Using Dynamic Asynchronous Aggregate Search
for Quality Guarantees of Multiple Web Services
Compositions

Xuan Thang Nguyen, Ryszard Kowalczyk, and Jun Han

Swinburne University of Technology, Faculty of Information and Communication
Technologies,Melbourne VIC 3122, Australia
{xnguyen, rkowalczyk, jhan}@ict.swin.edu.au

Abstract. With the increasing impact and popularity of Web service
technologies in today’s World Wide Web, composition of Web services
has received much interest to support enterprise-to-enterprise application
integrations. As for service providers and their partners, the Quality of
service (QoS) offered by a composite Web service is important. The QoS
guarantee for composite services has been investigated in a number of
works. However, those works consider only an individual composition or
take the viewpoint of a single provider. In this paper, we focus on the
problem of QoS guarantees for multiple inter-related compositions and
consider the global viewpoints of all providers engaged in the composi-
tions. The contributions of this paper are two folds. We first formalize the
problem of QoS guarantees for multi-compositions and show that it can
be modelled as a Distributed Constraint Satisfaction Problem (DisCSP).
We also take into account the dynamic nature of the Web service envi-
ronment of which compositions may be formed or dissolved any time.
Secondly, we present a dynamic DisCSP algorithm to solve the problem
and discuss our initial experiment to show the feasibility of our approach
for multiple Web service compositions with QoS guarantees.

1 Introduction

During the past few years, in an effort to improve the collaborations between
organizations, the Web service framework has been emerging as a de-facto choice
for integrating distributed and heterogeneous applications across organizational
boundaries. Consequently, much research has been carried out in various areas
including Web service discovery, composition, and management. Web service
composition in general focuses on building a new value-added composite Web
service from a number of existing component Web services. A Web service com-
position can be considered as a choreography or an orchestration of Web ser-
vices from different viewpoints. A choreography describes a composition from a
global viewpoint of all participants (i.e. Web service providers who participate
in the composition) whereas an orchestration has the local viewpoint of a sin-
gle provider. While Web service orchestration has enjoyed its popularity with an

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 129-[T40] 2006.
© Springer-Verlag Berlin Heidelberg 2006

130 X.T. Nguyen, R. Kowalczyk, and J. Han

increasing number of support tools and implementations [I3], Web service chore-
ography standards emerge rather late with the replacement of WSCI/WSCL [17]
by WS-CDL [18]. Without choreography, Web services compositions’ examples
[8I6] are often restricted to a model which we call the single provider composi-
tion model. For a single provider composition, a provider searches for available
Web services, combines them together to form a new composite Web service
that it can offer. The major characteristic of a single provider composition is
that it is planned and composed solely by a single provider or QoS broker. The
composition may even not be noticed by component service providers. With the
increasing popularity of Web service choreography as a mechanism for multi-
party contracts [I8], Web services choreography opens up the possiblities for
multi-provider compositions in which every participant has some vested interest
in the composite service and actively engages in composing the service. QoS
guarantees for an individual single provider composition has been well investi-
gated in a number of works [3/6/8]. However, to our knowledge, there has not
been any works on the same problem for multiple related multi-provider com-
positions in which multiple providers collaborate to guarantee the QoS levels of
composite services.

In parallel to the advancement of Web services, the MAS and Al communi-
ties have shown an increasing interest in the Distributed Constraint Satisfaction
Problem (DisCSP) in the past few years. DisCSP has been widely viewed as
a powerful paradigm for solving combinatorial problems arising in distributed,
multi-agent environments. A DisCSP is a problem with finite number of vari-
ables, each of which has a finite and discrete set of possible values and a set of
constraints over the variables. These variables and constraints are distributed
among a set of autonomous and communicating agents. A solution in DisCSP is
an instantiation of all variables such that all the constraints are satisfied. In this
paper, we investigate the application of DisCSP techniques to the QoS guarantee
problem and propose a new DisCSP based algorithm for multiple multi-provider
Web service compositions. The rest of the paper is organized as follows. In the
next section we present some important related work. We discuss how the QoS
guarantee for Web service composition problems can be modelled as Dynamic
DisCSP problems in Section 3. We also present formal descriptions of the QoS
guarantee for multi-provider compositions, DisCSP and Dynamic DisCSP frame-
works in that section. We review the AAS (Asynchronous Aggregate Search)
algorithm for its application in the problem of QoS guarantees and describe
our proposed DynAAS (Dynamic Asynchronous Aggregate Search) algorithm
in Section 4. Section 5 present our experiment on the algorithm’s performance.
Finally, conclusions and future work are discussed in Section 6.

2 Related Work and Open Issues

There have been several studies on QoS of Web service compositions. QoS guar-
antees for compositions are discussed in [RI76]. In [7], the authors discuss an
approach for QoS aggregation based on Web service composition patterns [14].

Using Dynamic Asynchronous Aggregate Search 131

More related work on QoS planning can be found in [§], in which a method for
selecting optimal sub-providers from a list of service providers is proposed. In
[3], the authors model the QoS requirements as an optimization problem and
employ a special centralized CSP technique to solve it. However, we argue that
there are three major issues that have not been addressed in those works:

— QoS guarantees for multi-provider compositions: As we explained before,
choreography offers a new service model in which a number of component
service providers may share common goals and hence collaborate together to
offer a composite service. Most of the current QoS composition research focus
on single provider composition. Therefore they look at a composition from
a local view of a single provider, as for orchestration. The QoS composition
for multi-provider compositions, as for choreography, requires a global view.

— Multiple inter-related compositions: Some services or service providers may
engage in many compositions and hence there is a relationship between these
compositions through the shared services and providers. This relationship
needs to be taken into account in the composition planning.

— Discovery of supported QoS levels: Most of current QoS composition research
assume that service providers publicly advertise precisely their supported
QoS levels. This can be done by categorizing different classes of service and
embedding the supported QoS values directly into WSDL interfaces or UDDI
registries [11]. However, such a public advertisement requires disclosure of
private information and is not the only way for QoS discovery. Works on
negotiation [5] suggest that QoS discovery can be achieved by direct negoti-
ation between a client and a service provider. By doing this, supported QoS
levels can be kept private.

In addition, we argue that public advertisement is more suitable for atomic
services (i.e services which do not use third party component services). For a
composite service which uses a third party service, supported QoS can be bet-
ter negotiated because the composite service provider might replace the third
pary service with a better one at runtime. Of course here we assume that self-
reconfiguration can be done within the composite service and this is the subject
of research in [I]. The dynamic runtime change in the structure of a composite
service suggests that a set of pre-defined QoS levels for that service may not be
desirable. Align to this argument, there are works on “services on demand” [4/1]
platforms which attempt to satisfy any QoS requirements from clients. In the re-
maining part of this paper, we introduce a framework to handle the above three
issues. Our framework focuses on a global view as opposed to work in [II8ITTI6].

3 Formalization of the QoS Guarantee Problem for Web
Service Compositions

We present a motivation example in Figure 1 which shows four composite services:
Mel(burne)-Tourist, Aus(tralia)-Tourist, Syd(ney)-Tourist, and Aus-Attraction
which make up the set Scomposite- The composite services are composed from six

132 X.T. Nguyen, R. Kowalczyk, and J. Han

cfMel-Tourist): t{Mel-Transpori)+t{Mel-
Hatelj i Mel-Attraction J<5ms.
c{Aus-Tounst): {(Mel-Transport |+ Mel-
Attraction)+t Syd-TransportJ+(Syd-
Attraction J+H{Aus-Weather}<10ms
cSyd-Tourist): i{Syd-
Transport)+iSyd-Attraciion)<dms

c{Aus-Attraction): i(Mel-
Aftraction [Syd-Altractiony<5ms

1 Syd-Attraction), i Mel-Attraction), i Aws-
Mel-Tourist = Syd-Tourist Weatherpim
Aus-Tourist * WBus-Attraction

Fig.1. An example of multiple compositions for tourist related services

individual services: Mel-Transport, Mel-Hotel, Mel-Attraction, Syd-Transport,
Syd-Attraction, and Aus-Weather which make up the set Scomponent-

Since a service provider must allocate necessary resources to live up to the
QoS guarantees, if its service engages in a number of compositions, there will
be a dependency between the levels of QoS that service can contribute to these
compositions. Consequently, there is a mutual relationship between the com-
positions. Here we assume that this relationship can be formally expressed as
constraints. For the sake of clarity, we assume the response time is our only
interested QoS parameter. The t(S) variable in Figure 1 represents the response
time of a Web service S, SES ompositeUScomponent- We also assume that every
composition in S¢omposite 18 a sequential combination of its component services
and hence its E2E (end-to-end) response time can be computed as a sum of the
component services’ response time. For other QoS parameters and composition
patterns, the E2E QoS can be computed with different aggregation operators [7].
The QoS requirements on the values of these sums form the set of constraints
{c(S):SES composite }- We note that these constraints c¢(S) are only shared among
service providers who engage in the composition S(i.e. not all providers). In ad-
dition to these shared constraints, each provider has its private constraints as
shown in the last row of the table in Figure 1. These constraints might be shaped
by the provider’s resource limitations, business rules, organizational policies or
even conditions in contracts with a third party. The providers have a choice to
reveal them or not by making the constraints shared (i.e. known to a number
of or all other providers) or private respectively. Here we focus on a general
problem in which multiple providers engage in multi-Web service compositions.
The final goal of the QoS guarantee for multiple Web service compositions is
to satisfy the E2E QoS requirements of all compositions. Formally, the problem
can be stated as:

Definition 1. Given m service providers participate in n compositions and a
set of pre-defined E2E QoS requirements for those compositions. The problem
of QoS gquarantee for multi-Web service compositions is to assign QoS values
to each component service so that these values can be supported by the service’s
provider and all the compositions meet their QoS requirements.

Using Dynamic Asynchronous Aggregate Search 133

Some main characteristics of the QoS guarantee problem for multi-Web service
compositions that makes it more complex and difficult than the single-provider
QoS composition problem are:

— Prop;: Many providers engage in the composition process. They may pub-
lish their supported QoS levels or require direct negotiations.

— Props: Many compositions need to be considered concurrently. QoS plan-
ning in one composition may affect another composition.

In a real world Web services environment, there are two main sources of dy-
namism regarding the compositions and the constraints. They are also important
characteristics of the QoS guarantee problem for multi-Web service compositions:

— Props: Compositions can be formed and disbanded any time, e.g. compo-
sitions in Scomposite do Not appear and disappear at the same time. They
might be formed or dropped one after one.

— Propy: Service providers might have their own constraints changed during
their service lifetime. QoS requirements for a composition might also change
(e.g. changes in user’s requests).

The characteristic Props reflects many possibilities. One of them is that some
providers may realize that the final goal to satisfy the QoS requirements of all
compositions may not be achieved. They then drop less important compositions
(according to their own ratings) and hence the original problem of QoS guarantee
for Web service compositions is transformed into a new easier one to solve.

4 Modelling the QoS Guarantee Problem for Web Service
Compositions as an Instance of DisCSP

Based on the above discussion, it is proposed that DisCSP techniques can be
well suited for modelling and solving the QoS guarantee problem for Web service
composition. More specifically:

— The distributed nature of the Web environment and the engagement of many
participants in multi-provider services suggest that a distributed approach
is best suited.

— Constraints in the QoS guarantee for multi-Web service composition prob-
lem can be either private or shared. Distributed constraints with different
visibility levels have been one of the main focuses of DisCSP techniques.

To apply DisCSP techniques for solving the problem of QoS guarantee for multi-
Web services compositions, each service provider can be considered as an agent
(an autonomously processing entity) in a constraint network. Each QoS para-
meter is mapped into a variable in the constraint network; the set of providers’
constraints is mapped into the network’s constraint set. For the rest of this pa-
per, we will use the terms service providers and agents interchangeably. More
formally, the problem of QoS guarantee for Web service compositions can be
considered as an instance of DisCSP problems of which the general definition is:

134 X.T. Nguyen, R. Kowalczyk, and J. Han

Definition 2. A static distributed constraint satisfaction problem P is a tuple
(V,D,C,A) where V={m1,...,xz,} is a set of variables, D={Dx,...,D,} is a set of
discrete finite domains for each of the variables , and C={C,...,Cp} is a set
of constraints on possible values of variables. These variables and constraints
are distributed among a set of agents A={A1,...,Ar}. If an agent A; knows a
constraint Cg, it also must know all variables contained in Cq. A solution is an
assignment of values in the domains to all variables such that every constraint
is satisfied.

To take into account the dynamic nature of Web services environment, we con-
sider the implications of the properties Props, and Propy discussed in the pre-
vious section. In the DisCSP framework, the appearance of a new composition
indicates that new constraints and possiblly new variables and agents are added
into the constraint network. Dissolving of a composition means that some exist-
ing constraints are removed and possibly some existing variables or agents are
also removed. In general, there are introductions or reductions of new variables,
constraints, and agents.

Traditionally, Dynamic CSP (DynCSP) is a branch of CSP. Its goal is to effec-
tively handle CSP problems with dynamic changes instead of restarting a static
search every time a change is detected. DynCSP has been modestly extended into
distributed environments [9].A formal description of dynamic DisCSP followed
by a dynamic CSP definition in [I6] can be given as:

Definition 3. A dynamic distributed constraint satisfaction problem P is a se-
quence P°....P... of static DisCSPs, where each one resulting from a change in
the preceding one. This change may be a restriction or a relaxation.

A restriction can be caused by more agents, variables, or new constraints. A
relaxation results from removing agents, variables, or constraints. Note that a
change rate is important to measure and specify how fast a DynDisCSP changes
over time. This rate, defined as A can be measured as the total of added or
removed constraints between any two P? and P7 over the time distance between
them.

5 DisCSP Algorithms to Solve the QoS Guarantee
Problem for Web Service Compositions

There have recently been many publications on DisCSP algorithms. Traditionally
these algorithms are developed and demonstrated in the context of the Meeting
Scheduling and Sensor Network [2]. However, there are some characteristics that
make the QoS guarantee for Web service composition problem different from
those problems: Firstly each agent holds a set (often more than one) of variables
to represent QoS parameters; secondly local constraints in QoS problem can
be very complex; and thirdly service providers are heterogeneous and hence
flexibility in algorithm implementations is desireable. In searching for a suitable
DisCSP algorithm, these characteristics are the most important criteria for us.

Using Dynamic Asynchronous Aggregate Search 135

Whilst most DisCSP algorithms can be extended so that one agent can hold
more than one variable, substantial effort is required for that and for handling
complex private constraints. The originial DisCSP model [20] and most of the
solving algorithms focus on shared constraints instead of private constraints and
hence is more suitable for distributed control but not negotiation. A notable
exception is Asynchronous Aggregate Search (AAS) [12] that allows one agent to
maintain a set of variables and these variables can be shared and hence is suitable
for negotiation. Also all constraints are private in AAS (shared constraints can
be modeled as duplicated private constraints). However, in the current version
of AAS, private constraints at each agent are assumed to be simple and hence
there is no attention in solving these local constraints. Also, AAS is designed only
for static environments. In this section, we introduce AAS and suggest to use
a centralized CSP solver inside each agent to handle complex local constraints.
We also propose an extension of AAS called DynAAS to handle the dynamic
nature of Web services environment.

5.1 Asynchronous Aggregate Search and Local CSP Solvers

Here we briefly introduce AAS in the Web services context. A complete ex-
planation of AAS can be found in [I2] where its termination, correctness and
completeness are proven. Asynchronous Aggregate Search (AAS) is a DisCSP
search technique based on the classical Asynchronous Backtrack (ABT) algo-
rithm [20]. In AAS, each agent (service provider) maintains a set of variables
(relevant QoS variables in our Web services QoS guarantee problem) which can
be shared with others and a set of private constraints on the values of these
variables. AAS differs from most of existing methods in that it exchanges aggre-
gated consistent values (in contrast to a single value in ABT) of partial solutions
during the solving process. The aggregated consistent values are the Cartesian
products of domains which represent a set of possible valuations. This aggregate
significantly reduces the number of backtracks. At the beginning, AAS agents
are (randomly) assigned with priorities and generate random assignments (i.e.
proposals). Two agents are neighbors if they share some variables. During search,
each agent A sends assignments in ok? messages to AT or rejections in nogood
messages to A~. Here we denote AT the set of neighboring agents whose priori-
ties are higher, and A~ the set of neighboring agents whose priorities are lower
than A’s priority. VT is the set of variables the agent share with AT, and V™ is
with A~. An agent can also send addneighbor to ask another agent to become
its neighbor. Each agent keeps a view (current assignments of its variables and
variables in V) and a list of nogoods (assignments rejected by A™).

In AAS, an agent implements three main procedures process-ok , process-nogood,
and process-addneighbor to handle incoming ok?, nogood, and addneighbor mes-
sages. These procedures check whether the information of a partial solution in the
messages is still compatible with the agent’s own assignment of its variables. The
procedures may invoke a check-agent-view procedure to find out a new compati-
ble assignment for the agent’s local variables. In particular, the procedure process-
ok updates the agent-view and nogood list from the remaining valid assignments

136 X.T. Nguyen, R. Kowalczyk, and J. Han

before possibly invoking the check-agent-view procedure. The procedure process-
nogood updates its view according to new assignments found in the nogood con-
tent. If the nogood invalidates the current instantiation and contains new variables
then the agent will try to establish new links with agents in A*};, which hold these
variables. The procedure check-agent-view is used to find a new instantiation and
sends updated values in this instantiation to appropriate agents in A~ . To effec-
tively handle the complexity of local constraints, we introduce a local CSP solver
into each agent. Instead of carrying out a simple local search as in the originial ver-
sion of AAS, our check-agent-view employs a local CSP solver to find an aggregate
V over the Cartesian product of domains of the agent’s variables so that the cur-
rent agent-view and V are consistent and satisfy the agent’s local constraints. In
general, the CSP solver of an agent A takes assignments from A~ and generates
solutions for VT. If a solution cannot be found for an assignment from an agent in
A™ . a nogood message is backtracked to this agent. Otherwise, new assignments
generated by A and sent to A~

5.2 Dynamic Asynchronous Aggregate Search

Our new extension of AAS for dynamic environment is based on an indexing
technique called eliminating explanation which had been proposed in centralized
DynCSP [15]. Note that (nogood based) CSP algorithms in general generate
and test solutions, and record nogoods (invalid solutions). The main idea of
the eliminating explanation technique is simple enough: to index every nogood
against the minimal set of constraints that create the nogood, and remove the
nogood if a constraint in the constraint set is removed. In DynAAS, an agent
creates and stores an eliminating explanation before it sends a nogood. The sent
nogood is tagged with an identity number and kept by both the sender and
the receiver so that the sender, due to some changes later, can ask the receiver
to remove this nogood. It does this by sending the receiver a remove-nogood
message that contains the nogood’s identity.

Algorithm 1 shows a procedure add-constraints used by an agent to handle a
newly added constraint set C,ey. In the algorithm, the agent first tries a local
repair of the partial assignments of variables contained in both those constraints
and VT (line 2). If it fails, the agent then attempts to repair the assignments of
the whole VT (line 4). New assignments if exist are used to update the view and
sent to AT, otherwise a backtrack occurs.

Algorithm 2 explains a procedure remove-constraints which handles the re-
moval of a constraint set Chemoveq- The agent bases on its eliminating explana-
tion set (E) to detect which nogood it sent to a parent in the past is no longer
a nogood (line 2). It then sends a remove-nogood message to ask the parent
for the removal of this nogood. The nogood is a constraint from the parent’s
perspective. Therefore, the parent handles the message by invoking Algorithm
2. Adding and removing constraints are the same as calling add-constraints and
remove-constraints sequentially.

Using Dynamic Asynchronous Aggregate Search 137

Algorithm 1. Add-Constraints(Ceqw)

1: update neighbor list, variable list, and constraint list
2: assgmts =re-assign(v(Crew) N V™)
3: if assgmts = () then
4: assigmts =re-assign(V1)
5: end if

6: if assgmts = () then
7: send nogoods to A~
8: else

9: update view and send ok to AT
10: end if

Algorithm 2. Remove-Constraints(Cremoved)

1: update neighbor list, variable list, and constraint list
2: for all e € E and c(e) N Cremoved 7 0 do

3: send remove-nogood message to parent to remove c
4 delete e from E

5: end for

It is important to note that adding or removing of variables or domain values
can be modeled as constraints [I6], therefore can be handled by the two above
algorithms. If a new agent is added to the network, it is given the lowest priority.
For every type of changes, affected agent must update its lists of neighbors,
variables, and constraints (e.g. line 1 of Algorithm 1 and 2) first. As we have
seen so far, the key idea of DynAAS is to reuse partial solutions to achieve
stability. If we model the whole environment as a discrete-event system where
events are constraint additions or removals, then during the interval between
any two consecutive events the system can be viewed as a static DisCSP using
AAS. This is because DynAAS reacts to maintain consistent views and nogood
storages whenever constraints are added or removed.

6 Experiments

We have built a prototype for experiment, in which we uses Axis 2 for SOAP
engine running on Windows platforms. We develop a DisCSP module with
2 supported protocols: AAS and DynAAS. The module is implemented as a
Web service that has an one-way operation to receive messages sent from other
DisCSP modules. The endpoint reference implementation of a DisCSP module
supports four different WS-Addressing actions with local names: ok, nogood,
add-neighbor, and remove-nogood. These actions are used to identify a message
type sent between two Web services. We use XPATH to present the constraints.
We use NSolver [10] as the Local Solver module. We developed an adaptor to
invoke NSolver engine (.NET process) from the Web services. The adapter trans-
forms XPath expression into NSolver native constraints and can be downloaded

138 X.T. Nguyen, R. Kowalczyk, and J. Han

from [I9]. For our experiment, 10 Web services are used. A list of prefetched
constraints on QoS parameters, and neighbors (i.e addresses of other DisCSP
Web services) are stored in a mySQL database. These data are modified by a
simulator with the varying rate o of adding/removing constraints. In particular,
compositions are randomly formed and removed among any 3 agents. For the
sake of clarity, each of our compositions consists of exactly three component
services and introduces maximum two constraints on the E2E QoS parameters
of the composition. The QoS parameters that we use are response time and cost
which both have simple aggregation formulas [7]. Each parameter has a domain
of 10 discrete values. The average of all constraint tightness (the probability that
there is not a valid assignment within a constraint) is 30% . 20 instances are run
for each test.

DynAAS vs AAS perfornance

Hean Error

a 2 4 1 8 18 12
Changing rate: compositions adding/removing

Fig.2. Mean Error of DynAAS versus Static AAS for 10 providers with dynamic
number of compositions

Before an explaining experiments’ result, we first introduce some important
metrics. Most of current DisCSP algorithms use processing cycles as a measure-
ment of time due to its good approximation and the asynchronously distributed
nature of the search (i.e. there is no global clock). A processing cycle of an agent
consists of receiving a message, processing it and sending out new messages. Also
for DynDisCSP, it is important to measure the rate of environmental changes.
We adopt the rate function o defined in [9]. It is defined as the first deriviative
of the change rate A that measures how reactive an algorithm is to changes.
The time unit to calculate A and o is one processing cycle. For example, at a
rate o=4, four constraints are added or removed at each processing cycle. Note
that because sometimes an algorithm might not keep up with the change rate,
completion time is not an appropriate indicator for performance of DynDisCSP
algorithms. Instead, accuracy in approximating a valid solution is used. The
metric is instantaneous error [9] which is calculated as the distance from a cur-
rent solution found by the algorithm and the valid solution bounds. Note that
these valid solution bounds are computed by our simulator everytime it adds or
removes a constraint.

Using Dynamic Asynchronous Aggregate Search 139

In the experiments, we have used both static AAS and our new DynAAS
algorithm. Static AAS restarts the search from scratch every time a change is
detected. Figure 4 shows the performance of DynAAS and static AAS in terms
of mean values of normalized instantaneous errors vesus rate of change. The
graph shows that the error rate of DynAAS is significant lower than AAS for
low changed rates and increased for larger values of ¢. This can be explained
as the the change rate is greater than the adaptive rate at which DynAAS can
handle. However it shows that DynAAS offers significant reduction in solution
errors if the change rate is reasonable. This reduction is greater than 50% for
0<8. In other words, for the current setup, as long as there are no more than 8
constraints added or removed at each processing cycle then DynAAS gives twice
of the level of solution accuracy over static AAS.

7 Conclusions

We have discussed in this paper the limitations of current approaches in solving
general QoS composition problems and outlined a new approach for modelling
and solving the QoS guarantees for multi-provider compositions as a DisCSP
problem. We also describe a new extension of AAS called DynAAS for dynamic
environment where unexpected events and changes can happen. Experiments
show that the QoS guarantee problem for multiple Web service can efficiently be
solved with DisCSP. Our future work focuses on QoS guarantees for Web service
compositions and optimization of a joint interest function among all providers,
such as the joint satisfaction levels of the DisCSP solution quality.

References

1. V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, and B. Sri-
vastava. A service creation environment based on end to end composition of web
services. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 128—-137, New York, NY, USA, 2005. ACM Press.

2. R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed constraint
satisfaction in a wireless sensor tracking system. In Workshop on Distributed Con-
straints, IJCAI 2001.

3. B. Benatallah, F. Casati, and P. Traverso, editors. Service-Oriented Computing -
ICSOC 2005, Third International Conference, Amsterdam, The Netherlands, De-
cember 12-15, 2005, Proceedings, volume 3826 of Lecture Notes in Computer Sci-
ence. Springer, 2005.

4. A.Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, and A. Youssef. Web services on demand: Wsla-driven automated
management. IBM Syst. J., 43(1):136-158, 2004.

5. A. Elfatatry and P. Layzell. Negotiating in service-oriented environments. Com-
mun. ACM, 47(8):103-108, 2004.

6. X. Gu, K. Nahrstedt, R. Chang, and C. Ward. Qos-assured service composition in
managed service overlay networks, 2003.

140

7.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

X.T. Nguyen, R. Kowalczyk, and J. Han

M. C. Jaeger, G. Rojec-Goldmann, and Miihl. QoS aggregation for service compo-
sition using workflow patterns. In Proceedings of the 8th International Enterprise
Distributed Object Computing Conference (EDOC 2004), pages 149-159, Monterey,
California, USA, 2004. IEEE CS Press.

Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and policing in dynamic web
service selection. In WWW Alt. ’04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers € posters, pages 66-73, New York,
NY, USA, 2004. ACM Press.

R. Mailler. Comparing two approaches to dynamic, distributed constraint satis-
faction. In AAMAS ’05: Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, pages 1049-1056, New York, NY,
USA, 2005. ACM Press.

NSolver home page. http://www.cs.cityu.edu.hk/ hwchun/nsolver/, 2005.

S. Ran. A model for web services discovery with qos. SIGecom Exzch., 4(1):1-10,
2003.

M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in dis-
tributed constraint satisfaction. In Artificial Intelligence Journal Vol.161, pages
25-53, New York, NY, USA, 2005. ACM Press.

W. M. P. van der Aalst. Don’t go with the flow: web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72-76, 2003.

W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distrib. Parallel Databases, 14(1):5-51, 2003.

G. Vertfaillie and T. Schiex. Dynamic backtracking for dynamic constraint satisfac-
tion problems. In Proceedings of the ECAI’9 Workshop on Constraint Satisfaction
Issues Raised by Practical Applications, Amsterdam, The Netherlands, pages 1-8,
1994.

G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction prob-
lems. In National Conference on Artificial Intelligence, pages 307-312, 1994.

Web Service Choreography Interface (WSCI) 1.0. http://www.w3.org/TR/wsci/,
2005.

Web Services Choreography Description Language Version 1.0. http://www.w3.org/
TR /2004/WD-ws-cdl-10-20041217/, 2006.

XPath Adapter for NSolver. http://www.it.swin.edu.au/centres/ciamas/tiki-
index.php?page=xpath2nsolver, 2005.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint sat-
isfaction for formalizing distributed problem solving. In International Conference
on Distributed Computing Systems, pages 614-621, 1992.

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/

	Introduction
	Related Work and Open Issues
	Formalization of the QoS Guarantee Problem for Web Service Compositions
	Modelling the QoS Guarantee Problem for Web Service Compositions as an Instance of DisCSP
	DisCSP Algorithms to Solve the QoS Guarantee Problem for Web Service Compositions
	Asynchronous Aggregate Search and Local CSP Solvers
	Dynamic Asynchronous Aggregate Search

	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

