step 2°-2 and Step 2°-4 an appropriate time.

2-2 Compute Eq. (7) for randomly selected ; and x; € P.

2-3  Compute Eq. (13) for a;;.

2-4 If C(&;a,;) > 3, then vote @ on S3.

3 Compute Eq. (13) for all points a;; on S2.

4 Select @max € 52 such that max(C(¢; a)).

5 If C(&; @) > T for a given real constant T, then output @ax, remove xy from
P which lie on the strip yielded by a,.x and go to Step 2. Else exit.

Setting él =§&, +ecand éj = &; + ¢ to be the points on a sphere that includes noise
€, the normal vector is computed as

N _)\éixéj

aij = ~ N
& x &

If a;; is voted and accumulated to the voting space with finite resolution, the noise
described in Eq. (14) definitively affects the result of estimation of the normal vector
through the voting procedure. The RHT with a continuous voting space employs Si
as the voting space. Therefore, in the sense of numerical computation, it is possible to
compute the voting point a;; accurately.

Furthermore, the robustness of the RHT with continuous voting space depends on §,
that is, the width of the strip defined for the computation of cardinality. The robustness
of the RHT the tessellated-cell accumulator depends on the sizes of cells. Mathemati-
cally, the evaluation of robustness in the RHT with continuous voting space is simple
compared to the evaluation in the RHT with finite resolution, since it is difficult to
tessellate S?r to equi-areal cells as voting cells.

=a;; +ca;; + 0(62). (14)

4 Numerical Examples

Fig. 5 shows the result of numerical experiment for line detection using the Hough trans-
form of our new randomized and classical methods. For the experiment, we prepared “A
House” as shown in Fig. 5 (a). For the preprocessing of line detection, edge-points are
extracted by Canny operator [11,12]. There are 1109 points extracted by Canny opera-
tor as shown in Fig. 5 (b). Our randomized Hough transform with a continuous voting
space detected 10 lines from the input 1109 points as shown in Fig. 5 (c). For the numer-
ical evaluation of robustness and accuracy of our result, we applied cvHoughLines?2
function, which uses the classical Hough transform, in openCV library [12] to the
same edge images. Fig. 5 (d) shows the result detected by the cvHoughLines?2
function.

In the practical experiment, the robustness and accuracy of line detection depend on
the parameters in the algorithms. Our randomized Hough transform uses the parameters
01, 92 and T. The parameter 6, is the size of strip in Sub Algorithm 2-1. Theoretically,
the parameter J is set as 0 since at least three points should pass through an estimated
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Fig.5. Numerical examples for “A House”. (a) Original image. (b) Edge image extracted by
Canny operator. (c) The result using our randomized Hough transform with a continuous voting
space. (d) The result using cvHoughLines2 function in openCV. In (c), we can observe that 10
lines are successfully detected by our method. In (d), some lines are over-detected by the classical
Hough transform, since it is difficult and sensitive to determine the parameters of the cell size and
threshold of peak detection.

line exactly. However, practically, the points in the digital images are expressed as pix-
els. This geometric propertiy of points in the digital image implies that the edge-points
in the digital image are expressed in the integer coordinates. The line estimated from
two integer points may not pass through the third point, which is also expressed as inte-
ger, in the digital image, even though these three points express a line in the Euclidean
space. Therefore, we set the parameter §; as 0.5 pixel units. The parameter J, is the
size of strip in Algorithm 2. We set the parameter 05 as 2 pixel units. Theoretically, it is
possible to define this parameter d5 if we know the variance of points to the line. How-
ever, it is impossible to compute the variance before the estimation of the line itself. The
parameter T is the minimum number of collections of points, which express a line in
the image. We set the parameter T as 30 in Fig. 5 since we assumed that the minimum
numbers of collection of points should consist of at least 3 % input edge-points. On the
other hand, in cvHoughLines?2 function which uses the classical Hough transform,
we need to analyze mathematical and practical relations among the sizes of cells in the
accumulator and the thresholds of the peak detection in the accumulator. Therefore, it
is difficult to define the parameters of the size of cells and the threshold. In this ex-
periments, the selections of the parameters for cvHoughLines?2 function are solved
ad-hoc.

In our randomized Hough transform, the geometric properties of parameters are
clearly well-defined since our algorithm is constructed based on the geometric du-
ality. Therefore, it is possible to define the appropriate parameters theoretically and
practically. Furthermore, for the line detection from edge-points in Fig. 5 (b), there ex-
ists two kinds of noises. One is yielded in digitization process and included in each
line element. The other is the outliers to each line. The difference in Figs. 5 (c) and
(d) can promise that our new randomized Hough transform is robust against both two
kinds of noises. Therefore, our new randomized Hough transform detects sufficient
numbers of lines from real images compared to the results by cvHoughLines?2
function.
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Conclusions

We proposed new randomized Hough transform, which permits a continuous voting
space without any cell-tessellation. Furthermore, using geometric duality. we described
the classical Hough transform, the randomized Hough transform, the three-point ran-
domized Hough transform and our new Hough transform in a generalized framework. In
this generalized framework, we geometrically clarified the voting, accumulation, peak-
detection and back-voting. Moreover, in the numerical experiments, we showed that
our new randomized Hough transform detects lines in images robustly and accurately
compared to the traditional method.
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Abstract. Linearestimationbased sequentialimportancesamplingmeth-
ods for particle filters are proposed that can be used to model the rapid
change of object motion in a video sequence. First a linear least—squares
estimation is used to build a proposal function from observations, and
then it is extended to a robust linear estimation. These sampling meth-
ods give a framework for tracking objects whose motion cannot be well
modeled by a prior model. Finally a switching algorithm between the
proposed method and the prior model based sampling method is pro-
posed to achieve a filtering of both smooth and rapid evolution of the
state. The ability of the proposed method is illustrated on a real video
sequence involving a rapidly moving object.

1 Introduction

Visual tracking is the problem of estimating the motion of an object in an im-
age sequence. State space approaches to visual tracking are attractive because
they do not suffer from local minimum problems and incorporate prior knowl-
edge available into the system [1]. The Kalman filter has been widely used for
visual tracking with linear and Gaussian state space models [2,3]. Over the last
decade, nonlinear and non—Gaussian state space methods with Monte Carlo ap-
proximation [4,5,6,7], called particle filter, has attracted much attention in visual
tracking (e.g. [8,9,10]), because this approach allows to flexibly describe the state
of targets with a wide range of models and gives an approximation of optimal
solution from a Bayesian statistics point of view.

The basic idea of particle filters is to approximately represent the filtering
distribution with a finite number of samples, referred to as particle, and to prop-
agate the set of the particles according to an appropriate probability distribution
over time. The most common probability distribution used for propagation in
visual tracking is the prior model p(x¢|x:—1), which describes the system dy-
namics, because it is simply implemented and this may be because the pioneer
works [4,5,8] use p(a¢|x:—1). However this often gives a poor estimate if the
state transition which cannot be well modeled by the prior model occurs, which
situation often happens due to rapid motion change of an object of interest.

We propose two proposal distributions, referred to as importance function,
to track a rapidly moving object. The proposal distributions guide particles

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 158-167, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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to give a good approximate of the filtering distribution. To do this, a linear
estimate of motion parameters, which describes the state of the object, is first
calculated from optical flows and then particles are generated from a distribution
conditional on the linear estimate. Our motivation relies on the assumption
that the linear estimate gives a rough estimate of the mode of the filtering
distribution. First we present a proposal distribution based on a linear least—
squares method and then extend it to a robust linear estimation method. Finally
we present a switching algorithm between the proposed distribution and the prior
distribution to achieve both smooth and rapid motion estimation by detecting
rapid change of motion.

2 Particle Filtering for Visual Tracking

This paper focuses on the state space approach for visual tracking, which esti-
mates recursively in time the filtering distribution p(z¢|y,.;) of the state z; €
R"=, given the sequence of observations y,., = {y,lk = 1,2,...,t},y, € R".
The states xx,k = 1,2,...,t are assumed to be Markovian given an initial
distribution p(xp) and a transition distribution p(xg|xr—_1). The observations
Y,k =1,2,...,t, are conditionally independent of distribution p(y,|xx) given
the state. A recursive estimation for p(x:|y;.,) consists of two steps: predic-
tion p(@4|yy,—1) = [ p(@i|@i-1)p(T1-1|Y1;—1)d2i—1 and filtering p(xlyy,,) o
P le)p(®e|y,.-1)

Particle filters give a numerical solution to this recursive estimation with
Monte Carlo methods. The basic idea of particle filtering is that one approxi-
mately represents the filtering distribution in the pointwise form p(x:|y;..) ~
Zf\il wt(z)é(wt—wgz)), Zf\il wt(z) = 1, where 6(+) denotes the delta-Dirac function.

:ES) is independent and identically distributed random sample, called particle,

according to p(x¢|yy.,), and wﬁi) is the normalized weight associated with :L',(:).

It is usually impossible to efficiently sample points from p(x:|y;..). An al-
ternative solution is the use of sequential importance sampling [7]. Instead of
sampling from p(x;|y,.,) directly, a so-called proposal distribution (or referred
to as importance function), denoted by m(x¢|y;.;), is used to mimic random sam-
ples from p(x;|y;.;). The proposal distribution 7(x|y,.,) leads to the update rule
of the weight

(4)

) * ) . = (1), = (1)) = (%)
wgz) . Wy w:(z) :wgz)lp(yt@t (&, |2, 24)

Z£11 w:(i)’ - W(i§i)|igi—)17y1:t)

There are many choices of proposal distributions, dependent on applications of

interest. The widely used proposal distribution is the prior distribution p(x|x:—1),
() _

(1)

which describes the system dynamics [5,4,8]. In this case eq. (1) reduces to w;
wﬁ)l p(yt\wgl)) and the algorithm is then easily implemented. As system models
for visual tracking, low—dimensional autoregressive models such as &1 = x;+v,

and xyy1 = 2@y — 241 + v; are widely used [9], where v; is a random noise,
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(b)

Fig. 1. (a)Region of interest selected by hand and feature points detected in the region.
(b)Motion model by similar transformation.

because one does not normally have specific knowledge on object motion. These
system models however cannot deal with rapid motion change of an object,
because they trend to smoothly estimate the state trajectory.

Hence an alternative proposal distribution is necessary. ICondensation [11]
constructs a proposal distribution by detecting skin color regions in the image
for hand tracking. Specific knowledge about object appearance is however not
always available for a wide range of objects.

3 Motion and Observation Models

This section specifies the motion and observation models used in this paper.
We represent an object of interest by its bounding box and assume some feature
points in the box are tracked by an appropriate image processing through the im-
age sequence, as shown in Fig. 1 (a). In experiments, we use the Lucas-Kanade-
Tomasi tracker [13] with pyramidal implementation [14] for point tracking.

We model the motion of the object as the similar transformation. Since the
similar transformation is parameterized by (6, A, t1,t2), the state vector x; at
time ¢ is defined by x; = (0(t), A(t), 1 (t),t2(t)) . Assuming that the state evolves
smoothly with time, we adopt a simple system model

;=1 +v,, v~ N(0,X,), (2)

where v; is a white Gaussian noise with mean 0 and covariance matrix X, =
diag(og,ai,afl,ati). Of course this simple model can be replaced with other
models. However, in visual tracking, the best model cannot be available because
the sequence of the state is normally nonstationary and changeable. Hence we
use this simple model.

We denote the ath feature point at time ¢ by y,, = (74(t),ya(t) ", =
1,...,M(t), where M(t) is the number of the feature points at time ¢. For nota-
tional simplicity, we denote the set of the observations by y, = {y;, - - - 7yM(t)t}.
We define the observation model by a mixture distribution

M(t)
1 _
p(ylwe) o< M) > exp <_2(yat —ar) Xy (Yau — uat)> ;

a=1
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where ¥, = diag(02,02) and ua; = (ua(t),va(t))" is obtained by the similar
transformation uy; = /\((t)Rtual + t;. Note that u, is the position of the ath
feature point detected in the first frame, and is moved in such a way that the
center of the bounding box in the first frame is coincided with the origin of an
image coordinate, as shown in Fig.1 (b).

4 Importance Sampling Guided by Linear Estimation

The prior distribution p(x;|x:—1) explores the state space without any knowledge
of the observation y,, because p(x;|x;_1) is independent of y,. This characteristic
is not appropriate for rapidly changing time-series data. An solution to this
problem is the use of a proposal distribution conditional on observation. We
propose two proposal distribution conditional on the observation y,, formally
expressed by m(x¢|y,). First we present a linear least—squares estimation based
distribution and then we extend it to a linear robust estimation.

4.1 Proposal Distribution Based on Least—Squares Estimation

We first build an overdetermined system of linear equations

’U,l(].) —'Ul(].) 10 1’1(t)
v1(1) u(1)01 | [s1() y1(t)
: Stlf(%) : or Mtat = bt7 (3)
upr(1)(1) —vary(1) 10 to(t) Tar(1)(t)
vpry (1) upray(1) 01 Yar(1)(t)

where 517 = Acosf and s;5 = —Asinf. Calculating # = tan~!(s11/s12) and
5 = /52, + 525, we obtain the linear estimate, denoted by &; = (A(t), (t), 1 (t),
to(t)) T, from the observations y,. Using &, we define the proposal distribution
by

m(xely,) = N (&, X)), (4)
where X3 = diag(arg7 o’?\, afl , o’i). This proposal distribution generates particles
in the vicinity of &, i.e., according to object motion, because &; is dependent on
the observation. If &; is near the mode of the filtering distribution, the particles
can well approximate the filtering distribution.

The computational cost depends on the cost of solving Eq. (3). If the number
of the feature points M (t) is constant over time, i.e., all of the points detected in
the first frame are successfully tracked through the image sequence, the matrix
M, is also constant with respect to time. Therefore if we calculate the generalized
inverse matrix of M, denoted by M, , at time 1, it is only necessary to calculate
a; = M b, at each time step. This is done more efficiently. If some of the points
are invisible or lost, we need only to recalculate M, at that time.
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4.2 Proposal Distribution Based on Robust Estimation

Generally the least-squares methods are sensitive to outliers. Thus the previous
approach gives a poor estimate if some of the feature points fail to be tracked. To
deal with this problem, we introduce a RANSAC (Random Sample Consensus)
[15] —like robust estimation method.

Our robust estimation method is as follow. Instead of using all of the feature
points which may contain outliers to calculate the linear estimate, we randomly
select the minimum number of the feature points that uniquely determines sim-
ilar transformation, i.e., in this case two points, and calculate the parameters of
similar transformation from these two points. Then we iterate this estimation a
number of times. With an appropriate number of iterations, we expect to obtain
at least one estimate free from outliers. To ensure this with probability ~, the
number of iterations is set to

log(1 = (1 —¢€)?)’
where eis the outlier proportion. Finally, we obtain K linear estimates &1¢, . .., Lx+¢
at time ¢, at least one of which is free from outliers with probability ~.
From @14, ..., &k, we define the proposal distribution by a mixture distribu-
tion
1K
nwdy) = - 3 Nlasn Sa). (6)
B=1

Unlike RANSAC, we do not search the best fitting estimate, because this is likely
to lead to a loss of the diversity of particles. This mixture distribution generates
some particles in the vicinity of the linear estimate which are calculated from
outlier-free observations. On the other hand, it generates some particles in the
tail of the filtering distribution because some of &1, ..., T k¢ are wrong estimates
due to outliers. However such particles can be removed by resampling because the
weights are low. The construction of the proposal distribution requires solving
K systems of linear equations in four unknowns but does not need numerical
search.

4.3 Combination of Smooth and Rapid Motion Estimation

The proposed proposal distribution 7(x;|y,) is superior to tracking a rapidly
moving object than the prior distribution p(x:|x:—1), as discussed above. How-
ever, when the object is slowly moving, i.e., the state transition is well modeled
by p(@¢|xi—1), the prior distribution can give a good approximation of the filter-
ing distribution. Contrary, an estimate from 7(x|y,) trends to overfit the state
sequence corrupted by noise, because samples from m(x¢|y,) are generated only
based on the observation. To sum up, a switching algorithm between p(x¢|x:—1)
and 7(x¢|y,) is preferable; p(x¢|x:—1) is used when the object is slowly moving
and 7(x¢|y,) is used when the object is rapidly moving.
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To detect rapid motion change of the object, we use an estimate of the effective

sample size [6]

- 1

Negg = . <N.

e

This is normally used to detect degeneracy phenomena in which almost all of the
weights are close to zero with time. A degeneracy phenomenon can be detected
by thresholding Ne.;; < Nz because N,f becomes small if such a phenomenon
happens. Here we use it as an indicator of detecting rapid motion change.

The procedure is as follows. First one tries to make a predictive distribution
p(x¢|yq1.+—1) by choosing the prior distribution p(x:|x:—1) as a proposal distri-
bution. If the prediction is correct, a degeneracy phenomenon does not happen,
i.e., the value of N, is not small. Otherwise it is recognized that the prediction
fails and then one tries to use the particles from 7(x|y,) to estimate the filter-
ing distribution. To sum up, we show an switching algorithm between p(x¢|x:—1)
and 7(x¢|y,) as follow.

(7)

1. Initialization (¢ = 0):
— Fori=1,2,...,N draw CE(()i) ~ p(xp), and set t « 1.
2. Importance sampling (¢t > 1):
2.1 Prior model based sampling
— For i = 1,2,..., N draw :i'ff) ~ p(:l:t|:c£i_)1) and calculate the weight by
w:(l) = wt(l_)lp(yt|£§1))'
— For i =1,2,..., N normalize the weight wgi) = w:(i)/zzj-vjl w:(i).
2.2 Rapid change detection
— Calculate N,ss by eq. (7).
- If Neff > Nr, go to 3.
2.3 Linear estimation based sampling
— Fori=1,2,...,N draw ;5§“ ~ m(x¢|y,) and calculate the weight wgi) by
eq. (1).
3. Resampling;:
— Fori=1,2,..., Nresample with replacement the particles :I:Ei) from {:Egl) |i =
1,..., N} according to wgi) and set wgi) =1/N
—t—t+1, goto 2.

5 Experimental Comparison with Real Video Sequence

Using a real video sequence involving a rapidly moving object, we compare the
three proposal distributions: (a) the prior distribution p(@;|®i—1), (b) the linear
least—squares estimation based distribution in Eq. (4), and (c) the robust lin-
ear estimation based distribution in Eq. (6). Finally we show the result of the
switching algorithm, described in Sec. 4.3.
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(c) Robust linear estimation

Fig. 2. Mean estimate of the state with the three proposal distributions

5.1 Experimental Setting

The video sequence consists of 450 frames (15s) at 320 x 240 pixels resolution,
in which a book is moved quickly by hand. Figures 2 show some examples of
the video sequence. In the first frame, feature points are detected by the Harris
detector [12] within a manually selected region, shown in Fig. 1(a). Then the
feature points are tracked through the video sequence by the Lucas—Kanade—
Tomasi tracker [13] with pyramidal implementation [14]. This implementation
can deal with large displacements of feature points using pyramidal search.

The number of particles is set to 2000. The variances of the system and the
observation noises are set to og = 3.0 (degree), o = 0.1,0¢, = 0y, = 3.0 (pixel)
and o, = 0, = 3.0 (pixel), respectively. For the robust estimation method, the
probability v and the outlier proportion € are set to v = 0.95 and € = 0.3, i.e., the
iteration number K is 5 from Eq. (5). In this setting, even if 30% of the feature
points are outliers, we obtain at least one robust estimate with probability 0.95.
For the switching algorithm, the threshold Ny is set to Np = N /10 = 200. The
algorithms are implemented on a computer with Pentium 4 (3.4GHz) and 2 GB
main memory.

5.2 Comparison of the Three Proposal Distributions

Figures 2 (a), (b), and (c) show the mean estimates (the white rectangles) of
the particles at frames 70, 75, 80, 85 in a left-to-right fashion. These results are



Guided Importance Sampling Based Particle Filtering for Visual Tracking 165

06 - ‘ Prior Model
. Least-Squares Estimation -
Robust Estimation
= 04
8
K
02
Ky
2
g 0 [/
c
o
T -02
° i
0.4 Wi
:4.
-0.6
0 50 100 150 200 250 300 350 400 450
time (frame)
0.6 Switching algorithm ——— ; \\ v‘\
= 04 A
8
3 Vo |
02
$ J Ly A g
2 o
: SN AT A
T -02
: ! CoAS Wy
n N
! / ALY
-0.6
0 50 100 150 200 250 300 350 400 450
time (frame)

Fig. 3. Trajectory of the mean estimate for rotational angle with (top) the three pro-
posal distributions and (bottom) by the switching algorithm

selected to show typical difference between the prior model and the proposed
distributions, because around these frames the book is rapidly moving from
right to left. Figures 2 (a) shows that the prior model based sampling method
does not capture the rapid object motion, whereas the proposed methods do
successfully. Figures 3 and 4 show the trajectories of the mean estimates for the
rotational angle and the scale, respectively, of the state (owing to limited space,
we do not show the results of the translational parameters here).

From Fig. 3 (top) and Fig. 4 (top), we confirm the prior model, labeled by
“Prior Model”, smoothly estimates the state trajectory around 75 frame, which
correspond to Fig. 2, i.e., the prior model fails to correctly model the rapid mo-
tion of the object. We also find similar results around 140, 260, 330, 350, and
380 frames when the book is swing quickly. On the contrary, the proposed meth-
ods, labeled by “Least-Squares Estimation” and “Robust Estimation”, trends to
overfit the state trajectory corrupted by noise in Fig. 3 (top) and Fig. 4 (top). In
addition, after around 390 frame, the linear least-squares estimation based sam-
pling method fails to track the object because of outliers. These results with the
three proposal distributions show their distinctive characteristics. The average
execution times per frame are (a) the prior distribution: 5.17ms, (b) the linear
least—squares estimation: 5.24ms, and (c) the robust linear estimation: 5.39ms.

Finally we show the results by the switching algorithm in Fig. 3 (bottom) and
Fig. 4 (bottom). In the algorithm, we use the robust estimation based distribution
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Fig. 4. Trajectory of the mean estimate for scale with (top) the three proposal distri-
butions and (bottom) by the switching algorithm

in Eq. (6) as the proposal distribution. These results shows that the switching
algorithm achieves smooth and rapid motion estimation, compared to those of
the other methods in Fig. 3 (top) and Fig. 4 (top). The average execution times
per frame is 6.26ms.

6 Conclusions

We have proposed the two proposal distribution for tracking rapidly moving
objects in image sequences and the switching algorithm for smooth and rapid
motion estimation. The optlmal proposal distribution for sequential importance
sampling is m(x¢|y,.,) = p(x¢ \mt ,Y,) which minimizes the variance of the weight
wy [7]. The analytical evaluation is impossible except a few special models. Our
motivation is to provide an alternative solution. We design the proposal distri-
butions conditional on the observation, whereas the prior distribution does not
depend on the observation. This provides an advantage of tracking a rapidly
moving object. Both the linear least-squares and the robust linear estimations
are carried out by solving the system of linear equations. It is not difficult to im-
plement the procedure on a computer because there are many program libraries
and packages for linear algebra available. This fact yields practical benefit. We
also have proposed the switching algorithm between the prior model and the
proposed proposal distributions to combine the strengths of them.
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Our approach can be extended to 3D motion estimation in a straightforward
manner. This is a future work. In addition it is easy to use other image features
such as contour and color together with feature points. This combination can
improve the robustness of the tracking algorithm.

Acknowledgements. This work was supported in part by the Ministry of Ed-
ucation, Culture, Sports, Science and Technology, Japan, under a Grant-in-Aid
(No.16700169).

References

1. D. Koller, K. Daniilidis, and H.-H. Nagel, Model-based object tracking in monocu-
lar image sequences of road traffic scenes, Int. J. Computer Vision, vol.10, pp.257—
281, 1993.

2. L. Matthies, R. Szelinski, and T. Kanade, Kalman Filter-based Algorithms for Es-
timating Depth from Image Sequences, Int. J. Computer Vision, vol.3 (3), pp. 209
238, 19809.

3. D. B. Gennery, Visual tracking of known three-dimensional objects, Int. J. Com-
puter Vision, vol.7 (3), pp. 243-270, 1992.

4. N. J. Gordon, D. J. Salmond, and A. F. M. Smith, Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, IEE Proc.—F, vol.140 (2),
pp. 107-113, 1993.

5. G. Kitagawa, Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models, J. Comput. Graph. Stat., vol.5, no.1, pp. 1-25, 1996.

6. J. S. Liu and R. Chen, Sequential Monte Carlo methods for dynamical systems, J.
of the American Statistical Association, vol. 93, no. 443, pp. 1032-1044, 1998.

7. A. Doucet, S. Godsill and C. Andrieu, On sequential Monte Carlo sampling meth-
ods for Bayesian filtering, Statistics and Computing, vol. 10, pp. 197-208, 2000.

8. M. Isard and A. Blake, Condensation — Conditional density propagation for visual
tracking, Int. J. Computer Vision, vol.29 (1), pp.5-28, 1998.

9. N. Ichimura and N. Ikoma, Filtering and Smoothing for Motion Trajectory of
Feature Point Using Non-Gaussian State Space Model, IEICE Trans. Inf. & Syst.,
vol.E84-D, no.6, pp.755-759, 2001.

10. K. Nummiaro, E. Koller-Meier, and L. V. Gool, An adaptive color-based particle
filter, Image and Vision Computing, vol.21, pp.99-110, 2003.

11. M. Isard and A. Blake, “ICondensation: Unifying low-level and high-level tracking
in a stochastic framework”, Proc. 5th ECCV, vol.1, pp.893-908, 1998.

12. C. Harris and M. Stephens, A combined corner and edge detector, Proc. 4th Alvey
Vision Conf., pp.147-151, Aug. 1988.

13. J. Shi and C. Tomasi, Good Features to Track, Proc. CVPR, pp.593-600, 1994.

14. J. Y. Bouguet, Pyramidal Implementation of the Lucas Kanade Feature Tracker,
Intel Corporation, Microprocessor Research Labs, 2000,

15. M. A. Fischer and R. C. Bolles, Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,
Comm. ACM, vol. 24 (6), pp. 381-395, 1981.



Intelligent Spot Detection for 2-DE Gel Image*

Yi-Sheng Liu', Shu-Yuan Chen', Ya-Ting Chao'!, Ru-Sheng Liu',
Yuan-Ching Tsai2, and Jaw-Shu Hsieh?

! Department of Computer Science and Engineering, Yuan Ze University,
Chung Li, Taiwan
s8894040mail.yzu.edu.tw, {cschen, ytchao, csrobinl}@saturn.yzu.edu.tw
2 Department of Agronomy, National Taiwan University, Taipei, Taiwan
botsai@gate.sinica.edu.tw, jawar@ntu.edu.tw

Abstract. In this study, a novel method for spot detection is proposed
with the addition of confidence evaluation for each detected spot. The
confidence of a spot will give useful hints for subsequent processing such
as landmark selection, spot quantification, gel image registration, etc.
The proposed method takes slices of a gel image in the gray level di-
rection and build them into a slice tree, which in turn is used to per-
form spot detection and confidence evaluation. Moreover, the proposed
method is fast. Building slice tree for a gel image of 1262x720 take about
3.2 sec. Spot detection take about 66 ms after the slice tree was built.
Experimental results show that confidence values are close to subjective
judgement.

Keywords: 2-DE gel, Protein, Spot detection, Slice tree.

1 Introduction

Proteomics is the study of proteme, especially how the proteins are functioning
in and around cells. Protein separation is one of the most important stages in
the proteomics study. Among all separation techniques, two-dimensional elec-
trophoresis (2-DE) [1,2,3,4] is the best method to separate complex protein mix-
tures according to their charge and size. Spots in the gel are proteins migrated
to specific locations. According to the differential expression of protein mixtures
from control and experimental samples, the spots in gel may disappear, appear
or chang in size and intensity. By analysis of spot appearance in gel, differential
protein expression between various samples are obtained.

Due to the volume data and technical noise originating from the image ac-
quisition process, manual analysis of gel image is difficult without the help of
computer software. Analysis of gel image by image processing software requires
an image pipeline which may contain image correction, spot detection, spot

* This work was partially supported by the National Science Council of Taiwan,
R.O.C., under Grants NSC-95-2745-E-155-008-URD.

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 168-177, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Ymax
l = 4

Ymin

Fig. 1. Slices of spot. (a) A spot in gel image. (b) A spot in three dimension view. (c)
Slices of spot and corresponding central points.

quantification, spot registration, data presentation and interpretation. Quality
of spot detection is one of the most important factors that will influence the per-
formance of the image pipeline. A comprehensive review of those computation
techniques can be referred to [3].

In this study, a novel method for spot detection is proposed with the addition
of confidence calculation for each detected spot. The confidence of a spot will give
useful hints for subsequent processing such as landmark selection, spot matching,
gel image registration, etc. The proposed method takes slices of a gel image in
the gray level direction and build them into a slice tree, which in turn is used to
perform spot detection and confidence calculation.

This paper is organized as follows. The idea to detect spots in gel images by
slice tree is presented in Section 2. The detailed description about our algorithm
is presented in Section 3. Finally, experimental results and conclusions are given
in Sections4 and 5, respectively.

2 Approach

The key concept of the proposed approach is introduced in this section. Unlike
other spot detection method, our method slices the gel image, builds them into
a slice tree, and then detects spots on the basis of slice tree.

Let the intensity be the third-dimension (Z axis), the intensity of a sliver-
stained spot is approximately Gaussian distributed with the lowest intensity at
center as shown in Fig. 1(b). A series of slices of the spot can then be obtained
in the intensity direction as shown in Fig. 1(c). Each slice has its own features
such as size, shape, central point, boundary smoothness and so on. If we project
the central points of slices onto the X-Y plan. The projected points belong to
the same spot will fall in a neighborhood. The distribution and the number of
projected points depend on the shape and appearance of the spots in a gel image
which can be used for spot detection.

In fact, spots may be distorted [1,5], overlapping [6] and suffered with noise.
These factors make spot detection more difficult and un-reliable. The relationship
between the slices of the spots can be incorporated into the slice tree so as to
resolve these problems and then obtain a robust spot detector.
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Fig. 2. Border tracing to detect regions in binary images. (a) Sample gel image with
gray levels from 90 to 218. (b)-(e) are detected results of Big7, Bis2, Bios and Bog
respectively. A border is a contour labeled by red color and all the pixels with green
color inside the border compose the corresponding region.

3 Methods

3.1 Gel Image Slicing

For a 2D-gel image I, the binarized image B, related to gray level g is defined
by
Lif I(z,y) < g,

By(z,y) = {0 otherwise, v

where I(z,y) is the intensity of pixel at coordinates (z,y) and ¢ is one of the
gray levels between the maximum and minimum gray levels of I, denoted by
Jmax and gmin, respectively.

Definition 1. Regions. Let r be a subset of pizels in a binary image. We call v
a region in a binary image if v is a connected set.

Regions can be detected in the following way. Region borders in a binary image
are first detected by border tracing. The set of pixels enclosed by a border is
then denoted as the corresponding region. Some results of border tracing and
the detected regions are shown in Fig. 2. From this figure, we can also find that a
candidate spot with minimum gray level gs_, will appear as sequence of regions
in binary images By, for gmax > gs > gs,.;.- Intuitively, the sequence of binary
images from By to By, . can be regarded as computerized tomography (CT)
images of all the spots in the gray level direction, i.e. Z axis.

Definition 2. Region set. All regions in a binary image is called a region set of
the binary image.

For the gel image I, there are Ny, = ¢gmax — 9min + 1 binary images. We sort
binary images By in the descending order of g and let Ry, Ro,..., Ry, be the
region sets related to the binary images B Bgpi—1,- -+, Bgoin, TESpPEctively.
ie.

9max )

RSZ{’I“s’i|i:1,2,...,713},8:1,2,...,Nb (2)

where 75 ; are the regions in binary image B,y 11-s and n, is the number of
regions in the binary image By, . +1—s. Note that the value of s can be regarded
as the layer index of the region sets. A sample gel image to illustrate the rela-
tionship between B, and Ry is shown in Fig.3(b).
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Fig. 3. Slice tree of gel image. (a) Sample gel image. (b) 3D view of (a), relationship
between B, and R, are shown beside the cube. (¢) Corresponding slice tree of (a).
Central points of regions are shown by black circular points, parent and children region
are connected by green links, detected spots are shown by triangular marks. Projections
of region centers and spots are also shown in B

Imin *

3.2 Properties of Regions
Some properties of regions are described in this section.

Definition 3. Binary image projection. For a binary image By, the projection
of By, W(By), is defined as a set of coordinates whose corresponding pizel values
are 1. i.e.

¥(By) =A{(z,y)|By(z,y) =1} . ®3)

Since a region is a subset of a binary image, the operation ¥ can also be applied
to a region. i.e.

U(rsi) = {(z,9)lrsi(z,y) =1} (4)

Definition 4. Ancestor region and descendant region. For two regions r, ; and
Ty With s1 < sa, if U(rs, i) D W(rs,,j), then we say rs, ; is ancestor region of
Tsy,5 0nd T4, ; 15 descendant region of rs, ;, and denoted by

Ts1i D Tsgj - ()

Definition 5. Child region and parent region. For two regions rs, ; and v, j, if
s1=82—1and s i D s, , then we say rs, ; is a child region of rg, ; and s, ;
is the parent region of rg, ;.

Property 1. All regions in a binary image are mutual exclusive. i.e.

U(rs:) NW(rs;) =0ifi#j . (6)

Property 2. Every region in Ro, R3, ..., Ry, has exactly one parent region. i.e.
For s =2,3,..., Ny

Vrsi € Rs,rs_1 1 € Ro_1,8.8. U(rsi) CU(rs—1,k) - (7)

Property 3. For two regions rs; and rs_1 , 75,; is a child region of 7,1 j if and
only if their projection are overlapping. i.e.

W(rsi) CU(re1k) <= W(rs) N(re_1p) #0 . (8)
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Property 3 will simplify the procedure of finding child regions. For a region s ; €
R, the child regions of r,,; can be found in the area ¥(rs;) of binary image
Byg,...—s- Let the set of all child regions of 7, ; be denoted by R ;, then it is
obvious that Rsy1 = U?;l R, ;. By Property 3, R,; can be constructed as

Roi = {rs+1,j[¥(rst1,5) N (rsi) #0},5=1,2,...,ng11 . 9)

3.3 Slice Tree

Regions in binary images are the basic units for spot detection and confidence
calculation in our method. To increase the robustness of spot detection, the
relationship between regions in successive binary images related to the same
spot are organized in a slice tree.

Definition 6. Slice tree. A slice tree for gel image I can be defined as T =
(V,E), where V is a set of nodes and E is a set of links between the nodes.

Each node in the slice tree corresponds to a region. Hence, the node related to
the region 7, ; is denoted as V(r, ;). According to the layer structure of region
sets in (2), V can be further divided into Ny, exclusive subsets, that is

Nodes in Vg correspond to regions in Ry, i.e.,
Vs={V(rsi)i=1,2,...,ns} . (11)

Note that nodes in V¢ have depth s — 1 in the slice tree.
Each link in E is an ordered pair of nodes (V(rs—1.%), V(s,:)), where rs_q j is
a parent region and r,; is a child region, i.e.,

E = {(V(Ts—l,k)a V(Ts,i))|7"s—1,k ) Ts,i} , 8§ = 2, A 7]Vb . (12)

The slice tree for the sample gel image in Fig. 3(a) is shown in Fig. 3(c).

3.4 Slice Tree Construction

A slice tree for gel image I is constructed in the sequence of By, _,...,Bg,...
accompanied by the establishment of relations between every two successive
region sets Rs and R4 for s = 1,2,..., N, — 1. More specifically, the slice
tree is built by recursively performing procedure ProcessChildSlice(r; ;) with
parameter as the region r,; in R;. The pseudo code of the procedure is outlined
as follow.
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Procedure ProcessChildSlice(r, ;)

1. Get child region set R ; of s ; using (9).
2. If Rs; = () then return,
else for all child regions r.41,; € Ry, do
2.1 Create a tree node V(rsy1,5)-
2.2 Set parent-child link between V(7 ;) and V(rsi1 ;).
2.3 If s < Ny, — 1 then call ProcessChildSlice(rs;1 ;).

To build slice tree for a gel image, we first create a root node V(r; 1), then
call ProcessChildSlice(r,1). From (1), r; 1 = B covers the whole gel image
and is the only region in R;.

9max

3.5 Slice Tree Terminology

Let N(Rs,;) denotes the number of child regions for rs;, then node V(r, ;) has
N(Rs,;) children in the slice tree. Nodes in slice tree can be divided into three
categories according to the number of children:

1. Leaf nodes: N(R;;) = 0.
2. Solitary nodes: N(R; ;) = 1.
3. Manifold nodes: N(R;;) > 1.

Definition 7. Sticks. If we remove all links between manifold nodes and their
child nodes, the slice tree is divided into subgroups namely sticks.

Note that all nodes in a stick have no more than one link. It is obvious that each
spot in the gel image has a corresponding stick in the slice tree.

Definition 8. Stick root, leaf stick, internal stick, sibling sticks, parent stick
and child sticks. The node with minimum depth in a stick is called stick root. A
stick is called a leaf stick if it contains leaf node, otherwise the stick is called an
internal stick. Sticks whose stick roots have the same parent node in the original
slice tree are called sibling sticks and also called child sticks of the stick where
the parent node resides, which in turn is called parent stick.

Definition 9. Stick length. For a node V(rs;), the stick length of V(rs;) is

defined as
Ny
L(rs;)=1—s+ argglin (N(Rg,i,) #1) . (13)

Note that for the case of d = s, the value of i, is just i. For the other cases of d,
iq is an index such that r4_1,;, , D r4.,. It is obvious that the stick length of a
stick root is equal to the number of nodes in the stick and stick length of each
leaf node is 1.

Definition 10. Eztended stick length. For a node V(rs;), the extended stick
length of V(rs;) is defined as

Lo(rei) =15+ argmax (N(Ra,) = 0) - (14)
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The values of i4 are defined as those in (13). It is obvious that £(r) = L(r) if
V(r) is a node in a leaf stick. Stick length of a stick is defined as the stick length
of its stick root.

3.6 Spot Detection

Human recognize spots of gel image by size, shape and intensity variation of
the spots. To utilize slice tree for spot detection, region size and stick length
are used. The region size is expressed by the number of pixels in the region.
If a region belong to a spot, it should have reasonable region size. Thus region
size should be restricted to reduce image noises in spot detection. Stick length
of each node in the slice tree corresponds to intensity gradient of the spot in
gel image. A confident spot should have larger stick length but a faint spot has
smaller stick length in the slice tree.

More specifically, spot detection using slice tree is done by performing two re-
cursive procedures FindSpotInTree(r,, ;) and ProcessStick(rs ;) where
V(rs,i) is a stick root while r5 ; could be 7y, ; or a descendant region of rs, ;.
Three thresholds d, w; and h; are involved in the spot detection where d is the
minimum stick length of a node to be recognized as a spot and w; and h; are
the minimum width and height of a region which could be processed for spot
detection. The sensitivity of spot detection can be controlled by adjusting the
three threshold values. The pseudo code for spot detection is outlined as follow.

Procedure FindSpotInTree(r;, ;)

1. Call ProcessStick(rs, ;).
2. If no spots are found in all child sticks of V(rs, ;) and Lo(rs, ;) is greater
than or equal to d, then a spot is found at ¥(rs, ;).

Procedure ProcessStick(r; ;)

1. If width of 7, ; > w; and height of 7, ; > I,
then initiate L(rs ;) =1,
else initiate L£(rs ;) = 0.
2. If N(R,,;) =1 then do
2.1 For re11% € Ry ;, Call ProcessStick(rsi1,x).
2.2 Set L(rs;) = L(rs,5) + L(Ts31,k)-
2.3 Goto step 4.
3. If N(Rs ;) > 1 then
for all 75415 € Ry ;, call FindSpotInTree(rsq1)-
4. Le(rsj) = L(rs;) + maxyer, , (Le(r)).

Parameters rs, ; passed to FindSpotInTree(rs, ;) are regions corresponding
to stick roots. FindSpotInTree(r,, ;) calls ProcessStick() to calculate stick
length of V(rs, ;) and check spot criteria for the node. If V(rs, ;) belongs to a
leaf stick and its stick length is greater than or equal to d, then a spot is found
at ¥(rs, ;). If no stick roots of sibling sticks satisfy the criteria, shorter sticks are
pruned and the longest stick is merged with the parent stick, which in turn is
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Fig. 4. Results of spot detection using slice tree. (a) The detected spots were marked
with red crosses. (b) Confidence of detected spots are shown in various colors. (¢) The
mapping between confidence values and colors.

used for criteria testing. The pruning and merging procedure is repeated until a
merged stick satisfies the criteria or the root node is reached.

ProcessStick(rs ;) checks the region size of r,; and calculates stick length
for node V(r5,;) by recursively calling itself with child region as parameter until
a non-solitary node encountered. Those regions smaller than a specified size
are eliminated during the calculation of stick length. When a manifold node is
encountered, FindSpotInTree() is called to check spot criteria for child sticks
originated from the manifold node. The results of spot detection for the gel image
in Fig. 3(a) are shown in Fig. 4.

3.7 Confidence Evaluation for Spots

Since spots in the gel image have specific characteristics in the slice tree, their
confidence can be computed by the features of the corresponding regions. More
specifically, the confidence values of spots are computed on the basis of slice tree
by the following equation.

V(ah)? + (8s)? + (v¢)?
a+p+y
where [, s and ¢ are metrics for stick length, smoothness and compactness related
to the spots, and «, § and ~ are the respective weighting factors. If we identify
spots by the regions where the spots have been detected, then the metrics are

defined as follow.

Cr = (15)

le

[ = min(1.0, ) (16)
Vo
s = max(0.0,1.0— 6 x ) (17)
np
2,/mnp

¢ = min(1.0, ) (18)
where [, is the extended stick length related to the spot, n, is the number of
region pixels, ny, is the number of border pixels of the region, n, is the number
of one-pixel-width knobs extended from the region and § is a constant factor.
The metrics are normalized to the range from 0 to 1. The larger are the metrics,
the more confident spots are obtained.

ny
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Fig. 5. Gel images [7] used for performance evaluation. (a) 031403-ctrl2.tiff (1262 724)
(b) 031403-ctrl3.tiff (1262 x 720) (c) 031403-ctrl4.tiff (1262 x 700)

4 Experimental Results

The proposed method has been implemented on a notebook equipped with Intel
Pentium IIT CPU 1.2GHz, 256 MB RAM. The gel images [7] used for performance
evaluation are shown in Fig. 5. The input gel images are first pre-processed by a
7 x 7 Gaussian filter. The average time took to build slice tree and detect spots
for these images is 3.2 sec and 66 ms, respectively.

Fig. 6. Comparison of spot detection. Columns for (a) Delta2D, (b) Progenesis, (c)
Proteomweaver and (d) Our method. (The mapping between confidence values and
colors are as specified in Fig.4(c)) Rows for (1) 031403-ctrl2.tiff, (2) 031403-ctrl3.tiff
and (3) 031403-ctrl4.tiff.

To show the performance of spot detection using slice tree, the results of the
proposed spot detection are compared to those of three commercial software [7]:
Delta2D 3.2, Progenesis Discovery v.2005 and Proteomweaver 3.0.1.1. Most of
the existing spot detection methods including the three methods adopted Wa-
tershed [8] algorithm for spot segmentation. After a gel image is segmented, spot
models are employed to eliminate segments not being fitted by the model. Wa-
tershed is the most popular technique for spot segmentation, over segmentation
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is its well-known problem. Thus, the effectiveness of spot model are crucial to
the results of spot detection based on watershed. Subblocks of 429 x 279 from
the results of spot detection of the software packages are shown in the first three
columns of Fig. 6.

Unlike other approaches, spot detection using slice tree does not relay on spot
models. Instead, the stick length of each leaf stick corresponding to intensity dif-
ference between spots and background is used as the criterion of being confident
spot. Results of our method are shown in the fourth column of Fig.6. In our
results, spot centers are marked with red crosses and the boundaries of spots are
shown in different color according to their confidence values. It can be seen that
the boundaries of spots in our method are more compact.

5 Conclusion

Slice tree is effective for representing a gel image in a systematic organization.
Nodes in slice tree contain refined features about the spots and links between
nodes contain corresponding characteristic expression of the gel image. Thus, gel
image analysis can be done by analyzing the slice tree based on the systematic
organization. In this paper, we have shown how to detect spots using slice tree. In
addition slice tree with confidence evaluation can provide plentiful information
for other applications such as spot quantification, gel image registration, etc.
These will be the future research issues.

References

1. Aittokallio, T., Salmi, J., Nyman, T.A., Nevalainen, O.S.: Geometrical distortions
in two-dimensional gels: applicable correction methids. Journal of Chromatography
B 815 (2005) 25-37

2. Salmi, J., Aittokallio, T., Nyman, T.A., Nevalainen, O.S.: Correcting distortions
in 2D-gels — a survey. Technical Report 653, Turku Centre for Computer Science
(2004)

3. Dowsey, A.W., Dunn, M.J., Yang, G.Z.: The role of bioinformatics in two-
dimensional gel electrophoresis. Proteomics 3 (2003) 15671596

4. Quadroni, M., James, P.: Proteomics and automation. Electrophoresis 20 (1999)
664-677

5. Kriegel, K., Seefeldt, 1., Hoffmann, F., Schultz, C., Wenk, C., Regitz-Zagrosek, V.,
Oswald, H., Fleck, E.: An alternative approach to deal with geometric uncertainties
in computer analysis of two-dimensional electrophoresis gels. Electrophoresis 21
(2000) 2637-2640

6. Pietrogrande, M.C., Marchetti, N., Dondi, F., Righetti, P.G.: Spot overlapping in
two-dimensional polyacrylamide gel electrophoresis separations: A statistical study
of complex protein maps. Electrophoresis 23 (2002) 283-291

7. Dunsmore, J.: Comparison of 2d gel spot detection algorithms. http://www.
deltastat.org/2d-gel-algorithms-comparison.html (2005)

8. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on
immersion simulations. IEEE Trans. Pattern Analysis and Machine Intelligence 13
(1991) 583-598



Gaze Estimation from Low Resolution Images

Yasuhiro Ono, Takahiro Okabe, and Yoichi Sato

Institute of Industrial Science, The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
{onoy, takahiro, ysato}@iis.u-tokyo.ac.jp
http://www.hci.iis.u-tokyo.ac.jp/~onoy/

Abstract. The purpose of this study is to develop an appearance-based method
for estimating gaze directions from low resolution images. The problem of es-
timating directions using low resolution images is that the position of an eye
region cannot be determined accurately. In this work, we introduce two key ideas
to cope with the problem: incorporating training images of eye regions with arti-
ficially added positioning errors, and separating the factor of gaze variation from
that of positioning error based on N-mode SVD (Singular Value Decomposi-
tion). We show that estimation of gaze direction in this framework is formulated
as a bilinear problem that is then solved by alternatively minimizing a bilinear
cost function with respect to gaze direction and position of the eye region. In this
paper, we describe the details of our proposed method and show experimental
results that demonstrate the merits of our method.

Keywords: gaze estimation, low resolution, appearance-based method, position-
ing, N-mode SVD.

1 Introduction

Gaze direction is an important cue for understanding human activities since they are
considered to be well correlated with our focus of attention. Thus robust and nonintru-
sive estimation of gaze direction, hereafter referred to as gaze estimation, can be used
effectively for a wide variety of applications. For instance, gaze estimation techniques
can be used for determining how often and which part of a billboard is being looked at
in a public space such as a shopping mall.

One of the key challenges for gaze estimation for such applications is that it is not al-
ways possible to capture high resolution images due to limitation of camera placement.
Therefore, it is important to have techniques for gaze estimation from low resolution
images. For example, consider the case of estimating gaze directions by using images
captured by a surveillance camera already installed in an environment. It is likely that
the camera is far from a subject, and thus only low resolution images of the subject’s
face are available.

Previously proposed methods for gaze estimation, which are classified into two ap-
proaches: model-based methods and appearance-based methods, are not suitable for
the purpose of gaze estimation from low resolution images for several reasons.

Model-based methods usually require high resolution images of human faces to esti-
mate gaze direction accurately. This is because gaze directions are determined from the

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 178-188, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Images of an eye with (a) high and (b) low resolutions. It is not trivial to accurately
extract geometric features of the eye and feature points for positioning from the low resolution
image.

eye’s geometric features localized in images. Among model-based methods, the most
commonly used techniques are the ones based on pupil corneal reflection [2,4,7,17,18].
A gaze direction is determined from the relative position of the pupil center and a glint
reflected on the cornea of an eyeball. Other techniques use the position of an iris cen-
ter or a pupil center obtained from edge detection or ellipse fitting for estimating gaze
direction [5,6,14]. As we see in Figure 1, it is not trivial to extract the above features
from low resolution images of an eye. In contrast, appearance-based methods can be
used for estimating gaze directions from low resolution images because these meth-
ods use pixel values of eye regions for estimating gaze directions, and therefore it
is not necessary to find the eye’s geometric features in input images. Unlike model-
based methods, appearance-based methods have had very few studies devoted to them.
Some researchers have proposed gaze estimation methods using a neural network that
is trained with eye images of known gaze directions [1,10,15]. Recently, Tan et al. de-
veloped a method based on nearest neighbor search that essentially looks for the nearest
training image for a given input image in order to determine gaze direction for the input
image [11].

Unfortunately, the previously proposed appearance-based methods share a common
problem. They require eye regions to be accurately positioned in input images, which
is not always easy due to the nature of low resolution images as we see in Figure 1.
Even a slight positioning error, i.e., error in the position of a cropped eye region, can
degrade the accuracy of gaze estimation significantly. This important problem has not
been addressed in the previous studies.

In this work, we introduce two key ideas in order to cope with the problem. One is
to incorporate training images of eye regions with artificially added positioning errors.
The other is to separate the factor of gaze variation from that of positioning error based
on N-mode SVD (Singular Value Decomposition), which was recently introduced to
the computer vision community by Vasilescu ef al. [12]. We show that estimation of
gaze direction in this framework is formulated as a bilinear problem that is then solved
by alternatively minimizing a cost function with respect to gaze direction and the eye
region’s positioning. In order to examine how well the effect of positioning errors is
removed by our method, we compared our method with an appearance-based method
using PCA (Principal Component Analysis). As a result, we found that our method is
able to estimate gaze directions with significantly higher accuracy than the PCA-based
method.

The rest of this paper is organized as follows. In Section 2, we explain our proposed
method for estimating gaze directions from low resolution images. In Section 3, we
show experimental results demonstrating the merits of our proposed method. Finally,
we present our concluding remarks in Section 4.
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2 Proposed Method

2.1 Overview

The appearance of an eye depends not only upon gaze direction but also upon identities
of subjects, poses of a head, and imaging conditions such as image resolution, response
of a camera, and illumination conditions. In the present study, we focus on the problem
of estimating gaze direction from low resolution images of an eye. Therefore, we do
not consider appearance variations due to other factors such as identities of subjects and
poses of a head. We will describe our plan for future study to deal with those factors in
the Conclusions section of this paper.

Training step

| (1-a) Capturing face images (Sec. 2.3)

(1-b) Obtaining training images
with artificially added positioning errors (Sec. 2.3)

|

(1-c) Constructing third order tensor T (sec. 2.2)

Computing Computing
positioning vectors bJ gaze vectors &

Test step (Sec.2.4.)

| (2-a) Obtaining test image |

\ 4
| (2-b) Computing gaze vector a |

1 | \

| (2-c) Estimating gaze direction |

«

Fig. 2. Flowchart of our proposed method

Our proposed method consists of two steps: the training step and the test step as
summarized in Figure 2. In the training step, we first capture face images with different
gaze directions (1-a), and obtain an enlarged set of training images of eye regions with
artificially added positioning errors (1-b). Appearance variations due to gaze direction
and positioning are then modeled based on 3-mode SVD (1-c). More specifically, we
construct a third order tensor from the training images, and compute a pair of two fea-
ture vectors describing gaze direction and positioning, which we call a gaze vector and
a positioning vector respectively, for each training image. In the test step, we extract the
gaze vector of a test image (2-b), and finally estimate the gaze direction by comparing
the extracted gaze vector with those of the training images (2-c). In Section 2.2, we
explain how the appearance variation of an eye for different factors is modeled by using
3-mode SVD. Then, in Sections 2.3 and 2.4, we describe the training step and the test
step of our proposed method in detail.
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2.2 Appearance Modeling Using 3-Mode SVD

N-mode SVD is one of the natural extensions of ordinary (2-mode) SVD to multiple
modes. Here, a mode is a factor affecting data. For instance, identities, viewpoints,
illumination conditions, facial expressions, and also image pixels can be considered as
modes in face recognition [12].

Our proposed method models variations in the eye region’s appearance related to
three factors, i.e., gaze directions, positionings, and image pixels, by using 3-mode
SVD. Here, positioning means how eye regions are cropped in input images. Let us
consider a set of images of the eye region with different gaze directions and position-
ings. We represent those images by using a third order tensor D. Here, the component
Diji (1<i<I,1<j<J,1<k<K) of the tensor is the k-th pixel value in the image with
the i-th gaze direction and the j-th positioning. I, J, and K are the total numbers of
different gaze directions, different positionings, and image pixels.

We can represent the third order tensor as

I J K
Dijk = Z Z Z Zimn (UG)il (UPOS)jm (UPIX)kn s (D

=1 m=1n=1

where Ug R, UpogeR’*7, and Upx eRE <K are basis matrices for gaze mode,
positioning mode, and pixel mode respectively, and Z;,,,,,, which represents interaction
among basis matrices, is called the core fensor. Basically, they correspond to two or-
thonormal matrices and one diagonal matrix in ordinary SVD. We also denote Eq. (1) as

D = Zx1Ugx2Upos x3Up1x. )

The basis matrix for each mode is computed as follows. First, we unfold the tensor
D and construct a matrix. For instance, we unfold the tensor with respect to the gaze
mode G to obtain the matrix DgeR! X as Dg = [Fy F»...Fk] . Here, the matrix
F,eR!*7 (1<k<K) is a slice of the tensor D with a fixed value of k. Then, by apply-
ing SVD to the matrix Dg as D = Ug XV , we obtain the basis matrix Ug € R >/
of the gaze mode. The basis matrices Upog for the positioning mode and Uprx for the
pixel mode are computed similarly.

The core tensor Z in Eq. (2) is computed by using the tensor D and basis matrices
U(;, Upos, and UPIX as Z =Dx 11j(—;r XQUIIOSX3U1;I—IX'

We define gaze vectors a;€R! (1<i<I) and positioning vectors b;eR’ (1<j<J)
as

def

def
[(11,(12,...,(1[] = S

UL, [bi,b2,....bs] = Upps. 3)
In other words, a;ER’, for example, represents the i-th gaze direction in the feature
space of gaze direction.

For each pair of the gaze vector a and the positioning vector b, the image d of a
corresponding eye region is given by using a third order tensor B

K
Bis €3 Ziji (Uprx)yy )
=1
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as

I J I J
dk = Z ZBijkaibj = Z Z Bk(ij)aibj. (5)
i=1 j=1 i=1 j=1
Here, we represent the tensor 3 in the matrix form B. By,;;) is the (k, Ix(j — 1) +1)

component of the matrix Bprx, which is obtained by unfolding B with respect to the
pixel mode.

2.3 Training Step

In the training step, variations in appearance of eye regions are learned from train-
ing images that are down-sampled from high resolution images of eyes. This is done
because, unlike test images, high resolution training images are easily available, and,
more importantly, the position of an eye can be found accurately in high resolution im-
ages by using existing techniques. For the present study, we used our feature-based face
tracker [8] for finding eye corners.

We first capture a set of high resolution images of an eye with different but known
gaze directions. Then, eye region images without positioning errors are obtained by
cropping rectangular regions from down-sampled images by using the positions of eye
corners. In addition, eye region images with artificially added positioning errors are
obtained by moving the positions of eye corners.

After a set of training images of eye regions is created, we construct the third order
tensor D from the training images and obtain the gaze vectors a; (1<i<I) and the
positioning vectors b; (1<j<.J) from Eq. (3) as described in Section 2.2. Additionally,
we prepare the matrix By, ;;) from Eq. (4).

2.4 Test Step

For each test image, an eye region is found first. It should be noted that, unlike in
the training step, the image resolution of the eye region is not necessarily high. How-
ever, some existing techniques for facial component detection, e.g., the AdaBoost algo-
rithm [3] and the Gabor-like feature filtering scheme [16], can find eye regions even in
low resolution test images.

After an eye region is found, the gaze vector is computed for the eye region. Then,
the gaze direction for the test image is determined from the gaze vector. We will explain
each of the steps in this section.

(1) Extraction of Gaze Vectors. In order to extract feature vectors from test im-
ages, two methods based on projections have been proposed. The first one proposed
by Vasilescu [12] for face recognition projects a test image into the feature space of
face identity by using a set of matrices. The method uses one matrix per each combi-
nation of indices except for that corresponding to identity mode, and thus only yields a
set of candidates for the correct feature vector.

The second method recently proposed by Vasilescu [13] uses a single matrix inde-
pendent of specific values of modes. This method is more elegant than the first one in
the respect that it can simultaneously extract unique feature vectors of all modes from a
test image. However, the method is not applicable to our purpose of extracting feature
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vectors from low resolution images. The method assumes that the number of pixels is
larger than the product of the number of indices in each mode. This assumption, which
requires ' > IJ in our case, is not satisfied.

Accordingly, we introduce an algorithm for extracting feature vectors from low res-
olution images in the context of 3-mode SVD. Let us consider a test image d, and an
image constructed from a gaze vector a’ and a positioning vector b’ through Eq. (5).

Then, we define a cost function f(a’,b’) by f(a’,b’) def

5 2
S (dk -, Z}]:1 (Bk(ij)agb;» , and estimate the feature vectors of the test

image (@, b) by minimizing the cost function as (@, b) = arg ming c g vews f(a',b).

This cost function is bilinear, that is, it is linear with respect to one variable a’ when
the other variable b’ is fixed, and vice versa. Therefore, we can directly and uniquely
extract the feature vectors by alternatively minimizing the bilinear cost function in a
similar manner to Shum [9]. Our proposed method thus relaxes the requirement with
respect to the number of pixels from K > IJ to K > (I 4+ J). In other words, for test
images with a fixed image resolution, our method can use a wider variety of training
images than the previously proposed method [13].

More specifically, the solutions of linear problems with respect to one variable
0f/0a; =0 (1<i<I)and 0f/Ob; = 0 (1<j<J) resultin

J

I
3 3 def def
a=M"d, b=N*'d, (M),,= ZBk(ij)b/ja (N)y; = ZBk(ij)a/ia (6)
j=1 i=1
where the matrix M is the pseudoinverse of M. Therefore, we can assign, for exam-
ple, the initial value of b’ to '(?), and alternatively update the feature vectors according
to Eq. (6) until they converge. Actually, we terminate the iteration when Af(n) def
f(a'™ b)) — f(a'™=1 b'("=1) is less than the predefined threshold. Here, we de-
note the feature vectors at the n-th iteration as a’™ and ("), In this way, the gaze
vector is determined up to an unknown scale factor. Therefore, we normalize a’ by
using the Ly norm to obtain the gaze vector a for the given test image.

In the current implementation, we choose the initial value of &' according to
(a'® y©) = argMilg e fa; as,....as},b'c{bs,bs,....b,} f (@', b'). Namely, we search
for the combination of the gaze and positioning vectors of training images that yields the
image most similar to the test image in the least-square sense. Though the combination
of the initial value might provide local minima of the cost function, our experimental

results imply that the local minima do not affect the results seriously.

(2) Estimation of Gaze Direction. Finally, we determine the gaze direction for the
given test image by using the obtained gaze vector. We find three gaze directions of
the training images nearest to that of the test image, and calculate the gaze direction of
the test image by interpolating them. We do this because we need at least three gaze
directions to represent an arbitrary gaze direction by interpolation. First, we find the
index of the gaze vector of the training image that is the closest to the obtained gaze
vector as i (1) = argmin;eq1,2,.. 1y @ — a;|?. Similarly, we find the indices i(2) and
i(3) of the second and third closest gaze vectors. Then we determine the gaze direction
by interpolating the three gaze directions such that the interpolated gaze vector becomes
the closest to the obtained gaze vector of the test image. This is done by choosing the
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three weights w,, (p = 1,2, 3) that minimize |G — Zi:l Wy | subject to 0<w, <1

and Zi:l wp, = 1. Then the gaze direction g is given as g = 2221 wpg(p), where
g(p) is the gaze direction of i(p).

3 Experiments
3.1 Eye Images for Experiments

(1) Imaging Conditions. We captured facial images of five individuals, and estimated
gaze direction of each subject using our proposed method. In our experiments, we eval-
uated the accuracy of gaze estimation for each subject separately, i.e., using training
and test images of the same subject for gaze estimation. This was done because we do
not deal with appearance variation due to different identities of subjects. To quantita-
tively evaluate the accuracy of our method, we captured images while subjects stared
at targets appearing on an 18-inch SXGA monitor placed at a distance of 50cm from
the subject’s face. Since we calibrated the relative position of the monitor in advance of
capturing images, we could calculate gaze direction corresponding to a 2D position on
a monitor when a user was looking at the position.

Figure 3 shows the target positions displayed on the monitor: circles for training and
crosses for test. Twenty training images and 32 test images were taken for each subject.
Since we do not consider face pose change in this study, we asked subjects not to move
their heads while images were being taken. Each subject was asked to move a mouse
pointer to a randomly appearing target and press the mouse button while the pointer
was placed on the target to capture a face image of the subject staring at the target.

Fig. 3. A layout of targets displayed on the surface on an LCD monitor: circles for training and
crosses for test

X D f} K

Fig. 4. (a) A schematic illustration of the correct corners of an eye (crosses) and the points used for
artificially representing incorrect positioning (dots). (b) An illustration of an eye image cropped
based on the correct positioning. (¢) and (d) show those cropped with the incorrect positionings.
We cropped eye regions so that the feature points in Figure 4 (a) are aligned to the crosses on
both sides.
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Fig. 6. (a) Images cropped based on the correct positioning with various gaze directions. (b)
Images cropped based on the various positionings with a fixed gaze direction.

(2) Cropping Eye Regions. After all face images were captured, we prepared eye
region images for both training and testing. Note that we used down-sampled images for
test images instead of images captured at low resolution in our experiments. This was
necessary for evaluating the accuracy of our method quantitatively. The use of down-
sampled test images enables us to investigate (i) how the accuracy of gaze estimation is
affected by inaccurate positioning of eye regions, and (ii) how the estimation accuracy
changes depending on the resolution of test images.

Eye regions were cropped from down-sampled images by using positions of eye
corners found by our feature-based face tracker [8] and additional positions that were
shifted diagonally from those true eye corners by one step'. Figure 4 (a) shows a
schematic illustration of true eye corners and additional positions with artificially added
positioning errors. In this way, we prepared 25 (= 5 x 5) eye region images per gaze
direction. All the images were aligned by affine transformations as illustrated in Figure
4 (b), (c), and (d).

For testing our method with different image resolutions, we used images with 16 x 48,
8% 24, and 4 x 12 pixels as shown in Figure 5. As we see in those figures, it is impossible
to localize geometric features such as the iris and cornea of an eye if image resolution
is too low.

We show examples of eye regions for different gaze directions in Figure 6 (a). Those
regions were cropped by using correct positions of eye corners. We also show eye re-
gions for the same gaze direction but cropped with positioning errors in Figure 6 (b).
From these examples, we see it is not trivial to estimate gaze directions from low reso-
lution images without being affected by poor positioning accuracy.

3.2 Experimental Results

We quantitatively evaluated the performance of our proposed method, and compared
the performance with that of a method based on conventional PCA from three aspects:

! 'We define one step as 4 pixels, 2 pixels, or 1 pixel for each eye image with 16 x 48, 8 x 24,
or 4 x 12 pixels respectively.
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Fig. 8. (a) Gaze estimation errors for each individual and (b) gaze estimation error averaged over
all individuals

how the estimation accuracy changes depending on image resolution, positionings, and
individuals. The PCA-based method does not treat variations due to changes in gaze
direction and position separately, and projects a test image into the feature space de-
fined by the principal axes computed by using all training images with various gaze
directions and positionings. The feature vector of one gaze direction is defined by the
average of feature vectors computed for images with the same gaze direction but var-
ious positionings. In order to alleviate any bias due to brightness variation among im-
ages, we normalized training and test images for both our method and the PCA-based
method so that pixel values in each image have zero mean and unit variance. We used 3-
dimensional feature space for both our method and the PCA-based method to estimate
gaze direction.

Estimation Error Against Image Resolution. First, we show errors of gaze estima-
tion against image resolutions in Figure 7 (a). The horizontal axis indicates the number
of pixels in the eye images (4 x 12 = 48, 8 x 24 = 192, and 16 x 48 = 768), and the
vertical axis represents the average and standard deviation of errors over five subjects.
This figure shows that the accuracy of our proposed method is higher than that of the
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PCA- based method. Hereafter, we show results for eye images with the lowest resolu-
tion, that is, with 4 x 12 pixels.

Estimation Error for Each Positioning. Second, we show errors for test images with
various positionings in Figure 7 (b). The horizontal axis indicates the index number j for
the positionings of the eye regions. Here, j = 12 corresponds to the correct positioning.
The vertical axis represents the averaged error of five subjects.

Comparing the error at j = 12 with those for other indices, it is clear that the PCA-
based method is sensitive to positioning errors. On the other hand, the errors of our
proposed method are almost the same for all positionings. Therefore, we can conclude
that our method is robust against positioning errors.

Estimation Error for Each Individual. Finally, we show the estimation error of five
subjects A, B, C, D, and E in Figure 8 (a), and the error averaged over the five subjects
in (b). This figure shows that the performance of our proposed method is better than
that of the PCA-based method for all subjects.

Note that the averaged error—2.4 degrees in Figure 8 (b)—is less than half of the
sampling distance of the training images—6.4 degrees, the distance between the nearest
two circles in Figure 3. The experimental results demonstrate that our bilinear model
of two factors, gaze direction and eye region’s positioning, can accurately represent the
appearance variations resulting from the different gaze directions and positionings.

4 Conclusions

In this study, we proposed a new appearance-based method for gaze estimation from low
resolution images, and demonstrated the merit of our proposed method via a number of
experiments. One of the key challenges for gaze estimation from low resolution images
is that eye regions cannot be found accurately due to limited image resolution, which
results in inaccurate estimation of gaze directions. Unlike previously proposed methods,
our method is able to estimate gaze directions accurately even when eye regions are
found inaccurately in input images.

In order to realize gaze estimation that is insensitive to positioning errors, our method
models appearance variation of eye regions due to not only changes in gaze direction
but also changes in positioning of eye regions. This is done by incorporating training
images of eye regions with artificially added positioning errors, and separating the factor
of gaze variation from that of positioning error with a method based on N-mode SVD.
In addition, we showed how the problem of gaze estimation can be formulated as a
bilinear problem which is solved by alternatively minimizing its cost function with
respect to gaze direction and localization of eye regions.

In the present study, we focused on the problem caused by inaccurate positioning
of eye regions in low resolution images. Therefore, we did not consider appearance
variations due to other factors such as subject identities and head poses. For our future
work, we are planning to extend our method to deal with those factors by incorporating
additional modes in the N-mode SVD framework.
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Abstract. An image similarity comparison method for images with minor
distortions is introduced in this paper. The proposed image similarity metrics is
based on a new method to measure structure similarity for image quality
comparisons. We make use of the fact that Dual-Tree wavelet Transform
(DTWT) can provide direction selectivity and keep the structure features
between the original and images with minor distortions. Despite the simplicity
of our method, our experimental results demonstrate the effectiveness of the
proposed method.

Keywords: Image similarity, Wavelet transform.

1 Introduction

Over the last decade or so, the discrete wavelet transform (DWT) has been
successfully used in the signal processing field for a variety of reasons: The wavelet
transform is fast, local in the time and frequency domain, and it provides multi-
resolution analysis of real world signals and images. Unfortunately, the DWT also has
some disadvantages that undermine its broader use in signal and image processing
applications. First, it is shift sensitive, and small shifts in the input signal can cause
abrupt variations in the distribution of energy between wavelet coefficients at
different scales. Second, the DWT coefficients have poor directional selectivity. To
overcome these problems, some other wavelet transforms have been studied recently.
For example, over-complete wavelet transform, discard all down-sampling in DWT to
achieve shift invariance. Unfortunately, this method incurs great computational cost,
and the issue of poor directional selectivity remains unsolved. Several authors[2], [6]
have proposed that in a formulation where two dyadic wavelet bases form a Hilbert
transform pair, the DWT can provide the answer to some of the aforementioned
limitations. The Kingsburg’s dual-tree wavelet transform (DTWT) generates complex
coefficients by using dual tree filters to obtain their real and imaginary parts.

Image similarity measurement is one of the important issues in information
processing, and a major challenge for computer science. For example, finding the
appropriate similarity measures between extracted features is the key task for content-
based image retrieval.

A simple but inefficient way to evaluate the similarity between two images is to
use a simple distance measure, such as the mean square error (MSE), which is easy to

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 189-197, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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calculate and is mathematically convenient. However, it does not provide a consistent
relationship with the quality perceived by the human visual system (HVS). Recently,
Wang et al. [8] have developed a measure of structure similarity (SSIM) for image
quality assessment. The SSIM metrics models perception implicitly by taking into
accounts high-level HVS characteristics. They showed that the simple SSIM
algorithm provides excellent image quality prediction performance for various
distorted images. The proposed approach for similar images comparison is motivated
by the fact that the DTWT provides good directional selectivity for extracting the
global features of images, and therefore they are directly related to structure similarity
in the image match. In this paper, our goal is to extend the current SSIM method to
the dual-tree wavelet transform domain, and make it become an image similarity
metrics, called dual-tree wavelet transform SSIM (DTWT-SSIM). We model the
distorted images by the familiar affine transformations and show that the introduced
DTWT-SSIM index is stable under the affine transformations. Our experimental
results illustrate that the proposed image similarity measure yields a significantly
superior identification rate than the MSE and SSIM methods when the distortion of
translation, scaling and rotation is small.

2 Dual-Tree Wavelet Transform

As shown in Fig. 1, in the one-dimensional DTWT, two real wavelet trees are used,
each capable of perfect reconstruction. One tree generates the real part of the transform

and the other one is used in generating the complex part. In Fig. 1, ho(n) and
h,(n) are the low-pass and high-pass filters of a Quadrature Mirror Filter (QMF) pair

in the analysis branch. For the complex part, {g,(7), g,(n)} is another QMF pair in
the analysis branch. All filter pairs discussed here are orthogonal and real-valued. Each
tree produces a valid set of real DWT coefficients #; and v, , and together they form the

complex coefficients d ,=u;+ jvi. It has been shown [7] that if filters in both trees

can be made to be offset by a half sample, then the two wavelets satisfy the Hilbert
transform pair condition.

A separable two-dimensional DWT can be computed efficiently in discrete space
by applying the associated one-dimensional filter to each column of the image, and
then applying the filter to each of the resultant coefficients. Therefore a normal two-
dimensional DWT produces four band-pass sub-images at each level, corresponding
to low-low, low-high, high-low, and high-high filtering. As with one-dimensional
DWT, the low-low parts coefficients represent the smooth version of the original
function. However, the other three sub-bands wavelet coefficients of two-dimensional
DWT capture features along lines at angles of {0°, 90", 45"} To overcome the
drawbacks of DWT, Kingsbury [2] have developed the DTWT, which allows perfect
reconstruction while still providing shift invariance and directional selectivity. The
DTWT transform has the ability to differentiate positive and negative frequencies, and
it produces six band-pass sub-images of wavelet coefficients at each level, all of
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which are strongly oriented at angles of £15°, #45°, and 75" The DTWT expansion of
an image f(x) is given by

F@=26,G ke )+ > > d (jhy, (x), where i =+15, 445, and +75.

k i jzj, k
¢,(j,,k) and d (j,k) are the Jscjualing and wavelet coefficients of the DTWT, using
dual-tree scaling functions ¢ , and wavelet functions ‘//;',k , respectively. For the sake
of simplicity of notation, from here on we will denote the wavelet coefficients
dw(j,k) of animage f(x) as d_ later.
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Fig. 1. Kingsbury’s Dual-Tree Wavelet Transform with three levels of decomposition
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Fig. 2. (a) The star image. (b) The reconstructed images, from left to right, at levels 1, 2, and 3
for the DTWT. (bc) The reconstructed images, from left to right, at levels 1, 2, and 3 for the
DWT.
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For the sake of comparison, the reconstructed images, from left to right, at levels 1,
2, and 3 for the DWT are shown below the DTWT in Fig. 2. Clearly, the presence of
directional selectivity in the DTWT shows its ability to extract the structure or
connectedness of natural images.

3 Image Similarity

3.1 DTWT-SSIM Index

This application of the DTWT for image similarity assessment is inspired by the
success of the spatial domain structural similarity (SSIM) index algorithm [8]. The
principle of the structural approach is that the human visual system is highly adapted
and capable of extracting structural information (the structure of the objects) from a
visual scene. As a result, a measure of structure similarity should be a good
approximation of image similarity. In the spatial domain, the SSIM index that
quantizes the luminance, contrast and structure changes between two image patches
x={x;li=1,.M} andy={y, li=1, ..M} is defined as [8]

Quu, +C)20 +C,)

2 2 2 2 4
(u, + u, + C)Ho. + o,+ C)

S(xy) = (1)

where C and C, are two small positive constants;

M 2 1 M 2 1 M
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Roughly speaking ¢ and o can be regarded as estimates of the luminance and

contrast of x, while o measures the tendency of x and y to vary together. It

can be shown that the maximum SSIM index value equals 1 if and only if x and y are
identical.

A major drawback of the spatial domain SSIM algorithm is that it is highly
sensitive to translation, scaling and rotation of images. It must be remembered that the
DTWT is approximately shifted invariant and directionally selective. So, hopefully
the similar global structure of minor distorted images can be extracted by comparing
their DTWT coefficients. Therefore we attempt to extend the current SSIM approach
to the dual tree wavelet transform domain and make it insensitive to small
“non-structure” geometric distortions caused by the image capturing process, rather
than by the changes of the structures of the objects in the visual scene.

In the dual tree wavelet transform domain, let us suppose that
dx - {d){ i li=1,2,.,N andj=1,....6) and d, = {d}’vy‘ li=1,2,..,N andj =1,...,6}
are two sets of the DTWT wavelet coefficients extracted from one of the
decomposition levels at the six sub-bands of the images x and y. We replace the

u, and g in the Eq. (1) by summing all the six sub-bands of DTWT coefficients.
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The concept of total sum is precisely equivalent to the average when the numerator
and the denominator in Eq. (1) have the same divisor. Now the spatial domain SSIM
index is naturally extended to a DTWT domain SSIM as follows.

(21lexllldy + Kl)(z’o-dxdy +K,)

DTWT — SSIM (x,y) =
(U +4; +K)0, +0; +K,)

(2% " +Kj(2zzdd{i l—u (d!, |—y‘ )+ KZ]
j=1 i=1 [ ’ 4.

[(u ) +<u‘ ) +KJ[ZZ(Id{,- I—q,,i,‘)%ZZ(Idj,,- l—u )’ +K2J

j=1 i=1 j=1 =1

@

Here | d, | denotes the modulus (absolute value) of the complex numbersd’
and K, and K, are small positive constants to avoid instability when the denominator

is very close to zero.

3.2 Sensitivity Measure

The affine transformation is a convenient way to describe geometric distortion in
many imaging system. A planar affine transformation is equivalent to the composed
effect of three linear transformations, translation, rotation and scaling. Now we can
describe the image translation, rotation and scaling operation by matrices and
coordinate system as follow. The general affine transformation is commonly written
in the familiar x,y-notation for coordinates in the plane.

‘x2 'xl
=A + B,
pp) Vi

X X X
where , represents the pixel intensity located at position in the
N Y2 Vi

reference and altered version, respectively, and matrix A and vector B specify the

1 0 b
desired operation. For example, by defining A=|:0 :| and B =|:b1 , this
2

1
transformation, can carry out pure translation. Pure rotation uses
cosd —siné o . . .
the A=| | and B = . Similarly, the pure scaling operation
sinf cos@ 0
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Fig. 3. DTWT-SSIM results under different value of translation, scaling (zooming) and rotation

We also know that the condition number X(A) quantifies the sensitivity of a

specified transformation problem. Define the condition number kx(A) by

K(A) =l AI_ILAT I

oo

1<isn %

n
where A is a nXn matrix and Il All = maxZIaij l.
Jj=1

For a non-singular matrix, K(A)=IlAI_IA™I_> IA-A"I_=IT1_=1 In

general matrices with small condition number, K(A)=1, are said to be well-
conditioned. It is obvious to see that all the pure affine transformation matrices are
well-conditioned. Furthermore, we have that the composition matrix of these well-

conditioned affine transformations still satisfies K(A) =1. Let A, A, be any of the

pure affine transformation, by using K(A;A,) < K(A,)k(A,), we conclude that the
composition of any two of these affine transformations also satisfies
k(A A,) =1 Therefore the affine transformation is insensitive to small distortions.

An example of showing the stability of DTWT-SSIM index under different affine
transformation is depicted in Fig. 3. The original digit image “5” is shown in the
leftmost of Fig. 3(a), 3(b), and 3(c), then with the different numbers of distorted images,
including translation, scaling (zooming) and rotation. The DTWT-SSIM values under
different affine transformations are shown in Fig. 3(d), 3((e), and 3(f), respectively. We
can see that the DTWT-SSIM index between the original image and the distorted image
steadily decreases as the distortion increases. Besides that, the DTWT-SSIM has various
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decreasing rates corresponding to the translation, scaling and rotation transformation as
the distortion of the three affine transformations increases.

4 Test Results

To demonstrate the efficiency of the DTWT domain SSIM measure task, we conduct
a handwritten digit matching experiment using the MNIST handwritten digit data
base. In the case of handwritten digit recognition, this means that digits of each test
class contain position displacement, size change, slight rotations distortion or changes
in line thickness. As shown in Fig. 4(a), we have ten standard digit templates (MNIST
samples) with each size of 32x32 pixels.

| 2345 67 8 90¢0
(a)

ll'

il B4

L PP W

9
I

w— ~N AN
T oN — g

o A RS
™ o N og o~

% ?
5 2
3/ O |
85 17
7] ) 7|2

QO vwoWw
n

|

q
3
b
8

FIONNNNO

g
7
6

8

(b)

Fig. 4. (a) Standard digit templates. (b) Subset of test images (randomly selected from 4860
images).

To evaluate the DTWT-SSIM measure for comparing images, we apply the Q-shift
version of the DTWT with three levels of decomposition to the two given image
being compared. It is well known that the amount of energy increases toward the low
frequency sub-bands after decomposing the original image into several sub-bands
with general wavelet transforms [4]. Therefore we calculate the DTWT-SSIM index
using Eq. (2) with only the lowest sub-band coefficients. Also we compute the
DTWT-SSIM index using the original image size 32x32 because the window size
from 4x4 to 32x32 is feasible to compute the distortions.

To model some possible instances of a category, it must be present in the prototype
set. So, we create a total of 4860 artificial images by combing shifting to the right or
left (three pixels), scaling (10%), rotating (up to 20 degrees clockwise or counter-
clockwise), and blurring the standard templates (see Fig. 4(b)).

MSE, SSIM, and DTWT- SSIM are used as the matching criterion in the following
matching procedure. We first choose one image from the 4860 distorted images as the
test image, and then a 3-level DTWT is applied to decompose the test image. The next
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step is to compute the similarity index between the test image and the ten standard
digit templates. The test digit image is then “identified” as belonging to the category
that corresponds to the highest similarity score among the ten standard templates. If
the resulting test digit image is in the same category as it should be, then we say it
matched, otherwise we say it is unmatched (Fig. 5.).

The ten stdandard DTWT |_.| Library |
digit templates :

Calculate the simularity
mdex between the ten .
The test digit image stdandard digit Idfi:]ulfyi:::l l:S[
templates and the test 5 5

digit image

Fig. 5. Block diagram of the proposed matching procedure

Table 1. Correct identification rate using different similarity metrics (%)

digit MSE SSIM %TH\VXT'
1 68.11% 34.36% 94.03%
2 19.55% 36.83% 92.18%
3 12.96% 20.58% 90.95%
4 19.96% 34.57% 87.24%
5 13.58% 21.19% 95.27%
6 19.14% 17.90% 94.44%
7 22.63% 18.93% 78.19%
8 8.02% 16.67% 82.30%

9 9.88% 15.23% 86.01%
0 17.70% 38.27% 93.00%
Average 21.15% 25.45% 89.36%

The identification performance is significantly different when different similarity
measures are employed. The resulting correct identification rates are shown in Table 1.
The identification match rate of the MSE and the spatial domain SSIM are low, as
expected, since both measures are sensitive to translation, scaling and rotation of
images. Table 1 shows the correct identification rate of the MSE and the SIM is as low
as 25%. By contrast, the correct identification rate of the DTWT domain SSIM gives the
best result, 89%.
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5 Conclusion

The proposed DTWT domain SSIM image similarity index method is easy to
implement. Even though hardly any pre-processing or training is required, the
performance result of the presented method is considerable better than those of the
traditional MSE or SSIM method. It is our conclusion that the main reasons for this
success are first due to the fact that the dual-tree wavelet transform provides good
directional selectivity in six orientations at dyadic scales. Secondly, the image
translation, rotation and scaling transformations are stable to the small perturbations.
They all contribute the ability to substantiate the image structure similarity index.

This introduced method is still in its infancy. We are working on developing it into
a more systematic approach that can potentially be employed in a much broader range
of applications, such as face recognition, or content-based image retrieval. Both of
these two research areas put emphasis on finding similar geometric structure of
objects or scenes and thus, it is suitable for the proposed DTWT-SSIM to gain
exploitations.

Acknowledgments

This research was supported by the National Science Council of R. O. C. Taiwan.
(NSC 93-2115-M-019-002 and NSC 95-2115-M-019-002).

References

[1] N. G. Kingsbury, "Image Processing with Complex Wavelets", Phil. Trans. R. Soc.
London. A, Sept. 1999.

[2] N. G. Kingsbury, “Complex wavelets for shift invariant analysis and filtering of signals,”
Appl. Comput. Harmon. Anal., vol. 10, no 3, pp. 234-253, May 2001.

[3] N. G. Kingsbury, “A dual-tree complex wavelet transform with improved orthogonality
and symmetry properties,” in Proc. IEEE Int. Conf. Image Processing, Vancouver, BC,
Canada, Sept. 10-13, 2000.

[4] O. J. Kwon and R. Chellappa, “Region adaptive subband image coding”, IEEE
Transactions on Image Processing. Volume 7, Issue 5, May 1998 pp. 632 — 648.

[5] M.J.T. Smith and T. P. Barnwell III, “Exact reconstruction techniques for tree-structured
subband coders,” IEEE, Acoustics, Speech, and Signal Processing, vol. 34, pp.431-441,
June 1986.

[6] I. W. Selesnick. “The design of approximate Hilbert transform pairs of wavelet bases,”
IEEE Trans. on Signal Processing, vol. 50, pp.1144-1152, Mar 2002

[7]1 I. W. Selesnick. “Hilbert transform pairs of wavelet bases,” IEEE Signal Processing Lett.,
vol. 8, pp. 170-173, June 2001.

[8] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
From error Visibility to structural similarity,” IEEE Trans, Image Processing, vol. 13, pp.
600-612, Apr. 2004.

[9] Zhou Wang and E. P. Simoncelli, “Translation Insensitive Image Similarity in Complex
Wavelet Domain”, IEEE, Acoustics, Speech, and Signal Processing, 2005. Proceedings.
(ICASSP '05). vol. 2 ,pp. 573 — 576, March 18-23, 2005



A Novel Supervised Dimensionality Reduction Algorithm
for Online Image Recognition

Fengxi Songl’z, David Zhang3, Qinglong Chen', and Jingyu Yang4

! New Star Research Inst. of Applied Tech. in Hefei City, Hefei 230031, P.R. China
% Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P.R. China
? Hong Kong Polytechnic University, Hong Kong, P.R. China
* Nanjing University of Science & Technology, Nanjing 210094, P.R. China
songfengxi@yahoo.com, csdzhang@comp.polyu.edu.hk,
gl_chen@sina.com, yangjy@publicl.ptt.js.cn

Abstract. Image recognition on streaming data is one of the most challenging
topics in Image and Video Technology and incremental dimensionality
reduction algorithms play a key role in online image recognition. In this paper,
we present a novel supervised dimensionality reduction algorithm—Incremental
Weighted Karhunen-Loeve expansion based on the Between-class scatter
matrix (IWKLB) for image recognition on streaming data. In comparison with
Incremental PCA, IWKLB is more effective in terms of recognition rate. In
comparison with Incremental LDA, it is free of small sample size problems and
can directly be applied to high-dimensional image spaces with high efficiency.
Experimental results conducted on AR, one benchmark face image database,
demonstrate that IWKLB is more effective than IPCA and ILDA.

Keywords: Dimensionality reduction, supervised learning, image recognition,
streaming data, incremental algorithm.

1 Introduction

One of the most challenging problems in image recognition is the high dimen-
sionality of an image space. The dimensionality of a high-resolution image is so
large that conventional recognition algorithms are no longer technically feasible due
to the curse of dimensionality and the heavy burden of computation. The result is
that a high-dimensional image space has to first be compressed into a low-
dimensional feature space, a procedure known as dimensionality reduction or
feature extraction.

Dimensionality reduction algorithms are well studied in the past several decades.
There are two main kinds of dimensionality reduction methods: unsupervised and
supervised. Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA) are typical examples of unsupervised and supervised dimensionality reduction
methods respectively. In general, PCA is more suitable for concise representation or
visualization of high-dimensional image data whereas LDA is more appropriate for
pattern classification or recognition.

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 198 —207, 2006.
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The typical implementation of various dimensionality reduction methods assumes
that a complete training dataset is given in advance, and learning is carried out in one
batch. However, in real-world applications of image recognition such as online image
retrieval, robot vision, and surveillance, we often confront situations where a training
set is not complete. Actually in most cases, data are presented as a stream of sample
chunks. Streaming data are different from persistent data in that (a) they are transient,
(b) usually they can only be read once, and (c) any systems working on them have no
control over the order in which data streams arrive. To deal with streaming data,
various incremental algorithms for unsupervised and supervised dimensionality
reduction have been proposed.

Incremental Principal Component Analysis (IPCA) is a well studied technique and
has a long history. Existing IPCA algorithms fall into two categories. The first
category of IPCA [1-3] computes principal components directly from training
samples by iteration. The second category of IPCA [4-6] computes principal
components by performing matrix decomposition on an approximated total scatter
matrix.

Due to the low effectiveness of IPCA algorithms, researchers pay more attentions
to incremental supervised dimensionality reduction methods in recent years. Pang et
al. proposed an Incremental Linear Discriminant Analysis (ILDA) algorithm for
online face recognition [7]. Unfortunately, this ILDA method has some shortages.
First, its updating scheme is memory-consuming. Second, it confronted with the so-
called small sample size (SSS) problem and the strategy used to address SSS problem
was not clearly stated. Later, Yan et al. proposed an Incremental Orthogonal Centroid
(IOC) algorithm to extract discriminant features for text categorization [8]. IOC
algorithm has two characteristics. First, it computes discriminant vectors directly from
training samples by iteration. Second, its calculation procedure involves products of
column vectors and row vectors both with high dimensionalities. The first
characteristic of IOC leads to low effectiveness and poor efficiency for high-
dimensional data, and the second property of IOC makes it inapplicable for high-
resolution image recognition.

To overcome shortages of existing incremental feature extraction techniques, a
new supervised dimensionality reduction algorithm for online image recognition—
Incremental Weighted Karhunen-Loe¢ve expansion based on the Between-class scatter
matrix (IWKLB) is proposed in this paper. In comparison with Incremental PCA,
IWKLB is more effective in terms of recognition rate. In comparison with
Incremental LDA, it is free of small sample size problems and can directly be applied
to high-dimensional image spaces with high efficiency. Experimental results
conducted on AR, one benchmark face image data-base, demonstrate that IWKLB is
more effective than IPCA and ILDA.

2 Problem Definitions and Notations

For better comprehension, some important notations are introduced at first. Following
that, the formal definition of our problem is given in this section.
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2.1 Important Notations

Let X =[X,,....Xy]€ R™ be a data matrix of N training samples with ¢
classes, where the ith training sample is represented as a d-dimensional column vector
X,,and n=[N,,...,N_]€ R be the count vector whose elements are numbers of

training samples from each class. It is obvious that

sum(n)zZN,. =N. (D

i=1

Let I, (1<i<c) denote the index set for samples from the ith class. Using the

1
class average sample m; = —ZX i the global average sample is given by
i JEl;
1 e
m=———»>M»n =—in. 2)
sum(n) NI

Here, M is the centroid matrix defined as

M =[m,,...m_]e R™“. 3)
The between- and the within-class scatter matrices are defined as follows:
Sb=ZNi(mi—m)(mi—m)T=HbeTeRdXd. 4)
i=1
S,=>>(x;—m)(x,-m)" =H HeR"™, )
i=l jel,
Where
H, =[/N,(m, —m),...,,/N,(m_,—m)]e R, (6)
H =[x,-m,,..X,-m,]e R”Y m_ =m.,if jel. . 7)
W 1 ki N N ki 1 JE I

2.2 Problem Definitions

Let us consider an initial training dataset 7, = {X,...,X, } € R ¢ with class labels in
the set of class label L={l,.,c} , and streaming data

T, ={x(k), k=12,..} c R“ . Formally, the online image recognition problem on
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streaming data consists of four steps: (1) Preprocessing, (2) Feature extraction, (3)
Recognition, and (4) Updating. In the step of preprocessing, the initial training dataset is
used to construct the initial discriminant model Q= (H ,H,,M ,n,L) . In the step of

w?
feature extraction, the discriminant matrix W 1is first derived from the current
discriminant model and then used to compress the centroid matrix M and the new

coming sample Xe€ T, to W'M and W'X . In the step of recognition,

arg min

I<i<c

or the minimum distance classifier. In the step of updating, the new coming sample X

w' (m, — X)H is predicted to be the class label of X based on the centroid

with its true class label [(X) is joined in the training dataset, and the discriminant model

Q=(H,,H,,M,n,L)is updated.

3 Incremental Weighted KLB

In this section, the concept of Weighted Karhunen-Lo¢ve expansion based on the
Between-class scatter matrix (WKLB) is studied. Following that, an incremental
algorithm of WKLB is presented.

3.1 Concept of WKLB

Karhunen-Lo¢ve (KL) expansion is widely used as a dimensionality reduction tool in
data processing. Principal Component Analysis is actually a typical KL-expansion
based on the total scatter matrix. Unlike PCA, which is an unsupervised feature
extraction method, KL-expansion based on the Between-class scatter matrix (KLB)
exploits the class label information. As a result, KLLB is more effective than PCA in
terms of recognition rate. In fact, as a feature extraction method, KLB is equivalent to
Orthogonal Centroid (OC) [8] and its favorable performance has been confirmed by

Park et al. [9]. The discriminant matrix of KLB, V' consists of eigenvectors of S b

corresponding to nonzero eigenvalues.

KLB has two major advantages over other supervised feature extraction methods
such as LDA for high-resolution image recognition. First, it is free of the SSS
problem. That is, it can directly be applied to high-dimensional image space without
the need to first apply other dimensionality reduction techniques such as PCA
transformations in Fisherfaces [10] or pixel grouping in Null Space Method [11].
Second, by use of Singular Value Decomposition Theorem as in [12], its time- and
memory-complexities are very low. Since KLB only uses the discriminant
information between classes, however, its effectiveness might be promoted by
exploiting the discriminant information within classes as well.

The Weighted KLB has two key points. First, the discriminant matrix of KLB, V

is multiplied by an orthogonal matrix U . That is, discriminant vectors of KLB is

rotated to eigenvectors of S, . Second, each eigenvector of S is weighted according

to its corresponding eigenvalue.
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The detailed calculation procedure of WKLB is as follows:

Step 1. Perform eigenvalue decomposition on the between-class scatter matrix S,
to obtain the discriminant matrix of KLB, V

Step 2. Map each sample vector X to obtain its intermediate representation Vix
Step 3. Perform eigenvalue decomposition on the within-class scatter matrix of

project-ed samples, g ,» Which is given by
S =V'sV. ®)

Let N =diag(4,,..., /4,) be the eigenvalue matrix of S ., in ascending order and

U = [u,,...,u, ] be the corresponding eigenvector matrix. It follows that
U'SU=N. ©)

Step 4. Choose a weighting function f and calculate the weighting matrix f (N)
using the following formulae

f(N) =diag(f(i,)..... f(1,)). (10)

Step 5. Calculate the discriminant matrix of WKLB, W which is given by
W =VUf(N). (11)

Since, the eigenvalue [/, reflects the separability of samples when they are
projected onto the projection vector W, . The smaller the eigenvalue (/;, the better the

projection vector W, . Thus, the weighting function f should be a non-increasing

function and it should not overemphasize projection vectors with tiny eigenvalues and
not over-depress projection vectors with huge eigenvalues.
In this paper, the following weighting function is used in all experiments.

f Q)= A+log(1+ )" (12)

Due to space limitation, detailed discussion on the selection of the weighting
function is omitted from this paper.

3.2 IWKLB Algorithm

To describe the Incremental WKLB algorithm more clearly, we divide the alg-
orithm into three sub-algorithms: preprocessing, feature extracting and updating
as follows.
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Algorithm 1.1. Preprocessing of IWKLB

Input: Data matrix X =[X,,...,X, ] and class labels of the initial N
samples, [(X,),....[(Xy)
I1(x;)€ L={1,...,c} is the class label of the jth sample X
Output: Discriminant model Q=(H ,H,,M ,n,L)

1. Compute H,, H , M ,n,and L using the formula in section 2.1

Algorithm 1.2. Feature Extracting

Input: Precursors of the between- and within-class scatter matrix, A, and H

Output: Discriminant matrix of WKLB, W

1. Perform eigen decomposition to H bT H, as H bT H, = P'AP

2. Calculate the discriminant matrix of S, = H, H bT using the formulae
V<« H,PA,).

/I Here A, is a diagonal matrix with all nonzero eigenvalues, P, the

corresponding eigenvector matrix

3. Compute the within-class scatter matrix S, of projected samples using the

formulae
S «(VTH )HIV)

4. Perform eigen decomposition to S , s S L =U "NU
5. Calculate the discriminant matrix of WKLB using formula (10-12)

Algorithm 1.3. Updating

Input: Discriminant model Q= (H  ,H,,M ,n,L), new training sample X,

w?

and its class label /(X)
Output: Renewed discriminant model Q= (H ,,H,,M ,n,L)

1. If X is from a newly introduced class, i.e. [(X)¢& L
2. Update the set of class label, L using the formulae
L+ {L,1(x)}
3. Update the centroid matrix, M using the formulae

M «[M,x]
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4. Update the count vector, I using the formulae
n<«[n,l]
5. Compute the global average sample m using the formulae (2)
6. Update the precursor of the between-class scatter matrix, F, using the

formulae
Hb — [Hb’ X _m]
7. Else // Suppose l(X) = J

8. Update the precursor of the within-class scatter matrix H using the

w

formulae

N
(X_mj)]
+

9. Update the centroid matrix, M using the formulae
N, m;+x
m; ¢ —————
' N, +1
10. Update the count vector, N using the formulae
N, <N, +1

11. Compute the global average sample Im using the formulae (2)
12. Compute the matrix, H, using the formulae (6)
13. End if

4 Performance Evaluation

To evaluate the performance of IWKLB, we compare the recognition rates of
IWKLB, IPCA [6], and a refined version of Pang’s ILDA [7] on the AR face
image database when the Centroid classifier is used. In this section, we first discuss
how to calculate the value of the parameter & in WKLB. Following that, we
present experimental results of these three incremental dimensionality reduction
algorithms.

4.1 Optimal Value of the Parameter Alpha

We try to experientially estimate the optimal value of ¢ . In the following
experiment, we use ORL face image database which contains 10 different images
for 40 individuals. All images are grayscale and normalized with a resolution of
112x92. Five randomly selected images of each person are used for training and the
remaining five for testing. Thus the total amount of training samples and testing
samples are both 200. There is no overlapping between the training set and the
testing set.
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Fig. 1. Average recognition rate of WKLB vs. the value of the parameter ¥

Fig. 1 displays the curve of average recognition rate of WKLB with varying &
over ten runs. Here, the centroid classifier with Euclidean distance is used in the
experiment.

From Fig.1 we find that the optimal value of & is around -2. Apparently, the

optimal value of ¢ might be database-dependent. For simplicity, we let & = —2 in
the following experiments to evaluate IWKLB on AR face image database. An
interesting fact is that although the parameter & has not been finely tuned, the
recognition rates of INKLB are significantly higher than those of IPCA, and ILDA as
illustrated in Fig. 2.

4.2 Experimental Results

The subset of AR [13] face image database used in this paper contains 1680 face
images of 120 individuals. All images are grayscale and normalized with a resolution
of 50x40 and preprocessed using histogram equalization. In experiments, we
randomly select one third of total samples, i.e. 560 (= 1680/3) samples as initial
training samples and sequentially feed the remaining 1120 samples into IPCA, ILDA,
and IWAS algorithms in a random order.

Fig. 2 displays trends of average recognition rates of various incremental facial
feature extraction methods on the subset of AR of ten runs when the number of new
training sample varies from 1 to 1050. Here the parameter ¢ of IWKLB takes the
value of -2.

We find that while the average recognition rates of ILDA and IWKLB increase
with the number of new training samples, the average recognition rates of
IPCA decline gradually. The probable reason is that the quality of the approximated
total scatter matrix degenerates when the number of new training sample is
increasing.
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Fig. 2. Average recognition rates of IPCA, ILDA, and IWKLBAS vs. the number of new
training sample on the AR face image database

5 Conclusions

We develop a new supervised dimensionality reduction algorithm—Incremental
Weighted Karhunen-Loeve expansion based on the Between-class scatter matrix
(IWKLB) in this paper. In comparison with IPCA and ILDA, IWKLB is simple in
theory and implementa-tion. Experiential studies demonstrate that IWKLB is a
promising feature extraction algorithm for streaming data.
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Abstract. This paper proposes a new feature selection algorithm. First, the data
at every attribute are sorted. The continuously distributed data with the same
class labels are grouped into runs. The runs whose length is greater than a given
threshold are selected as “valid” runs, which enclose the instances separable
from the other classes. Second, we count how many runs cover every instance
and check how the covering number changes once eliminate a feature. Then, we
delete the feature that has the least impact on the covering cases for all
instances. We compare our method with ReliefF and a method based on mutual
information. Evaluation was performed on 3 image databases. Experimental
results show that the proposed method outperformed the other two.

1 Introduction

For pattern recognition problems, the data represented in feature space can be of very
high dimensionality. However, some features are redundant and do not provide extra
information over the others. In some worse cases, feature extraction could introduce
noise, which does not contribute to pattern classification but degrade the classification
performance. Thus, how to find a compact and effective feature subset is a significant
issue, to which a great deal of effort has been devoted so far. There are two types of
methodologies for dimensionality reduction: The unsupervised methods like PCA and
the supervised methods, for which the class labels of the training samples are prior
known. In this study, we foucse on the supervised dimensionality recduction, which is
referred to as feature selection. Feature selection plays an important role in a variety
of applications, including image classification [9,10]. Some reviews on feature
selection can be found in [1-3]. According to [4], feature selectors can be sorted into
two different groups: wrappers and filters. Wrappers employ a given classifier to
evaluate features such that the feature selection is optimized for the given classifier.
Filters evaluate features according to some measurements of class separability. In
general, filters are less computationally complex than wrappers. As for filters, some
methods measure the power of every independent feature in terms of class
separability while some other methods measure the power of a subset of features as a
whole. According to [3], only exhaustive search and the branch and bound methods

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 208 -217, 2006.
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[12,13] are optimal feature selectors. However, the branch and bound methods are
based on an assumption that a performance index drops monotonously. In fact,
investigations on developing new feature selectors have never stopped. Recently,
mutual information based methods have received much attention [7,14-15].

In this study, we propose a new feature selection method, which belongs to the
filter category. Its implementation is outlined as follows. First, the data at every
attribute are sorted. The continuously distributed data with the same class labels
are grouped into runs. The runs whose length is greater than a given threshold are
selected as “valid” runs, which imply that the instances falling into such runs are
separable from the other classes because enough instances from an identical class
occupy spatially close positions. Second, we count how many runs cover every
instance and check how the covering number changes once eliminate a feature. We
delete the feature that has the least impact on the covering cases for all instances.

We compare our method with ReliefF [5], which is member of the Relief family
[6], and the method based on mutual information [7]. Both methods belong to the
filter category. We evaluate the 3 methods on 3 image databases provided in UCI
Machine Learning Repository [16]. Experimental results show that the proposed
method outperformed the other two.

2 The Method

The feature selection method is based on run covering. First, we sort the data values at
every attribute. After the sorting, the data at every attribute can be divided into some
segments, where the class labels of the elements in every segment should be identical.
Such a segment is referred to as a run. If an instance is covered by at least one run
(One of its attribute is included in the run.) whose length is greater than a given
threshold, it means that this instance is separable from the other classes. By
eliminating recursively such attributes that the removal of them will not affect the
class separability in terms of run covering, a feature subset can then be selected. In the
following, we first give the definition of runs. Then, we describe the feature selection
algorithm. Finally, we provide a feature ranking method by which we can identify the
least important feature and delete it in every loop.

2.1 Runs

The runs at every attribute can be extracted via the following procedure:

(1) Suppose that there are N instances. After sorting the kth attribute, we obtain
XiSX<...<xy. Denote the corresponding class labels as [C(x;),C(Xz),...,C(Xiw)].
Note that C(x)e {1,2,...,.L}, i=1,2,...,N, if there are L classes. Also, the indices of the
corresponding instances are denoted as [1(Xy;),[(Xy2),- ... (Xwv)]-

2) If Xp=Xpin1=-..=Xpirv but C(X)=C(Xi1)=...=C(Xy;+y) does not hold at the
same time, it means that Xy;, Xy 1,....Xx;+v are not separable. To denote that, we let
C(X)=C(Xy i41)=...=C(Xy;+1)=0. Note that only O¢ {1,2,...,L}. Thus, it is not a valid
class label.
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3) If C(x)=C(Xyj51)=...=C(Xp;+0)20, then, [Xy,Xiis15..-Xpirp] forms a run. The
length of this run is U+1.
(4) Repeat (3) until all runs at every attribute have been found.

Some examples regarding the previously defined runs are shown in Fig. 1, 2, and 3,
where the class labels distributed along a given attribute are illustrated. We can see
that Fig. 1, 2, and 3 contains 2, 3, and 12 runs, respectively. Clearly, the case shown
in Fig. 1 promises the best separability between the 2 classes while Fig. 3 corresponds
with the worst case. The two cases shown in Fig. 1 and 2 are better in that the run
length is greater. A longer run corresponds with a better case in terms of class
separability. These examples show that the runs defined as above characterize the
class separability to some extent. If the maximum run length at an attribute is too
short as the case shown in Fig. 3, it means that the instances are not separable at this
attribute. If we set a threshold of 5 and look for such runs whose length is greater this
threshold, we can find out 2, 1, and O runs in Fig. 1, 2, and 3, respectively.

However, run length is a coarse characterization of class separability. It is known
that NV individually strong attributes are not certainly the best N attributes if combined
together (N attributes performing well alone could perform unsatisfactorily as a
team.). In this study, our focus is how to choose the best team, not the best N
individuals. This can be achieved by using the run covering described in the next
section.

1111111112222222222 22222111111111122222 1122112211221122112212

Fig. 1. Class labels at a given  Fig. 2. Class labels at a given Fig. 3. Class labels at a given
attribute attribute attribute

2.2 Eliminate Redundant Attributes Based on Run Covering

Prior to describing the feature selection algorithm, we give some definitions as
follows.

(1) R={R;}: The run set including all the runs at every attribute.

(2) IR I: The length of the run R,eR.

(3) A: The attribute set that contains all remainder attributes following the feature
elimination process described below. Initially, this set contains all the attributes. After
the feature elimination process stops, the residual attributes are the finally selected
features.

(4) /* Comments on pseudo codes */.

Following is the feature selection (feature elimination) algorithm:

(1) Assign a score to each attribute to represent the individual power of every
attribute in terms of its contribution to class separability. Let us denote these scores
as w(l), w(2), ...., and w(K). If w(i)<w(j), it means that the ith attribute is better
than the jth attribute in terms of class separability. This is also referred to as feature
ranking. The detailed ranking algorithm is provided in section 2.3.
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(2) Compute C, = Zh,(xkj,Ri,T) , where
ki

I I(xy)=lAx;€ RAIR, I>T
0 else '

/* If X4; is a member of run R; and the corresponding run length is greater than a

hl(xkj,Ri,T):{

threshold 7, then, the corresponding instance I(X;;)=[ has been covered once. C;
corresponds with how many times the /th instance has been covered*/
(3) VpeA, compute C,_, = Zh,(xkj,Ri,T).
ki k#p
/* The times that instance / has been covered without the kth attribute */

(4)Find P={p: pe AAZ|g(C,)—g(CL_p)|=0}, where

1
) 1 x>0
X)= .
§ 0 x<0

/* P corresponds with the redundant attributes, the elimination of any of which will
not cause a critical change on the times that each instance has been covered, where
the critical change means that the covering times for any instance go down from a
positive value to 0 suddenly after eliminating an attribute. */

(5) Find g =argmax{w(p)| pe P} and eliminate g from A.
/* Delete the least important feature in set P, where the criterion to select the least
important feature refers to the feature ranking algorithm described in the next
section */.

(6) If P=9¢, delete g = argmax{w(p)|pe A}
/* If no feature satisfying that elimination of it will not change the covering case
for every instance, then, delete the least important feature ranked by the feature
ranking algorithm described in the next section. */

(7) Let C=C,, and Go to (3) until the number of the residual attributes in A is
equal to the predefined desired number.

Some discussions about the above algorithm are given below. The central idea of
this algorithm is: Look for such attributes that the class separability will not be
affected if eliminating them. The run covering plays an important role in this
algorithm. First, we select the runs whose length is greater than a given threshold 7.
Every selected run covers the instances that are separable at a given attribute since the
instances from the same class distribute very closely to each other (They are within a
run). As every instance has K attributes, it has the chance to be covered by K runs at
most. If an instance is covered V<K times by the runs, then, eliminating one attribute
from the V attributes will not affect the classification of this instance because it is still
covered by the runs at the other V-1 attributes, which means that this instance is still
close to the instances from the same class at the V-1 attributes. Taking all the
instances into account together, we hold the following idea. Suppose that Q<N
instances are covered by at least one run. When we eliminate one attribute, if the Q
covered instances are still covered by at least one run, then, it means that this attribute
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is redundant and contributes no additional information in contrast to the reminder
attributes. Eliminating it should have no impact on the classification. In case there
exist R>1 attributes that the removal of any of them will not chance the covering, we
eliminate only one attribute among the R attributes and then recompute the covering.
In such a case, the selection of the attribute to be eliminated is not random. It is based
on a feature-ranking criterion. That is, we firstly score every attribute according to its
individual significance in terms of class separability. Then, we always eliminate the
least important one from the R attributes. The feature-ranking criterion is described in
detail in the next section. The above procedure can be repeated to eliminate redundant
attributes recursively.

In the above algorithm, T is the only parameter (See step 2), which determines how
many runs are valid in counting the covering number. We let the threshold 7=0.1xN,
where N denotes the number of all instances. We have tested a couple of different
values for T and found that 7=0.1XN is a satisfactory one in this study, which not only
leads to a satisfactory overall classification performance but also promises a stable
classification performance when Te< [0.1XN-A,0.1XN+A], where A is a relative small
positive value. Note that T can be scaled to adapt to problmes from different domains.

The above algorithm can be easily extended to multi-class classification. We only
need to decompose the multi-classification into multiple two-class classifications
(pairwise classification). Then, we look for such attributes the elimination of which
do not affect the covering for every two-class classification. For example, if there are
L classes, then, we decompose the L-class separability computation into L(L-1)/2
parallel two-class separability computations. Here, step (1)~(3) and step (7) are
implemented as L(L-1)/2 parallel processes. In step (4), the intersection of the
L(L-1)/2 solutions forms P. The other steps are the same as described prevoiusly.

XXXXXXX+X++++++ XXXXXX++XX+++++

Fig. 4. Distribution of two classes along a Fig. 5. Distribution of two classes along a
given attribute given attribute

2.3 Feature Ranking

Suppose that there are M and N samples in class X and Y and the kth attribute of the
two classes are {xi1,X2,-...Xmr} and { Vi1, Vi2,- . -V}, respectively.
We define the relationship between x;; and yj; as

1 < Vi
Xki < Vkj ) (l)
0 xp 2y

H(xkhij):{

The above definition means that if xy; lies in the left side of yy;, then, H(x;,yi)=1. Else,
H(x,y1,)=0.

Based on the relationship between two instances, we define the overall relationship
between the two classes in terms of the kth attribute as

M N M N
dy = max{ZZH(xki,ykj),ZZH(ykj,xk,-)}. @)

i=1 j=I i=1 j=1
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It summarizes the relationship between every class X sample and every class Y
sample. Also, it reveals the separability between the two classes and can be
understood as a distance measure between the two classes. This is explained via the
following two examples.

See the example shown in Fig. 4, where the samples in the overlapping region are
underlined. Suppose that, in the from left to right order, the “X” marks represent one-
dimensional class X samples x;,x,,...,xg and the “+” marks represent one-dimensional
class Y samples yy,y»,...,y7, respectively. The underlined “x” corresponds with xg and
the underlined “+” corresponds with y;. With regard to x;, all the 7 samples of the
other class lie in the right side of it. So, we obtain >;H(x;,y)=7. With regard to x,
only 6 samples of the other class lie in the right side of it. Thus, we hold >,;H(xs,y;)=6.
In fact, 2,;H(x;y;) figures out how many samples in class Y locate in the right side of
x;. In contrast, > :H(y;x;) reveals how many samples in class Y locate in the left side of
x;. Therefore, 2.2 ;H(x;y;) is a measure of the degree that class X locates in the left
side of class Y and 2.2 H(y;x;) characterizes the degree that class X locates in the
right side of class Y. Obviously, max{>.2;H(x;y)), 2:2;H(y;x;)} reveals the relative
relationship between the two classes of interest. For the above example,
22 H(x;,y)=55 and 22 H(y;x;)=1. This means that most samples of class X locate in
the left side of class Y. In accordance with Eq. (1), the separability measure between
the two classes is 55. Now, consider another example shown in Fig. 5, where the
overlapping region is larger than the case shown in Fig. 4. Correspondingly, the
separability measure between the two class computed via Eq. (1) is 52. Taking into
account the two examples, it is easy to see that a smaller separability measure
corresponds with a more severe overlap between the two classes of interest, namely, a
worse case in terms of separability. On the contrary, a greater separability measure,
which corresponds with a smaller overlapping degree, means a better case in terms of
separability.

Suppose that there are L classes and class j contains N(j) samples, j=1,2,...,L. Let
x,(a’ ) denote the kth attribute of the ith sample of class j. We further assume that every

sample has K attributes. The feature-ranking algorithm is described below. Suppose

that the input is { x,il.j) I j=1,2,...,L; i=1,2,....N(j); k=1,2,...,K}. With regard to the kth

attribute, compute the separability between every pair of classes via Eq. (1) and

Eq. (2), that is, {d,(c”"’) lu=1,...,.L-1; v=u+1,...,L}. Then, let Zd,(c”"’) be the overall
u,v

discrimination power of the kth attribute, according to which all attributes can be

ranked.

2.4 Computational Complexity

Suppose every class contains N samples. Let L denote the class number, K the feature
number, and M the dimension of set A. The complexity of step 1, step 2, and the loop
from step 3 to step 7 is roughly O(KXLx(L-1)xN®), O(Lx(L+1)xKxN), and
O(MX(M+1)XLX(L+1)xN), respectively. The overall complexity is basically the sum
of the three parts.



214 S. Yang et al.

3 Experimental Results

We tested the proposed algorithm with UCI machine learning databases [16]. The
performance evaluation was conducted with the letter recognition database, the
satellite image classification database, and the image segmentation database. The data
properties of the 3 databases are summarized in Table 1. We also compare our method
with 2 other methods: ReliefF [5] and the method based on mutual information [7]. In
classifying every data set, we use 3 classifiers: 1-nearest neighbor (1-NN), decision
tree, and support vector machine (SVM). Here, we use the weka software to
implement Relief and the decision tree as well as the SVM classifier [17]. We apply
10-fold cross validation for performance evaluation [8].

The classification accuracy against the feature number for the image segmentation
data is illustrated in Fig 6, 7, and 8, where 1-NN, decision-tree, and SVM classifiers
are applied, respectively. Obviously, the proposed method outperforms the other two
methods. For the 1-NN classification based on the proposed feature selector, when
the feature number is equal to 3, the classification accuracy reaches 97.23%. Then, the
classification accuracy changes very little, between 96.49% and 97.58%. The
classification accuracy using the full attributes is 96.62%, which is less than that using
only 3 features selected by the proposed algorithm. See Fig. 6, the other two methods
perform much worse than the proposed method. See Fig. 7 and Fig. 8, the same case
takes place when comparing the 3 methods based on decision tree and SVM
classification.

The classification accuracy against the feature number for the satellite image data
is shown in Fig 9, 10, and 11, where 1-NN, decision-tree, and SVM classifiers are
applied, respectively. It can be seen that the proposed method outperforms the other
two methods given any feature number.

The classification accuracy against the feature number for the letter recognition
data is exhibited in Fig 12, 13, and 14, where 1-NN, decision-tree, and SVM
classifiers are applied, respectively. The proposed method promises comparable
performance to ReliefF while both methods outperform the method based on mutual
information.

In the above 3 benchmarks, we can see that different classifier leads to different
classification performance but the comparison among different feature selection
methods never changes with the choice of classifiers. According to Fig. 9~11, the
proposed method approaches the best performance or a satisfactory perofrmance very
quickly but the other two methods do not. The above comparisons show that the
proposed method performs well in selecting useful features for image classification.

Table 1. Data properties

Data #Attributes #Instances | #Classes
Image 19 2310 7
Satlmage | 36 6435 6

Letter 16 20000 26
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4 Concluding Remarks

In this study, we propose a new feature selection method. It is based on run covering.
The heart of this algorithm is to check whether the removal of a given attribute will
change the covering of every instance. If not, it can be decided that this attribute is
redundant. The run length plays an important role in judging whether an instance is
separable from the other classes at a given attribute. The experiments confirmed the
effectiveness of this method in terms of selecting useful features for image
classification. Note that the run-length based method works with not only the linear
separable attributes but also the attributes that are not linearly separable.

Another important issue is the stopping criterion, that is, what feature number is
satisfactory to stop the feature elimination procedure. For the limited space of this
paper, we did not present the criterion and the related performance evaluation. One
stopping criterion can be: If the covering case for any instance changes after
eliminating a feature, then, stop the feature selection. It is easy to implement. We just
need to modify step (6) of the algorithm to be: If P=¢, the desired feature number has
been approached.
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Abstract. We present a fully automated method to estimate the lo-
cation and orientation of the left ventricle (LV) from four-dimensional
(4D) cardiac magnetic resonance (CMR) images without requiring user
input. The method is based on low-level image processing techniques
which incorporate anatomical knowledge and is able to provide rapid,
robust feedback for automated scan planning or further processing. The
method relies on a novel combination of temporal Fourier analysis of
image cines and simple contour detection to achieve a fast localization
of the heart. Quantitative validation was performed using two 4D CMR
datasets containing 395 patients (63720 images), with a range of cardiac
and vascular disease, by comparing manual location with the automatic
results. The method failed in only one case, and showed an average bias
of better than 5mm in the apical, mid-ventricular and basal slices in
the remaining 394. The errors in the automatically detected LV orien-
tation were similar to those found in scan planning when performed by
experienced technicians.

1 Introduction

We investigated methods for the robust, accurate and fully automatic identifica-
tion of heart location and orientation from CMR examinations. The method is
targeted at clinical applications and must therefore be fast, efficient and reliable.
It should be able to return the location, orientation and approximate contours
of the LV in the absence of any user input. The method is expected to have
two important applications. Firstly, the detected LV contours could be used as
input to higher level segmentation methods including deformable model based
analyses. Secondly, the method could be used to speed up image acquisition by
facilitating the fully automatic planning of CMR examinations.

Segmentation of the LV in CMR images is important for quantitative assess-
ment of cardiac function and many automatic approaches at different levels of
image processing have been proposed to tackle this problem. Low level techniques
depending on local image intensity characteristics are fast but lack robustness. A
priori knowledge can be incorporated into deformable model-based approaches;
however, the efficiency and robustness of these methods is heavily dependent on

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 218-227, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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the initial contours or models. Most semi-automatic methods such as [1] require
manual initialization. Fully automatic algorithms have been proposed but many
of these are computationally intensive [2] or lack a wide range of clinical valida-
tion [3]. One [4] has been validated in 121 cases but assumes that the location of
the heart is approximately at the center of the MR image. Specialized methods
have also been proposed for tagged [5] and perfusion images [6], however their
application to patients with a wide range of clinical disease remains uncertain.

Automated CMR image planning has been proposed as a strategy for speed-
ing up scan acquisition [7,8]. The core requirement is for a fast and accurate
calculation of the three-dimensional (3D) position and orientation of the LV. A
deformable template based method [7], which estimated the LV axis by fitting
many feature points of major thoracic organs in the localizer images, was compu-
tationally intensive. To avoid this problem, [8] proposed another method which
employed a priori knowledge of the average LV direction to speed up the proce-
dure. The scout images were then segmented by thresholding and both the LV
and right ventricle (RV) were localized by comparison with morphologic char-
acteristics of the candidate objects. However, in our experience clinical image
variability compromises the robustness of this method.

We relied on simple methods to automatically estimate heart location and
orientation in order to provide rapid feedback to higher level processes. The
assumptions of our method are listed below. Any cases which violate these as-
sumptions (eg congenital heart disease in which the LV and RV are transposed)
would not be expected to be solved by our method.

1) The heart is the only large organ in the thorax with a temporal fundamental
frequency equivalent to the cardiac cycle.

2) The orientation of the heart is similar across a wide variety of (non-congenital)
cardiac diseases (this assumption is validated below).

3) The short axis (SA) slices are ECG gated and have been planned approxi-
mately orthogonal to the long axis of the LV (we show that this assumption
is not restrictive in practice).

4) The positions of the LV in adjacent slices are spatially and temporally co-
herent.

5) The septal myocardium (heart muscle) is close to the centroid of the heart
and has the LV and RV blood pools on each side. The boundary between
the LV blood pool and septal myocardium is not degraded by large papil-
lary muscles or trabeculations (which are not typically expected in this area
anatomically).

The reminder of the paper is organized as follows. In Sect. 2, we describe the
details of our method. In Sect. 3, we present the results from 395 patients from
two independent clinical trial datasets. The conclusion is provided in Sect. 4.

2 Method

Our method is based on the novel combination of the Fourier transform (FT) in
the temporal domain with a priori orientation and shape information in space.
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The FT is employed to calculate an average (DC) image and first harmonic
(H1) magnitude image for each cine slice. Even in severely diseased hearts, this
method successfully identifies the heart in most cases. The output of the FT
is then used to derive a region of interest (ROI) and the threshold level which
robustly delineates the LV. This four step process is summarized below:

1) Organize the frames for each slice and apply the FT over time to obtain the
DC and H1 images for each slice (Sect. 2.2).

2) Compute a ROI for each slice and the centroid for the whole heart from the
H1 images (Sect. 2.3).

3) Find a pixel on the septal myocardium and compute the threshold level to
delineate blood from myocardium in the DC images (Sect. 2.4).

4) Threshold the DC images and locate the LV on all slices (Sect. 2.5).

2.1 Patient Data and Ground Truth

Two clinical datasets are utilized in this study. The ONTARGET (Ongoing
Telmisartan Alone and in combination with Ramipril Global Endpoint Trial)
dataset contained 330 patients with cardiac and vascular disease recruited from
10 MR centers world-wide as enrolled in the CMR substudy to ONTARGET [9].
This study was the source of the a priori heart orientation information which is
integrated into our method. Data from the second trial known as ZEST (New
Zealand Eplerenone aortic Stenosis Trial) was used for independent validation
purposes.

ONTARGET Dataset. The 330 patients had a range of disease histories: 294
had coronary artery disease, 46 had peripheral arterial disease, 111 had diabetes,
202 had hypertension and 192 had suffered a previous myocardial infarction
(with the total exceeding the number of patients due to multiple diagnoses).
The patients were recruited in six countries and imaged using standard SSFP
cardiac cine sequences on Siemens, Philips and GE scanners. Either prospectively
or retrospectively gated images were acquired in six equally spaced SA locations
from apex to base. Typical imaging parameters were TR /TE /flip /FOV =
30ms /1.6 ms /60° /360 mm, slice thickness 6 mm, image matrix 256 x 208. There
were typically 25 temporal frames per slice, depending on the heart rate. All cines
were acquired during breath-holding of 8-15 seconds duration.

ZEST Dataset. The ZEST dataset was collected for the purpose of determining
the treatment effect of Eplerenone in patients with asymptomatic moderate or
severe aortic stenosis (to be published). 65 patients were scanned at nine centers
within New Zealand for the primary assessment of LV mass. The image data
used for validation in this study was collected during the baseline visit. The
imaging parameters were similar to the ONTARGET trial.

Ground Truth. The ground truth for the heart location and orientation was
determined manually by two experienced technicians operating independently
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(d)

Fig. 1. Manual definition of heart orientation (a) center of the LV on an apical SA
slice, (b) center of the LV on a basal SA slice, (c) RV insertion points for defining V,
and (d) right handed coordinate system

on the end-diastolic images. The 3D orientation of the LV long axis (V) was
defined by two points manually placed in the middle of the LV blood pool at
the apex and the base respectively (Fig. la and 1b). The orientation of the RV
(Vi) was defined by the centroid of points placed on the endocardial insertion
of the RV on all SA slices showing the RV (Fig. 1c¢). The remaining axis (V)
was oriented posteriorly to complete a right handed coordinate system (Fig. 1d)
[10]. The average directions V,, V,, and V, from all ONTARGET cases were
then computed for use in the automated method below.

2.2 Fourier Transform over Time

The heart is the only large structure in the thorax with substantial motion at
a frequency given by the heart rate, and this characteristic makes the heart
distinguishable by analyzing changes in pixel intensity. Figure 2b shows two
typical pixel intensities through time. P, is a pixel at the boundary between
the LV blood pool and the septal myocardium and its intensity changes through
a large range over time. P,,; is also located close to the boundary of two differ-
ent structures but is relatively static. Previously the standard deviation of pixel
intensity has been used to locate the heart [11,12], however we found that in
around 20% of cases the standard deviation images were contaminated by ex-
cessive high frequency noise (Fig. 2g). The differences between Py, and P,,; are
most clearly appreciated in the magnitude of the first harmonic (H1) component
of the FT (Fig. 2c), even though their DC components are very similar (Fig. 2d).
We therefore computed the FT for every pixel in the image and then used the
DC component (Fig. 2¢) and H1 image (Fig. 2f) in the subsequent analysis. This
method provides excellent delineation of the cardiac structures, as well as the
great vessels such as the aorta.

2.3 Fast ROI Analysis

A cardiac centroid and region of interest (ROI) containing the heart were cal-
culated from the H1 images for each slice as follows. Firstly, in order to reduce
the effect of noise and signal from non-cardiac structures, the H1 images were
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Fig. 2. Temporal Fourier transforms for each pixel in the time sequence (a) image
showing a pixel near a moving boarder inside the heart (P;,) and a pixel near a sta-
tionary boarder (Pout), (b) pixel intensity versus time, (c) comparison of the magnitude
of the first seven frequency components for P;, and P,y:, (d) comparison of the DC
components, (e¢) DC (average) image, (f) H1(first harmonic) image and (g) standard
deviation image

filtered with a smoothing filter and all pixels with a magnitude less than 5%
of the maximum magnitude within the 3D volume were set to zero. Secondly,
the ROI for each slice was iteratively refined. For each iteration, the centroid of
the H1 image was computed for each SA slice. A 3D line was then fitted to the
centroids of all SA slices by linear least squares. A distance distribution of all
H1 pixels to the 3D line was calculated and weighted with each pixel’s intensity
value. A Gaussian curve was then fitted to this distribution and all pixels greater
than a certain distance from the line were removed. The cut position to define
this cylinder of interest y was calculated using Eq. 1:

y=p+V2erf(z)o (1)

where x is the percentage of the pixels the cylinder should include (95% on
our experiments), u is the mean and o is the standard deviation of the Gaus-
sian distribution. The 3D centroid of the H1 volume was then computed and
compared to the previous 3D centroid. Iteration terminated when the distance
between successive 3D centroids was less than one pixel. In most cases, the
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Fig. 4. Calculation of the threshold level (a) search line for threshold shown on the
ROI image, (b) intensity for each pixel showing local minimum for the septum S, (c)
intensity gradient for each pixel showing the position of the maximum gradient (max)

iteration terminated after only one loop. Finally, the ROI was adjusted on each
slice individually using the Gaussian fitting method to produce circular regions
of interest of appropriate diameter on each slice. The results are shown in Fig. 3.

2.4 Parameters for Blood Pool Segmentation

In order to provide an initial segmentation of the LV blood pool, as well as a sep-
aration of the RV and LV blood pools, we used the DC images cropped by their
respective circular ROI (Fig. 4a) to locate a pixel within the septal myocardium.
The threshold level which best discriminated the blood and myocardial signals
was then calculated as follows. Firstly, the mid-ventricular SA slice closest to
the 3D centroid was chosen. The center of the ROI was obtained by intersecting
the 3D least squares line (from Sect. 2.3) with the slice, marked C' in Fig. 4a.
This point is almost always close to the interventricular septum. A line passing
through C was defined in the average direction of the RV (V). The intensity of
the DC image along this line (Fig. 4b) was then used to locate the septum by
searching for a local minimum within the region where the curve was less than
the average intensity level (M; and My are the two intersection points between
the average intensity level and the curve in the neighbourhood of S). Once a
septal point S was found, the LV could be located on the —V, side. The blood
pool threshold level was then determined by searching for the pixel with the
maximum gradient between M; and Ms (maz in Fig. 4c). To avoid the noise
and uncertainty inherent in analyzing only a single line, we also analyzed eight
additional lines parallel to V', and computed the average value of these results.
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Fig. 5. Locating the LV blood pool (a) LV blood pool detected on the middle slice by
thresholding, (b) convex hull applied to the middle slice, (c¢) projection of the LV blood
pool onto an adjacent slice, (d) thresholding and selection of the most similar binary
object as the detected LV blood pool, and (e) convex hull applied to the new slice

2.5 LV Detection

The LV blood pool in the middle slice (defined as the slice closest to the 3D
centroid from the H1 volume) was localized by thresholding on the —V, side
of S, as shown in Fig.5a. A convex hull (Fig. 5b) was then used to reduce the
impact of the papillary muscles, as in many other papers (e.g. [5,8]).

To find the LV blood pool in adjacent slices, we modified the method proposed
in [5]. The analysis was based on binary images created by thresholding, and as-
sumed that the LV regions are spatially coherent between slices. The LV blood pool
detected in the middle slice was projected to its two neighboring slices and the bi-
nary objects obtained by thresholding on the neighboring slices compared with it.
Rather than project the region in the direction normal to the slice [5], we projected
in the average long axis direction V ,, in order to improve robustness to the orienta-
tion of the image planes. The binary object most similar to the projection in each
slice was then selected. The similarity of the two objects was calculated by the area
of the intersection divided by the area of union [5]. Figure 5b is the middle slice
with the detected LV blood pool superimposed on it. The region is projected to
its neighboring slice (Fig. 5¢) and the most similar object is then found (Fig. 5d).
Finally, the convex hull is applied to the new region (Fig. 5e).

With this method, the LV regions on all slices were located (Fig. 6). The
similarity between the projected and binary regions could be very low on the
basal slice because of the leakage of the blood pool region during thresholding.
In such cases, an erosion operation was iteratively used to improve the leakage.
If the operation could not satisfy the requirement of a maximum number of

§ O

fa) by (c) {d) - ] L]

Fig. 6. Example of the detected LV blood pool on all SA slices (apex to base from left
to right)
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iterations, then no region was reported, as is shown in Fig. 6f. A 3D line was
then fitted to the centroids of the resulting LV regions to define the final V.

3 Results

The fully automated method was implemented in Matlab and required approx-
imately 4.13 seconds (not compiled) to run on a PC (Pentium IV 3.2GHz) for
each case, excluding the DICOM file reading time. The first experiment was
performed on the 330 cases in the ONTARGET dataset which had initially been
used to define the average V,, V, and V, directions. The algorithm failed to
detect the LV in only one case, where it found the RV. To validate the robust-
ness of the method, it was then tested against the ZEST dataset. It contained 65
independent cases which had not been used in any way during the development
of the method. There were no failures in this group.

Errors between manual and automatic methods are reported below. The ON-
TARGET evaluation included only the 329 successful cases.

(a) Angular Errors. We first investigated the inter-observer error in ground
truth by determining the average difference in V,, between Observer A and Observer
B, which was 3.5 £ 2.4 degrees. We also computed the difference between the mean
directions V., V, and V', from each observer, which were 0.4, 3.0 and 3.0 degrees re-
spectively. In 98% of cases, V', was within 24 degrees (for Observer A which was the
worst case) of V., showing that the LV orientation is remarkably consistent across
patients. The average difference between the ground truth V,, (Observer A and B)
and (i) the automatic method and (ii) the normal to the SA image planes defined
by the technologist during scanning are given in Tab. 1. The magnitude of the au-
tomatic errors are very similar to the errors associated with the positioning of short
axis scans during the planning of the SA slices at the MRI scanner.

(b) Position Errors. In order to compute the position errors, both the ground
truth V,, and the automated V, were intersected with the image planes and the
distance between the two intersections calculated relative to the ground truth
reference. The slices closest to the apex and base and the slice midway between
these two are presented for the purposes of comparison. Figure 7 shows the
distribution of errors for the worst case (Observer A) for the ONTARGET data.
It can be seen that the automatic results and the ground truth agree closely with

Table 1. Comparison of the orientation errors (mean + standard deviation in degrees).
The parallel SA scan planes are planned to be orthogonal to V. during image acquisition
and should therefore have normals aligned with V.

Automatic V,, Normal to SA

scan plane
ONTARGET Ground truth V, Observer A 6.4 & 4.4 6.3 £3.7
ONTARGET Ground truth V, Observer B 6.1 4.1 6.8+4.0
ZEST Ground truth V., Observer A 6.2 +4.7 6.5+ 3.7

ZEST Ground truth V. Observer B 5.6 + 4.1 7.6 £4.7
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Fig. 7. Distance plots (mm) of automatic V, relative to Observer A on apical, middle
and basal slices for the ONTARGET dataset (mean and standard deviation shown for
y and z directions under each plot)
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Fig. 8. Distance plots (mm) of automatic V, relative to Observer A on apical, middle
and basal slices for the ZEST dataset (mean and standard deviation shown for y and
z directions under each plot)

each other. There is a small systematic bias in the V, direction which may be
caused by the conceptual differences between the manual and automatic methods
(for example the ground truth V,, was measured only at end-diastole while the
automatic V,, was based on images from throughout the cardiac cycle).

(b) Zest Results. As the ONTARGET dataset had been used during the de-
velopment of the method, the ZEST dataset was used to provide an independent
validation. The same methods were used to calculate the angular the position
errors and these are also presented in Tab. 1 and in Fig. 8. In all cases the errors
were similar to those from the ONTARGET dataset.

4 Conclusion

A fully automatic method of determining the position and orientation of the LV
from MR images presented in this paper has been found to be both efficient and
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robust. The errors in the automated method are similar to those found when
the orientation of the normal to the short axis scan planes are compared with
LV long axis ground truth data.
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Abstract. Optical character recognition occupies a very important field in digi-
tal image processing. It is used extensively in daily life. If the given image does
not have a bimodal intensity histogram, it will cause segmenting mistake easily
for the previous algorithms of image binarization. In order to solve this problem,
a new algorithm is proposed in this paper. The proposed algorithm uses the the-
ory of moving average on the histogram of the fuzzy image, and then derives the
better histogram. Since use only one thresholding value cannot solve this prob-
lem completely, the edge information and the window processing are introduced
in this paper for advanced thresholding. Thus, a more refine bi-level image is
derived and it will result in the improvement of optical character recognition.
Experiments are carried out for some samples with shading to demonstrate the
computational advantage of the proposed method.

1 Introduction

It is important in image processing to select a better threshold value automatically with-
out requiring from the user to adjust a set of parameters each time when it is applied.
The threshold value often extracts objects from an image. In order to get the useful in-
formation from them, to make segmentations of these images is extremely important.
The bi-level image of document is to extract text from the background. To run the op-
tical character recognition (OCR) systems properly, the OCR needs a refine bi-level
image of document.

The cell-phone has already mass-produced with universal, even combine the func-
tion of the digital camera named as smart-phone in recent years. It may be combined
with the functions of OCR and translation to form a special machine. With taking a doc-
ument image from the special machine, the special machine can help people to translate
the words of foreign language into the words of their home language in the future. How-
ever, this document image is a degraded document image with shadows, non-uniform
illumination and poor quality of the source. It is relatively difficult to obtain satisfactory
bi-level image.

Histogram thresholding is a well-know technique for bi-level image. In current tech-
niques, the histogram thresholding is usually classified into tow classes, which are
global thresholding and local adaptive thresholding. Global thresholding find a thresh-
old from the information of an entire image to divide image pixels into foreground
or background classes. Sahoo et al. [1] compared the performance of more than 20

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 228-237, 2006.
(© Springer-Verlag Berlin Heidelberg 2006
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global thresholding methods. The comparison showed that Otsu’s method [2] gave the
better performance than others. Trier and Jain [3] evaluated 11 popular local threshold-
ing methods. In their evaluations, method of Niblack [4] produced the bi-level image
with highest quality. Thus, the better recognition rate can be got by using OCR for
this bi-level image. With using the features of texture, Liu and Srihari [5] proposed
a local thresholding method that selects an optimal threshold from a set of candidate
thresholds. Solihin and Leeham’s method selects an optimal threshold using histogram
modified by integral ratio technique. Zhao’s method [6] uses the operation of multiple
window size to select a local threshold. A recent exhaustive survey of 40 image bina-
rization methods, both global and local, is presented in Ref [7]. If the document image
contains slow changing gray level of the background, local thresholding methods work
well. Otherwise, it is appeared that none can be tune-up with a set of operating param-
eters good for all images. These techniques have been widely used in document image
analysis.

In this paper, we propose a new method. The proposed method consists of three
steps. In first step, with the theory of moving average [8], we modify it for the his-
togram of an image and derive a new algorithm named Moving-Average-Histogram
for obtaining a smooth shape histogram. This smooth shape histogram contains fewer
valleys in the envelope of histogram. Then in the second step, with using the general
global bi-level algorithm, such as Otsu’s method [2], for finding a more refine thresh-
old value. However, just using one threshold value cannot resolve the shaded problem.
With using the edge information from Sobel edge detection [9] and window process-
ing, a two thresholding method is proposed in this paper. It can derive a more refine
bi-level image. Experiments are carried out for some degraded document images that
take from the smart-phone to demonstrate superior performance against four well-know
techniques.

In next section, we review the best previous methods used in our experiments. De-
tail algorithm for deriving a smooth envelope of histogram is given in Section 3. By
combining with the edge information, the proposed algorithm for obtaining the refine
bi-level image is then presented in Section 4. Experimental results are shown in Section
5. Concluding remarks and potential applications are provided in the last section of this

paper.

2 Compared Related Works

In this section, we review one global and three local thresholding methods that are used
for the comparison and evaluation with our approach in this paper. Otsu’s method [2] is
a global thresholding technique to divide the histogram by selecting the threshold value
to maximize the variance between the divided regions when the histogram of the two
fixed points are divided with a threshold value as a standard. In Bernsen’s method [10],
the threshold

T(z,y) = (Ziow + Znign)/2

is used for each pixel (x,y) , where Zj,,, and Z;4p are the lowest and highest gray
levels in a square r x r neighborhood centered at (z,y). If the value Zp;gn — Ziow is
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less than an another threshold [, the pixel (x, y) is set to background. Trier and Taxt [3]
recommend = 15 and [ = 15.

The idea of Niblack’s method [4] is to vary the threshold over the image, based on
the local mean and local standard deviation. The threshold T'(x,y) at pixel (z,y) is
calculated as

T(z,y) =m(z,y) +k-s(z,y)

where m(x,y) and s(x, y) are the sample mean, and standard deviation values, respec-
tively, in a local neighborhood of (x, y). The size of the neighborhood should be small
enough to preserve local details, but at the same time large enough to suppress noise.
Trier and Jain [3] recommend to take 15 x 15 neighborhood and the constant £k = —0.2.

Sauvola and Pietikainen [11] propose a method that solves this problem by adding
a hypothesis on the gray values of text and background pixels, which results in the
following formula for the threshold:

T(x,y) =m(z,y) + (1 - k(1 - s(z,y)/R))

where R is the dynamics of the standard deviation fixed to 128 and & takes on positive
values (usually set to 0.5). This method gives better results for document images.

3 Algorithm of Moving Average

The original images used in this paper are taken from textbook newspaper, and maga-
zine by the smart-phone with 640 x 480 resolution. Let f(x,y) be the original image,
where = and y represent the coordinate values of each pixel in this image and their
ranges are from 0 to 639 and from 0 to 479, respectively. In order to separate the text
from the background, it is very important to select an optimal threshold 7" of gray-level.
The pixel with gray-level less than or equal to T is called the character point. Pix-
els having a gray level lower than the threshold value 7" are labeled as character (black,
i.e., 0 gray-level), otherwise background (whiter, i.e., 255 gray-level). Thus, the bi-level
image g(z,y) can be derived from

_J0, flz,y)<T
g(@,y) = {255, flz,y) > T.

A popular technique for analyzing both the overall stock market and individual stock
is the theory of moving average [8] of prices, which is used to detect both the direction
and the rate of change. Some number of days of closing prices is chosen for the calcu-
lation of a moving average. After initially calculating the average price, the new value
for the moving average is calculated by dropping the earliest observation and adding
the latest one. This process is repeated daily or weekly. The resulting moving average
line supposedly represents the basic trend of stock prices. Let r be the gray-level of an
image and let n,. be the number of pixel for gray-level r. Then the original histogram
h(r) of this image can be expressed as

h(r) =n,.
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Fig. 1. Illustration of obtaining the different histograms for the propose Moving-Average-
Histogram algorithm (a) original image (b) histogram with m = 6 (c) histogram with m = 12
(d) histogram with m = 24 (e) histogram with m = 30 (f) histogram with m = 72

When the shape of the original histogram does not contain only one valley, the tradi-
tional thresholding methods will derive a not appropriate threshold value 7. In order to
erase the shape of histogram in such image with a lot of small valleys, a new algorithm
named Moving-Average-Histogram is proposed in this paper based on the theory of
moving average [8]. By using a window centered at gray-level r, the proposed method
takes the mean value of this window to replace the original histogram h(r). The new
histogram h*(r) of moving average may be written as

1 r+|m/2]
h*(r) = > (1)

m
i=r—|m/2]

where m is the number of gray-levels in each window. Assuming that the range of
gray-level is from O to L, the algorithm can be summarized as follows.

Algorithm: Moving-Average-Histogram(h(r), h*(r)).

Input: The original histogram h(r).

Output: Moving Average histogram h*(r).

Step 1: Set the initial gray-level r equals to |m/2].

Step 2: Obtain the new histogram h*(r) of Moving Average using Equation (1).

Step 3: Increase the gray-level r and then repeat step 2 until 7 is equal to L — |m/2].
Step 4: Stop.

However, how to determine the number of gray-level m in each window is a very
important issue in this algorithm. Fig. 1 (a) shows a fuzzy image taken from a textbook.
By using the proposed Moving-Average-Histogram algorithm with the different values
6, 12, 24, 30, and 72 of m, experiments shows that the value 30 of m is more suitable
for the case used in this paper. Therefore, we apply m equal to 30 for each example
used in the following sections of this paper.
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The zigzag shape of the Moving Average histogram h*(r) is obtained if the small
value of m is selected. Fig. 1(b) shows this case. Since there are a lot of valleys ap-
pear in this histogram, it will cause the worse bi-level threshold 7" gotten by using the
traditional bi-level thresholding methods. On the other hand, when the large value of
m is selected, the derived shape of the Moving Average histogram h*(r) is smooth, as
shown in Fig. 1(f). In Fig. 1(f), there is not any valley in this histogram. Hence, this
will result in the worse bi-level threshold T' gotten in the next bi-level thresholding
algorithm.

4 Bi-level Thresholding

In this section, we proposed a new algorithm for deriving a more refine bi-level image.
There are many variables used in this algorithm. The gradient of f at coordinates (z, y)
for Sobel operators [9] is represented by 57 f. Let s(z, y) be the image of edge informa-
tion. If there is an edge at coordinates (x, y), the value of s(x, y) is set to 1; otherwise,
s(z,y) is set to 0. We select a threshold value 45 via experimental results. If </ f is
great than 45, s(z,y) is set to 1. Otherwise, s(x,y) is set to 0. Let N be the total
number of character in an original image and Z be the number of character which is
recognized successfully by the software of OCR. Then the recognition rate RR can be
expressed as

VA
RR = N x 100%.
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The bi-level images are tested with ABBYY FINE READER SPRINT 4 OCR soft-
ware and run on a personal computer with the operating system of Microsoft Windows
XP. Fig. 2 shows an original image for testing and deriving the suitable thresholding
values. The recognition rate RR is plotted in Fig. 3, versus the different values of
gradientyy f, such as 15, 30, 45, 60, 75, 90 and 105. Since the value 45 of the gra-
dient </ f can derive the best recognition rate RR, we use this value in the proposed
algorithm.

We assume that the variable S is the summation of the 3 x 3 region of the image
s(x,y).is S = Zgj:_l s(z + 14,y + j). The proposed bi-level thresholding algorithm
can be summarized as follows.

Algorithm: Bi-level-Thresholding.

Input: Original image f(z,y).

Output: Bi-level image g(z,y).

Step 1: Get h(r) and s(z,y) from an original image f(z,y).

Step 2: Call the procedure Moving-Average-Histogram (h(r), h*(r)) and derive the
new histogram h* (7).

Step 3: Use the general global bi-level algorithm, such as Otsu’s algorithm, on the new
histogram h*(r) to find new thresholding value 7*.

Step 4: Set x and y equal to zero.

Step 5: If f(x,y) is greater than T, g(z,y) is set to 255, i.e., background, and then
go to step 8.

Step 6: If (0 < f(z,y) < 3T*/4), g(x,y) is set to 0, i.e., object, and then go to step
8.

Step 7: If Sisequalto 9, g(z,y) is set to 0, i.e., object, otherwise, g(z, y) is set to 255,
i.e., background.

Step 8: Make the increment of x or y.

Step 9: Repeat step 5 through step 9 until all pixels in the f(x,y) are processed.

Step 10: Stop.

In step 3, with the experimental results, we find that the Otsu’s algorithm [2] is better
than the other algorithm for the proposed algorithm. Let R be the rate of .S over the
total number of pixels in the B x B region. It can be expressed as

S
R= ) x 100%.

With the fixed size of 3 x 3 region for S and original image shown in Fig. 2, the recog-
nition rate RR is plotted in Fig. 4, versus the different rates of R, such as 0%, 11.1%,
33.3%, 55.6%, 77.8%, and 100%.

Since the rate R equal to 100%, i.e., S equal to 9, can derive the best recognition
rate R, we use this rate in the proposed algorithm. With original image in Fig. 2
and R equal to 100%, a plot of RR versus B is shown in Fig. 5. We can derive the
best recognition rate RX when B is equal to 3, i.e., the 3 x 3 region. Therefore, we
use the 3 x 3 region in the proposed algorithm. Let R7. be the T rate. The descrip-
tion of the relation RR and R} are presented in Fig. 6. The rate RR can reach the
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100% when R%. is equal to 75%. Therefore, the value 3/4 in step 6 of the proposed
algorithm is derived.

5 Experimental Results

The bi-level images of Bersen’s algorithm, Niblack’s algorithm, Sauvola’s algorithm,
Otsu’s algorithm and our proposed algorithm are tested with ABBYY FINE READER
SPRINT 4 OCR software and run on a personal computer with the operating system of
Microsoft Windows XP. Some original images taken from textbooks with duskier light-
ing source are shown in Fig. 7. With applying all methods on the IMG1, Fig. 8 shows
the results of OCR for these methods. The cyan marked words in the right column of
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Fig. 7. The original images (a)IMG1 (b)IMG2 (c)IMG3 (d)IMG4 (e)IMGS5 (H)IMG6

Table 1. The results of RR for different algorithms with different images

Methods IMG1 IMG2 IMG3 IMG4 IMGS5 IMG6
Bersen 56.5% 16.7% 28.6% 20.0% 86.7% 0.0%
Niblack 0.0% 0.0% 14.3% 37.0% 0.0% 0.0%
Sauvola 91.3% 83.3% 100% 81.5% 100% 0.0%

Otsu 86.9% 50.0% 85.7% 33.3% 83.3% 0.0%

Proposed method 100% 83.3% 100% 100% 100% 27.0%

Fig. 8 indicate the OCR errors. For example, in Bersen’s method, the word “change”
is recognized as “chaiifife”. The empty in this column of Fig. 8 represents that there is
not any word or character recognized by OCR. For instance, since the bi-level image of
Niblack’s method generally suffers from a great amount noises of background, the OCR
result is empty. Although the approach of Sauvola et al. solves the background noise
problem that appears in Niblack’s approach, the characters in its bi-level image become
extremely thinned and broken in many cases, as shown in Fig. 8. The proposed method
obtains a better bi-level image. Therefore, the proposed method has superior perfor-
mance compared with all other methods and performs well even when the documents
are very noisy and highly degraded.

The results of RR for different algorithms with original images in Fig. 7 are shown
in Table 1. The RR values of the proposed algorithm can reach 100% for most images.
Although the values of RR for the proposed algorithm are 83.3% for the IMG2 image
and 27% for the IMG6 image, it can be observed that the proposed algorithm has a
higher RR over the other algorithms.
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6 Conclusions

Based on the theory of moving average and edge information, this paper presents a
new method for solving the global automatic thresholding problem. The proposed algo-
rithm can derive a more refine bi-level image from an original image that is taken from
the smart-phone. Since the smart-phone is not like the scanner that has light source, the
quality of original image is always shaded by hand and smart-phone itself, and is always
dusky. Therefore, the existing algorithms are not suitable for this case. The experimen-
tations show that the proposed algorithm has a higher RR over the existing algorithms
by Bersen, Niblack, Sauvola, and Otsu. Even the RR of the proposed algorithm can
reach the 100% for some kinds of image. The advanced work of this algorithm is to
merge other methods for solving more complex problems.
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Abstract. A novel joint region merging criterion combining region homo-
geneity and boundary smoothness is proposed. Previous watershed
segmentation method which utilizes region homogeneity or edge integrity or
both gives good results in some cases. However, for complex scenes such as
images of a vehicle with irregular roadside objects reflected on the window
panes, it tends to give undesired segmentation results with region boundaries
not residing on real physical boundaries. Aiming at improving the
segmentation of these complex scenes, we propose the incorporation of an
additional measure of boundary smoothness into a new joint criterion. Based
on this, an affine transform invariant measure of the smoothness of
boundaries is developed, which is the equivalent width of the energy
distribution function over frequencies, obtained from Fourier descriptors of
the boundary. Experimental results and evaluation are presented in this paper
to demonstrate the merits of the proposed method.

Keywords: watershed segmentation, merging criterion, boundary smoothness,
region homogeneity.

1 Introduction

Image segmentation is a major operation in many pattern recognition/classification
and image understanding applications. It is often an indispensable step before image
analysis to obtain regional descriptors such that the pixel-by-pixel content in the
image could be simplified, organized and better interpreted. Though hundreds of
segmentation methods have been proposed in the literature, it is generally understood
that the problem is ill-defined and most methods perform well under specific
conditions for specific images. As for specific applications, these methods required
manual tuning to output a desirable result involving particular human knowledge. For
instance, watershed-based segmentation offers such a framework which allows a
priori knowledge to bear on the algorithm [1]. Moreover, watershed segmentation has
been used to integrate region and boundary information for further improvement [2].
Harris et al. [3] proposed a method which merges the most similar pair of regions
at each step according to a dissimilarity function based on region homogeneity,
utilizing the Region Adjacency Graph. However, as pointed out by Pavlidis and Liow
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[4], methods based only on region uniformity have the tendency to produce false
boundaries because the definition of region homogeneity usually insists on a roughly
constant brightness, but brightness may vary gradually within a region. Thus, it is
very difficult to find homogeneity criteria which produce robust results instead of
false boundaries. They also suggested that the results would be significantly improved
by exploring the edge information rather than trying to fine-tune the homogeneity
criteria.

With the aim of improving the segmentation results, Hernadez and Barner et al.
proposed a joint region merging criterion of homogeneity and edge integrity [5]. In
their method, edge integrity is measured as the ratio of the number of strong adjacent
pixels (pixels with gradient value larger than a threshold) to that of boundary pixels.
This quantity measures the extent of boundaries sitting on strong edges. They argued
that by combining homogeneity and edge integrity together, their algorithm gives
more visually appropriate segmentation. However, it is not necessary the case that
strong edges are region boundaries and weak edges are not. Further, even pixels with
high gradient value are not necessarily meaningful edges. This issue can be traced
back to Canny’s edge detector published in 1986 [6]. Therefore, simply using the
strength of the edge is just not enough especially for complex scenes with cast
shadows and reflections.

In this paper, we propose a new criterion which incorporates a priori knowledge of
the boundaries into the merging process. It is observed that boundaries of components
of many man-made objects have smooth boundaries, e.g. vehicles. As such, it is
expected that the segmentation result also yields smooth boundaries. The method-
active contours [7] [8]with internal balloon force pushing the contour outside along its
normal is able give smooth boundaries. However, active contours need to manually
initialize the starting curves. And what’s more, minimizing the energy function for
multiple snakes is quite time consuming. Instead, we consider a new joint criterion
incorporating region homogeneity and boundary smoothness. To do this, first, a
gradient image is calculated by applying a Sobel edge detector. Second, a
morphological filter is applied to the original image to obtain a smoothed image.
Third, markers are generated by marking the regional maxima and minima of the
smoothed image. Fourth, a marker-controlled watershed algorithm is applied to the
gradient image to get an initial segmentation, which reduces the number of local
minima of the gradient image by allowing local gradient minima only exist inside the
markers. Finally, regions are further merged to give an even more simplified yet still
meaningful result by merging most similar region pairs with smallest cost of merging
adjacent regions. The cost is determined by the merging criterion which calculates
region homogeneity as well as smoothness of region boundaries.

In Section 2, the merging framework for over-segmentation is discussed. In
Section 3, we discuss the merging criterion based on region homogeneity and
boundary smoothness respectively and illustrate the problem of the criterion based
only on region homogeneity. We then describe the derivation of the boundary
smoothness measure and how it is incorporated into the homogeneity criteria to form
a single joint merging criterion. In Section 4, we evaluate and compare the
segmentation results of using the joint criterion and only the region homogeneity
criterion.
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2 Merging Framework for Over-Segmentation

In order to combine the map of regions (generally with false boundaries) and the map
of edge outputs (generally with fine and sharp lines, but disjointed) together to give an
accurate and meaningful segmentation, others have been attempted to develop
methods which start with an over-segmentation result, and then merge those regions
based on region homogeneity or edge integrity [2]. The methods discussed in
[31.[4],[5],[9], all belong to this category, i.e. they are post-processing techniques
after over-segmentation.

Our proposed method also starts with an over-segmented result produced by a
morphological watershed transform of the gradient magnitude image based on
immersion simulation [10]. However, the gradient operation is sensitive to noise,
which results in a large number of small catchment basins not actually associated with
meaningful regions. These small catchments cause the watershed transform to
produce numerous negligible small regions not associated with real objects. To
eliminate these extraneous local minima, we use the technique of marker-controlled
watershed [11], [12] which only allows local minima occur inside the markers
generated by applying an opening-by-reconstruction morphological filter to the
original image and followed by identifying the region maxima and minima.

Input
image

A

Gradient Morphological filter
calculation
Markers
generation
v
ma r\;Eea;:rzzterg||ed . I (b)Original image (492 X 496)
transform

y

Region merging

4
Output image

(a) Marker-controlled watershed
algorithm

(c) Segmented image(108 regions)

Fig. 1. Watershed algorithm and result
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The whole procedure is illustrated in Fig. 1(a). Fig. 1(c) is the initial segmented
result obtained by applying the marker-controlled watershed transform to Fig. 1(b).
There are 108 regions in Fig. 1(c), compared with thousands of regions in watershed
transform applied directly to the gradient image. Indeed, the marker-controlled
method alleviates somewhat the problem of over-segmentation. However, it should be
noted that there are still a lot of regions not corresponding to physical boundaries, for
instance, the regions in the windscreen and window. Therefore, further improvement
is needed. This is achieved by using the Region Adjacent Graph (RAG) to analyze the
relationship between the segmented regions in an image, where nodes represent
adjacent regions and edge costs corresponds to a dissimilarity metric determined by
the merging criteria. Once the RAG is established, the region pair with the smallest
dissimilarity metric is merged. The RAG is then updated and the process repeats until
a certain condition is met or terminated manually. For more details, interested reader
may cross-reference [3], [5] and [13].

3 Merging Criteria

Obviously, the performance of the merging process largely depends on the merging
criterion i.e. the dissimilarity metric employed. Here, we compare two different
merging criteria, namely, Al, criterion based on region homogeneity, A2, the
proposed merging criterion. To be consistent, the notations used here are chosen to be
the same as those used in [3], [5].

3.1 Criterion Based on Region Homogeneity

This criterion is based on similarity between their intensity levels. Harris showed in
[3] that if R "¢ is the optimal K-partition that minimizes E(R"k) then the optimal (K-1)-
partition is obtained by merging the pair of regions with the smallest dissimilarity
defined as:

B P,
R T A

where ”” denotes the number of pixels inside a region and ,u(R;") and ,u(R;j )

correspond to the mean value of intensity values in the adjacent regions R,V(’ and R;(J ,

respectively.

This criterion has shown some success in various applications. However, for
complex scenes, it renders unaccepted results. For example, if we apply Al to Fig 2
(a), which is the image of the front part of a minibus with the reflections on it, the
dissimilarity between A and B measured by 6”(A, B) is less than that between B and C
by 0"(B, C), which means if we want the three regions to be merged into two regions
(The RGB vectors of A, B, C are (75, 34, 40), (44, 52, 50), (64, 82, 85) respectively.),
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A, B are to be merged first according to criterion Al, instead of B, C. The merged
result is shown in Fig 2 (b), which brings about an unacceptable broken window and
an irregular top panel.

(a) Regions of the vehicle front (b) Merging using Al

Fig. 2. Sample image to show the problem

3.2 A2, the Proposed Merging Criterion

The proposed criterion is an attempt to utilize boundary information as well as region
homogeneity information with the aim of improving the result to a more visually
appropriate segmentation. It is observed that many man-made objects have smooth
boundaries other than rugged ones. So it is natural to demand the segmentation
method, when applying to images of these kinds of objects, yield a result of
segmented regions with smooth boundaries. However, criterion A1 does not cater for
this demand. To take advantage of the boundary information, a method based on
Fourier descriptors is developed to measure the smoothness of boundaries.

3.2.1 Measure of Boundary Smoothness

This section describes how the smoothness of a boundary is computed by Fourier
descriptors [1]. For a boundary [ represented as a sequence of N points p, = (x,, ¥,),
n=0,1,2,...,K-1, the coordinates of each point can be treated as a complex number i.e.
s(n) = x(n) + jy(n). The Fourier descriptors of the boundary are:

K-1
a(”)=2s(n) e PP for u=0,1,2,--, K —1. 2)

n=0

As we know from the Fourier transform, the coefficients a(u) describe the
frequency components of the curve: low frequency components with i close to zero
describe the general shape of an object, while the higher frequency components
describe local details. It is intuitive that a rugged shape has more high frequency
components and a smooth shape has less. To measure the smoothness of the curve, we
could measure the concentration of the energy on the low frequencies; the more the
energy concentrated on the low frequencies, the smoother the boundary is. Inspired by
the equivalent width of the energy distribution function, the smoothness measure of a
boundary [/ {s(n) = x(n) + jy(n), n=1,2 n=0,1,2,...,K-1} is defined as
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K-
a’(u)|
I"(l) — u=0 , (3)
a(0)
K-l
where a’ (1) = Z(s(n)—,a) e /27X 11 is the centroid of the boundary and
n=0

denotes modulus operation.

An interesting point of this boundary smoothness measure is that it is invariant to
rotation, scaling and translation. Fig 3 shows some examples of the smoothness
measure. From these examples, we see that the boundary of a circle has the smallest
value by the smoothness measure because a circle can be viewed as smooth in any
point of its boundary. Also, we see that the more rugged the boundary, the larger
value of the smoothness measure is. To draw some sense from this intuition, we call
this measure shape integrity.

(a) r =1.0007 (b) r =1.0205

(c) r =1.0424 (d) r =1.2694

Fig. 3. Examples of the smoothness measure

3.2.2 Incorporating the Smoothness Measure and Region Homogeneity into the
Merging Criterion

After the smoothness measure is developed, the next step is to figure out the way to

incorporate it into with the region homogeneity criterion. Considering two adjacent

regions A and B, we have two conditions:

a) If the shape integrity of A or B is good .i.e. the r(I*) or r(I*) is small,

which means the boundary of A is already preferred by a priori knowledge i.e.
smooth, then the need to merge A and B is low and the cost should be large; if
the shape integrity of A and B is bad, i.e. then the need to merge A and B is
high and the cost should be small.
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b) If the shape integrity of A\ B is good which means merging them gives a
preferred shape, then the need to merge A and B is high and the cost should be
small; if it is bad, then the need to merge them is low and the cost should be
large.

Hence, the merging cost should be a decreasing function to the individual shape
integrity of A and that of B, while being a increasing function of the shape integrity

of AU B . The function used here is defined as:

A8 ra*y
[Al+]8] r@®ra®

0°(A,B) = “)

where [” denotes the boundary of A and [ 498 denotes the boundary of AU B .
The new criterion is implemented by combining dissimilarity metrics Al and the
measure of boundary smoothness together. Since the dynamic ranges of

0" (R,,R/) and 8°(R,R}) are different, we need to normalize them first

before the integration. A simple but effective scheme is used here, which is to divide

each of them by the maxima of 0" (R;(l , R;i ) and &° (R;’ , R;j ) respectively.
Finally, we have the joint merging criterion defined as following

"R, R)=6"(R{, R))+a-5,° (R ,RY) . )

where 8" (R, R/)=0" (R, R, )/ max(5" (R, ,R,)),
§ns (R;;’ , R;;j) =0° (R;;i, R;j)/max(é‘s (RZ ,R;j )) and ¢ adjusts the

weight of the smoothness measure in the joint merging criterion.

4 Experiment Results and Evaluation

As we mentioned in the early part that the performance of the method largely depends
on the merging criterion, here we apply our proposed method to the initial segmented
image shown in Fig 1 (c) to manifest the power of the new criterion. We note that
when a = 0, this novel criterion degrades to Al. Here, we set a to 0, 0.5, 0.8 and 1
respectively and apply it to Fig 1(c). The relevant segmented results are shown in Fig.
4 (a), (b), (c) and (d).

For qualitative evaluation, we see that in Fig. 4 (a), the front-top panel is merged
with a part of the front window and the side window on the right hand side of the
image is filled with some unwanted drippings. By observing the original image as
depicted in Fig. 1(b), we find this is caused by the transparency of the window glass
and its reflective ability such that other scenes around the vehicle are either projected
or reflected on the image, which resulted in the failure of the regional homogeneity
criterion. In Fig 4(b), the front window is no longer broken and the undesirable
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drippings disappear as well. Indeed, the result is more visually appropriate. As o
increases, the boundaries of the segmented regions become smoother and smoother as
expected, which is evident in Fig 4(c) and (d). The best value of a can be determined
interactively or statistically based on large set of a certain class of images.

(b) & =0.5

() 0=0.8 d) or=1

Fig. 4. Merged results (13 regions) using the joint merging criterion

For quantitative evaluation, Zhang concluded [14] that the empirical methods are
superior to the analytical methods because no general segmentation theory exists
currently. In addition, in applications like object tracking and pattern recognition in
the real world, we often expect that the segmentation provides region boundaries
corresponding to that of physical objects such that the boundaries are robust even
when the reflected scenes on the object are changing. This is supported by the fact
that information of the object is embedded in the physical boundaries rather than in
the reflected scenes. Based on this fact, we determine the quality of the segmentation
by overlap rate of the segmented region boundaries and the ground truth boundaries,
which is defined as

I aY)
pzu”%, (6)

s

where [, denotes the boundary pixel set of physical objects and [, denotes the

boundary pixel set of all segmented regions and ”” denotes the number of elements of
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Table 1. Overlap rates for different a

o Overlap rate
0 0.8048
0.5 0.8761
0.8 0.9061
1 0.9029

the set. The larger this measure is, the more the segmented region boundaries reside
on the physical boundaries and the better the quality of the segmentation is.

The ground truth boundary map in Fig. 5 shows the boundaries separating the
major components of the vehicle. Table 1 shows the overlap rate for different
parameter values of a. As is expected with the introduction of smoothness measure,
the overlap rate is improved up to 0.1013, which is 12.59% higher than the result
obtained by the original regional homogeneity criterion.

Fig. 5. Boundary reference model of vehicle

Other images of different vehicles have also been tested and showed similar
results. We believe the new joint merging criterion is also suitable to other images of
objects with smooth boundaries.

5 Conclusion

In order to reduce the number of regions of the segmentation yet still give a
meaningful result representing the main objects in the image even when it is severely
affected by irregular reflection, the proposed method employs additional knowledge
of boundary smoothness of the concerned objects. The novel merging criterion
combines region homogeneity and boundary smoothness in a weighted form. The
smoothness measure is calculated as the equivalent width of the energy distribution
function over frequencies components obtained by Fourier descriptor. This
smoothness measure is invariant to rotation, scaling and translating. By setting
different values of o, the smoothness measure exerts different weights on the merging
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process. The larger a, the smoother the boundary is. Appropriate value of o can be
obtained interactively or statistically. Improvement of segmentation result is
supported by experimental results of both qualitative and quantitative evaluation.
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Abstract. Partially occluded objects are typically detected using local features
(also known as interest points, keypoints, etc.). The major problem of the local-
feature approach is the scale-invariance. If the objects have to be detected in
arbitrary scales, either computationally complex methods of scale-space (multi-
scale approach) are used, or the actual scale is estimated using additional
mechanisms. The paper proposes a new type of local features (keypoints) that
can be used for scale-invariant detection of known objects in analyzed images.
Keypoints are defined as locations at which selected moment-based parameters
are consistent over a wide radius of circular patches around the keypoint. Al-
though the database of known objects is built using the multi-scale approach,
analyzed images are processed using only a single-scale. The paper focuses on
the keypoint building and matching only. Higher-level issues of hypotheses
building and verification (regarding the presence of known objects) are only
briefly mentioned.

1 Introduction

Detection of known objects in observed scenes is considered one of the fundamental
tasks in machine vision. The task becomes more difficult when the objects are only
partially visible. In such cases, the generally accepted approach is to identify objects
from their local visual characteristics which remain unchanged (at least some of them)
even if the object itself is partially occluded.

The idea of using local features (keypoints, local visual saliencies, interest points,
characteristic points, corner points — several almost equivalent names exist) in image
analysis can be traced back to the 80’s (e.g. [1], [2]). Although initially stereovision
and motion tracking were the most typical applications, it was later found that the
same approach can be used in more challenging tasks (e.g. matching images and de-
tection of partially occluded objects). A well-known Harris-Plessey operator (e.g. [1])
was combined with local descriptors of detected points to solve general object recog-
nition problems in which local features from analyzed images are matched against a
database of images depicting known objects (e.g. [3], [4]). The intention was to
perform recognition of arbitrarily rotated objects under partial occlusions.

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 248 —257, 2006.
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The published results indicated that three issues are fundamental for successful ap-
plications of the proposed algorithms, namely: illumination changes, perspective
distortions and scale changes.

Illumination changes (photometric transformations) may both affect repeatability
of keypoint detection and distort their descriptors values. To achieve repeatability of
keypoint detection under illumination changes, several acceptable solutions have been
proposed (e.g. [5]). The keypoint descriptors sensitivity to illumination variations can
be usually handled using the following typical approaches: (a) invariants moments
(e.g. [6], [7]) for intensity-based descriptors, or (b) normalization techniques (e.g. [8])
for gradient-based descriptors.

Perspective distortions are generally approximated by affine transformations.
Since none of the existing algorithms is fully affine (the initial steps of keypoint de-
tection and description are generally performed with no consideration to perspective
effects) only relatively minor distortions are typically assumed (e.g. [9], [8]). Stronger
affine distortions are ignored and the database 3D objects are modeled using just
multiple views taken from various viewpoints (differing typically by 15-30 degrees).

The scale-invariance problem (an illustrative example is given in Fig.1) is more
difficult. The existing solutions of this problem are far from effective. Generally, to
achieve scale invariance of local features either computationally expensive scale-
space approaches are attempted (e.g. [8], [10]) or the appropriate scale is estimated
using additional means (e.g. [5], [11]). So far, no method is known that can scale-
invariantly match local features using just a one-size window scanning the images
captured in arbitrarily changing scales.

Fig. 1. Correctly selected scales for matching local features in both images (from [5])

In this paper we propose a method that handles the scale-invariance issues in a
novel way. We attempt to detect known objects in acquired images using fixed-scale
local features, even though the images might be captured in a wide range of scales.

The central idea of the proposed method is a new type of local features (keypoints).
The keypoints are built and described using approximations of the surrounding circu-
lar patches. The descriptors of primary importance are angular parameters (obtained
from locally computed moments) of the approximations. A multi-scale approach is
employed in the database keypoint building operation, the approximarions are built
for circular patches of varying size. A keypoint is identified if the descriptors are
uniform over a significantly wide range of patch diameters. This process may be
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computationally intensive. However, the object detection algorithm (analysis of the
input images) employs only a single scaled, i.e. the images scanned using only a one-
size window. Therefore, the proposed method is suitable for typical applications
where the model-building operations can be performed offline (and time and/or com-
putational constraints do not exist) while the object detection task is to be performed
online (possibly with tight time constraints).

The principles of keypoint building are presented in Section 2. In Section 3, we
discuss how keypoints are detected in incoming images and matched with the data-
base keypoints. Due to limited size of this paper, we focus only on detection and
matching mechanisms, while higher-level issues of hypotheses building and verifica-
tion (about presence of a known object in the analyzed image) are only briefly men-
tioned. Section 4 concludes the paper.

2 Pattern-Based Keypoints

Our previous paper [12] proposed a method for approximating circular images using
predefined patterns. Corners and corner-like patterns (e.g. junctions) are particularly
important as they generally preserve their geometry over a wide range of geomet-
ric/photometric transformations and over various radii of circular patches. Thus, in
this work we focus on two most popular selected corner-like patterns, i.e. proper cor-
ners and T-junctions.

The model configuration of a corner over a circle of radius R is defined by two an-
gles and two intensities as shown in Fig.2A. Similarly, the model configuration of a
T-junction consists of two angles and three intensities (Fig.2B).

A.

Fig. 2. Model configurations of a corner (A) and a T-junction (B)

Given any circular image of radius R, the parameters of its optimum corner ap-
proximation can be found using moment-based expression specified in [12]. The
orientation angle £, (see Fig.2A) is detrmined by

B, = arctan2(£my,,£m,) QY

while the angular width £y is computed from

16[(m20—m02)2+4m121] or 2arcosﬂ (”120_"1()2)2+4”7121
OR(m2) +m?,) 3 R (my+m)

B, = 2arcsin \/1— ()
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For T-junctions (Fig.2B) f; angular width and f3, orientation angle can found from

V4 B, arctan 2(£my, F m,,, £2m,,)
Z_p £ 3
) 5, ) ) 3)
Cmosing =+ % Sy —mey)? + 4,
my, cos B, —my, sin B, =+ 3R (my, —my,)” +4m,, 4)

The intensities of the optimum approximations can be also estimated using mo-
ment-based expressions (see [12]). Exemplary circular windows (containing both
actual corners and T-junctions, as well as more random contents) and their optimum
approximations are shown in Fig.3.

Fig. 3. Examples of circular images and their optimum corner or T-junction approximations

Straightforward calculations prove that results produced by Eqs (1)-(4) are invari-
ant to linear illumination changes and that the angular width £ is invariant under any
similarity transformation. Extensive experiments have also shown that the results are
stable (unlike, for example, the corner approximation proposed in [13]) under both
high- and low-frequency noise, image texturization and partial over-and under-
saturation of image intensities. As shown in Fig.3, for some irregular images the ap-
proximations may not exist, i.e. the corresponding equations have no solutions.

It seems, therefore, that corner and T-junction approximations of circular windows
are good candidates for invariant local features. However, generally they are not
scale-invariant, i.e. re-scaling an image (without the corresponding change of the
window size) may dramatically change the visual content of the window and thus its
approximations (see Fig.4 for a corner approximation example).

Fig. 4. Changes of corner approximations under image rescaling

Nevertheless, images of objects of interest may contain locations where geometry
of the approximations does not change with image rescaling (or with the correspond-
ing rescaling of circular windows). We propose to use such locations as candidates for
scale-invariant keypoints. Fig.5 shows examples of such locations is a complex scene.
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More formally, we identify a pattern-based keypoint candidate (currently only cor-
ner and T-junction patterns are used) in a model image at a location where for the
window radius R ranging from R, t0 Ry, the angular width £y and the orientation
angle f, are approximately the same, i.e. the approximations are consistent over a
certain range of scales.

Fig. 5. Exemplary locations at which corner and T-junction approximations are expected to be
stable over a wide range of circular windows

Fig.6 shows an exemplary circular window and the variations of its approximations
for R ranging from 3 to 40 pixels. This image is actually a corner so that its corner
approximation is visually more appealing. However, the T-junction approximation
(though it has a less straightforward visual interpretation) can be created as well.

The results given in Fig.6 indicate that any circular window of R between approx.
14 and 31 pixels would be equally representative for this image fragment. The con-
tents of minimum-size and maximum-size sub-windows are also shown for reference
in Fig.6 next to the original window.

If the same image fragment is present in another scene (even if scaled, rotated and
photometrically distorted) we can use the scanning window of any radius between
kR nin and kR, (Where k represents the relative scale between the model image and
the analyzed scene) and the match between both fragments would be found.

Fig.7 shows an attempt to identify a corner-based keypoint for another randomly
selected image fragment. In this case, there is no uniformity in the obtained corner
approximations, and for many values of R the solution for £, does not exist (the solu-
tion for orientation angle fB; almost always exists). Thus, this image fragment cannot
be considered a keypoint candidate.

Thus, the database of known objects images would be built using the keypoints se-
lected from candidates that have stable approximations over a sufficiently wide range
of radii. Additionally, keypoints with extreme angular widths (i.e. close to either 0 or
180 degrees) may be excluded, see [12]. A database entry for a single image of an
object (note that objects are typically represented by multiply views) would also in-
clude angular specifications of the selected approximation-based keypoints, and addi-
tionally the geometric relations between the keypoints (for example, in the form of
shape-graph proposed in [5]). The acceptable range of R may be memorized as well.
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For selected applications, further rules can be applied in the process of database
keypoints selection. For example, additional descriptors may be used and their stabil-
ity over a range of radii (or other regular behaviours) might be required. Usually,
those secondary descriptors should be invariant to image rotations and intensity varia-
tions. The following simple moment-based expressions are examples of descriptors
that are invariant (for circular images) under similarity transformations and linear
illumination transformations (see also [14]):

(1my, _moz)2 +4m121 2(my, +my, ) _Rzmoo )
R? (m120+m§1) Ra/mlzo+m§l

Because the above expressions are applied to circular windows only, they can be
much simpler than more general invariants (proposed for colour images and areas of
arbitrary shapes) presented in [7].

It should be noted that because of a more restrictive process of database keypoint
building, the proposed method would produce fewer keypoint than the alternative
algorithms (e.g. [4], [5] or [8]). This fact can be seen as an advantage (lower complex-
ity of matching operations) but detection abilities under major occlusions and/or in
cluttered scenes may be affected. If a too small part of an object of interest is seen, it
may just contain too few keypoints of the proposed type to detect the presence of the
object.

3 Principles of Keypoint Matching and Object Detection

The intended application of the proposed keypoints is detection of database objects
(including partially occluded objects) in either robotic applications (navigation, visual
surveillance) or in visual data mining problems. We assume that objects should be
detected scale-invariantly (at least within a certain range of scales) even though the
processed images are scanned using only a fixed-size circular window.

For any location of the scanning window, its content is approximated by corners and
T-junctions. A candidate match for a database keypoint is identified if both the corner
approximation and the T-junction approximation have the angular widths £, in close
enough to the corresponding database angular widths. This simple selection technique
may lead to “very_many_to_one” matches, but the experiments have shown that
combination of two approximations (plus additional criteria) significantly reduces
ambiguous matches. To further reduce the number of ambiguities, we propose to use a
sub-window (the recommended radius of the sub-window is ~60% of the window’s
radius) for which the same operations are performed. If the sub-window approxima-
tions are different than their window-based counterparts, the location is not considered.

Fig.8 shows two exemplary test images in which matches for Fig.6 keypoint are
searched for. It should be noted that the database keypoint and both images are in
different scales each, yet the size of the scanning window is the same in both
test images. The test images are additionally photometrically distorted and one of
them is rotated. Fig.9 presents the candidate matches detected using only the corner
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Fig. 9. Candidate matches to the keypoint of Fig.6. Radii of the scanning window are 15 and 10
pixels (window and its sub-window, respectively). Only the corner approximations are used.

Fig. 10. Candidate matches to the keypoint of Fig.6 obtained using the corner approximations
and confirmed by the T-junction approximations

approximations. The number of candidates is quite large, but it can be dramatically
reduced if additional rules are added to the keypoint specification. In this case we use
two straightforward facts: “the acute part of the corner is darker”, and “the contrast
between both parts of the corner should exceed a threshold value”). After the rules
have been applied, only very few candidates (pointed by arrows in Fig.9) are selected
as matches to the keypoint of interest.
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If T-junction approximations are incorporated, the number of matching candidates
is even further reduced. Fig.10 shows candidates (pointed by arrows) obtained by the
corner approximations, and additionally confirmed by the T-junction approximations.
The intersection of choices shown in Fig.9 and Fig.10 finally produces only a very
small number of potential matches (one and two, correspondingly).

If processed images contain candidates matching several database keypoints, the
problem of ambiguous matches can be further solved by comparing the orientation
angles fy. Even if the object is rotated in the acquired image, the values of f; should
be consistently rotated for all candidates matching keypoints from the same database
object. Thus, with at least two keypoints visible in the image, the ambiguities can be
usually solved. If at least three keypoints from the same database object image are
consistently matched with the test image, hypotheses can be generated not only about
the presence of the object but also about its relative scale.

A framework for efficient hypotheses generation/verification for problems with
hundreds or thousands keypoints in the database (and correspondingly large numbers
of candidates in the acquired images) is presented in [5]. We believe, however, that in
many typical applications (a search for a particular object in large collections of im-
ages, for example) less sophisticated mechanisms based on the principles briefly de-
scribed above are sufficient.

4 Summary

In this paper we present principles and preliminary exemplary results of a novel tech-
nique for scale-invariant detection of known objects in acquired images. Unlike other
scale-invariant techniques, our method is using only a single scale for scanning ana-
lyzed images. However, images of database (known) objects are processed with mul-
tiple scales in order to identify (and characterize) keypoints that are invariant under a
sufficiently wide range of scales. Thus, matching a database keypoint to the candidate
keypoints extracted from incoming images can be done for various image-scales (as
long as the scanning scale is within the scale range of the matching keypoint).

The proposed keypoints are significantly different from typical gradient-based key-
points used in the existing alternative techniques. Our keypoints are based of moment-
derived pattern approximations of circular patches around keypoints (currently only
two patterns, i.e. corners and T-junctions, are used). Their primary descriptors (the
angular width and orientation of the approximations) are robust under illumination
changes, noise, texturization, and other typical real-world effects.

The paper presents fundamentals of keypoint-building and keypoint-matching.
Higher-level issues of object detection are not discussed. At higher levels, we intend
to use approaches already presented in previously published papers.

In the future work we plan to apply the methodology in two typical tasks: (1) vis-
ual search and/or surveillance in autonomous robotic systems and (2) data mining in
large collections of visual information. As an important step towards even higher
efficiency of the method, an FPGA-accelerator for the low-level image analysis
operations (i.e. corner approximation) is planned. It would be prospectively used in
both tasks.
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Abstract. In this paper, we describe the color correction system using a color
compensation chart for the color images from digital cameras. Most of the con-
ventional methods for the color corrections of images are based on the spectral
analysis for the captured images. The proposed system introduces a different
approach for the color correction. That is, the color correction is performed by
dynamic tone reproduction and direct transformation between the captured col-
ors and the reference colors. The color correction process consists of two steps,
i.e., the profile creation process and the profile application process. During the
profile creation process, the relationships between the captured colors and the
reference colors are estimated. And the system creates a color profile and em-
beds the estimation result in the profile. During the profile application process,
the colors in the images which are captured under the same condition as that of
the chart image are reproduced using the created color profile. To evaluate the
performance of the system, we perform experiments under various conditions.
And we compare the results with those of widely used commercial applications.

1 Introduction

With the advance of digital imaging devices such as digital cameras, their abilities to
represent accurate colors have been important issues. However, accurate color correc-
tion is a difficult problem for digital cameras, because color images of unknown
objects are captured under various unknown conditions such as illuminations. Fur-
thermore, color distributions of captured images are also dominated by characteristics
of the cameras. Accordingly, colors in a digital image may be different from the ac-
tual ones taken into the image. This color distortion can be a critical problem for some
industrial fields using color images. Most of the conventional approaches are based on
the analysis of spectral reflectance and image formation models for the captured im-
ages [1, 2, 3, 4, 5, 6]. However, many of them are focused on limited conditions, and
rarely provide the examples for practical implementations.

In this paper, we describe the color correction system using a color compensation
chart for digital images captured by digital camera. The proposed system introduces a
different approach from the conventional techniques. That is, the color correction is
performed by the estimation of dynamic tone reproduction curve (TRC) and the direct
transformation between the captured colors and the reference colors. Therefore, the

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 258 —269, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Block diagram of the proposed system

color correction is achieved without the conventional image formation model which is
hardly solved perfectly. We employ the concepts of color management system (CMS)
and profile connection space (PCS) to realize the proposed system. CMS and PCS
have been defined by ICC to overcome the inter-device color consistency problems,
and are supported by most of digital imaging or displaying devices [10]. Fig.1 shows
the block diagram of the proposed system. First, the image of the color compensation
chart is captured. And the relationship between the colors of the patches in the image
and those of the internal reference chart is estimated. Then, the system creates an ICC
color profile, and embeds the relationship in the profile. The created profile is used as
the source profile as in Fig.1 to reproduce the colors of the other images which are
captured under the same condition as that of the chart image. To evaluate the per-
formance of the system, we perform experiments under various conditions. And we
compare the results with those of widely used commercial systems.
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3 =
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(a) The color compensation chart (b) Color gamuts considered to
determine the patch colors

Fig. 2. The color compensation chart and its gamut

This paper is consists as follows. In section 2, we describe the color compensation
chart designed for the proposed system, and the color correction process is discussed
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Fig. 3. Indexes of the patches Fig. 4. L*a*b* values of the patches

in section 3. The experimental results are given in section 4, and the conclusions are
drawn in section 5.

2 Color Compensation Chart for the Proposed System

For the proposed system, we designed the color compensation chart as shown in
Fig.2(a). This chart provides the reference colors for the estimation of the relationship
between the colors in the image and the actual colors. Four patches which have gray
color are located in the four corners of the chart to compensate the brightness of every
patch. Eight patches located in the center area of the chart are used to create the tone
reproduction curves. The patch colors were determined base on the conditions such as
general colors observed in the most common environment, general skin colors of Ko-
rean people [11, 12]. The color gamuts of widely used digital cameras were also con-
sidered, because the proposed system is for the images captured by digital cameras.
Fig.2(b) shows the color gamuts of the compensation chart and considered color
spaces. The ‘+’ marks located in the considered gamuts in Fig.2(b) denote the patch
colors. Fig.3 shows the index of every patch which is used in the entire process, and
Fig.4 presents the L*a*b* values of the patches.

3 Color Correction Algorithm for the Proposed System

The color correction algorithm for the proposed system consists of the profile creation
process and the profile application process. During the profile creation process, the re-
lationships between the captured colors and the internal reference colors are esti-
mated. Then the system creates the color profile, and embeds the estimation result in
the color profile. In the profile application process, the colors in the image which is
captured under the same condition as that of the chart image are reproduced using the
created color profile.
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Fig. 5. Profile creation process

3.1 Profile Creation Process

Fig.5 shows the block diagram of the color profile creation process. The first step of
the profile creation process is the brightness compensation, which is to make the
brightness of every patch uniform. After the brightness compensation, the TRCs are
estimated, and the color correction matrix is computed in the PCS. The color correc-
tion matrix maps the input colors to the internal reference colors, and the colors of the
image is corrected by this matrix during the profile application process. Finally, the
system creates the ICC color profile, and embeds the estimation results in the profile.

3.1.1 Brightness Compensation of the Chart

Due to some conditions such as shadows or illuminations, the brightness of every
patch in the chart may not be uniform. If the brightness of every patch is not uniform,
the entire estimation for the profile creation process may be led to inaccurate results.
Therefore, we compensate the brightness of every patch using the colors of the four
patches located on the four corners of the chart (i.e., (0, 0), (7, 0), (0, 5), and (7, 5) in
Fig.3). For the brightness compensation, every patch color is converted into HSI
color, and the normalized intensity (i.e., ‘I’ value) is used as the brightness value. Be-
fore the brightness compensation, relative brightness values of the four patches should
be estimated to produce the brightness map which consists of the relative brightness
values of the patches in the image. For the relative brightness estimation, the mini-
mum of the brightness difference between the four patches in the image and those in
the internal reference chart is estimated, and the brightness values of the four patches
in the image are adjusted using the minimum brightness value as follows:

iy~ P

Dy, i = 0,N,-1, NI,

D :A;{irl \P( il 0
P

P i) j=0N,1N-1,

(g =

where P(i, j) is the brightness of the patch in the image, and P’(i, j) means the bright-
ness of the patch in the internal reference chart. Dy is the smallest brightness
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difference, and N, and N, mean the number of patches in the horizontal and the
vertical direction respectively. And i and j are used to denote the indexes of the
four patches as shown in Fig.3. By Eq.(1), we get the relative brightness values
Pg(i, j) for the four patches in the image. Based on the relative brightness values,
the brightness compensation is achieved using bilinear interpolation [13]. That is,
relative brightness of every patch is interpolated linearly in the vertical and the
horizontal direction using the relative brightness differences of the four patchs es-
timated by Eq.(1) as follows:
fun =37 P+ P
N, —1-i 2)

foo =3 15(N_15)+ﬁ1’s(w,,_w i=0,1,2,..,N,~1,

v

g j)="" N f(:o) —fems J=01200N, -1, (3)
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(a) Brightness map for the compensation chart (b) The image of the compensation
chart

Fig. 6. The image of the color compensation chart and its brightness map

where i and j denote the indexes of the patches as in Fig.3. g(i, j) is the interpolated
brightness. By Eq.(2) and Eq.(3), we get the brightness map for the color compensa-
tion chart in the image. The relative brightness value of the brightness map is sub-
tracted from every patch’s brightness in the image to equalize the brightness of every
patch. Fig.6(a) shows the brightness map for the chart image of Fig.6(b). The relative
brightness value of Fig.6(a) is subtracted from the brightness value of every patch in
Fig.6(b) to make the brightness value of every patches in the image uniform. After the
brightness compensations, the color of every patch is converted back into RGB color
for the next process.
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Table 1. Regression errors Table 2. ICC profile Tags for the system

Index Red Channel ~ Green Channel  Blue Channel Tag Signature Data Type

(S0} 0 004876 0 003311 0 001765 mediaWhitePointTag wtpt XYZType

3,2 0 008573 0 010219 0 005493 mediaBlackPointTag bkpt XYZType

3,3) 0 007408 0 003542 0 002145 CopyrightTag cprt multiLocalizedUnicodeTag

3,4 0 007514 0 011883 0 010104 profileDescriptionTag desc multiLocalizedUnicodeTag

@1 0 012203 0 016832 0 005139 redMatrixCouilmnTag XYZ XYZType

“,2) 0 007819 0 037835 0 089622 greenMatrixCouilmnTag aXYZ XYZType

@3 0 008355 0 026986 0 039552 blueMatrixCouilmnTag bXYZ XYZType

@,4) 0027958 0 014997 0 037026 redTRCTag rTRC curveType

Mean greenTRCTag gTRC curveType
A]l;(;::;te 0 010588 0 015701 0 023856 blueTRCTag bTRC curveType

3.1.2 Estimation of the Tone Reproduction Curves

Based on the chart images, the proposed system estimates the TRCs dynamically. The
eight patches located in the center area of the chart are use for the TRC estimation
process (i.e., from (3, 1) to (3, 4) and from (4, 1) to (4, 4) in Fig.3). For each of R, G,
and B channel, the function to fit the color values of these eight patches in the image
to those in the internal reference chart is estimated. This function is used not only as
the TRC, but also as the white balancing function, because the function fits the input
colors to the ideal gray colors. This process is performed in R, G, and B channels in-
dependently. In this paper, we apply curve regression to fit the color values. We sup-
pose that the function g(x) for the curve regression is given as follows [13]:

gx)=a fix)+ta,f,(x)+a,f;(x)+a,f,(x), 0Sx<1, 4
i) =L f,(x)=x, f;(x)=sin(x), f,(x)=exp(x), @
where a, is undetermined coefficient, and x is normalized color in the range of 0.0 to
1.0. The coefficients of Eq.(4) are determined to minimize the sum of the square of
the differences between the color values of the eight patches in the image and those of
the internal reference chart as follows:

8 8 4 2

RS0 =3 -Tasn)|. )
i=1 i=1 n=l

Fig.7(a) is the result of the curve regression, and Fig.7(b) represents three TRCs for

each of R, G, and B channel. The regression errors are shown in Table 1. From

Fig.7(a) and the table, we can verify that the estimation process does not produce any

critical error. The TRCs are preserved in the ICC profile as described in section 3.1.5.

3.1.3 Color Space Conversion

As the system adopts PCS and CMS, RGB colors of the patches in the image should
be converted into those of XYZ color space before the estimation of the transforma-
tion. As defined in the specification ICC.1:2004-10, the PCS is relative to the
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illuminant D50 [10]. Moreover, the connection between the PCS and the device color
space should be considered. Therefore, following conditions are considered for the
color conversion.

1) Reference white of the PCS: The PCS defined in the ICC specification is based
on the illuminant D50. Therefore, the reference white point in the PCS should be
equal to D50 (i.e., X=0.9642, Y=1.0, Z=0.8249).

2) Device color space: We employed sRGB as the device color space. It is defined
based on the illuminant D65.

3) Chromatic adaptation transformation: As the illuminant of the device color
space is not equal to that of the PCS, the chromatic adaptation method is required
for the color space conversion. We used the linear Bradford model for the chro-
matic adaptation transformation [9, 10].

By the condition 1), 2) and 3), we get the color space conversion matrix employed for
the system as follows:

X R] [0.436052 0.385082 0.143087 | R
Y |=M,,,, M| G|=|0.222492 0716886 0.060621 | G |, (6)
z B| [0.013929 0.097097 0.714185 || B
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Fig. 7. Results of the TRC estimation process

where, M4, denotes the chromatic adaptation transformation matrix defined by the
linear Bradford model, and Mys is the color space conversion matrix from the PCS to
sRGB color space.

3.1.4 Correction of the Image Color in the PCS

The colors of the image are corrected in the PCS by the linear transformation which
maps the colors of the patches in the image into those of the reference colors. The
transformation is estimated as follows:
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X, X X my, my, my | X', X', X'y
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where M, is the transformation matrix which maps the patch colors of the image
into those of the reference colors. Eq.(7) is estimated by SVD.

©
=

N

N

My, =M M'y,, :|:

3.1.5 The ICC Color Profile Created by the System

The estimated relationship for the color correction is embedded in the ICC color pro-
file. Table 2 shows the tags used for the ICC profile created by the system. They are
defined in the specification ICC.1:2004-10 [10].

1) mediaWhitePointTag, and mediaBlackPointTag: The reference white and the
reference black are embedded in each tag. As the chromatic adaptation transformation
is applied to the color space conversion matrix in the proposed system, the me-
diaWhitePointTag is set to the values of D50. The mediaBlackPointTag is set to the
reference color of black (X =0,Y =0,Z =0).

2) redMatrixColumnTag, greenMatrixColumnTag, and blueMatrixColumnTag:
These tags are intended to be used for the transform from the device color space to the
PCS. In the proposed system, the color space conversion matrix of Eq.(6) multiplied
by the color correction matrix M, of Eq.(7) is embedded in these tags.

3) rTRCTag, gTRCTag, and bTRCTag: The TRCs are preserved in each of
rTRCTag, gTRCTag, and bTRCTag. The proposed system employs the curveType
data type defined in the ICC specification. For the curveType, a 1-D lookup table
(LUT) is established to map the input color to the output color as follows:

redTRCli] = gr(x;), greenTRC[i] = g, (x,), blueTRC[i]= g, (x,),i=0,1,.., Ng, x, = NL (8)
S
Here Ngdenotes the number of samples of g(x). In the proposed system, g(x) is sam-

pled at 1024 points in the range of 0.0 to 1.0.

3.2 Profile Application Process

The profile application process is the inverse process of the profile creation process.
Fig.8 shows the block diagram of the color correction process [10].

4 Experimental Results

The experiments are performed in two categories. First, the performance of the
system is evaluated under the various light sources. We use SpectralLight III by Gre-
tagMacbeth which can produce standard light sources defined by CIE. The second
experiment is performed for the white balance distortions. The white balance of the
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Fig. 8. Color correction process

captured image is distorted using the preset values included in the digital camera. The
performance of the system is evaluated by the average of the color difference of every
patch. The color difference of every patch is estimated as follows [9]:

AE* = ((AL*)* +(Aa®)* + (Ab¥)*)""? 9)
AL*=L* —L*,» Aa*=a* —a*,» Ab*=b* -b*, ,

where L*;, a*;, and b*; represent the captured color, and L*,, a*,, and b*, mean the
internal reference color. Then, the color difference of every patch is averaged, and we
consider this average of the color difference as the color correction error. The per-
formance of the system for each experiment is compared with those of three commer-
cial applications: “ProfileMaker 5” and “il” by GretagMacbeth, “QP Color Kit 1” by
QP Card. The images are captured using Canon EOS-10D digital camera.

4.1 Experimental Results for Various Illuminations

For the experiments, we consider the CIE standard illumination models generated by
SpectraLight III: D65 (6500K), CWF(4150K), Horizon(2300K), U30(3100K), and
Standard light “A”(2856K). Under these illumination models, the color differences are
estimated in the CIELAB space. We employ “ColorChecker” color chart by Gretag-
Macbeth as the test chart, which is not used by any systems. The experiment is per-
formed as follows. First, the image of each system’s native color chart is captured under
the illumination model. And each system’s color profile is created for the color correc-
tion. Then, the image of the test chart is captured under the same illumination model as
that of the native color chart image. The image of the test chart is corrected using the
color profile created by each system. Finally, the color correction error of each system is
estimated. Fig.9 shows the images of the experimental results. The color correction
errors for Fig.9 are shown in Table 3, in which each value denotes the average of the
color difference of every patch in the test chart. From the results, it seems that Profile-
Maker 5 shows the best performance. However, Table 3 represents that there is not
much difference between the correction errors of the proposed system and those of the
other systems. Moreover, the proposed system produces superior resultsto some sys-
tems under the illuminations such as “Horizon”, “U30”, and “A”. Therefore, we can
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Table 3. The color differences for the illumi-  Table 4. Comparison of the color differences
nation models for the white balance values
D65 CWF Horizon U30 A Sunlight Shadow  Cloud Tungsten Fluorescent
Original | 4 24 81 284 176 219 Original 694 1682 939 312 22 41
Proposed | 582 6 91 117 801 815 Proposed | 587 595 602 599 6 21
QPeard [ 432 538 176 732 792 Qrard | 844 872 857 1171 1152
Profil Profile
Mikers | 344 442 957 623 688 yome | 595 644 768 1553 14 21
i1 386 477 124 875 905 it 613 689 745 1629 1582

Original  Fropoaed  op card Profllemaker

Horizon Sunlight Shadow Cloud Tungstan Flusrescent

Fig. 9. Comparison of the performances under  Fig. 10. Comparison for the white balance di-
the various illumination models stortions

conclude that the proposed system shows almost equivalent performance to the other
commercial systems under the various illuminations.

4.2 Experimental Results for the White Balance Distortions

The white balance of the image to be captured is distorted using the preset values in
the digital camera as follows: 1) “Sunlight”’(5200K), 2) “Shadow”(7000K), 3)
“Cloud”(6000K), 4) “Tungsten”(3200K), and 5) “Florescent”(4000K). The experi-
ment is performed in the similar manner as that of section 5.1. However, the white
balance value is distorted instead of the illumination variation. Table 4 presents the
color differences for the white balance distortions. We can verify that the proposed
system shows almost steady results removing the effect of the white balance distor-
tions, whereas the other systems are largely affected by the white balance distortions.
Moreover, it shows the superior performance to the other systems for every preset
values. Fig.10 shows the results for the white balance distortions.

4.3 Experimental Results for Arbitrary Conditions

Fig.11 shows the experimental results for the arbitrary conditions, which is to ensure
the visibility presented to the users. Fig.11(a) and Fig.11(b) show the performance for
the white balance distortion. We can verify that the colors are corrected so as to be
almost equasl to the original ones. The images of Fig.11(c) present the results for the
outdoor scenes. The corrected images show great enhancement. The enhancement is
also verified by the blue tones of the sky in the image. Fig.11(d) also confirms that the
color correction performance of the proposed system.
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Captured Reproduced Captured Reproduced

Fig. 11. Experimental results under the arbitrary conditions

5 Conclusion

We proposed the color correction system, and verified that the system shows satisfac-
tory performance. However, we found some problems. First, the refinement process to
reduce the residual error should be considered. As the transformation to correct the
colors in the XYZ space was supposed to be linear, there may exists some residual er-
ror. This might be reduced by the refinement process. And the effect of the noise
should be considered to produce more reliable quality.
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Abstract. Medical image registration is a decisive step in medical image proc-
esssing. In intensity-based image registration methods, multiresolution coarse-
to-fine strategy is often used to speed up the registration process. In this paper,
several commonly-used similarity measures were compared under multi-
resolution wavelet framework. The similarity measures are energy, joint
entropy, mutual information, normalized mutual information, correlation ratio,
and partitioned intensity uniformity. Experimental results give a guidance to the
selection of appropriate similarity measures for registration in a multiresolution
wavelet framework.

1 Introduction

Medical image registration is to eliminate the difference with translation, rotation,
distortion, and locate the corresponding anatomical point couples at the same spatial
location between different medical images. As an essential part of medical image
processing, medical image registration has emerged as a particularly active field [1-3].

For image registration problems, the proper selection of similarity measures is
decisive for the quality of registration. Conventionally, medical image registration
criteria fall into three major categories: landmark-based, segmentation-based, and
intensity-based. Intensity-based registration avoids the complexity of segmentation or
salient point extraction, thus being widely used in recent years. Unfortunately, this
kind of methods also brings heavy computation load at the same time. Multiresolution
is often used to speed up the registration process, in which registration is done in a
coarse-to-fine framework [4]. In other words, rough estimations are found using sub-
sampled images and the fine-tuning of the solution is implemented at higher
resolution. This can be done with either Gaussian pyramids or pyramids constructed
from wavelet decomposition [4-7].

For most of the existed methods, one similarity criterion was used to match the
images at all multiresolution levels. However, the images are varied in characteristics
at different resolutions, thus it should be more reasonable to use different matching
criteria in different resolution levels.

In this paper, we compare six intensity-based registration measures under multi-
resolution wavelet framework. For each resolution level, the six different metrics are

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 270-279, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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compared on the decomposed approximation image to find out which one is the most
accurate and robust. This will result in the findings of the most appropriate similarity
measures for registration in multiresolution wavelet framework.

The rest of paper is organized as follows. The discrete wavelet transform and its
applications to image registration are briefly introduced in section 2. Similarity
measures used in this paper are given in section 3. Section 4 reports the experimental
results. Finally, some concluding remarks are given in section 5.

2 Discrete Wavelet Transform and Image Registration

2.1 Discrete Wavelet Transform(DWT)

Wavelet transform represents functions as a superimposition of wavelets which can be

written as:
. 1 (x—b]
i X)=— 1
y* (x) nd (1)

They are dilated and translated versions of a mother wavelet i . While extended to

2-D, it could be regarded as configuration of a bunch of high-pass filters and low-pass
filters. The general idea can be represented in diagram as follow:

. . Sltl
D

h 12
DHH

g 12

Fig. 1. One stage of 2D DWT and inverse DWT. 2 41 denotes keeping one column out of

; :

SIF

two, and 14 2 denotes keeping one row out of two. 2 T 1 denotes putting one column of

zeros between each column and 1 T 2 denotes putting one row of zeros between each row. g

and h are high-pass and low-pass analysis filters respectively, while g and h are their

synthesis counterpart.

As can be seen from the diagram, 2-D signal at level i will be decomposed into
four sub-band images Dj; , Di', Djy and S,;', where the former three are high

frequency sub-band of vertical, horizontal and diagonal respectively, and the last one
is low frequency sub-band. Fig.2 shows a MR brain image and its three levels DWT
decomposition. At each level of decomposition the image is filtered and subsampled
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of a factor 2, which results in four sub-bands. For the first level decomposition, right
down HH sub-band is the diagonal detail, right up HL sub-band is the horizontal
detail, and left down LH sub-band is the vertical detail. The LL sub-band is iteratively
decomposed for further two levels.

Fig. 2. MR brain image and its DWT decomposition. Left is the original image. Right is the
three levels DWT decomposition.

2.2 DWT-Based Image Registration

Due to the inherent multiresolution characteristic in DWT, the coarse-to-fine strategy
can be used to speed up image registration. Firstly, the image is decomposed into /
levels, I depends on the image size. Level I represents the coarsest level. The
registration process starts from the coarsest resolution with the low frequency sub-
band S;, . Then the registration results of S;, (i€ [l,1]) is used as initial position at

leveli—1. So the estimates of the correspondence are gradually improved while going
up to the finer resolutions. At every level, the search space and computational time
are considerably decreased. The registration process will terminate when the
similarity measures are optimized at the highest resolution level.

3 Similarity Measures

The following section outlines six similarity measures used in our experiments. Each
similarity measure is used under 2-D rigid transformation. These measures are
Partitioned Intensity Uniformity (PIU), Correlation Ratio (CR), Joint Entropy (JE),
Mutual Information (MI), Normalized Mutual Information (NMI), and Energy(EN).

3.1 Partitioned Intensity Uniformity (PIU)

PIU was the first widely used multi-modality similarity measure based on pixel
intensity, proposed by Woods et al. for MR-PET registration [8]. Let € denote the
overlapping area of image A and B, N the total pixels number in image, andn_, n,
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denotes the number of pixels with intensity value a and b in Q, respectively. The
definition of PIU can be written as:

a ng Oy (b)
PIU = E — 2
N/IB a) 7 N u,(b) @

where

(@)= B(x,). () =3 A(s) ®

Op (a) =_Z<B(XA)_,UB (a))2 » Oy (b) ZH_Z(A(‘XB)_:UA (b))2 4)

ZB(x +) is the sum of intensity in image B, which corresponding counterparts in
QU

image A have the same intensity x, =a . Z A(x,) is determined similarly.
Qh

3.2 Correlation Ratio (CR)

Correlation ratio is an algorithm based on standard statistics, proposed by A Roche et
al [9]. Let Q denote the overlapping area of image A and B, and N is the total

number of pixels it contains. We consider the iso-sets of A,Q ={we Q,A(®) =i},
and their cardinals N, = Card(Q,). The total and conditional moments (mean and
variance) of B can be written as:

, 1 2 2 1
o’ = a;z (@) =m’ = a;z (@) )
or =13 By —m? m =13 Bw ©)
i Ni = i i Ni ~a

Then the Correlation ratio (CR) can be defined as:

CR =

@)

3.3 Entropy-Based Measures and Energy

Assuming a and b is the intensity of image A and B respectively. The joint
probability p(a,b) can be obtained by normalizing the joint histogram h(a,b) of the
image pair as:
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(a.b) = h(a,b)
pia Zh( b)

From the joint probability function, the two marginal probability functions can be
obtained directly as:

®)

play=Y_ pla,b), p(b)= p(a.b) 9)
b a

Three well-known entropy-based measure, Joint Entropy (JE), Mutual Information
(MI) and Normalized Mutual Information (NMI) [10-11], can be define as:

JE=Y pla.b)logp(a.b) (10)
a,b
i = b)log _P@:0) 11
2 bl Y
(a,)
2Y pla,b)log P47
— p(@)p(b) (12)

D pla)+Y. pb)
a b
A simple measure similar to Eq.12 is Energy (EN), which is defined as follows:

a,b

4 Experimental Results

In this paper, the similarity measures were compared using the dataset with 2D rigid
transformation. The test data sets were obtained from BrainWeb, a website providing
simulated MR brain images (http://www.bic.mni.mcgill.ca/brainweb/). All the images
have been precisely registered beforehand as “golden standard”. Three data sets were
used in the experiments: rectified images, images with 9% white Gaussian noise and
inhomogeneity images with 40% intensity non-uniformity. One sample slice of the
dataset is shown in Fig.3.

T1-weighted images were selected as the reference image, T2-weighted and PD
images as floating images. The Haar filter was selected as the wavelet basis function
since it can provide easier computation than other basis, and the sub-band §,, was

used to perform registration because it preserves most of the significant information
of the original image [12]. Because the MR image size is 217X 181 , so the wavelet
decomposition level is set to 3. Partial volume interpolation and Powell method was
adopted as the interpolation and optimization strategy [13]. The estimated parameters
of rigid transformation with various similarity measures are closely related to the stop
criteria of the optimization process. To make fair comparisons, the stop criterion is the
maximal value of the similarity measures.
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Reference [14] has evaluated the effect of different grey levels on rigid registration
performance of MR and CT images. Considering the accuracy of registration result,
computation time cost on whole registration procedure and the perceptibility of
human eye, they concluded that rescaling the intensity values of the original images
into [0,63] is an excellent tradeoff. But our experimental results with 64 grey levels
demonstrated the entropy-based metrics could not achieve subpixel precision for
approximation sub-band images. So we rescaled the grey levels of original and
decomposed sub-band images into 32 grey levels.

Fig. 3. The 91" slice of the database. The left column is T1-weighted images, the second
column is T2-weighted images, and the right column is PD-weighted images. The upper row is
rectified images, the second row is images with 9% white Gaussian noise, and the bottom row
is images with 40% intensity non-uniformity.

We used 30 randomly selected slices on a specified grid transform parameter,
where the X-translation is 4 mm, Y-translation is 4 mm, and rotation is 4 degree. The
experimental results are listed in Table 1 to Table 3, where, mean and ratio, denote
the average error of subpixel precision results, and the ratio of achieving subpixel
precision. Each component of mean represents X-translation mean error, Y-translation
mean error, orientation mean error in order. Furthermore, “——" denotes that there is
no subpixel precision result.



276 S. Li, S. Deng, and J. Peng

From Table 1 to Table 3, we can obtain following observations.

1) Performances on the original images

MI and NMI measures can get 100% successful rate in sub-pixel registration and
give the highest accuracy fore both T1-T2 and T1-PD to all the three case, namely,
rectified, noisy and inhomogeneity. And their performances are almost the same.
For rectified case, PIU, CR and JE perform similarly for T1-T2 and T1-PD.
However, EN is worst one. For noisy T1-T2 images, JE is worse than MI, NMI and
much better than other measures. For noisy T1-PD images, the accuracy of PIU, CR
and JE follow closely the MI and NMI. For inhomogeneity case, PIU and EN are
the worst ones.

2) Performance on the level 1 approximation sub-band image

For rectified case, MI and NMI are the best ones for both image sets. For noisy
case, PIU, MI and NMI perform best among the measure for T1-T2 and PIU is the
best one for T1-PD, which followed by MI and NMI. This observation shows
that PIU has the best robustness for Gaussian noise. CR and EN have the worst
results for noisy case. For inhomogeneity case, MI and NMI are the best measures
for T1-T2 and CR is the best one for T1-PD, which followed by MI and NMI.
PIU, CR and EN performs worst for T1-T2, but for T1-PD, PIU, JE and EN are the
worst ones.

3) Performance on the level 2 approximation sub-band image

For rectified and noisy case, PIU is the best one for both T1-T2 and T1-PD. For
inhomogeneity case, CR performs the best for both T1-T2 and T1-PD and followed
by PIU. However, the entropy-based measures, JE, MI and NMI, can not get the sub-
pixel registration results for all the three cases.

Table 1. Registration results of rectified MR images

Similarity Original Level 1 Level 2

Measures mean ratio mean ratio mean ratio
PIU 0.4,0.1,02 93% 0.2,0.0,02 43% 0.6,0.1,05 10%
CR 0.5,0.1,04 93% 0.3,0.0,0.2 23% 0.6,0.1,0.2 7%

T1

to JE 0.2,03,0.0 97% 0.2,03,0.0 47% — 0%
T2 MI 0.2,0.3,0.0 100% 0.2,0.3,0.0 90% — 0%
NMI 0.3,0.1,0.2 100% 0.2,0.3,0.0 90% — 0%
EN 0.2,04,04 67% 02,0.6,0.1 33% 02,0405 10%
PIU 04,0.1,01 93% 0.2,0.1,03 50% 0.2,03,04 20%
CR 0.2,0.2,0.2 93% 03,02,02 73% 0.1,02,03 7%
?01 JE 0.2,03,0.1 93% 0.2,03,0.1 77% — 0%
PD MI 0.2,03,0.0 100% 0.2,0.3,0.1 83% — 0%
NMI 0.2,0.3,0.0 100% 0.2,0.3,0.1 83% — 0%

EN 0.2,05,0.5 40% 02,0602 30% 03,0405 10%
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Table 2. Registration results of noisy MR images

Similarit Original Level 1 Level 2

Me a}s]ur os mean ratio mean ratio Mean ratio

PIU 0.4,0.4,0.3 17%  0.3,0.1,02 83% 04,0.1,05 13%

CR 0.4,0.5,0.1 40% 0.3,0.3,02 37% 0%

Tl JE 0.2,0.3,0.1 93% 0.2,0.3,00 77% — 0%
—}(; MI 0.2,0.3,0.1 100% 0.2,0.3,0.1 83% 0%
NMI 0.3,0.3,0.2 100% 0.2,0.3,0.1 83% —_— 0%

EN 0.2,0.3,0.1 83% 0.3,0.3,02 37% 0.7,0.1,0.9 3%

PIU 04,0.3,01 93% 0.3,0.1,02 87% 0.1,0.1,0.3 33%

CR 04,0403 93% 04,0.3,03 47% 0.9,0.2,0.5 3%

E JE 02,0301 93% 020301 7%  —— 0%
PD MI 0.2,0.3,0.1 97% 0.2,0.3,0.1 83% 0%
NMI 0.3,0.3,0.1 97%  0.2,0.3,0.1 83% 0%

EN 0.2,04,02 87% 0.2,0.3,0.2 43% 0%

Table 3. Registration results of inhomogeneity MR images
Similarit Original Level 1 Level 2

M ea}s,ures mean ratio mean ratio mean ratio

PIU 0.3,0.2,0.3 30% 0.2,0.1,02 17% 0.0,0.1,0.7 3%
CR 0.1,0.1,02 97% 0.2,0.1,0.7 37% 0.2,0.1,03 10%

Tl JE 020301 97% 020301 30% 0%
{% MI 0.2,0.3,0.0 100% 0.2,0.3,0.0 83% —_ 0%
NMI 0.2,0.3,0.0 100% 0.2,0.3,0.0 83% —_— 0%

EN 0.1,04,04 70% 0.1,0.5,0.2 37% 0.2,0.5,0.9 7%

PIU 0.3,0.50.3 40% 0.5,04,03 30% 0.1,0.2,0.1 7%
CR 0.2,0.2,03 97% 0.3,02,02 87% 0.1,0.1,04 10%

Tol JE 02,0301 97% 02,0101 53% 0%
PD MI 0.1,0.3,0.0 100% 0.2,0.3,0.1 73% —_ 0%
NMI 0.2,0.3,0.0 97% 0.2,0.3,0.1 73% —_— 0%

EN 0.1,0.5,0.6 46% 0.1,0.6,0.2 17% —_— 0%

So the following useful guidance for multiresolution MR image registration can be
drawn.

1) For the original images with highest resolution, MI and NMI are the first choice.
They have the distinctive accuracy and robustness even for noise and
inhomogeneity cases.
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2) For middle resolution, MI and NMI are the best ones for rectified and inhomo-
geneity images. However, PIU performs the best for noise images.

3) For low-resolution cases, PIU are the best choice for rectified and noisy images,
but CR is the best one for inhomogeneity images.

5 Summary

In this paper, we evaluated the performances of six similarity measures at 3 levels of
wavelet pyramid with MR images. The experimental results give some guidance to
the selection of appropriate similarity measures for MR image registration in a
multiresolution wavelet framework. Future work will include comparing these
measures in a large number of datasets with non-rigid transformation.
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Finding the Shortest Path Between Two Points
in a Simple Polygon
by Applying a Rubberband Algorithm

Fajie Li and Reinhard Klette

Computer Science Department, The University of Auckland
Auckland, New Zealand

Abstract. Let p and ¢ be two points in a simple polygon II. An open
problem in computational geometry asks to devise a simple linear-time
algorithm for computing a shortest path between p and ¢, which is con-
tained in I7, such that the algorithm does not depend on a (complicated)
linear-time triangulation algorithm. This report provides a contribution
to the solution of this problem by applying the rubberband algorithm.
The obtained solution has O(n log n) time complexity (where the super-
linear time complexity is only due to preprocessing, i.e. for the calculation
of critical edges) and is, altogether, considerably simpler than the trian-
gulation algorithm. It has applications in 2D pattern recognition, picture
analysis, robotics, and so forth.

Keywords: digital geometry, computational geometry, rubberband al-
gorithm, simple polygon, Euclidean shortest path.

1 Introduction

So far, methods for computing the Euclidean shortest path (ESP) between two
points in a simple polygon, as in [3,4,5,11], all rely on starting with a rather
complicated, but linear-time triangulation [2] of a simple polygon. In this paper,
we apply a version of a rubberband algorithm to devise a simple O(n log n) al-
gorithm for computing a shortest path between p and ¢, which is contained in IT,
where n is the number of vertices of I1. Our algorithm starts with a special (say,
horizontal) trapezoidal segmentation of the polygon, which is computationally
not very different to a triangulation, and thus our segmentation can also be seen
as a possible contribution to simplify the triangulation procedure.

The original rubberband algorithm was published in [1] and [6], aiming at an
(approximative) calculation of a minimum-length polygonal path (MLP) con-
tained and complete in a simple cube-curve (subsequent grid cubes of this curve
are face-adjacent) in 3D Euclidean space. Three cubes of such a curve form a
corner if all three are incident with one grid edge (called a critical edge of the
cube-curve). MLP vertices are always located on critical edges [1].

The correctness and actual time-complexity of this original rubberband algo-
rithm remained an open problem for some time. [8] proved that this algorithm is

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 280-291, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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always correct for some special cases of simple cube-curves. The algorithm was
then slightly corrected in [9], which also allowed to prove that its running time is
always linear for a special class of input curves. Finally, [10] presented two prov-
ably correct and linear-time edge-based or face based rubberband algorithms for
the general case (i.e., arbitrary simple cube-curves). The rubberband algorithm,
as applied in this paper, is a simplified version of the edge-based rubberband
algorithm, and it is presented in Section 3.1.

There is a general option provided by the studied rubberband algorithms:
the basic approach for minimizing a path does not depend upon the specific
geometric shape of grid cubes; it can be applied to a wide variety of 2D or
3D path minimization problems where segmentations into convex subsets are
appropriate. We illustrate this in this brief note for one 2D example only (and
will do for others in forthcoming publications).

In the rest of this paper, Section 2 provides necessary definitions and theorems.
Section 3 presents not only our algorithm but also examples and analysis of time
complexity. Section 4 concludes the paper.

2 Basics

We denote by IT = (v1,v3,...,v,) a simple polygon (i.e., a compact polygonal
region) in the 2D Euclidean plane (which is equipped with an zy Cartesian
coordinate system). V' = {v1,va,...,v,} is the set of vertices of IT, and VI =
U {viviy1} (mod n) is a simple polygonal curve specifying edges forming the
frontier of I1.

For p € R?, let p, be the z-coordinate of p. Let s = p1ps, with py, ps € 9IT
and pi, < p,. Furthermore, assume that s is parallel to the x-axis, s C II, and
there is no v € V\{p1,p2} such that v is between p; and pa.

Definition 1. If py € V (p2 € V) then we say that s is the right (left) crit-
ical segment (of IT) with respect to p1 (p2). If p1 = p2 then we say that s is
degenerate. A critical segment is either a left or a right critical segment.

See Figure 1 and Table 1 for examples. — For a critical segment s of II, let s,
be the y-coordinate of points on s. For a given y, let {s1,$2,...,8mn} be the

Fig. 1. Critical segments of a simple polygon (see also Table 1)
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Table 1. All critical segments of vertices of the simple polygon of Figure 1

Vertex Left critical segment Right critical segment

V1 degenerate V18
v2 degenerate v2p2
v3 degenerate degenerate
Vg P1va Vap4
Us degenerate U5V6
Ve V5V6 degenerate
U7 P3v7 degenerate
Vg V1V8 degenerate

maximal set of critical segments of II such that Siy = Sit1y and s; N ;41 # &,
wherei =1,2,..., m- 1.

Definition 2. The segment U™ {s;} is a maximal critical segment of IT. If
m >1 (m = 1) then we say that the segment U™, {s;} is a non-trivial (trivial)
maximal critical segment of II.

In Figure 1, p1p4 is the only non-trivial maximal critical segment of the shown
simple polygon.

Definition 3. Two mazimal critical segments s1 and so are called adjacent iff
there is mo mazimal critical segment s3 such that s1, < s3, < S2, 0T s2, <
53y < S1y-

In Figure 1, the trivial maximal critical segment vsvg is adjacent to the triv-
ial maximal critical segment psv7, but not adjacent to the non-trivial maximal
critical segment pip4.

Let {s1,82,...,8;} be the set of maximal critical segments of IT. Construct
a weighted tree T as follows: Let T' = [V, E], where V = {uy,ug,...,ux}, F =
{usuj : s; and s; are adjacent }, and each e € F has a weight equal to 1.

Definition 4. We say that T is a 1-tree of II (with respect to the given Carte-
sian coordinate system).

S, -
(1) ) (2)

Fig. 2. Left: simple polygon with six maximal critical segments. Right: its 1-tree.
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Fig.3. A “non-trivial” simple polygon IT with its critical segments
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Fig. 4. 1-tree of the simple polygon shown in Figure 3

Figure 2 shows a 1-tree of a simple polygon, and Figure 4 that of the “non-
trivial” simple polygon which is shown in Figure 3. — Let S = {s1,2,..., Sk}
be a subset of the set of all maximal critical segments of II.

Definition 5. S is called a sequence of maximal critical segments of I1 iff, for
each i € {1,2,...,k — 1}, s; is adjacent to s;j41.

If, for each i € {1,2,...,k — 1}, i, < Sit1y (8iy > si+1y) then S is called an
increasing (decreasing) sequence of maximal critical segments of IT. S is called
a monotonous sequence of maximal critical segments of IT iff it is either an
increasing or a decreasing sequence of maximal critical segments of it. Finally,
S is called an alternate monotonous sequence of maximal critical segments of 1T



284 F. Li and R. Klette

iff it is a sequence of maximal critical segments of I1, and it is the union of a
finite number of monotonous sequences of maximal critical segments of I1.

In Figure 2 (left), {s1, s2, 83, $4} is an increasing sequence of maximal critical
segments of IT while {ss, s¢, $2, 51} is a decreasing sequence of maximal critical
segments. {s3, $2, S¢ } is an alternate monotonous sequence of maximal critical seg-
ments of I7.

Let S = {s1, 82,53} be a sequence of maximal critical segments of IT with
s1 # sz such that there is no maximal critical segment between s; and so or s3
and s2, and there exist critical segments s7 and s3 such that s7 C sp and s5 C 52,
and s7 and s are two edges of a quadrilateral, as well as s and s3. (For example,
in Figure 3, {sa2s, v10v13, $31} i such a sequence of maximal critical segments of
H, with V10V11, V12013 C V10013, segments V10?11 and Sog are two edges of a
quadrilateral, as well as v12v13 and sg;.) For such a sequence S = {s1, 52, 3} we
define the following:

Definition 6. If s1, < s, and sz, > s3, (51, > 52, and sz, < s3,) then sy is
called an upward (downward) mazimal critical segment of II.

Furthermore, s, is also called a stable maximal critical segment of I7 if it is an
upward or downward maximal critical segment of II; both s] and s3 are called
the good critical segments of so with respect to I1.

In Figure 2, s, is the unique downward maximal critical segment of the shown
simple polygon. There is no upward maximal critical segment.

Let p,q € R? be two points in the simple polygon IT. Let p(p, q) be a shortest
path from p to g. Let S = {s1, s2, ..., si} be the set of maximal critical segments
of IT such that, for each i € {1,2,...,k}, s; N p(p,q) # .

We modify S as follows: if s; is a stable maximal critical segment, then replace
s; by its good critical segments.

In Figure 3, v4v6 is a stable maximal critical segment. It has two good crit-
ical segments v4vs and vsvg. Segment v1gv13 is another stable maximal critical
segment. It has two good critical segments v1gv11 and v12v13.

Definition 7. The modified set S is called a step set of mazimal critical seg-
ments of II with respect to the shortest path p(p,q).

For example, in Figure 1, {vops,p1vs,v4ps} (obtained by modifying the set
{vap2,p1pa}) is a step set of maximal critical segments of the simple polygon IT
with respect to the shortest path p(vs,v7). As another example, in Figure 3,

(U1 {si}) U {vave} U (U 5 {si}) U {vrvg} U (U {si}) U {viovia} U (U5, {s})
is a set of maximal critical segments of II1. It can be modified into a step set
(Ui21{si}) U {s13(= vavs), s14(= v506) }U (ULy5{s:})U
{s22(= vrvs), s23(= vsv9)} (U5 {s:})U
{s20(= v10011), $30(= v12013)} U(US T4, {s5:})
Let S be a step set of maximal critical segments of IT with respect to the

shortest path p(p, q), and s; € S. Let d.(p, ¢) be the Euclidean distance between
points p and gq.
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Fig. 5. llustration for the proof of Lemma 1. Left: Case 1. s; is a downward maximal
critical segment. Right: Case 2. s1 is an upward maximal critical segment.

Lemma 1. If s1 is a downward (upward) mazimal critical segment of II and
So 18 a mazimal critical segments of Il such that S1y > S2y (sly < szy), then

S9 ¢ S.
Proof. The proof is by contradiction. Let {p;,p;} = s1 N p(p,q). Suppose that

Pk € 520 p(p,q), then de(pi,p;) < de(pi,pr) + de(p,p;). Therefore, p(p,q) is
not a shortest path. (See Figure 5 for an illustration.) O

By Lemma 1 we have the following theorem:

Theorem 1. If S is a step set of mazimal critical segments of I1 with respect to
the shortest path p(p,q) then S is an alternate monotonous sequence of mazimal
critical segments of 11 .

This theorem and the following, previously known result are important for prov-
ing that our ESP Algorithm (described in Section 3.4) requires only linear com-
putation time.

Theorem 2. ([12], Theorem 37) There is a deterministic linear time and linear
space algorithm for the single source shortest path problem for undirected graphs
with positive integer weights.

Let T be a tree and p, g vertices of T

Corollary 1. There is a deterministic linear time and linear space algorithm to
find the unique path p(p,q) C T.

3 The Algorithms

A simplified 2D rubberband algorithm will be used in the main algorithm de-
scribed in Section 3.4.

3.1 A Simplified Rubberband Algorithm

Let p,qg € R?, S = {51, 82,...,5} be a set of consecutive, pairwise disjoint non-
degenerate critical segments, P = {p1,pa,...,pr} such that p; € s;, where i =
1,2,.., k (k>3). Let p = (p,p1,D2,---,Pk,q) be a polygonal arc that starts
at p, then visits p1, po, ..., Pk, and finally ends at q.
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Rubberband Algorithm

1. Let € = 10719 (the accuracy).

2. Compute the length [y of the path p = (p, p1,pe, ..., Dk, Q).
3. Let g =pandi=1.

4. While i <k —1do

4.1 Let q3 = Pi+1-

4.2 Compute a point g2 € s; such that

de(q1,92) + de(gs, g2) = min{dc(q1,q) + de(g3,q) : q € s;}

4.3 Update P by replacing p; by ga.
44 Let ¢n =p;and i =1 + 1.

5.1 g3 =q.

5.2 Compute g € s such that

de(q1,q2) + de(g3, q2) = min{de(q1,q) + de(g3,9) : q € i}

5.3 Update P by replacing px by g2.

6. Compute the length I3 of the updated path p = (p,p1,p2,...,Dk, q)-
7. Let § = ll - l2.

8. If § > ¢, then let I; =I5 and go to Step 3. Otherwise stop.

The accuracy parameter in Step 1 can be chosen such that maximum possible
numerical accuracy is guaranteed on the given computer.

3.2 Examples

In Figure 6, (upper row, left) shows start and destination points p and ¢, and
three critical segments s1, s2 and s3. (Upper row, middle) shows the initial points
p1, p2 and p3 which are the centers of s1, s2 and ss, respectively. (Upper row,
right), (lower row, left) and (lower row, middle) show updated points p; (by step
4.3), p2 (by step 4.3) and p3 (by step 5.3), respectively. (Lower row, right) shows
the final path.

In Figure 7, (left) shows the initial path pg, and the updated paths p; to rhoy
of four iterations of the Rubberband Algorithm. (Right) shows the initial path
po, and the updated paths p; to pis of eighteen iterations of this algorithm.

We can see that different initial points may lead to different numbers of iter-
ations of the algorithm until it terminates (with respect to the chosen accuracy
parameter). From Figure 6, we can see that the algorithm only needs two iter-
ations to terminate. The results of the first iteration are shown in (upper row,
right), (lower row, left) and (lower row, middle). (Lower row, right) shows the
result of the second iteration. Figure 7 (left) shows that the algorithm has to
run for at least 4 iterations in this case.

3.3 Time Complexity

Let € be the accuracy, [ the true length of the shortest path, Iy that of initial path,
and [,, that of the path after n-iteration. We slightly modify the Rubberband
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Fig. 6. Illustration for the Rubberband Algorithm when the initial points are selected
as centers of critical segments

Algorithm as follows:! For each iteration, we update the vertices with odd indices
first and then update those with even indices later (i.e., for each iteration, we
update the vertices with indices 1, 3, 5, ..., then those with indices 2, 4, 6, ...),
then {l,,} is a decreasing sequence with lower bound 0. Let lp — = ak + b and
lp, — lpy1 = ck + d, where a, b, ¢ and d are constants such that a, ¢ # 0. Then
we have

im ak+b a
k—oo ck+d ¢
Therefore the algorithm will stop after at most [a/(ce)] iterations. So the

time complexity of the Rubberband Algorithm is [a/(ce)] - O(k) = O(k), where
k is the number of the vertices of the path.

3.4 New Algorithm

Let p, g be the start and destination point inside of a simple polygon II, respec-
tively. Let V' be the set of vertices of II. Let E be the set of edges of II.

Preprocessing Procedure

1. The sorted set V' = {v1,va,...,v,} be the set of vertices of IT such that
Viy < Vig1y, wherei =1,2,...,n- 1.

2. For each v; € V| compute a straight line [; such that [; is parallel to z-axis.

! This is just for the purpose of time complexity analysis. By experience, the Rubber-
band Algorithm runs faster without such a modification.
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Fig. 7. Illustration for the Rubberband Algorithm when the initial points are the left
end points of critical segments

3. For each e € F,
3llete=vv;andi<j,andi, j=1,2,...,,n-1;
3.2 if e is parallel to z-axis, let S; = S; U {p} and S; = S; U {p};
3.3 otherwise, for each m € {i,i+1,...,5— 1}, let p = I,, N e and
Sm = Sm U {p}.
4. For each i € {1,2,...,n}, find v; € S;.
4.1 Let
Vijesr = max{v;’ : v}, < vi, Avi’ € Si}

and
. / / /
Vipight = min{v;’ 1 v, > vy, Ay’ € Si}

(It follows that vijer¢v; and viviigns are the left and right critical segments of
v;, respectively.)

5. Partition V' into Vi, Va, ..., Vi such that Vi = {vi1,via,..., iy, }, vij, =
Vij41, where j = 1,2, ..., n; - 1, and v;y,, < Vit1yy, wherei =1,2,..., k- 1.

6. Merge all left and right critical segments of v € V; into a maximal critical
segment of I1, denoted by s,.

7. Output S ={s,:v eV, i=1,2,...,k}.

ESP Algorithm

1. Apply the Preprocessing Procedure to compute the set of maximal critical
segments of II, denoted by S.

2. Construct a 1-tree T

3. Apply the algorithm of [12] to find the unique path p(p,q) C T.

4. Compute the step set of maximal critical segments of IT with respect to
the shortest path p(p, q), denoted by Sstep (see description before Definition 7).

5. Let P = {p}.

6. For each s; € Ssep,

6.1 let v; be the center point of s;;

6.21et P=PU{v;};

6.3 let P = PU{q}.
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Fig. 8. The shortest path from s to ¢ inside the simple polygon shown in Figure 3

7. Apply the Rubberband Algorithm on Sgt., and P to compute the shortest
path p(p, q) inside of II.

8. We finally convert p(p,q) into the standard form of the shortest path by
deleting all vertices which are not vertices of IT.2

Table 2. Vertices (not including p and ¢) of the shortest path p(p, ¢) obtained by Step
7 in the ESP Algorithm, for the example shown in Figure 3

i (wi,y:) i (@i,y) i (@i,y) i (@i,y)

1 (2810, 734.0) 11 (342.0, 284.0) 21 (625.0, 659.0) 31 (1010.1, 302.0)
2 (281.9, 719.0) 12 (392.0, 250.0) 22 (693.0, 700.0) 32 (1024.2, 408.0)
3 (284.0, 687.0) 13 (474.0, 212.0) 23 (693.0, 700.0) 33 (1030.4, 454.0)
4 (289.9, 646.0) 14 (474.0, 212.0) 24 (750.0, 617.0) 34 (1041.4, 537.0)
5 (296.1, 603.0) 15 (548.0, 244.0) 25 (767.1, 584.0) 35 (1052.2, 618.0)
6 (303.3, 553.0) 16 (554.3, 278.0) 26 (813.8, 494.0) 36 (1058.7, 667.0)
7 (313.2, 484.0) 17 (571.2, 369.0) 27 (847.5, 429.0) 37 (1065.8, 720.0)
8 (319.0, 444.0) 18 (584.2, 439.0) 28 (877.0, 372.0)

9 (331.2, 359.0) 19 (608.1, 568.0) 29 (974.0, 271.0)

10 (331.9, 354.0) 20 (614.4, 602.0) 30 (1006.0, 271.0)

We show that Step 8 is always correct. First, let p be a point in the set of
vertices of the shortest path p(p, ¢) obtained by Step 7. p must be deleted even if
it is close to some vertex of I1. To see this, note that each vertex of the polygon is
an endpoint of a critical segment. When we update a point on a critical segment,
we search for the new position on the whole segment including its two endpoints.
Any really “good” endpoint will be selected quickly. This is illustrated by the
example output in Tables 2 and 3. For a point on the shortest path, if it is
really “good” then it must be exactly a vertex of the polygon, not just “close”

2 It is well known that each vertex (# p, q) of the shortest path is a vertex of IT ([7]).
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Table 3. Vertices (not including p and ¢) of the standard form of the shortest path
p(p, q) obtained by Step 8 in the ESP Algorithm, for the example shown in Figure 3

i (ziy) 0 (Tey) b (Tay) 1 (m6y0)

3 (284, 687) 14 (474, 212) 23 (693, 700) 30 (1006, 271)
11 (342, 284) 15 (548, 244) 24 (750, 617)

12 (392, 250) 21 (625, 659) 28 (877, 372)

13 (474, 212) 22 (693, 700) 29 (974, 271)

to some vertex. Secondly, let p;, pjt+1, pj+2 be three consecutive points in the
set of vertices of the shortest path p(p, q) obtained by Step 7. If p;j;1 must be
deleted, then p;p;+2 must be contained inside II. This is because, if p;41 is not
a vertex of the polygon, then p;, pj+1 and pj;2 must be colinear. Otherwise,
there is a point p’, ;in a sufficiently small neighborhood of p;1 such that p’
is contained in the polygon and

de(pj, Dig1) + de(Dii1,Pj+2) < de(pj, pj+1) + de(Pjr1,Pjt2)

(This contradicts that p;jpj;1pj4+2 is the shortest subpath of the shortest path).
Since pj, pj+1, Pj+2 are colinear, so p;p;+2 is contained in the polygon. Therefore,
if a point in the set of vertices of p(p, ¢) is not a vertex of the polygon, then it
must be redundant and must be deleted.

Figure 8 shows the initial path and the shortest path (inside the simple poly-
gon shown in Figure 3) computed by the ESP Algorithm. Table 4 illustrates
(for the same input example) the relationship between number of iterations and
length differences, for the last two updated paths. Initial points are the center
points of the segments.

Table 4. Number of iterations (I) and resulting d, for the example shown in Figure 3

I6 I I$ 19

1 90.8685 6 0.3787 11 0.0170 16 0.0009
2 34.1894 7 0.2328 12 0.0078 17 0.0006
36.9828 8 0.1547 13 0.0043 18 0.0004
42.3697 9 0.0992 14 0.0025 19 0.0003
50.8061 10 0.0384 15 0.0015 20 0.0002

3.5 Time Complexity of the ESP Algorithm

The main step of the Preprocessing Procedure is Step 3.3. Since each vertex
can only have a left critical segment and a right critical segment, the total total
number of intersections is not more than 2n, where n is the number of edges
of IT. We assume to apply sorting in Step 1 of the Preprocessing Procedure, so
the complexity of this procedure equals O(n log n). Therefore, the total time
complexity of the ESP Algorithm is also O(n log n).
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Conclusion

We have described a simple O(n log n) algorithm for computing a shortest
path between p and ¢, which is contained in a simple polygon II, where n is
the number of vertices of II. The maximum number of iterations is a constant
defined by the selected accuracy parameter. The algorithm is easy to implement.

Obviously, our method can also be generalized to deal with special cases of 3D

Euclidean shortest paths. However, this short note is only an initial illustration
how versions of a rubberband algorithm apply to shortest path problems.

Acknowledgements. The authors thank Joe Mitchell and David Eppstein for
critical comments about an earlier draft of this report.
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Abstract. An efficient, global and local image-processing based extraction and
tracking of intransient facial features and automatic recognition of facial
expressions from both static and dynamic 2D image/video sequences is
presented. Expression classification is based on Facial Action Coding System
(FACS) a lower and upper face action units (AUs), and discrimination is
performed using Probabilistic Neural Networks (PNN) and a Rule-Based
system. For the upper face detection and tracking, we use systems based on a
novel two-step active contour tracking system while for the upper face, cross-
correlation based tracking system is used to detect and track of Facial Feature
Points (FFPs). Extracted FFPs are used to extract some geometric features to
form a feature vector which is used to classify input image or image sequences
into AUs and basic emotions. Experimental results show robust detection and
tracking and reasonable classification where an average recognition rate is
96.11% for six basic emotions in facial image sequences and 94% for five basic
emotions in static face images.

Keywords: Active contours, Action Units, Facial Expressions, Probabilistic
Neural Networks.

1 Introduction

Automated facial expression analysis using computer vision work could bring facial
expressions into man-machine interaction.

Most computer-vision based approaches to facial expression analysis attempt to
recognize only prototypic emotions. These prototypic emotional seem to be universal
across human ethnicities and cultures and comprise happiness, sadness, fear, disgust,
surprise, and anger. In everyday life, however, such prototypic expressions occur
relatively infrequently. Instead, emotion is communicated by changes in one or two
discrete features.

In order to make the recognition procedure more standardized, a set of facial
muscle movements (known as Action Units) that produce each facial expression, was

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 292 —304, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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created by psychologists as Facial Action Coding System (FACS) [1]. Table 1 shows
AUs used in this work that occur in the lower and upper face and are more important
in describing facial expressions.

In recent years, there has been extensive research on facial expression analysis and
recognition.

Pantic and Rothkrantz [2] proposed an expert system for automatic analysis of
facial expressions from static face images. Their system consists of two major parts,
the first one forms a frame work for hybrid facial feature detection and the second
part of the system converts low level face geometry into high level facial actions.

Table 1. Some of FACS AUs used in this work

AU AU
(Upper FACS (Lower FACS
Face) description Face) description

1 Raised inner 12 Mouth corners
brows pulled up

2 Raised outer 15 Mouth corners
brows pulled downwards

4 Lowered brows 17 Raised chin

5 Raised upper lid 20 Mouth stretched

6 Raised cheek 23 Lips tightened

7 Raised lower lid 24 Lip pressed

9 Wrinkled nose 25 Lips parted

- - 26 Jaw dropped

- - 27 Mouth stretched

Lien et al. [3] developed a facial expressions recognition system that was sensitive
to subtle changes in the face. The extracted feature information, using a wavelet
motion model, was fed to discrimination classifiers or hidden markov models that
classified it into FACS action units. The system was tested on image sequences from
100 subjects of varied ethnicity. Average recognition accuracy for 15 AUs in the
brow, eye and mouth regions was 81-91%.

Valstar et al. [4] used temporal templates which were 2D images, constructed from
image sequences and showed where and when motion in the image sequences has
occurred. A K-Nearest Neighbor algorithm and a rule-based system performed the
recognition of 15 AUs occurring alone or in combination in an input face image
sequences. Their proposed method achieved an average recognition rate of 76.2% on
the Cohn-Kanade face image database.

Bartlett et al. [5] used Gabor filters using AdaBoost for feature selection technique
followed by classification with Support Vector Machines. The system classified 17
AUs with a mean accuracy of 94.8%. The system was trained and tested on Cohn-
Kanade face image database.

In this paper we develop an automatic facial expressions analysis and classification
systems. Estimated positions of lips, eyes and eyebrows are determined by using a
knowledge based system.



294 H. Seyedarabi et al.

In the first frame of image sequences, 25 Facial Feature Points (FFPs) are
automatically detected, using active contours for the lower face and gray level
projection method for the upper face. A hybrid tracking system is used to track these
FFPs in subsequent frames. An enhanced version of the conventional active contour
tracking system is used for lip tracking and a cross-correlation based tracking system
is used to track FFPs around eye, eyebrow and nose. Some geometric features are
extracted, based on the position of FFPs in the first and the last frames. This features
form a feature vector which is used for classifying of input image sequences into 16
AUs using Probabilistic Neural Networks (PNN). A rule-based decision making
system is applied to AUs to classify input images into basic emotions.

Proposed features and feature extraction method can also be applied to static
images (except features for wrinkled nose). Last frame in image sequences which
represents peak of facial expressions is used to train and test of static images
recognition system. A local reference parameter is used to normalize extracted
geometric features.

Most of the facial expression recognition systems use manually located FFPs in the
first frame [3-5]. Our proposed system uses automatically detecting and tracking of
feature points. Proposed hybrid tracking system shows robust tracking results both in
upper and lower face, which only needs the rough estimated position of eye, eyebrow
and mouth.

The system is trained and tested on 180 image sequences, consisting six basic
facial expressions on Cohn-Kanade face image database [6].

2 Initial Position of Facial Features

Among the facial features, eye, eyebrow and mouth have important role in expressing
facial emotions.
There are three steps in an automatic facial expression recognition system:

- Face detection
- Facial feature extraction
- Facial expression classification

Our proposed algorithm uses four points on top, down, left and right of the face as
landmarks and determines automatically the initial position for facial features based
on the face height and width using a knowledge-based system.

Knowledge-based system is formed from eyes, eyebrows and mouth position
on 97 subjects in Cohn-Kanade face database. Based on this system, three
rectangles are located on the face as the initial position for the mouth, the left and
right eyes and eyebrows as shown in Fig. 1. These rectangles are big enough to
assure that they cover these features in different facial images. Additional process
is used for automatically detecting of accurate feature positions and extracting of
25 FFPs. Fig. 1 shows rectangles for initial positions as well as 25 upper and
lower face FFPs.
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Fig. 1. Initial facial features position and 25 upper and lower face FFPs

2.1 Active Contours for Lip Localization

The active contour model algorithm, first introduced by Kass et al. [7], deforms a
contour to lock onto features of interest within an image Usually the features are lines,
edges, and/or object boundaries. An active contour is an ordered collection of n points
in the image plane:

V={,v,,.,v,} 0
v, =(x,y,)i=12,.n

The points in the contour iteratively approach the boundary of an object through
the solution of an energy minimization problem. For each point in the neighborhood

of v;, an energy term is computed:
E =E,(v)+E,®(,) 2

where E,_ (v,) is an energy function dependent on the shape of the contour and

E, (v,)is an energy function dependent on the image properties, such as the gradient

and near point V;.

The internal energy function used herein is defined as follows:

E, (v)=cE, (v,)+bE, v, 3

con

where E_ (v,) is the continuity energy that enforces the shape of the contour and

E,,(v,)is a balloon force that causes the contour to grow or shrink, ¢ and b provide

the relative weighting of the energy terms.
The external energy function attracts the deformable contour to interesting
features, such as object boundaries, in an image. Image gradient and intensity are
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obvious characteristics to look at. The external energy function used herein is defined
as follows:

Eext (vi ) = mEimg (vi ) + gEgmd (Vi ) (4)

where E, (v,)is an expression that attracts the contour to high or low intensity
regions and E,..) is an energy term that moves the contour towards edges. Again,

the constants, m and g, are provided to adjust the relative weights of the terms.

2.1.1 Two-Step Lip Active Contour

We develop a lip shape extraction and lip motion tracking system, based on a novel
two-step active contours model. Four energy terms are used to control motion of
control points. The points in the contour iteratively approach the outer mouth edges
through the solution of a two-step energy minimization problem. One of the
advantages of the proposed method is that we do not need to locate the initial snake
very close to lip edges. At the first step active contour locks onto stronger upper lip
edges by using both high threshold Canny edge detector and balloon energy for
contour deflation. Then using lower threshold image gradient as well as balloon
energy for inflation, snake inflates and locks onto weaker lower lip edges. In this
stage upper control points were fixed and only lower points inflates to find lower lip
edges. Fig. 2 and Fig. 3 show flowchart of proposed two- step algorithm and results.

Input Face Image

Initial estimation
of lip position

High Treshold Canny
Edge Detector

Improving initial

lip position
[Locking onto Upper
Lip Edges
Locking onto Lower
Lip Edges -V1

Fig. 2. Two-step active contour algorithm

i

Fig. 3. Two-step lip tracking a) deflating initial snake and finding upper strong edges b) initial
and final snake at the end of the first step c¢) fixing 14 upper control points and inflating 14
lower points to find lower weak edges d) final lip contour

Kk
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In image sequences two-steps active contour is applied in the first frame (which is
supposed that mouth is not open) and then the final snake is used as an initial snake in
the next frame. Fig. 4 shows some results of tracking in image sequences.

Fig. 4. Lip tracking in image sequences using proposed algorithm

2.2 Detecting FFPs in Eye and Eyebrow

We used gray-level projection method to separate eye, eyebrow and possible hair
regions. Using local Min-Max methods on the gray-level, proper thresholds are
determined to separate eye, eyebrow and hair regions in the initially located rectangle.

By using horizontal projection and selecting a proper threshold, eye and eyebrow
regions in left and right upper faces can be separated. Also hair region is removed
using vertical projection and gray level threshold for hair region. After determining
eyes and eyebrows and using horizontal Sobel edge detection as well as horizontal
and vertical scanning methods, 4 FFPs in eye corners and 3 FFPs in eyebrows are
detected. Fig.5 shows vertical and horizontal gray-level projections, thresholds for
hair region and eye-eyebrow separation and detected FFPs.

PSS ‘fg \//’\

EYE & EYEBROW O a0 100 150
RECTANGLE VERTICAL PROJECTION
@& Threshold for removing Hair region

100
N W
0
0 20 40 1] &0 100

HORIZONTAL PROJECTION
@ Threshold for separating Eve and Eyebrow

EYE EYEBROW

Fig. 5. Vertical and horizontal gray-level projection

3 Hybrid Tracking System

We used our enhanced two-step version of active contours to track lower face FFPs

and cross correlation-based tracking system for upper face FFPs in image sequences.
Among the facial expressions, mouth has high flexibility and hard to track its shape

and deformation. The use of active contours is appropriate especially when the feature
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shape is hard to represent with a simple template. Nevertheless, the initial active
contour must be located very close to the desired feature. This problem is removed
using a novel two-step active contour algorithm. In the first frame, the initial active
contour is located using an estimated mouth position and lock on the outer mouth
edges using two-step active contours. This contour is used as initial contour in
subsequent frames (Fig. 4).

Because of openness of mouth in some static images, the proposed two-step active
contour could not be applied and we used the traditional and one-step contours to
detect mouth shape in static images.

Active contours method has some problems to use in upper face features. Contours
are very sensitive to shadows around eyes and eyebrows.

We used a cross-correlation based tracking system for upper face features. Each
upper face FFP is considered as the center of a 11x11 flow window that includes
horizontal and vertical flows. Cross-correlation of 11x11 window in the first frame
with a 21x21 search window at the next frame is calculated and the position by
maximum cross-correlation value for two windows, were estimated as the position of
the feature point for the next frame [8] [9].

Fig.6 shows detecting and tracking of upper face FFPs for surprise and disgust
expressions.

Fig. 6. Tracking of upper face FFPs a) Surprise expression b) Disgust expression

4 Feature Vector Extraction

Extracted feature points are used to extract some geometric feature points to form a
feature vector for upper and lower face features.
The following features are extracted for lower face:

- Openness of mouth: average vertical distance of points 15-22 and 18-22 (Fig. 1).
- Width of mouth: horizontal distance of points 17 and 20.

- Chin rise: vertical distance of point 22 from origin.

- Lip corners distance: average vertical distance of points 17 and 20 from origin

- Normalized quadratic curvature parameters for points 15, 16 and 17.

- Normalized quadratic curvature parameters for points 17, 21 and 22.

To calculate and normalize curvature parameters, origin is transferred to point 17
that reduces curvature parameters from 3 to 2, also horizontal distance of points 17
and 22, is normalized to one.
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Calculated features form a 8x1 feature vector which is used for classification of
lower face action units.
The following features are extracted for upper face:

- Openness of eye: vertical distance of points 9-10 and 13-14.

- Height of eyebrow 1: vertical distance of points 1 and 4 from origin.
- Height of eyebrow 2: vertical distance of points 2 and 5 from origin.
- Inner eyebrow distance: horizontal distance of points 1 and 4.

- Nose wrinkle: vertical distance of points 7-24 and 11-25.

- Normalized quadratic curvature parameters for points 1, 2 and 3.

- Normalized quadratic curvature parameters for points 4, 5 and 6.

To calculate and normalize curvature parameters, origin is transferred to point 2
and 5 in left and right eyebrow that reduces curvature parameters from 3 to 2; also
horizontal distance of points 1-3 and 4-6, is normalized to one.

Points 24 and 25 are determined by a square with two vertices on points 7 and 11.
These two points are used to track nose wrinkle which is a discriminant feature for
disgust expression (Fig. 6). This feature can not be calculated in static images and our
proposed system can not detect disgust expression in static images. As it has been
shown in Fig.7, without recognizing wrinkled nose (AU9), disgust expression is very
close to anger or sad expressions.

AUAD=1T (Diszasti AUTHLT (5ad)

Fig. 7. Comparing Disgust with Sad and Anger expressions

Calculated features form a 9x1 feature vector in image sequences and a 8x1
feature vector in static images which are used for classification of upper face action
units.

Mid-Point between inner eye corners is determined as origin.

In the image sequences, calculated features (except curvature parameters) in the
first and the last frames are normalized using the following equation:

Norm_ fature= (Last _ frame— First _ frame)/ First _ frame 5)

Last frame in image sequences which represents peak of facial expressions is used
to extract curvature parameters.

In the static images, distance of inner eye corners (distance of points 7 and 11 in
Fig. 1) is used as a local reference to normalize extracted geometric features to
remove the effect of subject-camera distance.
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5 PNN C(lassifier

Probabilistic Neural Networks (PNN) is a variant of the Radial Basis Function Neural
Networks (RBFNN) and attempts have been carried out to make the learning process
in this type of classification faster than normally required for the multi-layer feed
forward neural networks.

The construction of PNN involves an input layer, a hidden layer and an output
layer with feed forward architecture. The input layer of this network is a set of R
units, which accept the elements of an R-dimensional input feature vector. The input
units are fully connected to the hidden layer with Q hidden units (RBF units). Q is the
number of input/target training pairs. Each target vector has K elements. One of these
elements is 1 and the rest are 0. Thus, each input vector is associated with one of K
classes.

When an input vector is presented in the input layer, the hidden layer computes
distances from the input vector to the training input vectors, and produces a vector
whose elements indicate how close the input is to a training input. The output layer
sums these contributions for each class of inputs to produce its net output as a vector
of probabilities. Finally, a compete transfer function on the output of the output layer
picks up the maximum of these probabilities, and produces a 1 for that class and 0 for
the other classes [9].

6 Experimental Results

The Cohn-Kanade database consists of expression sequences of subjects, starting
from a neutral expression and ending with the peak of the facial expression. Subjects
sat directly in front of the camera and performed a series of the facial expressions that
included the six primary and also some single AUs. We used a subset of 180 image
sequences containing six basic emotions for 30 subject emotions. Those AUs which
are important to the communication of the emotion and were occurred at least 25
times in our database are selected. This frequency criterion ensures sufficient data for
training and testing. For each person there are on average of 12 frames for each
expression (after eliminating alternate frames). Image sequences for the frontal views
are digitized into 640x490 pixel array with 8 bits grayscale [6].

6.1 Recognition of Upper and Lower Face AUs in Image Sequences

We used the sequence of 144 (80%) subjects as training sequences, and the sequence
of the remaining 36 (20%) subjects as test sequences. This test is repeated five times,
each time leaving different subjects out. The number of the input layer units in the
lower face PNN classifier is equal to 8, the number of extracted features, the number
of the hidden layer units equals to 144 X9, the number of training pairs and that of
the output layers is 9, which corresponds to selected 9 lower face AUs.

The number of the input layer units in the upper face PNN classifier is equal to 9,
the number of the hidden layer units equals to144x 7, and that of the output layers is
7, which corresponds to the selected 7 upper face AUs.

Table 2 shows the recognition rate of lower and upper face AUs.
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Table 2. Recognition results for lower and upper face AUs in image sequences
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Lower Face AUs Upper Face AUs

AU12 31/35 %88.57 AUl 52/65 % 80
AU15 27129 %93.10 AU2 35/39 %89.74
AU17 73/82  %89.02 AU4 77191 % 84.61
AU20 26/30 %86.67 AUS 30/32 %93.75
AU23 24/29 %82.76 AU6 31/38 % 81.58
AU24 23/32 %71.88 AU7 51/56 % 91.07
AU25 52/59 %88.14 AU9 30/31 % 96.77
AU26 6/10  %60.00 - -
AU27 20/22 %9091 - -

Average 282/328 %85.98 Average 306/352 %86.93

Comparing to some related works [10, 11], results are encouraging.

6.2 Recognition of Six Basic Facial Emotions in Image Sequences

After classifying facial expressions into AUs, we tried to classify them to basic

emotions which comprise happiness, sadness, fear, disgust, surprise, and anger.

There is no unique AUs combination for these emotions. Based on manual FACS
codes for Cohn-Kanade database, a rule-base is constructed to classify facial
expressions based on analyzed lower and upper face AUs. Table 3 shows this rule-
bases and Table 4 shows classification results.

Table 3. Rule-bases for basic emotions classification

IF THEN
(AU23=1 OR AU24 =1) AND AU9=0 Anger
AU9=1 Disgust
(AU20=1 AND AU25 =1) OR (AU20=1 Fear
AND AU26 =1)
AUI12=1 Happiness
AU15=1 AND AU17 =1 Sadness
AU27=1 OR (AU5=1 AND AU26 =1) Surprise

Table 4. Recognition rate of six basic emotions in image sequences

Anger 27/30  90%
Disgust 30/30  100%
Fear 30/30  100%
Happiness 30/30 100%
Sadness 26/30  86.67%
Surprise 30/30  100%
Average 173/180 96.11 %

Comparing to some related works [11, 12, 13], results are encouraging.
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6.3 Recognition of Upper and Lower Face AUs in Static Images

Our proposed system can not detect wrinkled nose (AU9) and disgust expression in
static images.

Last frame in image sequences which represents peak of facial expressions is used
to train and test of static images recognition system. We left out input images for
disgust expression.

We used the images of 120 (80%) subjects as training sequences, and the
remaining 30 (20%) subjects as test images. This test is repeated five times, each time
leaving different subjects out. The number of the input layer units in the lower face
PNN classifier is equal to 8, the number of extracted features, the number of the
hidden layer units equals to 120X 9, the number of training pairs and that of the
output layers is 9, which corresponds to selected 9 lower face AUs.

The number of the input layer units in the upper face PNN classifier is equal to 8,
the number of the hidden layer units equals to120%x 6, and that of the output layers is
6, which corresponds to the selected 6 upper face AUs.

Table 5 shows the recognition rate of lower and upper face AUs.

Comparing to some related works [14], results are resonable.

Table 5. Recognition results for lower face AUs in static images

Lower Face AUs Upper Face AUs

AU12 31/35  %88.57 AU1 45/65 % 69.23
AU15 26/29  %89.66 AU2 29/39 %74.36
AU17 46/60  %76.67 AU4 43/64 % 67.19
AU20 18/30  %60.00 AUS 26/32 %81.25
AU23 18/26  %69.23 AU6 14/31 % 45.16
AU24 18/30  %60.00 AU7 24/33 % 72.73
AU25 42/55  %76.36 - -
AU26 7/10  %70.00 - -
AU27 2222 %100 - -

Average 2281297 %76.77 Average 181/264 %68.56

6.4 Recognition of Five Basic Facial Emotions in Static Images
Table 6 shows recognition results for five basic expressions (leaving out the disgust

expression) using the same rule-base (Table3) and lower and upper face AUs in static
images.

Table 6. Recognition rate of five basic emotions in static images

Anger 30/30  100%
Fear 23/30  76.67%

Happiness 30/30 100%
Sadness 29/30  96.67%
Surprise 29/30  96.67%

Average 141/150 94 %
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7 Conclusion

In this paper we developed an automatic facial expressions analysis and classification
systems with high success rate. Our image and video analysis includes automatic
feature detection, tracking and the results are directly used for facial emotion
classification based on AUs analysis and classification. An average recognition rate of
96.11% was achieved for six basic emotions in facial image sequences.

In the first frame, 25 Facial Feature Points (FFPs) were automatically detected,
using active contours for lower face and gray level projection method for upper face.
A hybrid tracking system was used to track these FFPs in subsequent frames. An
enhanced version of active contour tracking system was used for lip tracking while a
cross-correlation based tracking system was used to track FFPs around eyes and
eyebrows.

Some geometric features were extracted, based on the position of FFPs in the first
and the last frames. This features formed a feature vector which was used for
classification of input image sequences into 16 AUs, using PNN. A rule-based
decision making system was applied to AUs to classify input images into six basic
emotions.

Proposed features and feature extraction method can also be applied to static
images (except features for wrinkled nose) using a local reference to normalize these
features in order to remove the effect of subject-camera distance. An average
recognition rate of 94% was achieved for five basic emotions in static face images.

While most of the facial expression recognition systems use manually located FFPs
in the first frame, our proposed system used automatically detection and tracking of
feature points. Proposed hybrid tracking system showed robust tracking results both
in upper and lower face, which only needed the rough estimated position of eye,
eyebrow and mouth. Our proposed new features improved AUs recognition rate as
well as six basic emotions recognition rate.
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Abstract. Texture analysis has been efficiently utilized in the area of
terrain classification. In this application, features have been obtained in
the 2D image domain. This paper suggests 3D co-occurrence texture fea-
tures by extending the concept of co-occurrence feature to the 3D world.
The suggested 3D features are described as a 3D co-occurrence matrix
by using a co-occurrence histogram of digital elevations at two contigu-
ous positions. The practical construction of the co-occurrence matrix
limits the number of levels of digital elevation. If the digital elevation
is quantized into a few levels over the whole DEM (Digital Elevation
Map), distinctive features cannot be obtained. To resolve this quanti-
zation problem, we employ the local quantization technique which can
preserve the variation of elevations with a small number of quantiza-
tion levels. Experiments are carried out using an ANN (Artificial Neural
Network) classifier, and it is shown that the classification accuracy is
significantly improved over the conventional classification methods with
2D features.

Keywords: texture, terrain classification, co-occurrence, 3D feature.

1 Introduction

Texture analysis has been widely used in computer vision applications, including
image segmentation, image compression, and automatic inspection. Recently, it
has also been employed in terrain classification using aerial and satellite im-
agery. This particular application is significantly important from the viewpoint
of resource management, environment preservation, and national defense.

Texture is a kind of spatial distribution of gray-level variations or regular
structural patterns in an image. [1,2] Major properties of texture include coarse-
ness, contrast, directionality, line-likeness, regularity and roughness. [1] Texture
features reflecting these properties have been suggested by using co-occurrence
[3], MRF(Markov Random Field) [4], Garbor filter [5], Fractal [6], etc. Among
these texture features, the co-occurrence feature was reported to be the most
effective for terrain classification. [7]

3D texture introduced by Dana [8] and Wang [9] considers the physical charac-
teristics of an object surface in the real world. The addition of 3D texture features

L.-W. Chang, W.-N. Lie, and R. Chiang (Eds.): PSIVT 2006, LNCS 4319, pp. 305-313, 2006.
© Springer-Verlag Berlin Heidelberg 2006



306 D.-M. Woo et al.

can thus improve the accuracy of terrain classification. However, these early 3D
features do not directly reflect 3D texture from the physical appearance of the
surface. In this paper, we propose a new 3D co-occurrence feature, which directly
and systematically defines 3D texture from a DEM (Digital Elevation Map). In
computing the co-occurrence feature, implementation of a co-occurrence matrix
requires quantization of elevation with several levels. A quantization scheme such
as histogram equalization with several levels can preserve texture information in
2D image. In a DEM, however, the dynamic range of elevation change is so wide
that it is not possible to obtain texture information from the elevation quantized
in a general way. In the present paper, in order to preserve the texture infor-
mation of quantized elevation, we employ the local quantization scheme. Since
quantization is carried out locally, we can obtain the texture information with
only a few quantization levels.

2 3D Co-occurrence Feature

2.1 Generation of DEM

To generate the DEM, we perform area-based stereo matching with the Terrest
system [10], developed at the University of Massachusetts and Myongji Uni-
versity. The goal of stereo image matching in the Terrest system is to find a
disparity map D;(i,j) that maps the pixels in an epipolar resampled reference
image Ir(7,j) into an epipolar resampled warped image Iy (7, j) such that each
pixel pair sees the same spot on the object, i.e., Ig(¢,7) and Iw (i + D;(,7), j)
view the same spot on the surface. To find the accurate disparity map, we em-
ployed NCC (Normalized Cross-Correlation) [11] and a multi-resolution scheme
[12], referred to as hierarchical, or pyramid processing, in the Terrest system.
From the disparity map obtained via stereo matching, 3D coordinates are
calculated by 3D triangulation of corresponding points. To generate the DEM
as a 3D terrain model, we obtain the elevation for each ortho-rectified grid. The
elevation can be calculated by interpolating the neighboring 3D coordinates.

2.2 Computation of 3D Co-occurrence Feature

To extract 3D co-occurrence feature from DEM, we employ a similar procedure to
2D co-occurrence feature extraction suggested by Haralick [3]. The co-occurrence
feature is used to evaluate the spatial dependency in terms of a co-occurrence
matrix. The co-occurrence matrix is defined as a matrix, the elements of which
represent the number of occurrences that elevation level i deviates from elevation
level j by a prescribed distance and angle. In this paper, we use a unit distance
and four angles of § = 0°,45°,90°,135° and the co-occurrence matrix can be
specified as P;j¢.

Because the dimension of the co-occurrence matrix is the number of quantiza-
tion levels squared Gx@G, this calculation tends to be computationally expensive
if the quantization level G is high. Thus, realistic implementation of the co-
occurrence matrix requires a few levels of quantization, such as 8 levels in the
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common calculation of a 2D co-occurrence matrix. Unfortunately, a small num-
ber of quantization levels obviously removes most of texture information from
the quantized elevation data.

In this context, we employ a local quantization scheme which can preserve
texture information with a small number of quantization levels. This scheme
begins with the estimation of the plane from the elevation data in a local area.
If we quantize the deviation of each elevation from the fitted plane, we can
minimize the loss of texture information, as shown in Fig. 1.

f deviation to plane
¥

Fig. 1. Local quantization of elevation data

The locally fitted plane equation is specified as z = ax + by + c¢. To estimate
the coefficients, a, b, and ¢, we employ a matrix equation (1), which is obtained by

substitution of n local elevation data, (z1, y1, z1), (2, Y2, 22), ..., (Tn, Yn, 2n)-
Az =b (1)
where rows of matrix A are (z;, y;, 1) for i=1, ..., n, and = = (a,b,c)t, b =

The least squared error estimation of the coefficient vector x can be evaluated
by
r=(A'A)"1 A%, (2)

The quantized value for any elevation, z;, is the deviation of the elevation
from the fitted plane, given by

di = zi — (xi, 3, 1), (3)

The local elevation data used to find the fitted plane can be within a small
window in the DEM. Since this window is centered on the position where the
deviation is calculated, its window size does not significantly affect the resultant
3D co-occurrence features. In this paper, we use a 5x5 window in consideration
of the computational burden.
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The employed 3D co-occurrence features are ASM (Angular Second Moment),
CON (Contrast) and ENT (Entropy). ASM measures the homogeneity of the

elevation data, given by
G-1G-1

fio=7_> P (4)

i=0 j=0

Since the homogeneity of the elevation indicates the flatness, a high ASM, as
in the road surface, is obtained. CON represents contrast or partial variation of
the elevation data, given by

G-1
f20 = Zn2 Z Pijo (5)
n=0

li—gl=n

Since CON is high in areas with high variation, a significantly high CON is
obtained in a foliage or bush area with many trees. ENT provides the measure
of the complexity and is computed by an entropy equation, given by

Q
Q

—1
fag = — P;jo In (Pijo) (6)

%

I
<
AN

I
<

ENT is high in areas with complex and random elevations.

3 ANN Classifier

In this paper, an ANN (Artificial Neural Network) classifier has been used for
the terrain classification. The employed neural network algorithm is based on
the MLPNN (Multi-Layered Perceptron Neural Network) type [13].

MLPNN generally consists of one input layer, one or more hidden layers, and
one output layer. Each layer is constructed with a number of neurons, as shown
in Fig. 2. Each neuron is connected with neurons from the previous layer with
appropriate weights. The weights are updated in weight space using the method
of gradient descent, so that the error between the output and the target can be
decreased. A weight update is also carried out by

W;i(new) = Wj;(old) + AW, (7)

where Wj; is a weight connecting the ith neuron to the jth neuron. The increment
of the weight is expressed as

AWJ‘Z' = aéin, (8)

0i = (ti — 0;)0;(1 = 0y), 9)

8= 0i(1—0:)> 6:;Wpi. (10)
k
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Fig. 2. Structure of ANN classifier

O; is the neuron output value at each layer, t; is the target value, and « is
learning gain. For the evaluation of ;, equation (9) is used at the output layer,
while equation (10) is used for all other layers.

The ANN-based classifier adopted in this paper has a Nx15x5xM structure,
as shown in Fig. 2. Note that N and M represent the number of texture features
and the number of classes, respectively.

4 Experimental Results

The experimental environment was set up so as to classify aerial image data into
4 classes: foliage, grass-covered ground, bare ground, and shadow. Four feature
sets are used for the experiments. Feature set A includes only 2D co-occurrence
features, and feature set B includes image intensity and 2D co-occurrence fea-
tures. Feature sets C and D are produced by the addition of 3D co-occurrence
features to feature sets A and B, respectively.

The ortho-image and DEM generated by aerial images are shown in Fig. 31
and Fig. 32, respectively. Fig. 41 shows the ground truth, where the white area
represents bare ground such as roads, the light gray area is for foliage, the dark
gray area is for grass-covered ground, and the black area represents shadows.
The first step of this experiment is to extract the training data for the classifier.
We randomly selected the training area, which is 1% of each class, shown in
small windows as in Fig. 42.

To calculate 3D co-occurrence features, first the 3D co-occurrence matrix should
be established. In constructing the 3D co-occurrence matrix, we carried out local
quantization with 8 quantization levels, which yields an 8x8 3D co-occurrence ma-
trix. Since we use three types of co-occurrence features - ASM, CON, ENT - for 4
angular directions, 12 3D co-occurrence features are calculated.

For the experiments, 2D co-occurrence features must to be calculated, sim-
ilarly. To construct an 8x8 2D co-occurrence matrix, an ortho-image with 8
gray levels is needed. Histogram equalization was carried out to obtain this
image. Three types of 2D co-occurrence features are calculated using the same
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1 Ortho-Image 2 DEM

Fig. 3. Ortho-image and DEM used in the terrain classification

1 ground truth 2 training data

Fig. 4. Ground truth of experimental terrain and its training data

procedure as delineated by equations (4), (5) and (6). Fig. 5 and Fig. 6 show
ASM, CON and ENT features with § = 0° in gray scale for 3D co-occurrence and
2D co-occurrence, respectively. Since 3D co-occurrence features are evaluated in
terms of physical appearance, not just brightness of pixel, they are significantly
different from 2D co-occurrence features.

To carry out the classification experiments based on feature sets A, B, C and D,
we implemented four ANN-based classifiers. Since there are four terrain classes, the
classifier has an Mx15x5x4 structure. M represents the number of texture features,
and depends on the selection of the feature set. Table 1 presents the classification
results using 2D co-occurrence features with or without image intensity, where the
bold number indicates the number of correctly classified pixels for each class. In
this case, the addition of image pixel intensity significantly affects the classification
accuracy. With feature set A, which uses only 12 co-occurrence features, the error
rates are very high except for foliage classification.

Table 2 shows classification results using both 2D and 3D co-occurrence
features. In comparison with the results given in Table 1, the addition of 3D
co-occurrence features improves the classification accuracy. In particular, the
classification of road and foliage is significantly improved. This is due to the use
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13D ASM 2 3D CON 3 3D ENT

Fig. 5. 3D co-occurrence features

12D ASM 2 2D CON 3 2D ENT

Fig. 6. 2D co-occurrence features

Table 1. Classification result using 2D co-occurrence features (unit:1,000 pixels)

ground truth Feature Set A Feature Set B

Shadow grass  foliage road shadow Grass foliage road
shadow(41.8) 0.258 0.778 2.768 3.799 26.193 0.707 9.187 6.602
grass(683.0) 0.319 1.569  0.787 1.284  0.149 567.594 219.001 34.121
foliage(1018.6) 27.687 661.416 1007.673 82.590 14.656 94.550 784.581 1.238
road (193.4)  13.553 19.243  7.343  105.730 0.805 20.155 5.735 151.422
total(1936.8) 41.817 683.006 1018.571 193.403 41.803 683.006 1018.504 193.383

correctly classified: 1115.23 (57.58%) correctly classified: 1529.79 (78.99%)

Table 2. Classification result with the addition of 3D co-occurrence features(unit:1,000
pixels)

ground truth Feature Set A Feature Set B

shadow grass  foliage road shadow Grass foliage road
shadow(41.8) 9.826 1.905  20.204 1.528 20.936 0.522 3.968 0.156
grass(683.0) 0.109 492.786 100.706 13.638 0.009 513.964 69.458 26.371
foliage(1018.6) 31.881 147.978 884.771  3.791 20.872 139.353 939.035  3.710
road (193.4) 0.001 26.008 13.961 172.475 0.000 29.167 6.110 163.166
total(1936.8) 41.817 668.677 1019.642 191.432 41.817 683.006 1018.571 193.403

correctly classified: 1559.858 (80.54%) correctly classified: 1637.101 (84.52%)
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1 feature set B 2 feature set D

Fig. 7. Classification results

of the physical surface characteristics of the real world, thus indicating that the
suggested 3D co-occurrence features can be utilized very efficiently in terrain
classification applications.

Fig. 71 shows the classification result using pixel intensity and 2D co-occurrence
features (feature set B), and Fig. 72 shows the classification result using pixel
intensity, 2D co-occurrence features and 3D co-occurrence features (feature set
D). In comparison with the ground truth as in Fig. 4, we find that the addition of
3D co-occurrence features improves overall classification accuracy. In particular,
the classification between road and shadow is distinctively improved, due to the
addition of 3D co-occurrence features.

5 Conclusions

In this paper we have proposed the use of 3D co-occurrence features, which can
effectively reflect physical surface characteristics in the real world in a direct fash-
ion, for the purpose of terrain classification. Experimental results show that the ad-
dition of 3D co-occurrence features significantly improves classification accuracy.
However, since classified ground truth is relatively scarce, experiments were car-
ried on a single aerial image set. In this context, extensive experiments involving
various sites with classified ground truths, in conjunction with intensive analyses
of the effects of 3D co-occurrence features should be carried out in future work.
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Abstract. In this paper, a new feature representation technique called
2-directional 2-dimensional direct linear discriminant analysis ((2D)’ DLDA) is
proposed. In the case of face recognition, the small sample size problem and
need for many coeffficients are often encountered. In order to solve these
problems, the proposed method uses the direct LDA and two directional image
scatter matrix. The ORL face database is used to evaluate the performance of
the proposed method. The experimental results show that the proposed method
obtains better recognition rate and requires lesser memory than the direct LDA.

Keywords: Linear Discriminant Analysis, Direct LDA, Face Recognition.

1 Introduction

Nowadays, Face recognition has been an active research. Various methods have been
proposed for Face recognition. Especially, the appearance-based methods have been
successfully employed. Principal Component Analysis (PCA) and Linear Discrimina-
nt Analysis (LDA) are well known methods among them. The PCA seeks directions
that have the largest variance associated with it. On the other hand, the LDA seeks
directions that are efficient for discrimination between classes.

In general, it is believed that LDA-based pattern classification methods outperform
PCA-based ones. However, The traditional LDA has small sample size (SSS)
problem. The SSS problem arises when the number of training samples is smaller
than the dimensionality of the samples[1]. Also, it is difficult to directly apply the
LDA to high dimensional matrix because of computational complexity. To solve the
problem, Belhumeur et al. [2] proposed Fisherfaces method based on LDA. They
proposed dimensionality reduction using PCA before LDA. But it has a potential
problem. It is that PCA step may discard dimensions that contain important
discriminative information. Chen et al. [3] proved that the null space of within-class
scatter matrix contains the most discriminative information. In reality, PCA discards
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the null space of the within-class scatter matrix. Therefore, in order to prevent the null
space from discarding, Yu et al. [4] proposed direct LDA (DLDA) method. the
DLDA directly processes data in the original high dimensional vectors. By
simultaneous diagonaliza-tion, the DLDA is able to discard the null space of between-
class scatter matrix and to keep the null space of within-class scatter matrix, which
contains very important discriminative information. J. Lu et al. [S] proposed kernel
direct discriminant analy-sis (KDDA). While the KDDA provides better performance,
it is computationally more than the DLDA

The PCA based methods have been developed since the eigenfaces methods[6,7]
was presented for face recognition. Recently, Yang et al. [8] proposed two
dimensional PCA (2DPCA). While previous methods use 1D image vector, the
2DPCA makes directly the scatter matrix from 2D image matrices. The 2DPCA deals
with the small size scatter matrix than the traditional PCA-based methods and
evaluates the scatter matrix accurately. For example, an image vector of 112x92
forms 10304 dimensional vector and the size of the scatter matrix is 10304x10304.
On the other hand, the covariance of the 2DPCA forms only 92x92 matrix. Also, the
2DPCA is more suitable for small sample size problems because its scatter matrix is
small. But it requires more coefficients for image representation than PCA. Therefore
it needs more storage and more time for recognition. L. Wang et al. [9] showed that
the 2DPCA is equivalent to a special case of the block-based PCA. Specially, the
blocks are the row directional lines of the images.

In this paper, we introduce a new low-dimensional feature representation method,
(2D)* DLDA. The proposed method makes the row directional and the column
directional image scatter matrix by considering the row and column directional lines
of the image respectively. The image scatter matrix reduces the chance of singularity
caused by SSS problem. And then the DLDA algorithm is used for obtaining the
feature matrix. It maximizes Fisher’s criterion.

The remainder of this paper is organized as follows. In Section 2, the proposed
(2D)* DLDA algorithm is described. Experimental results and comparisons with the
DLDA is presented in Section 3. Finally, conclusions are offered in Section 4.

2 (2D)* DLDA

2.1 Row Directional 2D DLDA

Let X denotes a mxn image, and W is an n-dimensional column vector. X is
projected onto W by the following linear transformation

Y = XW (1)

Thus, we get an m-dimensional projected vector Y, called the feature vector of the
image X . Suppose there are C known pattern classes in the training set, and M
denotes the size of the training set. The jth training image is denoted by a mxn

matrix x ; (j=1,2,---, M) and the mean image of all training sample is denoted by
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X and )?i (i=12, -, c) denoted the mean image of class T, and N, is the number of
samples in class T, the projected class is p. After the projection of training image

onto W, we get the projected feature vector
Y,=XW, j=12-M )

LDA attempts to seek a set of optimal discriminating vectors to form a transform
W by maximizing the Fisher criterion denoted as

B tr(§b)

JW) =
r(s,)

3)

Where tr() denotes the trace of matrix, §b denotes the between-class scatter matrix of
projected feature vectors of training images, and §w denotes the within-class scatter

matrix of projected feature vectors of training images. So,

p— — — _— C —_— _— — — o
N.(Y,-V)(¥, -Y)" =D N[(X, - XWX, - X)W]",

Mo

S, =
i=1 i=1 (4)
S, =2 2 W =Y =)' =3 FUX, - XWX, - X)W1’
So, | |
r(S,) =WT(ZN,,(X,, -X)" (X, —X)jW,
)
~ c J— J—
r(S,)= WT[Z Y (X -X)'(X, - Xi)JW
Let us define the following matrix
C . . . o C . o
R, =ZN,.(X,. -X)' (X, =X), R, =D >(X,-X) (X, -X)) (6)

i=l Xl

The matrix R, is called the row directional image between-class scatter matrix and
R, is called the row directional image within-class scatter matrix.

Alternatively, the criterion can be expressed by

W'RW,
J W)= r b'"r 7
( r) er Rer ( )
Now, we try to find a matrix that simultaneously diagonalizes both R and R .
AR A" =1, AR, A" = A, (8)

Where A is a diagonal matrix with diagonal elements sorted in decreasing order.
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First, we find eigenvectors v that diagonalizes R,

VIRV, =A, &)

Where V'V =1. A, is a diagonal matrix sorted in decreasing order, i.e. each column
of v, isan eigenvector of R, and A contains all the eigenvalues.

Let vy, be the first / columns (/<n) of V_(a nxn matrix, n being the column
numbers of image).

VIRY =D, (10)

Where D, is the [x[ principal sub-matrix of A .
Further let Z =Yy D,"* to unitize R ,

Y.D,"*'R,(Y.D;"*)=1=Z'R,Z, =1 (11)

Next, we find eigenvectors U . to diagonalize Z'T RZ,-

U/Z/R,ZU, =D, (12)

Where /U, =1. D, may contain zeros in its diagonal.
To maximize j(W,), we can sort the diagonal elements of p _ and discard some

high eigenvalues with the corresponding eigenvectors.
Let the optimal projection matrix, W,

W, =(D;]"*urz"" (13)

Also, W, unitizes R, [6,8].

2.2 Column Directional 2D DLDA

Let us define the following matrix

c o c _ _
C,=2N(X, - X)X, =X)",C,=> Y (X, - X)X, - X)) (14)
i=1 i=1 X.€eT;
The matrix C, is called the column directional image between-class scatter matrix
and C, is called the column directional image within-class scatter matrix.
Alternatively, the criterion can be expressed by
— WCTvaV(‘

JW,)=
o) wic w,

(15)
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Now, we try to find a matrix that simultaneously diagonalizes both c, and C,-

BC,B" =1, BC,B" =A, (16)

Where A is a diagonal matrix with diagonal elements sorted in decreasing order.

First, we find eigenvectors V_ that diagonalizes C,

vICc,V. =A, (17)

Where V[,TVL_ =1. A, is a diagonal matrix sorted in decreasing order, i.e. each column
of V. is an eigenvector of c,> and A, contains all the eigenvalues.
Let vy, be the first k columns (k <m) of V. (a mxm matrix, m being the row

numbers of image).

v/c,y. =D, (18)

Where ﬁb is the k x k principal sub-matrix of A,
Further let Z_ =, 5[;” ? to unitize C,,

(Y.D,"'C,(x.D,"=1=2"C,Z, =1 (19)

Next, we find eigenvectors U, to diagonalize chw Z..
UZZZCV"Z('UL' = 5“’ (20)

Where UCTUC =7. Bw may contain zeros in its diagonal.
To maximize J(W.), we can sort the diagonal elements of [)W and discard some

high eigenvalues with the corresponding eigenvectors.
Let the optimal projection matrix, W,

W, =D *ulzh" (21)

Also, w. unitizes C,-

2.3 (2D)* DLDA

As we discussed in Section 2.1 and 2.2, row directional 2D DLDA and column
direction 2D DLDA produce optimal projection matrix W, and W, respectively. To
W

nxl "

project an mxn image X onto W, yields m by [ matrix y _, =X

mxn

Similarly, to project an mxn image X onto W, _yields a k by n matrix
Yo, =W., X

kxn mxk mxn "
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Suppose that we project the mxn image X onto W, and W, simultaneously, we

obtain a k by / matrix X",
X =W'(X-X)W.. (22)

The distance measure to classify two matrices is the nearest neighbor, The distance
between Xl* and X; is adopted by Frobenius norm. The Frobenius norm as follows

D, (X[, X;) =X -x; (23)

F

3 Experimental Results

The proposed method is tested on the ORL face image database (http://www.cam-
orl.co.uk/facedatabase). The ORL database consists of 40 distinct persons. There are
10 images per person. The images are taken at different times and contain various
facial expressions (open/closed eyes, smiling/ not smiling) and facial details (glasses
or no glasses). The size of image is 92x112 pixels with 256 gray levels. Fig. 1 depicts
some sample images in the ORL database. Five sets of experiments are conducted. In
all cases the five images per class are randomly chosen for training from each person
and the other five images are used for testing. Thus the total number of training
images and testing images are both 200. All of our tests are carried out on a PC with
P4 1.5 GHz CPU and 512MB RAM memory. To simulate algorithm, matalb 6
platform is used.

Fig. 1. Some face samples of ORL face database

Table 1 compares the average recognition rates and the dimension size obtained
using the (2D)* DLDA, the row directional 2D DLDA, the column directional 2D
DLDA and the DLDA. 2D based methods have a merit that the recognition rate is
high. Whereas they also have a weak point that the dimension size of feature matrix is
larger than 1D based methods. However the proposed method has not only high
recognition rate but also the small dimension size. In the 112x92 image matrix, the
size of the row directional image scatter matrix and the size of the column directional
image scatter matrix is 92x92 and 112x112, respectively.
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Table 1. Comparison of average recognition rates of different methods

Average Recognition

Methods rate(%) Dimension
DLDA 90.6 40
Row directional 2D DLDA 94.1 112x7
Column directional 2D DLDA 94.1 8x92
(2D)* DLDA 94.5 8x7

In the (2D)2 DLDA, the row directional image scatter matrix and the column
directional image scatter matrix is used, simultaneously. As a result, the feature
matrix size is much smaller and the recognition rate is higher than the row directional
2D DLDA or the column directional 2D DLDA. Table 1 shows that the average
recognition rate of the (2D)* DLDA is higher than other methods and the dimension
size is small like DLDA.

4 Conclusion

In this paper, the (2D)’ DLDA algorithm is proposed. The method combines the
merits of the image scatter matrix and the DLDA approaches. Since the size of the
image scatter matrix is smaller than the conventional method, SSS problem can be
avoided and eigenvectors can be efficiently computed. Furthermore it achieves the
better performance by using the DLDA since the DLDA preserves the null space of
within-class scatter matrix, which contains very important discriminative information.
Also, to obtain the low dimensional feature matrix, we project image matrix onto the
row directional and the column directional projection matrix, simultaneously. The
experimental results show that the average recognition rate of the (2D)’ DLDA is
higher than other methods and the dimension size is less than other 2D based
methods.
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Abstract. In this paper, we propose an automated system that registers dental
CT scans at pre- and post-operative states for a three-dimensional analysis on
soft and hard tissue changes after mandibular setback surgery. Our registration
method matches automatically extracted skulls to obtain optimal registration
parameters based on the rigid transformation. Chamfer distance map algorithm
is employed to accelerate a registration speed by referring to pre-calculated
distance value and eliminating burdens of point-to-point correspondence
identification. Skull surface registration corrects the translational and rotational
mismatch. During an adaptive optimization, search range and step are
dynamically changed to achieve finer alignments fast and robustly. Our method
has been successfully applied to eight pairs of pre- and post-operative CT scans.
Experimental results show that our algorithm is more accurate, and converges
faster than conventional ones. Using a grid measurement, the changes of bone,
and soft tissue were measured in skeletal Class III mandibular prognathism
patients. Our method could be applicable to the other oral and maxillofacial
surgeries as well as plastic surgeries.

1 Introduction

Recently, with advancements in orthognathic surgical techniques, surgery cases have
increased, including those performed to correct the underlying skeleton in Class III
patients. Class III mandibular prognathism is one of dentofacial deformity, which the
mandible is in the anterior position to maxilla compared to the normal relationship.
The consequent facial appearance is of great importance, even when the patient's chief
purpose in treatment is not concerned with cosmetics. A more accurate prediction of
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the surgical result comprises an essential part of the diagnosis and treatment planning
of orthognathic surgery.

Hershey and Smith [1] have shown that soft tissue changes could be predicted from
the skeletal changes, according to the interplay of the cephalometric landmarks of the
hard and soft tissue profiles. The evaluation and prediction of surgical treatment was
usually performed by superimposition of cephalometric tracings. One of the most
popular superimposition methods is the best fit of the cranial base anatomy. The
cranial base is considered a satisfactory reference for cephalometric superimposition,
since it grows rapidly in early postnatal life [2-3]. The use of reference line has been
reported to be relatively stable. SN line, which is drawn by the intersection of S(sella)
and Na(nasion) points, is frequently used as a reference line [4-5]. Steiner [5] used SN
with registration point at S to evaluate sagittal changes in mandibular positions and at
Na to evaluate the position of the maxilla. However, all of these methods were limited
to two-dimensional assessments.

After surgery, the facial soft tissue was actually altered on all three dimensions,
which caused a significant difference between the prediction and the surgical result
[6]. McCance et al. [7] tried to analyze the soft tissue changes after surgery in three
dimensions using a laser scan. Moss et al. [8] suggested that the laser scan could be an
effective tool to evaluate the three dimensional changes after orthodontic treatment.
However, the laser scan could not reveal the relations between the soft tissue and the
underlying hard tissue. McCance et al. [9] investigated the soft tissue changes after
orthognathic surgery using a CT scan. He concluded that the radial measurement from
the center of rotation of the head could not be directly comparable to the linear
measurements on a 2D lateral cephalometric radiograph.

Koch et al. [10] developed a surgical planning and prediction system of human
facial shape after maxillofacial surgery. After initial preprocessing, reconstruction,
and registration, a finite element model of the facial surface and soft tissue is provided
which is based on triangular finite elements. The resulting shape is generated from
minimizing the global energy of the surface under the presence of external forces.
Roth et al. [11] improved a finite element approach for volumetric soft tissue
modeling in the context of facial surgery simulation. They propose an extension of
linear elasticity towards incompressibility and nonlinear material behavior, in order to
describe the complex properties of human soft tissue more accurately.

The existing research on the analysis of soft tissue changes after surgery in
medicine suggests that this topic has great importance to surgical planning and
treatment. Previous studies were limited to the 2D cephalometric device and other
technical limitations. However, current approaches of the 3D analysis of soft tissue
changes in clinical medicine still need more progress in computational accuracy and
efficiency. In this study, we proposed a new approach of registering inter-patient CT
scans using surface registration technique. Using a chamfer distance map, a
registration speed is accelerated by referring to pre-calculated distance value without
point-to-point correspondence identification. Our adaptive optimization approach
dramatically reduces the registration time and improves the registration accuracy. We
could validate this method to investigate the 3D changes of bone and soft tissue after
mandibular setback surgery.

The organization of the paper is as follows. In Section 2, we introduce mandibular
setback surgery. In section 3, we discuss how to segment the skull. We propose a
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surface registration method based on a chamfer distance map with adaptive
optimization. In Section 4, a grid measurement is explained for detecting the changes
of bone, and soft tissue. In Section 5, experimental results show that our method
accurately and rapidly aligned the skull and the changes of bone, and soft tissue were
measured. This paper is concluded with brief discussion of the results in Section 6.

2 Mandibular Setback Surgery

Orthognathic surgery involves the surgical manipulation of the elements of the facial
skeleton to restore the proper anatomic and functional relationship in patients with
dentofacial skeletal anomalies. Orthognathic surgery can be used to manage a broad
spectrum of maxillofacial abnormalities [12]. Excess facial convexity, flatness, or
concavity is felt to be less than ideal in Fig. 1.
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Fig. 1. Profile analysis to classify a patient as (a) class III (b) class I (c) class II

Many orthodontic patients in class III have been reported to be severe enough to
benefit from mandibular setback surgery [13]. Mandibular setback surgery can
improve the occlusion, masticatory function, and aesthetics by changing the position
of the mandible in Fig. 2. Various osteotomies are used to correct mandibular
deformities, and the choice depends on the particular deformity. The sagittal split
ramal osteotomy is the primary choice for correcting mandibular prognathism.

(a) (b)

Fig. 2. The procedure of mandibular setback surgery (a) Before surgery (b) After surgery
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3 Automatic Skull Segmentation and Registration

Fig. 3 shows the pipeline of our method for skull segmentation and registration in pre-
and post-operative CT scans. Since our method is applied to mandibular setback
surgery, we can assume that the shape of upper skull in each CT scan is unchanged.
Based on this assumption, we found that rigid transformation of upper skull surface
would be adequate for the registration of pre- and post-operative CT scans.

I-"‘f’re—upﬂ'auv;“  Pust-uperutive

| Skull boundary extraction
)

Distance map generation
by chamfer distance franstorm

I

| Rigid transformation and interpolation |‘
) T

| Adaptive optimizalion
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Tigsme Change

Grid generation nsing anatomical information

1

( Aligned Volume )

Fig. 3. The pipeline of proposed method

3.1 Automatic Skull Segmentation

In this section, we describe an automatic segmentation method for identifying skulls.
Our method consists of two steps: 1) the thresholding step to identify the region of
skull, 2) the extraction step to delineate the skull edge (Fig. 4). In the thresholding
step, skulls are separated from the surrounding anatomy by identifying pixels of skull
based on the bone density value, which is larger than 150 HU(Housefield Unit). For
each pixel, the pixel intensity is compared with the lower and upper thresholds. If the
pixel value is inside the threshold range, the output pixel is assigned 255. Otherwise
the output pixels are assigned 0. In the extraction step, image analysis to determine
skull contours was performed by calculating the magnitude of the image gradient,
which is computed using a simple finite difference approach. The image is convolved
with masks of (-1, 0, 1) in X, y dimension, then adding the sum of their squares and
computing the square root of the sum.

(@) (b) ©

Fig. 4. The process of skull segmentation (a) original image (b) threshold image (c) edge image
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3.2 Chamfer Distance Map Generation

Chamfer distance transform [14] reduces the generation time of the distance map by
an approximated distance transform compared to a Euclidean distance transform.
Chamfer distance transform can be generated by performing a sequence of local
operations while scanning image twice. Although our distance map is generated in 3D
coordinate, we explain chamfer distance transform in 2D coordinate for an
illustration. In forward scan, we compute f;(p) for all p€ image in a single standard
scan of image. For each p, f; has already been computed for all of the gs in B(p). If p
has coordinates (x, y), B(p) contains (x, y+1), (x-1, y), (x-1,y+1) and (x+1, y+1).

if pe boundary

fl(P): min{fl(CI)‘*‘l:qe B(p)} if pe boundary

ey

In backward scan, we compute f,(p) for all p€ image in a single reverse standard
(right-to-left, bottom-to-top) scan of image. A(p) contains the remaining neighbors of
p, which are not contained in B(p).

fr(p)=min{f(p), f,(q)+1:q€ A(p)} . 2)

The computation of distance is performed by the two-step distance transformation of
forward and backward masks, which implements above algorithm efficiently in Fig.
5(a). We implement chess-board distance transform. Fig. 5(b) shows the result of the
chamfer distance map in which darker pixel has larger distance from the boundary.

Mask 1

D2| D1 D2|

Di| 0

(@) (b)

Fig. 5. Distance map (a) forward and backward masks (b) the result of chamfer distance map

3.3 Surface Registration Using Adaptive Optimization

The distance measure in Eq. (3) is employed to determine the degree of resemblance
of skull surfaces of pre- and post-operative volume. The average surface distance
between two surfaces(ASD) reaches the minimum when skull boundary points of pre-
and post-operative volumes are accurately matched.

anxr_l
ASD=—1 > DistanceMap . (Trasform(P, ., (i))) . 3)

post  i=0
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where DiS'[anCCMappre (P) is the distance value of P in the 3D distance map of
pre-operative volume. Trasform(P) is the rigid transformation of the point P in

post-operative volume. Pp(m(i) is ith boundary point of post-operative volume.

N post 1S the total number of surface points in post-operative volume.

Powell’s direction set method in multidimensions is then used to minimize ASD
using Brent’s one-dimensional optimization algorithm [15]. We propose the adaptive
optimization technique to change the search space and step dynamically to improve
computational efficiency and robustness of Powell’s direction set method. In Fig. 6,
the procedure of our adaptive optimization technique is described as pseudo code.
Due to rigid transformation, search parameters are limited to translational, and
rotational values. At the first iteration, the search range is wide and the search step is
coarse. At the next iteration, the search range becomes narrower and the search step
becomes finer as the factor of Attenuation. With this approach, the search space can
be extended for robust optimization without sacrificing computational efficiency.

Optimized Parameter Set OPT e

AdaptiveOptimization ( FransRange, TransStep, RotRange, RotStep, Attenuation) {
tor (n iteration) {

OPT.yurent = Search (OP T yuers, Ty TransRange, TransStep),

OPT curert = Search (OPT yurers. Ty, TransRange, TransStep),

OPT ugens = Search (OPT ey, Ry, RotRange, RotStep),

OPTpeny = Search (OPT e, Ry, RotRange, RotStep),

OPT cyerert = Search (OPT yupers. Ry, RotRange, RotStep);

OPT urent = Search (OPT yuert, Tz TransRange, Transitep),

TransRange *= Attenuation,
TransStep *= Attenuation,
RotRange *= Attenuation,
RotStep *= Attenuation,

)}

Fig. 6. Pseudo code of adaptive optimization

4 Grid Generation for Tissue Change Measurement

To analyze surgical changes, the grid, defined by the cephalometric landmarks, was
formed parallel to the coronal plane. When a ray is orthogonally projected to the
coronal plane, the intersection points of soft and hard tissue was assumed to represent
the corresponding soft and hard tissue points of each patient. The grid definition is as
follows; the upper border of the grid was FH plane, lower border was Me, left border
was left Po, and right border was right Po. All the cephalometric landmarks to define
the grid were summarized in Table 1. The grid was also created perpendicular to FH
plane, in front of the surface model of the soft tissue part in Fig. 7. Then, the length
from Me to FH plane was divided into 10 equal parts. Finally 11 horizontal lines were
generated including the upper and lower border lines. The length from left Po to the
mid-sagittal plane and the length from right Po to the mid-sagittal plane were
compared. The shorter length was chosen and evenly divided into 5 parts. Mirroring
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those points on the basis of the mid-sagittal plane, new corresponding points were
generated. Similarly 11 vertical lines were also created. A total of 121 points for
measuring the surgical changes were defined by the intersection of these lines.

Table 1. Landmarks used for the grid definition

Landmark Definition
Polt The highest point on the upper margin of the left external auditory meatus
Port The highest point on the upper margin of the right external auditory meatus
Me The most inferior point on the symphysis of the mandible in the medial plane
Orlt The lowest point on the lower margin of left orbit
Orrt The lowest point on the lower margin of right orbit

FH plane The plane defined by Polt, Port, Orlt, Orrt

FH plane

83rd

point 119120 21

Mid-sagittal plane

(b)

Fig. 7. Measurement using grid (a) grid generation (b) point projection

All points were projected onto the coronal plane through the skull and soft tissue.
The coordinates of all the intersected points on the skull and the soft tissue from the
projected ray were calculated. If there was no crossing with the skull or soft tissue, the
point was regarded as missing. X axis was defined in the left-right direction, y axis in
the antero-posterior direction, and z axis in the caudal-cephalic direction. The y axis
value was analyzed for the antero-posterior changes after surgery.

5 Experimental Results

All our implementation and test were performed on an Intel Pentium IV PC
containing 3.4 GHz and 2.0 GB of main memory. Our method has been applied to
eight clinical datasets with mandibular prognathism, as described in Table 2.

Table 2. Image conditions of experimental datasets

Slice Slice

Subject # Volume size Pixel size |spac- Subject # Volume size Pixel size | spac-

(mm) ing (mm) ing
(mm) (mm)
1 Pre-operative |512x512x256(0.42x0.42| 1.0 5 Pre-operative | 512x512x241 [0.48x0.48| 1.0
Post-operative|512x512x375[0.39x0.39| 0.6 || [Post-operative| 512x512x197 |0.39x0.39| 1.3
9 Pre-operative |512x512x237(0.47x0.47| 1.0 6 Pre-operative | 512x512x282 [0.49x0.49| 1.0
Post-operative|512x512x245[0.44x0.44| 1.0 | [Post-operative| 512x512x273 |0.45x0.45| 1.0
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Table 2. (continued)

3 Pre-operative |512x512x272{0.46x0.46| 1.0 7 Pre-operative | 512x512x281 [0.46x0.46| 1.0
Post-operative|512x512x253]0.45x0.45| 1.0 || [Post-operative| 512x512x277 |0.46x0.46| 1.0
4 Pre-operative [512x512x264[0.42x0.42| 1.0 3 Pre-operative | 512x512x157 |0.45x0.45| 1.6
Post-operative|512x512x237[0.41x0.41| 1.0 | [Post-operative| 512x512x240 |0.46x0.46| 1.0

Fig. 8(a), (b) shows 3D volume rendering of the patient with mandibular
prognathism before and after mandibular setback surgery. We can recognize that the
protrusion of the lower jaw in Fig. 8(a) is relaxed by changing the position of the
mandible, which improves the occlusion, masticatory function, and aesthetics. Fig.
8(c), (d) shows the effectiveness of our surface registration. The transitional and
rotational difference between pre- and post-operative volume shown in Fig. 8(c) is
much reduced by our method as shown in Fig. 8(d).

()
Fig. 8. The results of registration (a) pre-operative volume (b) post-operative volume (c) before
registration (d) after registration

Fig. 9 shows the registration results of our method in comparison with the
conventional method using no additional technique. The average ASD of the
conventional method and our method for eight patients is 2.67, 2.10(voxel),
respectively while the average of ASD before registration is 6.93. With our adaptive
optimization approach, the registration accuracy is much improved.

[ Before registration
124 I Conventional Methad
771 Our Method

Average Surface Distance [voxel]

Suhject

Fig. 9. Comparison of the registration accuracy using ASD

Fig. 10 shows the registration time of our method in comparison with the
conventional method. The average registration time of the conventional method, and
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our method for eight patients is 14, and 9(sec), respectively. Our adaptive
optimization approach reduces the registration time much. The average of total
processing time of our method for eight cases is summarized in Table 3. For eight
subjects, it takes less than 1 minute.

S conventional Method
I Cur Method

Tatal Processing Time [sec]

5
Subject

Fig. 10. Comparison of the surface registration time

Table 3. Average of total processing time for 8 cases (sec)

Distance map generation Registration Total processing
28 9 37

The changes of bone and soft tissue were measured in Table 4. The manual method
is registered by the orthodontist using the cephalometric landmarks based on the
anatomical knowledge of anthropometry. To compare the performance of our method,
the absolute error of anterior-posterior (y coordinate) of corresponding points of the
grid between pre- and post-operative was analyzed by using the standard paired t-test
and its nonparametric counterpart the Wilcoxon signed-rank test. Nonparametric tests
are more robust for small samples (in this case n = 8) and do not rely on assumptions
of normality for the underlying distributions. The statistical test shows that there is
significant difference between two methods (p < 0.05).

Table 4. Comparison of manual registration and our automatic registration method using the
difference of anterior-posterior (y coordinate) of corresponding points of the grid

Manual registration Our method
Bony Soft tissue Bony Soft tissue
movement movement movement movement
(Mean +S.D.) (Mean +=S.D.) (Mean + S.D.) (Mean + S.D.)
Absolute error 4.05 £4.03 5.87+6.14 2.95+5.03 3.46 +2.29

6 Conclusion

We have developed a new automated system that registers pre- and post-operative
dental CT scans for a three-dimensional analysis on soft and hard tissue changes after
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mandibular setback surgery. Our method matches automatically extracted skull to
obtain optimal registration parameters. Using chamfer distance map, a registration speed
is accelerated by referring to pre-calculated distance value. Our adaptive optimization
approach reduces the registration time and improves the registration accuracy. Eight
pairs of pre- and post-operative CT scans have been used for the performance
evaluation. Experimental results show that our algorithm is more accurate, and
converges faster than conventional ones. All our registration process is finished within 1
minute. Using a grid measurement, the changes of bone, and soft tissue were measured
in skeletal Class III mandibular prognathism patients. Our method could be applicable
to other oral and maxillofacial surgeries as well as plastic surgeries.
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Abstract. For the non-invasive imaging of moving organs, in this pa-
per, we develop statistically accurate methods for the computation of
optical flow. We formalise the linear flow field detection as a model-
fitting problem which is solved by the least squares method. Then, we
show random-ssampling-and-voting method for the computation of op-
tical flow as model-fitting problem. We show some numerical examples
which shows the performance of our method.

1 Introduction

Optical flow is a non-invasive and non-interactive technique for the detection of
motion of an object. Therefore, for medical study and diagnosis of moving or-
gans in human body, optical flow of tomographic images provides a fundamental
tool [1]. The non-invasive imaging of moving organs is achieved by NMR, X-
ray, and ultrasonic. Usually the signal-to-noise ratio of non-invasive imaging is
low. Therefore, we are required to develop statistically accurate methods for the
computation of optical flow for tomographic images.

In this paper, we deal with the random sampling and voting process for linear
flow detection. The method is an extension of the randomised Hough transform
which was first introduced in [5] for planar image analysis. Later they applied
the method to planar motion analysis [3] and shape reconstruction from flow
field detection [4]. These results indicates that the inference of parameters by
voting solves the least-squares problem in machine vision without assuming the
predetermination of point correspondences between image frames. We show that
the randomised sampling and voting process detects optical flow.

The slope selection problem in computational geometry [7] finds a pair of sam-
ple points on a plane which defines a line to approximate a distribution of sample
points. Theil-Sin estimator selects a pair of points which yield the medians of
two parameters of lines [6]. The selection process of pairs of points from samples
which derive a line has the same mathematical structure with the randomised
Hough transform [6,3,4,5]. This process is valid if the number of sample points
is sufficiently large. Combining the ideas of Theil-Sen estimator and the the-
ory of generalised inverse of matrix, we propose a method to estimate robustly
the solution of the least mean squares problem for optical flow detection. The
classical Hough transform estimates the parameters of models. In the classical
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Hough transformation, the accumulator space is prepared for the accumulation
of the voting for the detection of peaks which correspond to the parameters of
models to be detected. In this paper, we investigate for the data mining in the
accumulator space for the voting method, which is a generalisation of the Hough
transform, since the peak detection in the Hough transform could be considered
as the data discovery in the accumulator space.

2  Geometry for Linear Optimization and Estimation

Many problems in computer vision are expressed as the minimization of the
criterion

J(u) = |Au - d]? (1)

for an nx m matrix A and an n-dimensional vector b. This minimization problem
is also described in the form

1l
K@ =IFoP, F=a-d), o= (1) p= | 72 o)
£
since
Au—d=0< Fv =0, (3)

For the first expression in eq. (1), the LMS solution is given as u = A'e, where
AT is the Moore-Penrose inverse of matrix A . For n x m matrix A, if the rank
of Aism, AT =(ATA)"TAT.

Equation (3) means that v € N(F) for v = (u',1) is the solution of the
minimization problem. Since the elements of matrix F' are usually depending
only data, we are required to design a robust method to solve this linear system
of equations.

Since

N(F)=R(F')* = R(FF')", (4)

the solution is the eigenvector associated with the minimum eigenvalue of a
(m + 1) x (m + 1) matrix M = FF'. If the rank of F is m, the minimum
eigenvalue is zero. Therefore, the solution which minimizes the criterion K (v)
lies in the null space of matrix F'.

Assume that our problem is to estimate a m dimensional-vector u from a
system of equations, flv = 0. Each equation of this system of equations is con-
sidered to be a constraint in a minimization problem of a model-fitting process.
Since each constraint determines a hyperplane in the m-dimensional Euclidean
space, the common point of a pair of equations,

{uS}: m{u|flv:07v: (U‘T’I)T}’ (5)

a€esS
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for S is a subset of 1 < s < n such that |S| = m, where |A] is the number of
the elements of set A, an estimator of the solution which satisfies a collection of

constraints. Since we have n constrains, we can have (m)’ estimators as the

common points of the collection of linear constraints.

3 Range Flow Detection

3.1 Range Images

We define the geometry for the detection of range images. Setting (z,y, 2)" to
be the world cordinate in a work space, we assume that our range data of object
measured as the depth —z at the point (x,%,0)T on the plane z = 0. Therefore,
the depth of object from imaging plane z = 0 is expresed as

—z = f(z,y). (6)
Setting
9(z,y,2) = f(z,y) + 2, (7)

the level g(x,y, z) = 0 expresses the range data in the z direction. Therefore, a
spatial image g(z,y, z) = f(x,y) + 2z defines a range image.

3.2 Optical Flow of Spatial Images

In three-dimensional Euclidan space R?, the total derivative of the temporal
function g(x,y, z,t) with respect to time argument ¢ is

d . . .

ar? = 9a® + GyY + g2z + gt- (8)
Assuming jtg =0, (u,v,w)" = (&,9,2)" is optical flow which expresses the
motion of each point. For a sequence of temporal range-images, optical flow is
the solution of

)T

fe@ + fyy+ 2+ ft =0, (9)
if g(z,y,2,t) = f(x,y,1) + 2.
Assuming that flow vector u = (u,v,w)' is constant in an area {2, whose
centre is at & = (z,y), optical flow for time ¢ = 7 at point = (z,y,2) ", is the
solution of a system of equations

)T

G+ b+ cow+da, =0, a=1,2,---,n, n>2 (10)
where
aa = ga(@,y, ZVt)‘m:xa,y:ya,z:za,t:TV
ba = gy(2,y, ZVt)‘a::wa,y:ya,z:zmt:TV
Ca=9:(,9, 2, )y ymye st >
do = 9@y, 2, ) oy e s ter

and €, = (Ta,Ya, 2a) | is a point in the windowed area (2.
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3.3 Flow Computation by Random Sampling

Next, we propose a simple and effective method for solving the system of linear
equations defined by egs. (10) and (11). Our problem is to estimate a three-
dimensional vector u = (u,v,w) ' from a linear equation Au + d = 0 for

ay, b17 C1 d1
az, ba, c2 u do
A= . o l,u=[v],d= o, (11)
o w :
a'ﬂ7 bn? Cﬂ dn

when the rank of matrix A is three. Each equation aqu+bgv +cqw +dy =0 is
considered to be a constraint. Since each constraint determines a plane on the
u-v-w space, the common point of a triplet of equations,

{wiji = (wijk, vije, wijr) "} = {(u,0,w) "au + biv + c;w + d; = 0}
N{(u,v,w) " |aju+ bjo + cjw +d; = 0}
N (u, v, w) " |apu + brv + cpw + dy = 0} (12)
for i # j # k # i, is an estimator of the solution which satisfies a collection of
constraints.

From a triplet of system of equations, aqu+bav+cow—+d, = 0, for a € {i, j, k},
we compute vector a = (A, B,C, D) T, where

b; ¢; d; a; ¢; d;
A= bjdej B:—ajdej
by ¢k di a ¢ di
Q; bz dZ a; bl C;
C: ajbjdj D:—ajbjcj
a by dy, ak by ci

If and only if D # 0, we obtain u = (g, 1]:3)7 g)T.
For matrix D, such that,

a; bi C;
D= Qj bj Cj s (13)
ak bk CL

the matrix D" D is an approximation of the structure tensor

gg 929y 929z
Srz:/// Sdxdydz, S = | 9.9y 97 9y9- | (14)
@ 929 9y9= 92

since for 8o = S|z—(4, ya,2,)T» We have the relation

D'D= ) S, z,€, (15)
a=1t,j,k
ATA= ) S (16)

VL€
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(a) (b) (c)

Fig. 1. Dimension Propeerty of Flow: Structure tensor defines local dimensionality of
images

The rank of the structure tensor describes the the local structure of motion of
object in an image. Equations (14) and (15) imply that the rank of matrix D is
equivalent to the rank of sampled value of the structure tensor of spatial gradient.

If and only if D =0, g, = (aa,ba,ca) " at three deferent points x;, x;, and
x are independent. If and only if ranks of matrix D are 1 and 2, D is zero. If
and only if rank of D is one, the spatial gradients at three points are parallel in
region (2. The is the three-dimensional analogous of the configuration of spatial
gradients which causes the aperture problem for the planar problem.

If and only if rank D is two, the spatial gradient of a point lies on a plane
spanned by spatial gradients of the other two points. This configuration means
that the directional gradient in a direction is zero for all the points. For exam-
ple, if the surface measured as range data and the iso-surface of a distribution
is cylindrically symmetry for an axis, the rank of matrix D is two. For this
configuration, the spatial gradients lie on a plane spanned by the eigenvectors
hi and ho of D' D corresponding to the non-zero eigenvalues. Therefore, there
in no motion in the direction of eigenvector hs of D' D corresponding to the
zero eigenvalue. On the slice perpendicular to hs, we can detect optical flow.
These considerations clarify that our method automatically omits the aperture
problem for spatial optical flow detection. Figure 1 shows local dimensionality
of an image characterized by structure tensor.

. . n | .
Since we have n constraints and ( 3 ) = 3 (n—3)1> We can have O(n?) estimators

as the common points of pairs of lines. Because of noise and computational errors,
the solutions distribute in (u,v,w)" plane. We vote the solutions to (u,v,w)"
and accumulate them for estimating the stable solution. Therefore, the estima-
tion of solutions from pairs of equations is mathematically the same procedure as
the Hough transform for the detection of lines on a plane from a collection of sam-
ple points. Therefore, to speed up the computation time, we can adopt a random
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sampling process for the selection of pairs of constraints. This procedure derives
the same process with the randomised Hough transform such as

1. Randomly select a triplet of equations from the system of equations Fv = 0.

2. Solve this system of linear equations, if a triplet of equations are independent,
otherwise go back to step 1.

3. Vote this solution to (u,v,w) plane.

4. After an appropriate number of iterations from step 1 to step 3, detect peaks
in (u,v,w) space.

5. Apply statistical analysis to the peaks for the detection of the accurate
solution.

Since a triplet of points in a space determines a plane, for the estimation of
a plane from scatted data with many outliers, Theil-Sen estimator computes
the medians of two parameters computed triplet of sample points. Theil-Sen
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Fig.2. A sequence of synthetic range images (a) and (c), and computed flow images
(b) and (d)
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Fig.3. (a) The angle errors against sizes of the windows 5 x 5, 7 x 7, 9 x 9, and

11 x 11. (b) The distribution of the angles between the theoretical and computed ones
for pixels.

(a) (b)

Fig. 4. Flow of synthetic beating heart

estimator computes the medians of parameters which are computed from triplets
of sample points from samples [6]. Estimation of the solution of linear system
of equation using the common points of a collection of linear constraints has
the same mathematical structure with Theil-Sen estimator. Therefore, for our
problem setting w;jr = (uijk, Vijk, wijk)T, we adopt

. . . . T
medianu; ;i = (medianu;;,, medianv; ;i , medianw; ) (17)

as the solution from (g) solutions which are yield from collections of linear

constraints. When n > 3, post-processing defined in eq. (17) becomes effective.
We call this method the Matrix-Inversion Method.
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Fig. 5. The result of Matric-Inversion Method for the practical data sequence ”leaf”
by H.Spies and J.Barron
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4  Numerical Examples

For the detection of three-dimensional flow from sequences of range images, we
evaluated the performance for the synthetic data. Our synthetic data is a moving
ellipse f(z,y,2,t) =1 such that

332 y2 Z2

+ +
(a+acoswt)? b+ Beos(wt + 3m))2 ¢+ ycos(wt — 3m))?

for a =70, b =60, c =50, « =10, B8 = 15, v = 5, w = 27/30. In Figure 2, we
show the image sequence for t = 0, 5.

We have evaluated our two methods. The first one directly computes the inverse
of the 3 x 3 matrix with the Cramer method. Furthermore, the second method
searches the vector in the null space using the singular value decomposition.

Figure 3 (a) shows graphs of the error-distribution of the two methods against
the sizes of the windows. The errors of both methods degrease according to the
sizes of the windows, since in a large window-area there exist many out-layers,
both methods select accurate solution from many out-layers.

In Figure 3 (b), we show the distribution of the angles between the theoretical
and computed ones for pixels. The average and variance of the angles are 17.2
[dig] and 12.6 [dig], respectively. Figure 3 (a) illustrates that the direct-matrix-
inversion method is stable for the numerical computation. Figure 4 shows optical
flow of the synthetic beating heart.

In Figure 5, we apply our method for the practical data sequence ”leaf” by
H.Spies and J.Barron. In Figure 5, (a) and (b) are the image and the range image
of the same object. And (c) is the detected range flow. The result is compatible
to the Horn-Schunck method for the range optical flow detection by Spies, Jahne,
and Barron [2].

f(x,y,2,t) =

5 Conclusions

In this paper, we showed that the random sampling and voting process detects
a linear flow field. We introduced a new method of solving the least-squares
model-fitting problem using a mathematical property for the construction of
a pseudo-inverse of a matrix. The greatest advantage of the proposed method
is simplicity because we can use the same engine for solving multi-constraint
problem with the Hough transform for the planar line detection.

A well studied method for the accurate optical flow computation is the ap-
plication of multi-resolution analysis based on scale-space theory and pyramid
transformation, because these method remove noise from images as preprocess-
ing. Our method does not apply any preprocessing, though Theil-Sen estimator
achieves a pose-processing for a collection of solutions.
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Abstract. Removing shadows casted by moving foreground objects in a scene
is a critical problem for many vision-based applications. We propose two
algorithms that examine color/texture invariants, and exploit spatial-temporal
consistency to detect shadows efficiently and reliably. The first algorithm
assumes a static background model while the second algorithm addresses the
perturbations of dynamic background in natural scenes. The experimental
results show that the proposed methods can detect penumbra as well as umbra
in different kinds of scenarios under various illumination conditions.

Keywords: foreground segmentation; shadow removal; photometric invariants;
penumbra.

1 Introduction

Motion analysis in video sequence is important in many applications such as visual
surveillance, obstacle tracking/recognition, video content analysis and Intelligent
Transportation Systems (ITS). However, one of the main challenges is that moving cast
shadows on the background could be classified as foreground objects by mistake. The
performance of the successive analysis, recognition or tracking would be seriously
degraded due to this problem. A reliable and efficient shadow removal algorithm is
required before the potential power of these vision-based applications can be realized.

To distinguish shadow from foreground is quite difficult because both shadow and
foreground look quite different from the background. Moreover, the cast shadow
usually moves along the foreground object such that they share the same motion. In fact,
we are only interested in the moving shadow since static shadow can be modeled as a
part of the background. For this purpose, we defined two photometric invariants that are
independent of the effect of shadow: the between-pixel invariants (texture feature) and
within-pixel invariants (color feature). Two algorithms were proposed to remove
shadow by utilizing these two kinds of invariants, neighborhoods and temporal
consistency in the scenes. The first algorithm that assumes static background is efficient
under stable scenes. The second algorithm that models dynamic background is more
reliable in natural scenes including waving trees, rippling water, and rain/snow.

The remaining parts of this paper are organized as follows: Section 2 outlines and
compares the related works. Section 3 shows the luminance model and defines the
texture/color invariants. Section 4 presents the first shadow removal algorithm
assuming static background. Section 5 describes the second shadow removal
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algorithm addressing dynamic background. Section 6 demonstrates the experimental
results. Section 7 concludes this paper.

2 Related Works

Several shadow detection algorithms have been proposed for traffic surveillance.
Generally speaking, shadow regions are detected based on information of the
luminance, chrominance and gradient density. Large number of false alarms or miss
detections can be reduced by the assumption of known geometry information of the
foreground vehicles [2] or the lane lines [5]. As a result, these methods are only
suitable for the road traffic applications. Wang et al. [9] proposed a shadow removal
method that estimates the illumination direction and then recovers the foreground
vehicles based on the information of both object edges and attributes of shadow.
However, the estimation of the illumination direction and the shadow attributes is not
very reliable under changing weather conditions.

It is possible to detect shadow by examining the color information of each pixel.
Siala et al. [6] presented a moving shadow detection algorithm by training the shadow
samples in RGB color space with Support Vector Domain Description (SVDD). A
minimal radius hypersphere was found to represent all training samples of shadow.
Then the algorithm can decide whether a pixel is shadow or not by checking if the
color of the pixel falls in the hypersphere. A training process was performed by
manually segmenting the shadow region in a bootstrap manner. The issue of dynamic
illumination was not addressed. Cucchiara et al. [1] considered the color
independence property in the HSV color space to detect shadow. It is observed that if
a pixel is covered by shadow, the hue and saturation components of the pixel only
change within a certain limit. However, the hue components on pixels with saturated
or poor illumination are usually unstable.

A few shadow detection algorithms used gray scale images as inputs. Stauder et al.
[7] relied on brightness, edge and shading information to detect moving cast shadows
in a textured background. Xu et al. [10] assumed that shadow often appears around
foreground object and tried to detect shadow by extracting moving edges.
Morphological filters were used intensively. Without considering color information,
problems could occur when both the foreground and background are uniform regions
without much texture.

Toth et al. [8] proposed a shadow detection algorithm based on color and shading
information. First, the color space of an input image was converted from RGB to
LUV. The image was segmented to several regions based on color information using
mean shift algorithm. It is observed that, for every pixel in a small neighborhood in
the umbra of a shadow region, the intensity values with shadow divided by those
without shadow should be a constant. This shading property was used to detect umbra
region. A successive morphological filter was applied to remove the penumbra region.
The edge/texture information was not considered for shadow discrimination.

Funt et al. [3] presented a method for object recognition under changeful
illumination by checking the equality of intensity ratios of neighboring pixels.
Heikkila et al. [4] proposed a dynamic background subtraction method using texture
features of local binary patterns. Although shadow detection is not within their scope,
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we found that the concept of color constancy and the idea of dynamic weighting list
can be extended to remove shadow. In this paper, we define the color and texture
invariants, and propose two shadow removal algorithms that combine the invariants
with spatial-temporal consistency to remove penumbra as well as umbra in a scene.

3 The Luminance Model and Invariants

Suppose I(x,y) is the intensity value of the pixel located at (x,y), E(x,y) is the
irradiance of the 3D point projecting to (x,y) and p(x,y) is the diffuse reflectance of the
same 3D point. A simple luminance model assuming Lambertian reflectance can be
defined as follows:

I(x,y)=E(x,y)p(x,y) (D

Two kinds of shadow can appear in an image: the penumbra and the umbra. Their
irradiance can be modeled by the following equation:

C,+C,-cosd no shadow
E(x,y)=1C, +k(x,y)-C,-cos penumbra )
C umbra

a

where C, is the radiance of ambient light, C, is the radiance of a distant light source and
@ is the angle between the direction of the distant light source and the surface normal
vector of the 3D point projecting to (x,y). The weighting factor k(x,y) represents the
percentage of the receiving energy when the distant light source is partially occluded
(penumbra). The value of k(x,y) ranges from O (umbra) to 1 (no shadow).

3.1 Between-Pixel Invariants

A shadow casted on a background pixel changes its brightness instead of its texture.
Real foreground and shadow pixels can be segmented by examining the invariability
of the texture or edge information. Assuming the 3D points projecting to neighboring
pixels receive the same irradiance, i.e., E(x,y)=E(x+1,y), the intensity ratio between a
pixel (x,y)and its neighboring pixel (x+1/,y) on an image [/ can be calculated as
follows:

Ixy) _  Ecypny) _ pixy) 3)
I(x"‘l,)’) E(x+laY)p(X+L)’) p(x+17y)

As long as a pixel is projected by the same 3D point, this ratio (the intensities
between neighboring pixels) should be invariant to illumination changes. In other
words, the ratio should be roughly fixed no matter whether it is covered by shadow or
not. We called this shading property as invariants between neighboring pixels.

3.2 Within-Pixel Invariants

A shadow casted on a background pixel changes its brightness but not changes much
its color. Comparing pixel-wise color information between current image and
background image can help to detect cast shadow. When a textureless foreground
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object is in front of a textureless background, the most important clue for separating
cast shadow from foreground object is the color information. Suppose the spectral
intensities of a pixel (x,y) are represented by R(x,y), G(x,y), and B(x,y) in RGB space.
The spectral ratio between R(x,y) and B(x,y)can be defined as follows:

Ry _E(x3)P,%)) _p ),p,(x,y) )
B(x,y) E,(x,y)p,(x.y) 7 p(xy)

Assuming the color of the illumination do not change by the effect of shadow, the
ratio E.(x,y)/E,(x,y) should be equal to a constant E.(x,y). Thus, the spectral ratio
R(x,y)/B(x,y) is invariant to the magnitude of the illumination and roughly equal to a
constant even if it is covered by shadow. Similarly, the spectral ratio G(x,y)/B(x,y) is
invariant under shadow or different illumination conditions. This spectral property is
called invariants within pixels.

4 The Shadow Removal Algorithm Based on Static Background

The goal of the first algorithm is to separate shadow pixels from real foreground
pixels as a refinement on the outputs of static background subtraction. Fig. 1 depicts a
flowchart of the proposed shadow removal algorithm based on a static background.
As a preprocessing step, a statistical background subtraction was applied to generate
the foreground mask region (FMR). A noise removal algorithm was performed to
refine the FMR. Then the proposed shadow detection algorithm was applied to the
FMR by considering three factors: the between-pixel invariants, the within-pixel
invariants and the spatial-temporal consistency.

Input Image i I
Sequence X i
d ¢ ! Between-pixel '
" Foreground ! Invariants (dn,dy) :
atic Mask Region Within-pixel ' Shadow
————P . >
Background (FMR) i Invariants (r,g) ! Removal
Subtraction ' I
! Spatial-Temporal i *
i Consistency : Foreground

e e without Shadow

Fig. 1. Flowchart of the first shadow removal algorithm based on static background

Suppose [ is the current image and I’ is the background image. According to the
between-pixel invariants discussed in section 3.1, the ratio of the intensities between
neighboring shadow pixels in both current and background image should be the same, i.e.

I(x,y) _ I'(xy) ,if (x,y) is in shadow region (5)
I(x+1,y) I'(x+1,y)

To speedup the examination of this property, two logarithm ratio maps, d;(x,y) and
d,(x,y), for current image can be computed by convolving the logarithm image with a
horizontal or vertical first-order derivative mask.
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_ I(x,y) _ B
dh(x,y)—lnil(x_’_l’y) In/(x,y)—InI(x+1,y) ©
d () =Y ey —In I (x, y+ 1)
I(x,y+1)

The logarithm ratio maps d,’(x,y) and d,’(x,y) for background image can be defined
similarly. A ratio map keeps the texture and edge information that should not be
affected by cast shadow in an image. Based on this idea, a pixel is classified as
shadow only if its value in the ratio map (texture information) is similar to those in
the background. A simple pixel-wise comparison between d(x,y) and d’(x,y) can be
used to determine whether a pixel belongs to shadow regions or not. Nevertheless,
there could be some outliers due to noise or coincidence. To address this problem,
spatial consistency is exploited to remove outliers. It is observed that shadows usually
occupy a region instead of a few isolated pixels. The error score for discriminating the
pixel (x,y) as shadow can be calculated by summing the difference of d and d” over all
pixels in a small neighborhood window W centered at (x,y):

W)= Yld, G ) —d, G, )|+

(@i, ))eW

d, (i, )=d, (i, J) @

By considering the spatial consistency in neighborhood, the overall error score
W¥(x,y) for shadow discrimination is much more stable and outliers can be effectively

reduced.

Suppose (R, G, B) represents the spectral information of a pixel in current image
and (R’, G’, B’) indicates the spectral information of the same pixel in background
image. According to the within-pixel invariants defined in section 3.2, the spectral
ratio in both current and background image should be the same, i.e.,

R(x.y) _ R'(x,y) , if (x,y) is in shadow region )
B(x,y) B'(x,y)

For speedup purpose, two logarithm ratio maps, r(x,y) and g(x,y), for current image

can be computed by

i RO y) _
r(x, y)—lniB(x’ ) In R(x,y) —In B(x, y) ©)
g(x.y) =1 EEY 10 G(x, y) ~In B(x, y)
B(x, y)

Since the value of r and g remain roughly the same under different illumination
condition. The score of error for discriminating the pixel (x,y) as shadow is defined as:

O(x, y) =|r(x,y) = ' (x, y)| +|g(x, y) — g'(x, y)| (10)

where r’ and g’ are the spectral ratio of the background image. A smaller ®(x,y)
represents that the color of the pixel (x,y) does not change much and it is more likely
to be a shadow pixel.

Methods considering only the between-pixel invariants (texture) can not
distinguish between a foreground without texture and its shadow on a uniform
background. Methods considering only the within-pixel invariants (color) tend to
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wrongly classify a foreground region with similar color as its background to be a
shadow. Assuming the foreground object moves slowly, temporal consistency
between frames can provide a clue for potential shadow regions. In other words, if the
frame rate is high, a shadow pixel at time instant ¢ tends to remain in shadow region at
time r+/. Exploiting temporal consistency can prevent wrongly classifying the
temporally isolated noise as shadow regions. A reliable shadow detection system
should be able to consider all these factors simultaneously. In our system, the error
scores corresponding to these factors are fused together using the following recursive
linear equation:

:a~‘l‘,(x,y)+b-®[(x,y)+c~Q,_l(x,y) (11)

2, (x.7) a+b+c

t

where a, b and ¢ are weighting parameters that control the importance of each factor
and the speed of the recursive update. Their values are determined empirically in our
current experiments and can be adjusted dynamically for better adaptability in the
future. For example, the weight a should be lowered for images without much texture;
the weight b should be lowered for images under saturated or poor illumination; the
weight ¢ should be lowered for images with fast moving objects. €(x,y) represents
the total score of error for discriminating (x,y) as shadow at time instant ¢. Finally, a
thresholding operation is applied on Q,x,y) to determine whether the pixel (x,y)
belongs to foreground object or cast shadow region.

5 The Shadow Removal Algorithm Based on Dynamic
Background

Unlike the first algorithm that removes shadow from foreground mask region, the
second algorithm tries to directly classify shadow as background using a dynamic
background model. The modeling of background image is a critical issue for resisting
camera noise and illumination change. The second algorithm models the dynamic
natures of each pixel by maintaining a sorted list of nodes with features and weights.
Fig. 2 depicts a flowchart of the proposed shadow removal algorithm based on
dynamic background.

The background model of a pixel consists of a sorted list of nodes. The i-th node
contains two fields: a feature vector m; and a weighting value w;. The feature vector
m;=(r,g,d;,d,) is composed of the within-pixel invariants (r,g) and the between-pixel
invariants (d,d,) as defined in section 3. The bigger the weight w;, the higher the
probability of m; being a feature vector belonging to the background. Suppose the
length of the list is p, all nodes in a list are sorted in decreasing order according to
their weights.

To classify a pixel as foreground/background, the Mahalanobis distance between
the pixel feature M and the feature m in each node in the list is calculated according to
the following equation:
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Fig. 2. Flowchart of the second shadow removal algorithm for dynamic background

v == minl = m))" =7 0 =m))]
<i<p
s:minHM—m,.H (12)

1<i<p

q=arg minHM -m,
1<i<p

where X is the covariance matrix that is calculated in advance. Suppose the g-th node is
the best match with the minimal distance s. If the minimal distance s is lower than a
threshold T and the sum of weights of the first ¢ nodes w+ws+...+w, is lower than a
dynamic threshold T, then the pixel is classified as background. Otherwise, the pixel is
marked as foreground. To exploit spatial consistency, the dynamic threshold 7, is equal
to a constant 7, ¢ /0,..,1] multiplied by an adaptive background probability that is

determined by the newest classification results of pixels in a neighborhood window W.

z F(x,y)
T =T - (x,y)eWw
d c Z 1 (1 3)
(x,y)eW
Fxy) 1 if (x,y) is classified as background (or shadow) in last frame
x’ = . . . .
Y 0 if (x,y)is classified as foreground in last frame

If the pixel is marked as foreground, the node with the lowest weight is replaced
with the pixel feature M, i.e., m,=M. If the pixel is classified as background, the best
matching node m, is adaptively updated with the following recursive equation:

m,=a-M+(1-a)-m, (14)
where a is a learning rate which can be decided empirically according to the motion

in the scene. Similarly, the weighting value w can be updated by the following
equation:
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i

B+U-pyw,  ifi=g (15)
1=5)-w, ifl<i<pandi#gq

where S is another learning rate which can be decided empirically according to the
scene. The ranges of o and f are between 0 and 1. After the updating, the sum of all
the weights in the list should be equal to one and the nodes should be sorted again in
decreasing order according to their new weights.

Since the feature vectors in the list consist of texture/color invariants that are
independent of shadow, the algorithm should be able to directly classify shadow
pixels as background. As a result, the detected foreground does not include cast
shadow. The shadow removal and foreground/background segmentation are fused
together in this algorithm.

6 Experimental Results

Several indoor and outdoor scenarios have been tested using the proposed algorithms.
Two scenarios are discussed due to space limitation. The image sequence of the first
scenario is borrowed from an indoor human tracking experiment [11]. In fig. 3(a), a
person walks across a room with his shadow casted on a door. Fig. 3(b) shows the
results of Toth’s method. A white region shows the foreground, a gray region
indicates the cast shadow, and a black region represents the background. It can be

©

—Toth

~Between

— Between + Within

* Between + Within + Temoral

(d) (e ®

Fig. 3. The experimental results of an indoor human tracking scenario. (a) An input frame. (b)
Results of Toth’s method. (c) Results with between-pixels invariants. (d) Results with between-
pixel & within-pixel invariants. (e) Results with between-pixel, within-pixel invariants &
temporal consistency. (f) Comparison of four methods by measuring the ROCs.
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observed that the rim of the shadow region (penumbra) is wrongly classified as
foreground. Fig. 3(c) demonstrates the results of the first algorithm using only
between-pixel invariants. The proposed method tends to correctly classify penumbra
as shadow, while Toth’s method cannot deal with penumbra properly since their error
score is significantly larger especially when the penumbra region becomes broader or
the neighborhood window W becomes bigger. There are a few holes inside the person
indicating that they have been wrongly classified as shadow (false alarm). The reason
is that both the clothes and background lack of texture and cannot be discriminated
without color information. Fig. 3(d) demonstrates the results exploiting both between-
pixel and within-pixel invariants. With the color information combined, detection
performance is much better except a small region around the door knob where
specular reflection dominates its appearance. This kind of outliers can be removed by
utilizing the temporal consistency as shown in Fig. 3(e). Fig. 3(f) plots the
performance of the system using ROC curves. The ground truth of shadow regions is
marked manually to calculate the false alarm and miss detection rate. The cyan curve
with triangle marks (A) shows the results of the proposed system considering all
factors (within-pixel, between-pixel invariants, and temporal consistency), the red
curve with plus marks (+) indicates the results considering both the within-pixel and
between-pixel invariants, the green curve with circle marks (o) indicates the results
considering only the between-pixels invariants, and the blue curve with star marks (*)
represents the results using the shading constraints in Toth’s method. It should be
noted that only shading information is considered and no morphological filtering is
applied in this comparison for all the methods.

(b)

i - Between + Within + Te.mporal |
|~—LB
0.8' L b
06 |
<
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% o0z o4 o0& 08 1
MD
() (d)

Fig. 4. The experimental results of an outdoor vehicle tracking scenario. (a) An input frame. (b)
Results of the first algorithm. (c) Result of the second algorithm. (d) Comparison of the ROCs.
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The second scenario, a car casting shadow on the ground moves across an outdoor
scene with waving trees and grasses. Fig. 4(a) shows an input frame in the image
sequence. Fig. 4(b) demonstrates the results of the first algorithm in that many false
alarms appear due to the dynamic nature of the scenario. As shown in Fig. 4(c), the
second algorithm generates better results since the variations of tree and grass pixels
are effectively maintained and updated by the dynamic background model. Fig. 4(d)
compares the ROC curves of the proposed algorithms. The cyan curve with triangle
marks (A) shows the results of the first algorithm based on static background and the
purple curve with inverse triangle marks (V) indicates the results of the second
algorithm considering dynamic background. The execution rates of both algorithms
are around 30 frames per second. Generally speaking, the first algorithm is more
efficient and is suitable for indoor scene with static background. The second
algorithm is more reliable in outdoor natural scenes with significant perturbations.

7 Conclusions

This paper proposed two reliable and efficient moving cast shadow removal
algorithms that combine color/texture invariants and spatial-temporal consistency
based on static and dynamic background respectively. The experimental results
showed that the proposed algorithms can remove penumbra as well as umbra in
several indoor and outdoor scenarios under various illumination conditions.

Acknowledgements

This research was supported in part by the National Science Council of Taiwan.

References

1. Cucchiara, R., Grana, C., Piccardi, M. & Prati, A.: Detecting Moving Objects, Ghosts, and
Shadows in Video Streams. [EEE Transactions on Pattern Analysis and Machine
Intelligence, Pages:1337-1342, Oct. (2003)

2. Fung, G, Yung, N, Pang, G. & Lai, A.: Towards Detection of Moving Cast Shadows for
Visual Traffic Surveillance. IEEE International Conference on Systems, Man, and
Cybernetics, Vol. 4, Pages:2505-2510, Oct. (2001)

3. Funt, B. & Finlayson, G.: Color Constant Color Indexing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Issue 5, Pages:522-529 (1995)

4. Heikkila, M. & Pietikainen, M.: A Texture-based Method for Modeling the Background
and Detecting Moving Objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 28, No. 4 (2006)

5. Hsieh, J., Yu, S., Chen, Y. & Hu, W.: A Shadow Elimination Method for Vehicle
Analysis. International Conference on Pattern Recognition (2004)

6. Siala, K., Chakchouk, M., Besbes, O. & Chaieb, F.: Moving Shadow Detection with
Support Vector Domain Description in the Color Ratios Space. International Conference
on Pattern Recognition, Vol. 4, Pages:384-387 (2004)



352

7.

8.

11.

K.-H. Lo, M.-T. Yang, and R.-Y. Lin

Stauder, J., Mech, R. & Ostermann, J.: Detection of Moving Cast Shadows for Object
Segmentation. IEEE Transactions on Multimedia, Pages:65-76 (1999)

Toth, D., Stuke, 1., Wagner, A. & Aach, T.: Detection of Moving Shadows using Mean
Shift Clustering and a Significance Test. International Conference on Pattern Recognition,
Vol. 4, Pages:260-263, Aug. (2004)

Wang, J., Chung, Y., Chang, C. & Chen, S.: Shadow Detection and Removal for Traffic
Images. International Conference on Networking, Sensing and Control, Vol. 1, Pages:649-
654, Mar. (2004)

. Xu, D., Liu, J., Liu, Z. & Tang, X.: Indoor Shadow Detection for Video Segmentation.

IEEE International Conference on Multimedia and Expo. (2004)

Yang, M., Wang, S. & Lin, Y.: A Multi-modal Fusion System for People Detection and
Tracking. International Journal of Imaging System and Technology, Vol. 15, Issue 2,
Pages:131-142 (2005)



1

Since Active Shape Model (ASM) [1] and Active Appearance Model (AAM) [2],
[3] were introduced, many researchers have focused on these methods to solve
many image interpretation problems, especially for facial and medical images [4],
[5], [6]. Until now, ASM and AAM have been treated as two independent methods
in most cases even though they share the same underlying statistical models of
the shape and appearance for the target objects (here, the term appearance
is used with a somewhat broad meaning; it can represent the whole texture
or the local texture). However, the two methods cannot be easily combined
because they had different optimization goals and used different optimization

A Unified Approach for Combining
ASM into AAM

Jaewon Sung and Daijin Kim

Department of Computer Science and Engineering, POSTECH, Korea
{jwsung, dkim}@postech.ac.kr

Abstract. Since the goal of Active Appearance Model (AAM) is to
minimize the residual error between the model appearance and the in-
put image, it often fails to converge accurately to the landmark points
of the input image. To alleviate this weakness, we have combined Active
Shape Model (ASM) into AAM, where ASM tries to find correct land-
mark points using the local profile model. Because the original objective
function and search scheme of the ASM is not appropriate for combin-
ing these methods, we modified the objective function of the ASM and
proposed a new objective function that combining that of two meth-
ods. The proposed objective function can be optimized using a gradient
based algorithm as in the AAM. Experimental results show that the
proposed method reduces the a