

Lecture Notes in Computer Science 4294
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Asit Dan Winfried Lamersdorf (Eds.)

Service-Oriented
Computing –
ICSOC 2006

4th International Conference
Chicago, IL, USA, December 4-7, 2006
Proceedings

13

Volume Editors

Asit Dan
IBM T.J. Watson Research Center
19, Skyline Drive, Hawthorne, NY, 10532, USA
E-mail: asit@us.ibm.com

Winfried Lamersdorf
University of Hamburg
Distributed Systems and Information Systems, Computer Science Department
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
E-mail: lamersdorf@informatik.uni-hamburg.de

Library of Congress Control Number: 2006937445

CR Subject Classification (1998): C.2, D.2, D.4, H.4, H.3, K.4.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-68147-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68147-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11948148 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 4th International Conference on Service-
Oriented Computing (ICSOC 2006), which took place in Chicago, USA, December
4–7, 2006. ICSOC 2006 followed on the success of three previous editions of the
International Conference on Service-Oriented Computing in Amsterdam, Netherlands
(2005), New York City, USA (2004) and Trento, Italy (2003). ICSOC is recognized
as the main conference for service-oriented computing research that covers the entire
spectrum from theoretical and foundational results to empirical evaluations as well as
practical and industrial experiences. ICSOC 2006 built on that foundation while in-
troducing several innovations in furthering this goal.

Service-oriented computing brings together ideas and technologies from many dif-
ferent fields in an evolutionary manner to address research challenges such as service
composition, discovery, integration, monitoring and management of services, service
quality and security, methodologies for supporting service development, governances
in their evolution, as well as their overall life-cycle management. ICSOC 2006
strengthened the link to two important communities, Software Engineering and Grid
Computing, with well-known leaders from these communities serving in important
organizing roles such as general chairs in shaping the conference.

In order to provide a balanced coverage and equal emphasis on all SOC topics,
these topics are divided into six major areas. They include Business Service Model-
ing, Service Assembly, Service Deployment, and Management – covering the re-
search issues in the four primary life-cycle phases of a service, modeling, assembly,
deployment, and management. Additionally, the runtime architectural issues are cov-
ered by the SOA Runtime, and quality of service issues – spanning all life-cycle
stages, i.e., specification to autonomic management – are covered by the Quality of
Service area. Finally, the Grid Services area covers application of service-oriented
computing in managing infrastructural resources.

Organizationally, for each of these areas, respective Area Coordinators have the
key role of defining topics, reaching out to the scientific communities and supporting
the evaluation and selection of papers related to the diverse communities.

The paper selection process was very thorough. Matching diversity of paper topics
and reviewer expertise is definitely a challenge. Therefore, we worked closely with
the Area Coordinators, i.e., two experts representing each of the areas, to assign re-
viewers to submitted papers, and also to sort out the differences in opinions from
different reviewers by weighing in their expert opinion. Since the content of a paper
may be identified by multiple areas, reviewers were drawn from all the associated
areas. Overall in the selection process, we sought a diversity of papers and balance
across the areas while selecting the top papers in each of the areas. ICSOC 2006 re-
ceived over 200 contributions in the research track, accepting only 34 full and 16
short papers.

 Preface VI

This year we also enhanced the industrial track by attracting many industry
leaders – representing the gamut of software middleware vendors, consulting ana-
lysts, solution integrators and practitioners of service-oriented architecture (SOA) –
both to serve on the Program Committee and to submit papers sharing valuable
hands-on experiences and key challenges in practicing service-oriented computing.
The industrial papers highlight lessons learned, analysis of technology gap, method-
ology used in practice, noteworthy and innovative application scenarios, need for new
standardization, and major improvements to the state of practice. The industry track
received more than 60 submissions, out of which only 9 full papers were selected. It
also features two invited vision papers discussing the evolution of service-oriented
computing.

In addition to the regular, industry, and short presentations, the ICSOC 2006 con-
ference featured three tutorials, two panels examining the role of open-source soft-
ware and research challenges, and – as customary in ICSOC conferences – top-notch
keynotes, given by leaders in the industrial and academic community.

The excellent program that we assembled for presentation at the conference is a re-
flection of the hard and dedicated work of numerous people. We would like to thank
the members of the Program Committee and the reviewers for their great efforts in
selecting the papers, and the Area Coordinators in making an extra effort in looking
over the reviews and sorting out differences in opinions. We also acknowledge the
great contributions of Julie Wulf-Knoerzer in the local organization, of Vincenzo
D’Andrea for handling finances, of Matei Ripeanu in handling the publicity, of
Boualem Benatallah for handling publication of the conference proceedings, and of
Martin Swany for handling registration. We also thank Dimitrios Georgakopoulos,
Norbert Ritter (Workshop Chairs), Frank Leymann and Heiko Ludwig (Tutorial
Chairs) for organizing associated workshops and tutorials. We would also like to
thank some individuals for their special help and contributions: Sonja Zaplata for
assisting the Program Chairs in tracking various issues that arose throughout the re-
view process, and for being prompt in responding to queries from authors, reviewers
and other conference chairs, Harald Weinreich, who created and adapted the conftool
for us several times – often without anyone really noticing––and Anne Awizen for
her support. And last but not the least, we would like to thank the Steering Committee
members, Fabio Casati, Paco Curbera, Mike Papazoglou, and Paolo Traverso, for
their guidance, and our partners, ACM SIGWeb and SIGSoft.

We hope you find the papers in this volume interesting and stimulating.

December 2006 Ian Foster and Carlo Ghezzi (General Chairs)
 Asit Dan and Winfried Lamersdorf (Program Chairs)

 Robert Johnson, and Jeff Mischkinsky (Industrial Track Chairs)

Organization

ICSOC 2006 Conference Chairs

General Chairs Ian Foster, University of Chicago, USA
 Carlo Ghezzi, Politecnico di Milano, Italy
Program Chairs Asit Dan, IBM, USA
 Winfried Lamersdorf, Hamburg University, Germany
Industrial Track Chairs Robert Johnson, IBM, USA
 Jeff Mischkinsky, Oracle, USA
Workshop Coordination Dimitrios Georgakopoulos, Telcordia, USA
 Norbert Ritter, Hamburg University, Germany
Tutorial Chairs Frank Leymann, University of Stuttgart, Germany
 Heiko Ludwig, IBM, USA
Local Arrangements Chair Julie Wulf, Univa Corporation, USA
Financial Chair Vincenzo D’Andrea, University of Trento, Italy
Registration Chair Martin Swany, University of Delaware, USA
Publicity Chair Matei Ripeanu, University of British Columbia, Canada
Publication Chair Boualem Benatallah, UNSW, Australia
Steering Committee Fabio Casati, Hewlett-Packard Labs, USA
 Paco Curbera, IBM Research, Hawthorne, UK
 Mike Papazoglou, Tilburg University, Netherlands
 Paolo Traverso, ITC-IRST, Italy

Area Coordinators

Service Modeling Wolfgang Emmerich, UCL, UK
 Mathias Weske, University of Potsdam, Germany
Service Assembly Barbara Pernici, Politecnico di Milano, Italy
 Munindar Singh, North Carolina State University, USA
Service Management Luciano Baresi , Politecnico di Milano, Italy
 Hiro Kishimoto, Jujitsu, Japan
SOA Runtime Douglas Schmidt, Vanderbilt University, USA
 Steve Vinoski, Iona, USA
Quality of Service Priya Narasimhan, CMU, USA
 Jim Pruyne, HP, USA
Grid Services Dennis Gannon, Indiana University, USA
 Paul Watson, Univ. of Newcastle upon Tyne, UK

Program Committee

Research Track

Nabil R. Adam Rutgers University, USA
Jose Luis Ambite USC/ISI, USA
Mikio Aoyama NISE, Japan
Alistair Barros SAP, Australia
Boualem Benatallah University of New South Wales, Australia
Walter Binder EPFL, Switzerland
Athman Bouguettaya Virginia Tech, USA
Sjaak Brinkkemper Utrecht University, Netherlands
Tevfik Bultan UCSB, USA
Fabio Casati HP, USA
Malu Castellanos HP, USA
Bruno Crispo Vrije University Amsterdam, Netherlands
Paco Curbera IBM Research, USA
Vincenzo D'Andrea Università di Trento, Italy
Umesh Dayal HP, USA
Flavio De Paoli Università di Milano, Italy
Tommaso Di Noia University of Bari, Italy
Jens-Peter Dittrich ETH Zurich, Switzerland
John Domingue KMI, UK
Schahram Dustdar University of Technology Vienna, Austria
Boi Faltings EPFL, Switzerland
Dieter Fensel University of Innsbruck, Austria
Gianluigi Ferrari University of Pisa, Italy
George Feuerlicht University of Technology Sydney, Australia
Ioannis Fikouras Ericsson, Germany
Geoffrey Fox Indiana University, USA
Alex Galis UCL, UK
Dimitrios Georgakopoulos Telcordia, USA
Paolo Giorgini University of Trento, Italy
Claude Godart Université Henri Poincaré Nancy, France
Paul Grefen Eindhoven University of Technology, Netherlands
John Grundy University of Auckland, New Zealand
Mohand-Said Hacid Université Lyon, France
Hakan Hacigumus Almaden IBM, USA
Kate Keahey Argonne National Laboratory, USA
Alfons Kemper Technische Universität München, Germany
Roger Kilian-Kehr SAP Karlsruhe, Germany
Jana Koehler IBM Zurich Research Lab, Switzerland
Bernd Kraemer Fernuniversität Hagen, Germany
Brian LaMacchia Microsoft, USA
Frank Leymann University of Stuttgart, Germany

 Organization X

Ling Liu Georgia Institute of Technology, USA
Heiko Ludwig IBM Research, USA
Neil Maiden City University London, UK
Tiziana Margarina Potsdam University, Germany
Ioana Manolescu INRIA, France
David Martin SRI, USA
Eugene M. Maximilien IBM Almaden, USA
Massimo Mecella Università di Roma, Italy
Brahim Medjahed Michigan University, USA
Toshiyuki Nakata NEC, Japan
Christos Nikolaou University of Crete, Greece
David O'Hallaron Carnegie Mellon University, USA
Guadalupe Ortiz Universidad de Extremadura, Spain
Mike Papazoglou Tilburg University, Netherlands
Anna Perini ITC-IRST Trento, Italy
Marco Pistore Università di Trento, Italy
Axel Polleres Universidad Rey Juan Carlos, Spain
Jean Pierre Prost IBM Montpellier, France
Omer Rana Cardiff University, UK
Thomas Risse Fraunhofer Gesellschaft, Germany
Norbert Ritter Hamburg University, Germany
Colette Rolland Université de Paris I, France
Rainer Ruggaber SAP, Germany
Akhil Sahai HP, USA
Volker Sander Jülich Research Centre, Germany
Vladimiro Sassone, University of Southampton, UK
Dimitrios N. Serpanos University of Patras, Greece
Jun Shen University of Wollongong, Australia
Santosh Srivastava University of New Castle, UK
Maarten Steen Telematica Enschede, Netherlands
Tony Storey IBM, UK
Jianwen Su UCSB, USA
Ravi Subramaniam Intel, USA
Angelo Susi ITC-IRST Trento, Italy
Katia Sycara CMU, USA
Stefan Tai IBM New York, USA
Kian-Lee Tan National University of Singapore, Singapore
Paolo Tonella ITC-IRST Trento, Italy
Farouk Toumani ISIMA Autiere, France
Don Towsley University of Massachusetts, USA
Paolo Traverso ITC-RST, Italy
Aphrodite Tsalgatidou University of Athens, Greece
Karthikeyan Umapathy Penn State University, USA
Will van der Aalst Eindhoven University of Technology, Netherlands
Jos van Hillegersberg University of Twente, Netherlands
Aad Van Moorsel University of Newcastle, UK
Vijay Varadharajan Macquarie University, Australia
John Wilkes HP Labs Palo Alto, USA
Martin Wirsing Technische Universität München, Germany

 Organization XI

Jian Yang Macquiri University, Australia
Arkady Zaslavsky Monash University Melbourne, Australia
Gianluigi Zavattaro University of Bologna, Italy
Yanchun Zhang Victoria University, Australia
Christian Zirpins University College London, UK

Industry Track

Anne Anderson Sun, USA
Paul Fremantle WSO2, UK
Steve Graham IBM, USA
Frederick Hirsch Nokia, USA
Kerrie Holley IBM, USA
Philippe Le Hégaret W3C, USA
Mark Little Redhat, USA
Ashok Malhotra Oracle, USA
Andy Mulholland CapGemini, UK
Srinivas Narayanan Tavant, USA
Eric Newcomer Iona Technology, USA
Mark Nottingham Yahoo, USA
Sanjay Patil SAP, USA
Greg Pavlik Oracle, USA
Harini Srinivasan IBM, USA
William Vambenepe HP, USA
Sanjiva Weerawarana WSO2, Sri Lanka
Bobbi Young Unisys, USA

Additional Referees

Grigoris Antoniou Cu Nguyen Duy
Andrei Arion Paul El-Khoury
George Athanasopoulos Rik Eshuis
Michael Averstegge Reza Eslami
Donald Baker Pascal Fenkam
Venkat Balakrishnan Eugen Freiter
Piergiorgio Bertoli Keisuke Fukui
Aliaksandr Birukou GR Gangadaran
Lars Braubach Steffen Göbel
Volha Bryl Jan Goossenaerts
Andrzej Cichocki Simone Grega
Francesco Colasuonno Claudio Guidi
Marco Comerio Michael Harrison
Nick Cook Martin Husemann
Eugenio Di Sciascio Hiroshi Igaki
Remco Dijkman Yuji Imai
Nicola Dragoni Sarath Indrakanti
Christian Drumm Marijke Janssen

 Organization XII

Rim Samia Kaabi Stanislav Pokraev
Raman Kazhamiakin Frank Puhlmann
Natallia Kokash Azzurra Ragone
Jacek Kopecky Claudia Raibule
Iryna Kozlowa Claudia Raibulet
Kathleen Krebs Chun Ruan
Christian P. Kunze Yacine Sam
Jens Lemcke Andreas Savva
Ching Lin Alberto Siena
Xumin Liu Jim Smith
Roberto Lucchi Luca Spalazzi
Matteo Maffei Alexander Stuckenholz
Daniele Maggiore Ioan Toma
Zaki Malik Martin Treiber
Manolis Marazakis Uday Kiran Tupakula
Annapaola Marconi Harald Vogt
Bogdan Marinoiu Michael von Riegen
Andrea Maurino Jochem Vonk
Harald Meyer Jim Webber
Stefano Modafferi Stuart Wheater
Carlos Molina-Jimenez Simon Woodman
Graham Morgan Xu Yang
Enrico Mussi Qi Yu
Marian Nodine Nicola Zannone
Michael Pantazoglou Sonja Zaplata
Panayiotis Periorellis Uwe Zdun
Marinella Petrocchi Yi Zhang
Christian Platzer Weiliang Zhao
Dimitris Plexousakis George Zheng
Alexander Pokahr

Table of Contents

Part 1: Research Track Full Papers

Service Mediation

Requirements and Method for Assessment of Service Interoperability 1
Stanislav Pokraev, Dick Quartel, Maarten W.A. Steen,
Manfred Reichert

An Aspect-Oriented Framework for Service Adaptation 15
Woralak Kongdenfha, Régis Saint-Paul, Boualem Benatallah,
Fabio Casati

Automated Generation of BPEL Adapters . 27
Antonio Brogi, Razvan Popescu

Grid Services and Scheduling

Division of Labor: Tools for Growing and Scaling Grids 40
T. Freeman, K. Keahey, I. Foster, A. Rana, B. Sotomoayor,
F. Wuerthwein

DECO: Data Replication and Execution CO-scheduling
for Utility Grids . 52

Vikas Agarwal, Gargi Dasgupta, Koustuv Dasgupta, Amit Purohit,
Balaji Viswanathan

Coordinated Co-allocator Model for Data Grid in Multi-sender
Environment . 66

R.S. Bhuvaneswaran, Yoshiaki Katayama, Naohisa Takahashi

Mobile and P2P Services

Adaptive Preference Specifications for Application Sessions 78
Christine Julien

Mobile Ad Hoc Services: Semantic Service Discovery
in Mobile Ad Hoc Networks . 90

Andronikos Nedos, Kulpreet Singh, Siobhán Clarke

XIV Table of Contents

Discovering Web Services and JXTA Peer-to-Peer Services
in a Unified Manner . 104

Michael Pantazoglou, Aphrodite Tsalgatidou,
George Athanasopoulos

Service Composition

A Hierarchical Framework for Composing Nested Web Processes 116
Haibo Zhao, Prashant Doshi

Using Dynamic Asynchronous Aggregate Search for Quality
Guarantees of Multiple Web Services Compositions . 129

Xuan Thang Nguyen, Ryszard Kowalczyk, Jun Han

Service Composition (re)Binding Driven by Application–Specific QoS 141
Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito,
Francesco Perfetto, Maria Luisa Villani

Design of Quality-Based Composite Web Services . 153
F. De Paoli, G. Lulli, A. Maurino

Adaptive Services

AMPol-Q: Adaptive Middleware Policy to Support QoS 165
Raja Afandi, Jianqing Zhang, Carl A. Gunter

Adaptive Web Processes Using Value of Changed Information 179
John Harney, Prashant Doshi

SCENE: A Service Composition Execution Environment Supporting
Dynamic Changes Disciplined Through Rules . 191

Massimiliano Colombo, Elisabetta Di Nitto, Marco Mauri

A Self-healing Web Server Using Differentiated Services 203
Henri Naccache, Gerald C. Gannod, Kevin A. Gary

Data Intensive Services

Quality of Service Enabled Database Applications . 215
S. Krompass, D. Gmach, A. Scholz, S. Seltzsam, A. Kemper

A Model-Based Framework for Developing and Deploying Data
Aggregation Services . 227

Ramakrishna Soma, Amol Bakshi, V.K. Prasanna, Will Da Sie

Table of Contents XV

Service Management: Registry, Reliability

A Distributed Approach for the Federation of Heterogeneous
Registries . 240

Luciano Baresi, Matteo Miraz

I-Queue: Smart Queues for Service Management . 252
Mohamed S. Mansour, Karsten Schwan, Sameh Abdelaziz

XML Processing

Optimizing Differential XML Processing by Leveraging Schema
and Statistics . 264

Toyotaro Suzumura, Satoshi Makino, Naohiko Uramoto

Optimized Web Services Security Performance with Differential
Parsing . 277

Masayoshi Teraguchi, Satoshi Makino, Ken Ueno, Hyen-Vui Chung

Web Browsers as Service-Oriented Clients Integrated
with Web Services . 289

Hisashi Miyashita, Tatsuya Ishihara

Service Modeling

Interaction Soundness for Service Orchestrations . 302
Frank Puhlmann, Mathias Weske

Modeling Web Services by Iterative Reformulation of Functional
and Non-functional Requirements . 314

Jyotishman Pathak, Samik Basu, Vasant Honavar

SOCK: A Calculus for Service Oriented Computing . 327
Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi,
Gianluigi Zavattaro

A Priori Conformance Verification for Guaranteeing Interoperability
in Open Environments . 339

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti

Business Services: Transaction, Licensing and SLA
Assessment

A Business-Aware Web Services Transaction Model 352
Mike P. Papazoglou, Benedikt Kratz

XVI Table of Contents

Licensing Services: Formal Analysis and Implementation 365
G.R. Gangadharan, Vincenzo D’Andrea

QoS Assessment of Providers with Complex Behaviours:
An Expectation-Based Approach with Confidence . 378

Gareth Shercliff, Jianhua Shao, W. Alex Gray, Nick J. Fiddian

Service Discovery and Selection

A QoS-Aware Selection Model for Semantic Web Services 390
Xia Wang, Tomas Vitvar, Mick Kerrigan, Ioan Toma

UML-Based Service Discovery Framework . 402
Andrea Zisman, George Spanoudakis

BPEL-Unit: JUnit for BPEL Processes . 415
Zhong Jie Li, Wei Sun

Part 2: Research Track Short Papers

Quality of Service (Policy, Transaction
and Monitoring)

A User Driven Policy Selection Model . 427
Mariagrazia Fugini, Pierluigi Plebani, Filippo Ramoni

Abstract Transaction Construct: Building a Transaction Framework
for Contract-Driven, Service-Oriented Business Processes 434

Ting Wang, Paul Grefen, Jochem Vonk

Securing Web Service Compositions: Formalizing Authorization
Policies Using Event Calculus . 440

Mohsen Rouached, Claude Godart

Supporting QoS Monitoring in Virtual Organisations 447
Patrick J. Stockreisser, Jianhua Shao, W. Alex Gray,
Nick J. Fiddian

Business Service Modeling

Event Based Service Coordination over Dynamic and Heterogeneous
Networks . 453

Gianluigi Ferrari, Roberto Guanciale, Daniele Strollo

Table of Contents XVII

Implicit vs. Explicit Data-Flow Requirements in Web Service
Composition Goals . 459

Annapaola Marconi, Marco Pistore, Paolo Traverso

Light-Weight Semantic Service Annotations Through Tagging 465
Harald Meyer, Mathias Weske

Service-Oriented Model-Driven Development: Filling the
Extra-Functional Property Gap . 471

Guadalupe Ortiz, Juan Hernández

WSMX: A Semantic Service Oriented Middleware for B2B
Integration . 477

Thomas Haselwanter, Paavo Kotinurmi, Matthew Moran,
Tomas Vitvar, Maciej Zaremba

Top Down Versus Bottom Up in Service-Oriented Integration:
An MDA-Based Solution for Minimizing Technology Coupling 484

Theo Dirk Meijler, Gert Kruithof, Nick van Beest

Service Assembly

Semantic Service Mediation . 490
Liangzhao Zeng, Boualem Benatallah, Guo Tong Xie, Hui Lei

Examining Usage Protocols for Service Discovery . 496
Rimon Mikhaiel, Eleni Stroulia

Sliver: A BPEL Workflow Process Execution Engine
for Mobile Devices . 503

Gregory Hackmann, Mart Haitjema, Christopher Gill,
Gruia-Catalin Roman

Automated Discovery of Compositions of Services Described
with Separate Ontologies . 509

Antonio Brogi, Sara Corfini, José F. Aldana, Ismael Navas

Dynamic Web Service Selection and Composition: An Approach
Based on Agent Dialogues . 515

Yasmine Charif-Djebbar, Nicolas Sabouret

Leveraging Web Services Discovery with Customizable Hybrid
Matching . 522

Natallia Kokash, Willem-Jan van den Heuvel, Vincenzo D’Andrea

XVIII Table of Contents

Part 3: Industrial Track Vision and Full Papers

Vision Papers

Assembly of Business Systems Using Service Component
Architecture . 529

Anish Karmarkar, Mike Edwards

The End of Business as Usual: Service-Oriented Business
Transformation . 540

Andy Mulholland

Experience with Deployed SOA

A Service Oriented Reflective Wireless Middleware . 545
Bora Yurday, Halûk Gümüşkaya

Procedures of Integration of Fragmented Data in a P2P Data Grid
Virtual Repository . 557

Kamil Kuliberda, Jacek Wislicki, Tomasz Kowalski,
Radoslaw Adamus, Krzysztof Kaczmarski, Kazimierz Subieta

Towards Facilitating Development of SOA Application
with Design Metrics . 569

Wei Zhao, Ying Liu, Jun Zhu, Hui Su

SOA Architectures

Dynamic Service Oriented Architectures Through Semantic
Technology . 581

Suzette Stoutenburg, Leo Obrst, Deborah Nichols, Ken Samuel,
Paul Franklin

A Service Oriented Architecture Supporting Data Interoperability
for Payments Card Processing Systems . 591

Joseph M. Bugajski, Robert L. Grossman, Steve Vejcik

Services-Oriented Computing in a Ubiquitous Computing Platform 601
Ji Hyun Kim, Won Il Lee, Jonathan Munson, Young Ju Tak

Early Adoption of SOA Technology

SCA Policy Association Framework . 613
Michael Beisiegel, Nickolas Kavantzas, Ashok Malhotra,
Greg Pavlik, Chris Sharp

Table of Contents XIX

A Model-Driven Development Approach to Creating Service-Oriented
Solutions . 624

Simon K. Johnson, Alan W. Brown

Towards Adaptive Management of QoS-Aware Service
Compositions – Functional Architecture . 637

Mariusz Momotko, Micha�l Gajewski, André Ludwig,
Ryszard Kowalczyk, Marek Kowalkiewicz, Jian Ying Zhang

Author Index . 651

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 1 – 14, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Requirements and Method for Assessment of Service
Interoperability

Stanislav Pokraev1, Dick Quartel2, Maarten W.A. Steen1, and Manfred Reichert2

1 Telematica Instituut, The Netherlands, P.O. Box 589
7500 AN Enschede, The Netherlands

Centre for Telematics and Information Technology,
2 University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

Stanislav.Pokraev@telin.nl, D.A.C.Quartel@ewi.utwente.nl,
Maarten.Steen@telin.nl, M.U.Reichert@ewi.utwente.nl

Abstract. Service interoperability is a major obstacle in realizing the SOA
vision. Interoperability is the capability of multiple, autonomous and
heterogeneous systems to use each other’s services effectively. It is about the
meaningful sharing of functionality and information that leads to the
achievement of a common goal. In this paper we systematically explain what
interoperability means and analyze possible interoperability problems. Further,
we define requirements for service interoperability and present a method to
assess whether a composite system meets the identified requirements.

Keywords: service modeling, service interoperability, formal verification.

1 Introduction

The integration of software systems is a major challenge for companies today. Both
organizational forces, such as business process integration (BPI), and technology
drivers, such as the move towards service-oriented architectures (SOA), put
increasing pressure on software engineers to reuse and integrate existing system
services, rather than building new systems from scratch. However, the lack of
interoperability forms a major stumbling block in the integration process. To address
this issue a lot of efforts are currently being invested in standardizing service
description languages and protocols for service interactions such as WSDL, BPEL,
WS-CDL. Unfortunately, these efforts mainly address what we call syntactic
interoperability, whereas semantic interoperability is just starting to be addressed by
initiatives such as the SWSI1 and the WSMO2 working groups.

In this paper we analyze what it means for software systems to be interoperable.
Based on the results of this analysis we identify possible interoperability problems
and define requirements for appropriate solutions. Next, we propose a conceptual
framework for service modeling as well as a method for formally verifying the inter-
operability of an integrated system, starting with an integration goal. The latter

1 http://www.swsi.org/
2 http://www.wsmo.org/

2 S. Pokraev et al.

qualification becomes necessary because a composite system has properties that
emerge due to the interaction of its components. Assessing interoperability of such a
system means that one can check if a desired goal (i.e., a number of emerging
properties) can be achieved by the elements of that system in concert.

The paper is organized as follows: Section 2 presents our conceptual framework
for service modeling. Section 3 explains what interoperability means, analyze
possible interoperability problems, and define requirements for service
interoperability. Section 4 presents our method for formal verification whether a
composite system meets the identified interoperability requirements. Section 5 gives
an overview of the state-of-the art and the related work. Finally, Section 6 presents
our conclusions and discusses some future research directions.

2 A Conceptual Framework for Service Modeling

This section presents our conceptual framework for service modeling. The framework
defines concepts and a notation to model interactions between systems from a
communication, behavioral and information perspective. The presented concepts are
generic in that they can be applied in different application domains and at successive
abstraction levels. This helps limiting the number of required concepts. The core
concept in our framework is the interaction concept. It supports a constraint-oriented
style of service specification, which facilitates the addressing of interoperability
requirements by modeling the participation of interacting entities as separate
constraints and by reasoning about satisfiability of the logical conjunction of these
constraints. The conceptual framework is based on earlier work [12][13].

The communication perspective is concerned with modeling the interacting
systems and their interconnection structure. For that purpose we introduce two basic
concepts, namely Entity and Interaction point.

An Entity models the existence of some system, while abstracting from its
properties. An Interaction point models the existence of some mechanism that enables
interaction between two or more systems, while abstracting from the properties of the
mechanism. In general, the interaction mechanism is identified by its location (e.g.,
the combination of an IP address and port number can be used to identify a TCP/UDP
socket).

We adopt Webster’s definition of a system, which defines a system as “a regularly
interacting or interdependent group of items, components or parts, forming a unified
whole”. This definition distinguishes between two system perspectives: an internal
perspective, i.e., the “regularly interacting or interdependent group of items,
components or parts”, and an external perspective, i.e., the “unified whole”. Fig. 1
illustrates both perspectives.

From an external perspective a system is modeled as a single entity (e.g., System A)
having one or more interaction points (e.g., IP1, IP2 and IP3). From an internal
perspective a system is modeled as a structure of interconnected system parts (e.g.,
Systems A1, System A2 and System A3).

The behavioral perspective is concerned with modeling the behavioral properties
of a system, i.e., the activities that are performed by the system as well as the relations
among them. For that purpose we introduce four basic concepts, namely, Action,
Interaction, Interaction contribution and one relation, namely, Causality relation.

 Requirements and Method for Assessment of Service Interoperability 3

System ASystem A

IP1
IP1 System A1

System A1 System A2
System A2……

System A3
System A3

……

External system perspective
(…forming unified whole)

Internal system perspective
(… interacting or interdependent group

of items, components, or parts…)

Interaction pointEntity

A

IP2
IP2

IP3
IP3

IP1
IP1 IP2

IP2

IP3
IP3

Fig. 1. Communication perspective

An Action represents a unit of activity that either occurs (completes) or does not
occur (complete) during the execution of a system. Furthermore, an action only
represents the activity result (effect) that is established upon completion, and abstracts
from the way this result is achieved.

An Interaction represents a common activity of two or more entities. An
interaction can be considered as a refinement of an action, defining the contribution of
each entity involved in the interaction. Therefore, an interaction inherits the properties
of an action. In addition, an interaction either occurs for all entities that are involved,
or does not occur for any of them. In case an interaction occurs, the same result is
established for all involved entities.

An Interaction contribution represents the participation (or responsibility) of an
entity that is involved in an interaction. An interaction can only occur if each involved
entity can participate. An entity can participate if the causality condition of its
interaction contribution is satisfied (see below). In addition, an interaction
contribution may define constraints on the possible results that can be established in
the interaction. This means that an interaction represents a negotiation among the
involved entities, only defining the potential results of the interaction, while
abstracting from how they are established. We distinguish three basic types of
negotiation between two entities A and B.

• Value checking: entity A proposes a single value x as interaction result and entity
B proposes a single value y. The interaction can only occur if x = y, in which case
the interaction result is x;

• Value passing: entity A proposes a single value x as interaction result and entity
B accepts a set of values Y. The interaction can only occur if x ∈ Y, in which case
the interaction result is x;

• Value generation: entity A accepts a set of values X as interaction result and
entity B accepts a set of values Y. The interaction can only occur if X ∩ Y ≠∅, in
which case the interaction result is a value from the intersection of X and Y (while
abstracting from the choice of the particular value).

For an action or interaction contribution, say a, a Causality relation defines the
condition that must be satisfied to enable the occurrence of a. Three basic conditions
are distinguished:

4 S. Pokraev et al.

• Enabling condition b, which defines that a depends on the occurrence of b, i.e., b
must have occurred before a can occur;

• Disabling condition ¬b, which defines that a depends on the non-occurrence of b,
i.e., b must not have occurred before nor simultaneously with a to allow for the
occurrence of a;

• Start condition √, which defines that a is allowed to occur from the beginning of
the behavior, independent of any other actions or interaction contributions.

Composite system

Composite system

ShipperSellerBuyer

Buy

Buy Ship

Ship ShipBuy

R
ef

in
e
m

e
n
t

action
interaction
contributionbehavior interaction enabling

condition

Fig. 2. Refinement of an action

The behavioral concepts are illustrated in Fig. 2. At the higher abstraction level
action Buy is followed by action Ship. At the lower level the actions are refined by
assigning actors (e.g., Buyer, Seller and Shipper) that contribute to the result of
these actions. Constraints on the results of interactions that systems may define are
discussed later after having introduced the information perspective.

Basic conditions can be combined to represent more complex causality conditions.
For this we provide the AND and the OR operators, which define that a conjunction
and disjunction of conditions must be satisfied, respectively.

The information perspective is concerned with modeling the subject domain of a
system. First, we explain what subject domain is and then we introduce five basic
modeling concepts.

Software systems manage a domain of lexical items. These items represent entities
and phenomena in the real world that are identifiable by the system (e.g., people,
companies or locations). In this context we denote the part of the world that is
identifiable by the systems as subject domain of the system.

Software systems interact with their environment by exchanging messages.
Messages that enter the system request or update the state of its lexical domain.
Messages that leave the system request information about the system’s subject
domain or provide information about the lexical domain of the system.

Messages consist of data that represent property values of entities or phenomena
from the subject domain. The data in the messages have meaning only when
interpreted in terms of the subject domain model of the system.

To model the information perspective we provide five basic concepts, namely
Individual, Class, Property, Result constraint and Causality constraint.

 Requirements and Method for Assessment of Service Interoperability 5

An Individual represents an entity or phenomenon in the subject domain of the
system, e.g., the person “John”, the hospital “Saint Joseph” or the city “London”.

A Class represents an abstract type of entities or phenomena in the subject domain
of the system, e.g., “Patient”, “Hospital” or “City”.

A Property represent possible relations that can exist between entities or
phenomena in the system’s subject domain, e.g., “admitted to”, “is a” or “is located
in”.

A Result constraint models a condition on the result of an action or interaction
contribution that must be satisfied after the occurrence of the action or interaction
contribution.

A Causality constraint models a condition on the results established in causal
predecessors (i.e., actions or interaction contributions) that must be satisfied to enable
the occurrence of an action or interaction contribution.

Fig. 3 shows how information concepts are related to interactions.

drSmith freeSlots ?s
[?s > 0]

Patient ?p
Appointment ?a
?a startTime ?t
?a duration ?d
[?d ≤ 1h]

Patient ?p
Appointment ?a
?a startTime ?t
[?t ≤ 10pm]

Result constraint

Class

Property

Causality constraint

Individual

Fig. 3. Relating information concepts to an interaction

In the example a system requests an appointment for a patient starting not later
than 10pm. The hospital system accepts any appointments with duration less or equal
than 1 hour. In addition, the interaction can only happen if Dr. Smith (the healthcare
professional responsible for this case) has free slots in his calendar. Indeed, this is a
causality constraint if the individual drSmith has been established as a result of a
preceding (inter)action.

We use Description Logics (DL)[6], more specifically OWL-DL[7] to represent our
information concepts by a concrete formalism. DL ontologies consist of concepts,
roles and individuals. Individuals represent entities of phenomena from the real
world, concepts represent abstract classes of entities or phenomena, and roles
represent relations between entities or phenomena.

A concept can be atomic, i.e., denoted by its name (e.g., Patient, Room or
Hospital) or defined as an expression that contains other concepts, roles and
composition operators such as union or intersection.

Besides concepts, individuals and relations, DL ontologies consist of a set of
axioms specifying the properties of the concepts, roles and individuals. Examples
of such axioms are concept inclusion (C(x) ∧ C ⊆ D → D(x)), role inclusion

6 S. Pokraev et al.

(R(x, y) ∧ R ⊆ S → S(x, y)), transitive role (R(x, y) ∧ R(y, z) → R(x, z)), etc. For
the formal semantics of OWL-DL we refer to [7].

Putting together the three modeling perspectives yields an integrated service
model. A service is a set of related interactions between the system and its
environment. An example is given in Fig. 4a. It shows two interacting behaviors,
representing the behaviors the one of a system and another one of its environment.
These entities can engage in three interactions a, b and c, which are related by
causality relations. The interaction contributions can be adorned with result
constraints and the causality relations with causality constraints respectively. Taken
together, the interactions, their causal relations and the information constraints define
the service between the system and the environment.

Our definition of service does not include a sense of direction. It is an interaction
that models a common activity of two or more entities in which some results (values)
can be established, but abstracts from who takes the initiative or the direction in
which values flow. However, often it is useful to talk about the service that is offered
by a system without having to specify the constraints of the environment. Likewise, it
is also often useful to talk about the service that is requested by an entity without
making assumptions about the constraints of the service provider. These are two
complementary views on a service, which can be obtained by only specifying one
entity’s contributions and constraints (cf. Fig. 4b and Fig. 4c).

Assumptions

System

Offered
Service

a b

a b

c

c

Environment

System

Service
a b

a b

c

c

a)

Environment

Assumptions

Requested
Service

a b

a b

c

c

b)

c)

Fig. 4. Service model

3 Requirements for Interoperability

In our approach we distinguish three different levels of interoperability, namely
syntactic, semantic and pragmatic.

Syntactic interoperability is concerned with ensuring that data from the exchanged
messages are in compatible formats. The message sender encodes data in a message

 Requirements and Method for Assessment of Service Interoperability 7

using syntactic rules, specified in some grammar. The message receiver decodes the
received message using syntactic rules defined in the same or some other grammar.
Syntactic interoperability problems arise when the sender’s encoding rules are
incompatible with the receiver’s decoding rules, which leads to (construction of)
mismatching message parse trees.

Web Services standards address syntactic interoperability by providing XML-
based standards such as SOAP, WSDL and BPEL. XML is a platform-independent
markup language capable of describing both data and data structure. This way,
different systems can parse each other’s messages, check if these messages are well-
formed, and validate if the messages adhere to a specific syntactic schema. In our
approach we adopt XML to deal with syntactic interoperability and only focus on
semantic and pragmatic interoperability.

Semantic interoperability is concerned with ensuring that the exchanged
information has the same meaning for both message sender and receiver. The data in
the messages have meaning only when interpreted in terms of the respective subject
domain models. However, the message sender does not always know the subject
domain model of the message receiver. Depending on its knowledge, the message
sender makes assumptions about the subject domain model of the receiver and uses
this assumed subject domain model to construct a message and to communicate it.
Semantic interoperability problems arise when the message sender and receiver have
a different conceptualization or use a different representation of the entity types,
properties and values from their subject domains. Examples of such differences are
naming conflicts (same representation is used to designate different entities, entity
types or properties, or different representations are used to designate the same entity,
entity type or property), generalization conflicts (the meaning of an entity type or a
property is more general than the meaning of the corresponding entity type or
property), aggregation conflicts (an entity type aggregates two or more
corresponding entity types), overlapping conflicts (an entity type or a property
partially overlaps a corresponding entity type or a property), isomorphism conflicts
(the same entity type or property is defined differently in different subject domain
models), identification conflicts (the same entity is identified by different properties),
entity-property conflicts (an entity type in modeled as a property), etc.

To address the identified semantic conflicts we define the following requirement:

Requirement 1: A necessary condition for the semantic interoperability of two
systems is the existence of a translation function that maps the entity types,
properties and values of the subject domain model of the first system to the
respective entity types, properties and values of the subject domain model of the
second system.

Pragmatic interoperability is concerned with ensuring that message sender and
receiver share the same expectation about the effect of the exchanged messages.

When a system receives a messages it changes its state, sends a message back to
the environment, or both[18]. In most cases, messages sent to the system change or
request the system state, and messages sent from the system change or request the
state of the environment. That is, the messages are always sent with some intention
for achieving some desired effect. In most of the cases the effect is realized not only

8 S. Pokraev et al.

by a single message but by a number of messages send in some order. Pragmatic
interoperability problems arise when the intended effect differs from the actual effect.

Requirement 2: A necessary condition for pragmatic interoperability of a single
interaction is that at least one result that satisfies the constraints of all contributing
systems can be established.

As said earlier, a service is a set of related interactions between the system and its
environment.

Requirement 3: A necessary condition for pragmatic interoperability of a service is
that Requirement 2 is met for all of its interactions and they can occur in a causal
order, allowed by all participating systems.

The requirements are discussed in more details in the next section.

4 Formal Verification of Service Designs

In this section we present a formal method for checking if a service design meets the
requirements identified in the previous section.

To address Requirement 1 we need a method to establish mappings between
values, concepts and relations from subject domains of the systems being integrated.
This method requires understanding of the meaning of values, concepts and relations
from the respective subject domains and cannot be fully automated. However, tools
exist that use sophisticated heuristic algorithms to discover possible mappings and
provide mechanisms for specifying these mappings. Besides mapping there are two
other relevant approaches: alignment and merging of the subject domain models.
Alignment is the process of making the subject domain models consistent and
coherent with one another while keeping them separate. Merging is the process of
creating a single subject domain model that includes the information from all source
subject domain models.

To address the semantic conflicts identified in the previous section we need a
formal language capable of expressing mappings. In the following we show how
some of the identified problems can be addressed using OWL-DL axioms. In the
explanation below we use the prefixes a: and b: to identify a concept or a relation in
the subject domain model of System A and System B respectively.

 Naming conflicts can be addressed using axioms that assert sameness (e.g.,
a:Medicine ≡ b:Drug) or difference (a:Employee ≠ b:Employee). Aggregation
conflicts can be addressed using axioms that define a new concept as aggregation of
the corresponding concepts (e.g., a:Address ≡ List (b:StreetNo,

b:Street, b:City). Generalization conflicts can be addressed using axioms that
assert the generalization (or specialization) relation between the respective concepts
(a:Human ⊆ b:Patient). Overlapping conflicts can be addressed using axioms
that assert that corresponding concepts are not disjoint (e.g., ¬(a:Man ∩
b:Adult) ⊆ ⊥).

Unfortunately, not all types of mappings can be expressed using OWL. For
example, OWL does not allow for property chaining (e.g., a:hasUncle ≡
b:hasBrother • b:hasFather) and qualified cardinality restrictions

 Requirements and Method for Assessment of Service Interoperability 9

a:SafeBuilding = b:Building ∩ ≥2b:hasStairs.b:FireEscapeStairs
which makes it difficult (in some cases impossible) to deal with isomorphic and
cardinality conflicts. However, some of these issues are being dealt with in the
upcoming version of OWL 1.1.

To address Requirement 2 we define a class as an intersection of the classes that
define the admissible results of an interaction for all participating interaction
contributions, and check if the concept that represents the class is satisfiable.

As said earlier, we use OWL-DL as a representation system for individuals, classes
and properties as well as to define result and causality constraints. This way, we can
describe the subject domains of the system, define classes that represent the
conditions and results of actions and interaction contributions and reason if these
classes can have instances or not.

The basic reasoning task in OWL-DL is subsumption check – a task of checking if a
concept D is more general than a concept C. In other words, subsumption is checking if
the criteria for being individual of type C imply the criteria for being individual of type
D. The concept D is called subsumer and the concept C is called subsumee. If C
subsumes D and D subsumes C, then we can conclude that class C and D are
equivalent.

Checking concept satisfiability is a special case of subsumption reasoning. In this
case the subsumer is the empty concept (⊥). If a concept C is subsumed by the empty
concept we say that the concept C is not satisfiable. This means that no individual can
be of type C.

Requirement 2 is illustrated in Fig. 5. In this example, any appointment not earlier
than 10pm with duration no longer that 1 hour is a possible result of the interaction a.

Hospital
Information

System

Healthcare
professional

a

Patient p
Time t
Duration d

[t ≥ 10pm]

Hospital

Healthcare
Professional

Possible results of the interaction
Any patient, time not before 10pm
and duration no longer than 1 hour

a

Patient p
Time t
Duration d

[d ≤ 1h]

Fig. 5. Example of Requirement 2

To check if a composite system meets Requirement 3 we translate a model of a
composite service described in our language to a Coloured Petri Net (CPN)[8][9].
This way we can construct the corresponding occurrence graph and reason about the
dynamic properties of the model. The presented mapping is partially based on
previous work [16].

A classical Petri Net (PN) consists of a set of places (represented by circles), a set
of transitions (represented by black bars), directed arcs connecting places to
transitions or transitions to places, and markings assigning one or more tokens
(represented by black dots) to some places. CPNs extend the classical PNs by
providing a mechanism for associating a value of a certain type to each token. In

10 S. Pokraev et al.

addition, a transition can be enabled only if its input tokens satisfy certain conditions
(guards) and produce output tokens that represent new values (bindings). In this way,
a transition can be seen as a function that maps input values to output values in a
certain context.

An action in our language maps to a transition in terms of PNs. A transition can be
executed when all incoming places contain at least one token. On execution it
consumes a token from all incoming places and produces a token in all outgoing
places. Similar to actions, enabled transitions may execute in parallel. Nets that
correspond to some elementary causality relations from our language are depicted in
Fig. 6:

√ a a b a b

a ∧ b c
(AND-join)

a ∨ b c a b ∧ c a b ∨ c
(AND-Split) (OR-Split)

a

a

b

a

b

c

a b a

b c

a b

c

a

b c

(OR-Join)

Fig. 6. Mapping to Petri Nets

As said earlier, the occurrence or the result of an action (or interaction) may
depend on the result of one or more causal predecessors (actions or interactions).
Such dependences can be easily mapped onto guards and bindings in terms of CPNs.
Fig. 7 shows an example of the respective mappings.

b

c

a

int x

int y b.x + c.y < 10

x

y

x

y [x+y<10]

b

c

a

int x

int y

x

y

x

y

int z;
[z = b.x+c.y]

z

[z=x+y]

b

c

a

b

c

a

The occurrence of action a depends on the results of actions b and c

The result of action a depends on the results of actions b and c

Fig. 7. Mapping to Coloured Petri Nets

The presented mappings allow models expressed in our language to be translated
into CPN and analyzed using existing tools.

To check if the composition from our example meets Requirement 3, we translate
the model to the corresponding CPN using the presented mapping and construct the
occurrence graph of that net. We use the constructed graph to check for the existence

 Requirements and Method for Assessment of Service Interoperability 11

of a marking in which the results defined by the participating systems can be
established. Next, we check if the order of the results establishment meets the
causality constraints of the participating systems. The requirement is illustrated in Fig.
8 and explained in an example below.

Clinical
system

Appointment
System

Healthcare professional

a

a

b

b

c

c

Healthcare professional

a

a

b

b

c

c

Results of the interactions
a - Patient data
b - Appointment data
c - Confirmation

Requested
Service

Offered
Service

Hospital Information
System

Fig. 8. Example of Requirement 3

Consider a healthcare professional who wants to refer a patient to a specialist. His
system allows him to send the patient’s clinical data, followed by the appointment
data and finally to receive a confirmation from the hospital information system. I.e.,
the allowed interaction order of the healthcare professional is a, b, c. The hospital
information system can either first receive the patient’s clinical data or the
appointment data. Once it has both it registers the data in the clinical and appointment
systems and sends back a confirmation to the healthcare professional. I.e., the allowed
interaction order of the hospital information system is a, b, c, or b, a, c. In the
example, the systems are interoperable because the order a, b, c meets the constraints
of both the healthcare professional and the hospital information system.

To validate our conceptual framework, we implemented a prototype that checks if
a composite system meets the identified requirements. Our prototype uses Racer[14]
Renew[10] and CPNTools[15].

5 State-of-the Art and Related Work

OWL-S[11] is an OWL ontology for Web Services, aiming at making them computer-
interpretable, to enable automatic service discovery and invocation, i.e., breaking
down interoperability barriers through precise service semantics. For that reason
OWL-S defines a class Service, where all service properties are very general. The idea
is to provide a conceptual basis for building service taxonomies, but it is expected that
taxonomies will be created according to functional and domain-specific needs. A
service has a ServiceProfile. This is a high level description of the service and its
provider. A ServiceProfile describes the functional and non-functional service
properties in a human readable way. The service is formally described by a
ServiceModel. It provides means for describing the data and control flow in case of a
composite service. Finally, a service has a ServiceGrounding, which is a specification

12 S. Pokraev et al.

of service access information such as communication protocols, and transport
mechanisms.

IBM together with LSDIS Lab at University Of Georgia has proposed lightweight
approach for adding semantics to Web Service descriptions, WSDL-S[1]. It is based
in the work done in METEOR-S[17]. WSDL-S provides a mechanism to annotate
WSDL service descriptions by providing extension elements such as input, output,
precondition and effect. The intention is to build upon other Semantic Web Services
related efforts. WSDL-S relies on both the WSDL and XML Schema extension
mechanisms to reference external semantic models, without being constrained to a
particular semantic representation language.

The Web Service Modeling Ontology (WSMO) [3] has been proposed as an
alternative for OWL-S. The creators of WSMO argue that OWL-S is only a
formalization of WSDL and BPEL4WS, and that true service semantics require a
much richer ontology. In addition to the WSMO ontology also a Web Service
Modeling Language (WSML) [4] and a Web Service Execution Environment
(WSMX) [5] have been defined. The objective of these specifications is to allow
automatic service discovery, composition, execution and interoperation in the context
of Web and Grid.

The Semantic Web Services Framework [2] is a relatively new initiative, which
addresses interoperability by proposing a language and ontology for specifying the
semantics of Web services. The language consists of two parts, namely, a first order
logic language for describing web services (SWSL-FOL) and a rule-based language
with non-monotonic semantics (SWSL-Rules). SWSL-FOL is used to formally
specify service characteristics whereas SWSL-Rules is used to reason about those
characteristics and execute services. SWSF also defines a formal ontology for
representing service characteristics called First-Order Logic Ontology for Web
Services (FLOWS).

6 Conclusions

The main contributions of this work are the definition of a conceptual framework for
service modeling, the identification of requirements for semantic and pragmatic
interoperability and a method for assessing whether a composite system meets the
identified requirements. We did this by first analyzing and defining what it means for
software systems to be interoperable. We identified three different levels of
interoperability – the syntactic, semantic and pragmatic level – and defined the
requirements for assessing interoperability at each of these levels. Since we feel that
syntactic interoperability is sufficiently addressed by existing standards and
initiatives, we focused on the semantic and pragmatic interoperability requirements.

What makes our work different from the related work in the area is that our method
is based on a new service modeling framework which provides generic concepts that
can be applied in different application domains and at successive abstraction levels.
The key concept in our framework (the concept Interaction) supports a constraint-
oriented style of service specification. This style allows service requestors and
providers to explicitly specify their assumptions about the environment of their
systems. This in turn enables formal verification of the interoperability of the
composite system by checking constraint satisfiability.

 Requirements and Method for Assessment of Service Interoperability 13

Our approach combines the precise, but abstract, definition of the behavior of
services and their compositions with a formal definition of the information being
exchanged between services. Once we have specified services in this formalism, we
are able to apply a combination of a formal logic reasoner and a formal behavior
analysis tool to verify the semantic and the pragmatic interoperability of a given set of
services.

There are a number of issues that we still need to address to make our method more
practical.

First, we cannot assume that existing services are specified using our modeling
notation. Therefore, we are working on providing mappings from existing service
description languages and tools for the (semi)-automatic transformations of service
models from descriptions in WSDL and BPEL.

Second, we plan to investigate ways of presenting the verification results back into
the original models. Currently, the outcome of applying our method is a yes/no-
answer. However, it is not very satisfactory to find out that a particular composition
of services is not interoperable. In that case more feedback is required as to the cause
of the interoperability problem.

Finally, we would like to investigate ways to (semi)-automatically derive
mediators capable of solving detected semantic and pragmatic interoperability
problems. Such mediators should implement mappings between the information and
behavioral models to overcome semantic and pragmatic interoperability problems.

Acknowledgments. The presented work has been done in the Freeband Com-
munication project A-Muse (http://a-muse.freeband.nl). Freeband Communication
(http://www.freeband.nl) is sponsored by the Dutch government under contract BSIK
03025.We would like to thank Henk Jonkers, Patrick Strating and Rogier Brussee from
the Telematica Instituut, the Netherlands for their valuable comments on this work.

References

1. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A., Verma, K.
Web Service Semantics - WSDL-S. W3C Member Submission 7 November 2005, Version
1.0, http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/

2. Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Martin,
D., McIlraith, S., McGuinness, D., Su, J., Tabet, S. Semantic Web Services Framework
(SWSF) Overview, W3C Member Submission 9 September 2005,
http://www.w3.org/Submission/SWSF/

3. Bruijn, J. de, Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,
König-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D.,
Scicluna, J., Stollberg, M. Web Service Modeling Ontology (WSMO), W3C Member
Submission 3 June 2005, http://www.w3.org/Submission/WSMO/

4. Bruijn, J. de, Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummenacher, R., Polleres,
A., Predoiu, L. Web Service Modeling Language (WSML), W3C Member Submission 3
June 2005, http://www.w3.org/Submission/WSML/

5. Bussler, C., Cimpian, E., Fensel, D., Gomez, J. M., Haller, A., Haselwanter, T., Kerrigan,
M., Mocan, A., Moran, M., Oren, E., Sapkota, B., Toma, I., Viskova, J., Vitvar, T.,
Zaremba, M. Web Service Execution Environment (WSMX), W3C Member Submission 3
June 2005, http://www.w3.org/Submission/WSMX/

14 S. Pokraev et al.

6. Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. The Description Logic
Handbook: Theory, Implementation and Applications, Cambridge University Press, 2003.
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521781760

7. Dean, M (eds.), Schreiber, G.(eds.), Bechhofer, S., van Harmelen, F., Hendler, J.,
Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., Stein, L. A. OWL Web Ontology
Language Reference, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/owl-ref/

8. Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1, Basic Concepts. Monographs in Theoretical Computer Science, Springer-
Verlag, 1992. ISBN: 3-540-60943-1.

9. Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 2, Analysis Methods. Monographs in Theoretical Computer Science, Springer -
Verlag, 1994. ISBN: 3 -540-58276-2

10. Kummer, O., Wienberg, F., Duvigneau, M., Köhler, M., Moldt, D., Rölke, H. Renew - The
Reference Net Workshop. In Veerbeek, E. (editor), Tool Demonstrations. 24th
International Conference on Application and Theory of Petri Nets (ATPN 2003).
International Conference on Business Process Management (BPM 2003)., pages 99-102.

11. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K. OWL-S:
Semantic Markup for Web Services W3C Member Submission 22 November 2004,
http://www.w3.org/Submission/OWL-S/

12. Quartel, D.A.C., Dijkman R.M., Sinderen van M. J. Methodological support for service-
oriented design with ISDL. In: Proceedings of the 2nd International Conference on Service
Oriented Computing (ICSOC 2004), New York City, NY, USA, 2004.

13. Quartel, D.A.C., Ferreira Pires, L., Sinderen, van M. J. On Architectural Support for
Behaviour Refinement in Distributed Systems Design. In: Journal of integrated design and
process science online, 06(01) ISNN 1092-0617.

14. Racer Systems, Racer Reasoner, http://www.racer-systems.com/, 2005
15. Ratzer, A. V., Wells, L., Lassen, H. M., Laursen, M., Qvortrup, J. F., Stissing, M. S.,

Westergaard, M., Christensen, S., Jensen, K. CPN Tools for Editing, Simulating, and
Analysing Coloured Petri Net, In: Proceedings of the 24th International Conference on
Applications and Theory of Petri Nets (ICATPN 2003), Eindhoven, The Netherlands, June
23-27, 2003, pages 450-462. Volume 2679 of Lecture Notes in Computer Science / Wil M.
P. van der Aalst and Eike Best (Eds.) Springer-Verlag, June 2003.

16. Sinderen, M. J. van, Ferreira Pires, L., Vissers, C. A., Katoen, J.P. A design model for
open distributed processing systems. Computer Networks and ISDN Systems, Vol. 27,
1995, pp. 1263-1285. ISSN 0169-7552.

17. Verma, K., Gomadam, K., Sheth, A., Miller, J., Wu, Z. The METEOR-S Approach for
Configuring and Executing Dynamic Web Processes", Technical Report . Date: 6-24-05.

18. Wieringa, R. J. Design Methods for Reactive Systems: Yourdon, Statemate, and the UML.
Morgan Kaufmann, 2003. http://www.mkp.com/dmrs

An Aspect-Oriented Framework for Service
Adaptation

Woralak Kongdenfha1, Régis Saint-Paul1,
Boualem Benatallah1, and Fabio Casati2

1 SCSE, University of New South Wales, Sydney, NSW, 2052, Australia
{woralakk, regiss, boualem}@cse.unsw.edu.au

2 DIT, University of Trento, Via Sommarive 14, I-38050 POVO (TN), Italy
casati@dit.unitn.it

Abstract. Web services are emerging technologies for integrating het-
erogeneous applications. In application integration, the internal services
are interconnected with other external resources to form a virtual en-
terprise. This puts new requirements on the standardization in terms of
external specification, i.e., a combination of service interfaces and busi-
ness protocols, that interconnected services have to obey. However, pre-
viously developed service implementations do not always conform to the
standard and require adjustment.

In this paper, we characterize the problem of aligning internal service
implementation to a standardized external specification. We propose an
Aspect oriented framework as a solution to provide support for service
adaptation. In particular, the framework consists of i) a taxonomy of
the different possible types of mismatch between external specification
and service implementation, ii) a repository of aspect-based templates
to automate the task of handling mismatches, and iii) a tool to support
template instantiation and their execution together with the service im-
plementation.

1 Introduction

The essence of service-oriented computing (SOC) lies in the creation of loosely
coupled, reusable components that can be invoked and composed by clients. In a
successful SOC environment, a service may invoke several other services as part
of its execution, and may in turn be invoked by several clients. The creation of
such modular components and of the infrastructure for their secure and reliable
invocation is a challenging endeavor that is being tackled by scores of companies
and researchers through novel technologies, methodologies, and standards.

The realization of SOC raises the need for methodologies and tools to manage
service adaptation. Service adaptation refers to the problem of modifying a ser-
vice so that it can correctly interact with another service, overcoming functional
and non-functional mismatches and incompatibilities.

There are two main situations in which adaptation is needed, both likely
to be fairly common in SOC. In a first scenario, the ACME company offers

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 15–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 W. Kongdenfha et al.

a service that implements some business process (e.g., a quotation and ordering
process). As part of exposing a service to clients, the company also provides
the external specifications of the service, that is, the description of the service
interface (typically in WSDL), the business protocol supported by the service
(i.e., the order in which the interface methods can be invoked), and possibly other
non-functional attributes. The external specifications are used at development
time to write clients that can correctly interact with a service, and at run time
by the middleware that supports service selection and interoperability. In some
cases, external specifications are mandated by standardization consortia (such
as RosettaNet), that define how services in a certain industry sector should
behave. Such standardization is important as it simplifies interoperability and
promotes competition (if many services support the same external specifications,
it is technically easy for clients to switch between providers based on economical
convenience). If ACME wants many customers to use its Web service, then it
has to make its Web service as interoperable as possible. This implies the need of
being compliant with a variety of different external specification requirements,
provided by different standardization consortia or different customers. Hence,
while the service functionality remains to a large extent the same, a service
needs to adapt to different external specifications. As the number of services
provided by ACME grows, and as the number of customers grows, managing
adaptation quickly becomes a daunting effort.

In a second scenario, ACME runs (composite) services which are themselves
implemented by invoking other services, possibly offered by third parties. It is
not infrequent to have many ACME services invoke a same third-party service,
e.g., a payment service offered by a financial institution. Hence, a version change
of the external service would have a deep impact on the collection of composite
services, possibly preventing some or all of them from performing their task. In
this case, some or all of the composite services need to be adapted to interact
with the new version of the invoked service. Again, as scale increases, so does
the complexity of the adaptation management effort.

This paper presents a framework and a tool for managing service adaptation.
We argue that, to simplify adaptation, it is important to separate the adaptation
logic from the business logic. Such separation helps to avoid the need of develop-
ing and maintaining several versions of a service implementation and isolates the
adaptation logic in a single place. We further argue that adaptation can be seen
as a cross-cutting concern, i.e., it is, from the developer and project architecture
point of view, transversal to the other functional concerns of the service. This is
particularly evident in the second scenario above: if the invoked service changes
the interface or protocol, then all the composite services invoking it will have
to undergo analogous changes to interact with the new version of the invoked
service. Consistently with this vision, we propose the use of an aspect-oriented
programming (AOP) approach to weave adaptation solutions into the different
composite services that need to be modified. To the best of our knowledge, this
is the first work to identify service adaptation as a cross-cutting concern and to
propose an aspect oriented approach to tackle it.

An Aspect-Oriented Framework for Service Adaptation 17

In a nutshell, the proposed approach works as follows. First, we provide a
taxonomy of mismatches that can occur between two services. We specifically
focus on service interfaces and protocols, the two most commonly used parts of
external specifications. The reasoning behind having a taxonomy of mismatches
is because we argue that similar mismatches can be addressed with similar mod-
ifications to the service implementation. Then, for each mismatch, we provide
a template that embodies the AOP approach to adaptation. Specifically, the
template contains a set of <pointcut, advice> pairs that define where the adap-
tation logic is to be applied, and what this logic is. As a very simple example,
if the base service changed the signature of an operation, the pointcuts will be
the activities in the composite services where the operation is invoked, and the
adaptation logic consists in modifying the invoked message so that it can be
made compatible with the new interface. In our approach, pointcuts are spec-
ified as queries over business process execution, that is, over the execution of
composite services. In this paper, and in the tool we developed, we assume that
services are implemented in BPEL, though the concepts are independent of the
specific language adopted. The advices are therefore also specified in BPEL, as
snippets that modify the behavior of the services at the specified pointcuts. In
fact, since, as we will see, adaptation needs arise from the conjunction of a given
service composition and a particular client interaction, weaving adaptation code
at runtime is more suited than static weaving done at the code level as it allows
for query expressed on particular execution contexts.

Finally, we present the development and runtime tools we have implemented to
support aspect-oriented adaptation. All of the above ingredients of the solution
correspond to contributions of this paper, with the exception of the identification
of the mismatch taxonomy, which is part of our earlier work [3].

2 Service Mismatches

We illustrate an instance of service adaptation problem as it occurs in the first
scenario discussed in the introduction through a supply chain example. Figure 1
shows a model of the interactions that take place in a supply chain process. This
model is expressed using the Business Process Modeling Notation [15], which is a
high-level equivalent of BPEL [11]. In this supply chain process, the client follows
a standardized External Specification (ES) which specifies a protocol that allows
the client to performs operations in one of the two sequences, namely S1 (top
part of the client flow) or S2 (bottom part of the client flow).

In this example, the implementation of the Business Process (BP) (bottom
part of the figure), differs from the target ES, and therefore is incompatible with
the client, in several respects:

(a) Signature mismatch: The BP allows a client to order products through an op-
eration named OrderProduct that requires an input parameter named order

whose type is ProductOrderInfo. The ES specifies the same functionality via
the SubmitOrder operation with the same input parameter but the data type
is OrderDetail.

18 W. Kongdenfha et al.

Fig. 1. A Supply Chain Example showing the Differences between an ES and a BP

(b) Ordering Mismatch: After an order has been submitted, the BP requires the
client to send a makePayment message, while the ES specifies that the client
has also the possibility of using selectFreeItem. This possibility can create
an ordering mismatch when the client choses to follow the execution path
S2 of the ES.

To be able to interact with clients of this supply chain community, the external
behavior of this BP has to be modified so that it complies with the community’s
ES. At the same time, since the BP might participate in some other companies’
workflow and interact with various internal partners, we have to make sure that
any modification will not prejudice those interactions.

Mismatch Types. In our previous work [3], we identified a taxonomy of pos-
sible mismatches at the interface and protocol levels. To make this paper self-
contained, we briefly introduce the mismatch types, in addition to the signature
and ordering mismatches above, as follows:

– Parameter constraint: Two services have different constraints on an input
parameter, where the value range of the ES parameter is not a subset of the
BP parameter, therefore values sent by the client are not accepted by the
BP. For output parameters, mismatch occurs when value range of the BP
parameter is not a subset of the ES parameter.

– Extra message: The BP issues a message that is not specified in the ES.
– Missing message: The BP does not issue a message specified in the ES.

An Aspect-Oriented Framework for Service Adaptation 19

– Message split: The ES specifies a single message to achieve a functionality,
while the BP requires several messages for the same functionality.

– Message merge: The ES specifies several messages to achieve a functionality,
while the BP requires only one message for the same functionality.

3 Aspect Oriented Service Adaptation

To address mismatches such as the ones mentioned above, we introduce adapta-
tion templates. An example of template for the ordering mismatch is presented
in Figure 2. In the following we detail this template structure: we first introduce
joinpoint queries and discuss the alternatives and rationale for their design. We
then present the advices and, finally, we show how the ordering template, as well
as an other example of template corresponding to the signature mismatch, are
applied to perform adaptation.

Ordering Template

Query Generic Adaptation Advice

query(<operation>,<sequence>) OrderingPart1() {
executes before receive Receive msgObp

i ;

when Obp
j = <operation> AND Si = <sequence> Assign msgOtmp

i ←− msgObp
i ; }

query(<operation>,<sequence>) OrderingPart2() {
executes before receive Assign msgObp

i ←− msgOtmp
i ;

when Obp
i = <operation> AND Sj = <sequence> Reply msgObp

i ; }

Fig. 2. Template corresponding to the ordering mismatch

3.1 Joinpoints

The key part in the aspect-oriented approach to adaptation lies in understanding
the requirements for the joinpoint query language. To this end, we first observe
that the need of adaptation advice is determined not only by the BPEL code, but
also by the actual messages received from the client, and in general by runtime
service execution data. For instance, the ordering mismatch (b) of Figure 1 only
happens when the interaction path follows sequence S

′
2. In this situation, it is

the client choice of using one particular interaction pattern among the possible
ones (i.e. sending SubmitSurvey after sending the login message) that triggers
the adaptation need.

In general, aspect oriented programming can be done using various approaches
for query language. A first approach consists in tailoring the query language for
the identification, within the BPEL code, of locations where advices should be in-
serted. This limits the query expressiveness to conditions on the BPEL code only.
As observed above, adaptation advice execution is also conditionedby runtime con-
text, i.e. by how the service is actually used by a client or how it executes. Using
a query language that focuses on the identification of code location would force us

20 W. Kongdenfha et al.

to include, as part of the advice, some code to evaluate those runtime conditions.
A second approach consists in directly expressing, in the query language, not only
code location but also runtime conditions. This approach has been preferred since
it groups together all advice execution conditions in the query and frees the advice
code from any runtime condition evaluations. The net result is a more readable
code and advices that are more generic.

Note that we are discussing here the query language syntax, not the actual
deployment of the solution. Choosing a query language that incorporates run-
time conditions still allows for aspect weaving done either at compile-time or
at runtime. At compile-time, a new BPEL code would be generated with ad-
vices weaved preceded by runtime conditions. In a runtime deployment model,
a specially modified query engine evaluates execution conditions based on the
execution context it maintains, leaving the original code unmodified. While both
deployment models are viable, the first one (compile-time) imposes to incorpo-
rate in the BPEL code some additional logic, not part of advices, that is needed
to maintain execution context informations (e.g. the interaction pattern used by
the client). In this paper, we therefore chose the second (runtime) deployment
model which, in addition to its greater simplicity, also allows to dynamically
plug and unplug adaptation aspects. The special runtime environment needed
for this deployment model is presented in section 4.

Intuitively, we expect the query language to be able to perform i) identification
of operations with (or without) a certain signature (this is to handle interface-
level mismatches), and ii) identification of paths that are or are not present in
a protocol, that is the query language must be able to discriminate between the
various execution paths that lead to or follow this activity (this is to handle
protocol-level mismatches). Due to space limitations we only present here the
intuition rather than the detailed analysis which is based on the mismatch types
discussed earlier. In both cases, what is done is the identification of a BPEL ac-
tivity where adaptation is needed, e.g., the activity where a signature mismatch
occurs, or the first activity of a sequence that does not have any correspondence
at the protocol level in the client. In addition, we need the language to be able
to define the location of the joinpoint, i.e. whether the advice is to be performed
before, after or around (i.e. in place of) the BPEL activity.

In addition, the query needs to be able to handle runtime conditions, and to
this end it can take parameters that are matched against execution context at
the time of query evaluation. Parameters are given by the user and correspond
to BPEL construct or operations sequences. For example, in the first query of
Figure 2, parameters corresponding to the ordering mismatch above would be
<operation>=makePayment and <sequence>=S

′
2. This query will be evaluated

by the runtime environment before each receive activity, as indicated by the
executes statement, and the two variables Obp

j and Si are valued according to
the current operation and the sequence of operations that lead to the receive
activity under consideration.

Figure 3 presents, in a semi-formal way, the syntax for a query specification
language that satisfies the above requirements. This query language shares some

An Aspect-Oriented Framework for Service Adaptation 21

common characteristics with query languages that operate at the code level such
as BPQL[2]. The main differences are that i) conditions on BP executions can
be expressed and ii) the language also incorporates the location of the advice
relative to the joinpoint (i.e. the before, after or around keywords). As explained
above, those modifications are needed to achieve a self contained query language
able to express all the conditions for advice execution. Examples of queries are
given in Figure 2 and in Figure 5.

<query> ::= query([<param>[,<param>]*])

executes <location> <activity>

when <condition>

<param> ::= id[;id]*

<location> ::= before|after |around

<activity> ::= receive|reply|invoke

<condition> ::= <pred>[AND<pred>]

<pred> ::= <context object>=<param> |<context object>!=<param>

<context object> ::= partnerLink |portType|operation|inputParameter

|outputParameter |type|executionPath

Fig. 3. Semi-formal syntax for query language

Finally, we observe that mismatches of different types may occur at the same
point in a process. In this case, many queries may need to be evaluated. We
have prioritized the query evaluation based on the mismatch types. For exam-
ple, signature mismatches need to be addressed before a message is stored and
forwarded to the BP by an ordering template.

3.2 Advices

An advice corresponds to the code that is executed when its associated query
conditions are satisfied. We call this code generic since it requires parameters
that are specific to an adaptation situation. We choose BPEL as a language
to express template advices for consistency with the original BPEL service im-
plementation, although any other languages commonly used to implement web
services could be a choice. Moreover, the activities required for adapting business
processes, such as receiving messages, storing messages, transforming message
data, and invoking service operations, are very well modeled by BPEL.

As an example, consider the ordering template (Figure 2). Figure 4 presents
how this template behaves at runtime: upon receiving a message, the runtime
environment triggers the execution of the OrderingPart1 if this message is not
desired at this stage of the BP execution, i.e. if message selectFreeItemIn is
received. When executed, the OrderingPart1 advice assigns the selectFreeItemIn

into a temporary variable, i.e. freeItemTmp for later use. When the message
selectFreeItemIn is required by the BP, the orderingPart2 advice copies its value
from the freeItemTmp variable and forwards it to the BP. Note that for the sake of
clarity, we omitted the acknowledgment of the selectFreeItemIn message in this

22 W. Kongdenfha et al.

Fig. 4. Sample Usage of the Ordering Template

mismatch template. In a situation where the client requires an acknowledgment,
the adaptation logic will be more complex. We refer the reader to [3] where this
situation is discussed.

As another example, consider the template to address the signature mismatch,
given in Figure 5. It also consists of two adaptation advices: SignaturePart1
and SignaturePart2. The SignaturePart1 first intercepts an incoming message
msgOes of an operation Oes specified by the ES, then transforms the data type
typees of a message parameter into typebp required by the BP, and finally sends
the resulted message msgObp to the BP. Similar actions are specified in the
SignaturePart2 to solve mismatch for the outgoing messages of the BP.

Due to space limitations, it is not possible here to present the full set of
templates, but the general method described above can easily be applied in the
other mismatch situations.

4 Template Usage and Tool Support

The generic mismatch handling procedures encapsulated in templates allows for
i) generation of the adaptation logic, and ii) integration of the generated adapta-
tion logic into the business process. All the developer has left to do is to identify
the mismatches and instantiate their corresponding templates. For example, once
a signature mismatch has been identified between two services, the user retrieves
the corresponding template and provides parameters for the queries and advices
of SignturePart1 and SignaturePart2. Both queries of this template take a data

An Aspect-Oriented Framework for Service Adaptation 23

Signature Template

Query Generic Adaptation Advice

query(<inputType>) SignaturePart1(<Ti>) {
executes before receive Receive msgOes ;

when typebp= <inputType> Assign msgObp.inParabp.typebp

←− <Ti>(msgOes.inParaes.typees);

Reply msgObp; }
query(<outputType>) SignaturePart2(<To>) {
executes before reply Receive msgObp ;

when typebp = <outputType> Assign msgOes.outParaes.typees

←− <To>(msgObp.outParabp.typebp);

Reply msgOes; }

Fig. 5. Template corresponding to the signature mismatch

type as input and express that their corresponding advices should be executed
for each receive (resp. reply) of the BP that involves a message parameter of
that type. In addition, SignaturePart1 and Signaturepart2 advices each takes
a Transformation Function (denoted < Ti > and < To >) that is responsible
of actually transforming the data types of the message parameters. One of the
benefits of using those precise templates is that the developer’s task is limited
to the identification of the mismatch (i.e. checking the compatibility of the data
models as used in the BP and as specified by the ES) and, when those types do
not correspond, to write the mapping between them. For mapping authoring,
third party tools (e.g. Biztalk) already provide efficient schema matching func-
tionality. In our implementation, we used XQuery[4] functions to perform those
transformations, though other languages can be used.

The developer is assisted in this task by a tool that we have developed. The
tool consists of a development and runtime environment.

Development Environment. The development environment assists the de-
veloper in instantiating the adaptation templates. To this end, the user has to
provide the parameters for queries and advices. As discussed in section 3.1, the
query parameters correspond to BPEL construct identifiers (i.e. their names as
found in the BPEL source). The user has to look through the process specifi-
cation which could be large in its size. We intend to provide a query support
that allows the user to query over process specifications and give parameters
to template queries. On the other hand, advice parameters are transformation
functions that can be authored using third party softwares.

Once both the query and advice parameters are provided, the Development
Environment generates two outputs: the Aspect Definition Document and a col-
lection of adaptation advices. An example of the Aspect Definition Document
is shown below. It is an XML file that consists of a set of mismatch elements,
each specifying a template and its corresponding parameters. Used together, the
Aspect Definition Document and Adaptation Advices (template instances with

24 W. Kongdenfha et al.

their query and advice parameters) allow the Runtime Environment, discussed
in the next section, to adapt the BP in compliance with the ES.

<aspect>
<mismatch template="Signature">
<advice name="SignaturePart1" location="before" activity="receive">

<queryParameter name="inputType" value="ProductOrderInfo"/>
<adviceParameter name="Ti" value"TransformProductOrderInfo"/> </advice>

<advice name="SignaturePart2" location="before" activity="reply">
<queryParameter name="outputType" value"OrderConfirmation"/>
<adviceParameter name="To" value"TransformOrderConfirmation"/> </advice>

</mismatch> ... </aspect>

Runtime Environment. The Runtime is implemented on top of the
ActiveBPEL engine [1], and enables the dynamic weaving of adaptation ad-
vices with the business process. Similar extensions can be considered for other
types of business process implementation (e.g. J2EE). During process execution,
the runtime environment uses query information in the Aspect Definition Doc-
ument to identify if an adaptation advice needs to be executed, based on the
current execution context. If it is the case, the adaptation advice, which is also
specified in the Aspect Definition document, is loaded and executed according
to its definition. After the completion of the adaptation advice execution, Ac-
tiveBPEL continues to process the BPEL instance. Interestingly, this extension
has itself been implemented using an aspect weaved with the ActiveBPEL code
using AspectJ.

The runtime environment supports the inclusion of multiple adaptations for
the same BP. To make this possible, each adaptation aspect is associated with a
specific virtual URL. When the BP is first invoked by a client, the URL is used
to determine which adaptation aspect (i.e. which Aspect Definition document)
should be used. Hence, the same business process can be adapted to different ESs.

5 Related Work

In the software engineering area, few approaches exist for analyzing and solv-
ing software component mismatches. [9] proposes an algorithm to identify mis-
matches between different versions of architectural models and generates an edit
script to solve those mismatches. This approach can be extended to identify mis-
matches between business protocols. Several efforts recognize the importance of
protocol specification in component-based models [5,12,17]. They provide models
for component interface specifications (based on formal approaches e.g. process
algebra) and algorithms (e.g. compatibility checking) that can be used for web
service protocol specification and analysis.

In the context of web services, [13] proposed a technique called chain of
adapters, that satisfies their identified requirements, to manage different versions
of services. In our previous work [3], we argued that mismatches between service
interfaces and protocols are recurring, hence we complemented the adapter ap-
proach by providing a taxonomy of mismatches. [8] also supports this argument
and provides visual operators for adaptations. However, in our previous work,
we made no contribution on the actual implementation of the adaptation logic

An Aspect-Oriented Framework for Service Adaptation 25

and how to integrate them with the service implementation. In this paper, we
design, for each mismatch, an aspect based template that consists of a collection
of adaptation logic expressed in BPEL, and query to support weaving of the
adaptation logic with the business process.

A large amount of work has been done in the area of AOP, however they
mostly address non-functional concerns of software [10]. We focus on previous
work that applies AOP to the adaptation problem. [14] proposes an aspect ori-
ented platform to support adaptation of services according to changes in the
environment, while we focus on the adaptation of processes to be compatible
with external specifications. In addition, their focus on services implemented in
Java prompts them to identify joinpoints on methods and field accesses rather
than BPEL activities as in our framework. Work of [6,7] also supports aspect ori-
ented adaptation of BPEL processes according to changes in the environment.
They use XPath to identify pointcuts which restrict to queries on individual
process execution events. Our query on execution paths differentiate our frame-
work from this previous work. Another work that also focuses on adaptation for
compatibility is presented in [16]. They propose a framework for transforming
XML messages where pointcuts are defined on document contents using XPath.
We differ from this work in terms of the mismatch taxonomy and our focus on
business protocol mismatches.

6 Conclusion

In this paper we proposed the use of AOP for service adaptation to interface and
protocol mismatches. We have argued for adaptation as a cross-cutting concern
and for the separation of business and adaptation logic. This modularization
facilitates the maintenance of the BP when the target ES evolves since only the
adaptation logic needs to be changed. A further benefit of our framework consists
in the precise input parameters required from the user that can be built from
third party tools or supported by a graphical interface. The notion of template
also promotes reusability of adaptation logic that occurs repetitively across dif-
ferent locations in an implementation of a service. In this paper, we exemplified
the application of our framework into the first scenario discussed in the intro-
duction where adaptation needs to be performed at the level of individual web
services. The benefits become even greater when considering situations where
adaptation needs to be performed across several composite services since, in this
case, considering adaptation as a cross cutting concern becomes critical.

We have developed a proof-of-concept implementation of the proposed frame-
work. In particular, we have implemented the Runtime Environment that takes
an Aspect Definition Document and Adaptation Advices as inputs to adapt a
business process in accordance to an external specification. Our experience with
the framework has been primarily example driven. For the Development Environ-
ment, we have provided a GUI support for the instantiation of adaptation advices.

In the current framework, users have to look at the protocol definition and
the BP model to identify the mismatches and provide query parameters. When

26 W. Kongdenfha et al.

the model grows large, this task can become significant. In the future, we plan to
extend the Development Environment to offer a semi-automated identification
of mismatches and a graphical interface that allows the user to create queries
over process specifications and navigate through the results in order to identify
query parameters.

References

1. ActiveBPEL Engine 2.0. http://www.activebpel.org/.
2. C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes with

BP-QL. In VLDB’05.
3. B. Benatallah, F. Casati, D. Grigori, H.R. Motahari Nezhad, and Farouk Toumani.

Developing Adapters for Web Services Integration. In CAISE’05, pages 415–429.
4. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon. XML

Query Language (XQuery 1.0), November 2005. http://www.w3.org/TR/xquery/.
5. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-

tion. Journal of System and Software, 74(1):45–54, 2005.
6. A. Charfi and M. Mezini. Aspect-Oriented Web Service Composition with

AO4BPEL. In ECOWS’04, pages 168–182.
7. C. Courbis and A. Finkelstein. Towards Aspect Weaving Applications. In ICSE’05,

pages 69–77.
8. M. Dumas, M.Spork, and K.Wang. Adapt or Perish: Algebra and Visual Notation

for Service Interface Adaptation. In accepted to BPM’06.
9. M. Abi-Antoun et.al. Differencing and Merging of Architectural Views. Technical

report, Carnegie Mellon University, CMU-ISRI-05-128R, August 2005.
10. N. Loughran et.al. Survey of aspect-oriented middleware research. Technical report,

Lancaster University, June 2005.
11. T. Andrews et.al. Business Process Execution Language for Web Services 1.1.

Technical Report TUV-1841-2004-16, BEA, IBM, Microsoft, SAP, Siebel, 2003.
12. P. Inverardi and M. Tivoli. Deadlock-free software architectures for COM/DCOM

applications. Journal of Systems and Software, 65(3):173–183, 2003.
13. P. Kaminski, H. Muller, and M. Litoiu. A design for adaptive web service evolution.

In SEAMS’06, pages 86–92.
14. A. Nicoara and G. Alonso. Dynamic AOP with PROSE. In CAISE’05, pages

125–138.
15. Stephen A. White. Business Process Modeling Notation (BPMN 1.0), May 2004.

http://www.bpmn.org.
16. E. Wohlstadter and K. Volder. Doxpects: aspects supporting XML transformation

interfaces. In AOSD’06, pages 99–108.
17. D. Yellin and R. Strom. Protocol Specifications and Component Adaptors. ACM

TOPLAS, 19(2):292–333, 1997.

Automated Generation of BPEL Adapters�

Antonio Brogi and Razvan Popescu

Computer Science Department, University of Pisa, Italy

Abstract. The heterogeneous, dynamic, distributed, and evolving na-
ture of Web services calls for adaptation techniques to overcome vari-
ous types of mismatches that may occur among services developed by
different parties. In this paper we present a methodology for the auto-
mated generation of (service) adapters capable of solving behavioural
mismatches among BPEL processes. The adaptation process, given two
communicating BPEL processes whose interaction may lock, builds (if
possible) a BPEL process that allows the two processes to successfully in-
teroperate. A key ingredient of the adaptation methodology is the trans-
formation of BPEL processes into YAWL workflows.

1 Introduction

BPEL [2] is currently used to (manually) compose WSDL [15] services into com-
plex business applications. A main problem to achieve automated service compo-
sition is that the composite application may lock due to interaction mismatches
among the participant services. One possibility to overcome such mismatches is
a disciplined use of adapters, as services “in-the-middle” capable of mediating
the information exchanged by the involved parties.

Service adaptation may be tackled at various levels of the Web services stack
[10]. For example, signature-based adaptation [9,12] addresses issues due to syn-
tactic differences among the exchanged messages (e.g., different orderings of the
message parts), ontology-based adaptation [8,11] mediates semantic mismatches
among the exchanged messages (e.g., messages belonging to different ontology
concepts), and behaviour-based adaptation [1,3] handles the integration of ser-
vices into a lock-free aggregate due to mismatches in their communicating pro-
tocols (e.g., different orderings of message exchanges). However, Web service
adaptation is in its early stages and current approaches feature only partial
solutions to the issues of adaptation.

Our long term objective is to develop a general methodology for service adapta-
tion capable of suitably overcoming signature, ontology andbehaviourmismatches
in view of business application integrationwithin and across organisational bound-
aries. In this paper we present a methodology for the automated generation of (ser-
vice) adapters capable of solving behavioural mismatches among BPEL processes.
The adaptation process, given two communicating BPEL processes whose interac-
tion may lock, builds (if possible) a BPEL process that allows the two processes to
� This work has been partially supported by the SMEPP project (EU-FP6-IST

0333563) and by the F.I.R.B. project TOCAI.IT.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 27–39, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

28 A. Brogi and R. Popescu

successfully interoperate. Three strong motivations for adapting services are the
need to develop adapters for service composition, for ensuring backwards compat-
ibility of new service versions, as well as the need to develop adapters for each class
of clients a service may have. A key ingredient of the adaptation methodology is
the use of service contracts [6] including WSDL signatures and YAWL behaviour,
where YAWL [13] is used as intermediate (formal) language to provide a (partial)
description of the service behaviour. Immediate advantages of using such an ab-
stract language are the possibility of adapting services written in different service
description languages, multiple deployment of the adapter as a real-world service,
as well as developing formal analyses and transformations independently of the
different languages used by providers to describe the behaviour of their services.
Moreover, integration with the YAWL-based service customisation [5] and aggre-
gation of Web services [4,6] becomes straightforward.

Regrettably, space limitations do not allow us to introduce BPEL and YAWL.
Detailed descriptions of the two languages are to be found in [2] and [13], re-
spectively.

2 Motivating Example

Consider the following example consisting of two interacting BPEL processes:
Command Centre (CC) and Mars Explorer (ME). The former provides a Web
service interface for the assignment of exploration tasks. The latter is a Web
service interface to the robot performing the tasks. Hereafter we present a sim-
plification of the BPEL processes (e.g., in order to express the message exchanges
we simply use service names instead of partnerLinks and portTypes). Although
fairly simple, the example illustrates various interactions among services. On
the one hand, CC communicates with its client, as well as with the ME service.
On the other hand, ME interacts with CC (viz., its client), as well as with the
Logger and Explorer services.

<process name=“CommandCentre”><sequence>
<receive op=“ExecTask” from Client var=“taskInfo” createInst=“yes”/>
<invoke op=“Login” of MarsExplorer var=“loginInfo”/>
<assign><copy> from=“/taskInfo/coords” to=“coords”></copy></assign>
<invoke op=“SetCoords” of MarsExplorer var=“coords”/>
<assign><copy> from=“/taskInfo/job” to=“jobDetails”></copy></assign>
<invoke op=“SetJob” of MarsExplorer var=“jobDetails”/>
<pick>

<onMsg op=“SubmitRep” from MarsExplorer var=“report”><sequence>
<receive op=“JobID” from MarsExplorer var=“id”/>
<invoke op=“Logout” of MarsExplorer/>
<reply op=“ExecTask” of Client var=“report”/></sequence></onMsg>

<onMsg op=“SubmitErr” from MarsExplorer var=“error”><sequence>
<invoke op=“Logout” of MarsExplorer/>
<assign><copy> from=“error” to=“report”></copy></assign>
<reply op=“ExecTask” of Client var=“report” faultName=“Task Error”/>

</sequence></onMsg></pick></sequence></process>

The CC service1 first receives the task information from its client. It then logs
in with the ME, to which it forwards the location and the job details. It waits
1 We use “process” and “service” interchangeably to denote BPEL processes.

Automated Generation of BPEL Adapters 29

next either a report or an error message from the ME. In the former case, it first
receives the job id from the ME, then it closes the connection with the ME, and
finally, it forwards the report to the client. In the latter case, it first logs out
from the ME, and then it replies to the client with the error message.

<process name=“MarsExplorer”><sequence>
<receive op=“Login” from CommandCentre var=“loginInfo” createInst=“yes”/>
<invoke op=“JobID” of CommandCentre var=“id”/>
<receive op=“SetJob” from CommandCentre var=“jobDetails”/>
<receive op=“SetCoords” from CommandCentre var=“coords”/>
<invoke op=“ValidateLocation” of LoggerService inVar=“coords” outVar=“rep1”/>
<invoke op=“Explore” of ExplorerService inVar=“jobDetails” outVar=“rep2”/>
<assign><copy> from=“concat(rep1,rep2)” to=“report”></copy></assign>
<invoke op=“SubmitRep” of CommandCentre var=“report”/>
<receive op=“Logout” from CommandCentre/></sequence>

<faultHandlers>
<catch faultName=“Task Error” faultVar=“error”><sequence>

<invoke op=“SubmitErr” of CommandCentre var=“error”/>
<receive op=“Logout” from CommandCentre/>

</sequence></catch></faultHandlers></process>

The ME service starts by waiting for the CC to log in, to which it sends im-
mediately the job’s id. It receives next from the CC the job description and the
location of the exploration site. In order to carry out the task, the ME first vali-
dates the coordinates (e.g., by checking previous exploration logs) and moves the
robot to the respective location by (synchronously) invoking the Logger Service
(LS), and then, it delegates the Explorer Service (ES) for the actual execution of
the job (again, through a synchronous invocation). If the latter two invocations
return successfully, the ME generates the final report, sends it to the CC, and
waits for the CC to log out. Note that, although not represented in the exam-
ple, the invocations to the LS and to the ES may return a “Task Error” fault.
(This information has to be specified in the WSDL file(s) defining the respective
operations). In that case, the ME service catches the fault, forwards to the CC
the error, and finally, it waits for the CC to close the connection.

It is easy to see that the two services, CC and ME, cannot successfully
interact because of mismatches between their behaviour. Immediately after the
login information exchange, while the CC sends the location of the exploration
site to the ME, the ME sends the job id to the CC. Furthermore, the CC first
sends the location, and then the details of the job to the ME, which expects
them in the reversed order. A further mismatch is the fact that, while the CC
expects the job id only when the exploration is successful, the ME always sends
it, and moreover, at a different moment.

The following Section 3 shows how we automatically generate BPEL adapters
to cope with such behabioural mismatches.

3 Adaptation Methodology

The adaptation methodology inputs two communicating BPEL processes, C
and S, whose interaction may lock, and it builds (if possible) a BPEL process
adapter A, which allows the two processes to successfully interoperate. The four
adaptation phases are: (1.) Service Translation. This phase is in charge of

30 A. Brogi and R. Popescu

translating the BPEL descriptions of C and S into corresponding YAWL work-
flows [7]. (2.) Adapter Generation. This phase builds the YAWL workflow of
A from the workflows of C and S. It first generates the Service Execution Trees
(SETs) of C with respect to S (SET (CS)), as well as of S with respect to C
(SET (SC)), followed by the generation of the SETs of their duals (SET (CS)
and SET (SC)). Informally, when a service X outputs a message m, a dual of
X is a service that inputs m, and vice-versa. Next, SET (A) is obtained by
suitably merging SET (CS) and SET (SC). Finally, the YAWL workflow of A
is derived from SET (A). (3.) Lock Analysis. This phase verifies whether the
YAWL-based aggregation [4,6] of C, A, and S locks. If it does, we consider that
the adaptation has failed. Otherwise, we consider that the adaptation is suc-
cessful. (4.) Adapter Deployment. If the adaptation is successful, this phase
deploys the YAWL workflow of A as a BPEL process, which can be used as a
service-in-the-middle between C and S.

3.1 Service Translation

In [7] we present a methodology for translating BPEL processes into YAWL
workflows. Its main strengths are that (1) it defines YAWL patterns for all
BPEL activities, (2) it provides a compositional approach to construct structured
patterns from suitably interconnecting other patterns, and (3) it handles events,
faults and (explicit) compensation.

On the one hand, the pattern of each BPEL basic activity (with the excep-
tion of assign and compensate) is obtained by suitably instantiating the Basic
Pattern Template (BPT). The BPT is a template of YAWL tasks, which serves
both for identifying the translated activity (through an Activity Specific Task,
or AST for short), as well as the control-logic of executing or skipping the activ-
ity. On the other hand, the pattern of each BPEL structured activity (together
with assign, compensate, and process) is obtained from the Structured Pattern
Template (SPT) template. The SPT consists of a Begin (logically marking the
initiation of the structured activity) and of an End pattern (logically marking
the termination of the structured activity), as well as a pattern template (BPT
or SPT) for each child activity. Furthermore, the Scope and Process patterns add
SPTs for handling exceptional behaviour. Each pattern inputs and outputs at
most three types of control-flow links, called green, blue, and red lines. The green
lines serve for translating the structural dependencies among BPEL activities.
The blue lines are used for translating the BPEL synchronisation links, and the
red lines are necessary for implementing the fault handling mechanism. As space
limitations do not allow us to go into further details, please see [7] for more
(in-depth) details on the BPEL2YAWL translator.

The YAWL workflows of the CC and ME services of our example can be seen
in Figure 1.2 In the workflow of ME, Begin(Process) and End(Process), logically

2 The two workflows are represented in a slightly simplified form w.r.t. the description
given in [7] (e.g., the default faultHandlers of the process, as well as redundant green
gates are not represented, the assign is represented in a compact form, etc.).

Automated Generation of BPEL Adapters 31

ME_YAWL

CC_YAWL LEGEND

Begin
(Proc.)

Begin
(Seq.)

receive
ExecTask

invoke
Login

assign
(coords)

assign
(jobDetails)

invoke
SetCoords

invoke
SetJob

Begin
(Pick)

Begin
(Seq.)

receive
JobId

invoke
Logout (1)

reply
ExecTask (1)

End
(Seq.)

Begin
(Seq.)

invoke
Logout (2)

assign
(report)

reply
ExecTask (2)

End
(Seq.)

End
(Pick)

End
(Seq.)

End
(Proc.)

Init
onMsg SubmitRep

Wait 4 branch
decisiononMsg SubmitErr

Begin(Pick)

Empty-join/split

XOR-join / AND-split

AND-join / XOR-split

input cond.output cond.

Atomic
Task

OR-join / OR-split

cond.

Tasks and Conditions

Composite
Task

Begin
(Seq.)

receive
Login

invoke
JobId

receive
SetCoords

receive
SetJob

assign
(report)

invoke
SubmitRep.

receive
Logout (1)

End
(Seq.)

End
(Proc.)

Begin
(FaultHandler)

Red Gate 1

Red Gate 2

Begin
(Proc.)

Begin
(Seq.)

invoke
SubmitErr

receive
Logout (2)

End
(FaultHandler)

Invoke
ValidateLoc.

invoke
Explore

!fault

!fa
ul

t

fault

green
line
red
line

Control-Flow

Joins and Splits

Fig. 1. YAWL workflows corresponding to the CC and ME BPEL processes

mark the initiation and the termination, respectively, of the BPEL process. The
process activity, a sequence leads to generating the Begin(Sequence) as well as
the End(Sequence) tasks. The first activity in the sequence is a receive, which
gives the Receive task. Furthermore, the rest of the activities are translated
correspondingly. (The numbers inside some of the task labels are used for dis-
ambiguation purposes only.) Note however the translation of the BPEL pick.
The Begin(Pick) task contains the branch selection logic (basically a deferred
choice construct [13]), and it outputs two tokens3. One leads to executing the
chosen branch, while the second leads to skipping the other branch (so as to
achieve the dead-path-elimination).

The workflow of CC is built in a similar manner. However, the composite tasks
representing the invoke ValidateLocation and invoke Explore activities output
either green tokens, if the invocations succeed, or red tokens, if the invocations
fail (i.e., faults are being raised). In the former case, the execution of the workflow
continues normally, and the green output of End(Sequence) leads to skipping
the tasks inside the Begin(FaultHandler) → End(FaultHandler) zone (so as to
achieve the dead-path-elimination). In the latter case, the execution of the faulty
invocation is (immediately) followed by the execution of the tasks in the fault
handling zone.

3.2 Adapter Generation

The Adapter Generation phase consists of the four steps discussed hereafter.

Service Execution Trees. This step automatically generates the Service Ex-
ecution Trees (SETs) of the two services to be adapted. The SET of a BPEL
process X is a tree describing all the possible scenarios of executing the basic
3 The semantics of executing YAWL workflows is quite similar to executing PNs.

32 A. Brogi and R. Popescu

activities (or activities, for short) of X . Informally, the root of the SET is given by
the activity (or activities) that can be executed first, while the leaves correspond
to activities executed last. Each intermediary node represents the execution of
one or more activities. A node consisting of more than one activity denotes a
concurrent execution of the respective activities. Given a node n, child nodes
of n contain (distinct sets of) activities that can be executed immediately after
executing the activities of n. Hence, one may think of each path in the tree as
a service execution trace. We generate the SET of a BPEL process X through
a reachability analysis [4] of its corresponding YAWL workflow obtained during
the Service Translation phase. Note that the BPEL2YAWL translator [7] allows
us to cope – when adapting – both with synchronisation links and with the ex-
ceptional behaviour of BPEL. In order to cope with loops in the process, our
reachability analysis uses the modified reachability trees defined in [14]. Further-
more, each node of the SET can be labelled with a condition constraining its
execution. Such conditions are due to guards employed by switch activities and
synchronisation links. In [4,5] we show how to generate the logical expression
constraining the fulfilment of a service execution trace. However, in order to
ease the description of the methodology, and due to space limitations, we do not
detail this issue here. The SET one obtains for a service X contains all message
exchanges of X with other services. We call this the full-form of the SET, and
we denote it by SET (X). SET (ME) is given in Figure 2(a). For example, the
execution of the (synchronous) invoke ValidateLocation can be followed either
by the invoke Explore, or by the invoke SubmitErr. The former is due to a suc-
cessful execution of the invoke ValidateLocation, while the latter is executed in
the case of a fault being received by the invoke ValidateLocation. Furthermore,
the successful termination of the sequence activity of the BPEL process leads to
employing the dead-path-elimination inside the pattern implementing the fault-
Handler of the BPEL process [7]. This is indicated in SET (ME) by the dark
coloured invoke SubmitErr and rcv Logout nodes.

From (the full-form of) SET (X) we derive next the (compact-form of) SET
of X with respect to another service Y , with which X interacts. We denote it by
SET (XY). Informally, from the originalSET (X)we keep only message exchanges
between X and Y . First, all message exchanges (viz., receive/reply/invoke) of X
with services other than Y , as well as all other basic activities (e.g., assign), and
all skipped activities are replaced by empty activities. We denote the resulting
SET as SET (X∗

Y). For example, the invoke ValidateLocation and the invoke Ex-
plore, which ME performs on the Logger Service and Explorer Service, respec-
tively, are set to empty when computing SET (MECC). (SET (ME∗

CC) is given
in Figure 2(b).) Second, each empty node in SET (X∗

Y) (with the exception of the
root) is removed from the tree, and its sub-trees (if any) are merged with its parent
nodes. We denote the resulting tree by SET (XY). Note that the merge process ap-
plied at a node n of SET (X∗

Y) also removes duplicate subtrees of n. For instance,
by removing the three empty nodes of SET (ME∗

CC), we get two identical subtrees
(invoke SubmitErr → receive Logout) at the receive SetCoords node. The merge at
receive SetCoords will then remove one duplicate. SET (MECC) is represented in

Automated Generation of BPEL Adapters 33

SET(MECC)SET(ME*CC) SET(CCME)SET(ME)rcv Login

inv JobId

rcv SetJob

rcv SetCoords.

inv ValidateLoc.

inv SubmitErr. inv Explore.

rcv Logout (2) inv SubmitErr.

rcv Logout (2)

assign(report)

inv SubmitRep.

rcv Logout (1)

inv SubmitErr.

rcv Logout

rcv Login

inv JobId

rcv SetJob

rcv SetCoords.

empty

inv SubmitErr. empty

rcv Logout (2) inv SubmitErr.

rcv Logout (2)

empty

inv SubmitRep.

rcv Logout (1)

inv SubmitErr.

rcv Logout

rcv Login

inv JobId

rcv SetJob

rcv SetCoords.

inv SubmitErr.

rcv Logout (2)

inv SubmitRep.

rcv Logout (1)

LEGEND

activity
executed

activity
skipped

(a) (b)

(c)

inv Login

inv SetCoords.

inv SetJob

rcv SubmitRep. rcv SubmitErr.

rcv JobId

inv Logout (1)

inv Logout (2)

(d)

activity
executed

activity
skipped

Fig. 2. (a) SET (ME), (b) SET (ME∗
CC), (c) SET (MECC), and (d) SET (CCME)

Figure 2(c). Due to space limitations, we present only the SET (CCME) – which
is built analogously – in Figure 2(d).

Dual SETs. This step generates for each service X (to be adapted), the SET
of a dual of X with respect to another service Y . Basically, when X receives
a message m from Y , a dual of X with respect to Y (denoted by SET (XY))
acts somewhat “as Y should” and sends a message m to X , and vice-versa.
One obtains SET (XY) from SET (XY) by replacing asynchronous invokes with
receives (and vice-versa), and synchronous invokes with pairs receive → reply
(and vice-versa). SET (MECC) and SET (CCME) are depicted in Figure 3(a)
and (b), respectively.

Adapter SET. The SET of an adapter A (SET (A)) mediating the interac-
tion of two services, C and S, is obtained by suitably merging SET (CS) with
SET (SC). This process consists of two steps, as follows.

During the first step, we match the activities of SET (CS) with the activities
of SET (SC) with the following two rules: (1) An asynchronous invoke Op of
SET (CS) matches a receive Op of SET (SC), and vice-versa, and (2) a synchro-
nous invoke Op of SET (CS) matches a pair receive Op → reply Op of SET (SC),
and vice-versa. Then, we express each match as a data-flow dependency (or de-
pendency, for short), which emerges at the receive and targets the invoke, in
the case of asynchronous message exchanges, or as a pair of dependencies, one
emerging at the receive and targeting the invoke, and another one emerging at
the invoke and targeting the reply, in the case of synchronous message exchanges.
We call an activity that is target of at least one dependency as constrained. Oth-
erwise, we say that the activity is unconstrained (with respect to the data-flow
dependencies between the two SETs). For example, invoke Login and receive
JobId of SET (MECC) match receive Login and invoke JobId, respectively, of
SET (CCME). (See Figure 3(a) and (b).) Informally, a dependency indicates
that the adapter has to wait first a message from one of the two services, and
then (possibly at a later moment) it forwards it to the other service. In other

34 A. Brogi and R. Popescu

Merge Example

SET(A)

(a) (b)
(1) (2) (3) (4)

(1) + (3) => SUCCESS (5)

(1) + (4) => ERROR

(2) + (3) => ERROR

(2) + (4) => SUCCESS (6)

rcv Logininv Login
rcv Login

inv Login

rcv Login

inv Login

(c)

SET(CCME)rcv Login

rcv SetCoords.

rcv SetJob

inv SubmitRep. inv SubmitErr.

inv JobId

rcv Logout (1)

rcv Logout (2)

SET(MECC)inv Login

rcv JobId

inv SetJob

inv SetCoords.

rcv SubmitErr.

inv Logout (2)

rcv SubmitRep.

inv Logout (1)

LEGEND

data-flow
dependency

activities executed in parallel

(5)

(d)

(6)

rcv Login

inv Login

 andrcv SetCoords. rcv JobId

rcv SetJob

inv SetJob

inv SetCoords.

inv SubmitRep. inv SubmitErr.

rcv SubmitErr.rcv SubmitRep.

inv JobId

rcv Logout (1)

inv Logout (1)

rcv Logout (2)

inv Logout (1)

Fig. 3. (a) SET (MECC), (b) SET (CCME), (c) Generating SET (A) nodes, (d)
SET (A)

words, a dependency from X to Y says that the adapter has to execute X before
executing Y . Note that the interpretation in the case of multiple dependencies
emerging from different activities Xk and targeting an activity Y , is that for the
execution of Y it suffices to execute only one activity Xk. This is the case for
invoke Logout (1) and invoke Logout (2) of SET (MECC).

As previously mentioned, each path in SET (X) is an execution trace of X .
During the second step, we compute the merge of all possible pairs of traces (c, s),
where c =< c1, c2, . . . , cn > is a trace of SET (CS), and s =< s1, s2, . . . , sm > is
a trace of SET (SC). Such a merge can lead either to a success, or to a failure. In
the former case, the merge of c and s gives a (successful) trace a of the adapter A
(and consequently a path in SET (A)). At each step, the merge process compares
nodes ci and sj, by starting from the roots of the two traces, and it produces a
node ak. In terms of BPEL activities, one may think of the node ak as a sequence
containing a flow. The merge algorithm basically adds activities of the two nodes
(ci and sj) either inside the flow, or inside the sequence yet following the flow.
For simplicity, we informally describe hereafter the algorithm of merging two
nodes containing each one activity only, and each being the target of at most
one dependency. (The general case of merging nodes with multiple activities
and multiple constraints is analogous.) If ci is unconstrained, then add ci to the
flow inside ak (e.g., merging receive JobId and receive SetCoords). Please note
that in the case of an unconstrained invoke activity, the merge process (of the
two traces) returns with a failure. We do so in order to avoid the generation
of (arbitrary) messages by the adapter. Otherwise, if ci is constrained by sJ

such that J < j (i.e., from the point of view of executing the trace s, activity
of sJ has already been executed), then add ci to the flow (e.g., merging invoke
SetCoords and invoke SubmitRep). Otherwise, if ci is constrained by sJ such that
J = j (i.e., activity of sJ is ready to be executed), then add ci to the sequence,
following the flow (e.g., merging invoke Login and receive Login). Otherwise, if
ci is constrained by sJ such that j < J (i.e., activity of sJ is not executable yet),

Automated Generation of BPEL Adapters 35

then we say that the trace c is “stalled” (e.g., assume merging invoke SetJob and
receive SetCoords). Next, the algorithm does the same for sj . For example, one
may see in Figure 3(c) the result of merging the roots of MECC , and CCME .
(The elimination of the flow is due to the fact that it contains one activity
only.) If both traces are stalled, then we have a lock between the two traces, and
hence a failure in merging the two traces. Otherwise, the algorithm continues by
comparing the node ci (if c is stalled) or ci+1 (if c is not stalled) with the node
sj (if s is stalled) or sj+1 (if s is not stalled). If the merge has added to the trace
a all nodes of one of the two traces (c/s), it simply appends at the end of a the
remaining sequence of nodes of the other trace (s/c). If all nodes of both c and
s have been added to a, then we have a success, and a represents a (successful)
trace of the adapter A.

Next, we derive SET (A) by merging all successful traces a of A. If no such
successful traces exist, then the algorithm generating the adapter fails, as the
mismatches between the two interacting processes cannot be solved. For example,
if the root of SET (CS) consists of an invoke Op1 and if the root of SET (SC)
consists of another invoke Op2, then we have a deadlock as each service is waiting
to receive a message from the other. Consider a set {a1, a2, . . . , ap} of successful
adapter traces. The merge algorithm, in this case, starts by considering SET (A)
to be a1. Then, for all nodes ak

i of the other traces ak, it checks whether ak
i

is contained in SET (A) at depth i. If so, it marks the respective position in
the tree, and it choses the next node in the sequence (i.e., ak

i+1). Otherwise, it
adds the rest of the trace ak, including the node ak

i , as a branch splitting from
the last marked node in SET (A). For our example, we get only two successful
traces of the adapter. The first one, denoted by (5) in Figure 3(d) is obtained by
merging the traces denoted by (1) and (3) of SET (MECC) and SET (CCME),
respectively, while the second one, denoted by (6) is obtained by merging traces
denoted by (2) and (4). These two adapter traces are then merged into the
adapter given in Figure 3(d).

Adapter Workflow. If the adapter has at least one successful trace, then the
adaptation process generates next the YAWL workflow of the adapter A from
SET (A) as described hereafter. Initially, it generates the Begin(Process) and the
Begin(Sequence), as well as the End(Sequence) and the End(Process) patterns
[7], which logically mark the initiation of the business process and of its activity,
as well as their termination, respectively. The former two, as well as the last two
are to be linked in a sequence. (See Figure 4.) Basically, generating the pattern
of a basic activity simply consists of instantiating the Basic Pattern Template
defined in [7] (e.g., setting the name, inputs, and outputs of its Activity Specific
Task), while generating the pattern of a structured one reduces to instantiating
its Begin and its End patterns, and the pattern of each child activity (, as well as
the patterns for handling the exceptional behaviour, if any). For each node n in
SET (A), starting with its root, the algorithm generates and adds to the workflow
the pattern(s) corresponding to the activity (activities) contained in n. If n
consists of one activity only, then the pattern of its (basic) activity is produced
and suitably linked in the workflow as output of the pattern corresponding to

36 A. Brogi and R. Popescu

Begin
(Proc.)

Begin
(Seq.)

invoke
Login

receive
Login

Begin
(Flow)

receive
SetCoords

receive
JobId

End
(Flow)

receive
SetJob

invoke
SetJob

invoke
SetCoords

Begin
(Pick)

Begin
(Seq.)

Begin
(Seq.)

invoke
SubmitRep.

invoke
SubmitErr

invoke
JobId

receive
Logout (2)

invoke
Logout

receive
Logout (1)

invoke
LogoutEnd

(Pick)
End

(Seq.)
End

(Proc.) End
(Seq.)

End
(Seq.)

Init
onMsg SubmitRep

Wait 4 branch
decisiononMsg SubmitErr

Begin(Pick)

Adapter for CC and ME

Fig. 4. YAWL workflow of an adapter for CC and ME

the parent node of n (or to Begin(Sequence) if n is the root). For example,
the receive Login root of SET (A) leads to a Receive pattern linked as output of
Begin(Sequence). If n consists of multiple activities, then the pattern given by the
node is a Flow, which includes the patterns of each activity in the node. Next,
if n has one child node only, the adaptation process continues with its child.
Otherwise, if n has more than one successor, then we have three possibilities: (1)
If all child nodes of n contain each one receive only, and if there are no conditions
constraining their execution4 then the resulting pattern is a Pick having the
respective receives as onMessage tasks in Begin(Pick), and for each branch is
generated a Sequence pattern. The generation process continues then on each
subtree having as root a child of n (excluding the child of n already considered as
onMessage inside the Pick). (2) If all child nodes of n are constrained by (disjoint)
conditions, then a Switch pattern is produced with the respective conditions as
guards, and for each branch of the Switch, a Sequence pattern is generated. The
algorithm continues next on each branch of the subtree with the root n. (3) In all
other cases, the adaptation process aborts, as the adapter cannot be successfully
constructed due to a non-deterministic (other than pick) behaviour. For example,
if n has two unconstrained children, one invoke Op1 and one receive Op2, then
the adapter cannot “know” whether it should wait for a message, or whether
it should send a message. The YAWL adapter one obtains for our example is
presented in Figure 4.

3.3 Lock Analysis

In [4] we show how reachability graphs (or modified reachability trees) can be
employed to check the lock-freedom of aggregations of YAWL workflows (e.g., a
non-final node of the reachability graph/tree without outgoing links corresponds
to a deadlock). Hence, through this methodology one may check whether the
aggregation [4,6] of the workflows of C, A, and S locks. If all traces of the
aggregate are lock-free, then A is a full adapter for C and S. Otherwise, if

4 We recall that such conditions are due to the guards of switch activities and syn-
chronisation links.

Automated Generation of BPEL Adapters 37

some (yet not all) of the traces of the aggregate are lock-free, then A is a partial
adapter, as there are interaction scenarios that cannot be resolved. Finally, if the
aggregate does not have lock-free traces, then we consider that the adaptation
has failed. (Although space limitations do not allow us to demonstrate it, note
that the adapter for CC and ME given in Figure 4 is a full adapter.)

3.4 Adapter Deployment

If the Lock Analysis phase has validated A as a full/partial adapter, then the
Adapter Deployment phase generates the BPEL process of the adapter A from
its YAWL workflow. The deployment process works by parsing the YAWL work-
flow with respect to the patterns defined in our BPEL2YAWL translator [7]. For
example, the Pick pattern in Figure 4 leads to the generation of a BPEL pick
with two branches guarded by onMessage SubmitRep, and onMessage SubmitErr,
where each branch activity is a sequence. Although not explicitly represented in
the figures, the YAWL patterns translating BPEL activities contain all the nec-
essary information for the inverse, YAWL2BPEL translator (e.g., partnerLink,
portType, operation, and variable attributes in the case of a receive, and so on).
The YAWL workflow of the adapter in Figure 4, leads to the following BPEL
(adapter) process:

<process name=“Adapter for CC and ME”><sequence>
<receive op=“Login” from CommandCentre var=“loginInfo”/>
<invoke op=“Login” of MarsExplorer var=“loginInfo”/>
<flow>

<receive op=“SetCoords” from CommandCentre var=“coords”/>
<receive op=“JobID” from MarsExplorer var=“id”/></flow>

<receive op=“SetJob” from CommandCentre var=“jobDetails”/>
<invoke op=“SetJob” of MarsExplorer var=“jobDetails”/>
<invoke op=“SetCoords” of MarsExplorer var=“coords”/>
<pick>

<onMsg op=“SubmitRep” from MarsExplorer var=“report”><sequence>
<invoke op=“SubmitRep” of CommandCentre var=“report”>
<invoke op=“JobID” of CommandCentre var=“id”/>
<receive op=“Logout” from CommandCentre/>
<invoke op=“Logout” of MarsExplorer/></sequence></onMsg>

<onMsg op=“SubmitErr” from MarsExplorer var=“error”><sequence>
<invoke op=“SubmitErr” of CommandCentre var=“error”>
<receive op=“Logout” from CommandCentre/>
<invoke op=“Logout” of MarsExplorer/>

</sequence></onMsg></pick></sequence></process>

4 Concluding Remarks

In this paper we have outlined a methodology for the automated generation
of (service) adapters capable of solving behavioural mismatches between BPEL
processes. Its main features are: (1) It automatically synthesises a full/partial
BPEL adapter (if possible) from two input BPEL processes, (2) it generates the
YAWL workflow of the adapter, which can be used to check properties (e.g., lock-
freedom, reachability, liveness, and so on) of the interaction with the adapted
services, as well as (3) it can be straightforward integrated with the ontology-
enriched service customisation [5] and service aggregation [4,6] approaches, as

38 A. Brogi and R. Popescu

all use service contracts with YAWL as intermediate language to represent the
service behaviour.

Web service adaptation is in its early stages and current approaches feature
only partial solutions to the issues of adaptation. Iyer et al. [9] employ XML
scripts and XSL to (manually) achieve the signature-level interoperability of
SOAP services. Syu [12] describes an OWL-S based approach to deal with only
three cases of adaptation of input parameters: permutation, modification, and
combination. Hau et al. [8] provide a framework for semantic matchmaking and
service adaptation, which deals with signature mismatches, yet not with be-
havioural ones. Ponnekanti and Fox [11] propose a framework for coping with
structural, value, encoding, and semantic incompatibilities among services. Yet,
their approach – as [8,9,12] – relies on black-box (viz., behaviour-less) views
of services. A methodology for generating service adapters to solve behavioural
mismatches was presented by Brogi et al. in [3], yet it assumes the availabil-
ity of an adapter specification to be manually generated. Benatallah et al. [1]
describe an approach for the generation of replaceability adapters based on mis-
match patterns. However, their approach cannot capture complex behavioural
mismatches (through pattern compositions), and the generation of the adapter
code relies on the designer (e.g., the provision of the template parameters).

It is worth noting that our adaptation methodology can be successfully em-
ployed to generate replaceability adapters, viz., adapters that wrap Web services
so that they become compliant with other services (e.g., wrapping new service
versions for backwards compatibility). Given two services, S and S∗, wrapping
S∗ so as to behave like S with respect to clients C can be achieved by comput-
ing SET (A) as the merge of SET (SC) and SET (S∗

C). Furthermore, behavioural
service customisation, viz., the generation of adapters that wrap services S∗ into
exposing to clients C a partial behaviour S, can be achieved again by computing
SET (A) as the merge of SET (SC) and SET (S∗

C).
Two main lines of future work are the development of adapters capable of

solving behavioural mismatches among several interacting BPEL processes, as
well as enhancing the adaptation methodology to cope with ontology mismatches
along the lines of [4,5].

References

1. B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani. Developing
Adapters for Web Services Integration. In Proc. of CAiSE, LNCS vol. 3520, pages
415–429, 2005.

2. BPEL4WS Coalition. Business Process Execution Language for Web Services v1.1.
3. A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web Service Chore-

ographies. In Proc. of WS-FM’04, ENTCS 105, pages 73–94, 2004.
4. A. Brogi and R. Popescu. Contract-based Service Aggregation. Technical Report,

University of Pisa, Sep. 2006. (http://www.di.unipi.it/~popescu/CoSA.pdf).
5. A. Brogi and R. Popescu. Service Adaptation through Trace Inspection. In Proc.

of SOBPI’05, pages 44–58, 2005.
6. A. Brogi and R. Popescu. Towards Semi-automated Workflow-Based Aggregation

of Web Services. In Proc. of ICSOC’05, LNCS vol. 3826, pages 214–227, 2005.

Automated Generation of BPEL Adapters 39

7. A. Brogi and R. Popescu. From BPEL Processes to YAWL Workflows. In Proc. of
WS-FM’06, LNCS vol. 4184, pages 107–122, 2006.

8. J. Hau, W. Lee, and S. Newhouse. The ICENI Semantic Service Adaptation
Framework. In UK e-Science All Hands Meeting, 2003. (http://www.nesc.ac.uk/
events/ahm2003/AHMCD/pdf/017.pdf).

9. A. Iyer, G. Smith, P. Roe, and J. Pobar. An Example of Web Service Adaptation to
Support B2B Integration. (http://ausweb.scu.edu.au/aw02/papers/refereed/
smith2/paper.html).

10. M. P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing. Commu-
nications of the ACM, 46(10):24–28, 2003.

11. S. R. Ponnekanti and A. Fox. Interoperability among independently evolving web
services. In Proc. of the 5th ACM Int. Conf. on Middleware, pages 331–351, 2004.

12. J.-Y. Syu. An Ontology-Based Approach to Automatic Adaptation of Web Ser-
vices. Department of Information Management National Taiwan University, 2004.
(http://www.im.ntu.edu.tw/IM/Theses/r92/R91725051.pdf) .

13. W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet Another Workflow
Language. Inf. Syst., 30(4):245–275, 2005.

14. F.-Y. Wang, Y. Gao, and M. Zhou. A Modified Reachability Tree Approach to
Analysis of Unbounded Petri Nets. IEEE Transactions on Systems, Man and
Cybernetics – Part B, 34(1):303–308, 2004.

15. WSDL Coalition. Web Service Description Language (WSDL) v1.1.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 40 – 51, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Division of Labor:
Tools for Growing and Scaling Grids

T. Freeman2, K. Keahey2,3, I. Foster1,2,3,
A. Rana4, B. Sotomoayor1, and F. Wuerthwein4

1 Department of Computer Science, University of Chicago, Chicago, IL, USA
2 Computation Institute, University of Chicago & Argonne National Lab, Chicago, IL, USA

3 Math & Computer Science Division, Argonne National Lab, Argonne, IL, USA
4 Department of Physics, University of California, San Diego, CA, USA
{foster, freeman, keahey, borja}@mcs.anl.gov,

{rana, fkw}@ucsd.edu

Abstract. To enable Grid scalability and growth, a usage model has evolved
whereby resource providers make resources available not to individual users
directly, but rather to larger units, called virtual organizations. In this paper, we
describe abstractions that allow resource providers to delegate the usage of
remote resources dynamically to virtual organizations in application-
independent ways, and present and evaluate an implementation of this
abstraction using the Xen virtual machine and Linux networking tools. We also
describe how our implementation is being used in a specific context, namely the
enforcement of resource allocations in the Edge Services Framework, currently
deployed in the Open Science Grid.

Keywords: virtualization, grid computing, resource management, distributed
computing.

1 Introduction

Over the last decade of successful Grid usage, a model has evolved whereby a number
of resources federated by a large resource provider such as Grid3 [1] (and its
successor Open Science Grid (OSG) [2]) and TeraGrid [3] make resources available
not to individual users directly but rather to larger communities, called virtual
organizations (VOs) [4]. Each VO then enables its users to use the resources
according to VO-specific policies. This interaction model allows Grids to scale—a
fundamental condition of growth—since instead of providing for the needs of each of
many thousands of users directly, a resource provider need interact only with a
smaller number of VOs.

To function correctly, this VO-based scheduling model requires the development
of tools that can ensure that the resources provided to each client (i.e., VO) are
delivered in a controlled manner, so that clients obtain the resources they need, and
one client cannot interfere with others, for example by acquiring excess resources or
damaging data. In addition, it is frequently important that individual clients be able to
deploy specialized software not supported by the resource provider. In short, the
growth and scalability of Grids requires the development of mechanisms that allow

 Division of Labor: Tools for Growing and Scaling Grids 41

for a clear separation of concerns between resource providers and the clients that
consume resources, and thus enable a division of labor [5].

We argue that to address management issues arising from this “division of labor,”
we must develop abstractions and tools that allow clients to dynamically configure,
deploy, and manage required execution environments in application-independent
ways, as well as to negotiate enforceable resource allocations for the execution of
these environments. We have previously defined the virtual workspace abstraction [6]
that meets many of these requirements. In this paper, we refine this abstraction to
address dynamic resource allocation and management issues. In so doing, we provide
a tool satisfying the separation of concerns requirements between resource provider
and a client.

More specifically, in this paper we show how a workspace implementation based
on virtual machines (VMs) can be extended to respond to negotiated resource
allocations. We also quantify via experimental studies how well such allocations can
be enforced. Finally, we report on the use of our workspace mechanisms to provide a
platform for Edge Services [7]—VO-specific infrastructure services particularly
sensitive to resource sharing—and discuss how workspaces are being used to support
Edge Services on the OSG production grid.

In summary, our contributions in this paper are as follows:

• We describe an abstraction for providing mechanisms for dynamically
negotiated resource usage as seen from the client’s perspective.

• We show an implementation of this abstraction using the Globus Toolkit
[8], the Xen virtual machine tools [9], and Linux networking tools.

• We describe how this abstraction and implementation has been used to
realize Edge Services on the Open Science Grid.

• We evaluate our abstraction and implementation experimentally.

2 Related Work

The need for abstractions and mechanisms that enable a separation of resource
provider and VO enforcement functions has been argued elsewhere [10, 11]. Our
work here focuses on the management of such resource “slots,” with a particular
focus on issues that arise when managing more than one slot attribute at a time.

Several projects have explored the of VMs in distributed computing [12-15]. In
particular, the Cluster-On-Demand (COD) [16] and VIOLIN [17] projects are relevant
to our effort as they address resource management issues arising when overlaying
virtual machines over physical resources. However, while these projects focus on
simulating coarse-grain management of large numbers of VMs, we develop fine-grain
abstractions and enforcement methods that provide detailed low-level management.
We also model virtual resources in terms of allocations directly available to the
resource user, requiring that overhead be accounted for separately. The Virtuoso
Project [18] builds a VM scheduler and their approach is complementary to our work.

The interfaces we propose are informed by the standards work at the Open Grid
Forum, specifically the work on WS-Agreement [19] and the Job Submission
Definition Language (JSDL) [20]. We focus on the implementation of such interfaces
to negotiating Grid abstractions and on demonstrating their relevance.

42 T. Freeman et al.

3 Requirements and Focus

Our argument for enabling “division of labor” between resource providers and VOs is
driven by the need to provide mechanisms for flexible and scalable behavior in the
Grid. It is impossible for a resource provider to provide every bit of configuration for
a VO, much less to arbitrate between competing demands from different VOs for
different configurations. Instead, we want to allow resource providers to focus on
providing and maintaining resources. In general, we want to enable a provider (e.g., a
resource owner) to delegate the usage of a well-constrained resource quantum to a
consumer (e.g., a VO) such that this consumer in turn can further distribute those
resources among its customers (e.g., VO users). As we have explained elsewhere [6],
this situation may involve many resource layers and employ different workspace
implementations to achieve the desired fairness and granularity of sharing.

A compelling illustration of the need for division of labor between resource
providers and VOs is provided by Edge Services, Grid middleware services that run at
a site to enable remote access to site resources. Examples of Edge Services include
job management services, storage brokers, and database caches. Edge Service
implementations must often perform multiple privileged and unprivileged actions,
such as data staging and registration, security processing, monitoring, and resource
procurement. The variety of possible implementations means that Edge Services are
often VO-specific. Different VOs upgrade them on a different schedule and may use
conflicting versions of the software.

Further, each VO works with an often large and dynamically changing pool of
users and has to mold its policies to changing objectives (e.g., research vs.
development). In addition, since all requests for site use come through Edge Services,
they easily become a bottleneck as request rates increase. Because of their variety and
complexity (combination of differently owned processes and threads, network and
disk traffic, and memory demands) it is hard for a resource provider to track, account,
and enforce resource usage and thus ensure quality of service for any particular VO.
This leads to situations where some users cannot use a site at all due to excessive
traffic from others. Last but not least, the relationship between an organization and
resource provider evolves constantly reflecting the need for potentially frequent and
dynamic change in the configuration and policy assigned to Edge Services.

Without a mechanism enabling a resource provider to effectively delegate bulk
resource usage to a VO, the provider takes on a significant burden affecting its ability
to scale – and to prevent any one VO from impacting another. In a general case, such
mechanism should provide separation along the following dimensions:

1) Environment and configuration: a VO should be able to obtain the
configuration it needs independently of the resource provider.

2) Isolation: a VO’s internal activities should not impact the resource
provider, and thus should do not need to be under the provider’s control.

3) Resource usage and accounting: a provider needs to be able to provide a
resource in a way that is independent of how the resource is consumed.

We focus here on the third concern; the other two concerns are the subject of our
ongoing research [6, 21].

 Division of Labor: Tools for Growing and Scaling Grids 43

4 Allocating Resources to Workspaces

The term Virtual Workspaces [21] a customized and isolated execution environment
that can be dynamically deployed in the Grid. This environment is implemented by a
workspace image, typically provided by the client, that contains all information
necessary for its deployment. In addition, the client provides a resource allocation
request that describes resources bound to the workspace at deployment time. The
workspace service also provides management interfaces based on the Web Services
Resource Framework (WSRF) [22], such as inspection and lifetime management.
Workspaces can be implemented by various means, such as software imaging on
physical resources as well as virtual machines. Here, we explain how the workspace
service is used to assign resources to activities contained in the workspace.

4.1 Negotiating Resource Allocations

We define a workspace’s resource allocation as those resources directly available to
the workspace. This allocation does not include additional (overhead) resources that
the resource provider requires to support the workspace’s execution.

We model a resource allocation as a ResourceAllocation element, based on the
JSDL [20] Resources element, with extensions as highlighted in Figure 1. Time is
specified as start time and duration of deployment (in practice, only current start time
is supported). Memory size is also specified as single value. CPU type is specified as
a list of architectures (e.g., x86, IA64, x86_64) and percentage pairs to accommodate
workspaces with multiple CPUs. Storage and networking are also specified as
potentially multiple resource slots with salient characteristics; for example, in the
Edge Services example, the two networking slots are used for private and public
connection, respectively. The Storage element may describe one or more partitions
in terms of size and read/write speeds. (This information may determine if partitions
need to reside in local storage or may be remote.) The networking element specifies
the incoming and outgoing bandwidth, as measured by the iperf program for a virtual
NIC. The values of duration, CPU percentage, size, read/write speed and bandwidth
can be specified as JSDL RangeValue term. Currently, only exact values (JSDL
Exact) and lower-bound open-ended ranges (JSDL LowerBoundedRange, interpreted
to mean “the assigned value or more”) are supported.

All values specified as part of ResourceAllocation can be specified as a
ranges of acceptable values in a request (e.g., 50-60% of CPU), thus allowing a client
to pose open-ended resource requests to be concretized by the workspace service on
acceptance. Feasible resource allocation ranges are published by the workspace
factory service, much like WS-Agreement agreement templates [19]. Information
about feasible ranges takes into account resource coordination; for example, the
current workspace service policy does not allow clients to specify resource allocations
that cannot be realized as in the case where not enough CPU is requested for a certain
network bandwidth.

Shaping resource assignment policy for a specific workspace has four stages: (1) a
client defines a requested resource allocation, (2) the resource allocation is assigned
based on negotiation with the resource provider, (3) the assigned resource allocation
is published, and (4) the resource allocation is potentially renegotiated. Our current

44 T. Freeman et al.

implementation uses a simple all-or-nothing negotiation strategy: a requested
resource allocation is sent as part of the Workspace Service’s create operation and is
either accepted or rejected based on resource availability. If accepted, the assigned
resource allocation (which concretizes value ranges of the requested resource
allocation) is published as a WSRF resource property of the workspace.

Renegotiation is achieved by updating the resource property values. This updating
can be performed either by sending a completely new resource property description or
by requesting the adjustment of a specific value (e.g., CPU percentage). In the latter
case, the request is interpreted as if the existing resource allocation value was sent
with the adjusted value. As with workspace creation, the result of this operation is
subject to the same all-or-nothing strategy. If the request cannot be satisfied the
workspace deployment is not disrupted; if it can, new resources are assigned.

Fig. 1. The Resource Allocation Element

A client request may specify requirements for only some of the resources: for
example, only memory and CPU. In such cases, default values for other resources are
assigned by the workspace service. These default policies are published as resource
properties by the workspace factory service. The current implementation provides
only a “best effort” policy, we are experimenting with more controllable defaults, e.g.
preventing service starvation through overbooking of memory or other qualities.

4.2 Enforcing the Resource Allocation

Our current VM-based workspace implementation deploys workspaces on a pool of
resources configured with a hypervisor, and interacts with those workspaces through a
configurable back-end. We focus in this paper on an implementation based on the
Xen hypervisor [9]. In Xen, privileged hypervisor interaction usually takes place in
domain 0, which allows a client to create and manage other virtual machines (called
user or guest domains).

The physical memory size allocated to a Xen domain is specified when the domain
is created. This memory size can be adjusted after startup using Xen’s balloon driver.
Two flavors of disk allocation are needed: obtaining storage for disk partitions that

 Division of Labor: Tools for Growing and Scaling Grids 45

form a part of a VM image, and providing extra writing space for the VM. We
address the former requirement by mounting the VM partition as a loopback device.
(A physical partition on the local disk could also be mounted, but those are already
allocated.) We address the latter requirement by allocating space from network
filesystems or by creating new, blank loopback images. For best access and write
times, both read and write partitions should be mounted from whichever site disk can
offer the best performance within the requested allocation. In order to accomplish this
goal of best performance, the workspace service keeps track of available local disk
space on various resources and uses the “size” element in partition meta-data to
schedule workspace deployment.

To enforce the CPU allocation we used the Xen Simple-Earliest Deadline First
(SEDF) [23] scheduler, which provides weighted (i.e., percentage based) CPU sharing
between domains. Weights can be specified exactly, or alternatively the scheduler can
be allowed to give a domain extra CPU cycles if they are available, in which case it
provides at least the specified weight. In practice, the latter policy results in better
overall performance and was used throughout our experiments. The assigned CPU
share as well as the policy can be changed dynamically. For CPU-intensive domains,
we found that an assignment of 5-10% to domain 0 gave a good balance.

Effective resource allocation frequently requires coordinating more than one
resource dimension. For example, when requesting a bandwidth allocation to a
workspace, we have to ensure not only that the incoming/outgoing message rate is
limited but also that the CPU share assigned to both the workspace and hypervisor
overhead is sufficient to process messages. Since domain 0 in Xen acts like a switch,
switching traffic to user domains, we have to maintain a balance between weights
allocated to domain 0 and the guest domains: while domain 0 needs to process all
incoming messages, giving it more weight at the cost of guest domains may result in
poor performance as the guest domains are unable to process traffic in a timely
fashion. In addition, while scheduling a domain more often improves the latency of
this domain (as it is able to receive messages faster), it also results in higher context
switching and thus CPU cost.

To develop rough guidelines for managing these tradeoffs, we conducted a
parameter sweep over different CPU allocations for up to eight deployed domains,
with the goal of obtaining an aggregate bandwidth to those domains within 1% of the
maximum bandwidth achievable for our hardware (described in Section 6). We found
that while CPU allocations for both the hypervisor and guest domains can vary due to
various factors, it was possible to obtain acceptable bandwidth (within 1% of
maximum for our hardware) by using bounds on those settings. Specifically, we
adopted a bound of 20% of CPU for the domain 0 setting and guest bounds dependent
on the number of guest domains. (For example, for the two domains case described in
Section 6, the aggregate bound was 20%.)

The workspace service then bases its allocation decisions on those bounds and
admits only allocations that can be supported within them. We find in our
experiments that there is often a substantial difference between actual CPU utilization
and the CPU weight assigned (typically less CPU gets used). However, weights are
important to obtain the desired bandwidth. In addition, we find that while our bounds
on CPU weights simplify resource management, they also allow further inefficiency
to burden the system. Thus, our present SEDF-based resource management strategy

46 T. Freeman et al.

for CPU allocations is approximate and sacrifices much utilization to compensate for
the relative lack of control that SEDF provides over CPU allocations for I/O intensive
operations. Work on alternative schedulers that address the SEDF shortcomings
leading to this inefficiency is underway [24, 25] and we plan to explore such
alternatives in the future.

Xen does not implement controlled bandwidth sharing itself, so we rely on Linux
network shaping tools [26] for that purpose. We again take advantage of the facts that
the network interface of each domain is connected to a virtual network interface in
domain 0 by a point-to-point link and that traffic on these virtual interfaces is handled
in domain 0 using standard Linux mechanisms for bridging, routing and rate limiting.
To implement bandwidth sharing (for both incoming and outgoing bandwidth) we
limit the rate of network traffic going to and from the respective domains using the
Hierarchical Token Bucket queuing discipline [27]. To implement this behavior, we
needed to recompile the domain 0 kernel. We developed an API to the Linux tools
that allows us to set the bandwidth rates for created domains. We also increase the
domain 0 CPU allocation by 2% to manage bandwidth splitting for user domains.

5 Case Study: Edge Services Framework

The Edge Services Framework (ESF) has been developed to decouple the tasks of (a)
configuring and managing VO service nodes and (b) providing resources, thus
allowing for division of labor between VO administrator and site administrator. ESF
achieves this decoupling by leveraging the workspace abstraction to allow a VO
administrator to configure an Edge Service image and deploy it based on need and
resource availability.

ESF consists of a workspace image library, image transport and storage
mechanisms, and the workspace service. The image library contains base images
(basic OS configuration, at present including Scientific Linux 3/4, CentOS 3/4, and
Fedora Core 4) and fully configured Edge Services images, currently including the
ATLAS DASH service [28] and CMS FroNtier [29]. Since Edge Service images can
be large in size (5 to ~10 GB), ESF uses compression and fast transport mechanisms
(GridFTP [30]) as well as high-end Storage Elements (SEs) such as dCache [31].

The role of a VO administrator is to prepare, configure, and test an ES image. The
image can then be shared within the VO, transported to deployment sites, and stored
within the local site SE, where it can be retrieved for deployment by any VO
administrator. In the current deployment, images stored on a site are further manually
configured with required IP addresses and a pre-generated credential. We are working
to automating those latter tasks as part of workspace deployment [21].

The role of a site administrator is to provision hardware resources that can be used
for Edge Services and to ensure the proper configuration and maintenance of those
hardware resources. In our testbed these tasks include configuring hardware resources
with Xen, and providing one deployment of the workspace service per site. A site
administrator also provisions storage space in a local Storage Element for storage and
retrieval of ES images.

During site operation, Edge Service workspaces are dynamically retrieved,
provisioned, and deployed by a VO administrator authorized using their VOMS

 Division of Labor: Tools for Growing and Scaling Grids 47

credentials [32]. For example, when working with ATLAS analysis jobs requiring a
database cache of a specific type, an ATLAS administrator deploys the DASH Edge
Service. On deployment, the cache initializes using remote data repositories over its
public network connection and is then available on the private network to the jobs
submitted by ATLAS users to the site.

The current ESF deployment spans both integration-level testbed sites and
production-level sites on OSG. Integration-level sites include Argonne National
Laboratory, Fermilab, University of Chicago, and UCSD. The production-level
deployment is at DISUN [33] at SDSC.

6 Experimental Evaluation

To evaluate the usefulness of our approach, we performed experiments in a
configuration comprising two VOs, VO1 and VO2. Each VO deployed an Edge
Service on the same physical node, an AMD Athlon MP 2200 (booted in single CPU
mode) with 2GB memory and a GB NIC over a 100 Mbps switch. The machine was
configured with Linux 2.6.12 and Xen 3.0. The Edge Services were managed using
our workspace service deployed on a different node than the services themselves and
receiving requests from VO clients running on separate nodes.

6.1 Managing Execution Request Throughput

We first examined to what extent running within workspaces helps implement policy-
regulated sharing between VOs. For this experiment, we modeled the work of a
Compute Element (CE) by configuring an Edge Service with the GT4.0 GRAM
service receiving non-staging requests (/bin/date) from the two VO clients. To
simulate high load on VO1, we used an additional load client that submitted to VO1 a
job performing 2 million square root operations every 10 seconds.

We considered a scenario in which one VO receives high request load in two
different settings: (1) a physical machine setting in which the CE is deployed directly
on the physical machine and used by both VOs (reflecting the situation in most
current deployments), and (2) the workspace setting in which each VO deploys the
CE in a Xen workspace, and each negotiates a resource allocation of at least 45%
CPU weight and 896 MB of memory (domain 0 is set to 10% of CPU and 256 MB).

In both the physical and workspace setting, we measured the end-to-end job
throughput of VO1 and VO2 clients. The job submission throughput was calculated
over a period starting after the CE was saturated with load to a period when the VO2
client stopped submitting. As expected, the physical scenario resulted in roughly the
same (low) request throughput for both VO clients (7.83 jobs/minute for VO1 and 8.0
jobs/minute for VO2), as the pre-existing VO1 load impacted both equally. In the
workspace scenario, all VO1 request load is confined to VM1. Thus, we see worse
throughput for VM1—4.18 jobs/minute—but observe that the request throughput for
VO2 is now unimpacted by VO1 load and increases to 22.36 jobs/minute.

To observe CE behavior more closely over time, we summed the number of
completed requests for VO1 and VO2 clients respectively during regular intervals
(every 30 seconds) and plotted this number against time. (The values shown are an
average of 5 trials and all fall within 10% of the average.) Figure 2 (left) shows the

48 T. Freeman et al.

comparison: VO2 has consistently high throughput while VO1 has low throughput
until VO2 client stops sending requests, causing VM2 to temporarily stop consuming
resources. VO1 is then able to claim a larger CPU weight and obtain more processing
power (at 600 seconds the load client ceases to submit and the throughput improves
further). Even when we varied the load coming from the load client by doubling or
tripling its operations, the VO2 request throughput was unimpacted (right side of
Figure 2) and stayed at the same level independently of the load on VO2.

Fig. 2. Request throughput for VO1 and VO2. The graph on the left compares request
throughput for VO1 and VO2 over time. The graph on the right shows that the VO2 request
throughput remains unimpacted in the presence of increasing load on the physical machine.

6.2 Managing Network Traffic

In this experiment we model a situation that might be experienced during the
operation of a Storage Element (SE), in which two VOs run services requiring heavy
network traffic. As in the previous example, running the SE inside one workspace
does not result in fair sharing. Unlike our previous example, effectively managing
such traffic requires simultaneous management of two qualities: the bandwidth leased
to each workspace assigned to the respective VOs, and the CPU share required to
support the processing of message arrival rates.

Our experimental scenario is the same as in the previous experiment. To isolate
network performance, we modeled the work of an SE with a GridFTP 4.0.1
performing memory-to-memory transfers. In our scenario both VO1 and VO2 have
each negotiated a resource allocation of 128 MB memory, 6% CPU weight and 4.1
MB/s raw bandwidth (the CPU weight is the minimum needed to process this
bandwidth as per our baseline). The workspace service allocates a weight of 22% to
domain 0; all remaining CPU share is always taken up by an additional CPU-intensive
domain to ensure enforcement.

Figure 3 shows a time trace of the behavior of the two workspaces. VO2 processes
a steady stream of requests and saturates its bandwidth from the beginning of the
trace. VO1 performs transfers of various sizes for a while and then it too begins to
saturate its bandwidth (~150 seconds of the trace). Note that neither domain achieves
the raw 4.1 MB/s bandwidth due to application (GridFTP) overhead. After about 240

 Division of Labor: Tools for Growing and Scaling Grids 49

seconds (first arrow mark on the graph), the VO1 renegotiates its allocation to request
a higher bandwidth of 8.2 MB/s requiring at least 14% of CPU (as per our baseline
transfer utility measurements). As a result the workspace service adjusts the CPU
settings (from 6 to 14) as well as bandwidth settings (from 4.1 to 8.2) on the
hypervisor node and the bandwidth for VO1 goes up. To compensate for application
overhead, the VO then further renegotiates just the CPU weight from 14 to 34 which
brings performance closer to the desired bandwidth.

Fig. 3. Isolating SE for VO1 and VO2; the arrows indicate renegotiation points

Renegotiation (Figure 3) takes about 7 seconds. Most of this time (~5 seconds) is
taken by SEDF weight adjustments, a factor that is responsible for the indentation in
the graph during negotiation time. Increasing the domain 0 allocation speeds up this
processing, at a cost of lower guarantees offered to user domains. The times taken by
bandwidth adjustment and end-to-end request processing are ~400 ms and ~300ms
(WS overhead), respectively.

7 Conclusions

Our deployment and experimental experiences lead us to conclude that workspaces
are a promising “division of labor” tool for providers and consumers. We believe that
this conclusion is especially true in situations in which the task of understanding
interdependencies among various load-causing factors is complex, and indeed
potentially impossible to manage at the application level. Load management on OSG
service nodes is an example of such a situation, due to the complex and time-varying
workloads that may be generated by different clients.

The ability to negotiate and renegotiate resource allocations is particularly
important, both to the client and the provider. This ability allows both client and
provider to react to changing load conditions and optimize their provisioning to
satisfy targets, for example by requesting more CPU to account for application
overhead in the GridFTP example. Additional flexibility can be obtained by using
migration, as demonstrated by Clark et al. [34] for an application similar to ours.

50 T. Freeman et al.

Our results indicate that it is useful to support “aggregate” resource allocations that
combine, for example, bandwidth and CPU allocations, for the reason that an
allocation of one resource (e.g., bandwidth) may be wasteful unless matched by at
another (e.g., at least a minimal CPU allocation to match a bandwidth allocation). It is
a useful aid, and potentially a useful policy, for the resource provider to publish offers
of such “bundled” allocations.

Finally, while we managed to obtain reasonable results in bandwidth-related
allocations with the SEDF scheduler, we also found that tractable allocations with this
scheduler are hard to determine for management purposes, enforce, and account for,
both in terms of hypervisor overhead and actual guest domain usage. Ongoing work
on credit-based schedulers [24, 25] may overcome some of those issues. Our
approach was to use bounds within which allocations could be supported. However,
this approach can introduce inefficiencies, which may decrease utilization for the
resource provider.

Acknowledgements

This work was supported by NSF CSR award #527448 and, in part, by the
Mathematical, Information, and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, SciDAC Program, Office of
Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

References

1. Foster, I. and others. The Grid2003 Production Grid: Principles and Practice. in HPDC
2004: IEEE Computer Science Press.

2. Open Science Grid (OSG). 2004: www.opensciencegrid.org.
3. The TeraGrid Project 2005: www.taragrid.org
4. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International Journal of Supercomputer Applications, 2001. 15(3):
p. 200-222.

5. Smith, A., The Wealth of Nations. 1776
6. Keahey, K., I. Foster, T. Freeman, and X. Zhang, Virtual Workspaces: Achieving Quality

of Service and Quality of Life in the Grid. Scientific Progamming Journal, 2005.
7. ESF: http://osg.ivdgl.org/twiki/bin/view/EdgeServices/WebHome.
8. Foster, I., Globus Toolkit version 4: Software for Service-Oriented Systems. International

Conference on Network and Parallel Computing, 2005.
9. Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar, I. Pratt, and

A. Warfield. Xen and the Art of Virtualization. in SOSP 2003
10. Foster, I., K. Keahey, C. Kesselman, E. Laure, M. Livny, S. Martin, M. Rynge, and G.

Singh, Embedding Community-Specific Resource Managers in General-Purpose Grid
Infrastructure. White Paper, 2005.

11. Bavier, A., M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe, T.
Spalink, and M. Wawrzoniak. Operating System Support for Planetary-Scale Services. in
1st Symposium on Network Systems Design and Implementation. 2004.

12. Figueiredo, R., P. Dinda, and J. Fortes. A Case for Grid Computing on Virtual Machines.
23rd International Conference on Distributed Computing Systems. 2003.

 Division of Labor: Tools for Growing and Scaling Grids 51

13. Adabala, S., V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M.
Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu, From Virtualized Resources to Virtual
Computing Grids: The In-VIGO System. Future Generation Computer Systems, 2004.

14. Xu, M., Z. Hu, W. Long, and W. Liu, Service Virtualization: Infrastructure and
Applications, The Grid: Blueprint for a New Computing Infrastructure. 2004, Morgan
Kaufmann.

15. Reed, D., I. Pratt, P. Menage, S. Early, and N. Stratford. Xenoservers: Accountable
Execution of Untrusted Programs. in 7th Workshop on Hot Topics in Operating Systems.
1999.

16. Irwin, D., J. Chase, L. Grit, A. Yunerefendi, D. Decker, and K. Yocum, Sharing
Networked Resources with Brokered Leases. 2006: in submission, available at
http://issg.cs.duke.edu/publications/sisyphus.pdf.

17. Ruth, P., J. Rhee, D. Xu, S. Kennell, and S. Goasguen. Autonomic Live Adaptation of
Virtual Computational Environments in a Multi-Domain Infrastructure. in ICAC. 2006.

18. Lin, B. and P. Dinda, VSched: Mixing Batch And Interactive Machines Using Periodic
Real-time Scheduling. Supercomputing, 2005.

19. Andrieux, A., K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S.
Tuecke, and M. Xu, Web Services Agreement Specification (WS-Agreement) 2004:
https://forge.gridforum.org/projects/graap-wg/.

20. Andrieux, A., K. Czajkowski, J. Lam, C. Smith, and M. Xu, Standard Terms for
Specifying Computational Jobs. http://www.epcc.ed.ac.uk/%7Eali/WORK/GGF/JSDL-
WG/DOCS/WS-Agreement_job_terms_for_JSDL_print.pdf, 2003.

21. Lu, W., T. Freeman, K. Keahey, and F. Siebenlist, Making your workspace secure:
establishing trust with VMs in the Grid. SC05 Posters, 2005.

22. Czajkowski, K., D. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S.
Tuecke, and W. Vambenepe, The WS-Resource Framework. 2004: www.globus.org/wsrf.

23. Xen Scheduling: http://wiki.xensource.com/xenwiki/Scheduling.
24. Gupta, D., L. Cherkasova, R. Gardner, and A. Vahadat, Enforcing Performance Isolation

Across Virtual Machines in Xen. HP-2006-77, 2006.
25. Xen CPU Scheduler w/SMP Load Balancer: http://lists.xensource.com/archives/html/xen-

devel/2006-05/msg01315.html.
26. Linux Advanced Routing and Traffic Control: http://lartc.org.
27. Devera, M., Hierarchical Token Bucket Queuing. 2005: http://luxik.cdi.cz/~devik/qos/htb/.
28. Vaniachine, A., DASH: Database Access for Secure Hyperinfrastructure: OSG document

307. http://osg-docdb.opensciencegrid.org/cgi-bin/ShowDocument?docid=307.
29. Lueking, L., FroNtier project: http://lynx.fnal.gov/ntier-wiki.
30. Allcock, W., J. Bester, J. Bresnahan, A.L. Chervenak, I. Foster, C. Kesselman, S. Meder,

V. Nefedova, D. Quesnel, and S. Tuecke. Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive Computing. in Mass Storage
Conference. 2001.

31. The dCache Project: http://www.dcache.org.
32. The Virtual Organization Management System: http://infnforge.cnaf.infn.it/projects/voms.
33. Data Intensive Sciences University Network: http://disun.org.
34. Clark, C., K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield,

Live Migration of Virtual Machines. NSDI, 2005.

DECO: Data Replication and Execution
CO-scheduling for Utility Grids

Vikas Agarwal, Gargi Dasgupta, Koustuv Dasgupta,
Amit Purohit, and Balaji Viswanathan

IBM, India Research Lab
{avikas, gdasgupt, kdasgupta, ampurohi, bviswana}@in.ibm.com

Abstract. Vendor strategies to standardize grid computing as the
IT backbone for service-oriented architectures have created business
opportunities to offer grid as a utility service for compute and data–
intensive applications. With this shift in focus, there is an emerging
need to incorporate agreements that represent the QoS expectations (e.g.
response time) of customer applications and the prices they are willing
to pay. We consider a utility model where each grid application (job)
is associated with a function, that captures the revenue accrued by the
provider on servicing it within a specified deadline. The function also
specifies the penalty incurred on failing to meet the deadline. Scheduled
execution of jobs on appropriate sites, along with timely transfer of
data closer to compute sites, collectively work towards meeting these
deadlines. To this end, we present DECO, a grid meta-scheduler that
tightly integrates the compute and data transfer times of each job.
A unique feature of DECO is that it enables differentiated QoS – by
assigning profitable jobs to more powerful sites and transferring the
datasets associated with them at a higher priority. Further, it employs
replication of popular datasets to save on transfer times. Experimental
studies demonstrate that DECO earns significantly better revenue for the
grid provider, when compared to alternative scheduling methodologies.

1 Introduction

Grid computing is a form of distributed computing in which the use of hetero-
geneous resources (computation, storage, applications and data), spread across
geographic locations and administrative domains, is optimized through virtu-
alization and collective management. Initially conceived to support compute–
intensive scientific applications and to share massive datasets, enterprises of
all sizes and shapes are slowly beginning to recognize the technology as a
foundation for management of IT resources, enabling them to better meet
business objectives. Rapid advances in Web services technology have further
provided an evolutionary path from the “stovepipe” architecture of traditional
grids to a standardized, service–oriented, enterprise class grid of the future. The
convergence of SOA and grid computing is embodied by the Global Grid Forum’s
Open Grid Services Architecture (OGSA) [1] that describes a service–oriented

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 52–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

DECO: Data Replication and Execution CO-scheduling for Utility Grids 53

grid. The specifications provide various capabilities like job execution, data
management, resource management, and security, some of which are illustrated
in Fig.1(a).

It is of little surprise that the IT infrastructure of the future is being
dubbed as the network grid, a universal computing paradigm that takes the
ubiquitous connectivity of the Internet to its next logical step–ubiquitous utility
computing. Grid providers will now store and manage customer data and run
their applications in exchange of a usage fee. Today, a number of major vendors
are advocating utility computing– for example Sun Grid, HP Utility Data Center,
and IBM Deep Computing Capacity On Demand offerings, all promise its
customers the choice and control on how to purchase and leverage IT power
for competitive advantage. What is interesting about this computing model
is its fiscal impact. With the utility grid, IT dollars and resources are not
tied up in hardware and administrative costs. Instead, the focus shifts to the
more strategic aspects of IT, such as Service Level Agreements (SLAs). These
agreements specify QoS–based pricing policies for applications requiring access to
computation referred to as compute in rest of the paper and data resources, and
enable grid customers to delineate and prioritize business deliverables. From the
provider’s point of view, SLAs provide endless possibilities for business revenue
maximization, based on differentiated quality–of–service.

1.1 Towards a Utility Framework for Grids

In a service-oriented grid, several heterogeneous cluster sites are inter-connected
by WAN routers and links. Each cluster site is associated with some compute
power and some storage space. The grid hosts customer data and provides
compute capabilities. It charges each customer application (job) for usage of
compute and storage resources. The conditions for service payments can be
captured by a utility model that guarantees a certain QoS level for the price
associated with it. Utility models have been proposed for scheduling and resource
management in computational grids [2,3].

Since the response time of an application (job) serves as a common service–
level objective for providers, we consider a revenue function illustrated in
Fig.1(b), that captures the QoS requirements in terms of the response time
expected by the job and the price it is willing to pay for it. If a job finishes within
a deadline T , then the provider earns a revenue R. Otherwise, the revenue decays
linearly at a constant rate δ. Eventually, the revenue may decay to a negative
number, indicating a penalty. The penalty may or may not be unbounded. Each
job submitted to the grid is associated with a revenue function. The revenue
functions capture a rich space of policy choices by capturing the importance of
a task (maximum revenue) as well as its urgency (decay) as separate measures.
Each job has some compute requirements in terms of CPU time, and some data
requirements, in terms of data files (objects) required for the computation. The
total response time of a job is dependent on its execution time, as well as the
time taken to transfer its data to the compute site. The execution time depends
on the nature of the job and the compute power of the site assigned to it. The

54 V. Agarwal et al.

Job Submit
Service

Job Execution
Service

Registry
Service

A
d

ve
rt

is
e

CPU Storage Network

Gri
Por t al

Data Replication
Service

Max Revenue

Decay

Penalty

Deadline

d

(a) High–level architecture of
service–oriented grids (b) Revenue function for utility grids

Fig. 1. Utility framework for grids

transfer time depends on the network connectivity and the location of the data
objects. Because of the large number and size of data objects, it is unlikely that
a site will have all the data required to execute any job. For data–intensive
jobs, the time taken to complete the data transfers to the compute sites over
WAN links, can thus be potentially significant. Hence, it is of critical importance
that data objects are placed closer to the jobs accessing them. Further, a job
needs to transfer all its data before it can execute. It is, however, possible to
overlap the transfer time of a job with the execution of other jobs that have their
data available locally. Finally, in a utility framework, the order in which the job
executions and data transfers are scheduled have implications on the completion
time of each job and, hence, the revenue earned by the provider.

Traditional grid solutions have inherently decoupled the execution of jobs from
data transfer (and placement) decisions. The Job Execution Service handles the
scheduling of a batch of jobs at different compute sites. The choice of a site
for each job depends upon factors like load on the site, availability of datasets
locally etc. Approaches for assigning job execution have been proposed in [4,5].
Multiple transfers of the same data object is avoided by creating replicas of the
object at selected sites. The Data Replication Service of the grid provides this
functionality. A number of algorithms have been proposed in the literature [6,7]
for data replication in grids. In each case, changes in data placement are
prescribed by a long–term replication process, that studies the history of accesses
to data objects. Data objects are transferred (replicated) across sites using
transfer protocols like GridFTP [8]. However, decoupling execution assignment
from data transfer (and replication) often leads to poor and in-efficient response
time for jobs. Since the finish time of jobs translates directly to dollars earned or
lost, it is very critical to consider both the execution and transfer times of each
job. To do so, job execution service needs to work in close co–ordination with the
data replication service. Asynchronous replication of historically popular objects
is no longer enough— placement decisions need to be based on the compute
locations of jobs, and vice versa. Finally, it is imperative that job and data
transfer scheduling policies incorporate service differentiation, i.e. jobs that have

DECO: Data Replication and Execution CO-scheduling for Utility Grids 55

Batch Queue

Resource
Information
Service

Replica
Location
Service

Resource
Information
Service

Replica
Location
Service

Replication Service (RS)

LSLS
D

S

LSLS
D

S

LSLS
D

S

LS
D

S
C C C

S S S S
File C

Job3

7

5 6

8

4

Job1 Job2

Input SLA requirements

Dispatch execution schedule

Execute jobs

Dispatch data transfer schedule

Transfer/Replicate
objects

Query replica locations

Query resource capabilities

Compute global schedule

File BFile A

File D

SLA Manager

2

3

1B

Input Jobs1A

Execution Service (ES)

Fig. 2. DECO Architecture

higher revenues and/or harsher penalties need to be assigned higher priorities.
This leads towards a utility–based co–scheduling framework for grids.

1.2 Contributions

We present DECO, a system for Data replication and Execution CO-scheduling
in utility grids. DECO is designed for business revenue maximization of the
grid service provider. DECO decides which job to assign to which site, which
objects to replicate at which site, when to execute each job, and finally when to
transfer (or replicate) data across the sites. A unique feature of DECO is that it
enables differentiated QoS based on the revenue functions of the jobs and their
compute/data requirements. Our main contributions include: (i) a co-scheduling
framework that tightly couples the job execution and data replication services
in a utility grid; (ii) a (meta)scheduling system that co-ordinates the placements
of jobs and data objects, and (iii) a differentiated approach for scheduling job
executions and data transfers (replications) aimed at maximizing the revenue
earned by the provider.

2 DECO Architecture

We propose a co–scheduling framework for integrating the execution and data
transfer times of compute and data–intensive applications in grids. Fig.2 gives
a detailed view of the proposed framework. We consider as input a batch of
grid jobs along with compute and data requirements, and SLA descriptions
managed by an SLA Manager. Admission controller selects and places jobs in
the Batch Queue based on business policies, current system state etc. The DECO
Controller is a single point of submission for all jobs. It computes an offline
schedule periodically (for e.g. every 24 hrs), for all unfinished jobs in the queue.
The controller works on the following assumptions: every job needs to execute

56 V. Agarwal et al.

at one cluster site; all the data objects needed by a job should be present at its
execution site; jobs are independent and have no dependencies on other jobs.

The two primary components of the controller are the Execution Service
(ES) and the Replication Service (RS). There exists a tight integration
between the functionalities of these components. The workflow of the controller
is as follows: (1) ES gathers resource availability information from a Resource
Information Service. RS gathers location information from a Replica Location
Service. (2) Depending on the utility values of jobs and the cost benefits obtained
from replication, ES in conjunction with RS, advises job execution sites and
replica creation activities of popular objects. (3) Once the decision is made on
which jobs will execute where and what data is to be placed where, the controller
uses its global view of the grid topology to compute a master schedule containing
an ordered sequence of replication, transfer and execution events across clusters.
(4) From the master schedule, DECO extracts the corresponding cluster-specific
schedule and dispatches it to each cluster site. Finally, at each cluster site, there is
a local job scheduler responsible for intra-cluster job scheduling and management
of resources and a data scheduler responsible for handling data transfers to and
from the site.

3 Utility–Based Data Replication and Execution
Co-scheduling

Assume that the time horizon can be divided into L discrete time intervals,
all not necessarily of equal length. If a job finishes in an interval within its
completion time deadline Tj, it earns a revenue of Revj , else incurs penalty at
the rate of Penj per hour. Let Z denote the net business revenue earned by all
jobs in the workload. The overall approach for maximizing Z is summarized in
two steps:

– Step 1: Weigh the reward of scheduling each job with the risk of delaying it.
Based on these weights decide on which jobs to execute in which time interval
and meet their completion time goals by (a) assigning them to appropriate
cluster sites and (b) replicating their data objects.

– Step 2: Given the entire topology of the provider’s network, determine a
time schedule of when the job executions and the data transfers (replications)
should begin/end.

3.1 Step 1: Integrated Job Assignment and Data Placement

Consider a set of M cluster sites, N data objects and K jobs. Each site i has an
associated compute capacity Ai and a storage capacity Si. Cluster sites a and b
are connected by a WAN link of available bandwidth bwab. Each object o is of
size so and is associated with a replica set Ro that specifies the clusters at which
the object is currently placed. Each job j submitted to the batch queue specifies
a compute requirement ej , and a set of data objects Fj that it will operate on.

DECO: Data Replication and Execution CO-scheduling for Utility Grids 57

WAN transfer times are assumed to be dominant over the LAN parameters.
Let βio denote 1 if the data object o is replicated at site i, and 0 otherwise. For
job j executing at cluster site i, let teij denote the job execution time, trij denote
the total transfer time of all objects in Fj that are not locally present at i, trio

denote the transfer time of the data object o to site i, and bestReplica(i,o) ∈ Ro,
denote the cluster site that holds the replica of o and is connected by the highest
bandwidth link to i. Then the total time taken to execute job j at site i, tij , is
given by

tij = teij + trij (1)

where
trij =

∑
o∈Fj

trio (2)

and
trio = (1 − βio)so/bw(i, bestReplica(i, o)) (3)

Let αijl be an indicator variable denoting 1 if job j is assigned to site i and
finishes execution in time interval l, and 0 otherwise. Let Ujl denote the utility
value of job j finishing at time l. If αijl = 1 and l ≤ Tj , then Ujl = Revj ,
else Ujl = Revj − (l − Tj) ∗ Penj . The optimal assignment of jobs to sites and
objects to sites such that Z is maximized, can be found by solving for the α and
β assignments in the following program:
Maximize

T =
M∑
i=1

K∑
j=1

L∑
l=1

αijlUjl (4)

subject to
Feasibility constraint:

M∑
i=1

L∑
l=1

αijl = 1, ∀j (5)

Compute execution constraint:

l∑
p=1

K∑
j=1

αijp(teij +
∑
o∈Fj

trio) ≤ Ail, ∀i, l (6)

The feasibility constraint ensures that each job finishes in exactly one time
interval at a site. The compute execution constraint makes sure that the number
of jobs that can complete in time l at a site is atmost Ai times l. The above
problem is Max-SNP hard[9] and hence is difficult even to approximate. To
obtain a solution we present a simplification of the above problem. We begin
with an initial placement P̂ of data objects and consider the following two sub–
problems: AssignJobs:- given the placement of objects, solve the problem for
optimal assignment of jobs to cluster sites that maximizes the earned revenue.
This reduces to solving the above problem in eqn. 4 for the α variables only (with
β equal to 0 or 1). This problem is NP-hard and we design a linear-relaxation

58 V. Agarwal et al.

based heuristic for solving it. We relax α to take real values and then round
the α values to nearest integers. AssignReplicas:- given the job assignments,
determine an optimal assignment of replicas to sites such that the replication
benefit is maximized. The benefit for replication considered here is the increase
in total business profit due to creation of a replica. Consider a replica of object
o created at site i. From among the set of jobs assigned to site i and incurring
penalties, some of them will be able to now meet their deadline. For each such
job j that was paying a penalty of Penj, the increment in revenue obtained is
Revj − Penj . Let cio denote the total increment in revenue obtained by placing
a replica of o at site i. The goal is determine additional replicas of objects such
that the increase in business revenue is maximized:
Maximize

M∑
i=1

N∑
o=1

βiocio (7)

subject to storage constraint:

N∑
o=1

βioso ≤ Si, ∀i (8)

We relax β to take real values and solve the linear program. The β values returned
by the LP are always integral and hence the solution is optimal.

The combination of steps AssignJobs and AssignReplicas returns an
approximate solution to the integrated job assignment and data placement
problem. To bring the solution closer to the optimal, we suggest an iterative
approach where the placement assignments from AssignReplicas serve as input
to step AssignJobs and the procedure is repeated for k iterations. After the
final iteration, an assignment of jobs and data objects to sites is obtained along
with the start-time dj for each job execution at cluster site i.

3.2 Step 2: Computing the Master Schedule

In this step, we derive the time to replicate objects across sites and determine a
master schedule that specifies 1) selection of source replicas from which to initiate
transfers/replications, and 2) computing a master schedule that specifies when
(and where) all data transfers and job executions occur.

Selection of source replicas and computing master schedule. As before,
we consider the time horizon can be divided into discrete time intervals, all not
necessarily of equal length. Let tio denote the time taken to transfer object o
on link i. Let xiol be 1 if transfer of object o on link i completes in the time
interval (l −1, l]. The deadlines before which each data transfer should complete
is given by do. These deadlines represent the maximum time before which the
object o needs to be present at site i, and are obtained from the start time of
jobs (dj) in job execution schedule obtained from the final iteration of Step 1.
When object o is required by multiple jobs with different start times, the earliest

DECO: Data Replication and Execution CO-scheduling for Utility Grids 59

start time (minimum dj) represents the deadline do. The problem of selecting
source replicas such that these deadlines are satisfied is then essentially finding
a feasible assignment of xiol subject to the constraints:

TotalLinks∑
i=1

L∑
l=1

xiol = 1, ∀o (9)

N∑
o=1

l∑
k=1

xioktio ≤ l, ∀i, ∀l (10)

TotalLinks∑
i=1

L∑
l=1

xioll ≤ do, ∀o (11)

Eqn. 9 makes sure that a transfer finishes in exactly one time interval on one
link; eqn. 10 ascertains that there is no more than one simultaneous transfer on a
link; eqn. 11 guarantees all transfers finish before their respective job start times.
The resulting LP is essentially the one considered by Shmoys [9] and is known
to be NP-hard. We use a rounding heuristic to solve the problem in polynomial
time based on the one outlined in [9]. The heuristic returns a selection of links
on which to schedule the transfer such that the deadlines are met. Finally, we
compute a master schedule that specifies the assignment and ordering of all job
executions and replication/data transfer activities.

4 Performance Evaluation

In this section, we evaluate the performance of the proposed two–step algorithm
and compare it with alternative heuristics. We use the GridSim toolkit with
its new Data Grid capabilities [10], to simulate a compute and data–intensive
grid environment. For evaluation, we use a network topology based on the EU
DataGrid TestBed topology with 11 sites and 23 links . Each site in the topology
is modeled as a cluster site with finite compute and storage resources. The
resource settings are obtained from a real testbed scenario outlined in [10].
To make the simulation feasible, we scaled down the compute and storage
capacities of all sites while ignoring a few sites with very low compute and
network resources. The network link bandwidths are used as specified.

Utility model: The batch of jobs is divided into three classes of Gold, Silver and
Bronze jobs depending on their response time requirements (deadlines) and the
corresponding revenue they are willing to pay. These jobs also differ in the penalty
charged for missing the deadline. Each job has a revenue function associated with
it, as described in Section 1, with unbounded penalty. The maximum revenue for a
job and its penalty rate are picked from normal distributions with mean dependent
on the class that the job belongs to. For the set of results presented here, the ratio

60 V. Agarwal et al.

-40

-20

 0

 20

 40

 60

 80

 100

 120

 100 125 150 175 200 225 250 275 300

T
ot

al
 R

ev
en

ue
 (

th
ou

sa
nd

s
of

 $
)

Number of Jobs

DECO
EF
BF

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

275250225200175150125100

A
vg

 C
P

U
 W

ai
t T

im
e

(s
ec

)

Number of Jobs

DECO
EF
BF

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

275250225200175150125100

A
vg

 T
ra

ns
fe

r
W

ai
t T

im
e

(s
ec

)

Number of Jobs

DECO
EF
BF

(a) (b) (c)

Fig. 3. Performance of all algorithms (a) Total revenue earned as number of jobs
increase (b) Average CPU wait time of jobs before they are granted CPU (c) Average
transfer wait time of jobs before all their files are available

of the means for Gold, Silver and Bronze is 5:3:2. The mix of Gold, Silver and
Bronze jobs is 20%, 60%, and 20% respectively.

Job distribution: Each job specifies an execution time and a set of files required
to execute the job. The number of files per job follows a normal distribution
with a variance of 0.25. We vary the mean of the distribution between 3 and 6
to simulate various data-intensive scenarios. To model a realistic workload, the
files for a job are chosen based on a Zipf distribution . The execution time for
each job is approximately 20 minutes ± 30%. The job deadline time is a factor of
its execution time and number of file dependencies. In our experimental setting,
gold jobs have smaller (and hence) stricter deadlines than Silver and Bronze
jobs. The ratio of the deadlines for Gold, Silver and Bronze jobs is 3:5:7.

Data distribution: Data objects considered in the experiments have an average
file size of 1 GB, where file sizes follow a power-law(Pareto) distribution. We begin
with a random placement of files at the cluster sites, with each file placed at exactly
one site. Files are replicated as long as storage space is available at a site. The file
replacement policy of the storage manager at a site is assumed to be LRU.

4.1 Alternative Heuristics

Previous approaches exist that use heuristics for value-based scheduling in
computation grids, however they do not consider data requirements. Similarly,
approaches in traditional data grids for compute and data assignments do
not have an associated utility notion. To obtain competitive alternatives, we
combine the best known utility–based scheduling policy [2,3], with the best
known heuristics for compute and data assignment.

For each job j delayed by l hours beyond its deadline Tj , its utility value is
given by Uj = (l ∗ Penj)/Tj, where Penj is the penalty rate. The list of jobs
is sorted based on their utility values. We consider two compute assignment
techniques, earliest fit (EF) and best fit (BF). Starting with the first job in
the sorted list, EF assigns it to the site that can satisfy it at the earliest time
interval. This is a greedy approach, based on the generic Min-Min algorithm

DECO: Data Replication and Execution CO-scheduling for Utility Grids 61

[4,5], that aims at finishing jobs as early as possible. On the other hand, BF
assigns the job to the site that can satisfy it at the latest time interval but still
meets its deadline [3]. This approach keeps earlier time slots free for later jobs
in the list. Both EF and BF, first transfer the required non-local files before it
begins execution.

Previous work [11,6] outlines a Threshold based replication scheme, where
each site records the number of local data transfers it needs to do for a globally
popular file. When number of local transfers exceed a specified threshold, a
replica is created locally. This Threshold based scheme is used in EF and BF
to replicate files at cluster sites. Note that, both these heuristics have loose
coupling of data replication and job execution. We compare DECO’s tightly
coupled replication and job execution algorithm with the above heuristics. For all
the algorithms, we measure the following: (a) total revenue earned by a batch of
jobs, including the revenues from satisfied jobs and penalties from those missing
their deadlines (b) average time a job has to wait in the queue before it begins
execution (c) business revenue earned by creating replicas.

4.2 Experimental Results

In the first set of experiments, we compare the revenue earned by DECO in
comparison with EF and BF as shown in Fig.3(a). We increase the number of
jobs in a batch, while keeping the system resources constant. We note that for
all the approaches, the revenue steadily increases reaching a peak, and then dips
beyond a knee point. The resource contention is low in the beginning with fewer
jobs entering the system. With increasing number of jobs, system utilization
improves leading to higher revenue. The peak of the curve represents an optimal
system state when the revenue earned is the maximum. Increasing jobs beyond
this point leads to greater resource contention and causes more jobs to miss
their deadlines. Continual increase in the delay incurred by jobs is indicative of
an overloaded system state and leads to reduction in revenue. This is captured
by the zone beyond the knee of the curve. In an under-utilized system state
all algorithms achieve comparable performance. But as the number of jobs is
increased, DECO shows sustained significant improvement over EF and BF.
Even in high resource contention conditions, revenue drop of DECO is less
as compared to the alternative heuristics. This is observed by the sharp fall
in EF and BF beyond the knee point as opposed to graceful degradation of
DECO. On an average, DECO has (30-40)% improvement in revenue earnings
over alternative approaches.

Fig.3(b) and Fig.3(c) report the average wait time of jobs, divided into CPU
wait time and transfer wait time, for increasing number of jobs. The first
component represents the cpu utilization and captures benefits of scheduling
some jobs ahead of others. The second component, represents data availability
and captures the benefits of replication and transfer scheduling. CPU wait
time reduces when a job is assigned to a compute site with low queue lengths.
Similarly, transfer wait time reduces with smart scheduling and parallelizing data
transfers with job executions. With a batch size of 200 jobs, DECO shows about

62 V. Agarwal et al.

B
F

E
F

D
E

C
O

Penalty49-0%99-50%100%

Revenue accrued

Gold
Silver

Bronze Job

1

3
2

A
B

A, C

Object

Dependencies

Execute Job 1

Execute Job 2

on Compute Node 1

on Compute Node 2

Execute Job 3
on Compute Node 1

Transfer Object CReplicate Object A

Transfer Object B

From S1 From S1

Time

From S2

(a) (b)

Fig. 4. (a) Scatter plot showing the revenue accrued by jobs (b) Illustration of master
schedule

30% reduction in CPU wait time over EF and LF. With an average requirement
of 5 files/job, DECO reduces the transfer wait time by as much as 40%.

Fig.4(a) sheds light on the superior performance of DECO over alternative
heuristics. The experiment was conducted with a batch of 200 jobs. For each
job, we determine the total response time and the corresponding revenue earned.
(Note that, the revenue may be positive or negative depending on the scheduled
time interval). The entire region is divided into four revenue zones. From left
to right the vertical regions mean the following: the first vertical represents
revenues earned by jobs that finish within the deadline. The second and third
for jobs that miss their deadlines, but earn 50-99% and 0-49% of their maximum
revenue respectively. The last contains jobs that incur penalties for finishing late.

Fig.4(a) reports the distribution of Gold, Silver and Bronze jobs in the four
revenue zones. The alternative heuristics try to accommodate the heavy penalty
incurring Gold and Silver jobs in the earlier time intervals, so as to avoid missing
their deadlines. As a result most of the Bronze jobs are forced in the penalty
zone and a significant number of Silver jobs earn less than a third of their
maximum revenue. They fail to capture the possibility that the penalty from a
large number of Bronze jobs can overshadow the revenue earned from Gold and
Silver jobs. DECO intelligently chooses the right balance of placing the different
types of jobs in suitable time intervals by weighing both their revenues and
penalties, and thereby accrues significantly higher revenue than its competitors.
Fig.4(b) show the actual data transfers, replications and executions scheduled
by DECO along the timeline. The schedule is shown for three representative jobs
(executing on the a compute site with two compute nodes). The jobs and their
dependencies are as shown in Fig.4(b). In the schedule, replication of object A
from site S1 is initiated along with transfer of object B from site S2. Jobs 1 and
2 begin execution in parallel with the transfer of object C from site S1. Job 3
however executes only after C’s transfer completes and either of Job 1 or Job 2
finishes execution. This snapshot illustration demonstrates how DECO utilizes
the available resources (network links, compute resources) to minimize idle time.

DECO: Data Replication and Execution CO-scheduling for Utility Grids 63

 125
 150

 175
 200

 225 3

 4

 5

 6 40

 50

 60

 70

 80

 90

 100

 110

T
ot

al
 R

ev
en

ue
 (

10
00

s
of

 $
)

Number of Jobs Files per Job

DECO
EF

Fig. 5. Surface plot showing change in
revenue as number of jobs and number of
dependencies is varied

Table 1. Replica Utility showing Files
per Job (FJ), Avg Replicas per File (AR)
and Avg Replica Utility (ARU)

FJ AR ARU
DECO EF BF DECO EF BF

3 1.3 1.1 1.1 99.7 43.1 35.3
4 1.4 1.2 1.3 88.0 68.6 53.5
5 1.5 1.3 1.3 116.3 62.8 60.0
6 1.7 1.4 1.4 130.2 65.7 61.3

In Fig.5, we compare the revenue earned as the number of jobs and their file
dependencies are scaled for DECO and EF. When a job requires a larger set of
files for its execution, job wait times are more pronounced as transfer times tend
to be larger. The raised surface for DECO can be attributed to the fact that
it creates more beneficial replicas when compared to EF, and achieves better
parallelization of execution and data transfers. We additionally note that for
3–5 files per job, the revenue accrued by DECO steadily increases. Finally, for
larger batch sizes and a larger number of file dependencies, the revenues begin to
dip. This is because the system enters an overloaded state, as explained earlier.

Table-1 shows the replication statistics for each algorithm. We report the
average number of replicas created per object, which captures the degree of
replication. The table also reports the average utility of the replicated objects,
which is defined as the revenue gain per new replica. Table–1 shows that the
algorithms create 1.09–1.68 replicas per object, which is within acceptable limits
for given storage constraints. Though more replicas are created by DECO, they
contribute to significant revenue growth as reflected by the replica utility values.
The replica utility of DECO is much better than the alternative heuristics(87.95–
130.15 vs 43.14–68.55). This indicates that tight coupling of replication with
compute allocation creates more meaningful replicas which are more effectively
utilized while doing job assignment. Decoupled replication as adopted in the
alternative heuristics fails to influence the job assignment directly, resulting in
less optimal utilization of the replicas.

5 Related Work

Market–based economy models have recently received much attention in the grid
utility computing domain [2,3]. [2] presents value-based scheduling heuristics that
attempt to balance risk and reward of a job. [3] presents heuristics for admission
control and resource allocation when jobs come with their own SLA requirements.
However, both approaches do not consider the data transfer/replication as a part
of the schedule. [12] presents a grid service broker for discovery of resources and

64 V. Agarwal et al.

scheduling of jobs. Here, the scheduler minimizes the amount of data transfers by
executing jobs at sites which have “nearer” access to data. The data placement
however remains static. Resource allocation with failure provisioning for business
profit maximization has been studied in [13]. However, co-ordinated placement of
data with jobs has not been addressed. [14] describes a resource allocation ap-
proach for distributed computer systems based on competitive algorithms derived
from Microeconomics. These algorithms however do not consider the problem of
dynamic creation of replicas and its effect on auction pricing.

Among approaches that try to integrate job scheduling and data replication by
incorporating network latencies and data transfer times are the Close-To-Files
[4] and the Time-Budget constrained [5]. However, none of these approaches
consider dynamic replication of data across sites. [6] looks at a number of
techniques to dynamically replicate data across sites and assign jobs to sites.
In this scheme, local monitors keep track of popular objects and preemptively
replicates them at other sites. However, the work assumes homogeneous network
conditions and single input files, both of which may not hold in case of globally
distributed grids. [11,7] consider decoupled approach wherein the replication
is controlled by an asynchronous process and looks at long-term history of
access patterns. Stork [15] introduces a specialized scheduler for data placement
activities and mentions the need for tighter integration between data placement
and job execution. [16] presents an approach for co-scheduling by combining
the Condor scheduler with a storage resource manager (SRM). Although,
match-making is influenced by file placement, replication is performed without
considering compute assignments. The co-scheduling problem addressed in [17]
assumes single data object only. Finally, [18] solves the co-scheduling problem
in a data grids using a genetic algorithm based heuristic. The work however,
does not address the problem of optimal replica source selection and the time
sequencing of job executions and replication/data transfers.

6 Conclusion

In this paper, we propose DECO, a co–scheduling framework for compute and
data–intensive applications in utility grids. DECO employs a two–step algorithm
for maximizing the business revenue of the grid provider. In Step 1, decisions are
made on the assignment of jobs and replication of data objects. Step 2 schedules
the data transfers (and replications) along with the job executions. The main
highlight is that by integrating execution and data transfer times, DECO delivers
significant improvements, both in terms of higher business revenues and lower
job wait times, when compared to alternative approaches. As a part of future
work, we will consider peer-to-peer approaches for resource-sharing among meta-
schedulers. In this perspective, we plan to investigate distributed competitive
algorithms [14]. Further, we are investigating application performance analysis
techniques to help DECO make more up-to-date co-scheduling decisions. Finally,
we plan to enhance the system with failure handling mechanisms.

DECO: Data Replication and Execution CO-scheduling for Utility Grids 65

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
grid services architecture for distributed systems integration (2002)

2. Irwin, D.E., Grit, L.E., Chase, J.S.: Balancing risk and reward in a market-based
task service. In: Proc. of HPDC’04. (2004)

3. Yeo, C.S., Buyya, R.: Service level agreement based allocation of cluster resources:
Handling penalty to enhance utility. In: Proc. of Cluster 2005. (2005)

4. Mohamed, H., Epema, D.: An evaluation of the close-to-files processor and data
co-allocation policy in multiclusters. In: Proc. of IEEE International Conference
on Cluster Computing. (2004)

5. Venugopal, S., Buyya, R.: A deadline and budget constrained scheduling algorithm
for e-science applications on data grids. In: Proc. of 6th International Conference
on Algorithms and Architectures for Parallel Processing. (2005)

6. Ranganathan, K., Foster, I.: Computation scheduling and data replication
algorithms for data grids. Grid resource management: state of the art and future
trends (2004) 359–373

7. A. Chakrabarti, R.A.D., Sengupta, S.: Integration of scheduling and replication in
data grids. In: Proc. of HiPC. (2004)

8. Allcock, W.: Gridftp protocol specification (global grid forum recommendation
gfd.20). In: Globus Project: http://www.globus.org/alliance/publications/papers/
GFD-R.0201.pdf. (2003)

9. Hall, L., Schulz, A., Shmoys, D.B., Wein, J.: Scheduling to minimize average
completion time: off-line and on-line algorithms. In: Proc. of ACM-SIAM
Symposium on Discrete Algorithms. (1996)

10. Sulistio, A., Cibej, U., Buyya, R., Robic, B.: A toolkit for modeling and simulation
of data grids with integration of data storage, replication and analysis. In: Technical
Report, GRIDS-TR-2005-13, GRIDS Lab, University of Melbourne, Australia.
(2005)

11. Ranganathan, K., Foster, I.: Decoupling computation and data scheduling in
distributed data-intensive applications. In: Proc. of the 11 th IEEE International
Symposium on High Performance Distributed Computing. (2002)

12. Venugopal, S., Buyya, R., Winton, L.: A grid service broker for scheduling
distributed data-oriented applications on global grids. In: Proc. of the 2nd
workshop on Middleware for grid computing. (2004)

13. Dasgupta, G., Dasgupta, K., Purohit, A., Viswanathan, B.: Qos-graf: A framework
for qos based grid resource allocation with failure provisioning. In: Proc. of 14th
IEEE IWQoS. (2006)

14. Ferguson, D.F., Yemini, Y., Nikolaou, C.: Microeconomic algorithms for load
balancing in distributed computer systems. In: Proc. of ICDCS. (1988)

15. Kosar, T., Livny, M.: Stork: Making data placement a first class citizen in the grid.
In: Proc. of the 24th Int. Conference on Distributed Computing Systems. (2004)

16. Romosan, A., Rotem, D., Shoshani, A., Wright, D.: Co-scheduling of computation
and data on computer clusters. In: SSDBM’2005: Proceedings of the 17th
SSDBM’2005. (2005)

17. H. Liu, M.B., Huang, J.: Dynamic co-scheduling of distributed computation and
replication. In: Proc. of 6th IEEE Int. Symposium on Cluster Computing and the
Grid (to appear). (2006)

18. Phan, T., Ranganathan, K., Sion, R.: Evolving toward the perfect schedule: Co-
scheduling job assignments and data replication in wide-area systems using a genetic
algorithm. In: Proc. of Job Scheduling Strategies for Parallel Processing. (2005)

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 66 – 77, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Coordinated Co-allocator Model for Data Grid in
Multi-sender Environment

R.S. Bhuvaneswaran, Yoshiaki Katayama, and Naohisa Takahashi

Department of Computer Science and Engineering,
Graduate School of Engineering, Nagoya Institute of Technology, Japan

{bhuvan, katayama, naohisa}@moss.elcom.nitech.ac.jp

Abstract. We propose a model, which simultaneously allocates a data block re-
quest to the multiple sites, termed as co-allocation, to enable parallel data trans-
fer in a grid environment. The model comprises of co-allocator, monitor and
control mechanisms. The co-allocation scheme adapts well to the highly incon-
sistent network performances of the sites concerned. The scheme initially ob-
tains the bandwidth parameter from the monitor module to fix the partition size
and the data transfer tasks are allocated onto the servers in duplication. The
scheme is found to be tolerant despite the situation that the link to servers under
consideration is broken or become idle. We used Globus toolkit for our frame-
work and utilized the partial copy feature of GridFTP. We compared our
schemes with the existing schemes and the results show notable improvement in
overall completion time of data transfer.

Keywords: Data grid, co-allocation, parallel data transfer, GridFTP.

1 Introduction

Applications designed to execute on grids frequently require the simultaneous co-
allocation of multiple resources in order to meet performance requirements [7][1][5].
For instance, several computers and network elements may be required in order to
achieve real-time re-construction of experimental data, while a large numerical simu-
lation may require simultaneous access to multiple supercomputers. Motivated by
these concerns, several researchers [1][5][3][8] developed general resource manage-
ment architecture for Grid environments, in which resource co-allocation is an inte-
gral component. Data store is one of the important resources and this paper deals
about it. Several applications considered distributed data stores as resources [8][9].
Most of these data grid applications are executed simultaneously and access a large
number of data files in a grid, termed as data grid. The data grid infrastructure is to
integrate the data storage devices and data management service into the grid envi-
ronment. Data grid consists of scattered computing and storage resources located
dispersedly in the global network accessible to the users. These large sized data sets
are replicated in more than one site for the better availability to the other nodes in

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 67

a grid. For instance, in the multi tiered data grid architecture high energy physics
experiments[9], replicated data stores are considered. Hence, any popular dataset is
likely to have replicas located in multiple sites.

Instead of downloading the entire high volume dataset from a single server, the
technique of downloading the data set parts from multiple servers in parallel that are
consolidated at the client end, is of more theoretical and practical interest. This co-
allocation of data transfer has alleviated most of the bottlenecks in downloading and
improves the performance compared to the single server selection one. Many re-
searchers realized this factor, discussed its advantages and proposed variety of tech-
niques in different contexts [14][3][15]. We propose a model, which simultaneously
allocates a data block request to the multiple sites, termed as co-allocation, to enable
parallel data transfer in a grid environment. The model comprises of co-allocator,
monitor and control mechanisms, naturally blended with feedback loop. The co-
allocator scheme adapts well to the highly inconsistent network performances of the
sites concerned.

We have experimented our schemes with Globus toolkit as the middleware and
GridFTP. The results are compared with the existing approaches and the initial results
outlast the existing ones performance. The rest of the paper is organized as follows:
the problem is defined with the co-allocation model in section 2 and the related works
in the same area are discussed in Section 3. We presented our proposed algorithm in
Section 4 with assumptions and the experiments. Section 5 describes the analyses and
Section 6 concludes the paper.

Fig. 1. Integrated Co-allocation Model of Data Grid with replicated multiservers

2 Co-allocation Model with Globus

The integrated coallocation model comprises of coallocation, monitoring and control
components, discussed in detail in the subsequent sections.

S S S S S S S S S

MM MM MM
CM CM CM

68 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

2.1 Coallocation Mechanism and the Overall Architecture

The dynamic collacotor module integrated with monitor is shown in Fig.1. The model
is presented from the client perspective. Each client has a coallocator agent (CM) and
the periodical execution of monitor agent (MM).We used Globus Toolkit [11] which
is an open source software toolkit used for building grid. The major component of a
globus tool kit is GIS (Globus Information Service) which provide necessary infor-
mation about the data stores in a grid. With help of GIS, the co-allocator adopted
dynamic strategy to transfer data from multiple servers to the intended client. Fig. 2
depicts a single client point of view. The agent accepts the request from an application
about the data solicited and its description is passed on to the co-allocator.

Fig. 2. The Co-allocation Model of Data Grid with replicated multiservers

The co-allocator, identifies multiple servers with the help of GIS, initiated the data
transfer in parallel in parts. After all the parts of a data set are received, they will be
assembled and give it back to the application through the agent. The file transfer is
handled by GridFTP[11] service of a globus tool kit. We exploit the partial file trans-
fer feature of GridFTP in our work and presenting a dynamic co-allocation strategy to
enable the transfer of replicated data from multiple data servers, to a single client.

The outline of our strategy is spelled out as follows: The application (of client) re-
quests the data with its description to co-allocator agent. Based on the information
provided by GIS, the dataset is replicated and available in the servers scattered in the
network. The dataset to be downloaded is divided into blocks. The co-allocator
sends multiple requests to the server and the download process taken place in parallel.
At the beginning, every server is assigned to transfer exactly one block respectively.
When the requested block is received from a server, then, one of the yet unassigned
blocks is assigned to the server. Co-allocator repeats this process until all the blocks
of the dataset are assigned. Obviously, good performance servers transfer more

Client

Co-allocator

Agent

GASS GASS GASS GASS GASS

(Local Storage Systems accessed through Global Access to Secondary Storage)

GIS

Parallel Data Transfer using GridFTP

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 69

blocks than the slow servers. There may be duplication of blocks among the servers
thereby reducing the waiting time from the slower servers and thus the fault tolerant
factor can also be achieved.

2.2 Monitoring and Control Mechanisms

The allocation and configuration phases of the coallocation process result in the data
transfer tasks on set of servers. During the data transfer, it is desirable to monitor and
control the ensemble as a collective unit. The monitoring and control operations that
we defined have this property. Monitoring operations allow a client program to re-
ceive notification when the resource set changes state. In addition to the obvious
global state transitions of failure and termination, the complex failure modes encoun-
tered in Grid applications lead to a need to support and respond to individual process
state transitions as well. Hence, the interface should allow for signaling operation
(algorithm in Sec. 4) to the monitoring program, which can then act upon this transi-
tion in a manner that is appropriate for the coallocation. Similarly, control operations
allow for the manipulation of the resource set as a whole. One required control opera-
tion is to check whether the received data is corrupted or not and the other one is
killing the duplicate processes, which will be discussed in Sec. 4. Before we discuss
about our strategy in detail, let us present the related works in this aspect.

3 Related Works

Few research works have been reported in the literature about parallel data transfer for
the grid environment. They can be categorized into static and dynamic based on the
allocation strategy. Once the allocation is made, it can never be changed during exe-
cution is termed as static, whereas, in dynamic allocations the allocations may be
altered based on bandwidth or other performance criteria. t al [15] used past history of
data to forecast the current data transfer speed. The same authors [14] proposed co-
allocation architecture for grid data transfers across multiple connections. They pro-
vided brute-force, history-based and other techniques. Brute force works by dividing
the file size equally among available flows. It does not address the bandwidth differ-
ences among the various client-server links. Past history-based co-allocation schemes
not exhibit consistent performance, since performance (speed) of the each processor
varies over time [13]. Many algorithms and schemes found in the literature
[3][7][14][15] make the decision based on the past history, heuristics, performance in
the first allocation, etc. But, in practical, server and network performance cannot be
forecasted in full guarantee. Hence, several researchers proposed dynamic strategies
[14][3][13].

The dynamic co-allocation mechanisms of [14] were noteworthy. In the conser-
vative load balancing, the dataset requested is divided into disjoint blocks of equal
size. Each available server is assigned one block to deliver in parallel. Once the
server finishes delivering the block, another block is requested and so on, till the

70 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

entire file is downloaded. There exists a shortcoming of the faster servers that must
wait for the slower server to deliver the final block. Another strategy by the same
authors is the aggressive load balancing, which progressively increase the amount of
data requested from faster servers and reduce the amount of data requested from
slower servers or stop requesting data altogether. These schemes are calculating
bandwidth at the time of delivering the block and thereby allocating the next block
under the motive of utilizing faster servers. But, the idle time of faster servers await-
ing the slowest server to deliver the last block is one of factor, which affects total
efficiency. The other technique, Recursive Adjustment co-allocation [3] was de-
signed under the objective of reducing the waiting time.

In all these techniques, the data set is divided into block size according to each
server’s bandwidth and the co-allocator assigns the blocks to each server for transfer-
ring. But, after assigning the block size, there is no guarantee that the bandwidth of
the server remains constant. In other words, this technique does not cope up with the
highly dynamic performance behavior of the multiple servers and their networks.
Moreover, when any one of the servers becomes idle or link is broken, the alternative
is not suggested in none of the existing methods.

Our proposed scheme takes care of all these factors. It neither uses predictions nor
heuristics, instead dynamically co-allocate with duplication assignments and coping up
nicely with the changing speed performance of the servers. The idea of duplication in
allocation has already been used in multiprocessor scheduling in the yester years and
applied in computational grid environments in recent years [13]. But, there are quite
number of variations between computational grid and data grid, where the former one
is constrained by precedence constraints, task partitioning, dependency, interprocess
communication, resource reservation & allocation, process control, etc. The next sec-
tion describes our strategy which alleviates the problems mentioned afore.

4 Dynamic Co-allocation Scheme with Duplicate Assignments
(DCDA)

Let D be the dataset, k be the number of blocks of a dataset of fixed block size and m
be the available number of servers having replicated data content. First, D is divided
into k disjoint blocks (Bi) of equal size and each one of the available server is assigned
to deliver, in parallel, in other words, D = {B1, B2, …, Bk}. The strategy for partitioning
the dataset into data blocks is analyzed in section 5. When the requested block is re-
ceived from a server, one of the yet unassigned blocks is assigned to the server. Co-
allocator repeats this process until all the blocks of a dataset are assigned. Hence, good
performance servers transfer more blocks than the slow servers, which take more time
deliver. In this case, the block assigned to that server is again assigned to the faster
server; In other words, there may be duplication of blocks among the servers and
thereby reducing the waiting time from the slower servers. Moreover, when the server
becomes idle or the link to the server is broken, the entire data process is safeguarded

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 71

from disruption. A data structure of circular queue is maintained here, with k (number
of blocks) as the size of the queue. The complete scheme is presented here:

coalloc(m, k, D)
1. [Initialization]

1a) Partition the dataset D into k equal sized blocks Bj, j = [1..k].
1b) All the blocks are numbered and placed in a circular queue CQ(k).
1c) CQ pointer p is initialized with 1 so as to point to its first element.

2. [Initial allocation of blocks on to the servers]
for (i = 1 to m)

2a) fetch block Bp from CQ and assign to server Si
2b) p = (p + 1) mod k

3. When a block Bj (any j, 1 j k) is delivered by the server Sl (any l, 1 l
m),

3a) remove block Bj from CQ, k = k -1
3b) signal the servers to stop processing of
block Bj
3c) fetch block Bp from CQ and assign to server Sl

 If CQ is empty, Go to step 6.
3d) p = (p + 1) mod k

4. When a server Sl (1 l m) is signalled,
4a) fetch block Bp from CQ and assign to server Sl

 If CQ is empty, Go to Step 6.
4b) p = (p + 1) mod k

5. [Waiting for delivery or free signal from servers]
 Go to Step 3

6. [At the completion of transfer of dataset]
 When the CQ is empty, kill all the assigned data

transfer processes in other servers.

For the purpose of explaining the scheme, initially, let us consider the constant rate
of transfer and the data set is divided equally into k disjoint blocks. The scheme is
illustrated as follows: Let us consider the example of data set of size 100 MB repli-
cated in five servers (s1 to s5) and hence the block size is 20 MB. Also assume that
the speeds of the data transfer of the five servers are 200, 70, 150, 80, 200 Kbps, re-
spectively. Note that, when same blocks are received by co-allocator, it considers the
one with the earliest timestamp and discards other.

Note that in this first example, k = m, for simplicity. Initially, a block numbered 1
to 5 is assigned to each server, respectively in the same order. Naturally, servers 1 and
5 delivered data much faster than others. After the blocks 1 and 5 are received, blocks
2 and 3 are assigned to servers 1 and 5. In due course, block 3 is delivered by server 3
and hence the block request to the server 5 is cancelled and block 4 is assigned to
server 3 and block 2 is assigned to server 5. Note that the block 2 is duplicated in serv-
ers 1, 2 and 5. Finally, block 4 is assigned duplicated in all the sites. This is illustrated
in the Gantt chart (Fig. 3a). The total time taken is 273.0 seconds. The allocation of

72 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

blocks on to the servers, for every reception of delivery signal in succession is shown
as in Fig. 4a along with the status of the queue. At the end of the execution, the
blocks delivered by the servers are shown in Fig. 4b.

B2

B3

B4

B5

B1 B2

B3 B2

B4

B4

B4

B4

B2 B
4

B3 B4

B4

B5
3

B2

0 102.4 127.4 204.8 229.8

B2 B
4

B
4

B1

0 102.4 136.5 204.8 273

S1

S2

S3

S4

S5

Fig. 3. Gantt Chart showing Co-allocated Behavior with a)Constant and b) varying bandwidth

The allocation of blocks on to the servers, for every reception of delivery signal in
succession is shown below (Fig. 4a) along with the status of the queue. At the end of
the execution, the blocks delivered by the servers are shown in Fig. 4b.

B1 B2 B3 B4 B5 CQ(5)
B2 B3 B4 CQ(3)
B2 B4 CQ(2)
B4 CQ(1)

 (a) (b)

S1 S2 S3 S4 S5

B1 B2 B3 B4 B5

B2 B2 B3 B4 B3

B2 B2 B4 B4 B2

B4 B4 B4 B4 B4

B1 B2 B3 B4 B5

S1 S1 S3 S1 S5

Fig. 4. Status of the circular queue during execution and the final allocation

5 Experiment and Analysis

5.1 General Analysis

In order to analyze the scheme, let us consider the next case (case 2) of change in
network performance. Let the data transfer rate, be represented as a pair (a, b) where,
a is the rate of transfer in the first 100 seconds and b represents after first 100 sec-
onds. In this way, rate of transfer for five servers are considered as (200,200),
(70,50),(150,200),(80,0), and (200,150) respectively. Rate of transfer 0 specifies nil
or no data transfer, which may be due to the broken link or idle server (here, site 4
detoriate, after 100 seconds). In this case, the total time taken will be 229.8. Note that
the performance can further be improved, when the frequency of change-in-transfer

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 73

rate is more. Now, consider the same case with more number of blocks. In the same
example cited above, partition the data set into ten blocks, each of size 10 MB. The
total completion time is drastically reduced to 204.8 and the blocks delivered by the
appropriate servers are tabulated as Table 1.

Table 1. Performance of Dynamic Duplicate Assignment Scheme with k > m

Sites Rate of transfer
(interval of 100 secs)

Blocks
assigned

Blocks
delivered

1 200, 200 1, 6, 9, 4 1, 6, 9, 4
2 50, 70 2, 4 -

3 150, 200 3, 8, 2, 10 3, 8, 2

4 70, 0 4 ---

5 200, 150 5, 7, 10, 4 5, 7, 10

The performances of the three cases mentioned above are shown as bar chart in the
Fig. 5. Numbers of blocks considered are mentioned along with the case. Thus, from the
figure, it is apparent that the varying speed performances of the replicated sites are util-
ized which results in minimal completion time of the download process of a data set.

Fig. 5. Performances of Static and Dynamic bandwidth for 100M & 500M file sizes

We used Globus toolkit 2.4 in our experiment, and in order to study the perform-
ance of our scheme in varying network performance, we conducted our experiment by
changing the network and server loads, apart from normal traffic. In order to evaluate
our scheme in dynamic environment, we used frequency table of data transfer rate.
For example, Table 2 shows one such frequency table when the case 2 above is ex-
tended with more frequency of data transfer in the interval of 20 seconds.

74 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

We can study the behavior of our algorithm with frequency tables like this. We
used several file sizes as 2GB, 1.5 GB, 1GB, 500MB, 100MB and 10MB and the
expected completion time threshold is assumed as 5 minutes, which is required by the
3 schemes mentioned above. We fixed a constant L=5 in the formula of finding k.

a) with Static schemes

b) with Dynamic schemes

Fig. 6. Comparative Performance with k > m

We assumed that the overhead latency in assigning, delivering and killing of dupli-
cate assignments are negligible since, in practice, while transferring giga, peta or tera
bytes of sizes, these delays will not affect the overall completion time. We have
evaluated our scheme with other static and dynamic schemes, separately. When the
bandwidth is assumed static, it has been compared with brute force[14] and our pro-
posed dynamic scheme is compared with other dynamic strategies of conservative
load balancing scheme[14] and recursive co-allocation[3]. We analyzed the perform-
ance of each scheme by comparing their completed transfer time, shown in Fig. 6.
When comparing the static schemes, we assumed constant rate of transfer (as in case
1), as in Fig. 6a. From this figure it is clear that our scheme has marginal improve-
ment over others. In comparing with other dynamic schemes, Fig. 6b, our scheme
outperforms others. Furthermore, the other schemes are not fault tolerant, and the
expected completion time is specified here, for the purpose of comparison.

The blocks and the servers delivered by them in the order of arrival (left to right)
for the case 2 are :

B1 B5 B3 B6 B7 B8 B9 B10 B4 B2
S1 S5 S3 S1 S7 S3 S1 S3 S1 S3

Fig. 7. Final Allocation of Blocks on to servers

One of the factors, which influence the scheme, is data set portioning; that is the
manner in which the data set is partitioned. The question now is whether to have
small number of blocks with greater size or more number of blocks with smaller size.
The later one is better since more number of blocks may brighten the scope of

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 75

dynamicity; in other words, there is a possibility of assigning more blocks to the faster
servers. But, at the same time, more number of blocks may have the overhead of
communication latency and the block management. Next subsection discusses about
fixing the block size k.

5.2 Finding the Optimal Number of Blocks

One of the factors, which influence the overall performance, is data set portioning;
that is the manner in which the data set is partitioned. The question now is whether to
have small number of blocks with greater size or more number of blocks with smaller
size. The later one is better since more number of blocks may brighten the scope of
dynamicity; in other words, there is a possibility of assigning more blocks to the faster
servers. But, at the same time, more number of blocks may have the overhead of
communication latency and the block management. The partitioning factor in turn
based on block size and the number of replicated sites available. Choosing the optimal
block may yield significant performance with our scheme. In general, smaller num-
ber of blocks may yield poor completion time and on the other hand, more number of
blocks results in switchover overheads and thereby showing poor completion time.

Hence, it is highly important to partition the data set into optimal number of
blocks. The specialty of the algorithm is independent of any estimating measures
under the motive of adapting to the natural dynamicity of network behavior. Without
compromising this objective let us fix the number of blocks, based on the function of
bandwidth. Before executing the algorithm, assume that the bandwidths of all the
servers are known from the client perspective. These metrics can easily be obtained
from the monitoring module, which is executing periodically by using the tools such
as iperf [12].

Let the ratio of coefficient of variation of set of bandwidths be, Cv
 = (σ / μ)*100,

where, σ is the standard deviation and μ is the average of the bandwidths from client
to all the sites having replicated data. Further, the set of bandwidths in a network of
multisender scenario aggregates normal distribution [10]. Hence, if set of bandwidth
values aggregates normal distribution, Cv can be used to compare the amount of
variance between populations with different means.Based on the basic statistics, it can
be interpreted that, the lower percentage is closer to the average and the higher per-
centage depicts the farther distance from average. The number of fixed sized blocks
can be fixed as, k = m *([Cv / [100/L]] + 1), (or can be simplified as k = m ([σ L/
μ] + 1)) for any constant L (> 0) which is used to divide the range of distributions. For
example, for normal distribution curve with μ=140 and σ=2.007638, the entire range
of distribution is divided in to 4(=L) portions. Note that, for this example, k = 2m.

5.3 Improvement of the Algorithm

Note that the sequentiality is not maintained in this method. In other words, the blocks
are not received in the partitioning order. For example, the blocks and the servers
delivered by them in the order of arrival (left to right) for the case 2 as in Fig.7 is not
block sequential. This may not be the problem with the applications considering in-
sensitive with sequentiality. On the other hand, for the applications like streaming,
the sequential delivery of partitioned blocks is matters a lot. Hence the algorithm is

76 R.S. Bhuvaneswaran, Y. Katayama, and N. Takahashi

modified to ensure the sequential delivery to the client and at the same time exploiting
the parallel feature enriched in the co-allocated model.

The data file is divided into blocks and each block is further partitioned into sub-
blocks to exploit the parallelism in downloading. This is illustrated in the Fig. 8. The
dashed lines indicate the sub-blocks.

Block 1 Block 2 Block k

Fig. 9. Partitioning of a Data file

For each block, the basic algorithm in section 4 is executed as, coalloc(m, s, Bi),
where s is the number of sub-blocks and Bi is the block i of the dataset D, for any i,
1 i k. After all the sub-blocks of a block are delivered, rearranged the sub-blocks,
execute for the next block coalloc(m, s, Bi+1) and this process is repeated for all the
blocks of a dataset. Hence, the blocks will be received in the sequential order.

Table 2. Sample Frequency Table of Data Transfer Rate

 Rate of transfer in K/Second in the interval 20 seconds
S1 200 200 80 190 210 220 205 180 150 120 180 185 200
S2 50 50 80 80 90 70 70 80 80 90 70 80 80
S3 150 160 50 150 170 180 200 210 210 190 200 210 200
S4 70 80 70 60 40 60 50 0 0 0 0 0 0
S5 200 210 190 200 200 190 170 160 150 160 150 140 150

For example, consider the simple example of case 2, discussed in section 5.1. Let
the number of blocks as 4 and each block has 5 sub-blocks. Thus, the size of sub-
block is 5MB. Only 4 servers S1, S2, S3 & S5 are considered, eliminating server S4.
For the purpose of explanation, we denote the sub-block with double index, as SBij,
where j refers to the sub-block number within a block i. Now, with the improved se-
quential algorithm, the sub-blocks will be delivered in the following order, (from left
to right). SB11,SB15,SB13,SB12,SB14,SB21,SB25,SB23,SB22,SB24...SB41,SB45,SB43,SB42,SB44

Note that there is a necessity of rearrangement of sub-blocks, before the next itera-
tion of a block. This scheme ensures the ordered delivery of data file and thus highly
suitable for the applications like streaming.

6 Conclusion

We have designed a dynamic co-allocation model, to enable parallel download of
replicated data from multiple servers. The coallocation scheme is presented which
initially fix the number of data blocks based on bandwidth obtained from monitor.
Our scheme uses neither past history nor heuristics but fully compliant with high
dynamicity in the network / server performance. The scheme works fine, even when
the link to servers is broken (or servers become idle) during the process, whereas,

 Coordinated Co-allocator Model for Data Grid in Multi-sender Environment 77

none of the existing algorithms considered this situation. It is compared with the
existing schemes and shows significant improvement in overall completion time of
data transfer. The scheme may yield significant performance when choosing optimal
block size.

Acknowledgment

This research was partially supported by the Ministry of Education, Culture, Sports,
Science and Technology, Grant-in-Aid for JSPS Fellows 1604285, Scientific Re-
search on Priority Areas 18049038 and Scientific Research (C) 18500050.

References

1. Allcock B, Bester J, et al, “Data Management and Transfer in High Performance Computa-
tional Grid Environments”, Parallel Computing, May 2002.

2. Bhuvaneswaran R.S, Katayama Y, Takahashi N ,“Dynamic Co-allocation Scheme for Par-
allel Data Transfer in Grid Environment”, Semantics, Knowledge and Grid, Beijing, pp
178-188, 2005.

3. Chao-Tung Yang, I Hsien Yang, Chun Hsiang Chen, “Improve Dynamic Adjustment
Mechanism in Co-allocation data Grid Environments”, Proceedings of the 11th Workshop
on Compiler Techniques for High-Performance Computing (CTHPC 05), 189-194, 2005

4. Chervenak A, et al ,”A Framework for Constructing Scalable Replica Location Services”,
Proceedings of Super Computing Conference 2002, Baltimore, 2002.

5. Chervenak A, Foster I, et al, “The Data Grid: Towards an Architecture for the Dis-
tributed Management and Analysis of Large Scientific Datasets,” Journal of Network and
Computer Applications, 23:187-200, 2001.

6. Chun Hsiang Chen, Chao-Tung Yang, Chuan-Lin Lai, “Towards an Efficient Replica se-
lection for Data Grid”, Workshop on Grid Technologies and Applications, Dec 2004.

7. Czakowski K, Foster I, Kesselman C, “Resource Co-allocation in Computational Grids”,
Proc. IEEE International Symposium on High Performance Distributed Computing 1999.

8. Data Grid Project (EU Data Grid), http://www.eu-datagrid.org
9. GridPhyN project (Grid Physics Network), http://www.griphyn.org

10. Hui,S.C and Jack Y. B. Lee, "Modeling of Aggregate Available Bandwidth in Many-to-
One Data Transfer," Proc. of the Fourth International Conference on Intelligent Multimedia
Computing and Networking, July 21-26, 2005, Utah.

11. Introduction to Grids and the Globus Toolkit, The Globus Project, http://www.globus.org.
12. Iperf Homepage : http://dast.nlanr.net/Projects/Iperf/ .
13. Noriyuki Fujimoto, Kenichi Hagihara, “Near Optimal Dynamic Task Scheduling of Inde-

pendent Coarse Grained Tasks onto a Computational Grid”, International Conference on
Parallel Processing (ICPP-03), pp.391-398, October 6-9, 2003.

14. Vazhkudai S, “Enabling the Co-allocation of Grid Data Transfers”, International Workshop
on Grid Computing, Nov 2003, pp 44-51.

15. Vazhkudai S, Tuecke S, Foster I, “Replica Selection in the Globus Data Grid”, IEEE/ACM
International Symposium on Cluster Computing and the Grid, May 2001, pp 106-113

Adaptive Preference Specifications
for Application Sessions

Christine Julien

Mobile and Pervasive Computing Group
The Center for Excellence in Distributed Global Environments

The University of Texas at Austin
c.julien@mail.utexas.edu

Abstract. In ubiquitous computing applications, mobile participants
must be empowered to opportunistically connect to services available in
their local environments. Our previous work has elucidated a model for
allowing applications to specify the functional properties of the services
to which they need to connect. Our framework then connects applica-
tions to dynamic resources through the use of a novel suite of application
sessions. In this paper, we revisit this framework to devise a mecha-
nism for applications to specify preferences for one service provider over
another. In this investigation, we argue that these preferences are actu-
ally provided by a set of session participants: the application itself, the
service provider, and, more surprisingly, the network that connects the
application and the provider. We develop a framework for each of these
parties to specify preferences among various allowable connections. We
demonstrate not only what kinds of properties can be expressed in our
framework but also implementation paths for integrating them into the
communication and application support infrastructure.

1 Introduction

In ubiquitous computing, software and hardware resources are available embed-
ded in a user’s environment. The service concept provides an intuitive abstrac-
tion through which applications can gain access to remote resources. In dynamic
ubiquitous computing environments such as aware homes [1] or first responder
situations [2], applications opportunistically connect to a set of locally available
resources that change due to the application’s (or user’s) mobility. Such environ-
ments commonly rely on mobile ad hoc networks to provide network connectivity.
In mobile ad hoc networks, devices are disconnected from any wired infrastruc-
ture and instead communicate directly with one another using wireless radio
signals. Such networks employ multihop routing protocols that use intermediate
devices as routers for communicating partners that are not directly connected.

Application sessions [3] enable applications to select resources from the imme-
diate environment based on their functional properties. The approach is simple
in that it uses non-deterministic selection to connect the service requester to
any available resource that matches the request. However, it only accounts for
the static properties that define the capabilities of a particular resource; it does

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 78–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Adaptive Preference Specifications for Application Sessions 79

not allow applications to express the fact that a resource with particular non-
functional properties is preferable to another resource.

In this paper, we create an expressive preference function that we incorpo-
rate into the application sessions framework. The function allows all parties that
participate in the service interaction to express their non-functional require-
ments regarding a particular service binding. This includes the resource user,
the resource provider, and the devices that support the connection between the
provider and user. Characteristics that are likely to have an impact on the se-
lection of a particular resource include: the relative mobility of the user and the
resource, the proximity of the user to the resource, the reliability of a resource,
the battery power of the devices involved, etc.

This work differs from previous work because connections and the preferences
associated with them are determined dynamically in a changing environment.
In addition, all policy evaluations must be accomplished in a distributed and ad
hoc fashion because no infrastructure exists to facilitate service selection. The
specific novel contributions of this work fall in two categories. First, we define a
framework for preference specification. Second, we provide implementation paths
for incorporating these preferences into the application sessions framework.

This paper is organized as follows. First we overview the original applica-
tion sessions model. We then extend the model to include preference functions.
Section 4 describes related work, and Section 5 concludes.

2 The Application Sessions Model

The application sessions model [3] defined a set of interactions between ubiqui-
tous computing applications and services available in the applications’ immediate
surroundings. Our model explicitly separates the user program (i.e, the appli-
cation) from the session management infrastructure that manages coordination
with available providers. The only knowledge shared between the two are a spec-
ification (spec) that describes the desired service, and a provider handle (p) that
allows the application to access the provider the infrastructure connects it to.

Services and requests are described using semi-structured data [4], an ap-
proach common among description languages [5] and tuple based systems [6].
We use eLights [7], a flexible, lightweight tuple space implementation. Each
device maintains a local tuple space where it stores information in tuples. Ser-
vice providers describe service properties using tuples; a location service that
provides readings once a second may be described as:

〈(service , location), (frequency , 1 sec)〉

A service description may include additional tuple fields, e.g., format of infor-
mation, error rate, etc. Service requests are encoded as templates (or patterns)
over the description tuples. Content-based matching determines whether a de-
scription tuple matches a request template. An example template is:

〈(service , = location), (frequency , < 30 sec)〉

80 C. Julien

This request matches location services that have a frequency of less than 30 sec-
onds. A communication protocol underlying the application session framework
delivers request templates to providers [8], where matches are evaluated against
tuples in the provider’s local tuple space. No intermediate lookup service aids in
this process; providers respond directly to requests they receive. This autonomy
afforded by mobile ad hoc networks allows the framework to apply to dynamic
ubiquitous computing environments.

We focus on three specific session types from our model: the query session,
provider session, and type session. Detailed application examples that motivate
each session type can be found in [3]; they are omitted here for brevity. Each session
is represented as an assignment to a local handle that the requestor subsequently
uses as a proxy for the discovered service. Throughout our description, the entails
(|=) relation indicates that a resource satisfies a specification, i.e., in p |= spec, ser-
vice p satisfies spec. The selection of a matching provider uses non-deterministic
assignment [9] to indicate that a provider is selected from any that satisfy the speci-
fication.A statementx := x′.Q assigns tox a valuex′ nondeterministically selected
from among the values satisfying the predicate Q. If an assignment is not possible,
the statement aborts; we assume this results in assigning ε (a null value) to x.

A query session is a simple, one-time request for data from some remote
service. The application should be connected to a single matching service for the
duration of this interaction. The session provides no long-lived interaction with
the selected provider. We write the semantics of a query session as:

p = spec

� p = p′.(p′ |= spec ∧ p′.reachable)

The expression in the box denotes the particular session semantic. In this case,
the query semantic is expressed by assigning the specification to the handle p.
The value assigned is nondeterministically selected from all services that satisfy
the specification and are reachable. The reachable relationship models the re-
quirement that the two devices can communicate with each other, perhaps using
a multihop path in the ad hoc network.

The provider session supports applications that connect to a remote service
and perform several operations with that specific provider. This is useful, for
example, when an interaction produces state at both endpoints that is necessary
for subsequent interactions. The operational semantics can be written as:

p �← spec

� p = p′.(p′ |= spec ∧ p′.reachable)
if p 	= ε then

〈await ¬p.reachable → p = ε〉1
fi

1 The 〈await B → S〉 construct [10] allows a program to delay execution until the
condition B holds. When B is true, the statements in S are executed in order.
The angle brackets enclosing the construct indicate that the statement is executed
atomically, i.e., no state internal to S is visible outside the execution of S.

Adaptive Preference Specifications for Application Sessions 81

In a provider session, the infrastructure maintains the connection to a particular
resource given network dynamics. As long as the infrastructure can maintain a
connection to the initial provider, the provider session is maintained. When the
connection fails, the handle is assigned ε, which effectively notifies the application
that the requested resource is no longer available.

In contrast to the previous sessions, the particular service provider supplying
the resource in a type session can change during the session, as long as the new
provider also satisfies the request specification. An example is a connection to a
location server; the particular provider servicing a mobile device’s requests for
location readings is likely to change over time, but programming the application
is simplified if this dynamic binding is transparent to the application. We express
the type session formally as:

p ⇐ spec

� p = p′.(p′ |= spec ∧ p′.reachable)
while p 	= ε do

〈await ¬p.reachable → p = p′.(p′ |= spec ∧ p′.reachable)〉
od

If an attached provider becomes unreachable, the infrastructure attempts to lo-
cate a new provider that is reachable and matches the specification. As long as
such a provider is available, the application remains connected to one, nonde-
terministically chosen from those that meet the requirements.

These session types do not completely address the needs of ubiquitous com-
puting applications. What an application truly wants is the ability to request
that it is connected to the best available provider for some measure of “best” (for
example, the closest provider). We rectify this problem by introducing an expres-
sive preference function as an extension to the existing framework that continues
to hide the complexity of creating highly interactive ubiquitous applications.

3 Specifying Preference

The framework described above assumes that each provider that matches the
functional specification is equally well suited. In this work, we introduce a func-
tion (f) that evaluates properties of a potential matching service and its hosting
device, properties of the application and its hosting device, and properties of the
network that connects the two. The latter is important because our framework
supports dynamic connections between applications and services in mobile ad
hoc networks where ordinary devices must serve as routers for communication
among other hosts in the network. As such, the cost of supporting communica-
tion between two peers in the network (i.e., the application host and the service
provider) has impact on other devices in a manner that is not commonly cap-
tured by end-to-end quality of service approaches such as [11,12].

Our general framework for defining the preference function f relies on three
partial cost functions: fa(p), which defines the cost to application a of selecting

82 C. Julien

a particular provider p; fp(a), which defines the cost to provider p of servicing
application a; and fn(a, p), which defines the cost of a network path between
the devices hosting the application (a) and the potential provider (p). In com-
bination, the overall “global” preference function can be defined as:

f(a, p) = αfa(p) + ρfp(a) + νfn(a, p)

where α, ρ, and ν are system-specified constants that can place varying empha-
sis on the three different components under different operating conditions. The
provider that best satisfies this function at any given instant has a cost of:

coptimal = 〈min a, p : p |= spec :: f(a, p)〉2.

All of the partial cost functions (fa(p), fp(a), and fn(a, p)) return values
between 0 and 1, as described below, and α + ρ + ν = 1, so that the result of
evaluating the global preference function for any application/provider pair is a
value between 0 and 1. Each of the partial cost functions is also allowed to return
∞, which effectively vetoes that party’s participation in the session.

In the remainder of this section, we first revisit the model to show the revised
semantics of sessions with preferences. We then explore each of the partial cost
functions in more detail, describing how its behavior is implemented within our
tuple-based model. This is especially important in the case of network costs,
where our approach allows fn(a, p) to be computed as part of the underlying
communication protocol, thereby incurring minimal additional overhead.

3.1 Preference Based Application Sessions

Incorporating preferences into the application sessions model requires augment-
ing the operational semantics listed in Section 2 to ensure that the “best”
provider is chosen based on the global cost function. In this section, we express
the semantics in terms of the global cost function; in the subsequent sections we
show how these global semantics are implemented using the partial cost func-
tions described above. We abuse our own notation slightly here by writing f(p)
to indicate the global preference function f(a, p) because these definitions are
written from the application’s perspective (i.e., a is fixed in all cases). If p is
not reachable from a in the mobile ad hoc network, then the cost function has
a value of ∞, that is, ¬p.reachable ⇒ f(p) = ∞. How this is implemented is
described in Section 3.4.

The preference-aware query session simply selects the service provider to con-
nect based on minimizing the preference function:

2 In the three-part notation: 〈op quantified variables : range :: expression〉, the
variables from quantified variables take on all possible values permitted by range.
Each instantiation of the variables is substituted in expression, producing a multiset
of values to which op is applied, yielding the value of the three-part expression.
If no instantiation of the variables satisfies range, then the value of the three part
expression is the identity element for op, e.g., true if op is ∀ or 0 when op is min.

Adaptive Preference Specifications for Application Sessions 83

p = spec/f

� p = p′.(p′ |= spec ∧ p′.reachable∧ 〈∀π : π |= spec :: f(p′) < f(π)〉)

The provider session is similar; the best provider is selected, and no subsequent
reselection is performed:

p �← spec/f

� p = p′.(p′ |= spec ∧ p′.reachable∧ 〈∀π : π |= spec :: f(p′) < f(π)〉)
if p 	= ε then

〈await ¬p.reachable → p = ε〉
fi

The preference-aware type session is more complicated because not only must
it ensure that it initially selects the best match, but it has to constantly monitor
the available providers to ensure that this match remains the best one available:

p ⇐ spec/f

� p = p′.(p′ |= spec ∧ p′.reachable∧ 〈∀π : π |= spec :: f(p′) < f(π)〉)
while p 	= ε do

〈await ¬p.reachable ∨ 〈∃π : π.reachable∧ π |= spec ∧ f(π) < f(p)〉 →
p = p′.(p′ |= spec ∧ p′.reachable∧ 〈∀π : π |= spec :: f(p′) < f(π)〉)

od

The statement inside the loop ensures that the application is reconnected if a
better provider is available. As above, this assignment ultimately sets the handle
to ε if no satisfactory provider is available.

3.2 Implementing Application Preferences

The most obvious of the three components of the preference function is the ap-
plication requesting access to the service. Factors that influence the application
include aspects such as:

– service fidelity (i.e., the error rate in responses from the provider)
– service availability (i.e., the percentage of time the provider is responsive)
– proximity of the provider (i.e., location-dependent interactions tend to favor

closer providers)
– relative mobility (i.e., if both the application’s host and the provider’s host

can move, stable connections will involve low relative mobility)

The portion of the global preference function related to application preferences
is αfa(p). Effectively, the application provides a function that takes as a para-
meter a provider (or more specifically, attributes of a provider) and generates
a cost value. This is done for every potential provider, enabling the application
to select the lowest cost provider. Service providers generate attribute tuples in
their local tuple spaces that provide up-to-date information about the attributes
described above. As an example, a provider may output a velocity tuple:

84 C. Julien

〈(speed , my speed), (direction , my direction)〉

As the provider’s velocity changes, it removes this tuple and inserts a new tuple
representing the updated velocity. Service requests evaluating the cost for this
provider can access this information asynchronously to generate values for the
cost to this provider. The provider may not have a tuple for every attribute; if a
client request requires information about an attribute but the provider does not
provide it, the connection cannot be made.

The application’s cost function is provided as an active tuple as was introduced
in the Linda model [6]. An active tuple differs from the previously described
passive tuples in that it can contain uncompleted computation. In our case, the
active tuple encapsulates the computation that calculates the cost function’s
value for a particular provider:

〈(source , requester id), (costa, costa(. . .))〉
where the source field’s value indicates the unique id of the requesting device,
and the costa field’s value actually calculates the cost for the application to use
a particular provider. The communication protocol broadcasts this active tuple
to every host reachable in the network. This is excessive, since the network could
be very large; Section 3.4 shows how this broadcast is restricted to only provider
devices that are in a reasonable range to service the request.

The code implementing costa(. . .) for our example based on the relative mo-
bility between the service requester and the service provider has the form:

costa(my velocity)
rd([spec])
v = rdp(〈(speed , ?), (direction ?)〉)
if(v == null)

return ∞
else

return relative velocity(v, my velocity)

The first line is a blocking tuple space operation, a rd, which waits until it
encounters a tuple matching its argument (in this case the template representing
the service request). When the active tuple encounters such a match, the blocking
rd operation returns, allowing the cost function to continue. At this point, the
active tuple knows that it is at a location hosting a service provider that matches
the request. The second line is a probing (non-blocking) rdp operation that looks
for a tuple matching the provided template; in this case, a tuple containing speed
and direction information (where the values for the fields are unrestricted, as
indicated by the “?”). If no matching tuple exists, the operation returns null,
and the cost cannot be computed. If a matching tuple does exist, the result
is used to compute the relative velocity of the two devices (normalized to be
between 0 and 1). This example uses only one attribute of the provider, but
more attributes can be incorporated by looking for additional attribute tuples.
When the function returns, it automatically replaces the function portion of the

Adaptive Preference Specifications for Application Sessions 85

active tuple (the second field) with the returned value, resulting in a passive
tuple:

〈(source , requester id), (costa , relative velocity)〉

The underlying communication protocol responds to the presence of this tuple
and returns it to the requester. Each device within the network receives a copy of
the original active tuple; each device that supports a matching service executes
the active tuple, generating a cost for that service. Therefore, the requester
receives a cost tuple for each potential provider, allowing the application to
select the best option.

3.3 Implementing Provider Preferences

The second participant in the session that desires to to influence service selec-
tion is the service provider itself. Factors that might influence whether or not a
provider wants to participate in a session include:

– current provider load
– current battery level of provider device
– announced intended length of usage by the application requesting access (or

duration of session)
– periodicity of requests from the application

The portion of the global preference function related to the provider specified
preferences is ρfp(a). When a provider makes a service remotely available, it also
specifies a preference function that takes as a parameter an application (or more
specifically, attributes of a particular application and its request) and generates
a cost value for servicing that request.

The implementation of the provider preference adds to the process elucidated
in the previous section. Instead of the communication protocol responding to a
two-field passive tuple (the tuple containing the requester’s id and the application
cost value), the protocol responds only to a three-field active tuple:

〈(source , requester id), (costa , cost value), (costp , costp(. . .))〉

Before the communication protocol responds to this tuple, the provider device
removes the two-field tuple generated by evaluating the application’s cost func-
tion and replaces it with the above three-field tuple by inserting its own cost
function. This cost function is partially evaluated with respect to having values
filled in for needed provider attributes (e.g., current load), and when it arrives
at the requester, it reads attributes about the application requesting the service
(e.g., the frequency of requests). Once the communication protocol transports
this three-field tuple back to the requester (using the tuple’s first field, which
uniquely identifies the requester), the provider’s cost function completes its ex-
ecution using tuples read from the requester’s local tuple space.

86 C. Julien

3.4 Implementing Network Preferences

While the first two stakeholders (the application and the service provider) are
obvious, a third, often overlooked component is the network. Ubiquitous com-
puting applications like those mentioned in Section 1 are supported by mobile
ad hoc networks in which the nodes themselves serve as routers for connections
between devices that are not directly connected. These intermediate nodes have
a vested interest in ensuring the connections selected ensure the longevity of the
network as a whole. Factors that play into network preferences include:

– aggregate bandwidth available on potential transmission path
– number of network hops
– battery power available on intermediate nodes
– latency of the network connection

The portion of the global preference function related to the network is
νfn(a, p). This function has a static definition applicable across the entire net-
work and known to all applications, but the values that influence the cost calcu-
lated for a path are themselves dynamic. We have so far assumed a broadcast-
based communication protocol in which every request is delivered to every other
device in the network. Our communication protocol that incorporates the net-
work cost function embodies additional intelligence. A mobile ad hoc network
is made up of a set of devices connected by a graph in which vertices in the
graph are wireless devices and edges in the graph are direct connections between
devices that are physically close enough to be within communication range. A
mobile ad hoc network routing protocol can dynamically impose a tree on this
graph where the root of the tree is the requesting device and paths to other de-
vices emanate out from the root. Our resource requests move along these paths,
recalculating the network cost at every hop. If the network cost ever exceeds its
allowable threshold (provided statically by the network deployer to each node),
the message kills itself. Our network cost function allows more sophisticated
definitions, though the simple definitions can still be used to halt propagation.

When using all three cost functions in conjunction, the process changes slightly
again from the previous section. The static network cost function is provided to
every device, and any requesting device must place this cost function in its
request tuple:

〈(source , requester id), (costn , costn(costa(. . .), . . .)〉

where the network cost function (costn(. . .)) is the active portion of the tuple,
and the application’s cost function is invoked when a match is encountered. The
first line of the application’s cost function defined above is no longer necessary;
this matching of the application’s specification against the provider’s description
is performed within the network cost function.

The implementation of the network cost function has the following structure:

Adaptive Preference Specifications for Application Sessions 87

costn(costa(...), ...)
current cost = 0
max net cost = threshold
while(true)

if rdp([spec]) != null
out(〈(source , requester id), (costn , current cost), (costa , costa(. . .))〉

update cost(current cost)
if current cost < max net cost

forward self
else

out([garbage collecting active tuple])
return ∞

The rdp operation checks to see if the current device has a service that matches
the application’s request. If so, the function generates a dedicated tuple for re-
sponding from this provider and places it in the provider’s local tuple space.
Processing of this tuple proceeds as described above; the application’s cost func-
tion is evaluated first. When it finishes, the provider removes the tuple and re-
places it with a tuple containing its unevaluated cost function. The result tuple
now contains four fields, including a value for the network cost function.

Whether the current provider matched or not, the network cost function con-
tinues by updating the network cost stored within the active tuple. The sin-
gle statement update cost(current cost) encodes a more complicated process
that may involve carrying some state from one node to another and/or reading
values stored in local tuples (e.g., local available bandwidth information or re-
maining battery power). When the network cost function generates a cost value
that exceeds a specified threshold, it performs a sequence of steps that ensure
that the request no longer propagates and that it leaves no residue on the cur-
rent provider. This process suffices completely for query and provider sessions;
type sessions require the active tuple to remain resident and send updates back
to the requester if any of the cost values change. This allows the requester to
reconnect to a better provider as soon as one becomes available.

4 Related Work

Research projects have increasingly focused on providing applications dynamic
access to a changing set of resources. We highlight the most relevant projects,
especially with respect to how applications specify constraints or preferences on
selected resources. Many projects have focused on mediating quality of service
requirements by leveraging object mobility [13,14] to enhance application re-
sponsiveness and network-wide performance metrics. These approaches focus on
bringing objects closer to clients instead of on the notion that the clients them-
selves are mobile and resource usage may be inherently location-dependent.

Network sensitive service selection [15] observed the differences between per-
forming user-side resource selection (where the user collects necessary informa-
tion about available providers) and provider-side resource selection (where a

88 C. Julien

provider collects information about potential users). Work founded on these ob-
servations introduced the ability for applications to include network parameters
and requirements in resource requests.

In moving from network-sensitivity to awareness of quality of service (QoS),
service efficiency has been defined as a tradeoff between service coverage and
cost [16]. This work is extended in [17] which provides guaranteed availability
of a multimedia service in dynamic ad hoc networks using a combination of
algorithms that includes predicting network partitions. This work focuses on op-
timal creation and placement of service instances in dynamic ad hoc networks,
and therefore is sufficient only for non-location-dependent software services. Our
approach addresses the discovery of resources (both physical and software re-
sources) that are available in a local environment.

Work more closely related to our approach [11] differentiates QoS parame-
ters into metrics and policies and considers both constraints on the user of a
resource and constraints on the provider of that resource. This work does not
naturally accommodate dynamically changing QoS measurements and is limited
to traditional performance-style measurements (like bandwidth, reliability, load,
etc.). Our approach handles application-level requirements (e.g., location, mobil-
ity, etc.) and defines three categories of constraints (application-, provider-, and
network-specific constraints) instead of just two. This allows us to consider the
impact that a peer-to-peer interaction has on the rest of the network, not just its
impact on the direct participants. Other work [18] introduces formal modeling
tools that enable optimal service compositions to be selected given a static set
of QoS requirements. Our approach focuses on the ability of an infrastructure
to dynamically adapt such selections in response to changes in the underlying
network and service infrastructure.

A final important component of the work that was described in this paper
is its ambition to simplify the development of adaptive ubiquitous computing
applications. Along that same vein, previous work has created middleware so-
lutions to enable developers to easily specify the relationships between their
applications and QoS metrics [12]. In a similar manner, DySOA [19] enables
service compositions to dynamically evaluate the network status and adapt the
system at runtime to maintain a set of specified QoS parameters.

5 Conclusions

Our approach explicitly separates preferences into three categories, allowing the
application, the resource provider, and the network to each specify preferences
with regard to a potential resource interaction. At runtime, these preferences
are dynamically evaluated, and connections between applications and resource
providers are automatically maintained to ensure that these preference functions
are maximized and that no constraints are violated. This style of interaction is
essential to applications which function in long-lived ubiquitous computing envi-
ronments where applications’ interactions are inherently location, environment,
and task-dependent.

Adaptive Preference Specifications for Application Sessions 89

Acknowledgments

The author would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This research was funded, in part, by the NSF, Grant # CNS-0620245. The views
and conclusions herein are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

References

1. Kidd, C., Orr, R., Abowd, G., Atkeson, C., Essa, I., MacIntyre, B., Mynatt, E.,
Starner, T., Newstetter, W.: The aware home: A living laboratory for ubiquitous
computing research. In: Proc. of CoBuild. (1999)

2. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An ad hoc sensor
network infrastructure for emergency medical care. In: Proc. of BSN. (2004)

3. Julien, C., Stovall, D.: Enabling ubiquitous coordination using application sessions.
In: Proc. of Coordination. (2006)

4. Abiteboul, S.: Querying semi-structured data. In: Proc. of ICDT. (1997) 1–18
5. Christensen, E., Gubera, F., Meredith, G., Weerawarana, S.: Web services descrip-

tion language (WSDL) 1.1 (2001) Current as of 2005.
6. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4)

(1989) 444–458
7. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mobile

environments. In: Proc. of FSE. (2002) 21–30
8. Julien, C., Venkataraman, M.: Resource-directed discovery and routing in mobile

ad hoc networks. Technical Report TR-UTEDGE-2005-01, Univ. of Texas (2005)
9. Back, R., Sere, K.: Stepwise refinement of parallel algorithms. Science of Computer

Prog. 13(2-3) (1990) 133–180
10. Andrews, G.: Foundations of Multithreaded, Parallel, and Distributed Program-

ming. Addison Wesley (1999)
11. Liu, J., Issarny, V.: QoS-aware service location in mobile ad hoc networks. In:

Proc. of MDM. (2004) 224–235
12. Nahrstedt, K., Xu, D., Wichadakul, D., Li, B.: Qos-aware middleware for ubiqui-

tous and heterogeneous environments. IEEE Comm. Magazine (2001) 140–148
13. Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Anderson, T., Ber-

shad, B., Borriello, G., Gribble, S., Wetherall, D.: System support for pervasive
applications. ACM Trans. on Computer Systems 22(4) (2004) 421–486

14. Holder, O., Ben-Shaul, I., Gazit, H.: Dynamic layout of distributed applications
in FarGo. In: Proc. of ICSE. (1999) 163–173

15. Huang, A.C., Steenkiste, P.: Network-sensitive service discovery. Journal of Grid
Comput. 1(3) (2003) 309–326

16. Li, B.: QoS-aware adaptive services in mobile networks. In: Proc. of IWQoS.
Volume 2092 of LNCS. (2001) 251–268

17. Li, B., Wang, K.: Nonstop: Continuous multimedia streaming in wireless ad hoc
networks with node mobility. IEEE Journal on Selected Areas in Comm. 21(10)
(2003) 1627–1641

18. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with
multiple QoS constraints. In: Proc. of ICSOC. (2005) 130–143

19. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making service systems
self-adaptive. In: Proc. of ICSOC. (2005) 255–268

Mobile Ad Hoc Services: Semantic Service Discovery in
Mobile Ad Hoc Networks

Andronikos Nedos, Kulpreet Singh, and Siobhán Clarke

Distributed Systems Group, Trinity College Dublin, Ireland

Abstract. Mobile ad hoc networks (MANETs) are a class of networks where
autonomous mobile devices with wireless communication capabilities cooperate
to provide spontaneous, multi-hop connectivity. The opportunistic and dynamic
characteristics of these networks make discovery of services difficult as they pre-
clude the use of agreed, predefined service interfaces. Using semantic services
and permitting their description with multiple domain ontologies is more realis-
tic in this environment because it increases service expressiveness and does not
require consensus on a common representation. However, the techniques used
in resource-rich, globally connected environments to relate different ontologies
and discover semantic services are inappropriate in MANETs. We present here a
model for semantic service discovery that facilitates distributed ontology match-
ing and provides scalable discovery of service provider nodes. It uses a gossip
protocol to randomly disseminate ontology concepts and a random walk mecha-
nism to identify candidate providers. The model requires no central coordination
and the use of randomisation gives it good scalability properties.

1 Introduction

Mobile ad hoc networks are composed of autonomous, wireless nodes which act as
mobile routers to provide communication without the need for fixed infrastructure.
These networks have an opportunistic aspect as they can form anywhere with little
or no coordination. The resulting unpredictability is both appealing and problematic.
While these networks require no existing infrastructure, their decentralised topologies
make resource identification challenging. In this paper we examine the issue of service
discovery in MANETs given the assumption of service role symmetry in nodes, that is,
each node has the potential to be both a service provider and a consumer.

Current service description and discovery mechanisms in MANETs [1,2], rely on stan-
dardised interfaces to achieve the necessary consensus that makes advertising and dis-
covery possible. While this is usually sufficient in environments that are centrally admin-
istered, it poses a serious problem for serendipitous application interoperability in open,
distributed systems. For uncoordinated service interaction in MANETs, service based
applications would benefit from an expressive service specification language, increased
autonomy in the description of individual services and distributed discovery mechanisms.

The use of ontologies in the description of services has already been proposed as a
solution for more flexible discovery [3,4]. However, most semantic service description
languages and architectures require a globally connected network such as the web. In
ad hoc networks, assumptions of global connectivity do not hold because the properties

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 90–103, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Mobile Ad Hoc Services: Semantic Service Discovery in Mobile Ad Hoc Networks 91

of the environment are drastically different. One core difference in our model is that
nodes do not share a common semantic representation for their services but instead it is
assumed that semantic agreement can be derived through node interaction. We believe
that this a more appropriate assumption that is in line with the network’s uncoordinated
and spontaneous formation. Violating this assumption would require either one global
ontology to describe all services or maintenance of all potential ontologies in each node.
The former is restrictive while the latter is not practical. The idea of semantic decen-
tralisation is also present in decentralised P2P networks [4,5] but has not yet appeared
in the domain of mobile ad hoc networks. Below we present a summary of MANET
characteristics that form the assumptions of our proposed model:

– Nodes can be both providers and consumers of services. This symmetry precludes
the use of centralised brokering architectures. Instead, discovery facilities should
be distributed across the participating mobile nodes.

– Nodes are autonomous and consist of small, low-powered devices that can belong
in different administrative domains. The implications of this are that applications
will be coming from different sources and can be developed independently without
a central distribution channel.

– Connectivity is local to the network with no guarantees for Internet availability. This
characteristic enforces designs where applications are both self-contained and reac-
tive. Applications will need to function in the absence of any service but also be able
to discover and use any desired services as provider nodes connect to the network.

– Connectivity is also intermittent with nodes appearing and disappearing at any
moment. Assuming that participating nodes have similar processing capabilities,
any load imposed by service discovery has to be shared uniformly. Increasing the
processing overhead in select nodes is not desirable and it also leads to extra proto-
col complexity caused by node election and mandatory fault-tolerant behaviour.

The contribution of this paper is the description of a network model for the discov-
ery of autonomous semantic services in MANET environments. An evaluation based
on simulation demonstrates good scalability characteristics as the number of nodes and
ontology sizes increase. Although this paper is focused on the network support for the
discovery part, the tight dependency to a gossip protocol that is used to facilitate dis-
covery and match heterogeneous ontologies necessitates a brief description presented
in section 2.2.

The paper is organised as follows. Section 2 introduces the model and the underlying
gossip-based protocol. Section 3 describes how we specify services and discusses the
ontology matching algorithm. In Section 4 we present the random walk protocol for
semantic service discovery in MANETs. Section 5 presents the evaluation results while
we conclude with the state of the art and final remarks in Sections 6 and 7.

2 A Model for Semantic Service Discovery in MANETs

Recent standards for semantic web services, e.g., WSMO, OWL-S, WSDL-S, spec-
ify how services are described but are independent of any concrete mechanisms for
the discovery of services. To enable the use of such standards in an environment where

92 A. Nedos, K. Singh, and S. Clarke

provider nodes are autonomous and no fixed infrastructure exists, we have identified
two problems that discovery has to address:

Discovery queries must be interpreted by nodes with heterogeneous ontologies – So
far a single domain ontology has been assumed for the description of MANET services.
This makes possible the direct evaluation of discovery queries between different mobile
nodes. We argue that given the opportunistic and unpredictable interaction patterns in
MANETs, it is inappropriate to assume that a global ontology is available in every
mobile node. Rather, each autonomous node will maintain its own ontology to describe
its own services. Since a shared understanding is still required for meaningful semantic
interpretation and service interaction, an ontology matching process is needed.

Lack of persistent and centralised service registries – In connected, fixed networks,
certain assumptions can be made about longevity of ontology references. Usually, a
URI reference is enough for clients to obtain an ontology from a central repository.
Resource availability and infrastructure support in these environments also means that
ontology matching and semantic service discovery can employ sophisticated techniques
that make use of central facilities. In MANETs, transient communication renders bro-
kering architectures harder to support. In addition, the self-contained nature of ad hoc
networks means that only ontologies in the participating nodes can be used.

Part of the proposed solution is based on a gossip protocol that exchanges randomised
subsets of concepts between nodes. On each node, received concepts are stored in a buffer
until certain conditions are met. As a consequence, this buffer holds a constantly evolving
and randomised set of concepts. A lightweight ontology matching mechanism in each
node matches received concepts with those stored in the node’s buffer. We consider this
random set of concepts maintained by each node to be a view on all ontologies that has
the following properties: It is partial, since no view contains the union of all concepts
of all ontologies; it is evolving, the gossip protocol constantly inserts and removes con-
cepts from this view while the matching algorithm in each node establishes associations
between received and stored concepts; it is randomised since each view does not con-
tain a set of concepts that concretely describe a knowledge domain, rather it contains
randomised concepts that can belong to any of the available ontologies.

2.1 System Model

We consider an ad hoc network N = {n1, n2, · · · , nm} as a set of mobile nodes ni ∈ N
of size m. Each mobile node is considered to be an active participant that provides ser-
vices described by an ontology. Each node maintains three different views. The ontology
view, the concept view and the node view. We denote each of the three views at node ni

as V O
i , V C

i and V N
i correspondingly.

The ontology view represents an ontology in each node as a fixed set of concepts,
V O

i = {ci1, · · · , cig}. Here, cil ∈ V O
i , 1 ≤ l ≤ g is a concept in the ontology of

source node ni while g represents the maximum number of concepts. We assume that
these ontologies are static so this view allows no additions or deletions of concepts
for the duration of the protocol execution. This assumption is reasonable as ontolo-
gies are structured metadata, meaning they are specified during application design and
don’t change often. In contrast, services are described as metadata instances and their
description can change at any time.

Mobile Ad Hoc Services: Semantic Service Discovery in Mobile Ad Hoc Networks 93

The concept view includes the set of concepts that are received from other nodes
and does not allow duplicate concepts or concepts that exist already in the same node’s
ontology view. We represent this view as V C

i = {ckl |ckl ∈ V O
k , k ∈ N − {ni}, 1 ≤

l ≤ g}, where ckl represents any concept from any ontology view other than the one
in node ni. The concept view has variable size, i.e., concepts are added and removed
during the execution of the protocol but the gossip protocol guarantees that V C only
contains a subset of the overall concepts.

The node view is composed by a set of node identifiers, V N
i = {nk|k ∈ N −

{ni}}. It maintains a uniform, randomised, partial and fixed-size set of node ids and is
populated during a bootstrap phase. Like the concept view it does not allow duplicate
node identifiers and does not contain the node’s own id.

The consequences of maintaining the two partial views (V N and V C) is that no node
holds the complete knowledge of all participating nodes or all ontology concepts. This
helps applicability in a large scale setting. The gossip protocol is completely charac-
terised by the following parameters:

– Fc: The concept fanout specifies the number of concepts a source node includes in
a gossip transmission,

– Fn: The node fanout specifies the number of target nodes a gossip message is sent
to,

– agethreshold: Specifies the number of times a node transmits a received concept be-
fore the concept is removed from V C . For convenience, we define function age(c)
that takes concept c as input and returns its age.

– ttlgossip: This value is assigned by each source node to any concepts from V O that
are selected for transmission. It specifies the number of hops that c will traverse
before being discarded when c.ttl reaches zero.

2.2 Gossip Protocol

We describe here a gossip protocol that transmits random subsets of concepts between
the participating mobile nodes. The protocol is executed in every node and is described
in terms of the actions taken during the reception and transmission of a gossip message.

On reception, a node executes the algorithm described in Listing 1. The algorithm
first matches the set of concepts included in the transmission against its stored concepts.
This is shown in line 3. Subsequent to matching, lines 4 – 6 show that if a concept is
not found in either the concept or the ontology view and the concept’s ttl is greater to
one, it will be stored at the receiver’s concept view.

Each gossip reception results in progressing the system’s shared semantic knowledge
in an incremental fashion. Through an ontology matching algorithm, described in sec-
tion 3.1, each message has the potential to create new associations between concepts
from different ontologies. A concept view size that is bound by the protocol and a fixed
concept fanout ensure that nodes are not overwhelmed with matching large ontologies.
Although the redundancy that is inherent in gossip protocols can seem excessive, it is this
very feature that allows progressive matching through concept transmission and scalable
discovery through concept replication. A gossip approach also avoids flooding, which
in multi-hop networks can significantly increase traffic as the network size grows.

94 A. Nedos, K. Singh, and S. Clarke

Listing 1. Gossip Reception
1: On reception of gossip at node j
2: for all c ∈ gossip.concepts do
3: Execute ontology matching algorithm between c and V O

j V C
j

4: if c /∈ V O
j ∧ c /∈ V C

j ∧ c.ttl > 1 then
5: c.ttl ← c.ttl − 1
6: V C

j = V C
j {c}

7: end if
8: end for

Listing 2. Gossip Transmission
1: Every t ms at node j
2: Choose X = {cj1, . . . , cjl} random concepts from V O

j V C
j , with l = Fc

3: for all c ∈ X do
4: if c ∈ V O

j then
5: c.ttl ← ttlgossip

6: end if
7: if c ∈ V C

j ∧ age(c) = agethreshold then
8: V C

j ← V C
j − {c}

9: else if c ∈ V C
j then

10: c.age ← age(c) + 1
11: end if
12: end for
13: gossip.concepts ← X
14: Choose Y = {n1, . . . , nFn} random nodes from V N

j

15: for all r ∈ Y do
16: send(r, gossip)
17: end for

Listing 2 describes the transmission of a gossip message. In each timeout, a node se-
lects Fc concepts at random from the union of the ontology and concept views. Any item
from the concept view that has been transmitted agethreshold times is removed from
that view. This selection algorithm is simple and exhibits a desirable adaptive behav-
iour. During the initial stages of gossip transmission, a node’s priority is to disseminate
its own ontology so that its semantic information is diffused throughout the network.
Since the concept view contains few elements during the initial rounds, concepts from a
node’s ontology have a higher probability of being selected for transmission. A more in-
depth description and analysis of the gossip protocol together with experimental results
can be found in [6]. It is omitted here for space considerations.

With the dissemination of concepts by the gossip protocol, we can now discover ser-
vices based on their semantic description. Concept based service discovery has been
used previously in the context of P2P networks by [7] and [8]. It corresponds to discov-
ery of services not by mere syntax but by their semantic properties. In the distributed
setting that we consider here, concept discovery can provide an ideal method to identify
relevant services.

Mobile Ad Hoc Services: Semantic Service Discovery in Mobile Ad Hoc Networks 95

3 Semantic Service Description

We have chosen the Resouce Description Framework Schema (RDFS) [9] to model
ontologies and to represent service description and queries. RDFS, although limited in
its modelling constructs, can provide adequate expressiveness for our demo prototype
and the scenario types we consider. There is currently no service standard in RDFS, so
we have defined a minimal service specification based on the service profile of OWL-S.
An example of an RDFS-based service instance is shown in Fig. 1a.

In the proposed model it is concepts rather than services that are advertised and
discovered. This provides the required flexibility to enable the progressive ontology
matching and the concept-based discovery of services. However, the decomposition of
ontologies into concepts and the distribution of concepts across the network imposes
certain requirements on the concept’s syntax. Ontology languages like RDFS and OWL
were not designed for this task so the syntax of advertised concepts had to be aug-
mented. We call this syntax the network representation of a concept to distinguish it
from the normal representation a concept has in an ontology. Figure 1b shows an in-
stance of a concept network representation. This advertised syntax needs to contain
enough information to satisfy two distinct requirements:

1. Discovery of service providers. A first step to service discovery is the identification
of nodes with ontologies compatible to the ontology of the node that initiated the
discovery query. To achieve this we use the following properties. First, the gossip
protocol enables the dissemination of concepts to any of the participating nodes.
Second, as we show in Section 4, a discovery query can be formulated as a set
of concepts. If we now embed the source node identifier in each concept network
representation, we can facilitate the discovery of service provider nodes.

2. Pair-wise concept matching. Properties in most ontology languages (e.g. object or
datatype properties in OWL) are first-class entities and are usually defined outside
the scope of concepts. For the semantic interpretation of discovery queries we rely
on concept matching and specifically on the name and property correspondence
between concepts from different ontologies. By embedding concept properties in
the network representation we can facilitate matching in any participating node.
Section 3.1 elaborates on the issue.

3.1 Ontology Matching

Scarcity of computational resources and transient communication necessitates a light-
weight and practical approach for matching heterogeneous ontologies. Syntactical ma-
tching is more appropriate because it requires less resources. Semantic matching on
the other hand can produce more accurate integration, but requires complex inferencing
over the candidate ontologies. For the initial implementation described in this paper we
have used an algorithm similar to intermediate matching of H-Match [10]. We assume
that all participating nodes share the same matching algorithm. Each node records a
match between two concepts when their respective names are syntactically equal and
each of their properties match in type and name. We note however that details of ontol-
ogy matching are outside the scope of this work. What is of interest is the utilisation of
the matching relationship after it has been established.

96 A. Nedos, K. Singh, and S. Clarke

<rdf:RDF xml:lang="en"
<om:Service rdf:ID="aService">

<om:hasInput rdf:resource="#ConceptA"/>
...
<om:hasOutput rdf:resource="#ConceptB"/>
...

</om:Service>
</rdf:RDF>

<rdfs:Class rdf:ID="C">
<om:source rdf:resource="192.168.1.2"
<om:isSubClassOf rdf:resource="#C"/>
...
<om:hasProperty rdf:resource="P1"/>
<om:hasProperty rdf:resource"P2"/>
...

</rdfs:Class>

a. A service instance in XML. b. A concept’s network representation in XML.

Fig. 1. Representation of a service and a concept’s advertised syntax

We define the concept matching relationship as a transitive and symmetric relation.
For example, if ci, cj and ck represent concepts in V O

i , V O
j , V O

k ; M the matching rela-
tion, and a match exists between ci, cj and also between cj , ck, the following matches
are inferred:

1. ciMcj ⇔ cjMci,
2. cjMck ⇔ ckMcj

3. ciMcj ∧ cjMck ⇒ ciMck.

The exact semantics of the matching relationship depend on the strength of the matching
mechanism. Here, we have reduced the scope of matching to an equivalence relationship
that is similar to the owl:equivalentClass property in OWL. Other relationship
types are also possible, for example kindOf or partOf relationships.

There is a dependency between the network representation of concepts and the ac-
curacy of the matching algorithm. If the network representation of a concept contains
only its name, it is difficult for any algorithm to produce an accurate match between
concepts. In the current prototype, the concept network representation includes any
properties that have the specific concept as their domain concept in addition to proper-
ties inherited through the RDFS subClassOf and subPropertyOf relations.

4 Discovery and Matchmaking of Services in a Distributed
Environment

In centralised architectures like UDDI or where broadcast facilities are available (e.g.,
LANs), mechanisms for service discovery can use existing infrastructure. A query to
a well known URL or a broadcast request can return any available services that match
certain criteria. Neither of these facilities are available in MANETs.

Our proposed mechanism for service discovery is distributed and is overlayed on top
of the gossip protocol described previously. The discovery process has two phases: 1)
the identification of candidate nodes with compatible ontologies and 2) the redirection
of the discovery query to the candidate nodes for the final service matchmaking. Dur-
ing the first phase, a random walk mechanism aggregates the addresses of nodes that
have ontologies with concepts that match the concepts in the discovery query. These are
addresses of potential service providers since matching relationships indicate partially
compatible ontologies. Depending on the matching progress and the number of hops
before the discovery query expires, it is expected that candidate nodes will be identified

Mobile Ad Hoc Services: Semantic Service Discovery in Mobile Ad Hoc Networks 97

Fig. 2. The two phase semantic service discovery

with high probability. In the second phase, the query is redirected to the discovered
nodes where semantic matchmaking of available services can take place. Figure 2 illus-
trates the process.

4.1 Aggregation of Candidate Nodes

We introduce the following definitions:

– We call a node that initiates a discovery query, the query’s source node.
– We formulate a service query as a set of In and Out concepts. We represent such

a query as:
Q = {(c, T), . . . , |c ∈ V O, T = {In, Out}},

where T is a parameter type and c a query concept from a node’s ontology view.
– We define the semantic context of a concept as its super and sub-concepts.
– As the semantic context of a concept can be the complete ontology, we bound the

context with a parameter τ .
– If superτ (c) and subτ (c) give the set of super and sub-concepts for concept c, then

we represent the semantic context of all query concepts in Q using the set:

Hτ = {superτ(c) ∪ subτ (c)|∀c ∈ Q}
The first step to service discovery is to identify nodes with concepts that match all the

concepts in a query. A simple mechanism would identify candidate nodes by examining
only the source’s V O and would immediately redirect the query to the identified nodes.
This is straightforward since each concept embeds predicates for any matching concepts
and their corresponding source node identifiers.

98 A. Nedos, K. Singh, and S. Clarke

There are two problems with this approach however. First, progressive matching
can take time to terminate, so concepts in a node’s ontology might contain only partial
matches. This can result in discovery queries with fewer hits. To increase the probability
of finding candidate nodes the query is forwarded to a small subset of nodes using a
random walk.

Second, semantic services provide a more flexible discovery mechanism because
of subsumption-based discovery. This makes provided services described by concepts
that are subsumed or subsume concepts in a query still valid. We look for matches
not only for the query concepts, but also for the concepts that constitute the semantic
context of the query concepts. The rationale is that if the parent of a query concept has
a match, while the actual query concept has no matches, a provided service can still be
compatible when defined against the concept matched by the parent. In other words, a
candidate node is one that has an ontology with concepts that match any concept from
the semantic context of all query concepts.

The algorithm for discovery is specified in Listing 3. We first formulate a service
query by selecting a number of query concepts from a node’s V O . Apart from Q and H ,
a discovery query requires a third set recording the results of the random walk protocol.
Note that Q and H need not contain the complete concept representation. If the qualified
name of a concept includes the node’s address, e.g., a URI of the formnode://<node
address>/<concept name>, that would be enough to uniquely identify concepts
and avoid name clashes.

Matches are stored in R = {(c, {id1, . . . , idn}), . . . , |c ∈ Q ∪ H}, where id is the
identifier of a node that has an ontology with a concept matching c. To simplify our
description we define a function fS(c) where c is a concept with c ∈ S and S can
be either of the two views, i.e., V O , V C or R. This function returns the set of node
identifiers of all matched concepts currently embedded in c.

After formulating the discovery query, line 2 shows a first set of matches being
recorded at the source node. In a situation where matching has been completed between
all ontologies, this first set would represent all possible matches. We take the general
case however and assume that matching is still ongoing (i.e., gossip protocol continues
to execute). The query is then forwarded to a small number of nodes to increase the
probability that all potential matches are identified. These nodes are selected using a
random walk. To avoid visiting all nodes, we bound the random walk with a ttlquery

parameter. This parameter can be set independently by each source and is necessary
because the distributed nature of matching makes it hard to devise adaptive termination
criteria (e.g., terminate the query when all matches are found).

Until the query’s ttl reaches zero, each receiving node will augment R with any
extra information it might contain and will forward the query to another random node
selected from V N . To avoid visiting a node multiple times the query records the id of
each node in the random walk.

For clarity, in line 6, we omit the extra step of recording node ids by transitively
following matched relationships. The condition shown, is that if the receiving node
contains new matches for the query concepts, R is updated with the new matches. Line
11 is the condition to identify the set of nodes that have concepts compatible with all
the query concepts or their semantic context.

Mobile Ad Hoc Services: Semantic Service Discovery in Mobile Ad Hoc Networks 99

Listing 3. Discovery of Service Provider Nodes
1: discovery ← {Q, H,R}
2: At source node: R ← fV O (c), ∀c ∈ Q ∪ H
3: discovery.ttl ← ttlquery

4: At each node receiving discovery during the random walk:
5: for all c ∈ Q ∪ H do
6: if c ∈ V C and fR(c) ⊂ fV C (c) then
7: R ← fR(c) ∪ fV C (c)
8: end if
9: end for

10: if discovery.ttl = 0 then
11: D = c∈Q(fR(c) ∪ ∀x ∈ subτ (c).fR(x) ∪ ∀x ∈ superτ (c).fR(x))
12: ∀i ∈ D : redirect query to node i
13: else
14: Choose a random node id r from V N

15: discovery.ttl ← discovery.ttl − 1
16: Forward query to r
17: end if

5 Evaluation

We have implemented the gossip protocol and the first phase of the discovery protocol.
For evaluation purposes we simulated networks of 20, 40 and 60 nodes. We are inter-
ested in the evaluation of the random walk mechanism, so to simplify the simulations
we used complete node views. Each node now contains the complete set of participating
nodes, rather than a partial one. This simplification does not alter the correct functioning
of the algorithm.

Each node maintains its own unique ontology composed of 10 concepts, i.e., |V O| =
10. These are test ontologies in RDFS that are generated automatically for evaluation
purposes and have no semantics. Matching between these generated ontologies is gua-
ranteed by randomly specifying predefined matching relationships. In these predefined
relationships, each concept can select another concept with a certain probability and
can also be selected by other concepts provided they are not from the same ontology.
Predefined matching is only an indication for the real matching relationship. Matching
still materialises only when two concepts are actually compared.

We want to investigate the scalability properties of the system as the number of nodes
and the number of concepts increase. We also want to investigate whether the number
of concepts in Q ∪ H have an impact on discovery. To this effect, we have conducted
repeated trials with varying network and query sizes. The following parameters held
constant values: Fc = 4, Fn = 2, ttlgossip = 2, agethreshold = 2.

Each of the 3 experimental setups corresponding to the different network sizes were
run 20 times. In each setup, different discovery queries are run at certain system rounds.
A system round is counted after every node transmits a gossip message. Every 5 rounds,
the following process is repeated 30 times. A node is selected at random and a discovery

100 A. Nedos, K. Singh, and S. Clarke

query is initiated from that node. Query concepts are also randomly selected from each
source node. We issue two types of queries:

1. To assess discovery as the network size grows, we fix the query concepts to 2 and
the value of ttlquery to 3.

2. For the evaluation of query sizes, we initiate successive queries with an increasing
number of concepts that range from 1 – 4 and keep the ttlquery value constant at 2.

Overall, 150 queries are initiated every five rounds with each experimental setup lasting
for 200 rounds.

Fig. 3. Total discovery ratio vs. rounds

Figure 3 shows the mean discovery ratio between the matches discovered during the
random walk and the total predefined matches for the query concepts. For each query
and in each hop we divide the number given by |fR(c)|, ∀c ∈ Q∪H against the number
of predefined matches for each c. This ratio indicates the degree to which all predefined
matches have been discovered. Any query concepts not belonging to a matching relation-
ship are excluded from the calculation. Crosses represent the hops in the random walk.
In each vertical line, the lowest cross represents the discovery ratio at the source node.

We observe that the difference in the discovery ratio between hops increases, albeit
by a small percentage, as rounds progress. The overall ratio though increases expone-
ntially with the number of rounds, until it reaches 1. This shows the strong dependency
between discovery and matching. During the initial rounds, matching associations have
not yet being established, so the discovery ratio is low. As more concepts are progressi-
vely disseminated across nodes, the network augments its shared knowledge.

Figure 4 shows the mean discovery ratio between the matches discovered during the
random walk and the network matches. This ratio is calculated by dividing the num-
ber given by |fR(c)| in each hop against the number of matches that exist for concept c
across the network. In other words, if c is replicated across k nodes, the network matches

Mobile Ad Hoc Services: Semantic Service Discovery in Mobile Ad Hoc Networks 101

Fig. 4. Network discovery ratio vs. rounds

are calculated as: |⋃i∈k fV C
i

(c)|. This is an alternative measure for the performance
of the random walk since it reflects the current state of ontology matching rather than
the ideal state. In that respect we expect this ratio to be high in the beginning when
matching associations are low, drop as more matching associations become available in
the network and finally stabilise close to 1. We observe this behaviour in all cases. It is
also possible for this ratio to exceed 1, as transitive matching means that a query might
record more matches than what is found in the replicated query concepts.

Finally, Fig. 5 depicts the discovery ratio for queries with a varying number of query
concepts. In this experiment, the discovery ratio is the value recorded on the last hop.
There does not appear to be a significant difference in discovery when increasing the
number of concepts. This is a good result indicating that including the semantic context

Fig. 5. Total discovery ratio vs. query concepts

102 A. Nedos, K. Singh, and S. Clarke

of query concepts or expressing complex service queries, both of which may contain
a large number of concepts, have no impact on the discovery of provider nodes. One
can see more clearly in this figure the discovery latency as the number of ontologies
increase. After 40 rounds, the discovery ratio is approximately 90%, 80% and 75% for
20, 40 and 60 nodes correspondingly.

If we measure scalability in terms of the discovery ratio against an increasing net-
work size, we observe that with a bounded number of hops (ttlquery) the model de-
scribed here eventually provides a high discovery ratio, conditional on the progress of
ontology matching. A fundamental trade-off in the proposed model is between a dis-
covery query that can return partial results in few hops even with a large number of
provider nodes and the latency of complete results that the progressive matching ap-
proach entails. Although the effectiveness of the random walk is lower than expected, it
can still increase the discovery ratio but its use should be weighted against the potential
cost of extra routing traffic.

6 Related Work

The work presented here stands at the intersection of decentralised mechanisms for
data dissemination and semantic services with an emphasis on scale and autonomy of
interaction. Initial research in service discovery for MANET environments was mainly
focused on distributed discovery protocols, e.g., [11]. This however assumed strict as-
sumptions on service names and interfaces so that services could interoperate. Subse-
quent work, such as GSD [1] developed a service framework based on the semantic
description of services. However, it was based upon the implicit assumption that nodes
maintain a common global ontology. Current research is beginning to accept that in
open distributed systems knowledge will be decentralised.

The assumption of heterogeneous domain ontologies for semantic services follows
closely the evolution of semantic P2P networks. Networks such as EDUTELLA [7]
assume that not only data is distributed but metadata descriptions are also decentralised
and not uniform. Since in P2P networks a broader set of assumptions can be made about
resource availability and peer failure rates more sophisticated techniques for ontology
matching are feasible.

7 Conclusion and Future Work

We have presented a novel model to support semantic service discovery in MANETs
given the assumptions of autonomous mobile nodes and heterogeneous ontologies. The
model supports the progressive matching of ontologies and the decentralised discovery
of semantic service provider nodes. Discovery is facilitated by a random walk mecha-
nism that uses concept discovery to find matching concepts. As future work we plan to
study the network overhead imposed by the gossip and the random walk protocol and
generalise the specification of discovery queries to include Description Logics derived
languages.

Mobile Ad Hoc Services: Semantic Service Discovery in Mobile Ad Hoc Networks 103

References

1. Chakraborty, D., Joshi, A., Finin, T., Yesha, Y.: Gsd: A Novel Group Based Service Dis-
covery Protocol for MANETs. In: Proceedings of the 4th IEEE Conference on Mobile and
Wireless Communications Networks (MWCN’02), IEEE Press (2002)

2. Kozat, U.C., Tassiulas, L.: Network layer support for service discovery in mobile ad hoc
networks. In: IEEE INFOCOM. Volume 22. (2003) 1965–1975

3. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview (2004) W3C
Recommendation.

4. Aberer, K., Cudré-Mauroux, P., Ouksel, A.M., Catarci, T., Hacid, M.S., Illarramendi, A.,
Kashyap, V., Mecella, M., Mena, E., Neuhold, E.J., De Troyer, O., Risse, T., Scannapieco,
M., Saltor, F., de Santis, L., Spaccapietra, S., Staab, S., Studer, R.: Emergent Semantics
Principles and Issues. In: DASFAA 2004. (2004) 25–38

5. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: A framework for semantic gossiping. SIG-
MOD Rec. 31 (2002) 48–53

6. Nedos, A., Singh, K., Cunningham, R., Clarke, S.: A Gossip Protocol to Support Service
Discovery with Heterogeneous Ontologies in manets. Technical Report TCD-CS-2006-34,
Distributed Systems Group, Computer Science Department, Trinity College Dublin (2006)

7. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M.,
Risch, T.: Edutella: A P2P Networking Infrastructure Based on RDF. In: Proceedings of the
11th International Conference on World Wide Web (WWW’02), New York, NY, USA, ACM
Press (2002) 604–615

8. Castano, S., Ferrara, A., Montanelli, S., Pagani, E., Rossi, G.: Ontology-Addressable Con-
tents in P2P Networks. In: Proceedings of the 1st WWW International Workshop on Seman-
tics in Peer-to-Peer and Grid Computing (SemPGRID ’03), Budapest, Hungary (2003)

9. Brickley, D., Guha, R.: Resource Description Framework RDF Schema Specification 1.0
(2000) W3C.

10. Castano, S., Ferrara, A., Montanelli, S.: H-match: an algorithm for dynamically matching
ontologies in peer-based systems. In: SWDB. (2003) 231–250

11. Kozat, U.C., Tassiulas, L.: Service discovery in mobile ad hoc networks: an overall perspec-
tive on architectural choices and network layer support issues. Ad Hoc Networks 2 (2004)
23–44

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 104 – 115, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Discovering Web Services and JXTA Peer-to-Peer
Services in a Unified Manner

Michael Pantazoglou, Aphrodite Tsalgatidou, and George Athanasopoulos

Department of Informatics & Telecommunications,
National & Kapodistrian University of Athens, 15784, Greece
{michaelp, atsalga, gathanas}@di.uoa.gr

Abstract. Web services constitute the most prevailing instantiation of the
service-oriented computing paradigm. Recently however, representatives of
other computing technologies, such as peer-to-peer (p2p), have also adopted the
service-oriented approach and expose functionality as services. Thus the
service-oriented community could be greatly assisted, if these heterogeneous
services were integrated and composed. A key towards achieving this
integration is the establishment of a unified approach in service discovery. In
this paper, we describe some features of a unified service query language and
focus on its associated engine, which is used to discover web and p2p services
in a unified manner. We exemplify how our unified approach is applied in the
case of web and p2p service discovery in UDDI and JXTA, respectively.
Additionally, we demonstrate how our service search engine is able to process
heterogeneous service advertisements and thus to exploit the advertised
syntactic, semantic, and quality-of-service properties during matchmaking.

1 Introduction

The service-oriented computing (SOC) paradigm has been successfully instantiated
by the technology of web services. To date, most of the core aspects of web services
have been standardized and, specifically with regard to their discovery, the Universal
Description, Discovery and Integration (UDDI) [1] specification has been established
as the preferred model of choice. Recently however, other types of services have also
emerged such as peer-to-peer (p2p) services [2], fostering a new model for service
sharing, discovery and reuse. Among the most well known p2p technologies currently
supporting the notion of service is JXTA [3], an open peer-to-peer infrastructure
which enables any connected device on the network to act as a peer and interact with
other peers. Peers in a JXTA network are expected to interact through the services
they offer/consume. Peers are organized in peer groups, where each peer group
establishes its own policies and a set of services that all peer members should
implement. Usually, peer groups are used to organize peers offering services in a
specific application domain.

The established p2p infrastructure and core services of JXTA have been used in a
number of cases to deploy, publish and compose p2p services. In [4], a distributed and
decentralized market of p2p services was proposed, also facilitating their automatic

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 105

composition. In [5], an approach was proposed for the semantic annotation of p2p
services that could assist their automatic discovery and selection. Utilized from a
different point of view, the p2p architecture was also used as the underlying
infrastructure for grouping service registries into domain-specific federations [6].
Such organization provided a significant enhancement to the course of service
discovery.

Even though many well known p2p technologies (e.g. [19] [20]) have not yet
embraced the service-oriented architecture, the results of the aforementioned efforts
could provide a strong motivation for doing so in the near future. Hence, there is an
emerging need for the integration and interoperability of web and p2p services
technologies. A significant step towards achieving such integration involves the
establishment of a unified approach in service discovery. Currently, the existing web
or p2p services can be discovered only through the underlying discovery mechanisms
of the registry or the p2p network where they have been published. Thus, developers
are either confined to search in a specific type of registry / network, or they are forced
to employ separately the different approaches and mechanisms in order to locate
services which are appropriate for their application.

In this paper, we propose a solution for discovering web and p2p services in a
unified way. Our solution comprises a query language which supports the creation of
queries for discovering heterogeneous services in a unified manner and its associated
search engine, which tackles the heterogeneity among the existing web and p2p
service discovery mechanisms and description protocols. Among the key
contributions of the search engine, which is the main focus of this paper, are: (1) the
provision of a unified search interface, which alleviates requesters from the burden of
conducting separate service lookups in the various heterogeneous registries and p2p
networks; (2) the established level of abstraction, which hides the underlying
complexity and heterogeneity from the users; (3) the ability to support existing and
emerging standards in service description and discovery.

Briefly, the rest of the paper is structured as follows: in Section 2, we describe a
motivating scenario which underlines the need for integration of web and p2p services
and also highlights the heterogeneity that hinders their unified discovery; in Section 3,
we briefly describe the Unified Service Query Language (USQL), which is used by
our search engine for the formulation of the queries and their corresponding
responses; Section 4 describes the architecture and some of the main components of
the search engine; in Section 5, we demonstrate how the engine is used to discover
web and p2p services in UDDI registries and JXTA networks, respectively; Section 6
compares our approach to related work and, finally, we conclude in Section 7 with a
discussion on future work.

2 Motivating Scenario

In order to reveal the need for integration of web and p2p services, let us consider the
following scenario from the domain of Healthcare.

The IT department of a private clinic has decided to develop a service-oriented
application to enable direct interactions between doctors, patients, as well as other
partners. The clinic has already established partnerships with external doctors and the

106 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

IT departments of other hospitals. Specifically, a p2p network has been established to
support communication and exchange of data between the clinic and external doctors,
while the partner hospitals offer a number of specialized web services to the clinic.
Fig. 1 depicts an excerpt of this application, where a second opinion is requested for a
specific medical episode.

Retrieve Patient File Get Second Opinion
«Sub-process»
Process Data

Medical Episode

Second Opinion

Fig. 1. A service composition requiring the integration of web and p2p services

In the above example, the patient file retrieval functionality could be offered by a
web service, while doctors could communicate and exchange second opinions on
specific medical incidents with the use of specialized p2p services running on their
PDAs. Alternatively, partner hospitals could provide web services which offer
diagnoses for specific medical episodes.

In order to implement the above service composition, the developers of the clinic’s
IT department have to first discover the required services from the established
registries and the p2p network. Alas, the current state of the art produces a number of
implications: (1) the IT department has to use separate discovery tools, which increase
the development cost; (2) the developers need to acquire thorough knowledge on the
technical details of the underlying discovery mechanisms and protocols, and thus fail
to focus on the business part of the application.

The scenario reveals the need for integration of web and p2p services and,
moreover, shows that a unified approach towards the discovery of such services
would very much simplify and facilitate the work of developers. In the following
sections, we describe how our search engine addresses these issues. First, we provide
a very brief description of the language used by the search engine for the formulation
of the queries and their respective responses.

3 The Unified Service Query Language (USQL)

The Unified Service Query Language (USQL) is an XML-based language enabling
requesters to create meaningful queries for heterogeneous services in a unified
manner, while at the same time it keeps technical details transparent. The USQL
specification defines two types of messages, namely the USQLRequest and
USQLResponse. To better capture real-world requirements, the language blends the
flavors of syntactic, semantic and quality-of-service (QoS) search criteria. Moreover,
it defines a set of operators, which can be explicitly applied to the search criteria and
determine the matchmaking process. This departure is particularly useful when

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 107

applying service discovery at design time, where requirements should be expressed in
a more relaxed fashion.

The snippet below illustrates a USQL request in accordance to the motivating
scenario discussed in Section 2.

<USQL version="1.0" xmlns="urn:sodium:USQL">
 <USQLRequest>
 <ViewAdditionalProperties>
 <property>Availability</property>
 </ViewAdditionalProperties>
 <Where>
 <Service>
 <ServiceDescription valueIs="contain"> medical diagnosis</ServiceDescription>
 <ServiceDomain ontologyURI="http://onthealth#">Healthcare</ServiceDomain>
 <Operation>
 <Inputs><input>
 <type>http://www.w3.org/2001/XMLSchema#string</type>
 <semantics ontologyURI="http://onthealth#">MedicalEpisode</semantics>
 </input>
 </Inputs>
 <Outputs><output>
 <type>http://www.w3.org/2001/XMLSchema#string</type>
 <semantics ontologyURI="http://onthealth#">Diagnosis</semantics>
 </output>
 </Outputs>
 <QoS><Availability valueIs="equalOrGreater">0.9999</Availability></QoS>
 </Operation>
 </Service>
 </Where>
 <OrderBy direction="descending">Availability</OrderBy>
 </USQLRequest>
</USQL>

Fig. 2. A USQL request for "get second opinion" services

The query contains a number of syntactic, semantic and QoS requirements at
various levels. Specifically, the requester is looking for “medical diagnosis” services
in the domain of Healthcare. The desired operation should accept a string as input
(the medical episode) and return a string as output (the diagnosis). Due to its very
nature, the service should be at least 99.99% available. The requester has specified
that the availability property should be included in the matching services (with the use
of the <ViewAdditionalProperties> element), and moreover its value should be used
for sorting the results (via the <OrderBy> element).

A closer look to the USQL request example reveals that all requirements were
specified in a service type-agnostic manner. Indeed, the message contains no
indication or requirement regarding the type of the candidate service(s). Moreover,
requirements were expressed at a relatively high level, based on the intuitive
knowledge of what is required for the specific task. No technical details were required

108 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

or imposed by the USQL language in formulating the request, besides the need for a
basic knowledge of XML.

For the sake of brevity, we refer to [7] for a detailed description of the various
structures and elements of the USQL language. Nevertheless, the provided
information is considered adequate for the purposes of this paper, allowing us to
proceed with the description of our service search engine.

4 The Unified Service Search Engine

The Unified Service Search Engine is an extensible framework used for applying
service discovery in heterogeneous registries and networks. It is characterized by an
open architecture enabling the smooth accommodation of various registry and service
description standards, for the purposes of service discovery and matchmaking. More
specifically, plug-ins are used for supporting access to the various service registries
and networks, while appropriate document handlers are introduced to deal with the
various syntactic, semantic and QoS service advertisements. The engine was briefly
discussed in [8] and [10]; here, we will elaborate on the functionality of its various
components and provide technical details regarding its implementation.

Unified Service Search Engine

Registry/
Network
Selector

Plug-in A

Plug-in B

USQLRequest USQLResponse

Registries

P2P Networks

USQLRequest

USQLRequest

Search Criteria
Syntactic, semantic, QoS

service descriptions

matching services

matching services

Search Criteria Syntactic, semantic, QoS
service descriptions

USQL Handler

Validator

Request
Processor
Response
Processor

USQL Handler

Validator

Request
Processor
Response
Processor

Fig. 3. Basic components of the service search engine

Fig. 3 depicts the internal structure of the search engine. Upon receiving a USQL
request, the engine employs the USQL Handler to validate it against the USQL
schema. The USQL Handler is divided into three logical parts: the Validator,
responsible for the validation of USQL messages; the Request Processor, responsible
for processing the content of USQL request messages; and the Response Processor,
responsible for constructing and properly formatting the USQL response messages.

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 109

The USQL Handler component contributes significantly to the overall flexibility and
maintainability of the search engine; it abstracts the rest of the components from
language-specific details, thus making them resilient to potential changes in the
USQL specification.

After the USQL request has been found to be valid, the request processor is
activated to extract the specified service domain value from the message. The
specified domain is then used by the Registry Selector component in identifying the
target registries and/or networks for the query. As it was described in [10], the engine
makes use of an upper ontology –implemented with the use of OWL (see
http://www.w3.org/2004/OWL/)– which associates registries with application
domains. The ontology is instantiated by a forest of domains (there is a tree for each
addressed domain); also, there are registry and p2p network instances (both
instantiating the Registry class in the upper ontology), each one of which is associated
with one or more domains, and a set of related properties that are stored by the
engine. These properties include the id of the plug-in to be used, along with other
parameters necessary for successfully accessing the respective registry or network
(e.g. JXTA peer groups might require authentication for a peer to be able to join).
Note that, maintaining the ontology's instances and associating registries with
domains are human-triggered tasks and form part of the search engine’s configuration
process.

Having identified the target registries and/or networks, the search engine
configures and instantiates the respective Plug-ins which accept the USQL request as
input and run in separate threads, thus allowing for a form of parallelism during the
execution of the query. This multi-thread implementation inside the engine
contributes to the improvement of its overall performance. To better explain how each
registry plug-in works, we illustrate its internal structure in Fig. 4:

Registry Plug-in

Registry Handler

Syntactic Handler

Semantic Handler

QoS Handler

USQLRequest

External Service
Registries/Networks

M
at

ch
m

ak
er

matching
services

Fig. 4. Internal structure of the search engine’s registry plug-ins

The Registry Handler component is responsible for extracting the registry-
supported search criteria from the original USQL request and utilizes the specific
registry type-supported discovery mechanisms and APIs to find the requested
services. The process of querying the registry results in a set of service advertisements
which are processed by the appropriate Syntactic, Semantic, and QoS Handlers to

110 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

extract the values of the properties that were constrained in the USQL request. Thanks
to the decoupling of syntactic, semantic and QoS service description handling from
the rest of the plug-in, the latter can be seamlessly extended and use different
document handlers in many combinations. In this way, the search engine is capable of
dealing with the various heterogeneous service description protocols.

Next, the registry plug-in employs the USQL Matchmaker in order to apply
extended, semantically enhanced and QoS-based matchmaking to each service. The
matchmaker implements a sophisticated matchmaking algorithm [9] which however
goes beyond the scope of this paper. Briefly described, the algorithm calculates the
overall degree of match for a given service and its operations, based on the individual
degrees of match of each specified requirement. The degree of match value is a
normalized float number ranging between 0 and 1. Going back to Fig. 3, the outcome
of the matchmaking process, i.e. the matching services, is forwarded to the USQL
Handler component, which employs the response processor to consolidate the output
from all registry plug-ins into a single USQL response message.

5 Example: Unified Service Discovery in UDDI & JXTA

In accordance to the use case described in Section 2, in the following paragraphs we
will demonstrate how our service search engine applies service discovery in UDDI
and JXTA for “get second opinion” services, with the use of a single USQL request
(the one that was described in Section 3). In this example, we assume that the
established p2p network between the clinic and the external doctors is based on
JXTA, while the web services being offered by the clinic’s partners have been
published to a UDDI registry. Moreover, all web and p2p services have been
described with the use of WSDL-S (see http://www.w3.org/Submission/WSDL-S/)
and WS-QoS [18], whilst the UDDI registry and the JXTA network have been
associated with the Healthcare domain by the search engine’s administrator.

5.1 Web Service Discovery in UDDI

The UDDI specifications define a set of protocols and APIs for publishing
information regarding businesses and the services they offer, as well as for querying
such data. The default UDDI query mechanism supports primarily keywords-based
queries where only syntactic requirements can be processed. Furthermore, search
criteria can be applied only at the service level and thus operation and input/output
related requirements cannot be processed. The UDDI specifications partially cater for
these defects, by defining an extension point, the tModel structure, which can be used
to reference external information (e.g. WSDL or WSDL-S service descriptions). The
use of the tModel facility in service discovery with UDDI is described in [11]. Our
approach also exploits tModels, as we will see next.

The search engine gains access and queries the UDDI registry that has been
associated with the Healthcare domain, by employing the respective UDDI plug-in. If
the USQL request contains criteria which are supported by the primitive discovery
mechanism of UDDI, such as the service name/description or the service provider,

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 111

these are used accordingly to narrow the lookup range. The query yields a number of
tModels containing references to the WSDL-S descriptions of the published web
services, as shown in the example below:

<tModel ...>
 <overviewDoc>
 <overviewURL>WSDL-S document URL here</overviewURL>
 </overviewDoc>
 <categoryBag>
 <keyedReference tModelKey="..." keyName="uddi-org:types" keyValue="wsdlSpec"/>
 </categoryBag>
</tModel>

Fig. 5. An example tModel structure with reference to an external WSDL-S document

These descriptions are retrieved and parsed with the use of the appropriate WSDL-
S document handler, employed by the UDDI plug-in of the search engine. In a similar
way, the WS-QoS document handler provided by the search engine is used to parse
the referenced WS-QoS offers included in the WSDL-S documents. The extracted
information is mapped to a unified, USQL-like service advertisement according to the
rules given in Table 1, which is then dispatched to the USQL matchmaker component
along with the USQL request for matchmaking.

Table 1. Rules for mapping WSDL-S & WS-QoS to USQL

WSDL, WSDL-S & WS-QoS USQL
wsdl:service
 @name

Service
 /ServiceName

wsdl:operation
 /wsdl:input
 /wsdl:output
 @name

Service/Operation
 /Inputs
 /Outputs
 /name

wsdl:message/wsdl:part

 @name
 @type
 @wssem:modelReference

Service/Operation/Inputs/input
Service/Operation/Outputs/output
 /name
 /type
 /semantics

wsqos:qosOffer
 /defaultQoSInfo/serverQoSMetrics/availability
 /defaultQoSInfo/serverQoSMetrics/reliability
 /defaultQoSInfo/serverQoSMetrics/processingTime

Service/Operation/QoS
 /Availability
 /Reliability
 /ProcessingTime

5.2 P2P Service Discovery in JXTA

Services in a JXTA network are advertised through a specific type of XML-based
advertisement, namely the ModuleSpecAdvertisement (MSA), which provides limited
information regarding the service, the service provider, etc. Nevertheless, as it has
already been proposed in [5], JXTA service advertisements can be extended to

112 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

support rich-content service descriptions, and thus substantially facilitate the task of
service discovery. Our approach takes advantage of this extensibility in order to
perform advanced service discovery in JXTA networks.

Upon its instantiation, the JXTA plug-in provided by our search engine – acting as
a minimal edge peer – joins the peer group specified by configuration and submits a
“getRemoteAdvertisements” query to the peer group’s rendezvous peer(s), by using
the peer group’s established discovery service. These special types of super peers
maintain indices of peers and advertisements in the peer group, which they use in
order to propagate the query to the appropriate peer(s). Like in the case of UDDI,
criteria such as service name / description or provider can be used to narrow the
lookup range. The rendezvous peers respond by sending to the plug-in the MSAs
which were found to meet the query. Similar to the tModels, the MSAs contain links
to WSDL-S documents, as the following snippet illustrates.

<jxta:MSA xmlns:jxta="http://jxta.org">
 <MSID>...</MSID>
 <Name>GetDiagnosisService</Name>
 <SURI>WSDL-S document URL here</SURI>
</jxta:MSA>

Fig. 6. An example JXTA ModuleSpecAdvertisement (MSA)

At this point, the JXTA plug-in needs not be part of the p2p network any more and
therefore disconnects. By accessing the referenced WSDL-S descriptions and
applying the mapping rules described in Table 1, a USQL-like advertisement is
generated for each service and is consequently checked against the USQL request by
the USQL matchmaker.

5.3 Shaping the Service Discovery Results

As it was described in Section 4, the response processor consolidated the results (i.e.
the matching services) from the UDDI and JXTA plug-ins and generated the USQL
response shown in Fig. 7. Apparently two services were found to meet the search
criteria: a JXTA p2p service and a web service. The service entries in the response
appear sorted in descending order according to the value of their availability. The web
service availability advertised in the respective WS-QoS offer was less than what was
originally requested, resulting in a smaller degree of match. Note that, both service
entities contain all the necessary information for their immediate invocation. The
referenced WSDL documents provide the details and bindings of the services’
operations. The binding information depends on the specific service type. For
instance, the WSDL document of the JXTA service includes information regarding
the JXTA pipes used for communicating with the service, while the WSDL document
of the web service provides the service endpoint address, encoding style,
communication protocol, etc.

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 113

<USQL version="1.0" xmlns="urn:sodium:USQL" xmlns:srv="urn:sodium:USQL:services">
 <USQLResponse>
 <srv:Services>
 <srv:Service type="P2PService" degreeOfMatch="1.0" networkType="JXTA">
 <srv:name>GetDiagnosis</srv:name>
 <srv:descriptionDocUrl>
 http://jemini.di.uoa.gr:8080/sodium/wsdl/SecondOpinion.wsdl
 </srv:descriptionDocUrl>
 <srv:interface name="GetDiagnosisInterface">
 <srv:Operation degreeOfMatch="1.0">
 <srv:name>getDiagnosis</srv:name>
 <Availability>0.9999</Availability>
 </srv:Operation>
 </srv:interface>
 </srv:Service>
 <srv:Service type="WebService" degreeOfMatch="0.9999">
 <srv:name>GetDiagnosisWS</srv:name>
 <srv:descriptionDocUrl>
 http://jemini.di.uoa.gr:8080/sodium/wsdl/GetDiagnosis.wsdl
 </srv:descriptionDocUrl>
 <srv:interface name="GetDiagnosisIF">
 <srv:Operation degreeOfMatch="0.9999">
 <srv:name>getMedicalDiagnosis</srv:name>
 <Availability>0.9998</Availability>
 </srv:Operation>
 </srv:interface>
 </srv:Service>
 </srv:Services>
 </USQLResponse>
</USQL>

Fig. 7. The USQL response containing alternative "get second opinion" services

This concludes our example.

6 Related Work

A lot of research has revolved around service discovery over the last years and a
number of service search engines and matchmakers have been proposed. In [12], a
novel search engine is described which enables searching for web service operations
that are similar to a given one. The underlying idea of this approach is the grouping of
inputs and outputs into semantically meaningful concepts. Thus, syntactic information
in service advertisements attains semantics and can be exploited in a more fruitful
manner. Yet, the approach does not consider existing semantic service descriptions
and thus, as opposed to our search engine, it does not exploit their rich content. In
[11], Paolucci et al. describe how the UDDI infrastructure can be extended to support
OWL-S based semantic annotations for services. The main drawback of this approach
lies in that a significant update to the UDDI specifications is required. Moreover,
discovery is confined to web services only. Another framework that makes use of
OWL-S for automating the matchmaking process during web service discovery is the

114 M. Pantazoglou, A. Tsalgatidou, and G. Athanasopoulos

WSML middleware, as described in [13]. However, the proposed matchmaking
algorithm seems to be bound with that specific semantic description protocol and thus
is not able to apply semantic matchmaking to services described with other protocols,
e.g. WSDL-S. The same shortcoming also characterizes similar efforts in JXTA
service discovery, such as the Oden framework [5]. As opposed to those approaches,
our service search engine remains independent from the various service description
protocols. Thanks to its flexible design, it can leverage existing or emerging
standards, such as OWL-S and WSDL-S, and thus it can operate in a wide range of
service-oriented settings.

Integration of web services with p2p networks has been extensively examined in
the sense of using a p2p infrastructure to enhance the various web service activities.
In METEOR-S [6], a JXTA-based p2p network is utilized to organize web service
registries, in order to facilitate the tasks of service publication and discovery. Yet, to
the best of our knowledge, there is no approach other than the one presented in this
paper, which attempts to integrate the web service and p2p worlds in terms of unified
service discovery.

7 Concluding Summary

In this paper, we briefly described the Unified Service Query Language (USQL) and
some of the functional details of our service search engine supporting the unified
discovery of web and p2p services. The engine is characterized by its flexible and
extensible design, which renders it capable of accommodating different discovery
mechanisms and service description protocols. At the same time, the technical details
are kept transparent to the user, thus simplifying the task of service discovery.

Experience has revealed a number of challenges that need to be addressed by our
search engine prototype. The restriction imposed by the matchmaker as regards the
use of the same ontology to semantically annotate service queries and service
advertisements is planned to be overcome with the utilization of a semi-automatic
ontology mapping mechanism, like the one presented in [14]. Further, we are leaning
towards ultimately replacing our custom upper ontology with more standardized
efforts, such as the Suggested Upper Merged Ontology (SUMO) [15].

The matchmaker component of our search engine employs a set of distance
measure functions for the calculation of the degree of match. Similarity distance
measure is a very popular technique in matchmaking and has been successfully
applied to similar technological areas, such as data mining and web information
retrieval [16] [17]. In the future, we plan to utilize some of the already established
efforts in syntactic, semantic, and QoS matchmaking, in order to enhance the
precision of our search engine. Finally, to enhance the engine’s performance, we are
in the process of developing a caching mechanism, which will also allow us to
experiment on the engine’s recall.

Acknowledgement. This work is partially supported by the Special Account of
Research Funds of the National and Kapodistrian University of Athens under contract
70/4/5829 and by the European Commission under contract IST-FP6-004559 for the
SODIUM project (website: http://www.atc.gr/sodium).

 Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner 115

References

1. Organization for the Advancement of Structured Information Standards (OASIS),
Universal Description, Discovery and Integration, UDDI. http://www.uddi.org/

2. Broekstra, J., Ehrig, M. et al. (2004) Bibster - A Semantics-Based Bibliographic Peer-to-
Peer System. WWW’04 Workshop on Semantics in Peer-to-Peer and Grid Computing

3. Traversat, B., Arora, A. et al. (2003) Project JXTA 2.0 Super-Peer Virtual Network, Sun
Microsystems, Inc., Palo Alta, California

4. Gerke, J., Reichl, P., Stiller, B. (2005) Strategies for Service Composition in P2P
Networks. In Proceedings of ICETE 2005, Reading, UK

5. Elenius, D., Ingmarsson, M. (2004) Ontology-based Service Discovery in P2P Networks.
International Workshop on Peer-to-Peer Knowledge Management, P2PKM 2004

6. Verma, K., Sivashanmugam, et al (2005) METEOR-S WSDI: A Scalable Infrastructure of
Registries for Semantic Publication and Discovery of Web Services. Journal of
Information Technology and Management, Vol. 6 (1), pp. 17-39

7. Tsalgatidou, A. et al. (2006) Specification of the Unified Service Query Language (USQL).
Technical Report, available online at http://cgi.di.uoa.gr/~michaelp/TR/usql-1.0-spec.pdf

8. Tsalgatidou, A. et al. (2005) Semantically Enhanced Unified Service Discovery. W3C
Workshop on Frameworks for Semantics in Web Services, Innsbruck, Austria

9. Pantazoglou, M., Tsalgatidou, A., Athanasopoulos, G. (2006) Quantified Matchmaking of
Heterogeneous Services. In Proceedings of the 7th International Conference on Web
Information Systems Engineering, WISE 2006

10. Tsalgatidou, A. et al. (2005) Semantically Enhanced Discovery of Heterogeneous Services.
1st International IFIP/WG12.5 Working Conference on Industrial Applications of Semantic
Web, IASW2005, Jyväskylä, Finland

11. Paolucci, M. et al. (2002) Importing the Semantic Web in UDDI. In Proceedings of Web
Services, E-business and Semantic Web Workshop

12. Dong, X., Halevy, A. et al. (2004) Similarity Search for Web Services. In Proc. of VLDB
13. Cibran, M. A. et al (2004) Automatic Service Discovery and Integration using Semantic

Descriptions in the Web Services Management Layer. Proc. of 3rd Nordic Conf. on Web
Services, Vaxjo, Sweden

14. Li, J. (2004) LOM: A Lexicon-based Ontology Mapping Tool. Performance Metrics for
Intelligent Systems Workshop, PerMIS 2004, Gaithersburg, MD

15. Niles, I., Pease, A. (2001) Towards a Standard Upper Ontology. In Proceedings of the
International Conference on Formal Ontology in Information Systems

16. Sahami, M. Mittal, V. et al. (2004) The Happy Searcher: Challenges in Web Information
Retrieval. Trends in Artificial Intelligence, 8th Pacific Rim International Conference on
Artificial Intelligence, PRICAI 2004

17. D. Lin (1998) An Information-Theoretic Definition of Similarity. In International
Conference on Machine Learning

18. Tian, M., Gramm, A. et al. (2004) Efficient Selection and Monitoring of QoS-Aware Web
Services with the WS-QoS Framework. IEEE/WIC/ACM International Conference on Web
Intelligence, WI 2004

19. Ion Stoica, Robert Morris et al (2001) Chord: Scalable Peer-to-peer Lookup Service for
Internet Applications. In Proceedings of ACM SIGCOMM, San Diego, CA

20. Ben Y. Zhao, Ling Huang et al. (2003) Tapestry: A resilient global-scale overlay for
service deployment. IEEE Journal on Selected Areas in Communications

A Hierarchical Framework for Composing
Nested Web Processes

Haibo Zhao and Prashant Doshi

LSDIS Lab., Department of Computer Science
University of Georgia
Athens, GA 30602

{zhao, pdoshi}@cs.uga.edu

Abstract. Many of the previous methods for composing Web processes
utilize either classical planning techniques such as hierarchical task net-
works (HTNs), or decision-theoretic planners such as Markov decision
processes (MDPs). While offering a way to automatically compose a de-
sired Web process, these techniques do not scale to large processes. In
addition, classical planners assume away the uncertainties involved in
service invocations such as service failure. In this paper, we present a
hierarchical approach for composing Web processes that may be nested
- some of the components of the process may be Web processes them-
selves. We model the composition problem using a semi-Markov decision
process (SMDP) that generalizes MDPs by allowing actions to be tempo-
rally extended. We use these actions to represent the invocation of lower
level Web processes whose execution times are uncertain and different
from simple service invocations.

1 Introduction

Service-oriented architectures (SOAs) aim to provide a rapid, flexible, and loosely-
coupled way to seamlessly integrate the intra- and inter-enterprise resources into
business processes. As the fundamental building blocks of processes, Web services
(WS) are seen as self-contained, self-describing, and platform-independent appli-
cations which can be published, discovered, and invoked over the Web. We refer
to business processes with WSs as their components as Web processes [1].

Contemporary business processes are composed primarily by human system
designers in a manual and tedious manner. However, SOA offers an opportu-
nity to compose the business processes with varying levels of automation. In
this regard, several preliminary planning based approaches exist [2,3,4] that au-
tomatically compose the Web process given a model of the business problem.
While these methods offer a way to automatically compose the Web process,
many of them do not scale efficiently to large processes. This precludes their
applicability to real-world business processes.

Planning techniques for automatically composing a Web process may be
grouped into classical planning [2] or decision-theoretic planning [3]. Decision-
theoretic planners such as Markov decision processes (MDPs) generalize classical

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 116–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Hierarchical Framework for Composing Nested Web Processes 117

planning techniques to nondeterministic environments, where actions outcomes
may be uncertain, and associate a cost to the different plans thereby allowing
the selection of an optimal plan. These techniques are especially relevant in the
context of SOA where services may fail and processes must minimize costs.

In this paper, we adopt a hierarchical approach for composing complex Web
processes. In many cases, a Web process may be seen as nested – a higher level
Web process may be composed of WSs and lower level Web processes – which
induces a natural hierarchy over the process. We provide a method of compo-
sition that exploits the hierarchical decomposition; We model each level of the
hierarchy using a semi-Markov decision process (SMDP) [5] that generalizes a
MDP [5] by allowing temporally extended actions. Specifically, the lowest lev-
els of the hierarchy (leaves) are modeled using a SMDP containing primitive
actions, which are invocations of the WSs. Higher levels of the process are mod-
eled using SMDPs that contain abstract actions, which represent the execution
of lower level Web processes. We represent their invocations as temporally ex-
tended actions in the higher level SMDPs. These are actions whose durations are
probabilistically distributed and an accumulating cost is associated with them
that depends on their duration. Since information about only the individual
WSs is usually available, we provide methods for deriving the model parameters
of the higher level SMDP from the parameters of the lower level ones. Thus,
our approach is applicable to Web processes that are nested to an arbitrary
depth. Also, our experimental results show that our method performs favorably
in terms of cost effectiveness and robustness to uncertainty compared to another
hierarchical composition technique, hierarchical task networks (HTNs) [2].

2 Related Work

There are several approaches proposed to address the automatic Web process
composition problem. McIlraith et al. [6] adapt and extend the Golog language
for representing service constraints. WSs that satisfy the constraint are discov-
ered at runtime and bound to the abstract process. Medjahed et al. [7] present a
technique to generate composite services from high level declarative descriptions
of the individual services. Traverso and Pistore [4] propose a MBP (a model
checking planner) based framework to do automated WS composition, where
WSs are modeled as stateful, nondeterministic and partially observable behav-
iors. Our approach differs from their work in that we take into account scalabil-
ity and optimality of the plan/policy. SHOP2 [8], a classical planner based on
HTNs, is utilized for automatic composition of Web processes in [2]. The final
plan generated by SHOP2 is a sequence of WS invocations, which is not robust
to external events. Recent work on HTN approach [9] tries to deal with this issue
by gathering information during planning, which can decrease the probability of
service failure during execution when information used to generate a plan does
not change much during execution time. In comparison, our approach explicitly
models uncertainty in WS outcomes, and generates a policy which specifies an
optimal action no matter the state of the problem.

118 H. Zhao and P. Doshi

This paper also generalizes our previous work [3] on using MDPs for dynamic
process composition by taking into account scalability. We utilize a hierarchical
structure to address the scalability problem and provide a new method to formu-
late hierarchical SMDPs, whose model parameters are derived from lower level
ones. This allows its application to processes that are nested to an arbitrary depth.

3 Examples of Hierarchical Decompositions

We briefly describe two scenarios that benefit from a nested structure. Our first
example is a typical scenario for handling orders that in a supply chain (Fig. 1).

Check

Inventory
Check

Preferred Supplier
Check

Spot Market

Select Shipper

Ship Goods

Get Goods

Receive Order

Verify Order

Check Customer

Verify Payment

Charge Money

Get Speed Req.

Get Price Req.

Check
Post Carrier

Check
Express Carrier

Fig. 1. A supply chain scenario in which the services Verify Order and Select Shipper
are Web processes themselves. This problem is singly nested.

An instance of the business process is created when a customer sends in an
order. The order specifics first need to be verified, in that the customer’s pay-
ment needs to be processed. Subsequently, the manufacturer choose one from
three possible supplies to complete the order based on their satisfactory rates
and invocation costs. On receiving the supplies, the manufacturer may ship the
completed order to the customer using ground postal (slow and inexpensive but
with good coverage) or express air (fast and expensive but with limited coverage)
carriers, depending on the customer’s requirement.

The second example (Fig. 2) is a patient transfer clinical pathway. Patients
first check in with the primary care giver followed by the patient’s insurance
verification step. If the primary care giver can give the needed physical care,
patients will stay with the primary care giver and receive the proper care; other-
wise, the patients will be transferred to one of the four possible secondary care
givers based on the vacancy and other factors like distance, cost and reputation.
In this case, the patient must be checked into the secondary care giver and her
insurance validated.

Within a SOA, each step of the scenarios is an invocation of WSs, which in
some cases represent lower level Web processes. For example, in order to verify

A Hierarchical Framework for Composing Nested Web Processes 119

Checkin
Primary

Caregiver

Decide
IfTransfer

Insurance
Verification

Get
Care

Choose
Secondary
CaregiverCheck Hospital Participation

Check Patient Insurance

N
o

Yes

Preferred
Secondary
Caregiver

Checkin
Secondary
Caregiver

Check Hospital
Participation

Insurance
Verification

Get
Care

Check Patient
Insurance

Secondary
Caregiver 2

Secondary
Caregiver 3

Secondary
Caregiver 4

Fig. 2. A patient transfer pathway illustrating a double nesting of Web processes

the customer and her payment, the manufacturer may invoke a Verify Order
WS, which is itself a composite Web process composed of Customer Checker,
Verify Payment, and Charge Money WSs. This nested nature of Web processes
could extend to more levels as the patient transfer scenario shows in Fig. 2.

4 Background: Semi-Markov Decision Processes

A semi-Markov decision process (SMDP) [5] is a temporal generalization of the
MDP. Instead of assuming that the durations of all actions are identical and
therefore ignoring them while planning, a SMDP explicitly models the system
evolution in continuous time and models the time spent in a particular state while
performing an action to follow a pre-specified probability distribution. Solution
to a SMDP produces a policy. A policy assigns to each state of the process
an action that is expected to be optimal over the period of consideration. We
formally define a SMDP below:

Definition 1 (SMDP). A SMDP is defined as a tuple,

SMDP = 〈S, A, T, K, F, C, s0〉 where :

• S = Πn
i=1X

i, where S is the set of all possible states factored into a set, X, of
n variables, X = {X1, X2, . . . , Xn}
• A is the set of all possible actions
• T is the transition function, T : S × A → Δ(S), where Δ(·) specifies a prob-
ability distribution. The transition function captures the uncertain effect of per-
forming an action on particular variables
• K is the lump sum reward, K : A → R. This specifies the reward (or cost)
obtained on performing an action
• F is the sojourn time distribution for each pair of state and action, F : S×A →
Δ(t), where t ∈ [0, tmax], tmax is the maximum time duration of any action.
Given the current state, s, and action, a, the system will remain in the state for
a certain amount of time, t, which follows a density described by f(t|s, a)
• C is the reward accumulating rate, C : S × A → R, which specifies the rate
at which the reward (or cost) is obtained when performing an action from some
state
• s0 ∈ S is the start state of the process

120 H. Zhao and P. Doshi

A state, s, in an SMDP is an assignment of values to the variables in X . Typically,
each action, a, affects a subset of the variables, which we denote by Xa ⊆ X .
Let s[Xa] denote the vector of values or assignments to the variables Xa in the
instantiation s. Furthermore, for each action, a, we define pre(a) ⊆ S to be the
exhaustive set of states such that, y ∈ pre(a) is the precondition for performing
a. Then, y[Xa] denotes the value of the variables Xa in the precondition y.
Analogously, we denote eff(a), as the set of states that forms the effect of a.
Because the action is non-deterministic, there may be more than one state in
eff(a). The lump sum reward, K, and the reward accumulating rate, C, are not
necessarily positive; negative values imply a cost. Finally, we assume that the
sojourn times of all actions follow Gaussian densities with different means and
standard deviations.

When performing an action, a, from a state, s ∈ pre(a), the system will gain
a lump sum reward K(a), and as long as the sojourn time is not over, the system
will accumulate reward at the accumulating rate, C(s, a). The total reward for
a state action pair is:

R(s, a) = K(a) + C(s, a)
∫ Tmax

0
e−αtf(t|s, a)dt (1)

In order to solve the SMDP and compute the policy, we associate a value
function, V : S → R, with each state. This function quantifies the desirability
of a state over the long term.The solution of a SMDP is a policy, π : S → A,
which, for each state of the process, prescribes an action that is expected to be
optimal. If the period of consideration is infinite then:

Vπ(s) = argmax
a∈A

R(s, a) +
∑

s′∈eff(a)

M(s′|s, a)V (s′) (2)

where : M(s′|s, a) =
∫ Tmax

0
e−αtQ(dt, s′|s, a) =

∫ Tmax

0
e−αtT (s′|s, a)F (t|s, a)dt

and R(s, a) is as defined in Eq. 1.
Standard SMDP solution techniques for arriving at the optimal policy involve

repeatedly iterating over Eq. 2 until the function, V , approximately converges.
Another technique for computing the policy requires formulating and solving a
linear program (LP). In this paper, we use the LP method to solve SMDPs.

5 Hierarchical Semi-Markov Decision Processes

We define a framework called hierarchical SMDPs for composing nested Web
processes. For the lowest levels of the process, the framework uses the standard
SMDP, defined in Section 4, to model the composition problem. Let us label
these SMDPs as primitive. In primitive SMDPs, actions are WS invocations,
and sojourn times are the response times of the WSs. We compose the higher
levels of the Web processes using a composite SMDP (C-SMDP). Within a C-
SMDP, the actions are either abstract and represent lower level Web processes,

A Hierarchical Framework for Composing Nested Web Processes 121

which in turn are modeled using either composite or primitive SMDPs, or simple
WS invocations. In this section, we will take the Order Handling scenario as
the example to explain how we extract and derive model parameters for both
primitive SMDPs and composite SMDPs.

5.1 Eliciting the Model of Primitive SMDPs

We briefly describe ways in which the model parameters of the primitive SMDP
may be obtained. The actions, A, are the WS operations that compose the Web
process. The variables constituting the state space, S, of the process are those
that form the preconditions and effects of the component WSs, found in their
OWL-S or WSDL-S descriptions. The probabilities of the different responses
from service invocations that make up transition function, T , may be found in
either the serviceParameter section of the OWL-S description of the WS or in the
SLAparameter section of the WSLA specification [10](see Fig. 3). These prob-
abilities quantify contracted service reliability rates. The parameter, K, which
models the cost of using a service, may also be obtained from the serviceParame-
ter section of the OWL-S description or from the agreement between the service
users and providers. The sojourn time distribution, F , and the cost rate, C, are
typically selected by the system designer from past experience.

<ServiceLevelObjective name="InventoryAvailabilityRate">
<Obligated>InventoryProvider</Obliged>
<Expression>

<Predicate xsi:type="Eual">
<SLAParameter>InventoryAvailability</SLAParameter>
<Value>0.4</Value>

</Predicate>
</Expression>
......

<ServiceLevelObjective>

Fig. 3. A WSLA snippet illustrating the specification of inventory availability rate

5.2 Definition of a Composite SMDP

We formally define a C-SMDP below:

Definition 2 (C-SMDP). A C-SMDP is defined as a tuple,

C-SMDP = 〈Sc, Ac, Tc, Kc, Fc, Cc, s0〉 where :

• Sc = Πn
i=1X

i
c is the set of all possible states factored into a set, Xc, of n

variables, Xc = {X1
c , X2

c , . . . , Xn
c }

• Ac is the set of all possible actions, Ac = A∪Ā, and includes primitive actions,
A, as well as abstract actions, Ā
The remaining parameters are defined analogously to Def. 1 but with the above
mentioned state and action spaces.

122 H. Zhao and P. Doshi

Using the order handling scenario introduced in Section 3, we illustrate the state
and action spaces of the high-level C-SMDP.

Example 1. For the order handling scenario, Xc = {Order Received (OR),
Order Verified (OV), Inventory Availability (IA), Preferred Supplier Availability
(PSA), Spot Market Availability (SMA), Goods Received (GR), Shipper Selected
(SS), and Goods Shipped (GS)}. Each of these variables assumes a value of Y,
N or U, where U signifies an unexpected service operation (e.g. failure), while
Y and N are straightforward. Ac = A ∪ Ā, where A = {Receive Order, Check
Inventory, Check Preferred Supplier, Check Spot Market, Get Goods, Ship Goods}
and Ā = {Verify Order, Select Shipper}. We observe that performing an action
affects the value of the corresponding state variable.

While the model parameters for primitive actions are available, we need meth-
ods to derive those that involve abstract actions from the lower level SMDP
parameters. We describe these methods next.

5.3 C-SMDP Model Parameters for Abstract Actions

A C-SMDP is so far not well-defined because meaningful parameters for the
abstract actions in the model are not given. For example, in the order handling
scenario, the composite WS Verify Order is composed of three primitive WSs:
Check Customer, Verify Payment, and Charge Money. Transition probabilities as-
sociated with the abstract action Verify Order are not available, but instead must
be derived from the transition probabilities associated with the primitive actions.
In particular, we derive the transition probability, Tc, lump sum reward, Kc, so-
journ time distribution, Fc, and accumulating rate, Cc, for abstract actions.

For the sake of simplicity, we focus on deriving the model parameters for
a process that is singly-nested. Our methods generalize to a multiply-nested
process in a straightforward manner. We utilize the correspondence between the
high level abstract actions and the corresponding low-level primitive actions.
Let the abstract action, ā, represent the sequential execution, in some order,
of primitive actions, {a1, a2}, of the underlying primitive SMDP. As per our
notation introduced in Section 4, let pre(ā) = {s̄p} be the precondition state
for performing ā, X ā

c denotes the variables affected by ā, and s̄p[X ā
c] are the

precondition values of these variables. We use analogous notation for the effect
of ā, eff(ā) = {s̄e}. Then, the precondition values of the state variables affected
by ā (s̄p[X ā

c]) are a mathematical or logical function of the precondition values
for the primitive actions, and analogously for the effects. In other words,

s̄p[X ā
c] ≡ Ψp(s1

p[X
a1], s2

p[X
a2]) and s̄e[X ā

c] ≡ Ψe(s1
e[X

a1], s2
e[X

a2]) (3)

where pre(a1) = {s1
p}, pre(a2) = {s2

p} and analogously for effects, and Xa1 and
Xa2 denote the variables affected by the actions a1 and a2, respectively. The
correspondences Ψp and Ψe are constructed using domain knowledge, and we
give an example below.

Example 2. Let us consider the abstract action Verify Order (ā), which corre-
sponds to the primitive actions Check Customer (acc) , Verify Payment (avp) and

A Hierarchical Framework for Composing Nested Web Processes 123

Charge Money (acm) in the lower level SMDP. Let, pre(Verify Order) = {s̄p},
and eff(Verify Order) = {s̄1

e, s̄
2
e, s̄

3
e}, where:

s̄p =(OR=Y, OV =U, IA=U, PSA=U, SMA=U, GR=U, SS=U, GS =U),
s̄1

e =(OR=Y,OV=Y, IA=U, PSA=U, SMA=U, GR=U, SS=U, GS=U),
s̄2

e = (OR = Y,OV = N, IA = U, PSA = U, SMA = U, GR = U, SS =
U, GS = U), and s̄3

e = (OR = Y,OV = U, IA = U, PSA = U, SMA = U, GR =
U, SS = U, GS = U). Then, in the C-SMDP: X ā

c = {OV }, s̄p[X ā
c] = 〈OV = U〉,

s̄1
e[X ā

c] = 〈OV = Y 〉, s̄2
e[X ā

c] = 〈OV = N〉, s̄3
e[X ā

c] = 〈OV = U〉
In the associated primitive SMDP, let, Xacc = {Customer Verified (CV)},

Xavp = {Payment Valid (PV)}, and Xacm = {Account Charged (AC)}. In the
table below we define the correspondences:

Correspondence Instantiation of the Correspondence
Ψp 〈OV = U〉 ≡ 〈CV = U〉 and 〈PV = U〉 and 〈AC = U〉
Ψ1

e 〈OV = Y 〉 ≡ 〈CV = Y 〉 and 〈PV = Y 〉 and 〈AC = Y 〉
Ψ2

e 〈OV = N〉 ≡ 〈CV = N〉 or 〈PV = N〉 or 〈AC = N〉
Ψ3

e 〈OV = U〉 ≡ 〈CV = U〉 or 〈PV = U〉 or 〈AC = U〉

Based on such associations, we can identify the corresponding low-level states
for the composite states, s̄p, s̄1

e, s̄2
e and s̄3

e. We derive the C-SMDP parameters
in the following way:

Transition probability, Tc(s̄1
e|ā, s̄p): As an example, we focus on computing

Tc(s̄1
e|ā, s̄p), where s̄1

e, s̄p, and ā are as defined before. The approach for comput-
ing the other transition probabilities is analogous. Because the abstract action,
ā, affects only the variable(s), X ā

c , we may rewrite Tc(s̄1
e|ā, s̄p) as,

Tc(s̄1
e|ā, s̄p) = Pr(s̄1

e[X
ā
c] | ā, s̄p[X ā

c])
= Pr(Ψe(s1

e[X
a1], s2

e[X
a2]) | ā, Ψp(s1

p[X
a1], s2

p[X
a2])) from Eq. 3

Let the state of the primitive SMDP satisfying Ψp(s1
p[X

a1], s2
p[X

a2]) be sp –
this is the initial state of the lower level Web process – and that containing
Ψe(s1

e[X
a1], s2

e[X
a2]) be se – this is one of the terminal states. Then, we may

rewrite, Pr(Ψe(s1
e[X

a1], s2
e[X

a2]) | ā, Ψp(s1
p[X

a1], s2
p[X

a2])) = Pr(se|sp), which
is the probability of reaching se from state sp. Because the order in which the
primitive actions a1 and a2 are performed is not known from beforehand, there
may be multiple ways to start from the state sp and reach the state, se. Let sp

a1−→
s1

a2−→ se be one such path, then, T (s1|a1, sp)×T (se|a2, s1) is the probability of
following this path, where T is the transition function of the primitive SMDP.
The required probability Pr(se|sp) is the sum of the probabilities of following
all such paths.

Example 3. We again consider the abstract action Verify Order (ā), its precon-
dition state s̄p and one of the effect states s̄1

e, as in Example 2.

Tc(s̄1
e|ā, s̄p) = Pr(〈OV = Y 〉 | ā, 〈OV = U〉)

= Pr(〈CV = Y, PV = Y, AC = Y 〉 | ā, 〈CV = U, PV = U, AC = U〉)

124 H. Zhao and P. Doshi

We denote (CV = U, PV = U, AC = U) as primitive state sp and (CV =
Y, PV = Y, AC = Y) as primitive effect state se. Then we have, Tc(s̄1

e|ā, s̄p) =
Pr(se | sp). Given the associated primitive actions, Check Customer (acc) ,
Verify Payment (avp) , and Charge Money (acm) , one of the paths is, sp

acc−→
s1

avp−→ s2
amc−→ se, where s1 = (CV = Y, PV = U, AC = U), s2 = (CV =

Y, PV = Y, AC = U). The probability of following this path is, T (s1|sp, acc) ×
T (s2|s1, apv) × T (se|s2, amc) = 0.95 ∗ 0.95 ∗ 0.90 = 0.81225; we calculate prob-
abilities for other action sequences in the same way. In this example, they are
all 0.81225. The desired transition probability is: Tc(s̄1

e|ā, s̄p) = Pr(se | sp) =∑6
i=1 0.81225 ∗ 1

6 = 0.81225

Lump sum reward, Kc(ā): Because the abstract action represents the execu-
tion of all the primitive actions, the lump sum reward for an abstract action is a
summation of the lump sum rewards of the associated low-level primitive actions
and an overhead which denotes the cost of combining the primitive actions. The
overhead may assume a zero value.

Kc(ā) =
2∑

i=1

K(ai) + κ

where K is the lump sum reward of the primitive SMDP and κ is the overhead.

Sojourn time distribution, Fc(t|s̄p, ā): Let the sojourn time of a1 be distrib-
uted according to the Gaussian, N (t; μ2, σ1), and that of a2 be N (t; μ2, σ2). The
sojourn time distribution of ā is a linear combination of the Gaussian densities
of a1 and a2 This is a Gaussian, N (t; μ, σ), whose mean and deviation is:

μ =
2∑

i=1

μi σ =

√√√√ 2∑
i=1

σ2
i

Accumulating rate, Cc(s̄p, ā): The accumulated reward of an abstract action
is the total accumulated reward of all the corresponding primitive actions. Using
the sojourn time distributions of the primitive actions, we compute the expected
sojourn time of each, and use it to derive the rate:

C(s̄p, ā) =

∑2
i=1 C(si

p, ai) × Eai(F)∑2
i=1 Eai(F)

where, Eai(F) =
∫ Tmax

0 tF (t|si
p, ai)dt, F is the sojourn distribution of the prim-

itive SMDP.
By providing general methods for deriving the C-SMDP model parameters

from those of the lower level ones, we allow C-SMDPs at any level to be formu-
lated and solved using the standard solution methods.

5.4 Composing and Executing the Nested Web Process

The algorithm for composing the nested Web process takes as input the policy
obtained by solving the top most C-SMDP in the hierarchical framework and

A Hierarchical Framework for Composing Nested Web Processes 125

the start state. Our algorithm is recursive, using the policy prescriptively to
guide the selection of the next WS to invoke. If the policy prescribes an abstract
action, we invoke the algorithm with the policy and start state of the lower level
Web process. We show the algorithm in Fig. 4.

Algorithm for Composing and Executing Nested Web Process
Input: π //Policy, s0 //Initial state

s ← s0
while terminal state not reached

a ← π(s) //the optimal action of current state s
if a is a primitive action then

Invoke WS representing a
Get response of WS and form the next state s′

s ← s′

else //a is an abstract action
sinitial ← initial state of the lower level process //lower level state satisfying Ψ−1

p (s)
π′ ← corresponding policy for abstract action a
(sfinal, afinal) ← recursively call this algorithm with policy π′, sinitial

s ← state satisfying Ψe(sfinal[X
afinal]) //effect of executing the lower level process

end while
if policy π is not a policy for the top-level SMDP then

return (s, a)
end algorithm

Fig. 4. Algorithm for composing and executing a nested Web process modeled using
the hierarchical SMDP framework

6 Experimental Results

Within our SOA, we provide the policies as input to the algorithm of Fig. 4
implemented as a WS-BPEL Web process. We show the partial WS-BPEL doc-
ument highlighting the various steps of the algorithm when the WS Verify Or-
der is invoked in Fig. 5. We specify each of the lower level Web processes using
WS-BPEL documents of their own, while the external WSs are described using
WSDL. We used IBM’s BPWS4J engine for executing the WS-BPEL files and
Axis 1.2 for deploying individual Web services.

We experimentally evaluate our framework using the two examples mentioned
in Section 3 and use the HTN method as a benchmark for purpose of comparison.
Our methodology for evaluation consisted of running 1000 instances of both
scenarios, while varying the uncertainty of the process environment. We plot the
average total reward in Fig. 6.

For low probabilities of the inventory satisfying the order, the manufacturer’s
Web process chooses to bypass the inventory and instead invokes the preferred
supplier. However, as we increase the probability, at 0.68, the policy changes
and the process first asks the inventory. Since the manufacturer’s own inventory
is less expensive than the preferred supplier, the expected utility of using the
inventory exceeds that of the supplier when the inventory availability is suffi-
ciently high, causing the change in the policy. Because the process tries the less
expensive inventory first, the average reward obtained on running the process

126 H. Zhao and P. Doshi

<while condition="bpws:getVariableData('doneFlag','value') = false()
and bpws:getVariableData('terminalFlag','value') = false()">

<sequence name="whileSequence">

<switch>
<!--State 0, the optimal action is receive Order -->
<case condition ="bpws:getVariableData('doneFlag','value') = false()

and bpws:getVariableData('isOrderReceived','variableValue') = 'Yes'
and bpws:getVariableData('isOrderVerified','variableValue') = 'Unknown'
and bpws:getVariableData('inventoryAvailability','variableValue') = 'Unknown'
and bpws:getVariableData('preferredSupplierAvailability','variableValue') = 'Unknown'
and bpws:getVariableData('spotMarketAvailability','variableValue') = 'Unknown'
and bpws:getVariableData('isGoodsReceived','variableValue') = 'Unknown'
and bpws:getVariableData('isShipperSelected','variableValue') = 'Unknown'
and bpws:getVariableData('isGoodsShipped','variableValue') = 'Unknown' ">

<sequence>
<!-- Invoke a lower-level BPEL to verify order-->
<invoke name="invoke" partnerLink="orderVerifierService"

portType="sqp0:OrderVerifier" operation="verifyOrder"
inputVariable="emptyInput" outputVariable="invocationresponse00"/>

<assign>
<copy>

<from variable="invocationresponse00" part="verifyOrderReturn"/>
<to variable="isOrderVerified" part="variableValue"/>

</copy>
</assign>

</sequence>
</case>

<case condition =>
......

</case>

......

......
</switch>

</sequence>
</while>

<!--State 1 -->

Dertermine
the current
state of the
environment

(State 0)

Invoke a
lower-level
BPEL
process

Determine
the current
state and
invoke the
corresponding
WS based on
the policy

Other States

<while
condition="bpws:getVariableData
('doneFlag','value') = false()

and
bpws:getVariableData('terminalFl
ag','value') = false()">

<sequence
name="whileSequence">

..................

..................

..................

</Switch>
</sequence>

</While>

High-level BPEL Low-level BPEL

Fig. 5. A snippet of the WS-BPEL flow for the supply chain process. The verifyOrder
operation is an abstract action whose invocation leads to the execution of a lower level
Web process.

 10

 20

 30

 40

 50

 60

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
ew

ar
d

Prob. of Inventory Availability

H-SMDP
HTN

(a)

 20

 25

 30

 35

 40

 45

 50

 55

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 R
ew

ar
d

Prob. of Preferred Secondary Caregiver Vacancy

H-SMDP
HTN

(b)

Fig. 6. Average reward and standard deviations from running processes generated
using H-SMDP approach and HTN approach for the (a) order handling scenario, and
(b) patient transfer pathway. As we increase the probability of inventory availability(the
environment becomes less uncertain),the performance of HTN approaches that of ours.

increases from this point onwards. We observe an analogous behavior for the
patient transfer process.

Because the HTN method does not account for the fact that the inventory
may not always satisfy the order while planning (as with other classical planning
techniques, it assumes that all services are deterministic), the execution of the
HTN generated process stops prematurely when the inventory or the preferred
supplier is unable to satisfy the order. For lower rates of inventory satisfaction,
this happens frequently, and is responsible for the lower average reward of the
process. As the probability increases, this behavior reduces and average reward
increases. An interesting observation is the subsequent catch-up of the HTN
generated process with the one generated using the SMDP framework, when

A Hierarchical Framework for Composing Nested Web Processes 127

Table 1. Run times of generating the compositions for the two scenarios

Problem Hier. SMDP HTN
Supply Chain scenario 16ms 11ms

Patient Transfer scenario 31ms 17ms

the inventory is assumed to satisfy all the orders. This demonstrates the ap-
plicability of classical planning approaches like HTNs: they perform well only
in a deterministic environment. We point out that the improvement in overall
rewards within our framework comes at a computational price. We show the run
times of two approaches in Table 1.

7 Discussion

Existing planning methods for automatically composing Web processes do not
scale well to large and uncertain process environments. Many real world business
processes are amenable to a hierarchical decomposition into lower level processes
and primitive service invocations. We presented a new framework for modeling,
composing, and executing large Web processes by exploiting such a hierarchy.
We model the composition problem using a probabilistic planning technique,
SMDP, that allows an explicit representation of the uncertain reliability and cost
of services. In addition, SMDPs allow temporally extended actions of uncertain
duration, which are used as abstractions for the lower level Web processes. We
introduced the framework of hierarchical SMDPs that is characterized by com-
posite SMDPs for composing high level Web processes, and primitive SMDPs
for the lowest level Web processes. Because, we provide ways for deriving the
parameters of the composite SMDPs from lower level ones, our framework may
be used to compose processes nested to an arbitrary depth. Our experimental
results on the supply chain and patient transfer clinical pathway demonstrate
that the approach performs better in comparison to the other hierarchical plan-
ning technique, HTN, in environments of varying uncertainty. As part of future
work, we will extend our framework to support concurrent actions, which are
common in realistic Web processes.

Acknowledgements. This research was supported by a grant from UGARF.

References

1. Cardoso, J., Sheth, A.P.: Introduction to semantic web services and web process
composition. In: SWSWPC, San Diego, CA, USA (2004)

2. Wu, D., Parsia, B., Sirin, E., Hendler, J., , Nau, D.: Automating daml-s web
services composition using shop2. In: ICWC, Sanibel Island, Florida (2003)

3. Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition:
Using markov decision processes. JWSR (2005)

4. Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. (2004)

128 H. Zhao and P. Doshi

5. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience (1994)

6. McIlraith, S., Son, T.C.: Adapting golog for composition of semantic web services.
In: Proceedings of the 8th International Conference on Knowledge Representation
and Reasoning (KR2002), Toulouse, France (2002)

7. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on
the semantic web. The VLDB Journal (2003)

8. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.:
Shop2: An htn planning system. Journal of Artificial Intelligence Research (2003)

9. Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during
planning for web serivce composition. Journal of Web Semantics (2005)

10. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agreee-
ment(WSLA) Language Specification. (2003)

Using Dynamic Asynchronous Aggregate Search
for Quality Guarantees of Multiple Web Services

Compositions

Xuan Thang Nguyen, Ryszard Kowalczyk, and Jun Han

Swinburne University of Technology, Faculty of Information and Communication
Technologies,Melbourne VIC 3122, Australia

{xnguyen, rkowalczyk, jhan}@ict.swin.edu.au

Abstract. With the increasing impact and popularity of Web service
technologies in today’s World Wide Web, composition of Web services
has received much interest to support enterprise-to-enterprise application
integrations. As for service providers and their partners, the Quality of
service (QoS) offered by a composite Web service is important. The QoS
guarantee for composite services has been investigated in a number of
works. However, those works consider only an individual composition or
take the viewpoint of a single provider. In this paper, we focus on the
problem of QoS guarantees for multiple inter-related compositions and
consider the global viewpoints of all providers engaged in the composi-
tions. The contributions of this paper are two folds. We first formalize the
problem of QoS guarantees for multi-compositions and show that it can
be modelled as a Distributed Constraint Satisfaction Problem (DisCSP).
We also take into account the dynamic nature of the Web service envi-
ronment of which compositions may be formed or dissolved any time.
Secondly, we present a dynamic DisCSP algorithm to solve the problem
and discuss our initial experiment to show the feasibility of our approach
for multiple Web service compositions with QoS guarantees.

1 Introduction

During the past few years, in an effort to improve the collaborations between
organizations, the Web service framework has been emerging as a de-facto choice
for integrating distributed and heterogeneous applications across organizational
boundaries. Consequently, much research has been carried out in various areas
including Web service discovery, composition, and management. Web service
composition in general focuses on building a new value-added composite Web
service from a number of existing component Web services. A Web service com-
position can be considered as a choreography or an orchestration of Web ser-
vices from different viewpoints. A choreography describes a composition from a
global viewpoint of all participants (i.e. Web service providers who participate
in the composition) whereas an orchestration has the local viewpoint of a sin-
gle provider. While Web service orchestration has enjoyed its popularity with an

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 129–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

130 X.T. Nguyen, R. Kowalczyk, and J. Han

increasing number of support tools and implementations [13], Web service chore-
ography standards emerge rather late with the replacement of WSCI/WSCL [17]
by WS-CDL [18]. Without choreography, Web services compositions’ examples
[8,6] are often restricted to a model which we call the single provider composi-
tion model. For a single provider composition, a provider searches for available
Web services, combines them together to form a new composite Web service
that it can offer. The major characteristic of a single provider composition is
that it is planned and composed solely by a single provider or QoS broker. The
composition may even not be noticed by component service providers. With the
increasing popularity of Web service choreography as a mechanism for multi-
party contracts [18], Web services choreography opens up the possiblities for
multi-provider compositions in which every participant has some vested interest
in the composite service and actively engages in composing the service. QoS
guarantees for an individual single provider composition has been well investi-
gated in a number of works [3,6,8]. However, to our knowledge, there has not
been any works on the same problem for multiple related multi-provider com-
positions in which multiple providers collaborate to guarantee the QoS levels of
composite services.

In parallel to the advancement of Web services, the MAS and AI communi-
ties have shown an increasing interest in the Distributed Constraint Satisfaction
Problem (DisCSP) in the past few years. DisCSP has been widely viewed as
a powerful paradigm for solving combinatorial problems arising in distributed,
multi-agent environments. A DisCSP is a problem with finite number of vari-
ables, each of which has a finite and discrete set of possible values and a set of
constraints over the variables. These variables and constraints are distributed
among a set of autonomous and communicating agents. A solution in DisCSP is
an instantiation of all variables such that all the constraints are satisfied. In this
paper, we investigate the application of DisCSP techniques to the QoS guarantee
problem and propose a new DisCSP based algorithm for multiple multi-provider
Web service compositions. The rest of the paper is organized as follows. In the
next section we present some important related work. We discuss how the QoS
guarantee for Web service composition problems can be modelled as Dynamic
DisCSP problems in Section 3. We also present formal descriptions of the QoS
guarantee for multi-provider compositions, DisCSP and Dynamic DisCSP frame-
works in that section. We review the AAS (Asynchronous Aggregate Search)
algorithm for its application in the problem of QoS guarantees and describe
our proposed DynAAS (Dynamic Asynchronous Aggregate Search) algorithm
in Section 4. Section 5 present our experiment on the algorithm’s performance.
Finally, conclusions and future work are discussed in Section 6.

2 Related Work and Open Issues

There have been several studies on QoS of Web service compositions. QoS guar-
antees for compositions are discussed in [8,7,6]. In [7], the authors discuss an
approach for QoS aggregation based on Web service composition patterns [14].

Using Dynamic Asynchronous Aggregate Search 131

More related work on QoS planning can be found in [8], in which a method for
selecting optimal sub-providers from a list of service providers is proposed. In
[3], the authors model the QoS requirements as an optimization problem and
employ a special centralized CSP technique to solve it. However, we argue that
there are three major issues that have not been addressed in those works:

– QoS guarantees for multi-provider compositions: As we explained before,
choreography offers a new service model in which a number of component
service providers may share common goals and hence collaborate together to
offer a composite service. Most of the current QoS composition research focus
on single provider composition. Therefore they look at a composition from
a local view of a single provider, as for orchestration. The QoS composition
for multi-provider compositions, as for choreography, requires a global view.

– Multiple inter-related compositions: Some services or service providers may
engage in many compositions and hence there is a relationship between these
compositions through the shared services and providers. This relationship
needs to be taken into account in the composition planning.

– Discovery of supported QoS levels: Most of current QoS composition research
assume that service providers publicly advertise precisely their supported
QoS levels. This can be done by categorizing different classes of service and
embedding the supported QoS values directly into WSDL interfaces or UDDI
registries [11]. However, such a public advertisement requires disclosure of
private information and is not the only way for QoS discovery. Works on
negotiation [5] suggest that QoS discovery can be achieved by direct negoti-
ation between a client and a service provider. By doing this, supported QoS
levels can be kept private.

In addition, we argue that public advertisement is more suitable for atomic
services (i.e services which do not use third party component services). For a
composite service which uses a third party service, supported QoS can be bet-
ter negotiated because the composite service provider might replace the third
pary service with a better one at runtime. Of course here we assume that self-
reconfiguration can be done within the composite service and this is the subject
of research in [1]. The dynamic runtime change in the structure of a composite
service suggests that a set of pre-defined QoS levels for that service may not be
desirable. Align to this argument, there are works on “services on demand” [4,1]
platforms which attempt to satisfy any QoS requirements from clients. In the re-
maining part of this paper, we introduce a framework to handle the above three
issues. Our framework focuses on a global view as opposed to work in [1,8,11,6].

3 Formalization of the QoS Guarantee Problem for Web
Service Compositions

We present a motivation example in Figure 1 which shows four composite services:
Mel(burne)-Tourist, Aus(tralia)-Tourist, Syd(ney)-Tourist, and Aus-Attraction
which make up the set Scomposite. The composite services are composed from six

132 X.T. Nguyen, R. Kowalczyk, and J. Han

Fig. 1. An example of multiple compositions for tourist related services

individual services: Mel-Transport, Mel-Hotel, Mel-Attraction, Syd-Transport,
Syd-Attraction, and Aus-Weather which make up the set Scomponent.

Since a service provider must allocate necessary resources to live up to the
QoS guarantees, if its service engages in a number of compositions, there will
be a dependency between the levels of QoS that service can contribute to these
compositions. Consequently, there is a mutual relationship between the com-
positions. Here we assume that this relationship can be formally expressed as
constraints. For the sake of clarity, we assume the response time is our only
interested QoS parameter. The t(S) variable in Figure 1 represents the response
time of a Web service S, S∈Scomposite∪Scomponent. We also assume that every
composition in Scomposite is a sequential combination of its component services
and hence its E2E (end-to-end) response time can be computed as a sum of the
component services’ response time. For other QoS parameters and composition
patterns, the E2E QoS can be computed with different aggregation operators [7].
The QoS requirements on the values of these sums form the set of constraints
{c(S):S∈Scomposite}. We note that these constraints c(S) are only shared among
service providers who engage in the composition S(i.e. not all providers). In ad-
dition to these shared constraints, each provider has its private constraints as
shown in the last row of the table in Figure 1. These constraints might be shaped
by the provider’s resource limitations, business rules, organizational policies or
even conditions in contracts with a third party. The providers have a choice to
reveal them or not by making the constraints shared (i.e. known to a number
of or all other providers) or private respectively. Here we focus on a general
problem in which multiple providers engage in multi-Web service compositions.
The final goal of the QoS guarantee for multiple Web service compositions is
to satisfy the E2E QoS requirements of all compositions. Formally, the problem
can be stated as:

Definition 1. Given m service providers participate in n compositions and a
set of pre-defined E2E QoS requirements for those compositions. The problem
of QoS guarantee for multi-Web service compositions is to assign QoS values
to each component service so that these values can be supported by the service’s
provider and all the compositions meet their QoS requirements.

Using Dynamic Asynchronous Aggregate Search 133

Some main characteristics of the QoS guarantee problem for multi-Web service
compositions that makes it more complex and difficult than the single-provider
QoS composition problem are:

– Prop1: Many providers engage in the composition process. They may pub-
lish their supported QoS levels or require direct negotiations.

– Prop2: Many compositions need to be considered concurrently. QoS plan-
ning in one composition may affect another composition.

In a real world Web services environment, there are two main sources of dy-
namism regarding the compositions and the constraints. They are also important
characteristics of the QoS guarantee problem for multi-Web service compositions:

– Prop3: Compositions can be formed and disbanded any time, e.g. compo-
sitions in Scomposite do not appear and disappear at the same time. They
might be formed or dropped one after one.

– Prop4: Service providers might have their own constraints changed during
their service lifetime. QoS requirements for a composition might also change
(e.g. changes in user’s requests).

The characteristic Prop3 reflects many possibilities. One of them is that some
providers may realize that the final goal to satisfy the QoS requirements of all
compositions may not be achieved. They then drop less important compositions
(according to their own ratings) and hence the original problem of QoS guarantee
for Web service compositions is transformed into a new easier one to solve.

4 Modelling the QoS Guarantee Problem for Web Service
Compositions as an Instance of DisCSP

Based on the above discussion, it is proposed that DisCSP techniques can be
well suited for modelling and solving the QoS guarantee problem for Web service
composition. More specifically:

– The distributed nature of the Web environment and the engagement of many
participants in multi-provider services suggest that a distributed approach
is best suited.

– Constraints in the QoS guarantee for multi-Web service composition prob-
lem can be either private or shared. Distributed constraints with different
visibility levels have been one of the main focuses of DisCSP techniques.

To apply DisCSP techniques for solving the problem of QoS guarantee for multi-
Web services compositions, each service provider can be considered as an agent
(an autonomously processing entity) in a constraint network. Each QoS para-
meter is mapped into a variable in the constraint network; the set of providers’
constraints is mapped into the network’s constraint set. For the rest of this pa-
per, we will use the terms service providers and agents interchangeably. More
formally, the problem of QoS guarantee for Web service compositions can be
considered as an instance of DisCSP problems of which the general definition is:

134 X.T. Nguyen, R. Kowalczyk, and J. Han

Definition 2. A static distributed constraint satisfaction problem P is a tuple
〈V,D,C,A〉 where V={x1,...,xn} is a set of variables, D={D1,...,Dn} is a set of
discrete finite domains for each of the variables , and C={C1,...,Cm} is a set
of constraints on possible values of variables. These variables and constraints
are distributed among a set of agents A={A1,...,Ak}. If an agent Al knows a
constraint Cq, it also must know all variables contained in Cq. A solution is an
assignment of values in the domains to all variables such that every constraint
is satisfied.

To take into account the dynamic nature of Web services environment, we con-
sider the implications of the properties Prop3, and Prop4 discussed in the pre-
vious section. In the DisCSP framework, the appearance of a new composition
indicates that new constraints and possiblly new variables and agents are added
into the constraint network. Dissolving of a composition means that some exist-
ing constraints are removed and possibly some existing variables or agents are
also removed. In general, there are introductions or reductions of new variables,
constraints, and agents.

Traditionally, Dynamic CSP (DynCSP) is a branch of CSP. Its goal is to effec-
tively handle CSP problems with dynamic changes instead of restarting a static
search every time a change is detected. DynCSP has been modestly extended into
distributed environments [9].A formal description of dynamic DisCSP followed
by a dynamic CSP definition in [16] can be given as:

Definition 3. A dynamic distributed constraint satisfaction problem P is a se-
quence P0...,Pi... of static DisCSPs, where each one resulting from a change in
the preceding one. This change may be a restriction or a relaxation.

A restriction can be caused by more agents, variables, or new constraints. A
relaxation results from removing agents, variables, or constraints. Note that a
change rate is important to measure and specify how fast a DynDisCSP changes
over time. This rate, defined as Δ can be measured as the total of added or
removed constraints between any two Pi and Pj over the time distance between
them.

5 DisCSP Algorithms to Solve the QoS Guarantee
Problem for Web Service Compositions

There have recently been many publications on DisCSP algorithms. Traditionally
these algorithms are developed and demonstrated in the context of the Meeting
Scheduling and Sensor Network [2]. However, there are some characteristics that
make the QoS guarantee for Web service composition problem different from
those problems: Firstly each agent holds a set (often more than one) of variables
to represent QoS parameters; secondly local constraints in QoS problem can
be very complex; and thirdly service providers are heterogeneous and hence
flexibility in algorithm implementations is desireable. In searching for a suitable
DisCSP algorithm, these characteristics are the most important criteria for us.

Using Dynamic Asynchronous Aggregate Search 135

Whilst most DisCSP algorithms can be extended so that one agent can hold
more than one variable, substantial effort is required for that and for handling
complex private constraints. The originial DisCSP model [20] and most of the
solving algorithms focus on shared constraints instead of private constraints and
hence is more suitable for distributed control but not negotiation. A notable
exception is Asynchronous Aggregate Search (AAS) [12] that allows one agent to
maintain a set of variables and these variables can be shared and hence is suitable
for negotiation. Also all constraints are private in AAS (shared constraints can
be modeled as duplicated private constraints). However, in the current version
of AAS, private constraints at each agent are assumed to be simple and hence
there is no attention in solving these local constraints. Also, AAS is designed only
for static environments. In this section, we introduce AAS and suggest to use
a centralized CSP solver inside each agent to handle complex local constraints.
We also propose an extension of AAS called DynAAS to handle the dynamic
nature of Web services environment.

5.1 Asynchronous Aggregate Search and Local CSP Solvers

Here we briefly introduce AAS in the Web services context. A complete ex-
planation of AAS can be found in [12] where its termination, correctness and
completeness are proven. Asynchronous Aggregate Search (AAS) is a DisCSP
search technique based on the classical Asynchronous Backtrack (ABT) algo-
rithm [20]. In AAS, each agent (service provider) maintains a set of variables
(relevant QoS variables in our Web services QoS guarantee problem) which can
be shared with others and a set of private constraints on the values of these
variables. AAS differs from most of existing methods in that it exchanges aggre-
gated consistent values (in contrast to a single value in ABT) of partial solutions
during the solving process. The aggregated consistent values are the Cartesian
products of domains which represent a set of possible valuations. This aggregate
significantly reduces the number of backtracks. At the beginning, AAS agents
are (randomly) assigned with priorities and generate random assignments (i.e.
proposals). Two agents are neighbors if they share some variables. During search,
each agent A sends assignments in ok? messages to A+ or rejections in nogood
messages to A−. Here we denote A+ the set of neighboring agents whose priori-
ties are higher, and A− the set of neighboring agents whose priorities are lower
than A’s priority. V+ is the set of variables the agent share with A+, and V− is
with A−. An agent can also send addneighbor to ask another agent to become
its neighbor. Each agent keeps a view (current assignments of its variables and
variables in V+) and a list of nogoods (assignments rejected by A−).

InAAS, an agent implements threemainprocedures process-ok , process-nogood,
and process-addneighbor to handle incoming ok?, nogood, and addneighbor mes-
sages. These procedures check whether the information of a partial solution in the
messages is still compatible with the agent’s own assignment of its variables. The
procedures may invoke a check-agent-view procedure to find out a new compati-
ble assignment for the agent’s local variables. In particular, the procedure process-
ok updates the agent-view and nogood list from the remaining valid assignments

136 X.T. Nguyen, R. Kowalczyk, and J. Han

before possibly invoking the check-agent-view procedure. The procedure process-
nogood updates its view according to new assignments found in the nogood con-
tent. If the nogood invalidates the current instantiation and contains new variables
then the agent will try to establish new links with agents in A+

k which hold these
variables. The procedure check-agent-view is used to find a new instantiation and
sends updated values in this instantiation to appropriate agents in A−

k. To effec-
tively handle the complexity of local constraints, we introduce a local CSP solver
into each agent. Instead of carrying out a simple local search as in the originial ver-
sion of AAS, our check-agent-view employs a local CSP solver to find an aggregate
V over the Cartesian product of domains of the agent’s variables so that the cur-
rent agent-view and V are consistent and satisfy the agent’s local constraints. In
general, the CSP solver of an agent A takes assignments from A− and generates
solutions for V+. If a solution cannot be found for an assignment from an agent in
A+, a nogood message is backtracked to this agent. Otherwise, new assignments
generated by A and sent to A−.

5.2 Dynamic Asynchronous Aggregate Search

Our new extension of AAS for dynamic environment is based on an indexing
technique called eliminating explanation which had been proposed in centralized
DynCSP [15]. Note that (nogood based) CSP algorithms in general generate
and test solutions, and record nogoods (invalid solutions). The main idea of
the eliminating explanation technique is simple enough: to index every nogood
against the minimal set of constraints that create the nogood, and remove the
nogood if a constraint in the constraint set is removed. In DynAAS, an agent
creates and stores an eliminating explanation before it sends a nogood. The sent
nogood is tagged with an identity number and kept by both the sender and
the receiver so that the sender, due to some changes later, can ask the receiver
to remove this nogood. It does this by sending the receiver a remove-nogood
message that contains the nogood’s identity.

Algorithm 1 shows a procedure add-constraints used by an agent to handle a
newly added constraint set Cnew. In the algorithm, the agent first tries a local
repair of the partial assignments of variables contained in both those constraints
and V+ (line 2). If it fails, the agent then attempts to repair the assignments of
the whole V+ (line 4). New assignments if exist are used to update the view and
sent to A+, otherwise a backtrack occurs.

Algorithm 2 explains a procedure remove-constraints which handles the re-
moval of a constraint set Cremoved. The agent bases on its eliminating explana-
tion set (E) to detect which nogood it sent to a parent in the past is no longer
a nogood (line 2). It then sends a remove-nogood message to ask the parent
for the removal of this nogood. The nogood is a constraint from the parent’s
perspective. Therefore, the parent handles the message by invoking Algorithm
2. Adding and removing constraints are the same as calling add-constraints and
remove-constraints sequentially.

Using Dynamic Asynchronous Aggregate Search 137

Algorithm 1. Add-Constraints(Cnew)
1: update neighbor list, variable list, and constraint list
2: assgmts =re-assign(v(Cnew) ∩ V +)
3: if assgmts = ∅ then
4: assigmts =re-assign(V +)
5: end if
6: if assgmts = ∅ then
7: send nogoods to A−

8: else
9: update view and send ok to A+

10: end if

Algorithm 2. Remove-Constraints(Cremoved)
1: update neighbor list, variable list, and constraint list
2: for all e ∈ E and c(e) ∩ Cremoved �= ∅ do
3: send remove-nogood message to parent to remove c
4: delete e from E
5: end for

It is important to note that adding or removing of variables or domain values
can be modeled as constraints [16], therefore can be handled by the two above
algorithms. If a new agent is added to the network, it is given the lowest priority.
For every type of changes, affected agent must update its lists of neighbors,
variables, and constraints (e.g. line 1 of Algorithm 1 and 2) first. As we have
seen so far, the key idea of DynAAS is to reuse partial solutions to achieve
stability. If we model the whole environment as a discrete-event system where
events are constraint additions or removals, then during the interval between
any two consecutive events the system can be viewed as a static DisCSP using
AAS. This is because DynAAS reacts to maintain consistent views and nogood
storages whenever constraints are added or removed.

6 Experiments

We have built a prototype for experiment, in which we uses Axis 2 for SOAP
engine running on Windows platforms. We develop a DisCSP module with
2 supported protocols: AAS and DynAAS. The module is implemented as a
Web service that has an one-way operation to receive messages sent from other
DisCSP modules. The endpoint reference implementation of a DisCSP module
supports four different WS-Addressing actions with local names: ok, nogood,
add-neighbor, and remove-nogood. These actions are used to identify a message
type sent between two Web services. We use XPATH to present the constraints.
We use NSolver [10] as the Local Solver module. We developed an adaptor to
invoke NSolver engine (.NET process) from the Web services. The adapter trans-
forms XPath expression into NSolver native constraints and can be downloaded

138 X.T. Nguyen, R. Kowalczyk, and J. Han

from [19]. For our experiment, 10 Web services are used. A list of prefetched
constraints on QoS parameters, and neighbors (i.e addresses of other DisCSP
Web services) are stored in a mySQL database. These data are modified by a
simulator with the varying rate σ of adding/removing constraints. In particular,
compositions are randomly formed and removed among any 3 agents. For the
sake of clarity, each of our compositions consists of exactly three component
services and introduces maximum two constraints on the E2E QoS parameters
of the composition. The QoS parameters that we use are response time and cost
which both have simple aggregation formulas [7]. Each parameter has a domain
of 10 discrete values. The average of all constraint tightness (the probability that
there is not a valid assignment within a constraint) is 30% . 20 instances are run
for each test.

Fig. 2. Mean Error of DynAAS versus Static AAS for 10 providers with dynamic
number of compositions

Before an explaining experiments’ result, we first introduce some important
metrics. Most of current DisCSP algorithms use processing cycles as a measure-
ment of time due to its good approximation and the asynchronously distributed
nature of the search (i.e. there is no global clock). A processing cycle of an agent
consists of receiving a message, processing it and sending out new messages. Also
for DynDisCSP, it is important to measure the rate of environmental changes.
We adopt the rate function σ defined in [9]. It is defined as the first deriviative
of the change rate Δ that measures how reactive an algorithm is to changes.
The time unit to calculate Δ and σ is one processing cycle. For example, at a
rate σ=4, four constraints are added or removed at each processing cycle. Note
that because sometimes an algorithm might not keep up with the change rate,
completion time is not an appropriate indicator for performance of DynDisCSP
algorithms. Instead, accuracy in approximating a valid solution is used. The
metric is instantaneous error [9] which is calculated as the distance from a cur-
rent solution found by the algorithm and the valid solution bounds. Note that
these valid solution bounds are computed by our simulator everytime it adds or
removes a constraint.

Using Dynamic Asynchronous Aggregate Search 139

In the experiments, we have used both static AAS and our new DynAAS
algorithm. Static AAS restarts the search from scratch every time a change is
detected. Figure 4 shows the performance of DynAAS and static AAS in terms
of mean values of normalized instantaneous errors vesus rate of change. The
graph shows that the error rate of DynAAS is significant lower than AAS for
low changed rates and increased for larger values of σ. This can be explained
as the the change rate is greater than the adaptive rate at which DynAAS can
handle. However it shows that DynAAS offers significant reduction in solution
errors if the change rate is reasonable. This reduction is greater than 50% for
σ≤8. In other words, for the current setup, as long as there are no more than 8
constraints added or removed at each processing cycle then DynAAS gives twice
of the level of solution accuracy over static AAS.

7 Conclusions

We have discussed in this paper the limitations of current approaches in solving
general QoS composition problems and outlined a new approach for modelling
and solving the QoS guarantees for multi-provider compositions as a DisCSP
problem. We also describe a new extension of AAS called DynAAS for dynamic
environment where unexpected events and changes can happen. Experiments
show that the QoS guarantee problem for multiple Web service can efficiently be
solved with DisCSP. Our future work focuses on QoS guarantees for Web service
compositions and optimization of a joint interest function among all providers,
such as the joint satisfaction levels of the DisCSP solution quality.

References

1. V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, and B. Sri-
vastava. A service creation environment based on end to end composition of web
services. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 128–137, New York, NY, USA, 2005. ACM Press.

2. R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed constraint
satisfaction in a wireless sensor tracking system. In Workshop on Distributed Con-
straints, IJCAI, 2001.

3. B. Benatallah, F. Casati, and P. Traverso, editors. Service-Oriented Computing -
ICSOC 2005, Third International Conference, Amsterdam, The Netherlands, De-
cember 12-15, 2005, Proceedings, volume 3826 of Lecture Notes in Computer Sci-
ence. Springer, 2005.

4. A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, and A. Youssef. Web services on demand: Wsla-driven automated
management. IBM Syst. J., 43(1):136–158, 2004.

5. A. Elfatatry and P. Layzell. Negotiating in service-oriented environments. Com-
mun. ACM, 47(8):103–108, 2004.

6. X. Gu, K. Nahrstedt, R. Chang, and C. Ward. Qos-assured service composition in
managed service overlay networks, 2003.

140 X.T. Nguyen, R. Kowalczyk, and J. Han

7. M. C. Jaeger, G. Rojec-Goldmann, and Mühl. QoS aggregation for service compo-
sition using workflow patterns. In Proceedings of the 8th International Enterprise
Distributed Object Computing Conference (EDOC 2004), pages 149–159, Monterey,
California, USA, 2004. IEEE CS Press.

8. Y. Liu, A. H. Ngu, and L. Z. Zeng. Qos computation and policing in dynamic web
service selection. In WWW Alt. ’04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pages 66–73, New York,
NY, USA, 2004. ACM Press.

9. R. Mailler. Comparing two approaches to dynamic, distributed constraint satis-
faction. In AAMAS ’05: Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, pages 1049–1056, New York, NY,
USA, 2005. ACM Press.

10. NSolver home page. http://www.cs.cityu.edu.hk/ hwchun/nsolver/, 2005.
11. S. Ran. A model for web services discovery with qos. SIGecom Exch., 4(1):1–10,

2003.
12. M. C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in dis-

tributed constraint satisfaction. In Artificial Intelligence Journal Vol.161, pages
25–53, New York, NY, USA, 2005. ACM Press.

13. W. M. P. van der Aalst. Don’t go with the flow: web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72–76, 2003.

14. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

15. G. Verfaillie and T. Schiex. Dynamic backtracking for dynamic constraint satisfac-
tion problems. In Proceedings of the ECAI’94 Workshop on Constraint Satisfaction
Issues Raised by Practical Applications, Amsterdam, The Netherlands, pages 1–8,
1994.

16. G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction prob-
lems. In National Conference on Artificial Intelligence, pages 307–312, 1994.

17. Web Service Choreography Interface (WSCI) 1.0. http://www.w3.org/TR/wsci/,
2005.

18. Web Services Choreography Description Language Version 1.0. http://www.w3.org/
TR/2004/WD-ws-cdl-10-20041217/, 2006.

19. XPath Adapter for NSolver. http://www.it.swin.edu.au/centres/ciamas/tiki-
index.php?page=xpath2nsolver, 2005.

20. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint sat-
isfaction for formalizing distributed problem solving. In International Conference
on Distributed Computing Systems, pages 614–621, 1992.

Service Composition (re)Binding Driven by
Application–Specific QoS

Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito,
Francesco Perfetto, and Maria Luisa Villani

RCOST - Research Centre on Software Technology
University of Sannio

Palazzo ex Poste, Via Traiano 82100 Benevento, Italy
{canfora, dipenta, r.esposito, villani}@unisannio.it, ggperf@libero.it

Abstract. QoS–aware service composition and binding are among the
most challenging and promising issues for service–oriented architectures.
The aim of QoS–aware service composition is to determine the set of
services that, once composed, will perform the required functionality, and
will best contribute to achieve the level of QoS promised in Service Level
Agreements (SLAs). While the existing works focus on cross–domain QoS
attributes, it would be useful to support service composition and binding
according to some characteristics on the borderline between functional
and non–functional attributes, often specific to the service domain.

The paper describes a QoS evaluator that, integrated with our pre-
viously developed binder, allows the use of application specific QoS at-
tributes for composite service binding and re–binding. The applicability
of the proposed approach and tool is shown through a case study related
to the image processing domain.

Keywords: Quality of Service, Dynamic binding, Re–binding, Com-
posite Web Services.

1 Introduction

Late, dynamic binding of service compositions constitutes one of the most inter-
esting and relevant challenges for service–oriented architectures. In this scenario,
a service composition can contain some abstract service specifications – e.g., indi-
cating that a hotel booking service is needed at a particular point of the workflow
– without specifying the binding to some existing services. When the function-
ality offered by more available services is equivalent, the binding is driven by
some non–functional, Quality of Service (QoS) criteria, such as minimizing the
cost, the time or achieving a tradeoff between the two.

In case the bindings need to fulfill some global constraints imposed over the
workflow and (near) optimize a global fitness function, proper aggregation for-
mulae have been proposed to estimate the QoS of the composition from the QoS
attributes of invoked services and from some properties of the workflow [4]. Find-
ing a solution of the aforementioned problem is NP–hard: this was addressed by

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 141–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

142 G. Canfora et al.

various authors: Cardoso et al. [5] and Zeng et al. [11] proposed to use Integer
Programming, while, in past work, we used Genetic Algorithms (GAs), that re-
sulted to be more scalable and allowed the use of non–linear QoS aggregation
formulae [2].

While most of the existing works focus on cross–domain QoS attributes – e.g.,
response time, cost, availability, reputation, reliability, etc. – it would be useful
to also consider other attributes, that are specific of the service domain/purpose.
For example, if the service composition returns a photo, one would try to max-
imize the photo resolution or the number of colors, keeping low, if possible, the
cost and the response time. Much in the same way, a travel booking composite
service – involving flight and hotel booking – would try to achieve a compromise
between the cost and the hotel category, favoring hotels and airlines encompass-
ing the maximum possible number of priority clubs.

This paper presents the use of application–specific QoS attributes for the pur-
pose of QoS–aware composition and re–binding. In particular, this work enhances
our framework for service (re)binding [3] by:

– introducing constructs, and a tool, to define new QoS attributes (specifying
type, scale and domain) and to annotate services with these attributes;

– specifying a language for defining QoS attribute aggregation formulae, i.e.,
formulae similar to those defined by Cardoso [4] for domain–independent
attributes. The formulae specification is supported by a guided editor and a
type–checker;

– realizing an interpreter for the aforementioned formulae; the interpreter is
integrated in our service binder described in [3] and is used to evaluate the
QoS of a composite service at binding–time and at run–time (to trigger
re–binding if necessary).

The remainder of this paper is organized as follows. Section 2 defines the lan-
guage for specifying QoS attributes and aggregation formulae. Section 3 describes
the QoS–attribute definition tool, highlighting its architecture, its features and
how it is integrated with our binder. Section 4 shows the approach at work in the
context of a image processing workflow. After a review of the literature in Sec-
tion 5, Section 6 concludes the paper and outlines the directions for future work.

2 QoS Definition Language

Let us consider a composite service S of n abstract services, S ≡ {s1, s2, . . . , sn},
whose structure is defined through a workflow description language (e.g., WS–
BPEL). Each abstract service si can be bound to one of the m concrete services
csi,1, . . . , csi,m, which are functionally equivalent, while exhibiting different QoS
values. As said in the introduction, the choice of bindings can depend on an objec-
tive function and on a set of constraints. Determining the (near) optimal solution
requires to evaluate each solution, estimating the QoS of a concrete workflow, i.e.,
bound to a set of concrete services. Cardoso et al. [5] defined QoS aggregation for-
mulae for each pair QoS attribute–workflow construct. For example, the cost (or

Service Composition (re)Binding Driven by Application–Specific QoS 143

the response time) of a sequence of service invocations is given by the sum of each
cost (response time), while the cost of a switch is given by the weighted sum of costs
for each case, where weights are the probabilities that cases will be followed.

In most cases, the aforementioned aggregation formulae are cabled in the
optimization algorithm the binder is using. However, as mentioned in the intro-
duction, in many cases it is useful to consider QoS attributes, sometimes specific
of a particular domain, sometimes specific of a particular application, for which
the aggregation formulae have not been defined yet. Therefore, it is necessary
to provide a language and a tool to specify aggregation formulae, and to allow
the QoS–aware binder to interpret such formulae for estimating the QoS of the
whole composition. To this aim, we developed a language that permits to specify
a new QoS attribute, defining:

1. The type: supported types are primitive types (integer, real, Boolean), strings
and collection types (Set, Bag and Sequence). For integer and real it is either
possible to define a range of possible values, or to specify an enumeration
of admissible values. For strings it is necessary to enumerate values (thus
imposing an order relationship among them). Collection types can be used
when the QoS value for a service is constituted of sets of atomic values.
In particular, Set indicates the mathematical set (no order relationship, no
repeated values), Bag admits repetitions and Sequence imposes an order re-
lationship. The chosen type limits the set of operations that can be used
when defining the aggregation formulae. For example, a set supports opera-
tions such as union, intersection, while it is not possible to apply arithmetic
operators. If necessary, it is possible to get the set cardinality and then apply
on it any operator supported for the integer type.

2. The scale: ordinal, interval, ratio, absolute. As for the type, the scale limits
the set of admissible operations. Since the QoS attribute must be able, at
least, to establish an order relationship between two services (i.e., indicate
which service is better from a particular QoS perspective), the nominal scale
is not considered.

For example, if we consider the photo domain, the color depth (defined as the
number of bits encoding colors) QoS attribute is of type integer and its scale is
ordinal. For any service involving a payment, the accepted credit cards attribute
is a set, containing strings indicating the various credit cards accepted. The
scale for this type of attribute is the ordinal scale where the order relationship
is defined over the set cardinality (i.e., the more credit card are accepted, the
better is the service). Finally, the refresh rate attribute of a webcam service can
be considered a real value in the ratio scale.

Our approach for specifying types is similar to what available in the WSLA
language [6]. However, WSLA does not consider Collection types nor it defines
how QoS attributes values can be aggregated. Similarly to Cardoso, who defined
aggregation formulae for domain–independent attributes (cost, response time,
etc.), we can compute overall workflow QoS, specifying, for each workflow control
construct, aggregation formulae for domain-specific attributes too. In order to

144 G. Canfora et al.

Table 1. Aggregation formulae for some domain–specific QoS attributes

Attribute Workflow construct QoS aggregation formula
Color Sequence min(Ai)
Depth Switch maxProbability(Ai, pi)

Flow min(Ai)
Loop Ai

Credit Sequence intersection(Ai)
Cards Switch maxProbability(Ai, pi)

Flow intersection(Ai)
Loop Ai

Refresh Sequence min(Ai)
Rate Switch sum(pi · Ai)

Flow min(Ai)
Loop Ai

obtain that, the language we propose offers a set of operators and functions,
most of them inherited from the Object Constraint Language (OCL) [9]. In
particular, the language includes mathematical operators, Boolean operators,
collection operators, and finally keywords proper of the aggregation language.
These indicate parameters to be used in aggregation formulae, i.e.:

– k, the number of iterations for a Loop;
– pi, the probability of following the i–th case in a Switch;
– Ai, the QoS of the inner node of a workflow constructs. For a Sequence, Ai

is the array of QoS for nodes belonging to the sequence; for a Switch it is
the array of QoS for all cases; for a Flow it is the array of QoS for all the
children; for a Loop is the QoS of the Loop inner node.

Table 1 shows examples of aggregation formulae for some domain–specific QoS
attributes, i.e. color depth of a photo service, number of credit cards accepted
from a payment service and refresh rate of a temperature service. For the Se-
quence and the Flow, the color depth is the minimum among the values Ai of
the inner nodes. For the Switch it can be defined as the color depth Ai for the
case having maximum probability pi. Finally, for the Loop it is just the value
computed for the inner node. For the credit card attribute, the aggregation is
made through the set intersection operator over Sequences and Flows (i.e., con-
sidering the set of credit cards common to all the services), while for a Switch it
is the value of the branch having highest probability, and for the Loop the value
computed for the inner node. The refresh rate aggregates similarly to color depth
for all workflow construct, except for the Switch, where an averaged weight is
computed. Finally, it is worth to point out that, even in our example we consid-
ered only the most common workflow constructs, the language can be used to
define formulae for further constructs.

Besides the aggregation formulae, it is necessary to specify the function to be
used for evaluating the attribute and to impose an order relationship between
services (thus permitting their comparison). Let A be the value of our QoS at-
tribute for a given service. For attributes (e.g., color depth) for which the type
already imposes an order relationship, the function is the identify function, while

Service Composition (re)Binding Driven by Application–Specific QoS 145

for credit card – for which the order relationship is not imposed – the function
is size(A), where the function size returns the cardinality of the set A.

As detailed in Section 3, the formulae specification is supported by a guided
editor and a type–checker.

3 The QoS Aggregation Tool

The workflow QoS-aggregation mechanism has been implemented as part of the
WS–Binder Tool [3]. The previous release of the binder supported composite
service (re)binding considering cross–domain attributes such as Cost, Response
Time and Availability. As shown in Fig. 2, the binder has been extended with
the following modules:

– A QoS Aggregation Function Editor: it is a web–based editor (see Fig. 1)
that a service integrator can use to define new QoS attributes and their
aggregation formulae.

– A Type Checker: at design time, the Type Checker is used to verify the type–
correctness of the aggregation formulae specified by the service integrator,
according to the language rules and the type scales.

– A QoS Formulae Interpreter: at run–time, given a composite service work-
flow and a possible set of bindings, the Interpreter evaluates the workflow
global QoS.

The whole environment is realized in Java. Services are deployed using the
Axis container1 while WS–BPEL composite services are executed using the Ac-
tiveBPEL engine. The QoS aggregator is also realized in Java using the Java
Compiler Compiler (JavaCC) Parser Generator2. The tool GUI has been devel-
oped using the JSP technology.

3.1 Development Time

When designing a composite service abstract workflow, the system integrator
may want to specify an objective function and some QoS constraints that will
drive the binding. It can happen that either the objective function or the con-
straints involve some application–dependent QoS attributes. To support binding
based on these attributes, it is necessary to have aggregation formulae defined
for them. From the preference settings user interface, the system integrator may
select the attributes of interest for the composition. The tool provides a support
to (i) choose and insert the attributes to be considered for the objective function
and (ii) define constraints for some of the attributes, according to their type.

In addition, the user may decide to add new attributes. Of course, this is
needed whenever, in the context of a composition, a QoS attribute has to be
considered, for which an aggregation function has not been defined before. In
1 http://xml.apache.org/axis
2 https://javacc.dev.java.net/

146 G. Canfora et al.

Fig. 1. QoS Aggregation Function Definition Interface

this case, its definition could be specific for the particular composite service
being designed. A service integrator can, for example, define his/her own way
to aggregate image resolution, while others could do it differently for services
having different purposes. Finally, it can happen that the attribute definition
is more generic, thus reusable for other service compositions within the same
(or related) domain. This is especially the case when attributes are defined by
domain experts.

To add new QoS attributes, and to specify aggregation formulae using the
language described in Section 2, a guided editor is available. Fig. 1 shows a
screenshot of the editor interface. Given the QoS attribute, with the indication
of scale and type, the user is required to edit a function for each workflow
construct, in a guided fashion. This is achieved by specifying the return type
and the aggregation formula.

3.2 Binding Time

At binding time, the QoS Formulae Interpreter allows to estimate the QoS of
a concrete workflow (i.e., a workflow for which the abstract services have been
bound to some possible concrete services). This is done by applying the defined
aggregation formulae over the workflow topology and the QoS values of the
services composing it. This permits, using optimization techniques such as those
defined in [2], the QoS-aware (re)binding of a workflow according to domain–
oriented attributes. In this case, the QoS Aggregator component is used by
the Binder in the selection process of the solution services to the optimization
problem. The next subsection explains their interaction.

Service Composition (re)Binding Driven by Application–Specific QoS 147

 AS1 Proxy
(equivalent)

services
matching S1

service
S1a

service
S1b

service
S1c

Invocation to S1
forwarded to S1a

AS1

Invocation to AS2

Invocation to S2
forwarded to S2b

Composite service
Abstract process

Selection
Mechanism

(Binder)

Enact bindings

AS2 Proxy

Invocation to AS1

Monitoring

AS2

Binding
preferences

Retrieve monitoring info

Monitor
service execution

(equivalent)
services

matching S2

service
S2a

service
S2b

service
S2c

Trigger
re-binding

Discovery

QoS formulae
Interpreter

workflow,
bindings

workflow
QoS

QoS
aggregation

 function Editor
QoS aggregation

formulae

Type
Checker

System
Integrator

Fig. 2. WS-Binder extended architecture

Integration with the WS–Binder. Fig. 2 shows the extended architecture
of the WS–Binder. Specifically, the abstract workflow is a WS–BPEL process
definition containing invocations to proxy services. These represent the abstract
services and are used to realize the bindings with the final services at run–
time and allow re–binding. Indeed, just before the execution, each proxy service
allows to retrieve, through some discovery mechanism, and maintain a list of
candidate services for the binding, together with their QoS information. This
consists of estimated values from monitoring data for attributes like response
time and availability, and declared values by the service provider at publication
time for the other QoS characteristics of each service. These lists of services are
passed to the Binder to determine the (near) optimal concretization for the ab-
stract workflow. In our tool, this is accomplished using GAs, as described in [2].
The genome is represented by an integer array with a number of items equals
to the number of distinct abstract services present in the process specification.
Each item, in turn, contains an index to the array of the services matching that
abstract service. The two–points crossover and a mutation operator that ran-
domly changes a binding are used to generate new individuals. In this generation
process towards convergence, the QoS Aggregator module is used to evaluate the
individuals. Indeed, the individuals with the best value of the fitness function
will reproduce. The fitness function for a genome g is:

F (g) =
n∑

i=1

(wi · Vi(g)) + wd D(g) (1)

148 G. Canfora et al.

where Vi(g) is a normalized value, in the interval [0, 1), of the attribute Qi for
the workflow3. Each wi in (1) is a real, positive weight indicating the importance
a service integrator (or user) gives to the attribute Qi of the fitness function,
while D(g) is the distance of the fitness value from the constraint, and wd weights
the penalty factor. Once a solution to the composition optimization problem is
found, the bindings are communicated to the proxy services and the process
execution may start. When invoked by the engine, the proxy services forward
the invocation messages to the services bound and permit to monitor them, e.g.,
the response time and availability. The re–binding trigger follows the workflow
execution to detect and issue re–binding needs. To this aim, the QoS formulae
Interpreter component is continuously used to update the QoS estimations at
each step of the workflow. A possible re–binding will imply the execution to
be suspended, new bindings computed again by the Binder on the workflow
slice that remains to be executed, and the old bindings updated through the
proxy services. Thus, the execution will continue. The final result for each QoS
attribute considered is returned at the end of the process execution.

4 Case Study

This section presents the approach at work over an image manipulation process.
The process (shown in Fig. 3) takes as an input one or two images, plus some
options. In case a rotation is requested, the image is properly rotated. Then,
the addConstant operation makes changes to the image basic colors, while the
executeMedian smoothens the image. Subsequently, a sum, or a difference (e.g.,
adding a frame or removing a background) is computed with the second image.
Finally, the image is properly scaled. The QoS attributes considered for this
process are:

1. the cost, with aggregation formulae defined as in the paper [3];
2. the color depth (values contained in the enumeration {16, 24, 32} bits), having

aggregation formulae defined in Table 1; and
3. the resolution, in terms of image number of pixels, having aggregation for-

mulae similar to color depth.

As a first step, we evaluate how the GA is able to search for a (near) optimal
solution according to a given fitness function and a constraint set. Let us suppose
one wants to maximize resolution and color depth while keeping cost ≤ 11. We set
our GA with a population of 50 individuals, 100 generations, a crossover probabil-
ity of 0.7 and a mutation probability of 0.01. Fig. 4 shows how the fitness (a), the
cost (b), the resolution (c) and the color depth (d) evolve over the GA generations.
In particular, Fig. 4(a) shows the averaged fitness over 30 runs of the GA, indicat-
ing how the fitness is able to drive the search towards a (near) optimal solution.

3 Note that attributes are normalized (see Zeng et al. [11] for details) so that higher
values of Vi(g) always correspond to better QoS.

Service Composition (re)Binding Driven by Application–Specific QoS 149

AS5

AS4

executeDifference

executeAdd
[add]

[difference]

AS6

executeScale Reply
Receive

AS1

rotate

AS2

addConstant

AS3

executeMedian
[needRotating]

Fig. 3. Image transformation process

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generations

F
it

n
es

s
(a

vg
.)

(a) Fitness

8

8.5

9

9.5

10

10.5

11

11.5

12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generations

C
o

st
 (

$)

constraint: cost <11 $

(b) Cost

800000

900000

1000000

1100000

1200000

1300000

1400000

1 5 9 13 17 21 25 29 33 37 41 45 49

Generations

R
es

o
lu

ti
o

n
 (

p
ix

el
s)

(c) Resolution

0

5

10

15

20

25

30

1 5 9 13 17 21 25 29 33 37 41 45 49

Generations

C
o

lo
r

d
ep

th
 (

b
it

s)

(d) Color depth

Fig. 4. GA evolution

The other figures show how, for a particular run of the GA and the best indi-
vidual, the different QoS attributes evolve. After 5 generations, the algorithm
tries to increase the color depth from 16 to 24 bits. This produces an increase of
the cost, however still within the constraint. After 9 generations, a solution with
a higher resolution is found. However, this produces an unacceptable increase
of the cost, violating the constraint. Alternative solutions are therefore selected:
the resolution is kept high, while accepting to reduce again the color depth. In
this particular case, the weights chosen on the fitness function and the tradeoff
between the resolution increase and the color depth decrease balances in favor
of a better resolution (reached at generation 10).

As described in [3], it may happen that the actual QoS measured at run–time
differs from the initial estimates. For example, when estimating the overall QoS
of the image processing workflow shown in Fig. 3, the cost of the rotate service
does not highly contribute to the overall cost, since the probability of executing
it, declared from the service provider, is of 20%. Because of that, the workflow

150 G. Canfora et al.

Fig. 5. Process monitoring and output

is bound to a set of services that guarantees an overall cost of 13.64 $, within
the constraint of 15 $ imposed in this case, a resolution of 1280 × 1024 (i.e., 1.3
M pixels) and a color depth of 32 bits. However, it happens that, when the user
executes the process, s/he decides to rotate the image. After executing the rotate
service invocation, the overall cost is re–estimated, indicating that the constraint
imposed over the cost is going to be violated. This triggers a re–binding over the
slice of the workflow still to be executed (see [3] for details). In particular, two
abstract services were re–bound:

1. rotate (AS1): from a service having cost=8.40 $, color depth=32 and Res-
olution= 1280 × 1024 to a service having cost=4.40 $, color depth=24 and
Resolution= 1152 × 864;

2. executeMedian (AS3): from a service having cost=2.80 $, color depth=32 and
Resolution= 1280 × 1024 to a service having cost=1.80 $, color depth=24
and Resolution=1152 × 864.

The new bindings guarantee a cost within the constraint (13.88 $), while low-
ering the resolution at 1152 × 864 and the color depth to 24 bits. Details on the
QoS initial estimates, the final QoS values, and the dynamics of the cost attribute
(i.e., initial estimate, run–time estimate triggering the re–binding, new estimate
and final value measured) are shown in the monitoring view of WS–Binder (Fig. 5),
together with the output, i.e., the picture produced by the process.

5 Related Work

To support a QoS-aware composition, models and techniques for workflow QoS
estimation and optimization are being developed. In [4,5] a mathematical model
is proposed for workflow QoS computation, using metrics aggregation functions
which are defined for time, cost, reliability and fidelity. In our work, we propose

Service Composition (re)Binding Driven by Application–Specific QoS 151

to precisely identify domain–wide attributes in order to have consistent ways to
aggregate them within workflows.

Aggarwal et al. [1] focus on the QoS–driven selection and composition features
of the tool METEOR-S. QoS attributes are numerical and formally defined as an
ontology that represents generic metrics is used, which also includes the concept
of domain-specific QoS metrics. To express process–level QoS constraints, the ag-
gregation operator must be specified for each attribute. The objective function
for optimization is a linear combination of the parameters and solved through an
integer programming tool, which outputs a set of feasible (sub)optimal solutions,
among which the service integrator may choose. In our knowledge, this is the first
work where it is explicitly foreseen the possibility of defining domain–specific QoS
attributes. Nevertheless, the case studies reported in the work are limited to cross–
domain attributes and it is not discussed how different domain–specific QoS at-
tributes can aggregate over workflow constructs. The same authors [8] mentioned
that the integrator could specify how the global value for a QoS attribute is com-
puted for a specific process. Differently from them, our approach does not require
to necessarily specify aggregation formulae for each process: it would only suf-
fice to define aggregation formulae for pairs QoS–attribute/workflow constructs.
Then, the estimated QoS for the whole process is computed automatically. Zeng
et al. [11] focus more on the optimization problem for workflow bindings based on
QoS criteria, which is solved through integer programming techniques. Another
work on these issues is by Yu and Lin [10], where a different optimization algo-
rithm is presented. Serhani et al. [7] propose a QoS broker-based architecture to
support the client in selecting web services based on his/her required QoS.

6 Conclusions

QoS–aware composition and binding represents a challenging mechanism for
service–oriented architectures. This paper describes how such a composition can
involve not only cross-domain QoS attributes, but also attributes specifically
defined for a particular domain or even for a particular application. In that
case the service integrator can define domain–specific attributes together with
customized aggregation formulae. This permits to estimate the attribute value
over a workflow, to determine the (near) optimal bindings and, if necessary,
trigger re–binding at run–time.

Work–in–progress is devoted to apply the proposed approach to further case
studies and to exploit it to automatically generate test cases, using evolutionary
testing techniques, with the aim of violating the SLA in case the latter includes
some constraints over domain–specific QoS attributes.

Acknowledgments

This work is framed within the European Commission VI Framework IP Project
SeCSE (Service Centric System Engineering) (http://secse.eng.it), Contract No.
511680.

152 G. Canfora et al.

References

1. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint driven web service
composition in METEOR-S. In Proc. IEEE International Conference on Services
Computing (SCC’04), pages 23–30, Shanghai, China, Sept. 2004.

2. G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An Approach for QoS-
aware Service Composition based on Genetic Algorithms. In Proc. of the Genetic
and Computation Conference (GECCO’05), pages 1069–1075, Washington, USA,
June 2005. ACM.

3. G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning
of Composite Web Services. In Proc. International Conference on Web Services
(ICWS’05), pages 121–129, Orlando, FL, Jul. 2005. IEEE.

4. J. Cardoso. Quality of Service and Semantic Composition of Workflows. PhD
thesis, Univ. of Georgia, 2002.

5. J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and K. J. Kochut. Modeling
quality of service for workflows and web service processes. Web Semantics Journal:
Science, Services and Agents on the World Wide Web Journal, 1(3):281–308, 2004.

6. H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web Service Level Agree-
ment (WSLA) language specification.
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

7. M. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui. A QoS broker based architecture
for efficient web services selection. In Proc. International Conference on Web
Services (ICWS’05), pages 113–120, Orlando, FL, Jul. 2005. IEEE.

8. K. Verma, K. Gomadam, J. Lathem, A. P. Sheth, and J. A. Miller. Semantics en-
abled dynamic process configuration. Technical report, LDIS, University of Geor-
gia, 2006.

9. J. Warmer and A. Kleppe. The Object Constraint Language. AW, 1999.
10. T. Yu and K. Lin. Service Selection Algorithms for Composing Complex Services

with Multiple QoS Constraints. In Proc. 3rd International Conference on Service
Oriented Computing (ICSOC’05), pages 130–143, Amsterdam, The Netherlands,
December 2005. Springer.

11. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
QoS-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering, 30(5):311–327, May 2004.

Design of Quality-Based Composite Web Services

F. De Paoli, G. Lulli, and A. Maurino

Università degli Studi di Milano Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione

{depaoli, lulli, maurino}@disco.unimib.it

Abstract. One of the key factors for successful SOC-based systems is
the ability to assure the achievement of Quality of Services. The knowl-
edge and the enforcement of the Quality of Services allows for the defi-
nition of agreements that are the basis for any business process. In this
paper we discuss a method for the evaluation of qualities associated with
services. This method is based on a set of quality evaluation rules that
state the relations between Web services quality dimensions and process
structure. The method is part of a design methodology that addresses
quality issues along the service life-cycle. A case study in the e-placement
field is presented to illustrate a practical use of the approach.

1 Introduction

Service Oriented Architecture (SOA) is rapidly evolving to become a business
integration architecture that supports the dynamic composition of Web services
to enact business processes. For the enactment of business processes the condi-
tions under which certain features are provided are as important as the features
themselves. Therefore, models and tools to address the non-functional aspects
of a service, such as privacy, security, exception handling, performance, and so
on, should be defined for effective service composition.

Traditional approaches to service composition focus on service operations,
while there is little attention dedicated to the possibility of composing services
with, for instance, different security models. A service is usually implemented
by a Web service described by means of a WSDL (Web Service Description
Language) interface that includes information on operation signatures and ac-
cess points. Currently a major effort is devoted to the definition of descrip-
tions that deal with issues beyond WSDL. SLA (Service Level Agreement) [1]
and WS-Policy [2] are examples of descriptions of the mutual understandings
and expectations of both the service provider and the service requester. These
contracts regulate and define matters such as contents, price, delivery process,
acceptance and quality criteria, penalties and so on. Semantic descriptions are
related to the definition of what a service provides in terms of functionality and
how the provided services are supplied in terms of behavior and non-functional
properties. Emerging proposals are OWL-S [3] and WSMO [4]. Their aim is to
define architectural abstractions and description languages that supply machine

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 153–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

154 F. De Paoli, G. Lulli, and A. Maurino

interpretable semantics to facilitate dynamic interoperability, composability, and
substitutability.

In this paper, we propose a method for Web service composition to address
quality evaluation in composed services. The work is part of an effort in the
development of a quality-based design methodology that addresses the non-
functional requirements of (composite) services [5]. According to the model-
driven development approach [17], the goal is to deliver an enhanced platform
independent model (PIM, in Model Driven Architecture terminology) that in-
cludes non-functional descriptions.

The methodology includes a customization phase that takes into account the
actual profiles of target end-users and service providers. Technical characteristics
and user profiles are evaluated with manifold objectives: select a set of candidate
services that fulfill the requirements, tune-up the service specification and/or
identify the target users for the service. The designer, with the support of the
rules discussed in this paper, composes and evaluates the qualities of candidate
services that satisfy classes of requests so to be able to support future agreements
on the base of specific user requirements. The result is a set of (composite)
services that differs on quality attributes, each one depending on the specific set
of requirements and composing services.

A composite Web service is composed of a number of Web services that are in-
voked according to a given execution flow described in a language such as Ws-
BPEL. Starting from the distinction proposed in WSDL 1.1 between abstract
and concrete service, we introduce the term abstract service to represent a ser-
vice which is only the description of its interface, and the term concrete service
to refer to fully implemented and described Web services. It is important to un-
derline that only concrete services can be invoked. According with this taxonomy,
the proposed quality-based composition model refers to abstract processes that is
composed of abstract services only. In our vision each abstract service represents
a prototype of a set of concrete services that share the same functional descrip-
tion, but provide different implementations and QoSs. The substitution of each
abstract service with a concrete Web service, provides a concrete composite Web
service that can be invoked. We identify this activity with the term concretization.
It is worth noting that successful concretization activities are influenced, at the
same time, by the desired quality dimensions and by the process execution flows.
To address the issue, we propose a set of metrics (called quality evaluation rules)
that can be used to evaluate specific QoS dimensions according to specific process
language constructs (such as sequence, parallel, switch and loop).

The paper is organized as follow: in Section 2 we present the mathematical
formulation of the concretization activity, then Section 3 presents a set of quality
evaluation rules that are used according with specific quality dimensions and
process language structures. Section 4 discusses the method in a case study that
is under development as part of the IST project SEEMP. Section 5 is dedicated
to related works and, finally, Section 6 draws some conclusions and outlines
future works.

Design of Quality-Based Composite Web Services 155

2 Mathematical Model

The structure of a composite abstract Web service can be described as a di-
rect graph G = (N , E); where N is the set of nodes representing abstract
services, and E is the set of arcs that define the execution flow. The abstract
process is composed of smaller and homogeneous parts according to their struc-
ture. Each part can be classified as a simple service or a group of services, which
are structured to form a sequence, a parallel, a switch or a loop. According to
[6], a process graph can be collapsed into a single node (i.e., single composite
service) by substituting each process-language structure with a Web service that
exposes the same functional and QoS description of the original set.

Illustrating with an example, let us consider a generic quality dimension qi

and the Ws-BPEL process in Fig.1(a). The first transformation considers the
parallel execution of OperationB, OperationC, and OperationD. The three Web
services can be substituted by a new one called OperationBCD (Fig.1(b)) whose
quality value is the one obtained by applying the quality evaluation rule (see
next) to the three Web services. Then the transformation of the switch struc-
ture generates another Web service, OperationFG (Fig.1(c)). Finally, by means
of another quality evaluation rule, we obtain the quality dimension qi of the
composite service (Fig.1(d)).

Fig. 1. A stepwise graph transformation

156 F. De Paoli, G. Lulli, and A. Maurino

The notation of the model adopted in the sequel is the following:

S ≡ the set of concrete services;

A ≡ the set of abstract services;

C ≡ the set of clients;

Sa ⊆ S ≡ the set of concrete services which may implement the abstract one a∈A;

wc ≡ weights assigned by customer c to qualities (vector);

fs ≡ qualities of the concrete service s ∈ S (vector);

rc ≡ qualities of client c ∈ C (vector).

The decision variables are:

xc
ij =

1 if the abstract service j for customer c is concretized by the concrete service i;
0 otherwise.

The mathematical formulation of the concretization activity is the following:

Min
∑
c∈C

wc · (rc − θc)+ (1)

where θc are auxiliary variables representing the vector of the value of the fea-
tures guaranteed to the client c. (·)+ denotes the positive part of the argument.
With respect to formula (1), a concrete service must be selected for each abstract
one; the mathematical representation of this constraint is:∑

i∈Sj

xc
ij ≥ 1 ∀c ∈ C, ∀j ∈ A. (2)

3 Quality Evaluation Rules

In order to use the formula (1) the right quality metric for each quality dimen-
sion need to be defined. The evaluation of QoS in composite Web service is not
only related to the specific QoS selected, since the QoS value offered to end users
refers also to the composition process. Three features have to be considered in
order to evaluate a quality dimension in composite Web services: (i) a quality
metric for the quality dimension measured for each simple concrete Web services,
(ii) the process-language structure in which Web services are inserted, and (iii)
the identification of which Web services have to provide the requested quality.
Concerning the first feature, the method assumes that each concrete Web ser-
vice exposes a value for the considered QoS. To address the second feature, we
propose three different types of quality evaluation rules to represent the most
typical ways in which QoSs can be evaluated according with specific process lan-
guage primitives. Finally, according with the specific application domain, quality
dimensions can be classified as local, if the QoS is provided by a subset of con-
crete Web services or global, if all Web services contribute in the definition of
the quality dimension.

The three quality evaluation rules are explained in the next sub sections.

Design of Quality-Based Composite Web Services 157

Additive Quality. This quality evaluation rule can be used by designers to
evaluate qualities exposing an additive behavior, in a composite Web service. An
example of additive QoS is the completion time of a Web service. For a concrete
composite service to compute the value of an additive quality, the QoS values of
all the service’s components are added (in formula,

∑
k∈K tkc). According to the

composition structure, for each component k, the additive quality is computed
by one of the following sets of constraints:

Sequence (Seqk) tkc =
∑

j∈Seqk ,i∈Sj

tij · xc
ij (3)

Parallel (Pk) tkc ≥
∑
i∈Sj

tij · xc
ij ∀j ∈ Pk. (4)

Switch (Swk) tkc ≥ tij · xc
ij ∀j ∈ Swk, ∀i ∈ Sj . (5)

Loop (Lk) tkc = lk ·
∑

j∈Lk,i∈Sj

tij · xc
ij (6)

where tij is the completion time of the concrete service i in executing the abstract
service j, and lk is the expected number of loops executed.

For instance, referring to the example depicted in Figure 1, the service com-
pletion time for customer c is given by

tAc + tBCD
c + tEc + tFG

c

where tBCD
c is the completion time of the Web services OperationBCD , which is

the result of a parallel structure. In this case, the completion time corresponds
to the longest completion time of OperationB, OperationC and OperationD. In
fact, according with the Ws-BPEL specification, it is not possible, to proceed in
the process execution before OperationsB, OperationsC and OperationsD have
been completed. In the formula, tBCD

c is given by the following constraints:

tBCD
c ≥

∑
i∈SB

tiB · xc
iB

tBCD
c ≥

∑
i∈SC

tiC · xc
iC

tBCD
c ≥

∑
i∈SD

tiD · xc
iD

158 F. De Paoli, G. Lulli, and A. Maurino

Full Additive Quality. This quality evaluation rule is similar to the previous
one. It can be applied to quality dimensions, such as the cost, that involve
all concrete Web services. To compute the value of a full additive quality, the
constraints given above are still valid, but the one for parallel composition that
it needs to be re-formulated as follows:

Parallel (Pk) Ck
c =

∑
j∈Pk

Cij · xc
ij (7)

In this case, all QoS values exposed by concrete services involved in the parallel
execution are considered.

Non-additive Quality. It represents quality dimensions that involve a sub-
set of Web services that affect the whole composite service. For example, if
a composite Web service is requested to support multichannel provisioning, it
is mandatory that at least one of the Web services is able to interact with
the users in a multichannel way. Another example is security. In this case,
every component has to contribute to the global security, which is represented
here as a boolean value (i.e., 0, 1). The following set of constraints captures
this case:

θsec
c ≥ fsec

s · xc
si ∀s ∈ Si, ∀c ∈ C, , ∀i ∈ N \ {Sw}. (8)

The sets of constraints presented so far refer to global features of the Web service.
On the other hand, some of the requirements can be specific of a service, i.e., local
requirements. For instance, by fixing the value of a decision variable xij = 1, an
abstract service j is executed by the concrete service i. The following constraint
declares that specific features are met by the concrete service s concretizing the
abstract service j: ∑

s∈Sj

xc
sj · fs ≥ f̄j ∀j ∈ I, ∀c ∈ C. (9)

4 The Case Study

In this section, an example of Web service composition is discussed. The case
study is derived from a larger case study developed within the IST SEEMP
project [7], whose goal is to develop a European ePlacement market place.

Public Employment Services (PESes) are becoming more and more important
for Public administrations since social implications on sustainability, workforce
mobility and equal opportunities are of strategic importance for any central or
local government. In our case, we are interested in the development of a service
to search for jobs in European countries (e.g., Italy, Ireland and Great Britain).
Such a service, FindJob, has the following functionalities:

– search for job vacancies in a specified country;
– glue together and rank retrieved job vacancies;

Design of Quality-Based Composite Web Services 159

– translate vacancies in different languages; and
– notify end-users of results via different communication channels.

Note that these are added-value features that go beyond the simple function-
alities to enrich the service in order to fulfill advanced customer requirements
better. Users are requested to specify the kind of job he/she is seeking, along
with languages spoken and personal contact information (email addresses, mo-
bile phone numbers ...). Language and the job being searched are parameters of
the searching job functionality. Contact information is used to identify and use
the proper notification channel.

Besides the above functionalities, FindJob is requested to meet a set of quality
requirements. In particular, we are interested in:

– the duration time to perform the process;
– the cost of the composite service invocation;
– the number of distribution channels on which the answer can be delivered.

Figure 2 shows a possible UML activity diagram representing the Ws-BPEL
process including six different abstract Web services. Three kinds of information
are supplied: the native language, the job description (MyRequest in the figure)
and the communication preferences (MyData).

The service starts with the orchestration engine that registers the user by send-
ing his/her contact information to a Notification service that will be in charge

Notification.SubmitContactData(MyData)

Babylon.Translate(Vacancy.JobTitle,LangOrig,MyData.NativeLanguage)

Job Language != Native Language

For all job found
No

Noification.Send(Vacancy)

ITA_PES.Search(MyRequest) IR_PES.Search(MyRequest) GB_PES.Search(MyRequest)

Worker.Rank(Vacancies)

Yes

Fig. 2. The case study

160 F. De Paoli, G. Lulli, and A. Maurino

of delivering the results. Such a registration might end-up with a failure, which
is not discussed here to keep the example simple. Then the orchestration en-
gine invokes the search operation on three different PESes, one for each country.
These services discover job vacancies according to job descriptions. Discovered
job vacancies are inputs for a Web service that sorts the results according to
certain criteria (the discussion of which is not of interest in this context). Then
for each job vacancy, the process checks the language in which it is written, and,
when necessary, invokes a translation Web service. At the end of this operation,
the engine invokes the send operation of the Notification Web service by passing
the job vacancy.

Table 1. List of concrete services

ID Virtual Service Type Cost Answers Time Accuracy
1 Job Search Regular 33 25 100 -
2 ′′ Premium 100 60 20 -
3 Translation High Accuracy 100 - 15 1.0
4 ′′ Low Accuracy 50 - 20 0.0
5 Notification 2 channels 20 - 1 -
6 ′′ 3 channels 50 - 1 -

In Table 1, the available concrete services that implement the abstract services
and their qualities are listed. For each abstract service, we consider two possible
concrete ones, a cheaper one with a lower level of qualities and a more expensive
one with a higher level of qualities. The evaluation of each quality is handled
using sets of constraints presented in Section 3.

For instance, denoting A, B and C the Job Search services in Italy, Ireland
and Great Britain respectively, we use the following set of constraints to evaluate
the service completion time:

tJS ≥ tA,1 · xA,1 + tA,2 · xA,2

tJS ≥ tB,1 · xB,1 + tB,2 · xB,2

tJS ≥ tC,1 · xC,1 + tC,2 · xC,2

tT ≥ tT,3 · xT,3 + tT,4 · xT,4

tL = l · (tT + tN)

t = tL + tJS + tN + tR

where tJS , tT , tR, tN are the execution times of search, translation, rank and
notification activities, respectively. tL is the execution time of the loop which

Design of Quality-Based Composite Web Services 161

depends on the number l of iterations. Finally, t is the completion time of the
composite Web service. Similar constraints (see Section 3) should be added to
the mathematical definition in order to evaluate the full set of qualities.

In this case study, we identified 8 possible processes. For instance, a process
can be composed of the following concrete services: the 2-channel service for the
Notification, the High-Accuracy service for the Translation and the Premium
service for the Job Search (service pattern P-HA-2ch). In this case, by applying
the computational formulas presented in Section 2, the cost and the time of the
process are 420 and 2409 respectively. In Table 2, the global qualities for each
process are reported.

Table 2. Computed qualities of the alternative processes

Service Pattern Time Cost Channel Accuracy
R-HA-2ch 1381 220 2 1
R-HA-3ch 1381 250 3 1
R-LA-2ch 1781 170 2 0
R-LA-3ch 1781 200 3 0
P-HA-2ch 2409 420 2 1
P-HA-3ch 2409 450 3 1
P-LA-2ch 3149 370 2 0
P-LA-3ch 3149 400 3 0

According to the weights assigned by each customer or class of customers to
the qualities, the customer can be served by a specific process. For instance,
a customer who is interested only in minimizing the cost will be served with
the services R-LA-2ch (Regular Job Search service, Low-Accuracy Translation
service and 2-channel Notification service), which deliver the cheapest process.

5 Related Works

The issue of quality of services is getting increasing consideration in the service-
oriented literature (for example [8], and [9]); the focus, however, is often in
modeling issues rather than in the design process. The problem of evaluating
QoS dimensions in composite Web services is faced in [10], [11], and [12] where a
set of composition rules is defined to evaluate the global value of a QoS dimension
according to specific workflow patterns. However, the problem of joint design of
services and their qualities is not addressed.

Concerning papers addressing QoS issues in design processes, [13] presents
the ADD (Attibute-Drived Design) method, which is based on understanding
the relationship between software qualities and the architectural mechanisms
used to achieve these qualities. The lack of a quality model that can help the
designer to identify and relate qualities is a drawback. Moreover, ADD is tai-
lored for generic software development, without specific focus on SOA. Dealing

162 F. De Paoli, G. Lulli, and A. Maurino

with web services, [14] presents a QoS model, addressing time, cost, and re-
liability dimensions. The model computes the quality of service for workflows
automatically based on QoS attributes of an atomic task. This QoS model is
then implemented on the top of the METEOR workflow system. [15] presents a
fixed QoS model for the Self-serv model-driven design and an approach to select
the optimal set of Web services according to QoS. The limited and fixed number
of QoS dimensions considered reduces the possibility of adopting this approach
in different application domains. Finally, QoS is considered in [16] to improve
the outcome of web services discovery.

6 Conclusions

The non-functional properties, often referred to Quality of Services, are one of
the most relevant issues in service-oriented architectures. In fact, the capability
of describing, composing, evaluating and monitoring qualities associated with
services is critical to the effective enactment of business processes.

This paper proposed and discussed a method to support the design processes
to deliver (composite) services augmented with quality descriptions which can be
exploited for service and agreement descriptions. The method helps in describing
and evaluating generic qualities.

The scope of the mathematical model presented can be twofold. First, the
model can be used to define a set of processes according to the desired quali-
ties. The mathematical model suggests which concrete services have to be se-
lected to implement the abstract services. The selection of concrete services
depends on the classes of customers that will use the composite Web service
and other requirements established by the Web service designer, such us budget
constraints, service-level agreements, etc. Once the concrete services have been
selected, many alternative processes can be identified.

Second, the model addresses the issue related to process selection. It supports
the selection of the process to be supplied to each class of customers according
to their quality requirements and the weights assigned to each quality by the
customer.

The work presented here needs to be further developed to reach maturation, but
we believe that the path is promising. We are studying the integration of the qual-
ity model presented in this paper with WSMoD [5] a methodology for the design
of QoS-aware Web service. In particular we want to enrich the ontology approach
adopted in WSMoD to facilitate both the understanding and the sharing of con-
cepts. The aim is to let independent organizations, developers, and providers rely
on common understandings, which is the basis for every future development. This
understanding should go beyond the syntax barriers of XML/RDF dialects in or-
der to enable semantic, and possibly automatic enactment of business processes.
The association of evaluation rules with concepts (i.e. qualities) enhances the com-
puting capabilities of the approach. Moreover, we are currently developing a vi-
sual tool which is implemented as part of the Eclipse development environment
to support WSMoD. The capabilities of expressing and evaluating qualities will

Design of Quality-Based Composite Web Services 163

allow the different players -business clients, developers and providers- to under-
stand each others and build tools to support aspects other than design, such as
discovery and selection of services, contracts definition and monitoring.

Acknowledgements

The work presented in this paper has been partially supported by the European
IST project n. 27347 SEEMP - Single European Employment Market-Place and
the Italian FIRB project RBNE05XYPW NeP4B - Networked Peers for Business.

References

1. Dan, A., Davis, D., Kearney, R., Keller, A., King, R.P., Kuebler, D., Ludwig,
H., Polan, M., Spreitzer, M., Youssef, A.: Web services on demand: Wsla-driven
automated management. IBM Systems Journal 43(1) (2004) 136–158

2. VA: Web services policy framework (ws-policy). Technical report, BEA Systems
Inc., International Business Machines Corporation, Microsoft Corporation, Inc.,
SAP AG, Sonic Software, and VeriSign Inc (2006)

3. Martin, D.L., Paolucci, M., McIlraith, S.A., Burstein, M.H., McDermott, D.V.,
McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan,
N., Sycara, K.P.: Bringing semantics to web services: The owl-s approach. In Car-
doso, J., Sheth, A.P., eds.: SWSWPC. Volume 3387 of Lecture Notes in Computer
Science., Springer (2004) 26–42

4. Lausen, H., Roman, D., Keller, U.: Web service modeling ontology (wsmo). Tech-
nical report, DERI (2004)

5. Comerio, M., De Paoli, F., Grega, S., Maurino, A., Batini, C.: Wsmod: a method-
ology for qos-based web services design. International Journal of Web Services
Research (2007)

6. Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: Qos aggregation for web service
composition using workflow patterns. [17] 149–159

7. VA: Single European Employment Market-Place. http://www.seemp.org/, (IST
SEEMP project n. 27347)

8. Menascé, D.A.: Composing web services: A qos view. IEEE Internet Computing
8(6) (2004) 88–90

9. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: Meteor-s web service an-
notation framework. In Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E., eds.:
WWW, ACM (2004) 553–562

10. Raje, R.R., Bryant, B.R., Olson, A.M., Auguston, M., Burt, C.C.: A quality-
of-service-based framework for creating distributed heterogeneous software com-
ponents. Concurrency and Computation: Practice and Experience 14(12) (2002)
1009–1034

11. Ulbrich, A., Weis, T., Geihs, K.: Qos mechanism composition at design-time and
runtime. In: ICDCS Workshops, IEEE Computer Society (2003) 118–

12. Weis, T., Ulbrich, A., Geihs, K., Becker, C.: Quality of service in middleware and
applications: A model-driven approach. [17] 160–171

13. Bachmann, F., Bass, L.J.: Introduction to the attribute driven design method. In:
ICSE, IEEE Computer Society (2001) 745–746

164 F. De Paoli, G. Lulli, and A. Maurino

14. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Modeling quality of
service for workflows and web service processes. J. Web Sem. 1(3) (2004) 281–308

15. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
Qos-aware middleware for web services composition. IEEE Trans. Software Eng.
30(5) (2004) 311–327

16. Ran, S.: A framework for discovering web services with desired quality of services
attributes. In Zhang, L.J., ed.: ICWS, CSREA Press (2003) 208–213

17. 8th International Enterprise Distributed Object Computing Conference (EDOC
2004), 20-24 September 2004, Monterey, California, USA, Proceedings. In: EDOC,
IEEE Computer Society (2004)

AMPol-Q: Adaptive Middleware Policy to Support QoS

Raja Afandi, Jianqing Zhang, and Carl A. Gunter

University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
afandi@illinoisalumni.org, {jzhang24, cgunter}@cs.uiuc.edu

Abstract. There are many problems hindering the design and development of
Service-Oriented Architectures (SOAs), which can dynamically discover and
compose multiple services so that the quality of the composite service is mea-
sured by its End-to-End (E2E) quality, rather than that of individual services in
isolation. The diversity and complexity of QoS constraints further limit the wide-
scale adoption of QoS-aware SOA. We propose extensions to current OWL-S
service description mechanisms to describe QoS information of all the candidate
services. Our middleware based solution, AMPol-Q, enables clients to discover,
select, compose, and monitor services that fulfil E2E QoS constraints. Our im-
plementation and case studies demonstrate how AMPol-Q can accomplish these
goals for web services that implement messaging.

Keywords: AMPol-Q, WSEmail, Adaptive Middleware, Policy, Service Oriented
Architecture, QoS, Dynamic Service Discovery, Security, Ontologies.

1 Introduction

Although there has been considerable attention devoted to the composition of functional
properties in Service Oriented Architectures (SOAs), more work is needed to deal with
non-functional Quality of Service (QoS) properties such as reliability, performance and
security required by clients. Issues that need attention include providing QoS features
at the level of the individual service and client, discovering and composing candidate
services on the basis of QoS features, monitoring and ensuring that a promised QoS
is actually provided during execution, and adopting and using QoS-aware SOAs on a
large scale. At least three problems must be overcome. First, current approaches [1,2,3]
for dynamic service discovery and composition do not provide a global view of QoS
features about all candidate services prior to invocation. They are limited to discover-
ing first-level immediate services, and each individual service is responsible for dis-
covering other services independently. They also lack the comprehensive specification
of QoS features. Second, QoS is not compositional in the sense that functional fea-
tures expressed through interfaces or functional components are composed to achieve a
composite functionality (e.g. workflow systems). QoS-based composition requires com-
plex calculations of aggregate QoS values of multiple entities involved in a transaction.
Participants are interested in the final aggregate value of the runtime global QoS (e.g.
end-to-end delay, overall cost, global integrity and confidentiality). However, current
QoS-aware systems are not able to support global QoS behavior. Third, and finally,
QoS-aware service composition and negotiation may not be effective without monitor-
ing. Most QoS-aware systems do not guarantee that an agreed quality of service is

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 165–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 R. Afandi, J. Zhang, and C.A. Gunter

actually provided during execution. Existing QoS-monitoring approaches [4,5] rely
on trusted third parties to centrally monitor QoS delivered by service providers. This
is technically difficult and limited to QoS features like availability and performance,
while security and privacy cannot be covered. Moreover, monitoring involves com-
plex and domain-specific logic for measuring and verifying QoS, which make the task
harder.

To address these problems, we have developed an Adaptive Middleware Policy to
Support QoS (AMPol-Q). Our approach is based on an integrated collection of refer-
ence frameworks for description, discovery, and monitoring that are specially suited to
handle QoS features in a SOA. The description framework includes semantic model
for capturing QoS requirements, constraints and capabilities. We extend current ser-
vice description and advertisement mechanisms (OWL-S and UDDI) to gather QoS
information about all the candidate services. For efficient implementation, we represent
these QoS requirements as policy rules. In the discovery framework, AMPol-Q serves
as a broker (at the client end) for dynamically discovering and composing matched
services on the basis of functional as well as non-functional features. The candidate
services are first discovered on the basis of their functional capabilities and the final
set of services is selected according to their QoS features. This approach is capable
of evaluating global quality requirements and applying different types of optimizations
(such as context-aware optimizations) to select the best-matched services. It negotiates
the QoS properties between service providers and consumers to create an agreement.
The monitoring framework provides an agile and adaptive mechanism to automatically
plug in customized modules for measuring, verifying and ensuring QoS features with-
out modifying the baseline system. We use a technique [6] in which the QoS contracts
are monitored at each individual participant. Furthermore we improve on distributed
monitoring approaches by providing support for two-way specialization.

We validated AMPol-Q with a prototype implementation and a case study on WSE-
mail [7] that shows how AMPol-Q can enhance the function of email messaging sys-
tems by enabling automatic deployment and use of complex QoS features like cycle
exhaustion puzzles, reverse Turing tests and identity based encryption without the need
for global deployment or changes to the baseline system. This case study shows how
SOA can support QoS-aware service discovery, selection and monitoring.

2 Description Framework

The AMPol-Q description framework is a collection of interoperable semantic models
used to represent QoS features of all entities in SOA. These QoS ontology and policy
models, which are extensions to current service description frameworks [8,9,10,11], are
intended for global discovery and selection of candidate services on the basis of QoS
features. They are based on layered semantic models (QoS Ontology, Policy and Entity
Profile). The steps of describing QoS features are a series of bottom up instantiations of
these models. We use semantic models because they can be easily extended with new
concepts. Furthermore, existing reasoning tools can be applied on the semantic models
to detect ambiguity or inconsistency. Our discussion focus on novel features related to
capturing global QoS behavior and to achieve support for E2E Global QoS.

AMPol-Q: Adaptive Middleware Policy to Support QoS 167

Fig. 1. AMPol-Q QoS Model

Semantic QoS Ontology Model. Our semantic QoS ontology model provides a stan-
dard generic ontology 2for arbitrary QoS features. It defines the nature of associations
between QoS concepts, QoS metrics, and the way they are measured and monitored.
Figure 1 shows the detailed ontology model. To facilitate reusability and extensibility,
the ontology has a modular design and is categorized into three models: base, monitor-
ing and domain.

In the QoS base ontology model, each QoS feature is an instance of a class QoSFea-
ture, and it is associated to a Quantitative or Qualitative property. Quantitative relates
the attributes which can be measured by numbers with a particular unit. For example,
the percentage availability of a service. Qualitative relates to attributes which cannot
necessarily be measured by exact amount. For example, the obligation features such as
requirement of data encryption or providing an X.509 certificate.

In the context of global QoS, we define QoSSimple and QoSCopmosite as sub-
classes of QoSFeature. QoSComposite represents complex global QoS features which
are drawn from calculation of aggregate QoS values. For example, the formula for com-
posite service availability is the product of availability measure of each participant
service. The computational logic is captured by AggregateFormula. Different entities
may specify QoS values (QoSMetricValue) with different units (e.g. 90% versus 0.90
or 50F versus 10C). The unit conversion is done by QoSConversion, which captures
the conversion logic. In global QoS, there are dependencies and correlations between
QoS features. For example, some QoS values are inversely proportional each other, e.g.
the service response time and the throughput; some are directly proportional, e.g. ac-
cessibility and availability. QoSRelation class captures these relationship types. Some
composite QoS is measured from aggregate values of different types of related QoS

168 R. Afandi, J. Zhang, and C.A. Gunter

feature. For example, response time at a client is a sum of network latency and service
processing time. This behavior is captured by the has-a object property.

Current QoS modeling approaches [3,8,9] do not have ontologies to support mea-
surement, verification or monitoring of QoS features. We propose a QoS monitoring
ontology model, which binds QoS features with their corresponding monitoring process
(QoSMonitoringProcess). The QoS monitoring process involves measurement of QoS
features, verification by evaluating measured QoS values against required policy values,
adherence logic to provide required QoS features, and enforcement logic to e.g. permit
or deny the requests. Domain specific ontologies can be defined by extending QoS base
ontology model. We sketch a domain ontology for our case study later.

Policy Model. AMPol-Q represents QoS features in the form of policy rules. The policy
model specifies rules that use QoS ontologies to define QoS features of a particular
entity. These policy rules are then used to describe, discover and compose services and
to monitor QoS. See [12] for details of AMPol-Q policy model.

Policy rules are defined as an implication property in the form of antecedent implies
consequent, e.g. [(a:QoSFeature o:Operator a:QoSValue) connective (b:QoSFeature
o:Operator b:QoSValue)] implies [ACTION]. The Rule property uses QoS ontology to
represent antecedent conditions; action can be permit or deny. Both QoS constraints
and capabilities are described as rules.

For dynamic service composition based on global QoS, the advertised QoSValue
can be calculated only if the QoS values of all dependent services are determined. For
example, a loan processing service LP provides functionality for acquiring loans from
banks. In order to process loan requests it talks to credit reporting agency CR to verify
a client credit history and coordinate with bank B for loan processing. Processing time
for acquiring a loan (the functionality of the LP service) can be calculated by adding
its processing time (P:QoSFeature) and processing times of all the dependent services
(CR and B). If CR and B are dynamically discovered then LP’s processing time cannot
be calculated beforehand. Current description languages are not able to handle these
kinds of complex QoS features. To solve this problem we introduce a concept of rule
templates. Rule templates can specify antecedents containing unresolved template vari-
ables. Antecedents can be evaluated only if all the template variables are determined
(during runtime). In the above scenario, say, LA processing time is 50ms, the capa-
bility rule of LA can be represented as [P:QoSFeature = (50ms:QoSValue + p1:T1 +
p2:T2)], where p1 and p2 are template variables, T1 and T2 are templates which are
defined as T1 = ((B.P):QoSValue) and T2=((CR.P):QoSValue). This problem can also
be solved by modeling each QoS feature as a QoSComposite object with a has-a object
property to represent dependent QoS feature values and an AggregrateFormula object
to represent aggregation logics. But our policy engine implementation has shown that
rule templates are simpler to construct and more efficient to evaluate.

AMPol uses meta-specification (the policies of a policy) to specify how polices are
evaluated and enforced. For example, in a service oriented environment for monitoring
global QoS, the policy model should be able to specify which entities the policy is ap-
plied to and which entities enforce them. In a distributed system, the creator of the rule
or the policy might not be the entity who will check the enforcement of the policy. So
it is necessary to indicate the subject and target of the policies explicitly. Furthermore,

AMPol-Q: Adaptive Middleware Policy to Support QoS 169

by explicitly relating rules to their enforcement and adherence components (QoS mon-
itoring components), our adaptive policy model can take the policy conformance and
enforcement logics for each individual quality requirement out of the core application.
This is beneficial for monitoring QoS features in a flexible and dynamic manner. Each
Rule or RuleSet has associated meta-information, which is captured through the class
MetaSpecification. MetaSpecification has Subject, which is the entity the rule or rules
set will be applicable to (entity providing QoS feature), and Target, which is the entity
enforcing the rule or rules set (entity assuring QoS is met). It uses Transformation and
QoSMonitoringProcess for policy enforcement.

The policy model aids wide-scale adoption of complex and dynamic QoS features.
The policy language is generic enough so that the policy semantic schema and core
components (policy engine, inference engine, merging, comparison, conflict resolution
and so on) do not need to be modified by the addition of new assertions. Addition
and execution of associated third-party components is also policy driven (extension
policies).

Entity Profile Model. Finally, we propose a construct named profile which captures
everything required to specify QoS features. It can be associated with a system en-
tity and can be advertised. Thus, clients can use it to discover desired services. Entity
profiles represents entities’ QoS capabilities, constraints, extension constraints, service
dependencies and dependent request templates. The client profile contains only QoS
capabilities, QoS constraints, and extension constraints.

The entity profile model supports end-to-end global QoS better than current service
description and advertisement mechanisms such as OWL-S. Unlike current approaches,
every service description in AMPol-Q explicitly specifies a list of its dependent services
so that the discovery mechanisms can gather global QoS information about all the can-
didate services. Furthermore, we propose service request templates, a functional request
based on IOPE attributes [13], to enhance dynamic services discovery. These templates
have static IOPE attributes and dynamic IOPE template variables which can be instan-
tiated using the client functional request’s IOPE attributes. Each service provides the
templates for their dependent services and the third party can use them to discover
other services.

We use OWL to implement the QoS model and core policy model constructs. Policy
rules are written using SWRL language constructs, which use an ontology vocabulary
described by the QoS model in OWL. The benefit of using this two layer approach is
that, first by using OWL, it is possible to perform reasoning over the knowledge model
(QoS model) and the policy rules, and second, by the use of SWRL policy rules and
underlying policy framework, the system’s QoS behavior can be controlled without any
ambiguity. Details of the implementation are given in [12].

3 Discovery Framework

Discovery framework consists of Service Discovery and Chaining, Global QoS Analysis
and Policy Agreement and Contract Negotiation. It provides mechanisms for discover-
ing global QoS information about all the candidate services, selecting best matched

170 R. Afandi, J. Zhang, and C.A. Gunter

Fig. 2. Service Chain Graph

services and binding selected parties in a QoS contract. As mentioned in Section 1,
QoS based service composition requires complex calculations of aggregate and global
QoS values, which makes it hard to work with QoS features without global analysis.
We will show how this section addresses issues related toGlobal QoS based service
composition.

Service Discovery and Chaining. The framework initiates a discovery process on be-
half of a client. First the immediate-level services are discovered by using conventional
IOPE based discovery approach. IOPE based request is send to a registry or directory
service, which returns a list of services matched on the basis of functional IOPE at-
tributes. We extend the discovery approach proposed by [14] to return AMPol-Q entity
profile for the selected services. For each first-level service, the IOPE base discovery
process is re-run to gather profiles of its dependent services. The IOPE request for dis-
covering dependant services is generated from the request templates associated with a
dependent service. The template variables are first assigned values from the available
IOPE information of client or other services and then fully populated request is used
for discovering profiles of dependent services.

Service discovery process continues until the profiles of all the candidate services
are discovered. This global information can be modeled as an AND-OR graph called
Service Chain Graph (SCG). In the SCG, an OR combination shows the option of
choosing one of the candidate service and an AND combination represents dependent
services which must be composed. Figure 2 shows a SCG for the example of loan
processing agency we discussed before. In this example, we have an option of two
candidate services for each type. Client has an option of getting loan either from loan

AMPol-Q: Adaptive Middleware Policy to Support QoS 171

processing agencies or directly from a bank. Only bank B2 directly deals with small
business clients. Loan processing agencies are dependant on credit reporting agencies
and banks. Bank B1 independently verifies the credit score of a client from an external
credit reporting service, while bank B2 has its own internal credit reporting department.
By doing a traversal on SCG we can easily extract service chains (SC). Service chain
represents a set of services which can provide a required service functionality. Global
QoS analysis is done on each service chain to select a best candidate chain for final ex-
ecution. For the above example, we have thirteen possible service chains. Service chain
are further modeled as a tree to simplify the global QoS analysis and policy matching.

Global QoS Analysis and Policy Agreement. Global QoS analysis has two steps: 1)
pre-process QoS information; 2) match the policies and create a contract. These steps
are repeated for each service chain in a SCG to create a list of policy contracts with
associated agreement value.

Pre-processing is to map the global QoS requirements and capabilities to each indi-
vidual node so that policy matching and agreement can be done independently between
two nodes. It involves normalizing ontologies, filling rule templates, calculating ag-
gregate QoS values, propagating rules and associating different entities with constraint
rules. For example, for service chain 5 in Fig 2, the aggregate availability of the com-
posite services (LA1, B2 and CR2) will be calculated by the product of availability
value of each individual service, and then either a new capability rule is added to rep-
resent this value (e.g. in case of a broker) or the capability value of first level service
(LA1) is replaced by the calculated aggregate value. Similarly, suppose client has a re-
quirement of end-to-end message confidentiality then this constraint is propagated to
all the services in the chain, so that during policy matching phase it can be compared
against capabilities of each service.

Next, to find out whether a node fulfills the QoS requirements or not, QoS constraints
are matched with QoS capabilities. For any constraint, if there is no matching capabil-
ity (or capability is not sufficient enough) then there must be an associated capability
module (adherence logic). Every rule can have associated adherence, verification and
enforcement modules. If external capability is required then it must be checked against
extension policy restrictions of that node. QoS requirement rule can only be satisfied if
there is a matching capability rule available or there is an extension module available to
provide the QoS capability and there are no extension restrictions on this module.

At last, a policy contract is created and an agreement value is assigned. Policy con-
tract contains all entities in a service chain along with their capabilities and imposed
constraints. Agreement value is penalized for every non-resolvable conflict, missing as-
sociated capability, no associated monitoring module, restricted extension modules etc.
The service chains in which entities cannot fulfill the QoS requirements of each other
are heavily penalized and hence have less chance of getting selected.

Contract Negotiation. The contract with maximum agreement value in the policy con-
tract list is selected, verified and signed from each entity in the service chain. The terms
of the contract imply that the entities in question will comply with all the QoS con-
straints and will provide agreed upon QoS behavior. Policy contract is sent to each
party in a service chain. Each individual entity verifies the contract policies against its

172 R. Afandi, J. Zhang, and C.A. Gunter

private policies (if any). If a contract is rejected by any entity in a service chain then a
next best contract is chosen for agreement. Negotiation process continues until all the
entities agree on a particular contract. Because our service selection approach is based
on global QoS information, it is able to select best set of services, while most existing
approaches [14,13,15,3,1] can only select the first available matched service(s). Con-
tract negotiation phase is optional but it provides assurance of a desired QoS from all
entities even if capabilities or constraints are not advertised.

The discovery framework uses the Jena ontology inference engine and SWRL virtual
machine to parse, normalize and compare policies. More implementation details are
given in the [12].

4 QoS Monitoring Framework

Adaptive Middleware for QoS Monitoring. Monitoring involves measuring delivered
QoS, verifying QoS features and taking enforcement actions. AMPol-Q is an agile and
adaptive middleware framework that enables the participants to adapt to QoS features
of others during runtime. It is realized by two-way specialization, which extracts the
logic of measuring QoS values and verifying and enforcing QoS policies by third party
customized and pluggable components. These components are called extensions. This
is executed in the way described by extension policies. The QoS features in a policy
contract are associated with these extensions and can be dynamically added or removed
per collaboration. In order to support a new QoS behavior, we do not need to change
the core of the application. Instead AMPol-Q middleware can locate, load and execute
new extensions automatically. The whole procedure is called system extension. We have
used a middleware approach to mask problems of heterogeneity and distribution. Its
flexibility and extensibility helps to support dynamic QoS, fine-grained policy control
and seamless system evolution. It hides the implementation complexity from the core
application logic and the functionality provided can be re-used by different applications.
The discovery framework is also a part of the AMPol-Q middleware, which acts as a
broker at the client end for discovering and selecting services. Figure 3shows different
components of the AMPol-Q middleware.

Entities in a service chain must be capable of providing requested QoS features,
fulfilling QoS requirements, or complying with QoS constraints. We call this an adher-
ence logic. First we need to distinguish between two types of QoS features, pluggable
and non-pluggable. Pluggable QoS can be supported independently without any signif-
icant change to the core application, e.g. an encryption algorithm. Non-pluggable QoS
features that cannot be supported by just adding an external capability, e.g. process-
ing time or network bandwidth. Generally, qualitative features (capabilities) are likely
to be pluggable more often than quantitative ones. A specialization can only be ap-
plied to a pluggable QoS feature. QoS capabilities may be pluggable through adherence
components, while logic for QoS measurements, verification and enforcement for both
qualitative and quantitative QoS features are easily pluggable.

The monitoring framework has three core components: QoS measurement, policy
verification, and policy enforcement. Each component is heavily reliant on extensions.

AMPol-Q: Adaptive Middleware Policy to Support QoS 173

Fig. 3. AMPol-Q Middleware

The service invocation process starts with the interpretation of policy contract at the
client side. It executes a series of verification and adherence extensions on a request
message to provide required QoS for a target service. On receiving a request, the ser-
vice middleware first verifies the QoS constraint imposed by a service on the client.
According to verification result the enforcement logic either rejects the request or for-
wards it to the service. Once the response is ready, the verification logic verifies that
a response complies with client constraints. If the verification fails, the pluggable ad-
herence logic is executed to conform the response message with the client constraints.
On receiving a response, the client verifies the QoS delivered by the service, which
may involve measuring QoS through extensions. If verification fails, then the enforce-
ment mechanism will take actions accordingly. The QoS policies are verified, adhered
or enforced on a point-to-point basis, but eventually they all comply with global QoS
constraint and requirements.

Extension Manager. The extension manager manages extension components and the
system extension process. Extension management is controlled by extension policies,
in which extensions are downloaded and executed only if extension policies allow doing
so. Extension policies may restrict a type of extension to be only downloadable from a
particular trusted extension server or may restrict the execution of an extension to allow
limited access to the system resources (such as sandbox execution). Additionally, The
system extension has a meta-level control over the adaptation process to ensure that the
changes are effective.

Modules of the monitoring framework are implemented in C# and the extensions are
packaged in separate DLLs. Details are given in the [12].

174 R. Afandi, J. Zhang, and C.A. Gunter

5 Validation and Case Studies

Policy-Based WSEmail. In this case study, we integrate AMPol-Q with WSEmail [7]
to show how the email services could be enhanced to support QoS features in an end-
to-end adaptive manner. In particular, our implementation is able to add new QoS re-
quirements for availability and security. It deploys and uses plug-ins for puzzles [16] to
raise burdens for email spammers [17,18], and identity-based encryption [19] to allow
senders to encrypt mail for recipients based on email addresses or other strings. As with
the puzzles, our goal is to show how AMPol-Q can aid the deployment of IBE without
requiring universal adoption of IBE by users. This case study is an extension of our
implementation in [20] and illustrates the application of AMPol-Q to systems based on
static service invocation rather than purely discovering other service dynamically.

The case study uses security domain QoS ontologies named APES [20] (Attachment,
Payment, Encryption and Signature). Encryption and Signature classes specify the cryp-
tographic parameters used for encryption or signature. For availability, Payment class
specifies the type of cost (puzzles) imposed on the message sender. Attachment class
specifies the patterns of the messages and attachment files, which is the primary medium
for spreading viruses.

There are four entities involved in the system, the Sender Mail User Agent (SMUA),
the Sender Mail Transfer Agent (SMTA), the Recipient MTA (RMTA) and the Recip-
ient MUA (RMUA). MTAs advertise their clients and their own entity profiles, which
are merged with client profiles for simplicity. MTAs entity profiles also contain depen-
dent services (Relays or RMTAs) and their request templates, which can be used to
dynamically discover dependent MTAs. These request templates also specify a mecha-
nism to discover relaying MTAs by providing a reference to an extension e.g. a plugin
for querying local DNS server for finding next hop MTA. In the example settings we
map a MTA to a single relay per email address domain, which is in fact a target RMTA.
So in this case we only have one service chain with three entities (SMUA =⇒ SMTA
=⇒ RMTA). Also there is a third-party trusted plugin-server which hosts the exten-
sions. For the current setup we show how the SMUA can automatically adapt to the
QoS constraints of the target services (SMTA, RMTA and RMUA).

The MUA’s AMPol-Q middleware is configured as a broker for discovering profiles
of other entities. AMPol-Q first requests an SMTA entity profile and then fills in the de-
pendency request templates; this only requires email addresses for the users. It invokes
a pluggable discovery component to retrieve the merged entity profile of the RMTA.
Because there is only one service chain, a single contract is created with an agree-
ment value and simply send to other entities for QoS monitoring. Messages sent by
the SMUA are verified against the contract and accordingly adherence extensions are
downloaded and executed to conform the message with required QoS constraints. At
the SMTA, the received message is first verified by the middleware and then processed
by the SMTA application (if the verification succeeds). When the message is relayed to
the RMTA, it is again verified and then forwarded to the RMUA. QoS discovery, ver-
ification, measurement, adherence and enforcement mechanisms are provided through
pluggable extensions which are automatically downloaded from a trusted third party
plug-in servers.

AMPol-Q: Adaptive Middleware Policy to Support QoS 175

Web Based WSEmail. Based on WSEmail, this case study realizes AMPol-Q for typical
web-based applications. Here a web browser client (CB) and a web application server
(AS) adapt themselves to accommodate QoS aware service discovery and monitoring.
The motivation behind this case study is that most of the client applications in SOA
are web based and we try to show that how easily AMPol-Q can enable these client
applications to be QoS aware.

We extended WSEmail by providing an application server and a browser-based MUA
instead of the WSEmail MUA. We also extended it to provide a multi-hop and multi-relay
topology to dynamically discover relays. Profiles are advertised on a UDDI-based server
instead of relying on DNS entries. On receiving an HTTP request from a MUA browser,
the application server internally talks to the WSEmail MTA and replies with an HTML
page. In contrast to previous case study, it is not possible for the web client to do dynamic
discovery and selection of services and to publish or advertise its QoS policies.

Our implementation considers AS and CB to be two independent entities with their
own QoS features. CB does not need to discover any services as it statically invokes
AS, while AS dynamically discovers other services. HTTP request from a CB is inter-
cepted by AMPol-Q middleware and it first sends a modified HTTP request for service
selection along with CB’s QoS policies and functional intent to AS. The corresponding
AMPol-Q middleware component at AS receives the request and initiates the service
discovery based on CB request. We consider each AS application (for example, servlet
or asp pages) to be a service interface and like other services, AS should also provide
a complete entity profile including request templates to discover other dependent ser-
vices. In the web-based scenario these profiles do not need to be advertised at registry
service as the AS is never dynamically invoked by clients. The final service chain is
selected and the contract is negotiated by AS. The communication between AS and CB
is done through HTTP requests and responses. Finally the original HTTP request from
CB is evaluated against an agreed contract and the final modified HTTP request is sent
to AS. On receiving a response message, it is monitored by verifying against agreed
contract.

We used Firefox Mozilla v1.5 as the browser and Apache Tomcat (v4.1) as AS.
See [12] for the implementation details and video demonstration.

6 Related Work

Different service description (e.g. OWL/OWLS, Web Service Modeling Ontology) and
QoS models [1,8,9] represent services with both functional and non-functional require-
ments, but they do not provide explicit support for compositional QoS and E2E service
discovery. The OWL-S process model has implicit information about dependent ser-
vices, but this information is not useful for discovering other services. Additionally,
the QoS models in these works do not capture monitoring and compositional aspects.
There are studies [2,3,14,21] on QoS aware dynamic discovery and composition of ser-
vices, but these are not able to discover or compose services on the basis of E2E global
QoS features and do not provide sufficient support for continuously changing QoS
requirements. There is no comprehensive specification that states how dynamic selec-
tion and invocation of services is to be performed on the bases of QoS features.

176 R. Afandi, J. Zhang, and C.A. Gunter

There are efforts on contract monitoring [5,6] and mediating services [4,15] through
trusted third parties, but these approaches are based on local criteria and do not ad-
dress the global end-to-end QoS assurance problem of the composite business services.
Different policy frameworks [10,11] are used to enforce requirements for individual
entities. Adaptability is achieved by adding, customizing or replacing entities such as
aspects [22], components, or concerns [23]. Existing efforts assume a built-in logic to
support and ensure QoS policy constraints (QoS requirements) or have a static binding
with external processing components to handle policy rules. AMPol-Q provides a more
flexible approach because it takes the QoS logic out of the core application and provides
it in a form of pluggable extensions.

There isawork[24]onabroker-basedframeworkforQoS-awareWebService(QCWS)
composition. It is based on several service selection algorithms used to ensure the E2E
QoS of a composite web services. This work addresses the problem of evaluating E2E
QoS, but leaves open questions about how to support and ensure them. It also does not
address the issue of how to dynamically discover E2E global QoS information.

There is work [25,26] on dynamic adaptation in a service-oriented framework that
addresses entities that have different QoS requirements on a per session basis. This work
does not provide concrete negotiation protocols and does not explicitly specify which
system entity will enforce the policy. [27] is another policy-based effort to achieve E2E
adaptability, but it also does not support negotiation of requirements and focuses more
on system extensibility and policy framework. DySOA [28] provides a framework for
monitoring the application system, evaluating acquired data against the QoS require-
ments, and adapting the application configuration at runtime. It has a simple manual
policy negotiation between the requester and the provider but does not support run-
time negotiation. It does not address system extensibility beyond the capability of re-
configuring system parameters. GlueQoS [29] proposes a declarative language based on
WS-Policy to specify QoS features and a policy mediation meta-protocol for exchang-
ing and negotiating QoS features. One obvious limitation of GlueQoS is that it does not
support dynamic system extensibility. All of above efforts only can handle simple QoS
features because WS-Policy framework they use is not generic and adaptive enough to
support new types of QoS constraints.

In a related work [30] on messaging systems we explored using XACML to model
policies for email systems. In this work policies are used for controlling access to mail-
ing lists. A related effort [20] on adaptive policies uses a ‘non-semantic’ policy language
to model security features. AMPol-Q uses a semantic approach to support more com-
plex policies. [20] is similar to AMPol-Q but it is based on systems with static binding
and a more domain-specific focus, while AMPol-Q has a more generic formulation. In
other work [31], we explored more sophisticated policy merging mechanisms than the
ones in AMPol-Q, but these could perhaps be used for AMPol-Q policies as well.

7 Conclusion

We have introduced AMPol-Q, a policy-driven adaptive middleware for providing E2E
support for dynamic QoS features in SOA. Its main contributions are its E2E solu-
tion, its adaptive middleware framework for supporting and monitoring QoS features,

AMPol-Q: Adaptive Middleware Policy to Support QoS 177

its generic semantics-aware reference architecture for describing, discovering and com-
posing services on the basis of their non-functional features, and its application of this
middleware to the systems based on web services. AMPol-Q differs from other work on
adaptation in its focus on exploring an E2E solution for QoS features that incorporates
all of the necessary support features. This work also provides one of the most complete
studies to date of a proof-of-concept QoS-aware policy system based on Web services.
Our future work includes formal security analysis, improved security measures such as
sandbox protection, features to support privacy, models for negotiating policies, policy
conflict resolution and performance testing.

Acknowledgements

We are grateful for help and encouragement we received from Anne Anderson, Noam
Artz, Mike Berry, Jodie Boyer, Rakesh Bobba, Jon Doyle, Omid Fatemieh, Munawar
Hafiz, Fariba Khan, Himanshu Khurana, Steve Lumetta, Adam Lee, Kevin D. Lux,
Michael J. May, Anoop Singhal, Kaijun Tan. This research was partially supported
by NSF CCR02-08996, CNS05-5170, CNS05-09268, and CNS05-24695 and ONR
N00014-04-1-0562 and N00014-02-1-0715.

References

1. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware mid-
dleware for web services composition. In: ITSE’04: IEEE Trans. on Software Engr. (2004)

2. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: Adaptive and dynamic service
composition in eflow. In: Tech. Report, HPL-200039, Software Tech. Lab. (2000)

3. Zeng, L., Benatallah, B.and Dumas, M., Kalagnanam, J., Sheng, Q.: Quality driven web
service composition. In: WWW’03:Proc. of 12th Int. World Wide Web Conf. (2003)

4. Piccinelli, G., Stefanelli, C., Trastour, D.: Trusted mediation for e-service provision in elec-
tronic marketplaces. In: Lecture Notes in Computer Science, 2232:39. (2001)

5. Mahbub, K., Spanoudakis, G.: A framework for requirements monitoring of service based
systems. (In: ICSOC’04: In Proc. of the 2nd Int. Conf. on Service Oriented Computing)

6. Jurca, R., Faltings, B.: Reputation-based service level agreements for web services. (In:
ICSOC’05: In Proc. of the 3rd International Conference on Service Oriented Computing)

7. Lux, K.D., May, M.J., Bhattad, N.L., Gunter, C.A.: WSEmail: Secure Internet messaging
based on Web services. In: Int. Conf. on Web Services (ICWS ’05), IEEE (2005)

8. Tsesmetzis, D., Roussaki, I.G., Papaioannou, I., Anagnostou, M.E.: Qos awareness support
in web-service semantics. In: AICT-ICIW’06. (2006)

9. Dobson, G., Lock, R., Sommerville, I.: Qosont: a qos ontology for service-centric systems.
In: EUROMICRO-SEAA’05. (2005)

10. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Authorization and
privacy for semantic web services. (In: AAAI’04: Workshop on Semantic Web Services)

11. Uszok, A., Bradshaw, J.M., Jeffers, R., Johnson, M., Tate, A., Dalton, J., Aitken, S.: Kaos
policy management for semantic web services. In: IIS’04: IEEE Intelligent Systems. (2004)

12. AMPol-Q: website. http://seclab.cs.uiuc.edu/ampol/AMPol-Q (2006)
13. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with interac-

tive composition techiques. In: IEEE Intelligent Systems, 19(4). (2004)

178 R. Afandi, J. Zhang, and C.A. Gunter

14. Pathak, J., Koul, N., Caragea, D., Honavar, V.G.: A framework for semantic web services
discovery. In: WIDM05. (2005)

15. Shuping, R.: A model for web service discovery with qos. In: ACM SIGecom. (2003)
16. von Ahn, L., Blum, M., Hopper, N., Langford, J.: CAPTCHA: Using hard AI problems for

security. In: Proceedings of Eurocrypt. (2003) 294–311
17. Juels, A., Brainard, J.: Client puzzles: A cryptographic defense against connection depletion

attacks. In: NDSS99: Networks and Distributed Security Systems. (1999)
18. Dwork, C., Naor., M.: Pricing via processing or combatting junk mail. In Brickell, E.F., ed.:

Proc. CRYPTO 92, Springer-Verlag (1992) 139–147
19. Boneh, D., Franklin, M.: Identity based ecncryption from the Weil pairing. SIAM J. of

Computing 32(3) (2003) 586–615
20. Afandi, R., Zhang, J., Hafiz, M., Gunter, C.A.: AMPol: Adaptive Messaging Policy. In:

4th IEEE European Conference on Web Services (ECOWS’06), Zurich, Switzerland, IEEE,
IEEE Conference Publishing Services (2006)

21. Karastoyanova, D., Buchmann, A.: Development life cycle of web service-based business
processes. enabling dynamic invocation of web services at run time. In: ICSOC’05: In Proc.
of the 3rd International Conference on Service Oriented Computing. (2005)

22. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In Aksit, M., Matsuoka, S., eds.: Proceedings ECOOP ’97.
Volume 1241 of LNCS., Jyvaskyla, Finland, Springer-Verlag (1997) 220–242

23. Hürsch, W., Lopes, C.V.: Separation of concerns. Technical Report NU-CCS-95-03, College
of Computer Science, Northeastern University, Boston, Massachusetts (1995)

24. Yu, T., Lin, K.: Service selection algorithms for composing complex services with multiple
qos constraints. In: ICSOC’05: 3rd Int. Conf. on Service Oriented Computing. (2005)

25. Mukhi, N.K., Konuru, R., Curbera, F.: Cooperative middleware specialization for service
oriented architectures. In: WWW ’04, IEEE Computer Society (2004)

26. Mukhi, N., Plebanni, P., Silva-Lepe, I., Mikalsen, T.: Supporting policy-driven behaviors in
web services: Experiences and issues. In: ICSOC ’04, IEEE Computer Society (2004)

27. Baligand, F., Monfort, V.: A concrete solution for web services adaptability using policies
and aspects. In: WISE’03: Proceedings of the Fourth International Conference on Web In-
formation Systems Engineering, IEEE Computer Society (2004)

28. Bosloper, I., Siljee, J., Nijhuis, J., Hammer, D.: Creating self-adaptive service systems with
dysoa. (In: ECOWS’05, Proceedings of the 3rd European Conference on Web Services)

29. Wohlstadter, E., Tai, S., Mikalsen, T., I.Rouvellou, Devanbu, P.: Glueqos: Middleware to
sweeten quality-of-service policy interaction. In: ICSE ’04: Proceedings of the 26th Interna-
tional Conference on Software Engineering, IEEE Computer Society (2004)

30. Bobba, R., Fatemieh, O., Khan, F., Gunter, C.A., Khurana, H.: Using attribute-based access
control to enable attribute-based messaging. In: Annual Computer Security Applications
Conference (ACSAC ’06), Miami Beach, FL, Applied Computer Security Associates (2006)

31. Lee, A.J., Boyer, J.P., Olson, L.E., Gunter, C.A.: Defeasible security policy composition for
web services. In: Formal Methods in Software Engineering (FMSE ’06), Alexandria, VA,
ACM (2006)

Adaptive Web Processes Using Value of
Changed Information

John Harney and Prashant Doshi

LSDIS Lab, Dept. of Computer Science,
University of Georgia, Athens, GA 30602

{jfh, pdoshi}@cs.uga.edu

Abstract. Web process composition is receiving much attention as an
important problem for the services oriented computing community. Most
compositions built by planning methods use a pre-defined model of the
process environment. These methods have assumed that the informa-
tion in the models and consequently the compositions remain static and
accurate throughout the life cycle of the Web process. We describe an
approach that accounts for the dynamic nature of services by formu-
lating a system that queries external sources intelligently. We give a
method for measuring the value of change that revised information may
potentially introduce in the Web process. We provide an algorithm that
calculates and uses this value to optimally adapt the Web process to
possible changes in the environment. Using two realistic scenarios, we
show our idea and compare its performance to alternative approaches.

1 Introduction

Planning based approaches to Web process composition [1, 2, 3] rely on pre-
specified models of the process environment to generate plans. For example,
decision-theoretic planners such as Markov decision processes (MDPs) [2, 4] uti-
lize a model, which describes the state-action transition probabilities and the
costs of service invocations, to generate a policy that guides the composition.
The optimality of the Web process is dependent on the accuracy with which
the model captures the process environment. In volatile environments [5] where
the characteristics of the process participants may change frequently, the Web
process may become suboptimal if it is not updated with the changes. As an ex-
ample, consider a supply chain scenario in which a manufacturer has the option
of ordering goods from either its preferred or another supplier. The ordering of
the manufacturer’s actions depends on the probability with which the preferred
supplier usually satisfies the orders and the cost of using the preferred supplier. If
the preferred supplier’s rate of order satisfaction drops suddenly (due to unfore-
seen circumstances), and the manufacturer does not revise its model to reflect
this change, its Web process will continue to utilize that supplier over others.

A straightforward approach to address this problem is to query the model
parameters periodically, update them if they have changed, and reformulate the

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 179–190, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 J. Harney and P. Doshi

Web process based on the updated model. 1 This approach does not account for
the cost of querying the model parameters, which may be more expensive than
using a suboptimal Web process. For example, finding out a supplier’s current
rate of order satisfaction may be more expensive than a reduction in expected
cost that the new information will entail for the Web process.

In this paper, we introduce a method to intelligently adapt the Web process
to volatile environments by computing the value of changed information (VOC).
In this method, we compute the tradeoff between the cost of querying for re-
vised information and the expected value of the change in the Web process that
the revised information will bring. We update the model parameters and com-
pose the Web process again, only if the VOC is greater than the query cost.
We adopt a myopic approach in that we query only one service provider at a
time and utilize the revised information from that provider which leads to the
maximum VOC. We show that, though myopic, the approach performs reason-
ably well in adapting the Web process to the changes in the environment. In
particular, our experiments demonstrate that the VOC mechanism avoids “un-
necessary” queries in comparison to the naive approach of periodic querying.
This translates to a savings in overall costs for the Web process. For the purpose
of evaluation, we utilize two scenarios - a supply chain and a clinical adminis-
trative pathway. Within our services-oriented architecture (SOA), we represent
the manufacturer’s and hospital’s Web processes using WS-BPEL [6], and the
provider services as well as a service for computing the VOC using WSDL [7].

We point out that the VOC computation shares its conceptual underpinnings
with the value of perfect information (VPI) [8]. This is due to the fact that
they are both special cases of the value of information idea, which attempts to
determine if new information is indeed useful to a particular process. However,
there is an important difference between the two concepts. VPI computes the
value of additional information, while the VOC provides the value of revised
information. Both quantities cannot be negative. The updated information may
lead to a Web process whose total cost is greater than before. For example, if
the preferred supplier’s probability of meeting orders drops considerably, the
manufacturer may be forced to drop the preferred supplier in favor of using
a more expensive supplier. Nevertheless, as we show, the revised Web process
incurs less total cost in the changed environment in comparison to the original
Web process in this environment.

2 Related Work

Only recently have researchers turned their attention to managing processes
in volatile environments. Au et al. [5] obtains current parameters about the
Web process by querying specific Web service providers when the values expire.
Plan recomputation is assumed to take place irrespective of whether the revised
parameter values are expected to bring about a change in the composition. This
1 In general, new information may require a complete recomposition of the Web process

to remain optimal, though sometimes only local changes may be sufficient.

Adaptive Web Processes Using Value of Changed Information 181

may lead to frequent unnecessary computations. Muller et al. [9] propose a
workflow adaptation strategy based on pre-defined event-condition-action rules
that are triggered when a change in the evironment occurs. While the rules
provide a good basis for performing contingency actions, they are limited in the
fact that they cannot account for all possible actions and scenarios that may arise
in complex workflows. Additionally, the above works do not address long term
optimality of process adaptation. [2] offers such a solution using a technique that
manages the dynamism of Web process environments through Bayesian learning.
The process model parameters are updated based on previous interactions with
the individual Web services and the composition plan is regenerated using these
updates. This method suffers from being slow in updating the parameters, and
the approach may result in plan recomputations that do not bring about any
change in the Web process.

3 Motivating Scenarios

In order to illustrate our approach we present two example scenarios:

Supply Chain. A manufacturer receives an order to deliver some merchandise
to a retailer. The manufacturer may satisfy the order in one of several ways.
He may satisfy the order from his own inventory if sufficient stock exists. The
manufacturer may request the required parts from a preferred supplier. The
manufacturer may also search for a new supplier of parts, or buy them on the
spot market. A costing analysis reveals that the manufacturer will incur least
cost if he is able to satisfy the order from his own inventory. The manufacturer
will incur increasing costs as he tries to fulfill the order by procuring parts from
his preferred supplier, a new supplier, and the spot market.

In Fig. 1, we depict the supply chain scenario. The manufacturer may choose
from several processes. For example, the manufacturer may attempt to satisfy

 Retailer Manufact.

Preferred
Supplier

Other
Supplier

Spot
Market

Reply = Yes with
prob. 0.2

Reply = Yes
with prob. 0.7

Check availability and order parts
Reply = Yes
with prob. 0.4

Reply = Yes
with prob. 1

Check Inventory

Check availability and order parts

Check availability and order parts

Fig. 1. Collaboration diagram showing interactions between the business partners in
our motivating scenario. We have used example probability values to aid understanding.

182 J. Harney and P. Doshi

the order from his inventory. If unable to do so, he may resort to order from the
preferred supplier. Another process may involve bypassing the inventory check,
since the manufacturer strongly believes that his inventory will not satisfy the
order. He may then initiate a status check on his preferred supplier. These exam-
ple processes reveal two important factors for selecting the optimal one. First,
the manufacturer must accurately know the certainty with which his order will
be satisfied by the various suppliers. Second, rather than selecting an action with
the least cost at each stage, the manufacturer must select the action expected
to be optimal over the long term.

Patient Transfer. A hospital receives a patient who has complained of a par-
ticular ailment. The patient is first checked into the hospital and then seen by
one of the hospital’s physicians. He may, upon examination, decide to transfer
the patient to a secondary care provider for specialist treatment. We assume
that the hospital has a choice of four secondary care givers to select from with
differing vacancy rates and costs of treatment, with the preferred one having the
best vacancy rate and least cost (see Fig. 2).

Check vacancy

Select

Caregiver3

Caregiver4

Caregiver2
Secondary

Secondary

Secondary

Reply = Yes
with
prob. 0.5

Reply = Yes

Check−In
Insurance
Validation

Caregiver
Secondary
Preferred

Caregiver
Secondary

Physical
Exam

Patient

No transfer
with prob 0.2

prob. 0.8
with
Transfer

Reply = Yes

prob. 0.7
with

with
prob. 0.4

vacancyCheck
Reply = Yes

prob. 0.2
with

vacancyCheck

vacancyCheck

Fig. 2. The patient transfer clinical pathway for a primary caregiver. As before, we
have used example probability values to aid understanding.

Similar to our previous example, several candidate Web processes present
themselves. For example, the physician may decide not to transfer the patient,
instead opting for in-house treatment. However, if the physician concludes that
specialist treatment is required, several factors weigh in toward selecting the
secondary care giver. These include, the typical vacancy rates, costs of treatment,
and geographic proximity of the caregivers.

4 Background: Web Process Composition Using MDPs

As we mentioned before, our approach is applicable to any model based process
composition technique. For the purpose of illustration, we select a decision-
theoretic planning technique for composing Web processes [2]. Decision-theoretic
planners such as MDPs model the process environment, WP , using a sextuplet:

WP = (S, A, T, C, H, s0)

Adaptive Web Processes Using Value of Changed Information 183

where S = Πn
i=1X

i, where S is the set of all possible states factored into a set,
X , of n variables, X = {X1, X2, . . . , Xn}; A is the set of all possible actions; T is
a transition function, T : S ×A → Δ(S), which specifies the probability measure
over the next state given the current state and action; C is a cost function,
C : S × A → R, which specifies the cost of performing each action from each
state; H is the period of consideration over which the plan must be optimal, also
known as the horizon, 0 < H ≤ ∞; and s0 is the starting state of the process.

In order to gain insight into the functioning of MDPs, let us model the supply
chain scenario as a MDP. The state of the workflow is captured by the ran-
dom variables – Inventory Availability, Preferred Supplier Availability,
New Supplier Availability, Spot Market Availability, Order Assem-
bled, and Order Shipped. A state is then a conjunction of assignments of
either Yes, No, or Unknown to each random variable. Actions are Web service
invocations, A={Check Inventory Status, Check Preferred Supplier Status, Check
New Supplier Status, Check Spot Market Status, Assemble Order, Ship Order}.
The transition function, T , models the non-deterministic effect of each action on
some random variable(s). For example, invoking the Web service Check Inven-
tory Status will cause Inventory Availability to be assigned Yes with a prob-
ability of T (Inventory Availability=Yes|Check Inventory Status, Inventory
Availability=Unknown), and assigned No or Unknown with a probability of
(1-T (Inventory Availability=Yes|Check Inventory Status,Inventory Avail-
ability=Unknown)). The cost function, C, prescribes the cost of performing
each action. This includes the financial as well as the infrastructural cost to the
manufacturer of using a service. We let H be some finite value which implies
that the manufacturer is concerned with getting the most optimal Web process
possible within a fixed number of steps. Since no information is available at the
start state, all random variables will be assigned the value Unknown.

Once our manufacturer has modeled its Web process composition problem as
a MDP, he may apply standard MDP solution techniques to arrive at an optimal
process. These solution techniques revolve around the use of stochastic dynamic
programming [4] for calculation of the optimal policy using value iteration:

V n(s) = min
a∈A

Qn(s, a) (1)

where:

Qn(s, a) =

{
C(s, a) +

∑
s′∈S

T (s′|a, s)V n−1(s) n>0

0 n=0
(2)

where the function, V n : S → R, quantifies the minimum long-term expected cost
of reaching each state with n actions remaining to be performed, and Qn(s, a)
is the action-value function, which represents the minimum long-term expected
cost from s on performing action a.

Once we know the expected cost associated with each state of the process, the
optimal action for each state is the one which results in the minimum expected
cost.

π∗(s) = argmin
a∈A

Qn(s, a) (3)

184 J. Harney and P. Doshi

In Eq. 3, π∗ is the optimal policy which is simply a mapping from states
to actions, π∗ : S → A. The Web process is composed by performing the WS
invocation prescribed by the policy given the state of the process and observing
the results of the actions. Details of the algorithm for translating the policy to
the Web process are given in [2].

5 Value of Changed Information

Several characteristics of the process participants – service providers – may
change during the life-cycle of a Web process. For example, the cost of using the
preferred supplier’s services may increase, and/or the probability with which the
preferred supplier meets the orders may reduce. The former requires an update
of the cost function, C, while the latter requires an update of the transition func-
tion, T , in the MDP model. In this paper, we focus on a change in the transition
function T , though our approach is generalizable to fluctuations in other model
parameters too.

Not all updates to the model parameters cause changes in the process com-
position. Furthermore, the change effected by the revised information may not
be worth the cost of obtaining it. In light of these arguments, we need a method
that will suggest a query, only when the queried information is expected to be
sufficiently valuable to obtain. We provide one such methodology next.

5.1 Definition

As we mentioned before, we adopt a myopic approach to information revision,
in which we query a single provider at a time for new information. In the supply
chain example, this would translate to asking, say, only the preferred supplier
for its current rates of order satisfaction, as opposed to both the preferred sup-
plier and the other supplier, simultaneously. The revised information may change
the following transition probabilities, T (Preferred Supplier Availability =
Yes | Check Preferred Supplier Status, Preferred Supplier Availability = Un-
known), and T (Preferred Supplier Availability = No | Check Preferred Sup-
plier Status, Preferred Supplier Availability = Unknown).

Let Vπ∗(s|T ′) denote the expected cost of following the optimal policy, π∗,
from the state s when the revised transition function, T ′ is used. Since the
actual revised transition probability is not known unless we query the service
provider, we average over all possible values of the revised transition probability,
using our current belief distributions over their values. These distributions may
be provided by the service providers through pre-defined service-level agreements
or they could be learned from previous interactions with the service providers.
Formally,

EV (s) =
∫
p

Pr(T ′(·|a, s′) = p)Vπ∗(s|T ′)dp (4)

where T ′(·|a, s′) represents the distribution that may be queried and subse-
quently may get revised, p = 〈p1, p2, . . . , pn〉 represents a possible response to

Adaptive Web Processes Using Value of Changed Information 185

the query (revised distribution), n is the number of values that the variable un-
der question may assume, and Pr(·) is our current belief over the possible values.
As a simple illustration, let us suppose that we intend to query the preferred
supplier for its current rate of order satisfaction. Eq. 4 becomes,
EV (s) =

∫
〈p,1−p〉 Pr(T ′ (Pref. Supp. Avail.=Yes/No |Check Pref. Supp. Status,

Pref. Supp. Avail. = Unknown)= 〈p, 1 − p〉) Vπ∗(s|T ′)dp
assuming that the random variable Preferred Supplier Availability assumes
either Yes or No on checking the status of the preferred supplier.

Let Vπ(s|T ′) be the expected cost of following the original policy, π from the
state s in the context of the revised model parameter, T ′. We recall that the policy,
π, is optimal in the absence of any revised information. We formulate the value of
change due to the revised transition probabilities as:

V OCT ′(·|a,s′)(s) =
∫
p

Pr(T ′(·|a, s′) = p)[Vπ(s|T ′) − Vπ∗(s|T ′)]dp (5)

The subscript to V OC, T ′(·|a, s′), denotes the revised information inducing the
change. Intuitively, Eq. 5 represents how badly, on average, the original policy,
π, performs in the changed environment as formalized by the MDP model with
the revised T ′.

Analogous to the value of perfect information, the following proposition holds
for VOC.

Proposition 1. ∀s ∈ S, V OC(s) ≥ 0 where VOC(·) is as defined in Eq. 5.

Proof. The proposition follows trivially if we find that ∀s,p Vπ(s|T ′)−Vπ∗(s|T ′)
≥ 0. By definition (Eq. 3), π∗ is an optimal policy for the revised model. This
implies that for any other policy, π′ ∈ Π\π∗, where Π is the space of all policies,
∀p Vπ′(s|T ′) ≥ Vπ∗(s|T ′). This holds true over all the states. The required
inequality obtains since π must either be in Π\π∗, or be equal to π∗. ��
Since querying the model parameters and obtaining the revised information may
be expensive, we must undertake the querying only if we expect it to pay off.
In other words, we query for new information from a state of the Web process
only if the VOC due to the revised information in that state is greater than the
query cost. More formally, we query if

V OCT ′(·|a,s′)(s) > QueryCost(T ′(·|a, s′))

where T ′(·|a, s′) represents the distribution we want to query.

5.2 Web Process Composition with VOC

In order to formulate and execute the Web process, we simply look up the
current state of the Web process in the policy and execute the WS prescribed
by the policy for that state. The response of the WS invocation determines the
next state of the Web process. We adapt the composition of the Web process

186 J. Harney and P. Doshi

Algorithm for adaptive Web process
Input: π∗ //optimal policy, s0 //initial state
s ← s0

while goal state not reached
if VOC∗(s) > QueryCost(T ′(·|a, s′)

Query service provider, a (Eq. 6), for new probabilities
Form the new transition function, T ′

Calculate policy π∗ using the new MDP model
with T ′

a ← π∗(s)
Execute the Web service a
Get response of a and construct next state, s’
s ← s′

end while
end algorithm

Fig. 3. Algorithm for adapting a Web process to revised information and executing it

to fluctuations in the model parameters, by interleaving the formulation with
VOC computations. The algorithm for the adaptive Web process composition is
shown in Fig. 3.

For each state encountered during the execution of the Web process, we query
a service provider for new information if the query is expected to bring about
a change in the Web process that exceeds the query cost. For example, in the
supply chain process, we select and query a supplier for its current rate of order
satisfactions. Of all the suppliers, we select the one whose possible new rate of
order satisfaction is expected to bring about the most change in the Web process,
and this change exceeds the cost of querying that provider. In other words, we
select the service provider associated with the WS invocation, a, to possibly
query for whom the VOC is maximum:

a = argmax
a∈A

V OCT (·|a,s′)(s) (6)

Let VOC∗(s) represent the corresponding maximum VOC.
Our algorithm does not consider the cost of VOC computation in deciding

whether to query a service provider. In particular, this would require knowing
what the possible VOC computation cost could be, and a way to compare com-
putation cost with WS invocation cost using inter-convertible units. We avoid
these complications under the assumption that sufficient inexpensive computa-
tional resources are available to perform VOC computations.

6 Experiments

We first outline our SOA, in which we wrap the VOC computations in WSDL
based internal Web services, followed by our experimental results on the perfor-
mance of the adaptive Web process.

Adaptive Web Processes Using Value of Changed Information 187

6.1 Architecture

The algorithm described in Fig. 3 is implemented as a WS-BPEL flow while
all WSs were implemented using WSDL. To the WS-BPEL flow, we gave the
optimal policy, π∗, and the start state as input. Our experiments utilized IBM’s
BPWS4J engine for executing the BPEL process. We show our SOA in Fig. 4.

π

 Service Service Service Service
 2 3 4 5 1

External Services

WSDL WSDL WSDL WSDL WSDL

 Service
 n

WSDL

. . . Service
 6

 . |a,s’)

 Web
 Process
 State

Web Service
Response

Policy

GenerateMDP Model

Internal
Services

WSDL

 VOC*(s)

VOC

Calculate

to Invoke

Query Cost

Compare

 Service

Query Cost

Query Cost T’(

WS−BPEL

Policy

π

 Optimal

 CurrentPolicy , Current s State

Web Service
Invocation

VOC*(s) <

VOC*(s) >

withVOC*(s)

Query

Web Services

Find Service

From Policy

Fig. 4. SOA for implementing our adaptive Web process

Within our SOA, we provide internal WSs for solving the MDP and generating
the policy, and computing the VOC. If the V OC∗(s) exceeds the cost of querying
a particular service provider (this cost is also provided as an input), the WS-
BPEL flow invokes a special WS whose function is to query the service provider’s
WS for revised information. This information is used to formulate and solve
a new MDP and the output policy is fed back to the WS-BPEL flow. This
policy is used by the WS-BPEL flow to invoke the prescribed external WS and
the response is used to formulate the next state of the process. This procedure
continues until the goal state is reached.

6.2 Performance Evaluation

We experimentally compare the performance of our VOC based approach for
adapting a Web process with two other methods, for both the supply chain and
the patient transfer examples outlined in Section 3. The first method assumes
that there is no adaptation to the volatile environment and uses the same policy
for every execution of the process. A MDP model is formulated and solved before
the first execution instance and the resulting policy is used for every instance
then onwards. The second method implements a periodic querying strategy, in
which a service provider is selected at random and queried for revised information

188 J. Harney and P. Doshi

at each state of the Web process. Using the new information, the policy is re-
solved and the Web process continues to run using the new policy. For the
supply chain example, we queried the inventory or the suppliers for their current
percentage of order satisfaction 2, while in the patient transfer pathway, we
queried the secondary caregivers for their current vacancy rates. 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

P
r

(T
’(.

|s
,a

))

Probability of Order Satisfaction

Inventory Availability
Preferred Supplier Availability

Other Supplier Availability

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

P
r

(T
’(.

|s
,a

))
Probability of Vacancy

Preferred Secondary Caregiver
Secondary Caregiver 2
Secondary Caregiver 3
Secondary Caregiver 4

(b)

Fig. 5. The probability density functions representing (a) the manufacturer’s belief
over the suppliers’ rates of satisfaction in the supply chain scenario; (b) the primary
caregiver’s beliefs over the secondary caregivers’ probabilities of having a vacancy

We model the manufacturer and primary caregiver’s beliefs over the possible
parameters of the service providers, (Pr(T ′(·|a, s′) = p) in Eq. 5) using beta
density functions. Other density functions such as Gaussians or polynomials
may also be used. Fig. 5(a) shows the beta densities that represent the man-
ufacturer’s distribution over the rate of order satisfaction by the inventory ie.
T ′(Inv. Avail. = Y es|Check Inv., Inv. Avail. = Unknown), and analogously
for the preferred and other suppliers. Means of the densities reveal that the in-
ventory tends to be less reliable in satisfying orders than other suppliers. Fig. 5(b)
shows the density plots over the probability of a vacancy with the preferred and
other secondary caregivers.

In Fig. 6 we compare the three strategies with respect to the average cost in-
curred from the execution of the Web process, as the cost of querying the service
providers is increased. Our methodology consisted of running 100 independent
instances of each process within a simulated volatile environment, where the
queried parameters of the service providers were distributed according to the
density plots in Fig. 5. We ensured that the processes using each of the three
strategies received similar responses from the service providers.

Intuitively, as we increase the cost of querying, our VOC based approach
performs less queries and adapts the Web process less. For large query costs, its
performance is similar to using a Web process with a static policy strategy. In
Fig. 6(a) and (b), we show the results for the supply chain and patient transfer

2 In the real world, an example response by a supplier could be, “We are currently
meeting 2 of every 3 orders”.

3 Of course, the rate of order satisfaction would depend on the quantity of the order
and other factors; we assume that these will be provided to the suppliers.

Adaptive Web Processes Using Value of Changed Information 189

 100

 105

 110

 115

 120

 125

 130

 135

 140

 145

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
os

t

Query Cost

Query Random Provider
VOC

Static Policy

(a)

 60

 65

 70

 75

 80

 0 1 2 3 4 5 6

A
ve

ra
ge

 C
os

t

Query Cost

Query All
VOC

Static Policy

(b)

Fig. 6. Comparisons of the VOC based process composition with the static policy and
periodic querying approaches for (a) supply chain, and (b) patient transfer scenarios

scenarios respectively. For smaller query costs, a VOC based approach will query
frequently, though not as much as a strategy that always queries a provider. As
we increase the query costs, the VOC based approach will allow a query for
revised information only if its value exceeds the cost. Thus, a Web process that
is adapted using VOC performs better (incurs less average cost) than periodic
querying in a volatile environment because only significant changes to the Web
process are carried out while simultaneously avoiding frequent costly queries.

We point out that the improvement in overall costs comes at a computational
price, as illustrated by our execution time results in Table 1. Calculating the VOC
as shown in Eq. 5 is computationally intensive. The probability p represents a
revised probability of transition on performing an action. To calculate the VOC,
we must compute Vπ(s|T ′) and Vπ∗(s|T ′) for all possible p and average over their
difference based on our distribution over p (shown in Fig. 5). The revised value
function Vπ∗(s|T ′) must be computed using the standard value iteration defined
in Eq. 1. The integral in Eq. 5 is approximated using monte carlo sampling, which
provides a faster evaluation technique and contains negligible error. Exploring
additional efficient calculations of VOC is one avenue of future work.

Table 1. Execution times of Web processes using the VOC and query always ap-
proaches for the supply chain and patient transfer scenario

Problem VOC Query always
Supply Chain 1.43s 0.37s

Patient Transfer 18.6s 7.4s

Our experiments provide two conclusions: First, by augmenting Web process
composition with VOC calculations, significant information changes in volatile
environments are considered and used to make better decisions about which ser-
vices to invoke next. The comparison of VOC and static policy implementations

190 J. Harney and P. Doshi

illustrate that the overall average cost of the Web process using VOC is signifi-
cantly less than utilizing a non-changing policy. Second, we demonstrated that
an intelligent strategy of obtaining revised information that accounts for the cost
in obtaining the information results in less expensive Web processes than a naive
method of periodic querying for new information.

7 Discussion

Real-world process environments are volatile–parameters of the service providers
ranging from costs to reliability may change over time. In such environments,
Web process compositions must adapt to the revised information to remain cost-
effective. We presented a method that intelligently adapts a Web process to
changes in parameters of service providers. Specifically, our approach measures
the expected value of change that the revised information may bring to Web
processes and compares it with the cost of obtaining the information. If the re-
vised information is worth the cost of obtaining it, we query the providers for
their current parameters and reformulate the Web process using the revised infor-
mation. Using two example scenarios, we show that our approach results in Web
processes that are more cost-effective than approaches that do not change the
composition or use a simple periodic querying strategy. Our future line of work
will involve attempting to compute the VOC more efficiently, and understand
the trade off between VOC calculation accuracy and computational efficiency.

Acknowledgements. This research was supported by a grant from UGARF.

References

[1] Srivastava, B., Koehler, J.: Planning with workflows - an emerging paradigm for
web service composition. (2004)

[2] Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition
using markov decision processes. J of Web Services Research 2(1) (2005) 1–17

[3] Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating daml-s web services
composition using shop2. In: International Semantic Web Conference. (2003)

[4] Puterman, M.L.: Markov Decision Processes. John Wiley & Sons, NY (1994)
[5] Au, T.C., Kuter, U., Nau, D.S.: Web service composition with volatile information.

In: International Semantic Web Conference. (2005) 52–66
[6] IBM: Business Process Execution Language for Web Services version 1.1. (2005)
[7] W3C: Web Services Description Language (WSDL) 1.1. (2001)
[8] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach (Second Edition).

Prentice Hall (2003)
[9] Muller, R., Greiner, U., Rahm, E.: Agentwork: a workflow system supporting rule-

based workflow adaptation. J of Data and Knowledge Engg. 51(2) (2004) 223–256

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 191 – 202, 2006.
© Springer-Verlag Berlin Heidelberg 2006

SCENE: A Service Composition Execution Environment
Supporting Dynamic Changes Disciplined Through Rules

Massimiliano Colombo1, Elisabetta Di Nitto1,2, and Marco Mauri1

1 CEFRIEL, Via Fucini 2, 20133 Milano – Italy
2 Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano - Italy

mcolombo@cefriel.it, dinitto@elet.polimi.it, mmauri@cefriel.it

Abstract. Service compositions are created by exploiting existing component
services that are, in general, out of the control of the composition developer.
The challenge nowadays is to make such compositions able to dynamically
reconfigure themselves in order to address the cases when the component
services do not behave as expected and when the execution context changes.
We argue that the problem has to be tackled at two levels: on the one side, the
runtime platform should be flexible enough to support the selection of
alternative services, the negotiation of their service level agreements, and the
partial replanning of a composition. On the other side, the language used to
develop the composition should support the designer in defining the constraints
and conditions that regulate selection, negotiation, and replanning actions at
runtime. In this paper we present the SCENE platform that partially addresses
the above issues by offering a language for composition design that extends the
standard BPEL language with rules used to guide the execution of binding and
re-binding self-reconfiguration operations.

Keywords: service composition, autonomic behavior, self-reconfiguring
systems, dynamic binding.

1 Introduction

Service-oriented approaches are capturing a growing interest not only as a mean for
business to business integration, but also as the possible reference architecture to
support the development of systems exposing autonomic and dynamically changing
behavior [11]. Typical examples are the cases of applications able to reconfigure
themselves and to contact different services depending on contextual information
(e.g., the location of the final user), on QoS levels, on possible failures happening
while a service is running, and so on.

The dynamic nature of such systems precludes the a-priori identification of the
services defining the system and demands for run-time discovery and selection of
such services. In particular, we argue that discovery and selection have to be
supported at two different levels. On one side, the runtime platform executing systems
built by composing services should be flexible enough to support the discovery and
selection of alternative services, and the negotiation of their service level agreements.
On the other side, the language used to develop the composition should support the

192 M. Colombo, E. Di Nitto, and M. Mauri

designer not only in the definition of the way service invocations are sequenced in a
workflow, but also in the definition of self-configuration policies that will discipline
the selection of services and negotiation actions at runtime.

Through these policies, it should be possible, for instance, to express the fact that
whenever a component service breaks the Service Level Agreement (SLA) [6] it has
established with the system, an attempt to establish a new SLA is done and, if this
fails, then the system will try to find an alternative component service, preferably
offered by the same provider.

Industrial composition environments, typically BPEL-based [3], offer little support to
dynamic changes [4] and do not support the explicit definition of self-configuration
policies. If we look at service-oriented research initiatives, they tend to encapsulate self-
configuration policies in some infrastructural components rather than to allow the
designer to define them explicitly. In these cases, the degree of flexibility of the
resulting system is often poor and designers have little control on the policies that are
actually applied at runtime (see Section 6 for more details on some of these approaches).

In this scenario, we propose a composition language through which we describe
service compositions in terms of two distinct parts: a process part, described using
BPEL, that defines the main business logic of the composition, and a declarative part,
described using ECA (Event Condition Action) rules. Rules are used to associate a
BPEL workflow with the declaration of the policy to be used during (re)configuration.
Rules can either be defined at design time or later before the execution of the system.
Moreover, various sets of rules can coexist and be activated depending on the
preferences of the system users.

A composition written in our language is executed by SCENE (Service Composition
ExecutioN Environment). The current implementation of SCENE integrates an off-the-
shelf BPEL executor called PXE [15] and a rule engine called Drools [9]. SCENE is
part of a European project called SeCSE (Service Centric Systems Engineering) [17]
aiming at providing methods, tools, and platform to support service-oriented
engineering.

For the moment both language and runtime environment support the dynamic
discovery and selection of services. We are currently working to provide support to
the other self-configuration actions we have mentioned (e.g., negotiation of new
SLAs and replanning of the composition).

The goal of this paper is to present the results we have achieved so far. Consistently,
the paper is organized as follows: in Section 2 an example is shown to motivate our
work. Section 3 briefly describes the main aspects of the composition language. Section
4 proposes the architecture of SCENE together with its execution semantics. Section 5
presents a preliminary evaluation of the approach, Section 6 presents the related
approaches, finally, Section 7 concludes this paper and discusses about some possible
future work.

2 Motivating Example

In this section we present an example that motivates the need for supporting dynamic
changes in a composition. The example has been extracted from the scenarios defined
by the industrial partners of the SeCSE project.

 SCENE 193

A car maker would like to equip its top level cars with a device allowing the end
user to exploit a set of remote services all available through a portal offered by the car
maker itself. One of the offered services, named XTRIP, helps the end user in keeping
his/her schedule updated depending on the status of his/her travel. In particular, the
service allows the user to plan a trip. Based on the plan and on a navigation system
that allows the service to know the geographical position of the car, the service itself
is able to automatically check the agenda of the user to make sure that he/she will be
on time for the scheduled appointments. In case of problems, the service
automatically establishes a telephone communication between the end user in the car
and his/her secretary so that they can take actions to change the schedule as needed.

The process realizing the XTRIP service is composed of activities (see the activity
diagram of Fig. 1) to get the data about the current position of the car (plan trip), to
access the user’s agenda (check for conflicts and confirm commitments) and to
establish a telephone call when needed (make call).

Fig. 1. The XTRIP process

The completion of these activities implies the invocation of operations to external
services capable of fulfilling them. check for conflicts and confirm commitments
activities are provided by the same service as they both operate on the end user agenda.
The first one checks if some appointments for the period of interest are conflicting with
the trip, and the second one confirms the appointments in case no conflict is detected.

Despite the simplicity of the example, its implementation should be dynamically
adaptable to the way the service is actually used. In particular, the selection of the actual
service for plan trip activity could be left open at design time and decided at runtime
based on the geographical location of the user. This way, it is possible to take advantage
of navigation systems specialized for specific areas. Moreover, the selection of the
concrete service to complete both check for conflicts and confirm commitments activities
should depend on the user which requests the service. Therefore, the service cannot be
fixed at design time. Finally, the selection of the service to satisfy make call activity
could depend on the telecom provider that offers the best rate to connect the traveler
with his/her secretary and also on performance; these, again, are issues that cannot be
addressed while designing the composition workflow.

By exploiting our composition approach, at design time all these choices can be
left open, but, at the same time, rules can be defined that will guide all
(re)configuration actions that will be taken at runtime.

194 M. Colombo, E. Di Nitto, and M. Mauri

Service
Composition

Service
Role

Service
process

view

Process Data
Model

Activity

is described by
0..*

1

refers to

1

1

refers to
1

1

1

1..*

Service Request

represents
0..1

Rule set

refers to

0..*

1

exploits

1..*

takes the viewpoint ofConcrete Service

matches

Rule

associated with

0..*

1

Binding

<<uses>> <<uses>>

realizes

0..*

0..*

Constraint or
Preference

refers to

0..*

1

*

originates

*

*

<<uses>>

Fig. 2. The constituents of a service composition

3 The SCENE Composition Language

The constituents of a service composition in the SCENE composition language are
shown in Fig. 2. A Service Composition can exploit various Service Roles and can be
described by various Service Process Views each one describing the composition from
the view point of a specific role in the composition.

The service process view is composed of four main elements: a Process that in our
language is described using BPEL, one or more Rule Sets and Constraints and
Preferences to control the self-reconfiguration of the composition at runtime, and a
Data Model that includes all data types that are shared between the process and the
rules. These include the structure of the input and output data used by the process part to
communicate with the external services.

The process is composed of Activities that can be implemented as Requests to
external services. These requests can be served by some service roles. At runtime, the
rules are used to realize the Bindings between service requests and the concrete
implementation of service roles (Concrete Services).

The decoupling between the process and the rules allows for a proper separation of
concerns. The process is described in BPEL. We do not pose any restriction to the
structure of the BPEL code describing the process. It defines the data and control flow
among the various elements of the composition. The rules and the constraints and
preferences define the policies used for self-organization. They, in fact, contain all it is
needed to dynamically select/change services, possibly discovered on the fly.

Rules are aware of the state of the process. On the contrary, the process is
completely agnostic of the existence of the rule part. As we will discuss in Section 4,
at runtime, the execution environment is in charge of communicating to the rule part
the state of the process and of modifying this state (and in the future work also the
structure of the process) depending on the results provided by the execution of rules.

Rules do not have to be necessarily defined together with the process; they can also
be introduced at any time before execution in order to account for the specific
conditions in which the process is being executed. The notation we propose for rules is
an extension of the XML rule language that is interpreted by Drools (see next section).

 SCENE 195

Fig. 3. An example of dynamic discovery and binding rule

Fig. 3 shows an example of rule that refers to the case study described in Section 2.
The rule can be activated while the composition process is executing the make call
activity. The aim of the activity is to establish a phone call between the user in the car
and his/her assistant. It exploits a Third Party Call Control (TPCC) service [20] offered
by some telecom provider. The aim of the rule shown in Fig. 3 is to allow the activity to
be dynamically bound to the most suitable TPCC service. More in detail, the rule is
triggered by an event of type ActivityBindingEvent issued by the process execution
environment whenever it realizes that the service request associated with some process
activity is not bounded to any specific service. The condition that activates the rule
requires that the phone number to be called through the TPCC service (this is the
parameter of bindingEvent) does not start with some special numbers. These, in fact, are
managed by a different rule (not shown for space reasons). In the action part a request
for executing a dynamic discovery and binding operation is created (actionRequest) and
this request is wrapped into an event that, in turn, is added to an event queue to be
actually issued. The event queue is identified by the variable eventList that is defined as
global and visible to all rules. Variable processInfo is global as well. It contains the
defined self-reconfiguration preferences and constraints.

In general, rules can introduce some changes in the composition or they can delegate
specific tasks to some infrastructural components. The rule sample presented above falls
in this last category since it aims at activating the component able to identify new
bindings (the Binder as explained in Section 4). This component receives as input some
binding preferences through the variable processInfo. Fig. 4 shows a fragment of
binding preferences stating that the service to be selected has to guarantee a price per
minute of telephone conversation lower than 0.5 euros. Of course, in order to guarantee
this preference, the selection of the concrete service to be bound has to be limited to all
those exposing pricing information in their service specification.

The binding preferences fragment also provides information about the validity of
each binding. In the example, the binding is valid for a single invocation. This means
that it has to be renewed each time the corresponding process activity is executed. A
determined binding can also be valid for the lifetime of the specific process instance or
it can be associated with all new instances of the same process. In these last two cases,
the bindingValidity tag takes the values PROCESS INSTANCE and PERMANENT
respectively.

196 M. Colombo, E. Di Nitto, and M. Mauri

Fig. 4. Binding preferences

Fig. 5 shows a sample of rule that triggers the reconfiguration of the composition
in response to an event generated by a monitoring component. This reconfiguration
can happen independently of the validity that has been set for bindings since it is used
to deal with faulty situations: the event triggering the rule signals that some failure in
a component service has occurred. The service that has failed is stored in a “blacklist”
for future record and a CacheUpdatingActionRequest is issued (again, it is wrapped in
a proper event) that causes any current binding to the failing service to be actually
eliminated.

Rules can have either global or local scope. Rules having global scope can be
activated any time during the execution of a composition. The service violation rule of

Fig. 5 is an example of these kinds of rule. Rules with local scope are associated
with some specific activities of the process that require interaction with external
services. This means that these rules can be activated and can affect the composition
only when the corresponding activity is being executed. The dynamic binding rule of
Figure 3 has local scope (defined in the rule scope tag) since it is built to deal with a
specific binding to a service offering a makeCall operation.

Fig. 6 shows some constraints defined on the confirm commitments activity. For
each invoke activity the constraints specify if the activity is abstract, i.e., it has not
been bound to a concrete service operation, if it is concrete, i.e., a binding for it has
been finalized at design-time, and if any rule associated with that invoke activity is
enabled. A relevant aspect concerns the presence of potential dependencies between
activities.

Fig. 5. Violation rule

 SCENE 197

In the specific example of Fig. 6, the dependency tag indicates that the activity
under consideration (confirm commitments) has to rely on the same service exploited
by the check for conflicts activity. Other kinds of dependencies can be expressed in
terms of generic constraints (e.g., the service used in the current activity has to offer
the same level of performance of the service used in some other activity).

<activity-info>
<activity-name>confirm commitments</activity-name>
<realization-info>ABSTRACT</realization-info>
<binding-dependencies>

SAME SERVICE AS 'check for conflicts'
</binding-dependencies>
<rules-enabled>true</rules-enabled>
<!--a rule will be auto-generated from this dependency-->

</activity-info>

Fig. 6. Dependencies between activities

4 Architecture of SCENE and Execution Model

The SCENE platform provides the runtime execution environment for compositions
written in the SCENE language. The first prototype includes the following
components (see Fig. 7):

• REDS [5], a publish-subscribe infrastructure that acts as integration middleware
and supports both synchronous and asynchronous multicast communication.

• A process execution environment that, in turn, is composed of an open source
BPEL engine, PXE, which is in charge of executing the process part of the
service composition [15] and of a set of Proxies that decouple the BPEL engine
from the logic needed to support reconfiguration (see below).

• An open source rule engine, Drools, responsible for running the ECA rules [9].
• The Binder, responsible for executing binding actions at runtime based on the

directions defined in the rule language. This component is able to execute various
policies for selecting the candidate services. For instance, the services could be
selected from a predefined list or they could be selected in the “outside world” by
exploiting some discovery mechanism. The selection could be based both on
functional and non-functional attributes. More details on the Binder component
can be found in [8].

• A monitoring system [1] is also connected to the bus and provides SCENE with
the needed monitoring feedbacks.

Other components are being added to the platform to manage aspects such as dynamic
negotiation and dynamic reconfiguration of a service composition.

In the following we briefly show how the SCENE platform supports the execution of
a composition. We start from a situation where the designer has defined the composition
process by using the standard BPEL constructs. He can have either defined all bindings
to some concrete services or he can have left these undefined into the BPEL process.
Also the designer might have defined some constraints to enable/disable the association
of process activities with rules, to define dependencies between activities. When
applicable, he defines rules and binding preferences that will be considered during the
self-reconfiguration of the composition.

198 M. Colombo, E. Di Nitto, and M. Mauri

Fig. 7. The architecture of the SCENE platform

At deployment time, a SCENE composition is preprocessed. All activities in the
BPEL process having the rule-enabled tag set to true are bound to specifically
instantiated proxies. Moreover, additional rules are automatically generated that
enforce the constraints defined as part of processInfo. For instance, the rule in Fig.
8 is generated to guarantee that the dependency relation defined between confirm
commitments and check for conflicts activities is actually respected.

At runtime, when the execution of the process reaches the invocation of an
external service, an operation offered by the proxy bound to that activity is actually
called. The proxy has a well defined internal logic that works as follows: if the
proxy refers to a valid concrete service, then it propagates the request directly to
this service. In the opposite case, it emits on the bus an ActivityBindingEvent. The
rule engine -- that has subscribed to this event -- receives it and activates a rule able
to handle the missing binding (if this rule exists). If more than one rule can be
activated, only one is non-deterministically selected (for the future we plan to add
priorities to let the designer have an influence on this selection). The activated rule
can take any decision, ranging from the activation of the binding procedure (as done
by the rule in Fig. 3) to the immediate binding to some previously identified service
(as done by the rule in Fig. 8), to the termination of the execution.

In all cases, when a new service is ready to be bound to the composition, or a
decision to stop the composition is taken, an event is generated by the rule engine
and received by the proxy that can then change its internal state, possibly invoke the
proper operation on the bound service (if it has been identified), and then pass the
control back to the BPEL execution environment. In the case a permanent binding
has been identified, the rule engine will also load the files containing the process
and change them by adding a concrete binding to the selected service.

When the monitoring infrastructure detects misbehavior of some service, it issues
an event of type ServiceViolationEvent. Again, this is received by the rule engine and

 SCENE 199

Fig. 8. Rule automatically generated to account for dependency between confirm commitments
and check for conflicts activities

activates a violation rule. As in the previous case, various decisions can be defined in
the rule to recover from the faulty situation. These range from simply disregarding the
failure to change one or more bindings in the composition. In the forthcoming version
of SCENE, we will manage also dynamic negotiation of SLAs and structural
transformation of the composition itself.

5 Evaluation

We have developed some case studies to test the flexibility of the approach and its
applicability to concrete cases. The examples we have considered so far have been
defined within the SeCSE consortium and concern automotive and telecom domains.
The example presented in Section 2 is one of these. For that example, besides the BPEL
process sketched in Fig. 1, we have defined 15 rules. Some of the rules are those we
have presented in the previous sections. The others have a similar structure and are not
reported here for the sake of space.

The example, exploits some real services that are actually offered in a pre-operational
environment by our partners. For instance, the TPCC service is offered by Telecom
Italia and actually exploits the communication machinery of the company.

For the example we have developed two GUIs not shown here for space reasons. One
of them is owned by the consumer of the XTRIP service and the other by the
administrator. The consumer can start the execution of the composed service by
requesting the system to plan a trip. Together with the request, the GUI has to pass to
the composition some data about the user (his/her current position, the trip destination,
the agenda service of the user, his phone number and the secretary’s phone number).
Through the administration interface can see the bindings and re-bindings that are
computed during the execution of the composition can be monitored.

Our partners in the project are currently experimenting with the language and the
platform and are providing feedbacks to us especially concerning the user friendliness
of the language and its ability to capture their requirements. For the moment, this

200 M. Colombo, E. Di Nitto, and M. Mauri

analysis has not revealed major weaknesses in the ability of the language to express the
partners’ needs, and we are constantly working on improving the intuitiveness and
simplicity of the language.

As a final remark we highlight that the execution of a SCENE composition
introduces some overhead with respect to the execution of a plain BPEL process.
More in detail, referring to a specific invocation, this overhead varies depending on
the following cases:

• The designer has disabled the usage of rules for the current invocation activity: in
this case, there is no overhead introduced by SCENE since the invocation is
executed directly by the BPEL engine.

• The usage of rules is enabled and the invoke activity that is being executed has
associated a valid binding (this is stored into the corresponding proxy). In this case,
the proxy acts as an intermediary between the BPEL engine and the actual services.
Being the proxy fully dedicated to a single service, the overhead is mainly
concerning the message exchange between the engine and the proxy. These two are
installed on the same machine.

• The usage of rules is enabled and the invoke activity that is being executed does
not have associated a valid binding. In this case, the proxy receiving the invocation
request triggers the binding procedure by generating an event for the rule engine.
In this case the overhead cannot be determined a priori, but it depends on the
complexity of the rules that are triggered. Reasonably, this complexity is
compensated, however, by the ability of the system to reconfigure itself.

• The monitoring system (that can exist independently of SCENE to monitor the
execution of standard BPEL processes) signals a fault. This, again, triggers the
execution of rules and, again, introduces, an overhead that is compensated by
the fact that the system may be able to return in a correct state.

6 Related Work

Various approaches in the service-oriented domain tend to add some kind of dynamic
binding features to service composition. MAIS [7] supports dynamic binding but the
logic for selecting candidate services is predefined and cannot depend on user inputs
as it happens with our binding rules.

Meteor-S [19] supports the execution of binding operations at design time,
deployment time, and just before the execution. It also takes into account binding
dependencies [18]. The composition is divided into scopes; semantic web languages are
used to describe both domain constraints and services; matchmaking algorithms are
used to associate each scope with the concrete set of services to invoke. While this
approach requires that a semantic description is attached to each potential component
service, our approach can work both using a complete description for services or a more
lightweight one. Moreover, we support runtime bindings that do not seem to be
addressed in Meteor-S.

The approach presented in [12] exploits DAML-S technologies to support semantic
discovery of services and their runtime integration into the composition. In this case,
however, the approach does not account for dependences between service invocations.

 SCENE 201

SELF-SERV [2] exploits a proprietary language for describing a composition and
introduces the concept of service community. Binding is possible at runtime among
the members of the community.

In [13] composition rules are used to govern the way a composition is built in a
semiautomatic way. Our approach differs from this because more than exploiting
rules to build a new composition, we use them to support its runtime self-
configuration.

Combining rules with workflow languages in a service-oriented context has been
already proposed in the literature as a way to define conditional business logic that is
not directly captured by the workflow [16, 10]. Our rules, indeed, are not designed to
encapsulate some business logic. Instead, they work at a lower level of abstraction to
support the definition of policies for dynamic binding (and negotiation and replanning
in the future).

As we have tried to convey in the previous sections, our approach aims at offering
some autonomic features. In the research area of autonomic computing, the main idea
behind the scene is to build applications capable of self-managing themselves, reflecting
the behavior of biological systems. An autonomic application must own the following
properties [14]: self-Awareness, self-Configuring, self-Optimizing, self-Healing, self-
Protecting, Context-Awareness, Openness, Anticipatory behavior. We think at least
three of the aforementioned characteristics are satisfied by our approach: rules
associated with the process makes the composition self-configuring (e.g., a binding rule
can re-configure the association between a process activity and a concrete service), self-
healing (e.g., a service violation event can trigger a recovery action rule to avoid the use
of services whose measured QoS properties deviate from our requirements), context-
aware (e.g., service compositions can be executed by means of several external services,
on the basis of the knowledge of the user input and the actual available services,
obtainable only at run-time). Considering the differences between our work and the
application computing view, rules we use are not applied only to re-establish the
equilibrium between environment and application, but also to delay the association of
the activities to be executed with the concrete services till runtime.

7 Conclusion

In this paper we have focused on the definition of proper linguistic and infrastructural
mechanisms to support self-configuration of a service composition.

As future work we plan to extend the language and the platform to support
dynamic negotiation of service level agreements with component services and to drive
dynamic changes in the structure of the composition itself.

We also need to continue with the evaluation of the approach for what concern
both performances and usability.

Acknowledgements

This work is framed within SeCSE [17], IST Contract No. 511680. We thank all our
partners in the project for their valuable comments.

202 M. Colombo, E. Di Nitto, and M. Mauri

References

1. L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-BPEL Processes”, In the
Proceedings of the 3rd International Conference of Service-oriented Computing
(ICSOC'05). Amsterdam, The Netherlands, 2005.

2. B. Benatallah, M. Dumas, and Q. Z. Sheng, “Facilitating the Rapid Development and
Scalable Orchestration of Composite Web Services”, Distributed and Parallel Databases,
17(1): pp. 5-37, Jan. 2005.

3. BPEL. “Business Process Execution Language for Web Services Version 1.1”,
http://www.ibm.com/developerworks/library/ws-bpel/. May 2003.

4. S. Carey, “Part 3: Making BPEL Processes Dynamic”, SOA Best Practices: The BPEL
Cookbook, OTN Oracle Web Site.

5. G. Cugola, and G. P. Picco, REDS: A Reconfigurable Dispatching System. Technical
report, Politecnico di Milano, 2005.

6. A. Dan, et al., “Web Services on demand: WSLA-driven Automated Management”, IBM
Systems Journal, Volume 43, Number 1, pages 136-158, IBM Corporation, March, 2004.

7. V. De Antonellis, M. Melchiori, L. De Santis, M. Mecella, E. Mussi, B. Pernici, P.
Plebani, “A layered architecture for flexible e-service invocation”, Software-Practice &
Experience. ISSN: 0038-0644, John Wiley & Sons, 2005.

8. M. Di Penta, R. Esposito, M. L. Villani, R. Codato, M. Colombo, and E. Di Nitto, “WS
Binder: a Framework to enable Dynamic Binding of Composite Web Services”, in the
Proceedings of the ICSE Workshop on Service-Oriented Software Engineering (IW-
SOSE06), Shanghai China May 2006.

9. Drools. Java rule Engine. http://drools.org/.
10. K. Geminiuc, “Part 1: A Services-Oriented Approach to Business Rules Development”,

SOA Best Practices: The BPEL Cookbook, OTN Oracle Web Site.
11. IBM, “Autonomic computing: Enabling Self Managing Solutions”, SOA and autonomic

computing, IBM Whitepaper, Dec. 2005.
12. D. J. Mandell and S. A. McIlraith, “Adapting BPEL4WS for the Semantic Web: The

Bottom-Up Approach to Web Service Interoperation”, in the Proceedings of the Second
International Semantic Web Conference (ISWC2003), Sanibel Island, Florida, 2003.

13. B. Orriens, J. Yang, and M.P. Papazoglou, “A Framework for Business Rule Driven
Service Composition”, in the Proceedings of the 3rd VLDB-TES Workshop, Berlin,
September 2003.

14. M. Parashar, and S. Hariri, “Autonomic Computing: An Overview", UPP 2004, Mont
Saint-Michel, France, Editors: J.-P. Banâtre et al. LNCS, Springer Verlag, Vol. 3566.

15. PXE BPEL engine. http://www.fivesight.com/pxe.shtml.
16. F. Rosenberg, and S. Dustdar, “Towards a Distributed Service-Oriented Business Rules

System”, in the Proceedings of IEEE European Conference on Web services (ECOWS),
14-16 November 2005, IEEE Computer Society Press.

17. SeCSE Website: http://secse.eng.it/.
18. K. Verma, R. Akkiraju, R. Goodwin, P. Doshi, J. Lee, “On Accommodating Inter Service

Dependencies in Web Process Flow Composition”, in the Proceedings of AAAI Spring
Symposium on Semantic Web Services, 2004.

19. K. Verma, K. Gomadam, A. P. Sheth, J. A. Miller, and Z. Wu, "The METEOR-S
Approach for Configuring and Executing Dynamic Web Processes", Tech. Report 2005.

20. 3GPP, Technical Specification Group Core Network, Open Service Access (OSA), “Parlay
X Web Services; Part 2: Third Party Call (Release 6)”, 3rd Generation Partnership Project
Technical Specification 29.199-2, v2.0.0 (2004-09).

A Self-healing Web Server Using Differentiated
Services

Henri Naccache1, Gerald C. Gannod2,�,��, and Kevin A. Gary3

1 Dept. of Computer Science & Engineering, Arizona State University
Box 878809, Tempe, AZ 85287

henri@asu.edu
2 Dept. of Computer Science & Systems Analysis

Miami University, Oxford OH 45056
gannodg@muohio.edu

3 Division of Computing Studies, Arizona State University
7001 E. Williams Field Rd., Mesa, AZ 85212

kgary@asu.edu

Abstract. Web-based portals are a convenient and effective mechanism
for integrating information from a wide variety of sources, including Web
services. However, since availability and performance of Web services
cannot be guaranteed, availability of information and overall performance
of a portal can vary. In this paper, we describe a framework for develop-
ing an autonomic self-healing portal system that relies on the notion of
differentiated services (i.e., services that provide common behavior with
variable quality of service) in order to survive unexpected traffic loads
and slowdowns in underlying Web services. We also present a theoretical
performance model that predicts the impact of the framework on existing
systems. We demonstrate the framework with an example and provide
an evaluation of the technique.

1 Introduction

In this paper we present a preliminary investigation into a self-healing framework
implemented within a Java-based Web portal. As the load on the portal increases,
and the response times surpass those set forth in the service level agreement
(SLA), the framework directs the underlying adaptive-content aware components
to lower their output resolution. The lowering of the output resolution of the
components minimizes the service demands of the components on the system
and allows for higher request loads to be handled within the same SLA.

Along with the preliminary implementation, we present a Queuing Network
(QN) analytical model that shows the expected increase in request load handling
that can be gained by implementing the self-healing framework. The sample

� This author supported by National Science Foundation CAREER grant No. CCR-
0133956.

�� Contact Author.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 203–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 H. Naccache, G.C. Gannod, and K.A. Gary

portal implementation relies upon the database-driven nature of modern web
applications.

The benefits of our framework are tangible when the site is hit with a higher
than expected request load, usually the result of a flash crowd (the “Slashdot
effect”) [1] that would normally slow or stop a site from responding to requests.
With our self-healing approach, the server can handle a much higher maximum
load as it lowers the resolution of the web pages to just the minimum needed to
convey the requested information. This approach requires a small investment in
software that can reduce the cost of hardware needed to run a portal website.
Normal capacity planning requires that the server support the peak load rather
than the average load [2]. With our self-healing framework in place, the hardware
requirements can be defined to meet the SLA of the average request load at full
resolution and the peak load at the lowest resolution.

While admission control and queue management have been shown to improve
throughput [3] and response times [4], the cost incurred is request refusal. We
consider request refusal to be the worst experience an end-user can have. Most
visitors in a flash crowd will be looking for the same information. In order for
the site to survive the flash crowd it must allocate its resources optimally and
only return the lowest feasible resolution of information while not refusing any
valid requests.

The remainder of this paper is organized as follows. Section 2 describes back-
ground material on autonomic computing, adaptive content and QN models.
The self-healing portal framework is presented in Section 3. An evaluation of
that implementation is presented in Section 4. Section 5 discusses related work.
Finally, Section 6 draws conclusions and suggests future investigations.

2 Background

This section describes background material in the areas of autonomic computing,
adaptive content and QN models.

2.1 Self-healing Systems

The term autonomic comes from the autonomic nervous system found in mam-
mals and other higher order creatures [5]. This aspect of the nervous system al-
lows for necessary body functions to perform without conscious thought given to
them. The fundamentals of autonomic computing revolve around self-managing
components. In this context, inter-component collaboration is defined in a self-
managing manner. The goals of autonomic computing are to minimize human
intervention in system administration and to maximize reliability and system
uptime. In order to do so, IBM has defined four fundamental features of compo-
nents: self-configuring, self-healing, self-optimizing and self-protecting [6]. Self-
healing systems “discover, diagnose, and react to disruptions”. Self-healing sys-
tems must be able to recover from the failure of underlying components and
services. The system must be able to detect and isolate the failed component, fix

A Self-healing Web Server Using Differentiated Services 205

or replace the component, and finally reintroduce the repaired or replaced com-
ponent without any apparent application disruption. Self-healing systems need
to monitor components in order to predict problems and take action before com-
plete component failure takes place. The objective of self-healing components is
to minimize the number and duration of outages in order to maintain high levels
of application availability.

An autonomic component consists of two integrated parts: a managed ele-
ment, the underlying service or component, and an autonomic manager. [7] The
manager is in charge of maintaining status information about the managed ele-
ment and making sure that the managed element remains healthy.

Our research into differentiated services at the web application level is an
example of a self-healing autonomic system.

2.2 Adaptive Content

An approach to QoS management at the web server level is to adapt the content
in order to minimize bandwidth usage. The common approach is to re-encode
multimedia files into lower-quality, and therefore smaller, files. This has been
proposed by Bellavista [8] among others. The majority of this research was done
in the early days of the internet before the current prevalence of dynamic data-
base driven websites and the performance issues that come along with them.

Abdelzaher [9] offered an approach to minimize bandwidth requirements by
providing two completely distinct websites on the same server. The sites offer the
same base content, but each has a different resolution of content. This differs from
the multimedia-only encoding in that it can also offer differentiated text-based
content. In this system the two sites have to have similar file structures and file
names, and have to be manually created by the webmaster. Depending on the cur-
rent QoS level the server responds to a request with a file from either “tree”.

We apply adaptive content techniques to dynamic multi-tiered web applica-
tions in order to maximize throughput at the server level.

2.3 QN Models

Analytic performance models are used to predict the response of a system to
various configuration and design changes. They are composed of a set of com-
putational algorithms that use actual workload parameters to compute the per-
formance characteristics of a system. Using various analytic models, one can
identify bottlenecks and estimate upper bounds on response times.

Queuing Network (QN) models are one way of creating an analytic perfor-
mance model of a system. Menasce [10] defines a QN model as a collection of
interconnected queues. Queues include both the resource providing the service
and the waiting line to access that resource. The QN is used to model a sys-
tem and estimate the performance impacts of design decisions. Two parameter
types are used in creating QN models: workload intensity and service demands.
Workload intensity provides an indication of the load of the system, and service
demands are the average response times of specific resources in the system.

206 H. Naccache, G.C. Gannod, and K.A. Gary

QN models can be used to represent multiclass systems. A multiclass system is
one that supports more than one type of request. Services that output multiple
resolutions can be modeled as multiclass systems. Open and closed networks
represent two types of request arrival distributions. Open networks assume that
request arrivals are uniformly distributed and throughput is used as a parameter
to the model, while closed networks are used to model bulk or batch jobs where
there is an assumption of a near constant number of requests in the system.

Response times Rc (Eq. 1 [10]) are calculated in a multiclass open QN based
upon the utilization of each device (Ui) and the service demand of the user class
on the device i: Di,c.

Rc =
K∑

i=1

Di,c

1 − Ui
(1)

Where the units for Rc are seconds, Di,c are seconds/request, c is the user class,
i is the device and K is the total number of devices in the system. The total
utilization of a device Ui is the sum of the utilizations due to all classes (Eq. 2).
When Ui = 1 the device is fully utilized. The per class utilization is a product
of arrival rates λc and service demands.

Ui =
C∑

c=1

Ui,c =
C∑

c=1

λc ∗ Di,c (2)

In this paper we use a QN model with a modified response time formula to
estimate the impact our framework will have on existing web applications.

3 Approach

This section describes the proposed framework for developing QN models with
resolution factors and self-healing portal systems.

3.1 QN Model with Resolution Factors

In a QN model each device that impacts the performance of the system is mod-
eled. Each device must have the service demands (Di,c) measured for each class
of request, where c is the user class, and i is the device. The service demands are
represented as the time spent for the device to complete the request. The goal
of the adaptive content framework is to lower the service demand on the most
bottleneck-prone parts of the system. By reducing the resolution, the service
demand on a device will go down by some factor.

We represent the impact of lowering the resolution as the resolution factor
Fi,x, where x is the resolution level. For a full resolution request Fi,x = 1. The
resolution factor is applied to the service demand in order to predict the response
time R′

c for a given user class, as shown in Eq. (3).

R′
c =

K∑
i=1

Di,c ∗ Fi,x

1 − U ′
i

(3)

A Self-healing Web Server Using Differentiated Services 207

Where c is the user class, i is the device and K is the total number of devices
in the system. The total utilization of a device U ′

i is the sum of the utilizations
from all classes. The per class utilization is a product of arrival rates and service
demands.

U ′
i =

C∑
c=1

U ′
i,c =

C∑
c=1

λc ∗ Di,c ∗ Fi,x (4)

Where λ is the arrival rate of requests of the class c. The first summation in
Eq. (4) states that the utilization of a device is the sum of utilizations from
all classes in the system. The second summation, which represents the per class
utilization for a device, is the product of the arrival rates, the service demand
and the resolution factor.

Our goal is to create a set of resolution factors that we can use to predict
the impact of the self-healing framework on an existing web application. We
will accomplish this by analyzing existing web applications, implementing our
framework and measuring the impact on the service demands.

3.2 Portal System

We have developed a framework for developing self-healing portal systems based
on monitoring service latency and overall system rendering performance. In con-
trast to the approach by Menasce et al. where QoS is managed by individual
services [11], our approach places the burden of achieving a negotiated level of
service on a portal application. As such, applications built within this framework
provide user-level guarantees of QoS rather than component level guarantees, all
of which can be managed dynamically at run-time.

Figure 1 shows the conceptual architecture of the approach that we have
developed for creating self-healing portal systems that manage and monitor the
use of several services. In the figure, the portal server is shown in the middle part
of the diagram, clients on the left, and services, running on separate machines,
shown on the right. As indicated in the diagram, a portal server in our framework
is made up of a portal hosting system, autonomic monitor, and several self-
healing portlet wrappers (one per service rendering portlet). The approach works
as follows. The autonomic monitor continuously monitors the portal system state
to determine whether the portal system is operating within certain specified
parameters. The frequency of the checks typically corresponds with the frequency
of client requests, but it may vary. When a request is made upon the portal, a
QoS portlet wrapper checks the load on the system using a query to the monitor.
Based on the load, the recent response times of the service, and the SLA for the
user, the portlet wrapper potentially modifies the request and makes call to the
corresponding service.

We have developed our approach with the following concerns in mind. First,
we view services as potentially uncontrollable assets. The ability or inability to
deliver specific levels of service is subject to network latency and load of the
server or servers providing the service.

208 H. Naccache, G.C. Gannod, and K.A. Gary

Fig. 1. Portal Conceptual Architecture

Second, for the end-server (i.e., the portal server providing some application),
the potential variability in level of service caused by the aforementioned factors
can be outweighed by the time to render the local application. That is, we take
a global approach to providing an improved response time for an application
by measuring time to render an application that utilizes services rather than
optimizing individual services. As such, our approach for providing QoS-aware
portal systems is based on the following concepts.

Monitoring: In order for an autonomic portal to properly meet service level
agreements, it must be capable of monitoring its current load. Based on sys-
tem upgrade and downgrade policies, this information is used to determine
how information is requested from channels or service providers, and how
that data is subsequently rendered in the portal.

Feedback: As stated by Bouch et al. [12], user experiences and acceptance of
variations in performance are affected by feedback. In our approach, we use
visual feedback to provide users with an indication of system state in order
to provide explanations of why behaviors of services may differ over time.

Differentiation: We consider two forms of differentiation within our approach.
First, at the user level, there are different user classes that each have different
SLAs. The QoS levels that each user class receives are selected according the
SLAs. Second, at the service level, we consider different service resolutions.
The different resolutions are intended to affect the overall size of a package
returned by a service as well as the amount of processing required to render
a portal page.

4 Evaluation

In this section we describe the process by which we evaluated the self-healing
portal system. Figure 2 provides an overview of the deployment of the portal

A Self-healing Web Server Using Differentiated Services 209

Fig. 2. 3-tiered Portal Application

system that we evaluated. The three CPUs and queues represent the devices for
the QN model that we solved.

4.1 Performance Testing

All tests were run on three desktop-class computers running RedHat Fedora
Core4. The database server was a 1Ghz Athlon with 512M of RAM, the web
services server was a 1.7Ghz Pentium with 1G of RAM, and the portal server
was a 2.6Ghz Pentium with 2G of RAM. The operating systems were not tuned
in any way and other applications were running at the same time (standard
desktop environment) but care was taken not to use the machine while the
tests were underway. Apache Benchmark [13] was used to load test the portal
container. This program allows you to configure either the number of requests it
will make or the time spent on the test and the number of concurrent requests
it will make at a given time. The response data was returned with the median
response time, the mean response time and breakdown of what percentage of
requests were returned within a given response time.

In order to bypass the HTTP-session based user authentication mechanism of
Jetspeed, some extra parameters were passed along with the URL of the portal
web page. These extra parameters were read by the outermost timing filter and
used to populate the HTTP session with the user class and current service level
that the QoSWrappers should use. These two parameters were used in order to
be able to control the tests in a way that would have been impossible if the QoS
monitor system was given full control of the differentiated service levels.

4.2 Portal Configuration and Resolutions

Three resolutions were defined for each of the portlets in the system. The services
include a calendar service (for displaying scheduled events in a calendar), event
service (for scheduling events in a calendar), and a news service (for displaying
top news items). Each utilizes three QoS levels corresponding to high resolution,
middle resolution, and low or minimum resolution data.

210 H. Naccache, G.C. Gannod, and K.A. Gary

Calendar and Event Creation Portlets. The calendar rendering portlet dis-
plays a calendar of events. It communicates with a calendar service that main-
tains the event list on a per-organization basis in a database. The calendar can
also support user-defined events. The service can return any arbitrary date range
of events; this feature was used for the differentiated services with no modifi-
cations to the calendar service. At the full resolution the calendar displays one
month of events, at the mid resolution it displays one week of events and at the
low resolution it displays one day of events.

These three levels of resolution impact both the calendar Web service and
the portlet computation time. With a populated calendar, the web service needs
fewer database queries and less processing to respond to a request for fewer days.
As the number of days is minimized, the portlet requires less processing time to
loop through the number of days being displayed and render the HTML version
of the calendar. While the total time is not impacted greatly in the portlet, the
amount of memory used is, and the less memory you use per request in a Java
Web server, the less often the memory garbage collection has to run, improving
the overall performance of the web server.

The other calendar portlet is an event creation portlet. This portlet allows the
user to create a new calendar event, which is processed by the portlet and then
sent to the calendar web service. Depending on the user class and the current
service level it may be either rendered or disabled.

News Portlet. The news portlet follows a similar architecture to that of the
calendar. It talks to a news web service that stores the news items in the database
and will return a requested number of news items for a given course. The three
differentiated service levels for the news portlet follow the same approach as the
calendar. For the full level of service, it renders the 10 most recent news items,
for the mid level of service, it only renders the 3 most recent items and for the
low level of service it only renders the most recent news item.

4.3 QN Model and Performance Testing Results

Using the Service Demand Law the service demands Di,c were computed for each
device i and resolution c “as the average, for all requests, of the sum of the service
times of that resource” [10]. The observed service demands are shown in Table 1.
The impact of lowering the resolution is clearly visible in the service demands
on the portal server and web services CPUs. The database was not taxed in
this model; we believe this is because the data set was relatively small and

Table 1. Service Demands

A Self-healing Web Server Using Differentiated Services 211

could fit in memory. As the resolution is lowered, the service demand on the web
services CPU drops drastically; we believe this is because much less data is being
requested from the database, processed and converted into SOAP messages.
Finally, the service demand on the portal server CPU remains high even as the
resolution is lowered, due to the high per-request overhead in Jetspeed. Based
on this initial investigation, the resolution factors at low resolution were 0.63 for
the portal CPU device and 0.08 for the Web service CPU device.

Once the service demands were computed for the three resolutions, the QN
model was solved with 3 seconds as the target response time. The first set of
columns in Table 2 shows the predicted throughput of the portal system. The
second set of columns shows the results of the performance testing. Performance
tests were run for 60 seconds. The concurrency level was changed for each test
until a 3 second response time was attained.

Table 2. QN Model and Performance Testing Results

As one can see, the QN model we used did not perfectly predict the through-
put necessary to create a 3 second response time. This may be because other
programs impacted the measurement of the service demands. While the pre-
dicted QN model numbers are not exactly the same, they are quite close and
follow the trend of the actual response times and throughput measured during
the performance testing phase. The results of both the performance tests and
QN model show that the self-healing system will, in this case, allow for a 33%
increase in throughput without any changes to the hardware configuration and
without reverting to refusing requests. When these tests were run on a single
server-class multiprocessor computer the increase was 87%. We presented the
results of the slower multiple server scenario to better show the QN model (the
multiple CPUs on the server-class computer would be represented by a single
device).

5 Related Work

Pradhan [14] took the approach of using the request file type as the criterion used
to separate the requests into different queues. Each file type queue was assigned
a weight, and as the load increased on the server, certain file types were given
less priority. By doing so Pradhan shows that observation-based adaptation of
the queues is advantageous compared to statically setting the QoS parameters.
Urgaonkar [15] and others define and assign requests into multiple user classes
to differentiate the service level per request. Their approaches classify the user

212 H. Naccache, G.C. Gannod, and K.A. Gary

class of the request and assign it to the appropriate queue. If the server ap-
proaches overload, the lower class requests are dropped or delayed in order to
allow the higher user class requests to go through. Menasce [3] modifies the sin-
gle request queue of the Apache web server in order to balance throughput and
request times. By reducing the size of the incoming request queue, he limits the
number of concurrent requests the server has to handle, thereby keeping the re-
sponse time per request under a specified value. The trade-off here is that when
the queue is shorter there are more rejected requests. Zhou [16] has a similar
user class queuing approach, but also allows for lower class users to enter into
the higher class queues if that will not impact the overall QoS of the higher
classes. Urgaonkar et al [17] also describe a performance model for multi-tier dy-
namic websites that uses the Mean-Value Analysis algorithm for closed-queuing
networks to estimate response times. They present two solutions to overload sit-
uations: dynamic capacity provisioning in order to respond to peak workloads
without denying requests and policing requests with an admission control policy
that refuses requests that would exceed the SLA.

Research into self-healing web service systems has included self-managing and
self-recovering autonomic systems. The majority of the relevant self-managing
systems used an autonomic manager to choose between equivalent services. Sad-
jadi et al. [18] address self-management of composite systems using autonomic
computing. Their goal is to use two different equivalent web services (images
from a surveillance system) in order to create a fault-tolerant system. Liao et
al. [19] also use autonomic computing to manage composition of web services.
They use a “federated multi-agent system for autonomic management of web
services ... for autonomic service discovery, negotiation, and cooperation”. They
propose that the use of autonomic computing to manage the federation of agents
will “simplify the control of web services composition, sharing and interaction”.
They offer some rules for selecting alternative web services in the case where the
currently selected web service is no longer responding within its SLA. Maximi-
lien [20] uses the term “self-adjusting” to describe the mechanism by which web
service selection should be undertaken. Other research into self-healing systems
has covered the total server failure scenarios [21] and transaction-based models
for recovery of failed systems [22].

6 Conclusions and Future Investigations

The self-healing portal system presented in this paper is our initial investigation
into autonomic systems. The system uses the ability of the underlying services to
respond to requests at different resolutions in order to complete the end-user’s
request without breaking the SLA. As the load on the system increases, the
responses become smaller, until they contain only the most critical information.
We also presented a QN model with an added resolution factor to predict the
response times and throughput of the portal application.

Using our framework, few changes are necessary in order to convert an ex-
isting web application system into a self-healing system. Either the underlying

A Self-healing Web Server Using Differentiated Services 213

services are unchanged or a light-weight wrapper that will know how to respond
to lower resolution requests needs to be written. Minor changes may be needed
to the front-end components in order to render the lower resolution requests cor-
rectly. The benefits of the system are evidenced by increased throughput without
increased response times. While this implementation does not cover some of the
more familiar self-healing functionality (e.g., complete failure of a component
or system), we do not foresee anything in the design or implementation that
would hamper the co-existence of our self-healing system with other autonomic
systems.

We plan on continuing this line of research by implementing our framework in
existing open source web applications such as a blogging site, a discussion forum
and an e-commerce site. Using the results of this work we will refine our set of
resolution factors. We would like to be able to analyze an existing web application
and accurately predict, using our knowledge base, the potential impact of the
self-healing framework. Future investigations will cover a more robust autonomic
manager and integration of other autonomic features and frameworks.

References

1. N. Feamster, J. Winick, and J. Rexford. A model of bgp routing for network
engineering. In SIGMETRICS 2004/PERFORMANCE 2004: Proceedings of the
joint international conference on Measurement and modeling of computer systems,
pages 331–342, New York, NY, USA, 2004. ACM Press.

2. Virgilio A.F. Almeida and Daniel A. Menasce. Capacity planning: An essential
tool for managing web services. IT Professional, 4:33 – 38, Jul/Aug 2002.

3. Daniel Menasce and Mohamed Bennani. On the use of performance models to
design self-managing computer systems. In Computer Measurement Group, 2003.

4. Vikram Kanodia and Edward Knightly. Ensuring latency targets in multiclass web
servers. IEEE Transactions on Parallel and Distributed Systems, 14:84–93, 2003.

5. Network world: Autonomic computing. http://www.networkworld.com/links/ En-
cyclopedia/A/842.html, November 2002.

6. A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing era. Tech-
nical report, IBM, 2003.

7. A. Zeid and S. Gurguis. Towards autonomic web services. In Computer Systems
and Applications, 2005. The 3rd ACS/IEEE International Conference on, pages
69–, 2005.

8. Paolo Bellavista, Antonio Corradi, Rebecca Montanari, and Cesare Stefanelli. An
active middleware to control QoS level of multimedia services. In IEEE Workshop
on Future Trends of Distributed Computing Systems, page IEEE, 2001.

9. Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees
for web server end-systems: A control-theoretical approach. IEEE Trans. Parallel
Distrib. Syst., 13(1):80–96, 2002.

10. Daniel A. Menasce, Virgilio A.F. Almeida, and Lawrence W. Dowdy. Performance
by Design. Pretince Hall, 2004.

11. Daniel A. Menasce, Honglei Ruan, and Hassan Gomaa. A framework for qos-
aware software components. In Proceedings of the fourth international workshop
on Software and performance, pages 186–196. ACM Press, 2004.

214 H. Naccache, G.C. Gannod, and K.A. Gary

12. Anna Bouch, Allan Kuchinsky, and Nina Bhatti. Quality is in the eye of the
beholder: meeting users’ requirements for internet quality of service. In Proceedings
of the SIGCHI conference on Human factors in computing systems, pages 297–304.
ACM Press, 2000.

13. Apache Software Foundation. Apache benchmark. [Online] Available
http://httpd.apache.org/docs/programs/ab.html, March 2005.

14. P. Pradhan, R. Tewari, S. Sahu, C. Chandra, and P. Shenoy. An observation-based
approach towards self-managing web servers. International Workshop on Quality
of Service, 2002.

15. Bhuvan Urgaonkar and Prashant Shenoy. Cataclysm: policing extreme overloads
in internet applications. In WWW ’05: Proceedings of the 14th international con-
ference on World Wide Web, pages 740–749, New York, NY, USA, 2005. ACM
Press.

16. X. Zhou, Y. Cai, and G. Godavari. An adaptive process allocation strategy for
proportional responsiveness differentiation on web servers. In IEEE International
Conference on Web Services ICWS 2004, pages 142–149, 2004.

17. Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser
Tantawi. An analytical model for multi-tier internet services and its applications.
In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pages 291–302,
New York, NY, USA, 2005. ACM Press.

18. S.M. Sadjadi and P.K. McKinley. Using transparent shaping and web services to
support self-management of composite systems. In Autonomic Computing, 2005.
ICAC 2005. Proceedings. Second International Conference on, pages 76–87, 2005.

19. Bei-Shui Liao, Ji Gao, Jun Hu, and Jiu-Jun Chen. A federated multi-agent system:
autonomic control of web services. In Machine Learning and Cybernetics, 2004.
Proceedings of 2004 International Conference on, volume 1, pages 1–6 vol.1, 2004.

20. E. Michael Maximilien and Munindar P. Singh. Toward autonomic web services
trust and selection. In ICSOC ’04: Proceedings of the 2nd international conference
on Service oriented computing, pages 212–221, New York, NY, USA, 2004. ACM
Press.

21. G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox. Jagr: an autonomous
self-recovering application server. In Autonomic Computing Workshop, 2003, pages
168–177, 2003.

22. G. Eddon and S. Reiss. Myrrh: A transaction-based model for autonomic recovery.
In Autonomic Computing, 2005. ICAC 2005. Proceedings. Second International
Conference on, pages 315–325, 2005.

Quality of Service Enabled Database
Applications

S. Krompass, D. Gmach, A. Scholz, S. Seltzsam, and A. Kemper

TU München, D-85748 Garching, Germany
{krompass, gmach, scholza, seltzsam, alfons.kemper}@in.tum.de

Abstract. In today’s enterprise service oriented software architectures,
database systems are a crucial component for the quality of service
(QoS) management between customers and service providers. The data-
base workload consists of requests stemming from many different service
classes, each of which has a dedicated service level agreement (SLA).
We present an adaptive QoS management that is based on an economic
model which adaptively penalizes individual requests depending on the
SLA and the current degree of SLA conformance that the particular
service class exhibits. For deriving the adaptive penalty of individual
requests, our model differentiates between opportunity costs for under-
achieving an SLA threshold and marginal gains for (re-)achieving an
SLA threshold. Based on the penalties, we develop a database compo-
nent which schedules requests depending on their deadline and their
associated penalty. We report experiments of our operational system to
demonstrate the effectiveness of the adaptive QoS management.

1 Introduction

Future business software systems will be designed as service oriented architec-
tures. These services are accessed via the Internet by a variety of different users
– as exemplified by providers and vendors of Web-based business software, in-
cluding RightNow Technologies, Salesforce.com, hosted SAP, and Oracle. This
Web-based software is characterized by a multitude of services which invoke
other enterprise services and ultimately submit requests to databases. The Web-
based business software is made accessible for a multitude of customers, where
each customer may have individual quality of service (QoS) requirements. The
more customers access the services, the more they compete for system resources.
In an uncontrolled environment this may lead to unpredictable and unaccept-
able response times. To prevent the customers from suffering bad performance
in terms of response times of their invoked services, service level agreements
(SLAs) are negotiated.

An SLA is a formal agreement between the service provider and a customer.
The establishment of an SLA imposes obligations on the service provider regard-
ing the service level of the provided services. If the constraints formulated in the
SLA are violated after a certain time window, the evaluation period, the service
provider is fined. The penalty depends on the severity of the SLA violation and

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 215–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 S. Krompass et al.

is negotiated in the SLA. SLAs are typically only defined for services directly
invoked by customers. Thus, the goal is to establish an end-to-end control for
the quality of service, which covers all layers of the Web service architecture.

The contribution of this paper is to enable QoS for the bottom layer of a
service infrastructure, where almost all services access a shared database. This
is a very common scenario in mission-critical enterprise services that rely on an
integrated database. For this scenario, we assume that an SLA for every service
submitting requests to the database has been negotiated. Due to the multitude
of services which access the database, the workload of the database consists of
requests stemming from many different customers with different service classes,
each having a dedicated SLA.

The challenge is to schedule incoming database requests in order to meet
the performance goals specified in the SLAs. Scheduling is based on adaptive
priorities which are derived from the current level of conformance with the
request’s SLA, that is, the percentage of timely requests, and the economic
importance of this SLA relative to other pending requests’ SLAs.

Current solutions in database systems, e.g., the Query Patroller for DB2 [7]
or the Oracle Resource Manager [13], assign groups of customers to performance
classes with static priorities. Thus, each request is assigned its priority depending
solely on the client by whom it has been submitted. This static prioritization
is used to schedule the requests, so that high-priority clients should complete
faster on average than their low-priority counterparts.

This approach is sufficient to fulfill the requirements of particularly valuable
customers. However, it cannot adequately manage overall SLA enforcement.
Consider an SLA which requires 90% of all service requests to be processed
within a certain time window. With static prioritization, SLAs for high-priority
customers are likely to be overfulfilled by processing almost all requests in time.
However, during peak-load times, it is likely that they overachieve their SLAs at
the expense of lower-priority users. From a business-oriented point of view, it is
desirable to provide only the service level which has been negotiated in the SLA.
If SLAs are not overfulfilled, the additional free resources are used for satisfying
SLAs that are violated with the static prioritization.

For this purpose, we developed a QoS management concept based on an eco-
nomic model which adaptively prioritizes individual requests depending on the
SLA and the current degree of SLA conformance that the particular service class
exhibits. The core of the QoS management consists of penalty-carrying requests,
that is, database requests which carry the requirements needed to fulfill the SLA
constraints from the submitting service to the database.

The rest of the paper is organized as follows: Section 2 describes the two
cost components, marginal gains and opportunity costs, of our QoS model in
detail and presents the adaptive QoS management with which penalty-carrying
requests are derived. Section 3 describes the system architecture and the im-
plementation of our QoS management. The scheduling of the requests is in the
focus of Section 4, followed by the evaluation results of our prototypical imple-
mentation in Section 5. An overview of related work is presented in Section 6.

Quality of Service Enabled Database Applications 217

Finally, in Section 7, we summarize the conclusions of our study and outline
ongoing and future research on this subject.

2 Quality of Service Model

The central concept of our quality of service management is adaptive penaliza-
tion of individual requests according to the current degree of SLA conformance
c. The conformance is monitored per service class, that is, for each transaction
type invoked by an individual customer and the associated SLA. We define c as

c =
Number of timely transaction invocations

Total number of invocations of the transaction

In practice, so-called step-wise SLAs are commonly used to specify the QoS
requirements of a service class. The SLAs consist of one or more percentile con-
straints and an optional deadline constraint. Percentile constraints require n%
of all service requests to be processed within x seconds. If a percentile constraint
is violated after the evaluation period, a penalty p for every m percentage points
under fulfillment is due. Furthermore, pmax defines a maximum penalty for vi-
olating a percentile constraint. The deadline constraint – which does not incur
any penalty – specifies an upper bound for the execution time of the service
request. An example for a step-wise SLA with one percentile constraint d1 and
one deadline constraint d2 is shown in the following:

d1: 90% in less than 5s; p = $900 per 10 percentage points of underful-
fillment, pmax = $1800; evaluation period: 1 month (e.g., end of month)

d2: Deadline 15s

In general, SLAs contain additional constraints such as sizing constraints
which restrict the maximum number of transaction invocations per time pe-
riod. We concentrate on fulfilling response time constraints with the percentile
and deadline constraints, assuming any additional SLA constraints are obtained.

500

1000

1500

Service level conformance

2000

Pe
na

lty
 in

 $

 0.65 0.7 0.75 0.8 0.85 0.9 0.950.6 1

1

0

s3Service level
SLA penalty

Marginal gain (mg)

Opportunity costs (oc)

s1Service level

s2Service level

c3 c2 c1

mg(c’) = $441

oc(c’) = $81

2

c’=0.87 (current service
level conformance)

2

Fig. 1. Visualization of SLA constraint d1

218 S. Krompass et al.

A percentile constraint in a fixed step-wise SLA implicitly defines an SLA
penalty function with n steps. The penalty function for d1 of our sample SLA is
shown as the step function in Figure 1 (black solid lines). With ci, 1 ≤ i ≤ n+1,
we denote the boundaries of the steps of the SLA penalty function. For the
example in Figure 1, we have c4 = 0 (not in the figure), c3 = 0.8, c2 = 0.9, and
c1 = 1.

Using the SLA penalty function, we define service levels as follows: For a
penalty function with n steps, let si, 1 ≤ i ≤ n, denote the ith service level. This
level is defined in the interval [ci+1, ci[, so that dropping to a lower service level
corresponds to a higher penalty. Thereby, si+1 denotes a lower service level than
si, that is, the penalty incurred at si+1 is higher than at si. We denote Δi as
this cost difference between si+1 and si.

As shown in Figure 1, our sample percentile constraint d1 implicitly de-
fines three service levels: Service level s3 is defined in the interval [0, 0.8[, s2
in [0.8, 0.9[, and s1 in [0.9, 1]. The cost difference between service levels s3 and
s2 is $900 which is identical to the cost difference between s2 and s1.

2.1 Penalty-Carrying Requests

Penalty-carrying requests are queries with attached penalty information in a SQL-
comment. For example, the penalty-carrying request for a select-Statement
looks like this:

/* penalty ...
* deadline ... */

select ... from ...

We use the SLA penalty function to compute these adaptive penalties for indi-
vidual service requests. In the following section, we describe how to compute the
adaptive penalty from the percentile constraint for an individual request. Then,
we describe briefly the derivation of the deadline constraint for an individual
query.

2.2 Deriving the Penalty for Individual Requests

The penalty of an individual request is covering two different economic aspects.
On the one hand, the opportunity costs model the danger of falling into the next
lower service level. If the current SLA conformance c converges to the next lower
service level, the penalty for processing the service too late increases, because
delaying a further request increases the danger of an ultimate SLA violation.
Then, the opportunity costs oc are piece-wise defined quadratic functions which
are defined as follows:

oc(c) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
cn−1−c
cn−1−cn

)2
· Δn−1, cn ≤ c < cn−1

· · ·(
c1−c
c1−c2

)2
· Δ1, c2 ≤ c < c1

0, otherwise

Quality of Service Enabled Database Applications 219

The rationale for choosing squared terms is given below. For the opportunity
costs, we derive the decreasing parts of the parabolas as in Figure 1.

On the other hand, with marginal gains, we model the chance that a service
class re-achieves a higher service level, that is, reaches si from si+1. If this
appears to be “within reach”, individual requests are penalized more and more
to eventually achieve the higher level. The marginal gain mg is a piece-wise
quadratic function:

mg(c) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
c−cn+1
cn−cn+1

)2
· Δn−1, cn+1 ≤ c < cn

· · ·(
c−c3
c2−c3

)2
· Δ1, c3 ≤ c < c2

0, otherwise

Analogous to the opportunity costs, the rationale for choosing squared terms
is given below. The marginal gain is depicted as increasing part of the parabolas
in Figure 1.

If the SLA conformance of a request’s service class is approaching the next
lower service level, the chance for reaching the next higher service level is very
small. Thus, the penalty of a request of this transaction is dominated by the
opportunity costs. Similarly, the penalty is dominated by the marginal gain if
the next higher service level is “within reach”. Therefore, we define the penalty
as the maximum of the computed opportunity costs and the marginal gain of
this service request.

To define opportunity costs and marginal gains, we use a squared term – re-
sulting in the parabolas – to weight the distance from the borders of neighboring
service levels. If linear terms are used, requests stemming from SLAs with high
penalties are almost always be handled with top priority, because there is only a
very small area in the middle of a service level where the calculated penalties are
low. This leads to overfulfillment and therefore an inferior overall performance.
In contrast to that, if the order of the functions is chosen too high, the request
has high priority only for SLA conformances near the borders of the next higher
and next lower service level, respectively. So, if the opportunity costs are de-
fined by higher order polynomials, there are only very few requests with high
priority. If all of these requests are delayed, e.g., by waiting for database locks,
the SLA conformance falls onto the next lower service level. To justify this ra-
tionale, we conducted extensive experimental studies, which cannot be reported
here for space limitations. These studies have shown that squared terms were
better suited to model the opportunity costs and marginal gains than linear
order higher order terms.

2.3 Deriving the Deadline Constraint for Individual Requests

The time constraint of a deadline constraint xd specifies an upper bound for
the processing time of a transaction. We therefore need to derive the deadlines
for individual requests of that transaction. Requests which have passed their

220 S. Krompass et al.

deadline are scheduled with maximum priority. These requests most likely have
a processing time that is less or equal to the observed average processing time
as there are no requests with even higher priority. Note that the deadline is no
guarantee, as high priority requests can still be delayed within the database if
they access an object that is locked by a request with lower priority.

With enfi, we denote the latest time at which a request ri should be executed
to be able to complete the respective transaction within the time constraint
given by xd. To compute enfi, we monitor the execution times of requests already
processed in the current transaction. In addition to that, we monitor previous
invocations of the transaction and maintain the average processing time of each
request. Thus, we derive the expected time to process the remaining requests
by summing up the average response times of the requests. The time constraint
enfi for the current request is computed by subtracting the observed execution
times and the expected time to process the remaining requests from xd.

3 System Architecture and Implementation

To provide end-to-end quality of service for Web services, it is essential to incor-
porate all components of a Web service architecture, that is, the invoked service
itself, all called sub-services and the databases at the bottom layer.

Client with scheduler
Database server

SLA
component

Penalty function
Penalty-

carrying request

Processing
time

Fig. 2. Architecture Overview

A primary design goal for the implementation of the described concepts was
to ease the future extension of the QoS management to entire Web service ar-
chitectures. We therefore encapsulated all SLA-relevant functionality, including
the monitoring of the SLA conformance and the generation of adaptive penal-
ties, into a central entity, the SLA component. Figure 2 shows the resulting
architecture. The SLA component can easily be extended to monitor the overall
execution of Web service requests and not only derive adaptive penalties for the
database layer, but also for all sub requests on the Web service layer. The adap-
tive penalties are piggybacked onto the corresponding requests and transported
as penalty-carrying requests to the database. Upon completion of the database
request, the SLA component is notified of the observed response time by the
client and can thus update the current SLA conformance ratio.

The actual scheduling of requests is based on the adaptive penalties and is real-
ized by a scheduler. The scheduler intercepts all arriving requests and carries out
the admission control and the reordering of individual requests. The scheduler is

Quality of Service Enabled Database Applications 221

architected as an external component so that it can be easily adapted to sched-
uling arbitrary service requests, besides the database requests exemplified here.

4 Request Scheduling

At the database server, the processing of a newly arriving penalty-carrying re-
quest works as follows. To prevent the database from being overloaded, the
admission control limits the number of simultaneously executing requests. If the
request it not immediately executed, it is queued. Prior to dequeueing a request,
all queued requests are scheduled, that is, they are ordered by their priority. If
there are sufficient system resources, requests are dequeued by the admission
control.

In most current database systems, processes are assigned the same amount of
resources, irrespective of the priority of the respective request. This implies that
the available resources of the database are assigned in a round-robin manner to
all active requests. In other words, all requests are equally important. To limit
the database load it is therefore sufficient to restrict the number of concurrent
queries, irrespective of their individual complexity [15].

As an alternative, we experimented with an admission control that is based on
the optimizer costs of the requests that are currently being processed. However,
our empirical studies, which cannot be shown here due to space restrictions,
revealed that the query-complexity based admission control performed worse
than simply controlling the multi-programming level by restricting the maximum
number of concurrently processed requests.

Requests which are held back are put in one of two queues, as shown in Fig-
ure 3. Queue A holds requests which belong to running transactions, requests
of transactions not yet started are maintained in queue B. Statements to be
processed are chosen from queue A. Only if this queue is empty, new transac-
tions are started by picking statements from queue B, so that running transac-
tions are not unnecessarily delayed. Using this approach, we avoid the problem
of lock convoys [6]. Lock convoys can arise if a transaction TL which submits
various requests to the database, exclusively locks a database object and there
are pending requests of other transactions which intend to lock the same object.
The queue of waiting objects does not shrink as long as the locking transaction
is not finished. Before TL releases the blocking lock, all of its requests need to
be processed. Thus, intuitively, requests from active transactions are prioritized
over requests from pending transactions.

Our goal is, prior to dequeuing a request, to create a schedule of the pending
requests, such that the overall sum of incurred penalties is minimized. Thus,
the requests are ordered in both queues according to their adaptive penalties.
So, a request is inserted and removed, respectively, in O(log n) time by using a
priority queue implementation, that is, the overhead for scheduling a request is
negligible. For queue lengths of 150, which we observed in our benchmarks, the
scheduling of a single request took about 0.28 milliseconds.

222 S. Krompass et al.

Sorted by scheduling algorithm

Sorted by scheduling algorithm

Queue B

Requests of new transactions

Queue A

Requests of active transactions

Admission

Admission,
if A is empty

Database core

Simultaneously
executing
requests

Fig. 3. Dual Queue Scheduling

5 Performance Evaluation

We performed comprehensive benchmarks using our prototype implementation
to assess the effectiveness of the adaptive request-penalization. For the perfor-
mance evaluation, we chose the TPC-C benchmark as a representative Online
Transaction Processing (OLTP) workload.

5.1 Description of the Benchmarks

The TPC-C-benchmark models a company which is a wholesale supplier op-
erating several warehouses which serve customers in geographically distributed
sales districts. The database workload of the benchmark is centered around five
principal business transactions of an order-entry environment. The transactions
are invoked by emulated users whose behavior is controlled by think times and
keying times. The detailed specification of the TPC-C benchmark can be found
in [16].

The SLA for a transaction is based on the corresponding response time goal. For
our experiments, we specified the SLAs using XML, similar to WS-Agreement [10],
which is becoming a standard for establishing a service agreementbetween a service
provider and a client. Our experiments are conducted with the step-wise SLAs in-
troduced in Section 2. For each transaction, we define an SLA with a percentile and
an deadline constraint. The percentile constraint requires 90% of the invocations
to be processed in less than the corresponding response time requirement which
is specified for each transaction in [16]. A violation of this constraint is fined with
a penalty which depends on the terminal representing the client from which the
transaction is invoked, that is, the SLAapplies for the terminal and all transactions
that are invoked from this terminal. In our test scenario, we chose a customer-mix
where 15% of the terminals incur high ($1000), 35% incur medium ($200), and the
remaining terminals incur low penalties ($40) if the corresponding SLA is violated.
This customer mix models a service provider with a high number of regular cus-
tomers that must be preferably processed compared to “normal” users. In order to
avoid starvation of queued requests, we define an upper bound for the execution
time of a transaction in our benchmark. The deadline for high-priority customers

Quality of Service Enabled Database Applications 223

is three times the response time requirements. For medium- and low-priority cus-
tomers, the deadline of the transactions is five and ten times of the response time
requirement of that transaction.

For our experiments, we implemented our own version of the TPC-C bench-
mark based on MaxDB Version 7.5 [11]. The number of warehouses is held
constant at 20, thus, the size of the database is about 2GB. As specified by the
TPC-C, the number of terminals is ten times the number of warehouses, thus
yielding a total number of 200 terminals during the benchmark.

For the benchmarks, we dimensioned the 100%-workload such that the required
response times of the specification are met without any scheduling and admission
control at all. Furthermore, we define a productive workload of 80%, as databases
should not be operated at its limit due to possible load peaks. We control the work-
load by multiplying the keying and think times with a scaling factor.

A single benchmark consists of several phases. First, there is a “warmup”
phase where the database is operated at 80% load for 15 minutes. Subsequently,
8 minute-periods of peak load (180% workload) alternate with “rest periods”
(80% workload) which again last for 15 minutes. The benchmark terminated
after an evaluation period of 65 minutes. After this time, the requests that have
been accumulated in the second load peak, have been processed, so that the
number of queued requests is reduced to the normal level again. The scheduler
with admission control is configured such that the throughput is identical to the
throughput of a benchmark with terminals directly connected to the database.

Our experiments are performed running the QoS-enabled database on a server
with 1GB RAM and an Intel Xeon processor with 2.8GHz. The operating system
is SUSE Linux Enterprise 9 based on kernel 2.6. All terminals run on another
server with identical hardware and connect to the database via Gigabit-Ethernet
using the MaxDB JDBC-driver.

5.2 Results

First, we present the analysis of the SLA conformance using static prioritization,
that is, the priority of a customer remains constant throughout the entire bench-
mark. Figure 4 shows the SLA conformance for the NewOrder transaction which
is the central transaction of the TPC-C benchmark. The values shown are the
conformances at the end of the evaluation period for each of the terminals in-
volved. The SLA conformances are ordered decreasingly, grouped by the priority
of the terminals. With static prioritization, all SLAs for transactions stemming
from high priority terminals are overfulfilled. 92% of the medium-priority ter-
minals obtain their SLA, some of them with a conformance near 1. Only 6% of
the low-priority terminals meet their SLA conformance requirements. The in-
equity between terminals having medium priority, i.e., terminals with the same
SLA, arises if transactions from one terminal compete with more high-priority
transactions than the other. Due to the lack of SLA awareness, the static prior-
itization cannot differentiate between a transaction stemming from a customer
whose SLA is currently vastly overfulfilled and a transaction where the next
higher service level is within reach.

224 S. Krompass et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

S
LA

 C
on

fo
rm

an
ce

Terminal

high priority medium priority low priority

Fig. 4. SLA Conformance for all Terminals Using Static Prioritization

 0

 0.2

 0.4

 0.6

 0.8

 1

S
LA

 C
on

fo
rm

an
ce

Terminal

high priority medium priority low priority

Fig. 5. SLA Conformance for all Terminals Using Adaptive Penalization

In contrast to this, the SLA conformance using adaptive prioritization is far
more balanced within a group. Figure 5 shows the SLA compliance of all terminals
using our novel adaptive penalization. Again, all high-priority terminals satisfy
their SLAs. But the SLAs are not overfulfilled to the extent as with static prioriti-
zation, that is, the SLA conformance with static prioritization is 100%and with our
adaptive prioritization between 97.3% and 98.8%. This adaptive “down-grading”
of requests stemming from high-priority terminals is used to free resources for re-
quests from low- and medium-priority terminals. Furthermore, as requests stem-
ming from low-priority terminals do not have deadlines, these requests are delayed
as long as possible to allow the prioritized execution of higher priority requests.

If the pending requests are statically prioritized, the reduction of costs induced
by violating the SLAs of the terminals is due to favoring requests stemming from
high-priority terminals to lower-priority requests. For our example configuration,
the decrease of overall costs for all five transactions of the TPC-C is 53.5%, from
$17, 600 using the static prioritization to $8, 180 with the adaptive penalization.

6 Related Work

Enabling QoS for Web service infrastructures is in the focus of our research
group. Braumandl et al. [2] discuss distributed query processing systems on the
Internet where the queries have different QoS demands. The paper presents an
extension to the distributed query processing to support user QoS constraints.
The query processor generates plans in such a way that its quality estimates

Quality of Service Enabled Database Applications 225

are compliant with the user-defined quality constraints. Gmach et al. [5] present
a fuzzy controller module which supervises services in a service oriented archi-
tecture. The controller executes appropriate actions to remedy overload, failure,
and idle situations in the service architecture.

Quality of Service is an important issue for e-commerce and other e-services.
Beeri et al. [1] analyze service compositions at compile-time stage to gain further
information on the service’s behavior. Selecting services which are dynamically
bound to composite services at runtime to satisfy user QoS requirements is pre-
sented by Maximilien and Singh [12], and Gibelin and Makpangou [4]. However,
these approaches are only applicable if there are several concrete services which
implement the same interface. This is not necessarily true for enterprise services.
Kraiss et al. [8,9] describe an analytical model for the HEART tuning tool for mes-
sage oriented middleware. The tool assigns static priorities to different workload
classes. The messages of the different classes are then processed by a priority based
scheduling algorithm in the middleware. The approach differs from our work in
three points. First, there is a fixed number of workload classes. Second, for each
class, the workload parameters have to manually be specified by an administrator.
Third, if the workload change, the priorities for the classes have to be recomputed.

An admission control and request scheduling for e-commerce Web sites is
presented by Elnikety et al. [3]. Their work focuses on achieving stable behavior
during overload and improved response times. Analog to our SLA based request
management component they install a proxy between the Web service and the
database. However, the optimization is not associated to the SLA conformance.
As we have discussed in this paper, considering the conformance is an integral
part of an adaptive QoS management.

Schroeder et al. [14] present a framework for providing QoS where the response
time requirements are specified in an SLA. To meet the multiclass response time
goals, the number of concurrently executing requests is dynamically adjusted
using a feedback control loop which considers the available hardware resources
and concurrently executing queries in the database. However, other than our
approach their work is not based on an economic model that optimizes the
overall system performance across different classes.

7 Conclusion and Future Work

In this paper, we presented and evaluated an adaptive QoS management that is
based on an economic model which adaptively penalizes individual requests de-
pending on the SLA and the current degree of SLA conformance. Our economic
model differentiates between opportunity costs and marginal gains. Using this
economic model, we compute adaptive penalties and annotate them to individual
requests, thus creating penalty-carrying queries. Second, we described the archi-
tecture and the implementation of our QoS management. Third, we presented
the scheduling of the requests which is based on an admission control. We in-
tegrated our research prototype of a QoS-enabled database into MaxDB. Using
our prototype, we demonstrated the effectiveness of our proposed approach by

226 S. Krompass et al.

performing comprehensive real-world studies using the TPC-C benchmark as
OLTP workload.

Having shown the effectiveness of our approach for databases, we now move
towards scheduling in multi-level service infrastructures.

References

1. C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes with
BP-QL. In Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, September 2005.

2. R. Braumandl, A. Kemper, and D. Kossmann. Quality of Service in an Information
Economy. TOIT, 3(4):291–333, 2003.

3. S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A Method for Transpar-
ent Admission Control and Request Scheduling in E-Commerce Web Sites. In
Proceedings of the 13th International Conference on WWW, pages 276–286, New
York, NY, USA, 2004. ACM Press.

4. N. Gibelin and M. Makpangou. Efficient and Transparent Web-Services Selection.
In Proceedings of the 3rd International Conference on Service Oriented Computing,
Lecture Notes in Computer Science (LNCS), Vol. 3826, pages 527–532, 2005.

5. D. Gmach, S. Krompass, S. Seltzsam, and A. Kemper. AutoGlobe: An Automatic
Administration Concept for Service-Oriented Database Applications. In Proceed-
ings of the 22nd International Conference on Data Engineering (ICDE). IEEE
Computer Society, 2006.

6. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

7. IBM DB2 Query Patroller. http://www-306.ibm.com/software/data/db2/
querypatroller/.

8. A. Kraiss, F. Schön, G. Weikum, and U. Deppisch. Towards Response Time Guaran-
tees for E-Service Middleware. IEEE Data Engineering Bulletin, 24(1):58–63, 2001.

9. A. Kraiss, F. Schön, G. Weikum, and U. Deppisch. With HEART Towards Re-
sponse Time Guarantees for Message-Based E-Services. In Proceedings of the 8th
International Conference on Extending Database Technology, pages 732–735, Lon-
don, UK, 2002. Springer.

10. H. Ludwig and Toshiyuki. WS-Agreement Concepts, Use, and Implementation. In
Tutorial at the ICSOC, 2005.

11. MaxDB. http://www.mysql.com/products/maxdb/.
12. M. Maximilien and M. P. Singh. Toward Autonomic Web Services Trust and

Selection. In Proceedings of the 2nd International Conference on Service Oriented
Computing, pages 212–221, New York, NY, USA, 2004. ACM Press.

13. Oracle Database Resource Manager. http://www.oracle.com/technology/
deploy/availability/htdocs/rm overview.html.

14. B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum. Achieving Class-
Based QoS for Transactional Workloads. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE). IEEE Computer Society, 2006.

15. B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum. How to Determine a
Good Multi-Programming Level for External Scheduling. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE). IEEE Computer Society,
2006.

16. TPC Benchmark C, Standard Specification Version 5.4. http://www.tpc.org/
tpcc/, April 2004.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 227 – 239, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Model-Based Framework for Developing and
Deploying Data Aggregation Services

Ramakrishna Soma1, Amol Bakshi2, V.K. Prasanna2, and Will Da Sie3

1 Dept of Computer Science, USC, Los Angeles, CA
2 Dept of Electrical Engineering, USC, Los Angeles, CA

{rsoma, amol, prasanna}@usc.edu
3 Chevron Corporation, San Ramon, CA

Will.DaSie@chevron.com

Abstract. Data aggregation services compose, transform, and analyze data from a
variety of sources such as simulators, real-time sensor feeds, etc. This paper
proposes a methodology for accelerating the development and deployment of data
aggregation modules in a service-oriented architecture. Our framework allows
existing semantic web-service techniques to be embedded into a programming
language thereby leveraging ease of use and flexibility enabled by the former with
the expressiveness and tool support of the latter. In our framework data
aggregations are written as regular Java programs where the data inputs to the
aggregations are specified as predicates over a rich ontology. Our middleware
matches these data specifications to the appropriate web-service, automatically
invokes it, and performs the required data serialization-deserialization. Finally the
data aggregation program is deployed as yet another web-service. Thus, our
programming framework hides the complexity of web-service development from
the end-user. We discuss the design and implementation of the framework based
on open standards, and using state-of-art tools.

1 Introduction

Data aggregation refers to the process of transforming, composing and analyzing data
to produce information that is useful for decision making. Data aggregation
workflows are especially important in an enterprise setting where data has to be
acquired and aggregated from a variety of heterogeneous sources. Two major
problems need to be addressed while creating data aggregation modules. The first
problem of how the data is accessed is caused by the large diversity of interfaces and
protocols presented by the data sources. The second problem of what data is being
accessed is caused because the data produced by each source has its own syntax and
semantics. Our goal is to address these two problems in order to allow domain experts
with basic programming skills to easily create data aggregation components that can
be plugged into a larger information management architecture.

The work described in this paper is a part of a larger effort on Integrated Asset
Management (IAM) for smart oilfields [16]. We envision a framework that will
provide a domain expert (in our case, a petroleum engineer or asset manager)
simplified access to any piece of data, analysis, and functionality required for use in

228 R. Soma et al.

making a decision. To achieve this, we have made two key design choices: service
oriented architectures (SOA) and model based integration. Service oriented
architecture (SOA) is a style of architecting software systems by packaging
functionalities as services that can be invoked by any service requester. Web services
are becoming the de facto mechanism used for implementing service-oriented
architectures and are also employed in our IAM framework. A model based
integration framework is built around a shared set of formal models which define the
syntax and semantics of the domain and data elements. All applications in the
framework subscribe to these models by producing and consuming data which are
compliant with these models. These two technologies in tandem enable data
aggregation and application integration in general by standardizing the how and what
of the data accessed.

In this paper we discuss how the problem of data aggregation is addressed in our
IAM framework. We assume an enterprise setting where all sources of data are
accessible as web-services. We also assume that the schemas of all the data produced
and exchanged are known and agreed upon. This is a reasonable assumption in the
light of the major thrust on standardization of XML-based data exchange schemas and
APIs in the petroleum industry [10]. We build upon these assumptions to create a
programming framework which accelerates authoring of data aggregation workflows.
There are three main contributions of this paper:

• We present a novel framework for easing the development and deployment
of data aggregation applications. The framework demonstrates the
integration of techniques from the semantic web for service discovery and
invocation into a programming language to provide a rich programming
framework for the user.

• We describe the definition of a set of implementation-independent models
and show how they are used for automatic service discovery and invocation.

• We discuss a prototype implementation of the framework built on open
standards, and currently available tools.

The rest of the paper is organized as follows. Section 2 outlines a simple scenario
for data aggregation, which will be the motivating example for the discussion in this
paper. In Section 3, we survey existing methodologies and tools that are relevant to
our problem and also discuss their shortcomings. An outline of our approach is
provided in Section 4, followed by a description of a core set of models and how they
are used for service discovery. Section 0 describes the implementation of our
prototype service composition and deployment framework. We conclude in Section 6.

2 Motivating Example

To motivate our technique we examine a simple data aggregation workflow from the
petroleum industry. Before we explain the workflow itself, we introduce the following
terminology from the domain. A well is an entity that produces oil, water, and gas.
A block is a set of wells. The production of a block is the sum of the production of
its constituent wells. The oil, water, or gas production for a well or a block is often
represented by a “recovery curve” or a “decline curve” for that well or block.

 A Model-Based Framework 229

A decline curve is a plot of production volume versus time. Decline curves can also
be plotted to show production volume versus the fraction of total oil in place
recovered till that time step.

One of the inputs to our aggregation workflow is a data-structure called
WellProductionData. This data structure holds the production information for a
well and the data is produced by a simulator. However, higher-level tools require the
aggregated production data at the Block level. We will refer to the aggregated data as
BlockProductionData. To obtain the BlockProductionData from the
WellProductionData, an additional data structure called BlockData is
used. This data structure contains the information about a block, which contains
information like what is the set of wells contained in a given block and some other
pieces of data used for aggregation. It is generated either from a database or from
another workflow i.e. is retrieved from another web-service. A simplified flow chart
showing the workflow BlockProductionData from WellProductionData is
shown below. Note that well-to-block aggregation is not a straightforward summation,
and involves some complex calculations like finding moving averages.

Fig. 1. Flowchart for the data aggregation workflow

We want the developer of this aggregation program to be unconcerned with the
issues in web service development. These include service discovery, service
invocation, and data serialization and de-serialization. The developer could also want
the data aggregation program to be deployed into the IAM framework, so that it can
be re-used in other aggregation workflows. Thus we require a framework that enables
us to create and deploy shared data aggregation workflows without the complexity of
understanding web-service standards and deployment issues.

3 State-of-the-Art Techniques and Their Limitations

WS-BPEL [1] is the W3C standard for writing web-service compositions. BPEL
allows us to script composed services and exposes them as yet another web-service.

Fetch well production
data from the simulator

Fetch block data

Calculate block
production for
each time step

Calculate recovery
using information
from BlockData

Output the generated
block production data

Loop for each
time step

230 R. Soma et al.

However, BPEL does not provide support to add complex computations within the
composition - a key feature required to support aggregations. BPELJ[2] is a
specification that addressed this shortcoming to some extent. It allowed snippets of
java code to be embedded within the BPEL script. The main goal was to enable fairly
simple calculations and transformations to be embedded within the compositions. It is
not clear whether complex computations (such as integrating and invoking a third
party tool) can be used. Creating BPEL scripts requires the user to have a good
understanding of web-services specifications as well as the where the web-services
are deployed. This conflicts with one of our key requirements.

SSIS [3] is a tool integrated with MSSQL server which allows the user to build
such aggregation workflows. It consists of a visual composer, where data from
various sources including web-services can be retrieved and aggregated. It also allows
the user to specify complex transformations and aggregations in a .NET supported
language. Although, the user need not write much web-service specific code, he still
needs to be aware of the deployed services. The other problem with SSIS is that it is
tightly integrated with the rest of the toolkit (.NET, SQL server) and thus integrating
with it is not straight forward.

Much work in recent years has been performed on automatic discovery and
composition web-services by providing semantic description of the constituent
services [4][8]. However, typical semantic web-service composition frameworks like
[5][7][11] do not seem to address the general class of applications where the
composed service could also include complex computations and transformations. We
have used the techniques to describe web-services to define facilitate discovery and
invocation. Our system is built for a more controlled setting of an enterprise rather
than the internet and we confine ourselves to applications that produce data rather
those that also change the “state of the world”. These differences have helped us to
define focused domain models which help us to tailor the semantic-web techniques
for our requirements.

Our system is also similar to web-service based data integration systems like
Prometheus [9]. These systems typically provide a unified database abstraction to a
set of web-services and address the problem of how a query is resolved to calls to
appropriate web-services. However it is not clear if data aggregations can be defined
in these frameworks. Compared to these approaches, we make a simplifying
assumption that the produced by each source is a whole relation and thus do not
concern ourselves with issues like view integration etc.

Data aggregation and similar workflows occur commonly in scientific workflows.
Specialized frameworks like Kepler[17] and Chimera[18] (with concomitant service
composition languages) have been employed for implementing such workflows. The
major difference between our framework and the above mentioned frameworks is that
they make the assumption that the modules containing the aggregation logic already
exist and (only) provide methods to “wire” them together (using their special
language). In our framework, the aggregation and wiring logic are both developed as
part of a single program. This is consistent with one of the primary goals of our
system, to avoid the need for the user to learn a new formalism.

Programming languages provide the right level of expressiveness and support we
require to create aggregated services. Although the support for creating and
consuming web-services in these platforms is becoming more and more seamless, the
user still needs to have a good understanding of web-services, platforms and related

 A Model-Based Framework 231

issues like XML serialization, SOAP messaging /stub generation etc to be able author
such services. Moreover, these languages do not address the problems of intuitive
addressing and discovery of web-services. Our technique addresses some of these
concerns by providing the user with an abstract data centric interface for writing
aggregations. The hard tasks of discovering, invoking web-services are performed by
our framework. In essence, our framework marries the expressiveness of
programming languages with the semantic web-services idea of using service
metadata to facilitate service discovery for authoring web-service compositions.

4 Our Approach

4.1 Overview

Consider a simplified version of the aggregation program from Section 2.

Fig. 2. Code snippet for the example aggregation program

The most interesting part of this code snippet is Lines 19-21, which contains the
code to obtain the data required for aggregation. The requests for the data are

232 R. Soma et al.

specified as calls the DataFactory which abstracts all the complexity of service
discovery, service invocation and data serialization-deserialization. The parameters
passed to the DataFactory are the type of the object required and a set of
predicates that the data is required to have. The user in turn obtains a Java bean which
is used to perform the aggregations.

The other important parts of this code snippet are the lines 1-5 and 7-13. These
lines contain annotations with in the source code which specify the metadata used
while deploying the aggregation program into our framework. The contents of the
metadata descriptions are similar to those of a data request. It contains the type of
object returned by the service and some predicates describing it.

Once this program is written, it is compiled, debugged as a normal program would
be and deployed into our framework. The aggregation program becomes accessible
as a web-service and can be similarly searched and invoked in other aggregation
programs.

4.2 Modeling

At the heart of our framework is a set of three models which form the basis for a
vocabulary for specifying data requests, service advertisements and matching
services. These models are described below.

1. Domain model: This is an ontology that models the domain i.e. the entities in an
oil-field and their inter-relationships. This model provides an intuitive query
vocabulary for the user. For example a user may specify that the data required is the
WellProductionData for all the Wells in a Block called Block_A. The notions
of what a Well, Block and their relationship as a containment is defined in the domain
model. A more detailed description of the domain model is out of the scope of this
paper and is described elsewhere [15]. A simplified version which only considers
parent-children relationships among entities of a domain model is currently used and
is defined below.

A Domain object is a 4 tuple Do=<K, Nd, C, P> where:

• K is the kind/class of the domain object (for simplicity we assume here that it
is a string),

• Nd is the name of the domain object,
• C = {Do1,Do2,…Don} is a set of domain objects that are contained by Do,
• P is the parent of the domain object.

A domain Configuration (or scenario) is a 2-tuple, DC=<Na, D > where

• Na is the name given to the configuration,
• D = {Do1, Do2,…Don} is the set of domain objects in the configuration.

A domain configuration is the context under which relationships between domain
objects are defined. Thus a relationship between domain objects must also specify the
configuration under which the relationship will be resolved (e.g. all Wells in
Config1.Block_A).

 A Model-Based Framework 233

2. Data Model: The data model is defined as an ontology of classes where each class
is defined by a set of meta-data properties and a data schema. The meta-data
properties in our system are similar to [13][14] and contains information to identify
objects, track their audit trails etc. The schema of a class defines the various
properties of the data object. Although the meta-data properties and the data schema
are very similar (they define key-value pairs) and the difference between data and
metadata is often tenuous, this distinction is very important to us because the
metadata is defined and manipulated within our system where as the data schema is
defined, stored and manipulated by “external” systems. This approach also allows us
to reuse the data schemas published by standard bodies, software vendors etc.

More formally, a class is defined by a 4-tuple C = <N, R, M, S> where,

• N is the name of the class,
• R is the set of parent classes R= {C1, C2…Ck},
• M is the set of metadata properties {pm1, pm2, …pmn} where Pmi is given by a

2-tuple <T, Np> where T is the type of the parameter and Np is the name of
the property.

• S is the schema for the class (which defines its properties). S is given by a 2-
tuple <Ns, P> where Ns is the name of the schema and P is the set of
properties given as 2-tuple <T, Np>.

A special kind of class is called the opaque class where the class schema has only
one property- its value i.e. P = {value}. This kind is used to represent binary and other
legacy objects (like ASCII files) in the system.

An object is given by a 4-tuple O = < C, Vmd, Vd, π > where

• C is the class the object belongs to,
• Vmd = {vm1,vm2…vmn} is the set of values assigned to the meta-data fields

where each vi is a 2-tuple <Np, Vp>, Np is the name of the meta-data property
and Vp is the value attribute,

• Vd = {vd1,vd2…vdk} is the set of values attached to fields from the schema,
• π = {vπ 1, vπ 2… vπ w} each vπ i is a 2-tuple <Np, Vp>; each vπ i

represents the set of parameters needed to create the object O.

Our framework models both real objects and virtual objects. Virtual objects are
created by services and (in general) haveπ ≠ ∅ ; on the other hand real objects

already exist in some persistent store and have π = ∅ . Thus to identify or create
virtual objects we also need to specify the input parameters for the service i.e.π .

Finally, we define an ontology as a 3-tuple <C, D, O> where,

• C={ DC1 ,DC2 …DCm } is a set of domain configurations
• D={Do1 ,Do2 …Don} is a set of data objects
• O:S bool is a function that takes a statement and informs whether that

statement is entailed in the ontology or not.

3. Web-Service Model: The web-service model captures the semantics of the
services- so that they can be advertised, discovered and invoked. Since all the
web-services in our framework are data providers, the captured semantics of the

234 R. Soma et al.

web-services are all related to the data. In particular they describe the data provided
by the web-service in terms of our data and domain ontology.

A service advertisement in our framework consists of the type of the output the
service delivers, types of the input parameters, meta-data predicates that describes the
output provided and the range of the data provided by the service defined as
predicates over the fields of the output type. A predicate is given by a 3 tuple <P, op,
val> where, P is the property asserted upon, op is a operation and val is the value. The
expression values, defines a (possibly infinite) set of objects defining the range of
objects catered by the service. It can be defined as expressions over primitive data
types (int, float, Date etc) or objects/fields from the data and domain models. For the
meta-data predicates, the field is from the data-model described above, while for the
data predicates it is obtained from the schema where the output type is defined.

A service profile is given by a 4-tuple S = < Cout
S, S, MPS, DPS > where,

• Cout
S is the type of the output of the service,

• S ={p1, p2…. pk}, where each pi is a 2-tuple <Ni,Ti> represents the input
parameters of the service,

• MPS is the set of predicates over the meta-data {mp1, mp2,…, mpm}.
• DPS is the set of predicates over the fields from the schema of Cout

S which
defines the range of data objects served by the service {dp1, dp2,…, dpm}.

4.3 Automatic Service Discovery

Service discovery in our framework involves matching service advertisements
(profile) with requests. Please recall that the service advertisements are given by a 4-
tuple S = < Cout

S, π S, MPS, DPS >. Similarly, a request is a 4-tuple given by R =
<Cout

R, π R, mpR, dpR>. Note that a request tuple is quite similar to an object tuple;
because the request identifies a set of objects needed for the aggregation.

Our matching algorithm matches the outputs (Cout
S, Cout

R) and input parameters
(π S, π R) as described in [11]. The match is rated as exact (Cout

S = Cout
R) > plugin

(Cout
S ⊃ Cout

R) > subsumed (Cout
S ⊂ Cout

R) > fail.
In addition to inputs and outputs, we also need to match the service and the

request predicates. To define the predicate matching, we define a function:

INT:Pf D, D ⊆ range(f)

Intuitively, INT is an interpreter function that maps a predicate P over a field f to a
set of values D. The set D is a subset of all the permissible values of f. We then say that
a predicate Pf

S satisfies Pf
R iff INT(Pf

R) ⊆ INT(Pf
S). This is written as Pf

S Pf
R.

While matching the predicates of advertisements with those of a request, three
cases occur:

1. Perfect match: Pf
S Pf

R
2. Failed match: ¬ (Pf

S Pf
R)

3. Indeterminate: This occurs when for a predicate in the request Pf
R, the

service does not advertise a predicate (Pf
S) over the same field. We make an

open world assumption and consider an indeterminate match as a potential
candidate.

 A Model-Based Framework 235

Obviously the scoring function is ordered perfect > indeterminate > fail. All
services with even one fail predicate match are discarded from being considered as
possible candidates. This is intuitive because, if the user wants data from a Sensor
(mpR:Producer=”Sensor”), it is not acceptable for her to get data from a Simulator
(mpS:Producer=”Simulator”), even if it is for the same entity, and with the same
timestamp. Thus a service is a match for a given request, if its outputs and inputs are
compatible i.e. have an exact or plugin or subsume relations and the (metadata and
data) predicates all match perfectly or indeterminately.

Although the INT function is a good abstraction to define the notion of predicate
satisfiability, from a more practical standpoint, it is checked by translating Pf

S Pf
R

to an equivalent statement S that can be answered by the (oracle function O of the)
ontology.

5 Implementation

The domain and data model are implemented using OWL in our prototype
implementation. We have used the OWL-S [4] ontology to represent web-service
descriptions. A OWL-S service description consists of three parts: the service profile
which describes what a service does and is used for advertising and discovering
services; the service model which gives a description of how the service works and
the grounding which provides details on how to access a service. The OWL-S
standard prescribes one particular realization of each of these descriptions, but also
allows application specific service descriptions when the default ontologies are not
sufficient. We have used this to define our own ontologies to describe web-services.

a. Service Profile: This ontology contains the vocabulary to describe service adver-
tisements. We store the information described in the Web-service model here. As
recommended in the OWL-S spec, we store these predicates as string literals in the
owl description. In the next section, we describe how these advertisements are
matched up with user specifications.
b. Service Model: The service model ontology describes the details of how a service
works and typically includes information regarding the semantic content of requests,
the pre-conditions for the service and the effects of the service.

In many data-producing services it is common that the parameters for the service
actually define predicates over the data-type. For example a service that returns
WellProductionData may contain parameters startDate and endDate
that define the starting and ending dates for which the data is returned. We
capture the semantics of such parameters as predicates over the fields. Thus
the parameter startDate can be defined by the predicate
“WellProductionData.ProductionDate < startDate”. By doing this,
we alleviate the need for the user to learn all the parameters of a service and rather let
the user define the queries as predicates over the data object fields. Please note that
not all parameters can be described as predicates over the data fields. For example, a
fuzzy logic algorithm producing a report may require a parameter which describes the
probability distribution function used. This parameter has no relation to the data being
produced and is modeled here.

236 R. Soma et al.

The default service model defined in the OWL-S standard, also defines the
semantics of input parameters using the parameterType property which points to a
specification of the class. Currently we do not model the pre-conditions and effects of
the services. We do not model the effects of the service because of our assumption
that the services are data producing services and do not change the state of the world.
We do acknowledge that pre-conditions may be required in many cases and we intend
to address this as part of our future work.
c. Service Grounding: The service grounding part of a model describes protocol and
message formats, serialization, transport and addressing. We have used the
WsdlAtomicProcessGrounding as described in the specification to store the service
access related/WSDL data. This class stores information related to the WSDL
document and other information that is required to invoke the web-services like the
mapping of message parts in the WSDL document to the OWL-S input parameters.

Service advertisements are stored in a UDDI repository in our framework as
described in [12]. Please recall from section 0 that a data request is programmed as a
call to the DataFactory. A request in the program is handled by first inferring the
closure of data-types that are compatible with the required data. This is used to query
the UDDI store to retrieve the service profiles of all compatible services. These are
matched according to the ranking criteria scheme described in the previous section
and the best candidate is chosen. Currently our predicates can have one of the
following operators {<, >, <>, ∈} and values over basic data-types (Number types,
String, Date) and domain objects. Predicate matching for basic types is quite trivial.
For predicates involving domain objects the only operator allowed is ∈ , used to
define the range of the data sources as (all or some) of the children of a domain
object. For example the range of the objects served by a data source can be defined by
assigning a meta-data field “domainObject = ‘Well IN Config1.Block_A’”. A
query requesting for a data for Well_X i.e. with a predicate “domainObject =
Well_X” can be resolved by querying the domain model. Please note that once the
user has written the aggregations, she can debug it as a normal program. We think that
during that process the request can be refined and the web-services are bound as she
intended.

Once the candidate web-services are found, the information from the Profile and
the Grounding part of the web-service model is used to construct a call to the
appropriate web-service. Please note that some of the parameters are explicitly
specified while some of them are a part of the predicates. The parameters which map
to these predicates are constructed using the information in the Profile. To improve
the performance of the system, we store all the Profile information and the Grounding
information in the UDDI itself. Thus all required information can be retrieved with
one call to the UDDI. We also “remember” the binding associated with a query, thus
not incurring the overhead of a UDDI-access. When a call to the system fails (service
may be un-deployed or re-deployed), the query is re-sent and the new service
information is obtained.

5.1 Service Deployment

After the aggregation program is written it is deployed into a web-service engine. For
a typical web-services engine like Apache Axis2[19], this involves creating

 A Model-Based Framework 237

deployment description document(s), packaging the classes and the dependant
libraries as a jar file and copying it into in a specified directory. Apart from this, the
OWL-S model for the aggregated service needs to be constructed and saved into a
UDDI store. Most of the semantic information describing the service is provided as
annotations in the source code by the author of the service. This style of embedding
deployment specific information into the source code is a widely accepted technique
in the Java programming community. So, after the author writes an aggregation
service as plain java code with annotations, it is deployed by executing a pre-defined
Ant script, which creates the deployment descriptors for the web-service engine as
well as the OWL-S description documents. In the future we envisage a system with
multiple web-service engines where service deployment additionally involves
choosing the “best” server. For example an important factor to consider is to
minimize the amount of data that needs to be moved. Thus it may be best to deploy an
aggregated service on the same machine as (or one “nearest” to) the data producer.

A high-level view of the various elements of our framework and their relationships
is summarized in the UML class diagram below1.

Fig. 3. Major elements of our framework and their interrelationships

6 Conclusions and Summary

In this paper we have presented a framework which eases the development and
deployment of data aggregation workflows. The framework integrates techniques for
automatic web-service discovery and invocation from the semantic web-services
community into ordinary programming languages. This enables the user to write
complex workflows in the programming language while using high-level, web-service
agnostic specifications to gather the data required for the aggregations. The key
element of our framework is the three models in our system: the domain model which

1 The elements represented as classes in the diagram are not necessarily implemented as java

classes- they are more coarse grained modules/data objects.

238 R. Soma et al.

captures the semantics of the domain, the data model which captures the data-types
and a rich set of meta-data associated with these data types and a service model which
captures the semantics of the web services. The data and domain models form the
vocabulary for defining the data required in the aggregations, as well as for
advertising and matching the web services in the framework. We discussed how the
OWL-S standard can be used to hold the information required for automatic discovery
and invocation. Deployment of aggregation programs in our framework is aided by
the use of meta-data embedded within the source code.

References

[1] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, and S. Weerawarana. Business
Process Execution Language for Web Services, Version 1.1. Specification, BEA Systems,
IBM, Microsoft, SAP, Siebel, 05 May 2003.

[2] Michael Blow, Yaron Goland, Matthias Kloppmann, Frank Leymann, Gerhard Pfau,
Dieter Roller, and Michael Rowley. BPELJ: BPEL for Java. Whitepaper, BEA and IBM,
2004.

[3] Microsoft SSIS: http://msdn.microsoft.com/sql/bi/integration/
[4] D. Martin, et al. OWL-S: Semantic markup for web services. http://www.ai.sri.com/

daml/services/owl-s/1.2/overview/
[5] Kaarthik Sivashanmugam, John A. Miller, Amit P. Sheth, and Kunal Verma, Framework

for Semantic Web Process Composition, International Journal of Electronic Commerce,
Volume 9, Number 2, Winter 2004-05, pp. 71.

[6] http://uddi.org
[7] Daniel J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the Semantic Web:

The Bottom-Up Approach to Web Service Interoperation. Proceedings of the Second
International Semantic Web Conference (ISWC2003), pp 227-241, Sanibel Island,
Florida, 2003.

[8] J. Rao and X. Su. A Survey of Automated Web Service Composition Methods. In
Proceedings of the First International Workshop on Semantic Web Services and Web
Process Composition, SWSWPC 2004, San Diego, California, USA, July 6th, 2004.

[9] Snehal Thakkar, Jose Luis Ambite, and Craig A. Knoblock. Composing, optimizing, and
executing plans for bioinformatics web services, VLDB Journal, Special Issue on Data
Management, Analysis and Mining for Life Sciences, Vol. 14, No. 3, pp.330--353, Sep
2005.

[10] POSC, The Petrotechnical Open Standards Consortium, http://www.posc.org/
[11] K Sycara, M Paolucci, A Ankolekar, N Srinivasan. Automated Discovery, Interaction and

Composition of Semantic Web Services, Journal of Web Semantics, 2003
[12] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Importing the semantic web in

UDDI. In Proceedings of E-Services and the Semantic Web Workshop, 2002
[13] Ewa Deelman, Gurmeet Singh, Malcolm P. Atkinson, Ann Chervenak, Neil P. Chue

Hong, Carl Kesselman, Sonal Patil, Laura Pearlman, Mei-i Su. Grid-Based Metadata
Services, 16th International Conference on Scientific and Statistical Database
Management (SSDBM04), June 2004.

[14] Jun Zhao, Chris Wroe, Carole Goble, Robert Stevens, Dennis Quan and Mark
Greenwood. Using Semantic Web Technologies for Representing e-Science Provenance
In Proceedings of Third International Semantic Web Conference (ISWC2004),
Hiroshima, Japan, November 2004. pp. 92-106, Springer-Verlag LNCS

 A Model-Based Framework 239

[15] Cong Zhang, Viktor Prasanna, Abdollah Orangi, Will Da Sie, Aditya Kwatra, Modeling
methodology for application development in petroleum industry, IEEE International
Conference on Information Reuse and Integration, Las Vegas, 2005.

[16] CiSoft IAM project, http://indus.usc.edu/cisoft-iam/
[17] S. Bowers and B. Ludascher. Actor-oriented design of scientific workflows. In 24th Intl.

Conf. on Conceptual Modeling (ER), 2005.
[18] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data System for

Representing, Querying and Automating Data Derivation. In 14th Conference on
Scientific and Statistical Database Management, Edinburgh, Scotland, July 2002.

[19] Apache Axis2: http://ws.apache.org/axis2/

A Distributed Approach for the Federation
of Heterogeneous Registries

Luciano Baresi and Matteo Miraz

Politecnico di Milano,
Dipartimento di Elettronica e Informazione, Milano, Italy

{baresi, miraz}@elet.polimi.it

Abstract. Registries play a key role in service-oriented applications.
Originally, they were neutral players between service providers and clients.
The UDDI Business Registry (UBR) was meant to foster these concepts
and provide a common reference for companies interested in Web services.
The more Web services were used, the more companies started create their
own “local” registries: more efficient discovery processes, better control
over the quality of published information, and also more sophisticated pub-
lication policies motivated the creation of private repositories.

The number and heterogeneity of the different registries —besides the
decision to close the UBR— are pushing for new and sophisticated means
to make different registries cooperate. This paper proposes DIRE (DIs-
tributed REgistry), a novel approach based on a publish and subscribe
(P/S) infrastructure to federate different heterogeneous registries and
make them exchange information about published services. The paper
discusses the main motivations for the P/S-based infrastructure, pro-
poses an integrated service model, introduces the main components of
the framework, and exemplifies them on a simple case study.

1 Introduction

Service-oriented applications exploit registries to expose services to possible
clients. Originally, the registry was a neutral actor between clients and providers;
it was a “shared” resource aimed at facilitating their cooperation. This was the
original mission of the first version of the UDDI (Universal Description, Discov-
ery, and Integration, [11]) specification, which was the first market-supported
standard that allowed companies to publish their services and interact with
clients [2]. To this end, in September 2000, BEA, IBM, and Microsoft started
UBR (UDDI Business Registry), a public UDDI-based registry, but also a com-
mon and neutral reference for all the companies interested in publishing and
exploiting Web services.

The diffusion of Web services led to the need for “private” registries, directly
controlled by the different companies, in parallel with the public one. Companies
wanted to be able to control their registries to increase the efficiency of the
discovery process, but they also wanted to manage private information —e.g.,
exclusive offers for their clients. These registries did not substitute the central

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 240–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Distributed Approach for the Federation of Heterogeneous Registries 241

one, which continued to be a universally-known reference. If a company was not
able to serve a request internally, it could always access the central repository
to find the services it needed.

Both the second version of the UDDI specification [11], and other approaches,
like ebXML [5], took a more decentralized view and allowed for the creation
of different separated registries. Moreover, January this year, the companies
behind UBR decided to shut it down [6] since the original goal —the creation of
a common sandbox to foster the diffusion of the service-oriented paradigm— was
met. The new advice is to install a dedicated repository for each company. The
complete control over published information allows the company to select and
filter the information it wants to publish, organize it the way it prefers, and thus
better tune the discovery process. Usually, companies manage their services, and
those provided by their partners, but the lack of a common search space hinders
the discovery of new services —supplied by providers with which the company
is not used to cooperate. Companies interested in new services must a-priori
select the companies that might provide them, and then search their proprietary
registries, if allowed. Moreover, clients do not often know the services that fit
their needs directly, but they would like to query the registries to find those that
better fit their expectations. The more accurate the descriptions associated with
services are, the more precise the discovery can be.

To overcome the lack of a centralized repository, and also to supply an exten-
sible model to describe services, this paper proposes DIRE (DIstributed REg-
istry), a novel approach for the seamless cooperation among registries. DIRE
proposes a decoupled approach based on the publish and subscribe (P/S) mid-
dleware ReDS [3]. A unique distributed dispatcher supports the information ex-
change among the different registries. Even if the dispatcher is logically unique,
it provides a physically distributed communication bus to allow registries to
publish information about their services, and clients —which may be other reg-
istries or suitable application interfaces— to receive it. According to the P/S
paradigm, clients must subscribe to the services they are interested in and then
the dispatcher forwards relevant data as soon as published. Moreover, DIRE
supports the creation of dedicated federations to allow for the re-distribution of
interesting information among the members even if they are not subscribed to
it directly.

DIRE fosters the integration of repositories implemented using different tech-
nologies (currently, UDDI and ebXML) by means of dedicated plugs called de-
livery managers. They adopt a unique service model that both extends and
abstracts the models used by the single registries, and provides a flexible means
for the characterization of services. Delivery managers are also in charge of the
interaction of registries with the P/S communication bus.

The rest of the paper is organized as follow. Section 2 surveys similar proposals
and paves the ground to our approach. Section 3 sketches the approach. Section 4
describes the technology-agnostic service model defined to document services
and provide delivery managers with a common base. Section 5 presents the
delivery manager and digs down into the mechanisms offered to support flexible

242 L. Baresi and M. Miraz

cooperations among registries. Section 6 demonstrates the approach on a simple
case study and Section 7 concludes the paper.

2 Related Work

The different approaches for the cooperation and coordination among registries
can be roughly classified in two main groups: approaches based on selective
replication and approaches based on semantic annotations.

UDDI and ebXML belong to the first family. UDDI v.3 [12] extends the repli-
cation and distribution mechanisms offered by the previous versions to support
complex and hierarchical topologies of registries, identify services by means of a
unique key over different registries, and guarantee the integrity and authenticity
of published data by means of digital signatures. The standard only says that
different registries can interoperate, but the actual interaction policies must be
defined by the developers.

ebXML [5] is a family of standards based on XML to provide an infrastruc-
ture to ease the online exchange of commercial information. Differently from
UDDI, ebXML allows for the creation of federations among registries to foster
the cooperation among them. The idea is to group registries that share the same
commercial interests or are located in the same domain. A federation can then
be seen as a single logical entity: all the elements are replicated on the different
registries to shorten the time to discover a service and improve the fault toler-
ance of the whole federation. Moreover, registries can cooperate by establishing
bilateral agreements to allow registries to access data in other registries.

Even if these approaches foster the cooperation among registries, they imply
that all registries comply with a single standard and the cooperation needs a
set up phase to manually define the information contributed by each registry.
Moreover, given the way relations are managed by UDDI [8], the more registries
we consider, the more complex the management of relations become, and the
cost of publishing or discovering a service increases.

METEOR-S [13] and PYRAMID-S [7] are the two main representatives of the
second family. They support the creation of scalable peer-to-peer infrastructures
for the publication and discovery of services. METEOR-S only supports UDDI
registers, while PYRAMID-S supports both UDDI and ebXML registries. Both
the approaches adopt ontology-based meta-information to allow a set of registries
to be federated: each registry is “specialized” according to one or more categories
it is associated with. This means that the publication of a new service requires
the meta-information needed to categorize the service within the ontology. This
information can be specified manually or it can be inferred semi-automatically
by analyzing an annotated version of the WSDL interface of the service. Notice
that, if the same node of the ontology is associated with more than one registry,
the publication of the services that “belong” to that node must be replicated
on all the registries. Services are discovered by means of semantic templates.
They give an abstract characterization of the service and are used to query the
ontology and identify the registries that contain significant information.

A Distributed Approach for the Federation of Heterogeneous Registries 243

The semantic infrastructure allows for the implementation of different al-
gorithms for the publication and discovery of services, but it also forbids the
complete control over the registries. Even if each registry can also be used as
a stand-alone component, the selection of the registries that have to contain
the description of a service comes from the semantic affinity between the ser-
vice and the federated registries. For this reason, each node in a METEOR-S or
PYRAMID-S federation must accept the publication of a service from any other
member of the community. These approaches are a valid solution to the problem
of federating registries, but the semantic layer imposes too heavy constraints on
publication policies and also on the way federations can evolve dynamically.

3 DIRE

This section introduces the main elements of DIRE (DIstributed REgistry),
which is our proposal to support loose interactions among registries. DIRE aims
at fostering the communication among different proprietary registries by means
of two elements: a distributed communication bus and a delivery manager asso-
ciated with each registry. The former is introduced to interconnect the delivery
managers, and is based on ReDS [3], a distributed publish and subscribe mid-
dleware. The latter acts as facade: it is the intermediary between the registry
and the bus and manages the information flow in the two directions.

In P/S systems, components do not interact directly, but rather the communica-
tion is mediated by a dispatcher. Components send (publish) events (messages) to
the dispatcher anddecide the events theywant to listen to (subscribe/unsubscribe).
The dispatcher forwards (notifies) received events to all registered components.

DIRE allows registries to use the communication bus in two different ways:

– Registries (i.e., the companies behind them) declare their interest for par-
ticular services. This means that each publication —on a particular registry
connected to the bus— is propagated to those registries that subscribed to it.
Once the information is received, they can either discard it, or store it locally.
The goal is to disseminate the information about services based on interests
and requests, instead of according to predefined semantic similarities. This
way, DIRE supports a two-phase discovery process. The registry retrieves
the services the organization is interested in from the P/S infrastructure.
The client always searches for the services it needs locally.

– Registries can be grouped in federations (communication groups, according
to the P/S jargon) to allow for the re-distribution of interesting information
among the elements of a federation even if they are not directly subscribed
to it. To create a federation, some registries must declare their interest for
a common topic. This means that when one of these registries is notified of
new services, it re-distributes these data within the federation. Topics are
not service types, but are abstract concepts, used to identify, for example,
geographical areas, business organizations, or the parties involved in virtual
enterprises. One registry can belong to different federations.

244 L. Baresi and M. Miraz

4 Service Model

The heterogeneity of considered registries and the need for a flexible means to
describe services are the main motivations behind the DIRE service model. This
model is conceived with three main goals: the compatibility with well-known
standards, the unique identification of exchanged data, and the authentication
of retrieved information. Currently, DIRE supports both UDDI and ebXML
registries, but since we adopt JAXR (Java API for XML Registries, [9]), it is
possible to easily integrate other types of registries. Our proposal (Figure 1) is
in line with those approaches that tend to unify existing models (e.g., JAXR):
we reuse the business elements, which are similar, and we introduce the concept
of facet to allow for a more detailed and flexible management of the technical
information associated with services.

Fig. 1. DIRE information model

As far as business data are concerned, the lower part of Figure 1 describes
the “shared” structure in terms of Organizations, Services, and ServiceBindings,
with the meaning that these elements assume in existing registries.

The similarities vanish when we consider technical data. The different reg-
istries tend to provide predefined schemas to organize this information. In some
cases, they also distinguish between references (stored in registries) and actual
contents (put in repositories). DIRE integrates these elements and describes
BusinessObjects by means of Facets. Each Facet addresses a particular feature
of the BusinessObject by using an XML language. Facets are typed (FacetType)
—based on the information they embed or the language they use— to ease the
retrieval of services. For example, we can create WSDL Facets to describe the
interfaces of a service, RDF Facets to add semantics, or XMI Facets to specify
complex service behaviors through UML diagrams.

StandardFacets characterize recurring features (and are associatedwith Busines-
sObjects by means of Relationships). For example, they can specify the compliance

A Distributed Approach for the Federation of Heterogeneous Registries 245

with an abstract interface or the quality level according to a given certification
authority. Given their meaning, we assume that StandardFacets are managed by
special-purpose authorities that are in charge of linking the different services to
these “certified” characteristics. StandardFacets are also a way to define the com-
patibility level between two services [11]. SpecificFacets describe what is peculiar to
a given service. It can be the policies thatmust be used to charge users or the testing
data that the providerwants to sharewith its possible clients. Some aspects require
a combination of these two types: for the WSDL interfaces, we suggest to adopt the
proposal presented in [1,4] and distinguish between the standard interface of a ser-
vice and the properties of a given implementation: a StandardFacet describes the
former and SpecificFacets deal with the latter.

Every user can attach a facet to a BusinessObject, even if it is not the ser-
vice provider. This feature lets each company use its local registry as a black-
board, and allows a decoupled communication among the different elements of
the service-centric system (e.g., runtime monitors might create facets that are
then used by the dynamic binder). DIRE allows providers to sign and share
these facets, thus allowing the receivers —if they trust the provider— to get a
more detailed knowledge of the services in their registry.

The distributed setting behind DIRE requires that identification and authen-
tication be carefully addressed. Since we can hardly understand the source of
exchanged information, we use a digital signature to verify if received messages
comply with sent ones and to identify the source of such messages.

5 Delivery Manager

The information distributed through the P/S middleware adopts the information
model presented in Section 4. This is to allow for the integration of heteroge-
neous registries and also to support the creation of special-purpose filters to
retrieve services efficiently. Heterogeneity and filters are managed by the deliv-
ery manager, that is, a facade element that standardizes the information flow.
The delivery manager is responsible for the policies for both sharing the ser-
vices in the registry and selecting the services that must be retrieved from the
P/S infrastructure. Its adoption does not require modifications to the publi-
cation and discovery processes used by the different organizations behind the
registries. They keep interacting with the repository they were used to, but pub-
lished services are distributed through the P/S infrastructure, which in turn
provides information about the services published by the others.

If adopted technology distinguishes between registry and repository, where
the first contains references to the objects stored in the second, the delivery
manager handle this distinction. It is also in charge of managing the federations
the registry belongs to and of re-distributing significant data.

Service Publication. Services are published by providing the delivery man-
ager with what should be shared. A company can choose to share data created
on its registry or information retrieved from others. In both cases, the owner of

246 L. Baresi and M. Miraz

published data remains the only subject able to update them. The manager
simply retrieves what has to be published from the registry, transforms it into
the right format, and then forwards it onto the P/S infrastructure.

Since DIRE is a decoupled distributed system, a registry can join and declare
its interests at any time. The infrastructure guarantees that a registry can always
retrieve the information it is interested in. For this purpose, the propagation of
information is subject to lease contracts, a typical concept of many distributed
systems (e.g., Jini [10]). When the lease expires, the information is not consid-
ered to be valid anymore; only a renew, which requires that the information
be retransmitted, allows for extending its validity. The delivery manager can
perform this operation automatically to guarantee that when the information is
re-sent, all interested registries retrieve it.

The lease period τ is configurable at run-time; it guarantees that the informa-
tion about services are re-trasmetted with a user-defined frequency. This means
that τ is the maximum delay with which a registry is notified about a service.
Moreover, if the description of a service changes, the lease guarantees that the
new data are distributed to all subscribed registries within τ time units.

Service Selection. Because of commercial agreements between the parties, a
client may know in advance the services it wants. In this case, the selection can
be precise: the unique identifiers of interested elements are used by the delivery
manager to create a filter and subscribe to them through the dispatcher. Since
published information is refreshed periodically, the result is that all relevant data
about selected services are stored in the client’s registry.

When the client does not know the services it wants, DIRE allows the client
to retrieve all the services whose descriptions comply with specified properties. If
the property is encoded in a StandardFacet, the client can use the unique identifier
of the facet and select all the services that have a Relationship with the selected
property (facet). If the property is defined through a SpecificFacet, the client can
express its requirements by using an XPath expression; the delivery manager
wraps it into a filter and passes it to the dispatcher to subscribe to “relevant”
services. This allows the delivery manager to receive the service descriptions that
match desired properties. The delivery manager receives the unique identifiers
associated with retrieved services and automatically create the filters to get
them.

Notice that since the information is periodically re-transmitted, DIRE does
not require any direct interaction between the registry that sends the informa-
tion and those interested in it. Moreover, once data are received from other
registries, the receiving actor (registry) cannot update them; it can only attach
new SpecificFacets to further characterize retrieved services.

Federation Management. DIRE federates registries to allow them to “share”
services. Each member of a federation can re-distribute the information it gets
about a service to every registry of the federation. A registry can promote both
proprietary services and services received from others.

Federations are treated as special-purpose subscriptions. Usually, we adopt
content-based subscriptions, but federations exploit topic-based subscriptions.

A Distributed Approach for the Federation of Heterogeneous Registries 247

Each federation is associated with a topic (that becomes the name of the feder-
ation). When a registry joins a federation, it must subscribe to the associated
topic. This ensures that every time there is a message for that topic, it is re-
ceived by all the participants of the federation, and thus we have a multicast
communication group. Notice that if there are updates on services promoted
in a federation, the registry that initially shared them must re-send the new
information to the entire federation.

6 Case Study

This section introduces a simple case study to clarify how delivery managers
help registries exchange information. The scenario, shown in Figure 2, considers
four actors: MyAirline, BigCompany, SmallCompany and TinyCompany. The
last two are subsidiaries of BigCompany: they are independent but federated
entities, which need to efficiently communicate with the holding company. On
the technical side, MyAirline has a UDDI registry, while the others use ebXML
registries. In this context, DIRE fosters the collaboration between BigCompany
and its subsidiaries, and enables the communication between MyAirline and its
potential clients.

Fig. 2. Architecture of the scenario

MyAirline acts as service provider, and has two main services: one to compute
the salaries of its employees and the other to sell airplane tickets on-line. The
company wants to keep the first service private, while it wants to disseminate the
second: if more companies discover the availability of such a service, MyAirline
has the opportunity to increase its revenues.

As for the model presented in Section 4, we create one Organization element to
describe the company (MyAirline), one Service to publish the online reservation
service, and one ServiceBinding for each access point available for the offered
service. To better advertise the service, MyAirline characterizes it through a
set of facets. We use two StandardFacets, to identify the WSDL interface of the
generic service, and to specify the ISO 9001 quality level of the company. Some
SpecificFacets define the business data —like the semantic categorization, re-
quired commissions, and payment options— and identify the adopted transport

248 L. Baresi and M. Miraz

protocol, encoding, and quality of service for each ServiceBinding. The relation-
ship with the ISO 9001 facet is signed by an external company, which acts as
certification authority, and thus the receivers can rely on its authenticity.

All this information (i.e., all these facets) are stored in the registry controlled
by MyAirline. When the company decides to share the reservation service, the
delivery manager can easily convert these data into our technology-agnostic for-
mat and publish them on the P/S infrastructure. Since MyAirline does not want
to share the service to compute the salaries of its employees, it is kept private and
no information is published. After the first publication, the delivery manager pe-
riodically re-sends the information about the service through the communication
bus (i.e., through the ReDS dispatcher).

On the other side, BigCompany wants to optimize the purchase of airplane
tickets. If BigCompany knows that MyAirline has a service that might be use-
ful, it can subscribe to it directly. Otherwise, BigCompany can look for a service
that complies with the interface of a generic online flight reservation service. As
explained above, this property is rendered through a StandardFacet, and thus its
unique identifier can be used to retrieve the set of services associated with that
facet. As last option, BigCompany can exploit the semantic information associ-
ated with services to retrieve what it needs. It can create an XPath expression
to search the content of RDF facets. All the options produce a subscription filter
that embeds the requirements: when MyAirline renews the lease of the informa-
tion about its service, DIRE sends all the elements that comply with the request
(filter) to BigCompany.

BigCompany is happy with the service provided by MyAirline and wants to
propagate the use of this service to its subsidiaries. To do this, BigCompany
exploits the federation BigCompanySubsidiaries to propagate the information
about the interesting service. The subsidiaries become aware of the new service,
retrieve its data, and store them in their registries. The service supplied by
MyAirline becomes available to the whole set of registries.

6.1 Experimental Assessment

The approaches described in Section 2 require that clients and information
provider (i.e. BigCompany and MyAirline in our scenario) interact directly. Our
methodology fully decouples the cooperation among registries, but requires the
adoption of the lease mechanism: there is a periodical re-transmission of shared
data, thus the exchange of messages, which is higher than with direct coopera-
tion, might become the bottleneck of the whole approach.

Even if the use of ReDS in other domains gave encouraging results, we decided
to conduct some empirical studies to assess the actual performance of DIRE. To
analyze the scalability of the approach, we decided to particularly stress the com-
munication bus and the delivery manager. In our tests, we exchanged 170,000
messages, that is, more than three times the entries in the UBR before its shut-
down. Table 1 summarizes the results on the performance of the communication
bus when we use simple filters, based on unique identifiers, and complex XPath
ones. The 150,000 messages of the first column are handled with a mean time of

A Distributed Approach for the Federation of Heterogeneous Registries 249

Table 1. Performances of the communication bus

Simple filters XPath filters
of publications 150,000 20,000
of subscriptions 40,000 10,000
Computation time 1 min 23 sec 9 min 04 sec
Mean time 0.55 ms 27.27 ms
Throughput 6,500,000 msg/h 132,000 msg/h

Table 2. Performances of the delivery manager

New elements Renewed elements
of messages 50,000 msg 100,000 msg
Computation time 33 min 18 sec 26 min 3 sec
Mean time 39.96 ms 15.63 ms
Throughput 90,000 msg/h 230,000 msg/h
Standard deviation 6.32 ms 1.99 ms
99th percentile 76 ms 24 ms

0.55 ms, and thus a throughput of 6,500,000 publications per hour. The 20,000
messages of the second column are managed in 9.04 min, which implies a mean
time of 27.27 ms. These figures highlight good results for managing simple filters
and acceptable ones for complex XPath expressions.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

co
m

pl
et

ed
 (

%
)

time (ms)

renew
new

Fig. 3. Percentage of processed messages with respect to elaboration time

250 L. Baresi and M. Miraz

As for the delivery manager, we noticed that different messages impose dif-
ferent delays. Figure 3 plots the percentage of processed messages (y axis) with
respect to elaboration time (x axis). There is a clear difference between the first
time the delivery manager receives an element (dashed line) and subsequences
renews (solid line). In particular, our experiments (Table 2) show a mean process-
ing time of 39.96 ms for a new message and of 15.63 ms for a renew. The 99th

percentile, that is, an estimation of the maximum time required to process a
message, is very low (76 ms for a new element, 24 ms for e renewed one), and
this indicates good global performance for the delivery manager. The low com-
putational time required for processing renewed elements also demonstrates that
the lease mechanism does not introduce a significant overhead. Our experiments
suggested that a two-hour renew period is a good trade-off between a fast lookup
and a non-saturated system. This threshold seems to be a very reasonable com-
promise for the effective deployment of DIRE in real settings.

7 Conclusions and Future Work

The paper presents DIRE, a framework for the cooperation and federation of
distributed and heterogeneous registries based on the publish/subscribe para-
digm. The dispatcher acts as common reference for the registries that want to
communicate. Each entity is free to decide what information —and thus what
services— it wants to share within the community by publishing it through the
dispatcher. Similarly, registries can also decide the services they are interested
in by subscribing to particular service types. Federations can be set among reg-
istries to support the broadcast of information among the elements that belong
to the federation. DIRE also proposes a dedicated service model to provide pow-
erful and flexible descriptions of services and to support the creation of powerful
filters for sophisticated subscriptions. The proposed model is independent of the
technology of the registries that form the community.

Our future work comprises the adoption of the publish-subscribe-reply para-
digm, to increase the reactivity of the framework, the extension of our current
interaction model, to support the direct push of significant information about
newly published services towards the end users, and more attention to the con-
fidentiality of published information, to avoid that reserved data are used by
unauthorized entities. We are also working on better distinguishing between
service specification (i.e., facets created by the service provider) and service ad-
ditional information (i.e., facets created by the users).

References

1. Peter Brittenham, Francisco Cubera, Dave Ehnebuske, and Steve Graham. Under-
standing WSDL in a UDDI registry. http://www-128.ibm.com/developerworks/
webservices/library/ws-wsdl/.

2. David Chappel and Tyler Jewell. Java Web Services. O’reilly, 2002.
3. Gianpaolo Cugola and Gian Pietro Picco. ReDS: A Reconfigurable Dispatching

System. zeus.elet.polimi.it/reds.

A Distributed Approach for the Federation of Heterogeneous Registries 251

4. Francisco Curbera, David Ehnebuske, and Dan Rogers. Using WSDL in a UDDI
registry.

5. ebXML. ebXML: Electronic Business using eXtensible Markup Language. http://
www.ebxml.org/.

6. IBM. UDDI Business Registry shutdown FAQ. http://www-306.ibm.com/
software/solutions/webservices/uddi/ .

7. T. Pilioura, G. Kapos, and A. Tsalgatidou. PYRAMID-S: A scalable infrastructure
for semantic web services publication and discovery. In RIDE-DGS 2004 14th
International Workshop on Research Issues on Data Engineering, in conjunction
with the IEEE Conference on Data Engineering (ICDE 2004), March 2004.

8. Cristina Schmidt and Manish Parashar. A peer-to-peer approach to web service
discovery. World Wide Web, 7(2):211–229, June 2004.

9. Sun. Java Api for Xml Registries. http://www.jcp.org/en/jsr/detail?id=93.
10. Sun. Jini. http://www.jini.org/.
11. UDDI.org. Universal Description, Discovery and Integration version 2.0.
12. UDDI.org. Universal Description, Discovery and Integration version 3.0.2, October

2004.
13. Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna Ound-

hakar, and John Miller. METEOR-S WSDI: A scalable P2P infrastructure of
registries for semantic publication and discovery of web services. In Information
Technology and Management, volume 6(1), pages 17 – 39, Jan 2005.

I-Queue: Smart Queues for Service Management

Mohamed S. Mansour1, Karsten Schwan1, and Sameh Abdelaziz2

1 The College of Computing at Georgia Tech, Atlanta GA 30332, USA
{mansour, schwan}@cc.gatech.edu

2 Worldspan, L.P., Atlanta GA 30339, USA
sameh.abdelaziz@worldspan.com

Abstract. Modern enterprise applications and systems are character-
ized by complex underlying software structures, constantly evolving fea-
ture sets, and frequent changes in the data on which they operate. The
dynamic nature of these applications and systems poses substantial chal-
lenges to their use and management, suggesting the need for automated
solutions. This paper considers a specific set of dynamic changes, large
data updates that reflect changes in the current state of the business,
where the frequency of such updates can be multiple times per day. The
paper then presents techniques and their middleware implementation
for automatically managing requests streams directed at server appli-
cations subjected to dynamic data updates, the goal being to improve
application reliability in face of evolving feature sets and business data.
These techniques (1) automatically detect input patterns that lead to
performance degradation or failures and then (2) use these detections
to trigger application-specific methods that control input patterns to
avoid or at least, defer such undesirable phenomena. Lab experiments
using actual traces from Worldspan show a 16% decrease in frequency
of server restarts when using these techniques, at negligible costs in ad-
ditional overheads and within delays suitable for the rates of changes
experienced by this application.

1 Introduction

The complexity of modern enterprise systems and applications is causing re-
newed interest in ways to make them more reliable. Platform virtualization [1]
and automated resource monitoring and management [2,3] are system-level con-
tributions to this domain. Middleware developers have introduced new function-
ality like automated configuration management [4], improved operator interfaces
like Tivoli’s ‘dashboards’ [5], automated methods for performance understand-
ing and display [6], and new methods for limiting the potential effects of fail-
ures [7,8]. Large efforts like IBM’s Autonomic Computing and HP’s Adaptive
Enterprise initiatives are developing ways to automate complex management or
configuration tasks, creating new management standards ranging from Common
Base Events for representing monitoring information [3] to means for stating
application-level policies or component requirements (e.g. WSLA[9]).

This paper addresses service failures in distributed applications. The failure
model used is typical for distributed enterprise applications like web services,

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 252–263, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

I-Queue: Smart Queues for Service Management 253

where ‘failures’ are not direct or immediate system or application crashes, but
cause atypical or unusual application behaviors captured by distributed monitor-
ing techniques [10]. Examples include returns of empty or insufficient responses,
partially correct results, performance degradation causing direct or increasingly
probable violations of delay guarantees specified by SLAs, and others.

Focusing on enterprise systems with reliable hardware infrastructure but po-
tentially unreliable software, we investigate ways in which they can deal with
unusual behaviors and eventually, failures caused by single or sequences of ap-
plication requests, which we term poison request sequences. In earlier work, we
identified and found ways to deal with a simple case observed by one of our
industry partners, which concerned single requests, termed a ‘poison message’
that consistently caused unusual system and application responses [8]. In this
paper, we tackle the more complex problem of sets or sequences of requests that
cause such behaviors, and where such problems may depend on dynamic sys-
tem conditions, such as which business rules are currently being run or to what
current states they are being applied. The specific example studied is a global
distribution system (GDS) that does transaction processing for the travel indus-
try. To summarize, our assumption is that even with extensive testing applied
to modern enterprise applications, it is difficult, if not impossible to ensure their
correct operations under different conditions. This is not only because of the un-
due costs involved with testing such systems under all possible input sequences
and application states, but also because the effects of poison message sequences
can expose hidden faults that depend both on the sequence of input messages
and on changes in system state or application databases. Examples of the lat-
ter include regular business data updates, evolving application databases, and
system resources that are subject to dynamic limitations like available virtual
memory, communication buffers, etc.

The particular problem considered in this paper is poison requests or request
sequences arriving at a server system. These sequences lead to corrupted internal
states that can result in server crash, erroneous results, degraded performance, or
failure to meet SLAs for some or all client requests. To identify such sequences, we
monitor each single server, its request sequences and responses, and its resource
behavior. Monitoring results are used to dynamically build a library of sequence
patterns that cause server failures. These techniques use dynamic pattern match-
ing to detect poison sequences. While failure detection uses general methods, the
techniques we use for failure prevention exploit application semantics, similar to
what we have done in our earlier work on poison messages and more generally, in
our ‘Isolation-RMI’ implementation of an improved communication infrastructure
for Java-based enterprise infrastructures like Websphere or JBOSS [8]. As with so-
lutions used to improve the performance of 3-tier web service infrastructures [11],
we simply interpose a request scheduler between clients and server. In contrast to
earlier work on load balancing [11], however, the purpose of our scheduler is to
detect a potentially harmful request sequence and then change it to prevent the
failure from occurring or at least, to delay its occurrence, thereby improving to-
tal system uptime. One specific prevention method used in this paper is to shuffle

254 M.S. Mansour, K. Schwan, and S. Abdelaziz

requests or change request order to defer (or eliminate) an imminent server crash.
The idea is to dynamically apply different request shuffling methods within some
time window, to prevent a failure or to at least, opportunistically defer it, thereby
reducing the total time spent on system recovery or reboot.

Our motivation and experimental evaluation are based on a server complex op-
erated by Worldspan, which is a leading GDS and the global leader in Web-based
travel e-commerce. Poison message sequences and their performance effects were
observed in a major application upgrade undertaken by the company in 2005,
after a one man-year development effort for which its typical internal testing
processes were used. The failures observed were degraded system performance
resulting from certain message sequences, but system dynamics and concurrency
made it difficult to reproduce identical conditions in the lab and identify the
exact sequence and resource conditions that caused the problem. The current
workaround being used is similar to the micro-reboot methods described in [12].
The experimental work described in this paper constitutes a rigorous attempt
to deal with problems like these, using requests, business software, and request
patterns made available to our group by this industry partner.

A concrete outcome of our research is the I-Queue request management archi-
tecture and software implementation. I-Queue monitors a stream of incoming Web
Service requests, identifies potential poison message sequences, and then proac-
tively manages the incoming message queue to prevent or delay the occurrence of
failures caused by such sequences. The I-Queue solution goes beyond addressing
the specific server-based problem outlined above, for multiple reasons. First, I-
Queue is another element of the more general solution for performance and behav-
ior isolation for distributed enterprise applications described in [8]. The basic idea
of that solution is to embed performance monitoring and associated management
functionality into key interfaces of modern enterprise middleware: (1) component
interfaces, (2) communication substrates like RMI, and (3) middleware-system in-
terfaces. Here, I-Queue is the messaging analogue of our earlier work on I-RMI [8].
Second, I-Queue solutions can be applied to any 3-tier web service infrastructure
that actively manages its requests, an example being the popular RUBiS bench-
mark for which other research has developed request queuing and management
solutions to better balance workloads across multiple backend servers. In that con-
text, however, I-Queue’s dynamic sequence detection methods would be embed-
ded into specific end servers or into queues targeting certain servers rather than
into the general workload balancing queue containing all requests in the system.
Otherwise, substantial overheads might result from the need to sort requests by
target server ID. Third, I-Queue solutions can be applied to request- or message-
based systems, examples of the latter including event-based or publish-subscribe
systems [13] or messaging infrastructures [14,15].

2 Motivating Scenario

Figure 1 shows an overview of the major components of Worldspan’s distributed
enterprise applications and systems. The airlines publish their fares, rules and

I-Queue: Smart Queues for Service Management 255

availability information to clearing warehouses (CW). The CW in turn publishes
the updates to several GDSs. The GDS implements several services which for
a given travel itinerary searches for the lowest available fare across multiple
airlines. It is estimated that the size of fare and pricing database at Worldspan,
is currently at 10GB and is expected to increase by approximately 20% over the
next few years. Worldspan receives an average of 11.5 million queries per day
with contractual agreements to generate a reply within a predetermined amount
of time. The high message volume coupled with constantly changing system state
creates a real need for monitoring and reliability middleware that can learn the
dynamically changing performance characteristics and adapt accordingly.

Client 1

Message queueClient 2

Client 3

Clearinghouse
(CW)

Airlines

GDS

Fig. 1. General overview of message flows in air reservation systems

3 System Architecture

I-Queue uses a simple monitor-analyze-actuate loop similar to those described
in previous adaptive and autonomic computing literature [16,17]. Our contribu-
tion is adding a higher level analysis module that monitors message traffic and
learns the message sequences more likely to cause erratic behavior then apply
application specific methods to prevent or reduce the likelihood of such problems.

The monitoring component observes inputs and outputs of the system. The
analysis module in our system is the Learning Module (LM), which performs
sensitivity analysis by correlating various system performance metrics and input
message parameters. The goal of the Learning Module is to establish a set of
parameter(s) that can act as good predictors for abnormal behaviors. The out-
put is an internal model that can be used to predict performance behavior for
incoming message streams. LM is modular and can use any machine learning al-
gorithm suited for the problem at hand. This paper experiments with algorithms
that use Markov Models.

The actuator component is the Queue Management Module (QMM). Using the
internal performance model generated by LM, QMM prescans the incoming mes-
sages in a short window to see if they are likely to cause performance problems.

256 M.S. Mansour, K. Schwan, and S. Abdelaziz

If a suspicious sequence is detected, QMM takes an application-specific action to
prevent this problem from occurring, or at least, to defer it. The action used in
this paper is to re-arrange the buffered messages to another sequence that is not
known to cause performance problems, or that is known to cause fewer problems.
Figure 2 shows an overview of the system architecture.

Fig. 2. I-Queue System Architecture

3.1 Internal Design

Todemonstrate the value of I-Queue, weused Hidden MarkovModels (HMMs) [18]
to implement the LM. In our traces, each message is completely independent of
other messages, and messages can be processed in any orderwithout changing their
semantics. During the learning phase, we construct transition matrices for each ob-
served parameter(e.g., message size, internal message parameters, message inter-
arrival time, ...). A transition matrix is a 2D matrix, for each message pair and a
specific parameter, where the value of the parameter from the first message indi-
cates the matrix column, and the value of the parameter from the second message
indicates the matrix row. Analyzing message pairs leads to a first order model. For
an N -order model, we check N + 1 messages, the concatenated parameter values
from messages 1 to N indicate the column and the parameter value from message
N+1 indicate the row.To reducematrix size,we use a codebook to convert parame-
ter values to a numeric index. For multi-valued parameters (i.e., list parameters),
we use a two level codebook, where the first level encodes each value in the array,
then we combine the array values for a message in sorted order and use that for
a lookup into the second level codebook. N -dimensional parameters can be dealt
with using N + 1 levels of codebooks.

We currently construct one transition matrix per parameter, but support
for combinations of parameters can be added. For each message, we record all
parameters as they arrive, and we observe system state after they are processed.
If the system ends in a positive state, then we increment the corresponding
cells in the transition matrices. If the server crashes or otherwise shows any
performance misbehaviors, then we decrement the appropriate cells. During this
training period, we also calculate a prediction error rate. This rate gives us

I-Queue: Smart Queues for Service Management 257

an indication of the quality of a parameter as a predictor. It is calculated by
counting the number of times the transition matrix for a certain parameter
indicates strong likelihood of performance problems that do not actually occur
(think of it as a false alarm rate).

An example of a transition matrix is shown in Table 1. For our experiments,
we use a second order Markov Model. The rows of the matrix are labeled with the
codes from 2 consecutive messages, the columns are labeled with the message that
follows in sequence. The cell values give us an indication of server behavior as it ex-
ecutes a particular sequence of messages. A positive value indicates good behavior,
e.g., message sequence AAA (first row by first column) and the higher the value
the better, e.g., AAA is more preferable than AAE (first row by fifth column). A
negative value indicates strong likelihood of poor server performance for a certain
message sequence (e.g., ADB), the lower the negative value the worse. Sequences
not observed in training are noted by a nil in the transition matrix. At the end of

Table 1. A portion of the transition matrix from the resource leakage experiment

A B C D E F ...
AA 111 29 5 7 30 143
AB 17 26 2 5 7 9
AC 4 2 nil 2 2 12
AD 2 -2 -1 nil -1 5
...
BA 33 4 1 -1 3 36
BB 11 3 2 -2 4 15
BC 2 1 1 nil 1 -1
...

the training period, we choose the parameter with the least prediction error rate
as our predictor (multiple parameters with relatively close error rates require hu-
man evaluation). To account for system initialization and warm up effects, we also
construct a separate set of matrices for tracking the first N messages immediately
following a system restart. At the end of the learning phase, we have a transition
matrix that is fed to QMM. QMM evaluates the buffered messages before releas-
ing a message to the head of the queue. The performance score is calculated by
enumerating all possible orderings of the messages and for each ordering examine
the message pairs and add the corresponding value from the transition matrix. A
higher score indicates a sequence that is less likely to cause performance problems
a low score indicates a sequence that is very likely to cause performance problems.
The ordering with the highest score is chosen and the queue is ordered accordingly.
QMM also performs this reordering after a server restart.

4 Overview of Sample Applications

The experimental evaluation of I-Queue uses data traces obtained fromWorldspan,
a leading GDS and the global leader in Web-based travel e-commerce. Each

258 M.S. Mansour, K. Schwan, and S. Abdelaziz

message is a request for pricing a travel itinerary. Through contractual agreements
with its customers, Worldspan needs to generate a reply message within a prede-
fined time limit. It has been observed in the new server that it will occasionally slow
down and fail to meet its delivery deadlines. To emulate this behavior, we utilize
the Worldspan traces and build simple models of applications servers. In this pa-
per, we report results obtained from experimenting with two server models, both
based on known memory leak behaviors as well as other resource leak problems.

4.1 Basic Server Model

The specific subsystem managed by I-Queue is Worldspan pricing query service.
The service is handled by a farm of 1500 servers. Query messages from various
clients are placed in one of two global queues. Each server in the farm acts
independently of the others. As a server becomes available for processing, it pulls
a message from the queue, processes the message, and generates a corresponding
response message forwarded to other parts of the system for further processing.
The request message contains a set of alternative itineraries for which the lowest
available fare is to be found by the server. The response message contains a list
of fares for each itinerary sorted by fare. All request messages are independent,
and the server should maintain an average memory usage level when idle.

4.2 Experimental Models

The I-Queue implementation built for the pricing server monitors server behavior
and correlates it with request sequences. To evaluate it, we construct two models
in our labs and apply the traffic traces obtained from Worldspan to both of
these models. The goal is to evaluate the I-Queue approach with simple failure
models using realistic traces. Our future work will evaluate the approach with
Worldspans actual server (see the Conclusion section for more detail).

A class of failures used to evaluate I-Queue assumes a server with a small
memory leak that is directly proportional to the size of the input message. The
larger the input message, the more itineraries to process and hence, more work by
the server which can lead to a larger leak. Memory leaks cause gradual degrada-
tion in server performance due to memory swapping and can eventually result in
a server crash. To detect problems like these, the I-Queue prototype implements
an early detection module to detect performance degradation early. The module
utilizes the Sequential Partial Probability Test (SPRT) statistical method for
testing process mean and variance. The server model is reset when SPRT raises
an alarm indicating performance degradation significant enough to be detected.
Real-time SPRT was developed in the 1980s based on Wald’s original process
control work back in 1947 [19]. SPRT features user-specified type I and type II
error rates, optima detection times, and applicability to processes with a wide
range of noise distributions. SPRT has been applied in enterprise systems for
hardware aging problems [20] and for other anomaly detection [21].

I-Queue: Smart Queues for Service Management 259

5 Experimental Results

Experiments were run in Georgia Tech’s enterprise computing laboratory, the
model server were built in Java and run on an x345 IBM server (hostname:
dagobah), a dual 2.8GHz Xeon machine with 4GB memory and 1GB/s NIC,
running RedHat Linux kernel version 2.4.20. Sensitivity analysis and queue man-
agement code were also implemented in Java.

Our first experiment concerns sensitivity analysis using Worldspan’s traffic
traces. We model a server with a minor bug that leaks memory in proportion to
the input message size. Figure 3 shows the results of our detection algorithm.
The x-axis shows the different parameters we analyzed, the corresponding er-
ror rate is plotted on the y-axis. The error rate is a measure of the quality of
a specific parameter as a predictor with lower error rates indicating a better
predictor. As seen in the graph, the parameter MSG-SIZE has error rate of 0%
which means it accurately predicts the failure 100% of the time. In the second
part of the experiment, we engage the queue management module to reorder
the messages. Figure 3 shows the reduction in number of server restarts as a
function of the buffer length in our managed queue. We observe here that we do
not get a significant improvement with larger buffer sizes. Instead, a buffer size
of 5 is sufficient for giving us adequate results. The training phase for our sys-
tem involves running a batch of messages and observing the system behavior for
them. A training set is composed of 460 messages and in the real server environ-
ment, a message typically takes 4-16 seconds to process. Thus, in the best case
scenario, we need 30 minutes to train the system (not counting the time needed
to re-start the server). Given the cost of the learning phase of our system, we
next evaluate the effectiveness of our algorithms for different training set sizes.
Figure 4 shows system improvement measured as average reduction in number
of crashes on the y-axis versus number of training sets on the x-axis. The train-
ing sets are generated by random re-ordering of the original set. The reduction
rate is measured by counting the number of server restarts for the original batch

0

0.218

0.869

0.371
0.323

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MSG-SIZE P-IA P-LI POFF-
REPLY-ON

P-PC

Parameter

E
rr

o
r

R
at

e

Fig. 3. Memory Leak Model: Sensitivity to various message parameters and message
size

260 M.S. Mansour, K. Schwan, and S. Abdelaziz

of messages with the managed vs. the unmanaged queue. It is a measure of
the reduction in server faults we can achieve by using I-Queue, hence a higher
reduction rate indicates more value in using I-Queue. The graph shows that we
can get very good results with only a few training sets. This shows that I-Queue
can be deployed with reasonable training time.

For brevity, we elide a second set of experimental results with a more complex
failure model, termed the ’Connect Leak Model’. See [22] for more detail.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40

Queue Length

R
ed

u
ct

io
n

 R
at

e Training Set Size = 50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

50 150 250 350

Training Set Size

R
ed

u
ct

io
n

 R
at

e

Queue Length = 5

Fig. 4. Memory Leak Model: Error reduction measured for different queue length set-
tings(left) and for different training set sizes (right)

6 Related Work

Our approach builds on established practice, in which machine learning tech-
niques have been applied successfully to server and process monitoring. Appli-
cation traces for detecting application faults are examined in [23,7,24,25]. These
studies use application traces to detect a problem as it occurs and to recover the
system by restarting the whole or parts of the system. Our approach differs in
that we use application-defined methods to interpose and reschedule the message
stream to minimize the number of system restarts and hence, increase system
utility.

Our work aims to understand dynamic server behavior that results from client
requests and then uses that knowledge to manage abnormal behaviors resulting
from specific client request patterns. The approach can be embedded in Web
service implementations, such as Apache Axis, to help build more reliable sys-
tems composed of web services. In that sense, we also complement other work
in the area of dynamic web service composition [26,27].

The parallel computing domain has an extensive body of work on reliability us-
ing various monitoring, failure prediction [28], and checkpointing techniques [29].
Our work studies enterprise applications, specifically those in which system state
is typically preserved in an external persistent storage (e.g., a relational data-
base). In such systems, checkpointing the system state amounts to persisting the
input event until it is reliably processed, and the cost of failures is dominated
by process startup and initialization. In such environments, a reduction in the
frequency of failures provides a tangible improvement to the system operators.

I-Queue: Smart Queues for Service Management 261

Additionally, the dynamic models we build (including the failure predictor) can
prove valuable to system programmers as they try to troubleshoot the source of
failure.

7 Conclusions and Future Work

This paper demonstrates a useful technique for automatically (1) detecting un-
desirable (i.e., poison) message sequences and then, (2) applying application-
specific methods to achieve improved system performance and reliability. Future
work includes conducting on-site experiments with the Worldspan search engine.
We anticipate having more complex behaviors corresponding to multiple failure
models interrelated in non-linear ways. We plan to approach this problem by
using some of the well-studied clustering techniques (e.g., K-means analysis) to
isolate the different behaviors and then apply our methods to each one sepa-
rately.

Our longer term agenda is to use the monitoring and reliability techniques
demonstrated in this paper in the context of service-oriented architectures. We
are particularly interested in dynamically composed systems where users can
create ad-hoc flows such as portal applications for high level decision support
systems. In such systems, it is imperative to build middleware infrastructure to
detect abnormal behaviors induced by certain component or service interactions
and also, to impose ‘firewalls’ that can contain such behaviors and prevent them
from further spreading into other parts of the system.

Acknowledgements. We gratefully acknowledge the help of James Miller in
understanding the structure and parameters of the query messages. Many thanks
also to Zhongtang Cai for directing us to the SPRT papers and algorithm.

References

1. Barham, P.T., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of
the 19th ACM Symposium on Operating Systems Principles (SOSP 2003), Bolton
Landing, NY (2003) 164–177

2. Agarwala, S., Poellabauer, C., Kong, J., Schwan, K., Wolf, M.: System-level re-
source monitoring in high-performance computing environments. Journal of Grid
Computing 1 (2003) 273 – 289

3. IBM: Common base event. http://www.ibm.com/developerworks/library/
specification/ws-cbe/ (2003) [online; viewed:5/24/2006].

4. Swint, G.S., Jung, G., Pu, C., Sahai, A.: Automated staging for built-to-order
application systems. In: Proceedings of the 2006 IFIP/IEEE Network Operations
and Management Symposium (NOMS 2006), Vancouver, Canada (2006)

5. IBM: IBM Tivoli monitoring. (http://www.ibm.com/software/tivoli/products/
monitor/) [online; viewed: 5/24/2006].

262 M.S. Mansour, K. Schwan, and S. Abdelaziz

6. Bodic, P., Friedman, G., Biewald, L., Levine, H., Candea, G., Patel, K., Tolle, G.,
Hui, J., Fox, A., Jordan, M.I., Patterson, D.: Combining visualization and statisti-
cal analysis to improve operator confidence and efficiency for failure detection and
localization. In: ICAC ’05: Proceedings of the Second International Conference
on Automatic Computing, Washington, DC, USA, IEEE Computer Society (2005)
89–100

7. Roblee, C., Cybenko, G.: Implementing large-scale autonomic server monitoring
using process query systems. In: ICAC ’05: Proceedings of the Second International
Conference on Automatic Computing, Washington, DC, USA, IEEE Computer
Society (2005) 123–133

8. Mansour, M.S., Schwan, K.: I-RMI: Performance isolation in information flow
applications. In Alonso, G., ed.: Proceedings ACM/IFIP/USENIX 6th Interna-
tional Middleware Conference (Middleware 2005). Volume 3790 of Lecture Notes
in Computer Science., Grenoble, France, Springer (2005)

9. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manage. 11 (2003) 57–81

10. Chen, M., Kiciman, E., Fratkin, E., Brewer, E., Fox, A.: Pinpoint: Problem deter-
mination in large, dynamic, internet services. In: Proceedings of the International
Conference on Dependable Systems and Networks (IPDS Track), Washington D.C.
(2002)

11. Jin, W., Chase, J.S., Kaur, J.: Interposed proportional sharing for a storage service
utility. In: Proceedings of the joint international conference on Measurement and
modeling of computer systems, ACM Press (2004) 37–48

12. Candea, G., Cutler, J., Fox, A.: Improving availability with recursive microreboots:
a soft-state system case study. Perform. Eval. 56 (2004) 213–248

13. Kumar, V., Cai, Z., Cooper, B.F., Eisenhauer, G., Schwan, K., Mansour, M.S.,
Seshasayee, B., Widener, P.: IFLOW: Resource-aware overlays for composing and
managing distributed information flows. In: Proceedings of ACM SIGOPS EU-
ROSYS’2006, Leuven, Belgium (2006)

14. Sun Microsystems: Java message service (JMS). (http://java.sun.com/
products/jms/) [online; viewed: 5/24/2006].

15. Tibco: Tibco Rendezvous. (http://www.tibco.com/software/messaging/
rendezvous.jsp) [online; viewed: 5/24/2006].

16. Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D., Wolf, A.: An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems 14 (1999) 54–62

17. Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architectural approach
to autonomic computing. In: Proceedings of the First International Conference
on Autonomic Computing (ICAC’04), Washington, DC, USA, IEEE Computer
Society (2004) 2–9

18. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. (1990) 267–296

19. Wald, A.: Sequential Analysis. John Wiley & Sons, NY (1947)
20. Cassidy, K.J., Gross, K.C., Malekpour, A.: Advanced pattern recognition for detec-

tion of complex software aging phenomena in online transaction processing servers.
In: DSN ’02: Proceedings of the 2002 International Conference on Dependable
Systems and Networks, Washington, DC, USA, IEEE Computer Society (2002)
478–482

21. Gross, K.C., Lu, W., Huang, D.: Time-series investigation of anomalous CRC error
patterns in fiber channel arbitrated loops. In Wani, M.A., Arabnia, H.R., Cios,
K.J., Hafeez, K., Kendall, G., eds.: ICMLA, CSREA Press (2002) 211–215

I-Queue: Smart Queues for Service Management 263

22. Mansour, M.S., Scwhan, K., Abdelaziz, S.: I-Queue: Smart queues for service
management. Technical Report GIT-CERCS-06-11, CERCS (2006)

23. Fox, A., Kiciman, E., Patterson, D.: Combining statistical monitoring and pre-
dictable recovery for self-management. In: WOSS ’04: Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems, New York, NY, USA, ACM Press
(2004) 49–53

24. Lohman, G., Champlin, J., Sohn, P.: Quickly finding known software problems
via automated symptom matching. In: ICAC ’05: Proceedings of the Second In-
ternational Conference on Automatic Computing, Washington, DC, USA, IEEE
Computer Society (2005) 101–110

25. Jiang, G., Chen, H., Ungureanu, C., Yoshihira, K.: Multi-resolution abnormal trace
detection using varied-length n-grams and automata. In: ICAC ’05: Proceedings of
the Second International Conference on Automatic Computing, Washington, DC,
USA, IEEE Computer Society (2005) 111–122

26. Wohlstadter, E., Tai, S., Mikalsen, T.A., Rouvellou, I., Devanbu, P.T.: GlueQoS:
Middleware to sweeten quality-of-service policy interactions. In: ICSE, IEEE Com-
puter Society (2004) 189–199

27. Tai, S., Khalaf, R., Mikalsen, T.A.: Composition of coordinated web services. In:
Proceedings ACM/IFIP/USENIX International Middleware Conference (Middle-
ware 2004). Volume 3231 of Lecture Notes in Computer Science., Toronto, Canada,
Springer (2004) 294–310

28. Li, Y., Lan, Z.: Exploit failure prediction for adaptive fault-tolerance in cluster
computing. In: Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06), Los Alamitos, CA, USA, IEEE Computer
Society (2006) 531–538

29. Coffman, E., Gilbert, E.: Optimal strategies for scheduling checkpoints and pre-
ventative maintenance. IEEE Trans. Reliability 39 (1990) 9–18

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 264 – 276, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Optimizing Differential XML Processing
by Leveraging Schema and Statistics

Toyotaro Suzumura, Satoshi Makino, and Naohiko Uramoto

Tokyo Research Laboratory, IBM Research
1623-14 Shimo-tsuruma Yamato-shi Kanagawa-ken, Japan, 242-8502

{toyo, mak0702, uramoto}@jp.ibm.com

Abstract. XML fills a critical role in many software infrastructures such as
SOA (Service-Oriented Architecture), Web Services, and Grid Computing. In
this paper, we propose a high performance XML parser used as a fundamental
component to increase the viability of such infrastructures even for mission-
critical business applications. We previously proposed an XML parser based on
the notion of differential processing under the hypothesis that XML documents
are similar to each other, and in this paper we enhance this approach to achieve
higher performance by leveraging static information as well as dynamic
information. XML schema languages can represent the static information that
is used for optimizing the inside state transitions. Meanwhile, statistics for a set
of instance documents are used as dynamic information. These two approaches
can be used in complementary ways. Our experimental results show that each of
the proposed optimization techniques is effective and the combination of
multiple optimizations is especially effective, resulting in a 73.2% performance
improvement compared to our earlier work.

Keywords: XML, Web Services, XML Schema, Statistics.

1 Introduction

Recently XML (Extensible Markup Language) has come to be widely used in a
variety of software infrastructures such as SOA (Service-Oriented Architecture), Web
Services, and Grid Computing. The language itself is used in various ways such as for
protocols, for data formats, for interface definitions, etc. Even though the nature of the
language gives us various advantages such as interoperability and self-description, its
redundancy of expression leads to some performance disadvantages compared to
proprietary binary data. Many methods [1][2][3] have been proposed for enhancing its
performance, and these efforts are critical research areas in order to achieve the same
or better performance and replace existing legacy infrastructures with XML-based
infrastructures such as Web services. Our previous work [1] proposed an approach for
realizing high performance XML processing by introducing the notion of differential
processing. In this paper, we present an approach for improving the performance of
our earlier approach by leveraging the knowledge given by XML schema and
statistical information about instance documents.

The rest of the paper is organized as follows. In Section 2, we will explore
optimized XML processing by reviewing our previous work. Section 3 describes the

 Optimizing Differential XML Processing by Leveraging Schema and Statistics 265

contributions of this paper, which enhance our previous work by leveraging two
optimization techniques. Section 4 describes the optimization approach with schema
languages. Section 5 describes the statistics-based optimization approach. Section 6
describes a performance evaluation. In Section 7, we introduce some related work
using approaches with XML Schemas, and finally we conclude this paper with
Section 8.

2 Improved Performance in Our Previous Work

In [1], we proposed a new approach called “Deltarser” to improve the performance of
an XML parser based on the fundamental characteristics of Web services [1]. Next we
give an overview of Deltarser and then discuss some of its limitations.

2.1 Overview of Deltarser

Deltarser is designed for efficiently processing XML documents similar to previously
processed XML documents. The efficiency for similar documents is relevant in
situations like Web service application servers, where middleware needs to process
many similar documents generated by other middleware. In addition, the parsing of
Deltarser is “safe” in the sense that it checks the well-formedness of the processed
documents. From the viewpoint of users, Deltarser looks just like an XML parser
implementation and has the same functionality as normal XML parsers such as the
Apache Xerces implementation. The key ideas and technologies of Deltarser are
summarized as follows: The main action of Deltarser is byte-level comparison, which
is much faster than actual parsing. When feeding the actual XML document to the
state machine described next, we have only to compare the byte sequence of each
state and the incoming document. For efficiently remembering and comparing
previously-processed documents, it remembers the byte sequence of the processed
documents in a DFA (Deterministic Finite Automaton) structure. Each state transition
in the DFA has a part of a byte sequence and its resultant parse event. It partially
processes XML parsing only the parts that differ from the previously-processed
documents. Each state of the DFA preserves a processing context required to parse
the following byte sequences. It reliably checks the well-formedness of the incoming
XML documents even though it does not analyze the full XML syntax of those
documents. Deltarser’s partial XML processing for differences checks whether or not
the entire XML document is well-formed. It retains some contextual information
needed for that processing. The experiments in [1] show the promising performance
improvements such as being 106% faster than Apache Xerces [14] in a server-side
use-case scenario and 126% faster in a client-side use-case scenario.

2.2 Observed Performance Limitations

Although our approach has promising performance benefits, some limitations were
observed in our experiments with various performance evaluations. These limitations
are twofold:

266 T. Suzumura, S. Makino, and N. Uramoto

• Startup overhead of creating state transitions. Although byte sequence matching
is much faster than regular XML processing, the initial cost of preparing an
automaton cannot be ignored. The experiment conducted in [1] shows the
comparison of Deltarser and other existing parsers such as open source fast XML
parser, Piccolo, and a well-known XML parser, Xerces, but Deltarser is slower until
25 documents are processed. This initial overhead can be ignored for most XML
applications, especially for long-running Web services that process large numbers of
SOAP requests. However, considering the use of the differential processing
approach for general purposes, it would be best if we could eliminate this initial
overhead.

• Runtime overhead for a series of state transitions. An automaton is constructed
by adding state transitions with a granularity corresponding to each SAX event. The
graph shown in Figure 1 shows the average time for processing a 64-KB document
while changing the
number of constituent
state transitions within
the automaton.
Obviously, as the
number of state
transition increases,
the processing time
increases. The line
graph shows a case in
which whitespace is
represented as one
state transition, and
the number of state
transitions is about
12,000, and it takes
3.25 ms for byte
sequence matching.

When the whitespace is integrated with the other state transitions, the number
decreases to about 8,000, and it takes 2.4 ms for byte sequence matching, which is
30% faster. As shown in this experiment, when there are fewer state transitions, there
is less overhead incurred in differential processing. However this does not necessarily
mean that the number of state transitions should be as small as possible. If the number
is small and the automaton is compressed, then the probability of mismatching during
the byte sequence matching will be high, and that results in the creation of many more
new state transitions than needed for byte sequence matching.

3 Differential XML Parser with Optimized Automaton

To reduce the overhead mentioned in the previous section, we propose an approach
that optimizes the internal automaton by leveraging some knowledge known before
runtime as well as some runtime information. More precisely we leverage the
following information:

Fig. 1. Average processing time while changing the number of
state transitions

 Optimizing Differential XML Processing by Leveraging Schema and Statistics 267

• XML Schema
An XML schema provides static information available before execution starts. The
schema provides structural information as well as possible data values. By utilizing
the schema information, it is possible to create an automaton even before the parser
sees the target instance documents to be processed, and this results in the reduction
of the startup overhead from the previous section. In addition, this can also be used
for reducing the runtime overhead, since the schema gives the parser hints to
design the shape of the state transitions.

• Statistics
Statistical information is dynamic information obtained at runtime. By aggregating
a set of instance documents, the parser obtains knowledge about the structural
information as well as specific data values. This knowledge is similar to the kind of
information provided by the XML schema, but the statistical approach can be used
even if there is no schema, and it also provides more precise information than
given by a schema.

These two approaches can be used in a complementary fashion. XML schema
languages do not provide perfect information about instance documents. There are
two reasons. One is because the languages themselves have some limitations in
expressing all structures. These limitations are intentional to avoid too much
complexity. The second reason is that users cannot always write a perfect schema
before they have sufficient knowledge of the concrete documents. In addition, there
may be situations where no XML schema is provided. Therefore, when the XML
schema does not provide sufficient information, we can use the statistical approach. It
may take some time to aggregate sufficient statistical data, but this can be more
precise in expressing a class of instance documents compared to using an XML
schema. In the following sections, we describe these two optimization approaches in
more detail.

4 Optimization by XML Schema Language

This section describes an optimization approach leveraging the XML schema. Before
describing the optimization approach, let us give a quick overview of the XML
schema languages. An XML schema language is a formalization of the constraints,
expressed as rules or as a model of a structure, that apply to a class of XML
documents. Many schema languages have been proposed, such as XML DTD, W3C
XML Schema, and RELAX NG. W3C XML Schema is the most common language
and is widely used. Our approach does not depend on the specific XML schema
language, but here we focus on using the set of schema representations used in W3C
XML Schema.

The overall algorithm for optimizing state transitions is shown in Figure 1. First, our
XML parser extracts one element and judges whether or not the element has attributes
based on the schema information. When attributes exist, the parser fetches the attribute
information from the schema. If any attribute is specified as a fixed value, the parser
then executes Optimization 1 (Opt. 1), which is described in Section 4.1. Otherwise, it

268 T. Suzumura, S. Makino, and N. Uramoto

proceeds to the regular processing, which means that regular automaton creation is
occurring.

When the element has no attributes, or after the attribute processing has been
finished, the parser determines whether or not the element has child elements. If the
answer is “no”, processing continues with the next condition to check whether or not
that element has default values. If the answer is “yes”, the processing continues with
Opt. 2 as described in Section 4.1. If the answer is “no”, the regular processing will be
executed.

In the branch where the element has child elements, the parser fetches the structural
information from the schema. Then it branches on one of three paths depending on the
type of the complex type. If the complex type is xsd:choice, then processing proceeds
with Opt. 3 as described in Section 4.2. If the complex type is xsd:sequence, then
processing checks whether the maxOccurs attribute equals to the minOccurs attribute,
which leads to Opt. 4 as described in Section 4.2. If the schema provides a specific
ordering, then processing continues with Opt. 5. Next we will describe each
optimizations in detail.

Table 1. Excerpts from XML Schemas

Schema (1) Schema (2) Schema (3)
<xsd:simpleType

name=“schemaRecommendations”>
<xsd:restriction base=“xsd:string”>
<xsd:enumeration value=”A” />
<xsd:enumeration value=”B”>
</xsd:restriction>
</xsd:simpleType>

<xsd:element name=”X”>
<xsd:complexType>
<xsd:sequence>
<xsd:elementname=”A” xsd:type=”xsd:int”/>
<xsd:elementname=”B” xsd:type=”xsd:int”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="all">
 <xsd:all>
 <xsd:element ref="A" />
 <xsd:element ref="B" />
 <xsd:element ref="C" />
 </xsd:all>
</xsd:complexType>

Processing
an element

The element
has attributes ?

Type of
complex type

Fetching an structural
information

No

Optimization (3)

xsd:allxsd:choice

Fetching an attribute
Information

maxOccurs
== minOccurs ?

Optimization (4) Optimization (5)

Optimization (6)

Yes

Attribute
is fixed ?

Optimization (1)

Yes

Regular
processing

Yes No

The element has
child elements ?

No

xsd:sequence

Yes

Fetching next element
unless it reaches the end

of the document

The element has
default value ?

Regular
Processing

Optimization (2)

Fig. 2. Optimization Algorithms using XML Schema

 Optimizing Differential XML Processing by Leveraging Schema and Statistics 269

4.1 Fixed Value or Enumerations

The xsd:enumeration is a facet that allows for definition of a list of possible values for
the value of a specified data type. The example schema below shows a facet
constraining the values. This enumerated information can be used for automaton
creation.

I. Attribute (Opt. 1)
A fixed value of an attribute value is specified in the following schema fragment:

“ ” “ ” “ ”

This allows a user to create one integrated state transition rather than creating a list
of separate transitions.
II. Text Node (Opt. 2)
An element tag in the XML schema allows a user to write a fixed attribute. An
example would be <xsd:element name=“name” type=“xsd:string” fixed=“IBM” />
and a sample instance document would be <name> IBM </name>. Using this
schema, it is better to construct one integrated state transition containing one string,
i.e. “<name> IBM </name>” rather than having three state transitions, “<name>”,
“IBM”, and “</name>”.

4.2 Compositors

Compositors such as xsd:choice, xsd:sequence, or xsd:all give hints to formulate
optimized state transitions. However, such optimization tends to generate redundant
state transitions that will never be used at runtime. For example, when creating all
potential state transitions in advance using xsd:choice and xsd:all, the number of state
transitions will be too large. This is a tradeoff depending on how much memory the
users have available. Therefore this optimization should be controlled by some
threshold given by the configuration of the implementation, or certain state transitions
can be deleted by using a statistical approach at runtime, as described in Section 5.

• xsd:choice (Opt. 3)
The compositor xsd:choice defines a group of mutually exclusive particles. Only one
can be found in the instance document per occurrence of an xsd:choice compositor.
Since we know all of the possible elements that could appear in this schema fragment,
it is possible to create the state transitions at startup time. This can be done at
initialization time, not startup time.
• xsd:sequence: Explicitly creating an expanded-type automaton using the

maxOccurs and minOccurs attribute (Opt. 4)
Some data-driven XML documents have repeating elements. For example, an XML
document on customer data lists each customer’s personal information. If these
documents are expressed as one series of state transitions in a linear way, the
automaton will become large. We call this type an “expanded-type state transition”. In
order to deal with these kinds of documents, it is possible to create “loop-type state
transitions” in which backward state transitions are created to avoid the expansion of
the same type state transitions. Loop-type state transitions have advantage over
expanded-type ones in terms of memory consumption since the create automaton is
more compressed, but in terms of processing cost, expanded-type state transitions

270 T. Suzumura, S. Makino, and N. Uramoto

could become faster since state machines have fewer choices to next states at each
states. In order to determine which type of automaton is created, we can use the
maxOccurs attribute and the minOccurs attribute within the xsd:sequence structure.
Especially in the case the maxOccurs attribute equals to the minOccurs attribute, we
can explicitly create an expanded-type automaton.
• xsd:sequence: Specific ordering (Opt. 5)
The following schema specifies the order of the child elements of the X element,
saying that the A element should come first and B comes next. Suppose that an
instance document is “<X><A>AB</X>”. Then the initial automaton
would consist of 8 state transitions: “<X>”, “<A>”, “A”, “”, “”, “B”,
“”, and “</X>”. By leveraging the schema information, this automaton can be
optimized as 5 state transitions. “<X><A>”, “A”, “”, “B”, “”, reducing
the number of state transitions. Speaking more technically, if there are N child
elements and each child element has a text node (but not an empty element), then the
number of state transitions is 3 * N + 2, and after being optimized, this will be 2 * N +
1, reducing the number of states by N + 1.
• xsd:all (Opt. 6)
The compositor xsd:all is used to describe an unordered group of elements whose
number of occurrences may be zero or one. It is possible to create all of the state
transitions that cover all of the combinations of the specified elements.

5 Optimization Using Statistics

In this section, we propose an algorithm to optimize the automaton statistically
without considering any schema information. To determine which states are to be
merged, a transition probability is assigned for the execution of each state transition.

Table 2. Examples of Automaton

Automaton I

Automaton II

Automaton III

 Optimizing Differential XML Processing by Leveraging Schema and Statistics 271

Automaton I in Table 2 shows a sample automaton created after some parsing. For
each transition, a transition probability P is assigned. This is calculated by counting
the occurrences of that transition when the parser recognizes an XML element
corresponding to the transition label. Automaton II in Table 2 shows that when the
automaton recognizes the element <A>, the element always appears next (the
transition probability equals 1). The element <C> then appears in 90% of the
processed XML documents. In the remaining 10%, the element <D> is next.

An automaton with transition probabilities is defined by {S, Tr, P} where S is a set
of states, Tr is a set of transitions from one state to another state, and P is a set of
transition probabilities. The transition probability p(si, sj, l) is the probability of a
transition between states si to sj upon recognizing a level string l.

The automaton shown in Automaton III of Table 2 is specified as follows:

S = (s1, s2, s3, s4, s5)
Tr = (s1, s2, <A>), (s2, s3,), (s3, s4, <C>), (s3, s5, < D>))
P = (p(s1, s2, <A>)=1, p(s2, s3,)=1, p(s3, s4, <C>)=0.9, p(s3, s5, <D>)=0.1

It is natural to merge a sequence of states with the transition probability p=1 to
minimize the number of states. It is plausible to merge a sequence with high transition
probability (close to 1), but that may lead to an over-optimization that will cause

Table 3. Algorithm for optimizing the states of automaton

Suppose an automaton A = {S, Tr, P}.
For a list of states L = (s1, s2, …, sn),
[Step 1]
// pop a state s from the list L.
s = pop(L);
[Step 2]
if (si that satisfies p(s, si, l)) = 1 exists) then
 if (p(sj that satisfies p(si, sj, l') = 1 exists) then
 // sj is merged with si and removed from L and N
 delete (sj, L);
 delete (sj, S);

delete(p(si, sj, l'), P);
delete((si, sj, l'), Tr);
 // sets a new transition probability to from s to si
 add(p(s, si, append(l,l')), P), p(s, si, ll') = 1;.
 return to [Step 2]
 end if
else if (si that satisfies p(s, si, l)) > T exists) then
 if (sj that satisfies P(si, sj, l') > T exists) then
 // create a new state
 add(s', S), add(p(s, s', ll');
 add((s, s', ll), Tr);
 p(s, s', ll') = p(s, si, l)*p(si, sj, l');
 // sj is merged with si and removed from L and N
 delete (sj, L);
 delete (sj, S); delete(p(si, sj, l'), P); delete((si, sj,l'), Tr);
 return to [Step 2]
 end if
end if
[Step 3]
return to [Step 1]

272 T. Suzumura, S. Makino, and N. Uramoto

unnecessary recreation of merged states 1 . An algorithm which satisfies these
conditions is shown in Table 3.

Let's examine the algorithm using the automaton shown in Table 2. First, pop the
first state s1 from the initial list L = {s1, s2, s3, s4, s5} and set it as s (Step 1). Since the
transition probabilities p(s1, s2, <A>) and p (s2, s3,) equal 1, these two states are
merged (Step 2). The result of the merging process is shown in Automaton II of Table
2. In this figure, the state s3 is removed from the automaton and the label from s1 to s2

is changed to <A> . Next, Step 2 is iterated and s2 and s4 are merged, since p(s1,
s2,<A>) is 1 and p(s2, s4, <C>) is 0.9 (supposing that T = 0.8). In this case,
the state s4 is removed from the automaton and a new state s6 is created with the
transition probability p(s1, s4, <A> <C>) = 1 * 0.9 = 0.9. The result of this
merging process is shown in Automaton III of Table 2. Now the optimized
automaton has two paths, <A> and < D>, and <A> <C>. The states s2 and
s5 are not merged, since the transition probability does not exceed the threshold T.

After the merging process, there are no states that satisfy the conditions in Step 2, so
the process returns to Step 1 to set a new state for s2.

6 Performance Evaluation

This section describes the effectiveness of each optimization technique proposed in
this paper. To simplify the actual XML documents used in our experiment, we use the
following type of XML document so that the element c is repeated more than once
and C is a constant value:

<a>X<c>C</c><c>C</c>…<c>C</c>

In reality we used an XML document with the above form that represents a purchase
order containing a shipping address, a billing address, and one or more purchase items
with some properties such as a product name, quantity, price, and comment3. A
purchased item corresponds to the element c in the above example.

To evaluate the optimization techniques, we performed a series of experiments
using the following optimization techniques:

• No Optimization: The approach of the original Deltarser.
• Loop Expansion: Opt. 4 is applied.
• Concatenation: Opt. 5 is applied.
• Variable Fixation: Opt. 2 is applied.
• All Optimizations: Opt. 4, Opt. 5, and Opt. 2 are applied.

Note that in our experiments we did not measure the initial overhead as the basis of
the statistical information, but we can understand the performance improvements
based on the hypothesis that sufficient statistical information was obtained. Even with
the optimizations by using the statistics described in Section 5, the above experiments

1 Note that the parser parses any XML document correctly even in such case . It simply
means there is a cache miss.

2 For the sake of simplicity, the case in which a state to be removed has incoming links. In this
case, the state should not be removed.

3 To reviewers: We could show the sample document, but we omitted it to save space.

 Optimizing Differential XML Processing by Leveraging Schema and Statistics 273

are meaningful, since the same optimizations are applied. In order to measure the pure
cost of byte sequence matching and state transitions, we did not produce any SAX
events as in [1], so we can not compare our approach directly with Xerces and
Piccolo. However the processing costs to be optimized are the dominant factor
described in Section 2, and it is clear that the observed performance improvements are
also applicable when measuring the system as a SAX parser and deserialization
component in a SOAP engine.

The resulting automatons for each optimization are shown in Table 4. The columns
M, N, and L refer to the number of states, the total number of branches to be summed
up at each state, and the number of transitions with variables that need partial parsing,
respectively.

Table 4. Generated Automaton by Each Optimization Techniques and its properties

Optimization Formulated automaton M N L
No Optimization 4 20 3

Loop Expansion 8 15 3

Concatenation 3 10 3

Variable Fixation 4 20 1

All
Optimizations

2 4 1

For the evaluation environment, we used Windows XP SP2 as the OS, IBM JDK
1.4.2 as the Java Virtual Machine running on an IBM ThinkPad X41 2525-E9J (CPU:
1.6 GHz, RAM: 1536 MB). The comparisons were measured by the average
processing times for running 2,000 iterations after 10,000 warm-ups executions (to
exclude the JIT compilation time).

274 T. Suzumura, S. Makino, and N. Uramoto

The left graph shown in Figure 3 shows a comparison of average processing times
for one document. The x-axis is the number of the element item that appeared. The
element item corresponds to the element c in the previous example form and appears
more than once. The y-axis is the average processing time for one document. The
order of each optimization illustrated in the graph is “No Optimization” < “Loop
Expansion” < “Concatenation” < “Variable fixation” < “All Optimizations”
(Rightmost is the best). “Loop Expansion” obtains a performance improvement of
11.6% over “No Optimization” on average. “Concatenation” obtains a performance
improvement of 31.1% on average. “Variable Fixation” obtains an average
performance improvement of 26.2%. “All Optimizations” obtains has a performance
improvement of 73.2%. We confirmed that the proposed optimization techniques are
effective through the experiments. The right graph in Figure 3 is the same graph as
the left one, but focuses on a small document.

The left graph in Figure 4 shows the memory consumption. Clearly the worst case
is “Loop Expansion” and as the number of the element items grows, the memory
consumption gets worse. The right graph in Figure 4 shows the experimental results

Fig. 3. Comparison of each optimization techniques in average processing time

Fig. 4. Comparison of each optimization techniques in memory consumption

 Optimizing Differential XML Processing by Leveraging Schema and Statistics 275

except for “Loop Expansion”. The order of optimizations is “All Optimizations” <
“Variable Fixation” < “Concatenation” < “No Optimization”. “All Optimizations”
consumes around 3.2 times more memory than “No Optimization”, but considering
the improvement in processing time, this number is acceptable.

Finally, we can conclude that each of these optimization techniques was quite
effective, and the combination of multiple optimizations was especially effective in
improving processing time with an acceptable level of memory consumption.

7 Related Work

[2][3] focus on the optimization of deserialization using the notion of differential
processing. Meanwhile, our proposed XML parser is used not only for Web services
but also for general XML-based infrastructures, insofar as it fulfills the condition that
all of the processed XML messages are analogous to each other. Our optimization
technique using XML schema can be compared with the work in [4], which proposes
a parsing approach called schema-specific parsing. The validation of XML instances
against a schema is usually performed separately from the parsing of the more basic
syntactic aspects of XML. They posit, however, that schema information can be used
during parsing to improve performance, using what they call schema-specific parsing.
As mentioned earlier, statistical information can be complementary to the information
that we can not obtain only from the XML schema, so there would be some situations
where our approach has advantages. Currently there is no public implementation
available, but it would be worthwhile to compare the performance between our
approach and their approach.

8 Concluding Remarks

In this paper, we have presented an optimization approach to enhance XML parsing.
Our approach is based on the notion of differential processing under the hypothesis
that XML documents are similar to each other, and the proposed approach in this
paper enhances our previous work [1] to achieve higher performance by leveraging
static information as well as dynamic information. We use XML schema languages
for static information that can be used for optimizing the internal state transitions. At
the same time statistics for a set of instance documents are used as static information.
These two approaches can be used in complementary ways. The experimental results
show that all of the proposed optimization techniques are effective, and in particular
the combination of multiple optimizations is most effective, yielding a 73.2%
performance improvement compared to the original Deltarser. For future work, we
will apply the proposed optimization approach to differential deserialization for the
SOAP engine proposed in [2].

References

[1] Toshiro Takase, Hisashi Miyashita, Toyotaro Suzumura, and Michiaki Tatsubori. An
Adaptive, Fast, and Safe XML Parser Based on Byte Sequences Memorization, 14th

International World Wide Web Conference (WWW 2005)

276 T. Suzumura, S. Makino, and N. Uramoto

[2] Toyotaro Suzumura, Toshiro Takase, and Michiaki Tatsubori. Optimizing Web Services
Performance by Differential Deserialization, ICWS 2005 (International Conference on
Web Services)

[3] Nayef Abu-Ghazaleh and Michael J. Lewis, Differential Deserialization for Optimized
SOAP Performance, SC 2005

[4] Kenneth Chiu and Wei Liu, A Compiler-Based Approach to Schema-Specific XML
Parsing, WWW 2004 Workshop

[5] Florian Reuter and Nobert Luttenberger. Cardinality Constraint Automata: A Core
Technology for Efficient XML Schema-aware Parsers. www.swarms.de/publications/
cca.pdf.

[6] Nayef Abu-Ghazaleh, Michael J. Lewis, Differential Serialization for Optimized SOAP
Performance, The 13th IEEE International Symposium on High-Performance Distributed
Computing (HPDC 13)

[7] Evaluating SOAP for High-Performance Business Applications: Real Trading System, In
Proceedings of the 12th International World Wide Web Conference.

[8] Y Wang, DJ DeWitt, JY Cai, X-Diff: An Effective Change Detection Algorithm for XML
Documents, 19th international conference on Data Engineering, 2003.

[9] Markus L. Noga, Steffen Schott, Welf Lowe, Lazy XML Processing, Symposium on
Document Engineering, 2002.

[10] J van Lunteren, T Engbersen, XML Accelerator Engine, First International Workshop on
High Performance XML

[11] M. Nicola and J.John, “XML parsing: a threat to database performance”, 12th
International Conference on Information and knowledge management, 2003.

[12] W3C XML Schema, http://www.w3.org/XML/Schema
[13] RELAX NG, http://www.oasis-open.org/committees/relax-ng/
[14] Apache Xerces http://xml.apache.org/

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 277 – 288, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Optimized Web Services Security Performance with
Differential Parsing

Masayoshi Teraguchi1, Satoshi Makino1, Ken Ueno1, and Hyen-Vui Chung2

1 Tokyo Research Laboratory, IBM Research
1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502 Japan

{teraguti, mak0702, kenueno}@jp.ibm.com
2 IBM Software Group

11501 Burnet Rd. Austin, TX 78758-3415, USA
hychung@us.ibm.com

Abstract. The focus of this paper is to exploit a differential technique based on
the similarities among the byte sequences of the processed SOAP messages in
order to improve the performance of the XML processing in the Web Service
Security (WS-Security) processing. The WS-Security standard is a
comprehensive and complex specification, and requires extensive XML
processing that is one of the biggest overheads in WS-Security processing. This
paper represents a novel WS-Security processing architecture with differential
parsing. The architecture divides the byte sequence of a SOAP message into the
parts according to the XML syntax of the message and stores them in an
automaton efficiently in order to skip unnecessary XML processing. The
architecture also provides a complete WS-Security data model so that we can
support practical and complex scenarios. A performance study shows that our
new architecture can reduce memory usage and improve performance of the
XML processing in the WS-Security processing when the asymmetric signature
and encryption algorithms are used.

Keywords: Web Services, Web Services Security, Performance, XML parsing.

1 Introduction

Service-oriented architecture (SOA) is now emerging as the important integration and
architecture framework in today's complex and heterogeneous enterprise computing
environment. It promotes loose coupling so that Web services are becoming the most
prevalent technology to implement SOA applications. Web services use a standard
message protocol (SOAP [1]) and service interface (WSDL [2]) to ensure widespread
interoperability even within an enterprise environment. Especially for the enterprise
applications, securing these Web services is crucial for trust and privacy reasons and
to avoid any security risks, such as malicious and intentional changes of the messages,
repudiations, digital wiretaps, and man-in-the-middle attacks. The Web Services
Security (WS-Security) specifications were released by OASIS in March 2004 [3].

They describe security-related enhancements to SOAP that provide end-to-end
security with integrity, confidentiality, and authentication. As described in [7], WS-
Security processing is categorized into two major operations: cryptographic processing

278 M. Teraguchi et al.

Crypto

XML

Misc

(a) Asymmetric case
Integrity – RSA-SHA1
Confidentiality – 3DES & RSA

(b) Symmetric case
Integrity – HMAC-SHA1
Confidentiality – 3DES

6%

18%

76% 71%

19%

10%

Fig. 1. Analysis of performance contribution of WS-Security processing on a DOM based
implementation

and XML processing. In fact, we confirmed that these two operations contribute to the
performance overhead of WS-Security processing through a preliminary experiment on
a DOM based WS-Security implementation that we have developed using XML
Security Suite technology [4] as the basis. The left side of Figure 1 shows the XML
processing is the second constraint on performance when asymmetric algorithms are
used. The right side of Figure 1 shows the XML processing is the primary limitation on
throughput when symmetric algorithms are used.

An interesting characteristic of Web services is that all SOAP messages sent to a
service have the almost same message structure. Based on this characteristic, some
differential techniques that skip unnecessary XML processing, but which instead do
only byte matching, have been proposed. [8][9] focus on reducing the general XML
processing overhead (such as parsing, serialization, deserialization, and document tree
traversal). In [8], only one template that memorizes the optimized basic structure of
the message is constructed in advance. This template is used to extract only the
differences between the input byte sequence and the data stored in the template. [9]
also uses a single template, but it can be dynamically updated because the parser
context is also stored in the template and this allows partial parsing. However it is
difficult to apply these technologies to WS-security processing because WS-Security
support is out of the scope of [9]. On the other hand, [10] considers improvements of
the security-related XML processing (such as canonicalization and transformation). In
[10], a message is divided into fixed parts and variable parts. A finite state automaton
(“automaton” below) memorizes these parts as the basic structure of the message. But
since the parser context is not stored in the automaton, it is impossible to partially
parse the message or to optimize the data structure in the automaton.

In this paper, we address many of the problems in that previous works and describe
a novel WS-Security processing architecture based on [10]. The architecture divides
the byte sequence of a message into fixed parts and variable parts according to the
XML syntax in the message and stores them in an automaton. The automaton consists
of two parts: the states which store both the parser contexts and the WS-Security
contexts, and the transitions which store the corresponding parts. Since the processor
can extract the parser contexts from the automaton, it can resume a partial parsing and
can dynamically update the data in the automaton without invoking another processor
as in [10]. In addition, the data model in the automaton can be optimized even when
the same structure appears repeatedly in the byte sequence. We also provide a more
complete WS-Security data model relative to the one in [10], so we can support a

 Optimized Web Services Security Performance with Differential Parsing 279

Fig. 2. Architecture of WS-Security processing with differential parsing

wider variety of practical scenarios than [10] covers. In this paper, we also conduct a
performance study to evaluate memory usage and performance metrics. The
performance study shows that our new architecture can reduce memory usage but
retains almost same performance as the existing technology when the asymmetric
algorithms are used, even though our method is more practical and more flexible.

The rest of the paper is organized as follows. We describe the details of our new
architecture for WS-Security processing in Section 2. We introduce some related
work using differential techniques in Section 3. We present our performance study in
Section 4. Finally, we conclude the paper in Section 5.

2 WS-Security Processing with Differential Parsing

In this section, we describe a novel WS-Security processing architecture with
differential parsing. Figure 2 shows the architecture of WS-Security processing. The
architecture has two major components: the WSS preprocessor and the WSS
processor. The WSS preprocessor manages an automaton, which has a more flexible
and powerful internal data structure than the one described in [10]. It matches the byte
sequence of an input SOAP message against the data that was previously processed
and stored in the automaton, and constructs a new complete but still lightweight data
model for the WS-Security processing. The WSS processor secures the SOAP
message using the WS-Security data model. We can support a wider variety of
practical scenarios than [10] supports by our new data model.

2.1 Internal Data Structure in an Automaton

Given a new input SOAP message as a byte sequence, the WSS preprocessor invokes
its matching engine to match the byte sequence with the ones that were previously
processed and stored in the automaton, without doing any analysis of the XML syntax
in the message. If a part of the message (or the whole message) does not match any of
the data stored in the automaton, then the matching engine parses only that part of the
message and dynamically updates the automaton. When the matching engine parses
the byte sequence, it is subdivided into the parts corresponding to the XML syntax in
the message, according to the suggestion in [11]. Each divided part can be represented
as either a fixed part or a variable part in the internal data structure. Figure 3 shows
the internal data structure in the automaton. The data structure includes states (Si in

WS-Security Implementation

Preprocessor

AutomatonAutomaton
Refer Update

Matching Engine

Processor

WSS Processor

Signature
Processor

<Envelope>
…
<Security>
…

</Security>
…

<Body>
<EncryptedData>

…
</EncryptedData>

</Body>

<Envelope>
…
<Security>
…

</Security>
…

<Body>
<EncryptedData>

…
</EncryptedData>

</Body>

input output

WS-Security
Data Model

WSSObj

Sign
Enc

Ref
Ref

WSSObj

Sign
Enc

Ref
Ref

Transition
sequence

$value

Body

EncData

/EncData

/Body

Transition
sequence

$value

Body

EncData

/EncData

/Body

Encryption
Processor

Invoke

280 M. Teraguchi et al.

Fig. 3. The internal data structure in an automaton

Figure 3) and transitions (Tj in Figure 3). As shown in Figure 3, there is a difference
between in the automaton in [10] and in our new automaton. In [10], it can’t
efficiently handle the same structure that appears repeatedly in the input because it
doesn’t consider the XML syntax. In Figure 3, the elements appear repeatedly
but they are stored as different transitions, such as T1, T3, T5, and T7. On the other
hand, our new automaton can efficiently handle that. In Figure 3, the elements
are stored only in the transitions T2 and T4. In our new automaton, the state
corresponds with the internal state in a parser and stores the parser context for partial
parsing and the WS-Security context for construction of a WS-Security data model.
The transition stores one fixed part or one variable part. The transition also stores a
reference to the byte sequence, and the byte offset and the length of the snippet in
order to get the original byte sequence without any additional concatenation,
especially during encryption of the outbound message. The automaton doesn’t allow
two different states to have the same parser context and the same WS-Security
context. This reduces the total memory usage even when same data structure appears
repeatedly in the payload of a SOAP message. In Figure 3, we can merge two states
into S1 because there is no difference between the context after processing T1 and the
context after processing T4. When the context before the processing of a transition is
the same as after the processing, then the transition, such as T3, can be a self-loop.

2.2 Lightweight WS-Security Data Model

[10] uses a very simple data model for WS-Security processing. But this makes it
difficult to apply the data model to a wide variety of practical scenarios such as a
model including multiple XML signatures, because it consists only of pairs of keys
and WS-Security-relevant values. Therefore, we now define the more concrete and
flexible, but still lightweight, WS-Security data model shown in Figure 4. The data
model consists of two types of information: the WS-Security objects and the
transition sequences. A WS-Security object includes all of the necessary information
for the WS-Security processing done by the WSS processor. It is constructed in
parallel as the WSS preprocessor matches the byte sequence with the data in the
automaton. The logical structure of the WS-Security object is similar to the XML
structure in the SOAP message secured by WS-Security. A transition sequence is a
list of transitions that are traversed while matching the byte sequence with the data in
an automaton. The transition sequence is used as the data representation of the input
message instead of the byte sequence when the WSS processor secures the message
based on the WS-Security data model.

<A>foo1foo2foo3
T1 T2 T3 T4 T3

<A>foo1foo2foo3
T1 T5 T7

<A>foo1foo2foo3

Data structure in [10] Data structure in our automaton

T2 T3 T4 T6 T3T2 T4 T2 T4 T5

S0 S1 S2 S3 S4 S5 S6 S7
S0 S1 S2

T1 T2

T3

T4T5

T1 T2 T3 T4 T5 T6 T7

Input

<A>foo1foo2foo3
T1 T2 T3 T4 T3

<A>foo1foo2foo3
T1 T5 T7

<A>foo1foo2foo3

Data structure in [10] Data structure in our automaton

T2 T3 T4 T6 T3T2 T4 T2 T4 T5

S0 S1 S2 S3 S4 S5 S6 S7
S0 S1 S2

T1 T2

T3

T4T5

T1 T2 T3 T4 T5 T6 T7

Input

 Optimized Web Services Security Performance with Differential Parsing 281

Fig. 4. The data model for WS-Security processing

2.3 WS-Security Processing Flow in the WSS Processor

In this section, we describe how the WSS processor applies WS-Security to the input
SOAP message based on the WS-Security data model shown in the previous section.
We use the following scenarios to simplify our explanations:

(1) For the inbound message, the WSS processor decrypts the contents of the SOAP
body element first and then verifies the signature of the SOAP body element.

(2) For the outbound message, the WSS processor signs the SOAP body element first
and then it encrypts the contents of the SOAP body element.

2.3.1 WS-Security Processing Flow for the Inbound Message
For the inbound message, the WSS processor invokes a decryption processor to
decrypt the contents of the SOAP body element based on the WS-Security data
model. The encryption processor extracts the cipher value including the octets of the
encrypted data from the WSS object and invokes an encryption engine to decrypt the
cipher value and to get the byte sequence of the real content of the SOAP body
element. Then the encryption processor invokes its matching engine to match the
decrypted byte sequence with those stored in the automaton and update the transition
sequence for the subsequent WS-Security processing. The matching engine also
dynamically updates the automaton if necessary. Figure 5 shows the processing flow
of decryption for the SOAP body element. In Figure 5, the <EncryptedData> element
is replaced with the actual content of the SOAP body element (the <getQuote>
element).

Fig. 5. Processing flow of decryption

WS-Security object

WSSObj

Sign

SignVal KeyInfo

C14nMeth

Ref

DigestVal

Reference

BSTEnc

EncMethKeyId

EncData

EncMeth CipData

DigestMeth

<SignatureValue>

<Signature>

$value1

$value2

<Envelope>

</SignatureValue>

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

Transition sequence

Automaton
Decrypted data

Automaton
SignedInfo

Automaton
SignedObject

Transform

KeyInfo
DataRef

SignMethCipData

$value2

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

$value2

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

Transition sequence (Before)

Enc

DataRef

ABC...

EncData Decryption Processor

WSS Object

E
n

cryp
tio

n
E

n
g

in
e

<getQuote>
IBM

</getQuote>

M
atch

in
g

E
n

g
in

e

Automaton
Encrypted data

Automaton
Encrypted data

Transition sequence (After)

<Body>

</Body>

$value2

</getQuote>

<getQuote>

<Body>

</Body>

$value2

</getQuote>

<getQuote>

CipData

WSSObj

Refer

Update

Decrypted data

Replace

$value2

</getQuote>

<getQuote>

$value2

</getQuote>

<getQuote>

282 M. Teraguchi et al.

Fig. 6. Processing flow of digest value verification

After the decryption process is completed, the WSS processor invokes a signature
processor to verify the signature of the SOAP body element based on the WS-Security

data model. The signature verification process includes two steps: digest value
verification and signature value verification. Figure 6 shows the processing flow for
digest value verification. When the signature processor verifies the digest value, it
first invokes the matching engine to match the input transition sequence with the ones
stored in the automaton for the signed object, which means the SOAP body element in
this case. The internal data structure in the automaton described here is slightly
different from the one described in Section 3.1. This is because we avoid the same
byte matching twice and reuse the input transition sequence to improve its
performance. The state in the automaton for the signed object doesn’t store the parser
context since we don’t use a parser in this case. The transition stores a transition Ti in
the input transition sequence and another transition Ti

’ corresponding to Ti. Ti
’ is used

to construct a post-transform transition sequence.
If there is a mismatch, the signature processor invokes the transformers for the

corresponding transformation algorithm extracted from the WSS object, constructs
the post-transform transition sequence, and dynamically updates the automaton. If the
input matches, the signature processor can skip invocation of the transformers and
automaton update because we can get the same post-transform transition sequence as
would be constructed by the transformers. Figure 7 shows an example of
transformations. In Figure 7, we assume that transformer 1 handles XPath filter2 [5]
and transformer 2 handles the exclusive XML canonicalization [6].

When the post-transform transition sequences are constructed, the signature
processor fills in the values extracted from the WSS object into the variable part in the
transition sequence and serializes it to get a byte sequence. Then the signature
processor invokes a message digest to calculate a digest of the byte sequence and
verifies the digest with the digest value extracted from the WSS object.

The processing flow of signature value verification is basically the same as the
flow of digest value verification shown in Figure 6. Therefore, we omit its details,
though there are some differences in the figure: (1) the input transition sequence
includes a <SignedInfo> element, (2) the automaton is for the <SignedInfo> element,
(3) the transformers are changed to a canonicalizer, and (4) the message digest is
changed to a signature engine.

Sign

DigestVal

Signature Processor

M
atching

E
ngine

WSS Object

<Body……</Body>

Fill &
Serialize

Message
Digest

Check Ok

T
ransform

er 1

T
ransform

er 2

Mismatch

Update

Automaton
SignedObject

Automaton
SignedObject

Transition sequence
(Post-transform)

<Body>

</Body>

$value2

</getQuote>

<getQuote>

Transition sequence
(Pre-transform)

Ref

Transform Transform

<Body>

</Body>

$value2

</getQuote>

<getQuote>

DEF…

WSSObj

Match

Refer

 Optimized Web Services Security Performance with Differential Parsing 283

Fig. 7. Transformation example

2.3.2 WS-Security Processing Flow for the Outbound Message
For the outbound message, the WSS processor invokes a signature processor first to
sign the SOAP body element based on the WS-Security data model. The signing
process is a two-step process: digest value calculation and signature value calculation.
The processing flow of digest value calculation is basically the same as the flow of
digest value verification described in the previous section and details are not repeated.
The only difference is that the signature processor for the outbound message stores
the digest value in the WSS object after it invokes a message digester to calculate the
digest value of the SOAP body element. The processing flow of the signature value
calculation is also basically the same as the flow for signature value verification as
described in the previous section, so we again skip the details. The only difference is
that the signature processor for the outbound message stores the signature value in the
WSS object after it invokes the signature engine to calculate the signature value of the
<SignedInfo> element.

After signing, the WSS processor invokes an encryption processor to encrypt the
content of the SOAP body element based on the WS-Security data model. The
encryption processor extracts the original byte sequence of the content of the SOAP
body element from the WSS object and invokes an encryption engine to encrypt the
byte sequence. The WSS processor stores the encrypted cipher value in the WSS
object, wraps the encrypted octet with the <EncryptedData> element, and updates the
transition sequence for the subsequent WS-Security processing. Figure 8 shows the

Fig. 8. Processing flow of encryption

<S:Body>aaabbb</S:Body>

<S:Body>${text1}${text2}</S:Body>

<S:Body xmlns:S=...>${text1}</S:Body>

Input (A list of transitions)

Pre-transform transition sequence

Post-transform transition sequence

<S:Body xmlns:S=...>aaa</S:Body>

Serialized byte sequence

T1 T2-2 T2-3 T2-4 T2-5 T3 T4T2-1 T5

T’1 T’2-2 T’2-3 T’2-4 T’2-5 T’3T’2-1

S0 S1

T1

T5

T’1

T’5

S2

T2

T3

T4

T2

T’2

T’2
T’3

T’4

S4 T7

T8

T6

T6 T7 T8

T’4 T’5

Transformer 1 (XPath filter 2) : Subtraction of the element

Transformer 2 (Exclusive XML canonicalization)

Automaton for the signed object

Skip

$value2

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

$value2

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

Transition sequence (Before)

Enc

DataRef
ABC...

EncData

Encryption Processor

WSS Object

E
n

cryp
tio

n
E

n
g

in
e

ABC…

Transition sequence (After)
<Body>

</Body>

$value2

</getQuote>

<getQuote>

<Body>

</Body>

$value2

</getQuote>

<getQuote>

CipData

WSSObj

Encrypted data

Replace

$value2

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

$value2

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

<Envelope> </Envelope><getQuote> </getQuote>

Original byte sequence of a message

Store

284 M. Teraguchi et al.

processing flow of encryption of the SOAP body element. In Figure 8, the content of
the SOAP body element has been replaced with the <EncryptedData> element.

3 Related Work

General Web cache and our processor share some things in common. For instance,
they both store multiple received messages for later reuse. Usually Web cache stores
the entire request URL and query string as cache key, which is highly inefficient in
terms of memory usage. Only one-byte difference between messages tends to create
separate cache entries, each representing the entire message. On the other hand, our
processor divides a message into multiple pieces and common pieces are stored only
once (merging commonalities between messages and collapsing repeating structure in
one message), leading to an efficient data structure.

Some differential techniques, especially byte matching, have been proposed to
avoid extensive XML processing in recent years. [8] assumes that a receiver knows in
advance the structure of the SOAP messages (including the number of white spaces)
to be exchanged. The receiver has to divide the message into two parts based on the
XML syntax: fixed parts corresponding to element tags and variable parts
corresponding to text nodes and attribute values, and hold them as a template before it
processes the message. However this means that the entire message processing fails
whenever any part mismatches the template, because the processor can’t dynamically
update the template. In addition, the processor can’t hold more than one template at
the same time.

In [9], an XML message was divided into fixed-length pieces. The pieces (P1, …,
Pn) are held as a template. The template also stores the parser context at each
boundary of the portions so that the processor can resume a partial parsing by using
the parser context between Pi-1 and Pi when the input byte sequence doesn’t match
with Pi. The processor can terminate the partial parsing and restart byte matching if
the parser context becomes the same as the one already stored in the template.
However it is difficult to reduce the number of pieces even when the same data
structure appears repeatedly in the payload of the message. In addition, the processor
holds only one template, since the mismatched portions are replaced with the ones
generated during partial parsing.

Similar to [8], [10] divides a message into fixed parts and variable parts. These parts
are held in an automaton. The advantage of this approach is that the processor can hold

Table 1. The differences in the related work, where (a) is dynamic template generation, (b) is
partial parsing, (c) is holding multiple templates, (d) is distinguishing between fixed parts and
variable parts in the data model, and (e) is data model optimization

 (a) (b) (c) (d) (e)
Web cache yes no yes no no

[8] no no no yes yes
[9] yes yes no no no

[10] yes no yes yes No
This paper yes yes yes yes yes

 Optimized Web Services Security Performance with Differential Parsing 285

multiple message templates in the automaton. However since the parser context is not
stored, it is impossible to optimize the data structure in the automaton.

This paper addresses many of the problems in these systems. Our processor divides
the message into fixed parts and variable parts according to the XML syntax in the
input byte sequence and holds them in an automaton. The automaton also stores parser
contexts. Therefore, the processor can resume a partial parsing and dynamically update
the data in the automaton without invoking another processor as in [10]. In addition,
the data model in an automaton can be optimized even when the same structure
appears repeatedly in the byte sequence. Table 1 shows a summary of the differences
in the related work, where Web cache can be regarded as holding multiple templates,
each containing one large fixed part which representing the entire message..

4 Performance Study

This section describes a performance study that we conducted to evaluate the memory
usage and performance of our differential technique. Section 4.1 presents the
experiment in terms of memory usage and Section 4.2 shows the experiment in terms
of performance.

4.1 Experiment in Terms of Memory Usage

We conducted an experiment to examine how the memory required for our data
model differs from the memory needed for the data model in [10] on the service
provider. We ran all of the tests on a ThinkPad1 T42 (Intel Pentium2 M 745 1.8 GHz,
1.5 GB RAM, Windows3 XP Professional Edition). Five different services were used

Fig. 9. Memory usage comparison between our data model and the data model in [10]

in the experiment. Then we prepared five different messages per service (for a total of
25 different messages). Each message included the same XML structure that appeared
repeatedly in the payload of the SOAP body element. We sent them three times to the
services with a Web services client. Therefore, the client sent a total of 75 messages

1 ThinkPad is a trademark of Lenovo in the United States, other countries, or both.
2 Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or

both.
3 Windows is a trademark of Microsoft Corporation in the United States, other countries, or

both.

100

150

200

250

300

350

400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
Number of messages

M
em

or
y

fo
ot

 p
rin

t
(M

B
)

Our data model
Data model in [10]

114

116

118

120

122

124

126

128

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Number of messages

M
em

or
y

fo
ot

 p
rin

t
(M

B
)

Our data model

Data model in [10]

1st iteration 2nd iteration 3rd iteration1st iteration 2nd iteration 3rd iteration

Message size = 134KBMessage size = 6KB

150MB4MB

286 M. Teraguchi et al.

Message size = 6KB

0

20

40

60

80

100

120
es/qer:tuphguorh

T
)retteb

sirehgih(

DOM-based method

The method in [10]

Our method

Fig. 10. Performance comparison between our method and the method in [10]

to the services. Figure 9 shows the experimental results. Figure 9 indicates that our
data model can save about 150 MB of memory when sending the 13 KB of message
though it required slightly more memory when sending the 6KB of message.

4.2 Experiments in Performance Number

We conducted an experiment to compare the performance of our method and the
performance of the method in [10] on the service provider. We ran all of the tests with
on an IBM xSeries4 365 (Intel Xeon5 MP 3.0 GHz, 4-way, 4 MB L3 Cache, 8 GB
RAM, with HyperThreading disabled, on Windows Server 2003 Enterprise Edition).
Figure 10 shows the experimental results when asymmetric signature and encryption
algorithms are used and the 6KB of message is received on the service provider. In
the graph, the x-axis is the kind of implementation (DOM-based method, the method

DOM-based method

The method in [10]

Our method

Fig. 11. Path length comparison between our method and the method in [10]

in [10], and our method) and the y-axis is throughput (requests/sec). Since the XML
processing constitutes a second greater portion of the total WS-Security processing in

4 IBM and xSeries are trademarks of International Business Machines Corporation in the

United States, other countries, or both.
5 Xeon is a trademark of Intel Corporation in the United States, other countries, or both.

 Optimized Web Services Security Performance with Differential Parsing 287

Asymmetric case
Integrity – RSA-SHA1
Confidentiality – 3DES & RSA

4%
10%

86%

Crypto

XML

Misc

Fig. 12. Analysis of performance contribution in our method

the case using asymmetric algorithms, our method makes a contribution to
performance improvement. Figure 10 also indicates that performance number of our
method is faster than the method in [10], even though our method is more practical
and more flexible.

We also conducted an experiment to examine the path lengths required for our
processing method compared to the path lengths needed for the processing method in
[10]. We ran all of the tests on an IBM xSeries 365 (Intel Xeon MP 3.0
GHz, 4-way, 4 MB L3 Cache, 8 GB RAM, with HyperThreading disabled, on
Windows Server 2003 Enterprise Edition). In the experiment, we first used an
internally developed tool to get a call graph. Then we analyzed the path lengths
calculated from the call graph. Figure 11 shows the experimental results. Figure 11
indicates that our method can shorten path lengths required for the XML processing,
compared with the method in [10].

Finally we conducted an experiment to analyze the performance contribution in our
method. Figure 12 shows the experimental results. Figure 12 represents that our
method can reduce the percentage of the XML processing in the while WS-Security
processing compared with the percentage of the XML processing shown in the
asymmetric case in Figure 1.

5 Concluding Remarks

In this paper, we have presented a new architecture for WS-Security processing with
differential parsing to improve the XML performance in the WS-Security processing.
In our architecture, the WSS preprocessor matches the byte sequence of an input
SOAP message with the data that were previously processed and stored in an
automaton. If the byte sequence completely matches with the data in the automaton, it
means that we can skip all unnecessary XML processing in the WS-Security
processing. On the other hand, if there is any mismatch, the processor can partially
parse only the unmatched parts of the byte sequence of the message because the
parser contexts are also stored in the automaton. While parsing the parts, it divides
into the fixed parts and the variable parts according to the XML syntax in the
message, and updates the automaton with the divided parts. We also proposed a more
complete and more flexible data model for WS-Security processing so that we could
support a wider variety of practical scenarios that [10] does not cover.

The performance study in terms of memory usage showed that our architecture
requires less memory than needed for the architecture described in [10]. The

288 M. Teraguchi et al.

performance study in terms of performance number also showed that there is not a
large difference between the performance of our architecture and the architecture
described in [10] when the asymmetric signature and encryption algorithms are used,
though the internal data structure in the automaton is more flexible and the data model
for WS-Security processing is more complete.

References

1. Simple Object Access Protocol (SOAP) Version 1.2, http://www.w3.org/TR/soap12/
2. Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
3. Web Services Security: SOAP Message Security 1.1, http://www.oasis-open.org/

committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
4. XML Security Suite, http://www.alphaworks.ibm.com/tech/xmlsecuritysuite
5. XML-Signature XPath Filter 2.0, http://www.w3.org/TR/xmldsig-filter2/
6. Exclusive XML Canonicalization Version 1.0, http://www.w3.org/TR/xml-exc-c14n/
7. Hongbin Liu, Shrideep Pallickara, and Geoffrey Fox, Performance of Web Services

Security, Technical Report, 2004, http://grids.ucs.indiana.edu/ptliupages/publications/
WSSPerf.pdf

8. Yoichi Takeuchi, Takashi Okamoto, Kazutoshi Yokoyama, and Shigeyuki Matsuda, "A
Differential-analysis Approach for Improving SOAP Processing Performance," The 2005
IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE'05),
pp. 472-479, 2005

9. Nayef Abu-Ghazaleh and Michael J. Lewis, "Differential Deserialization for Optimized
SOAP Performance," ACM/IEEE SC 2005 Conference (SC'05), pp. 21-31, 2005

10. Satoshi Makino, Michiaki Tatsubori, Kent Tamura, and Yuichi Nakamura, "Improving
WS-Security Performance with a Template-Based Approach," IEEE International
Conference on Web Services (ICWS'05), pp. 581-588, 2005

11. Toshiro Takase, Hisashi MIYASHITA, Toyotaro Suzumura, and Michiaki Tatsubori, "An
adaptive, fast, and safe XML parser based on byte sequences memorization," The 14th
international conference on World Wide Web (WWW 2005), pp. 692-701, 2005

Web Browsers as Service-Oriented Clients Integrated
with Web Services

Hisashi Miyashita and Tatsuya Ishihara

IBM Research, Tokyo Research Laboratory, Japan
{himi, tisihara}@jp.ibm.com

Abstract. Web browsers are becoming important application clients in SOAs
(Service-Oriented Architectures) because more and more Web applications are
built from multiple Web Services. Therefore incorporating Web Services into
Web browsers is of great interest. However, the existing Web Service frameworks
bring significant complexities to traditional Web applications based on DHTML
since such Web Service frameworks use RPC (Remote Procedure Call) or a
message-passing model while DHTML is based on a document-centric model.
Therefore Web application developers have to bridge the gaps between these two
models such as an Object/XML impedance mismatch.

In our novel approach, in order to request Web Services, the application pro-
grams manipulate documents with uniform document APIs without invoking
service-specific APIs and without mapping between objects and XML docu-
ments. The Web Service framework automatically updates the document by ex-
changing SOAP messages with the servers.

We show that in our new framework, WebDrasil, we can request a service with
only one XPath expression, and then get the response using DOM (Document
Object Model) APIs, an approach which is efficient and easily understood by
typical Web developers.

1 Introduction

Service-Oriented Architecture (SOA) is an important technology to coordinate services
across over multiple divisions in enterprise systems. These days, SOA on the client
side is receiving attention for delivering services to end users [1], and many client
frameworks are now supporting SOAs. For example, the Flex Framework by Adobe,
the Eclipse based Rich Client Platform contributed by IBM, and the Mozilla Web
browser [2] now support Web Services for SOA. Such a client having a close affin-
ity to SOA is called an SOC (Service-Oriented Client) [1].

Of these clients, the Web browser is the most important platform for SOC. Recently,
many websites or Web applications are combined using mash-up technology [3]. For ex-
ample, HousingMaps (http://www.housingmaps.com) combines craigslist and
Google maps and provides a totally new service to search for properties. This shift was
triggered by the breakthrough technology, Ajax [4], which supports asynchronous ac-
cess to distributed Web Services. Ajax allows a Web browser to be an intelligent client
for Web Services by greatly improving the user experience. For example, Google pro-
vides Map and Calendar, and is now preparing a spreadsheet service by using Ajax.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 289–301, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

290 H. Miyashita and T. Ishihara

In line with the importance of Web browsers in service computing, supporting Web
Services on Web browsers is becoming vital for SOA.

However, the existing Web Service frameworks such as JAX-WS (formerly JAX-
RPC) [5] and Mozilla Web Service [2] do not fit with the programming model of Web
browsers. These frameworks are designed not for Web browsers to present data for
Web Services, but for native languages (JavaScript and Java) to easily access SOAP
messages. Therefore, such frameworks are built on top of RPC (Remote Procedure
Call) or a message-passing model. In contrast, Web browsers use a document-centric
model. For example, in DHTML (Dynamic HTML) applications on Web browsers,
scripts in the documents manipulate the in-memory tree structure, the DOM (Document
Object Model), to change the presentation. Since SOAP messages are now widely used
as document-literal instead of RPC/encoded 1, they are viewed as XML documents,
not as objects in Object-Oriented (OO) Programming. Therefore, introducing existing
Web Services frameworks (from the OO world) into Web browsers (the XML world)
doubles the gaps between these two models (as shown in Fig.1).

Object/XML
impedance
mismatch

Fig. 1. The gaps by Web Services frameworks on Web browsers Fig. 2. Our approach

1.1 The Gaps in the Web Services Frameworks

Let us consider examples to clarify the gaps in a framework. In Fig. 3, we show a
JavaScript code fragment that sends a request to Amazon.com Search Web Service
on Mozilla using an RPC model. In this example, we construct an searchRequest
object and then call the KeywordSearchRequest API to request the service. In
contrast, to show the search results using DHTML, we write something like Fig. 4 using
a document model. This code converts the result object to an HTML document, and
inserts it into the DOM.

The gaps between the RPC and document models are twofold: 1) Non-uniform vs.
uniform APIs and 2) Object/XML impedance mismatch [7].

For 1), in the RPC model, we invoke a service-specific API,
KeywordSearchRequest. The names and arguments of such APIs differ from ser-
vice to service. By comparison, in the document model, we use the uniform APIs, namely
DOM APIs, to show the results. These same APIs can be used for services of any type.

1 WS-I profile [6] does not support RPC/encoded for interoperability.

Web Browsers as Service-Oriented Clients Integrated with Web Services 291

var searchRequest = new Object();
searchRequest.keyword=value;
searchRequest.page="1";
searchRequest.mode="books";
...
// proxy is Web Service Proxy object
proxy.KeywordSearchRequest(

searchRequest);

Fig. 3. Issue an Amazon search request
(an RPC model)

var e = document.getElementById(’resultid’);
for (i = 0; i < result.Details.length; i++){

e.innerHTML +="<p>"+
result.Details[i].ProductName+"</p>";

}

Fig. 4. Show the search results in DHTML (a
document model). The search results are stored
in the result variable.

For 2), when we create an object to invoke a service, we have to manually convert
the resulting object into a document written as HTML. To deal with this conversion,
the developers have to understand how such language-native objects are mapped from
SOAP messages. In other words, they have to know how the result.Details[i].
ProductName object is translated from the ProductName element in the SOAP
response that actually looks like:

... <ProductInfo>
<Details url="...">
<Asin>A00001O1XK</Asin>
<ProductName> SOA Handbook </ProductName> ...

</Details>
... </ProductInfo> ...

It is quite difficult for developers to understand how XML documents are mapped
to language-native objects and how such objects should be converted to XML docu-
ments for presentation. In this example, it is not clear why result.Details[0].
ProductName is correct, but result.ProductInfo.Details.
ProductName is not correct. That depends on the specification of the Web Service
framework.

As is shown by this example, in bridging the gaps between these two models, SOC
application developers have to comprehend both programming and data models, which
substantially increases development and maintenance costs for Web applications [7].

1.2 Document-Based Web Service Framework

We address the problems by introducing a new Web Service framework to integrate
the programming models. In our approach, we can request services by manipulating
documents (Fig. 2). For example, we can issue the same request to the Amazon.com
Web Service with an XPath expression:

var request = webService.selectSingleNode(
"./ws:Query[1]/ws:Request/aws:KeyWordSearchRequest\\
[keyword=’keyword’ and page=’1’ and mode=’books’ ...]",
namespaces);

Unlike existing Web Service stacks, our framework does not impose an object-XML
mapping on the client applications. Rather, the client applications concentrate on ma-
nipulating documents by using uniform interfaces such as DOM and XPath. Our client
framework translates such document manipulations into SOAP message exchanges, and

292 H. Miyashita and T. Ishihara

then caches the requests and responses in the DOM tree appropriately. Thus, we store
the results in XML documents, not in objects. This model is completely aligned with
DHTML, and free from the Object/XML impedance mismatch. Actually, we can even
directly present the responses from the XML by setting the styles with CSS without
any XML transformation. Of course, we can directly extract data from the response
with XPath. For example, we can access all the ProductName elements in the previ-
ous example by specifying something like:

var productNames = response.selectNodeList(
".//Details/ProductName", namespaces);

By unifying the programming models of Web Services and Web browsers, we can
achieve seamless integration between them. Developers can seamlessly deal with the
usual Web applications and Web Service clients rather than fighting with various APIs
introduced by individual Web Services.

In addition, in our approach we can efficiently integrate Web Service technology
with powerful and successful Web standards such as HTML, XSLT, CSS, and XForms.
Web Service solution providers can rely on the power of these technologies when they
design service-specific XML messages. With reduced effort, they can build stylish and
attractive clients by transforming the DOM tree with XSLT, defining styles with CSS,
and using XForms to create forms.

The rest of this paper is organized as follows. In Section 2, we introduce the archi-
tecture design principles of our novel Web Service client framework. In Section 3, we
present our Web Service client implementation named WebDrasil, and use some ex-
amples to show the efficiency of our client Web Service programming model. Finally,
Sections 4 and 5 provide related work and our conclusions, respectively.

2 Web Service Architecture Based on Web Browsers

We propose a novel framework for Web Services suitable for Web Browsers that re-
moves the gaps between DHTML applications and the existing SOAP stacks. Rather
than explicitly sending SOAP messages or invoking new interfaces (typically generated
from WSDL), we simply access a tree with a uniform API such as DOM. We show the
mechanism in Fig. 5:(1) First, we insert a request message into a tree; (2) Try to get
the result by accessing the location where the response message is to be inserted into
the tree; (3)–(5) The client framework automatically exchanges the required messages
with the server(s) and inserts the response into the tree; (6) Finally, we can access the
response.

Let us explain these steps by using an example. Suppose we want to retrieve the
cached page of http://www.ibm.com via the Google Web Service. In our frame-
work, as Step (1), we place the request shown in Fig. 6 into the DOM tree by using
the DOM or XPath APIs (the details are discussed in Section 2.1). In this example,
we insert the request under the ws:Query element, as shown in Fig. 7. In Step (2),
we access the DOM tree where the response message will be stored, that is, under the
ws:Response element, as shown in the left panel of Fig. 8. In Step (3), when the
client framework detects the changes in the DOM tree, the framework translates the
message under the ws:Request element into a SOAP message and then sends it to

Web Browsers as Service-Oriented Clients Integrated with Web Services 293

the appropriate endpoint by using the WSDL definition of the service. In Step (4), the
framework receives the SOAP response. In Step (5), the framework places the response
from the SOAP message into the DOM tree, as shown in the right panel of Fig. 8. In
Step (6), we find the required information in the return element, which should be the
cached page of http://www.ibm.com. Notice that Steps (3)–(5) are automatically
processed by the framework. Users can retrieve the result as though it already existed
in the tree with this mechanism.

Client

WebService
Server

DOM
User

Program
(1) Insert a request

message

(2) Try to access
 a response message

(4) Receive a SOAP
response(5) Insert the response

(6) Get the response

Client Framework

SOAP
message

SOAP
message

(3) Create and send a SOAP message

Fig. 5. The Mechanism of our Web Service Client Framework

<gws:doGetCachedPage xmlns:gws="urn:GoogleSearch">
<key xsi:type="xsd:string">0000</key>
<url xsi:type="xsd:string">http://www.google.com/</url>

</gws:doGetCachedPage>

Fig. 6. A request message of doGetCachedPage

In the rest of this section, we explain the details of our architecture. In the next
subsection, we explain how we specify requests from a Web Service. We continue by
discussing synchronous/lazy/asynchronous update modes and our cache mechanism.
Finally, we discuss response transformations that help user programs be independent of
the details of the Web Service interfaces.

2.1 Querying Services

In order to request a Web Service, we have to prepare a SOAP message from the request
data, which we call a query in our framework (Fig. 5 (1)). That is, instead of invoking a
method, we do a query to request a service.

We use the following steps to request a service: (a) create a SOAP body part for the
query; (b) construct a SOAP envelope from the service specification and make a SOAP
message by putting the body in the envelope; (c) select an endpoint for the service and
send the SOAP message to it.

294 H. Miyashita and T. Ishihara

ws:Query
ws:WebService

ws:WebService
ws:Query

ws:Request

gws:doGetCachedPage
key url

Fig. 7. The request message in the DOM.
The ws:WebService, ws:Query, and
ws:Request elements are introduced just
for bundling messages in the DOM, where
ws is a prefix of the reserved namespace for
Web Service.

ws:WebService
ws:Query

ws:Request

gws:doGetCachedPage

key url
ws:Response

ws:WebService
ws:Query

ws:Request

gws:doGetCachedPage
key url

ws:Response

gws:doGetCachedPageResponse

return

Fig. 8. From the ws:Response element, we ob-
tain the response message from the Web Service

Another approach is to use a string to specify a query. Considering the WWW ar-
chitecture, all resources are specified by a URI, which is just one string, which greatly
contributes to simplifying the interface of the WWW. If we can describe a request in
one string, our query model is also simplified as well.

For this purpose, we introduce an XPath query model. Instead of directly construct-
ing an XML message, we specify an XPath expression that can be interpreted as a
request message. Let us consider again the example shown in Fig. 6. In this example,
the essential information to request the service is that the key is 0000 and the URL is
http://www.google.com/. Therefore, we can specify these two in the following
XPath expression.

doGetCachedPage[key=’0000’ and url=’http://www.google.com/’]

By extracting the type information from the WSDL definition, we can construct the re-
quest message in Fig. 6 from the above expression. That is, “xsi:type” attributes are
automatically added by the WSDL definition.

More formally, this process requires translations from an XPath expression to an
XML tree, which involves some challenging issues. Later, we explain our sample im-
plementation in Subsection 3.2, and discuss the advanced topics in Section 5. Here,
suffice it to say that we can convert some XPath expressions into XML trees, as long as
they conform to the following restrictions:

– Every name test has a concrete QName (e.g., * or // is not allowed).
– All predicates are of the form:

[PathExpr = Literal and . . . and PathExpr = Literal],

where the notations PathExpr and Literal are as defined in the XPath specifica-
tion [8].

For Steps (b) and (c), since the service endpoints are described in WSDL, we can
automatically generate a SOAP envelope to transfer the data, and then send the SOAP
message to the specified endpoint.

Web Browsers as Service-Oriented Clients Integrated with Web Services 295

2.2 Update Mode

Since SOAP communication takes considerable time, it is critical for applications to
determine when we should send messages and when we should wait for the response.
In our framework, we have the following three update modes for the timing of requests,
which determines when we process requests for services (see Fig. 9).

Synchronous. Start the request when the request part is prepared in the DOM tree and
wait until it finishes.

Lazy. Defer the request until the response part is accessed.
Asynchronous. Start the request when the request part is prepared in the DOM tree

but do not wait for the completion at that time. When the response part is accessed,
block the execution until the response is available.

Let us explain the differences of these three update modes by using examples. We sup-
pose that we have just put a request message in the DOM tree (Step (1) in Fig. 5).
In synchronous mode, we call the send(element) API, where element points
at the ws:Request element in Fig. 7. Then the execution is blocked until the
ws:Response part in the DOM (Fig. 8) is updated with the response message. In
lazy mode, we do not have to explicitly call send(element). Instead, we can di-
rectly access the ws:Response element. At that time, if we have not received the
response message, the access is blocked until the ws:Response part is updated. In
asynchronous mode, we explicitly call send(element). But the execution is not
blocked at that time. Then when we access the ws:Response element and if we have
not received the response message, the access will be blocked as in the lazy mode.

Call send() API

Fig. 9. The interaction patterns of the three update modes

Of these approaches, the lazy update has a clear merit for the simplicity of the pro-
gramming model, because we do not have to use any extra API call such as send().
Therefore, the lazy update is the default mode in our framework.

For the other options, we have to explicitly specify when the request part in the
DOM has been prepared. However, the asynchronous update is the preferred option
considering the users’ experience and is aligned with the Ajax style.

296 H. Miyashita and T. Ishihara

2.3 Cache Mechanism

Since the numbers of request and response messages are unlimited, we naturally require
cache mechanisms in our framework, which stores request and response trees and evicts
entries appropriately when the total cache size reaches the set limit.

We cache the response data associated with the corresponding request data. That
means we assume the same request data always returns the same response data. This
assumption is justified because a Web Service is usually designed in a stateless fashion,
i.e., a request message contains all of the information required to invoke a service.

Note that we do require a “pin” mechanism for our cache system for lazy or asyn-
chronous update modes. We have to pin the request data to prevent its eviction until the
updating operation for the response data has been completed.

2.4 Response Transformation

The raw response data from a Web Service does not usually fit the requirements for
browsing. In such cases, transforming the response data is desirable for client-side pro-
grams. This style agrees with separation of concerns. Ideally, the client-side programs
concentrate on presentation issues and delegate the other parts to the transformation
program. In addition, this architectural style is robust against changes of the Web Ser-
vice interfaces. The design goal is that we will only have to update the transformation
programs and that such changes will not affect the client user programs.

XSLT and XQuery are good candidates for performing this kind of XML transforma-
tion. In configurations of our client framework, we can specify these languages for each
service. If we can apply different transformations to different locations in the DOM
tree, it may be helpful for various presentations. For example, we may want to present
stock prices differently in text and in a table, and this mechanism is convenient in such
a case. The client framework automatically applies the specified transformations to the
response messages before storing them in the DOM tree.

Otherwise, as an alternative design choice, we could apply such transformations to
the entire DOM tree. This choice may be convenient for tightly integrated presentations,
since each service query can affect the whole presentation. However, we have to care-
fully organize the transformations and user programs in order to avoid conflicts with
each other.

3 Implementation

We implemented a Web Service framework integrated with Web browsers, WebDrasil,
in accord with the architecture described in Section 2. In Fig. 10, we describe the com-
ponents of WebDrasil. Our WebDrasil has two DOM trees: 1) a Web Service DOM
representing the Web Service request and response messages, which is constructed us-
ing client user programs written in JavaScript via standard APIs and which is transpar-
ently updated with response messages; and 2) an HTML DOM representing an HTML
document, which is provided by a special Web browser supporting the W3C DOM pro-
gramming [9].

Web Browsers as Service-Oriented Clients Integrated with Web Services 297

3.1 Applications on WebDrasil

A DHTML application supporting a Web Service is executed by following these steps
(see Fig. 10): (1) WebDrasil sends the URI to the server to retrieve the application doc-
ument; (2) The corresponding document is received from the server. The HTML DOM
is created by parsing the HTML part of the retrieved document, and the JavaScript en-
gine loads the received JavaScript code; (3) WebDrasil renders the constructed HTML
DOM; (4), (5) If any event caused by user input is detected, the JavaScript function
associated with that event is called; (6) To use a Web Service API, the Web Service
DOM is updated by a JavaScript function using the DOM APIs, or by XPath functions;
(7) When updating a Web Service DOM, a SOAP request is created and sent to the
Web Service server; (8) Then a SOAP response message is sent to WebDrasil and the
Web Service DOM is updated by examining the SOAP response message; (9),(10) The
elements of the Web Service DOM that are necessary for updating the HTML DOM
are retrieved, and the HTML DOM is updated based on them; (11) Finally WebDrasil
renders the updated HTML DOM, and dynamically presents the changes.

(9) Get the response(6) Update by DOM API
 or XPath

(5) Call JavaScript function

Web Service
Server

(7) Request(8) Response

JavaScript Engine

Web Service DOM

HTML DOM

Server

(1) URI

Rendered
HTML

(4) User Input
(3), (11) Rendering

(10) Update by DOM API

(2) JavaScript

(2) HTML

Fig. 10. The components of WebDrasil

���������	�
�����

����������������

��������	�
����

Fig. 11. Mashed-up Google Web Search

3.2 Evaluation of XPath

In order to query services with XPath, WebDrasil has a special XPath interpreter. When
our interpreter successfully matches the given XPath expression with the DOM tree,
it simply returns the matched part. Otherwise, our interpreter splits the XPath expres-
sion into location steps. For each location step, if the current context position is in a
ws:Request element, our interpreter checks whether or not the matched node ex-
ists. Note that there is at most one matched node when the XPath expression obeys the
restrictions in Subsection 2.1. If it does not exist, we create a new node from this lo-
cation step. After evaluating all of the steps, we have an updated DOM tree that has a
node that matches the given XPath expression.

298 H. Miyashita and T. Ishihara

We need to maintain the validity of the Web Service DOM after this update process.
Our interpreter checks the validity of the updated DOM tree by using the schemas in
the WSDL definitions. If it is not valid, our interpreter cancels the entire update.

3.3 JavaScript Examples for a Web Service

In Table 1, we show examples of JavaScript code for updating the Web Service DOM
and invoking a Web Service. Even though these code samples include all of the essential
steps to use the Web Service, they are written by using the XPath APIs, without using
the service-specific interfaces.

The JavaScript code for updating ws:Request element by using the XPath API
is Example 1 in Table 1. The request is created in the Web Service DOM as shown in
Fig. 7. The ws:WebService is the root node of the Web Service DOM, and has the
URL for the WSDL file as its attribute. The WSDL file is used for checking whether or
not the DOM tree is valid. A node like ws:Query represents each query of the Web
Service. Such a node has two children, an element for generating a SOAP request, and
an element for storing a SOAP response corresponding to the request element. The node
ws:Request holds the request as converted to a SOAP request message. The content
of this element is the same as the body of the corresponding SOAP request message.

We can obtain the result of the Google Web Service request by using the code shown
in Example 2 in Table 1, which uses only the XPath API. By this code, the framework
transparently sends the SOAP request message, and changes the Web Service DOM as
shown in Fig. 8, so that ws:Response represents the SOAP response. The content of
this element is the same as the body of the corresponding SOAP response element.

Table 1. Examples of JavaScript codes for handling Web Service DOM, where ws and gws are
prefixes of the namespaces for Web Service DOM and for Google Web Service, respectively; and
webService, response are variables of the Web Service DOM, and the Response element,
respectively

Example 1 : var doGetCachedPage =webService.selectSingleNode(
Update Request element ”./ws:Query[1]/ws:Request/gws:doGetCachedPage
using XPath [key=’0000’ and url=’http://www.ibm.com’]”, webService);
Example 2 : var textNode = response.selectSingleNode(
Get the response using XPath ”./gws:doGetCachedPageResponse/return[1]/text()[1]”, response);

3.4 Application: Google Search Web Service Composed with Another Website

The DHTML application in Fig. 11 shows the benefits of using WebDrasil. This appli-
cation has two visual components: (1) a web page, from which we can extract keywords,
and (2) tables for showing the search history of keywords and the detailed search re-
sults. When the user selects a keyword from the web page, the search for the keyword is
done with Google Web Service, and then the corresponding detailed results are shown
in the detailed result table.

In this application, WebDrasil holds the response messages of the Google Web Ser-
vice in the Web Service DOM. Because of this, the browser can change the presentation

Web Browsers as Service-Oriented Clients Integrated with Web Services 299

dynamically by updating or retrieving the Web Service DOM according to the user’s in-
put. This application is written using only HTML and JavaScript so that we can easily
mash-up it with other websites as shown in Fig. 11.

By using the DOM and XPath APIs, Web developers can make smart and interactive
Web Service DHTML applications such as this example.

4 Related Work

Our framework is built on top of various important studies in such areas as Web browser
integration, Web and Web Service programming models, lazy DOM processing, and
asynchronous interactions.

Web browsers are now such widespread components that integration with Web
browsers is of great interest in various fields such as interactive programming envi-
ronments [10] and collaboration tools [11]. Ponzo and Gruber integrated Web browser
technologies with a rich client platform, Eclipse [9], for a better programming model.
JSON (JavaScipt Object Notation)-RPC [12] is another service invocation method on
Web browser. But it uses another data format familiar to JavaScript instead of XML.

There are some studies on Web Service programming models based on document
processing. ActiveXML [13] introduced dynamic XML documents which consist of
explicitly specified data and dynamic portions to be changed by querying Web ser-
vices. Our work is similar to ActiveXML in that we use dynamically changing DOM.
However, ActiveXML also proposed new query language and programming models. In
contrast, we stick to use DOM and XPath fitting well with the DHTML programming
model to integrate with Web browsers. Fox et al. proposed a collaborative Web Ser-
vice [14] and Qui et al. proposed a collaboration framework using W3C DOM on top
of their Web Service [15]. Their approach is somewhat similar to ours in that we use
DOM for applications, but their framework is designed for collaboration by using the
Web Service architecture, and does not provide a general Web Service programming
model.

Asynchronous update mode involves asynchronous Web Service interactions. The
correlation and coordination issues of asynchronous Web Services are studied in [16].

5 Conclusions and Future Work

We proposed a new client programming model for Web Services, a model which is
document-centric and similar to that of Web browsers. In this programming model,
we manipulate the document tree with uniform APIs such as DOM and XPath rather
than by explicitly sending messages or by invoking non-uniform APIs. We prototyped a
new Web Service client framework, WebDrasil, based on this architecture and provided
some examples of client programs to show that the approach is intelligible and natural
to Web developers.

Since this new programming model is based on many elementary technologies such
as XML processing and distributed systems, we still have a lot of work to do:

300 H. Miyashita and T. Ishihara

XPath Query Model
In Subsection 2.1, we offered a rudimentary XPath-based query method for Web
Services. However, we would like to have a more convenient and complete model
for this purpose, one that would allow us to statically check or supplement XPath
queries while considering the constraints of schemas. For example, if a schema
specifies only one “key” element is allowed in the request message, then any XPath
query for this service must contain a predicate only for that “key” element. We
think match-identifying tree automata [17] could be used for this model.

Server-side Approach
In this paper, we introduced our framework on the client side of the Web appli-
cations, specifically in the Web browsers. However, our framework could also be
applicable to the server side. For example, we could build a Web-Service-gateway
server which feeds DHTML applications to the Web browsers and accepts requests
from the browsers, and which then appropriately forwards them to external SOAP
Web Service servers. By using such a gateway, Web browsers without support for
SOAP Web Services could access those services. Also, in such a gateway, our
framework would work well because the Web browsers would present XML docu-
ments rather than JavaScript objects.

Web Service Coordination and Security
When we use multiple services in our client framework, we need some coordination
and security framework for reliable communications. Since, in our framework, we
store the responses in one DOM tree, we require transactional cache mechanisms to
maintain consistency and security mechanisms to prevent illegal accesses for DOM
tree processing. Since our framework allows client-side scripting, such an access
control mechanism is important to prevent XSS (Cross-Site Scripting) attacks.

Acknowledgments

We warmly thank to Makoto MURATA for helpful advises to improve this paper. This
research was partly supported by the National Institute of Information and Communi-
cations Technology (NICT) of Japan as a part of the Multimedia Browsing Project for
People with Visual Impairments.

References

1. J. Whatcott, “SOA’s next wave: Service-oriented clients,” May 2006, http://www.cio.com/
weighin/column.html?CID=21201.

2. H. Dhurvasula and M. Galli, “Mozilla and web services,” http://www.mozilla.org/projects/
webservices/.

3. T. O’Reilly, “What is web 2.0,” September 2005, http://www.oreillynet.com/pub/a/oreilly/
tim/news/2005/09/30/what-is-web-20.html.

4. J. J. Garrett, “Ajax: A new approach to Web applications,” February 2005, http://
www.adaptivepath.com/publications /essays/archives/000385.php.

5. “Java api for xml web services (JAX-WS),” 2005, http://java.sun.com/webservices/
jaxws/index.jsp.

Web Browsers as Service-Oriented Clients Integrated with Web Services 301

6. K. Ballinger, D. Ehnebuske, M. Gudgin, C. K. Liu, M. Nottingham, and P. Yendluri, “WS-I
basic profile version 1.1,” http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html.

7. S. Loughran and E. Smith, “Rethinking the Java SOAP stack.” in ICWS, 2005, pp. 845–852.
8. J. Clark and S. DeRose, “XML Path Language (XPath) Version 1.0,” w3C Recommendation

16 November 1999, http://www.w3.org/TR/1999/REC-xpath-19991116.
9. J. Ponzo and O. Gruber, “Integrating Web technologies in Eclipse,” IBM Systems Journal,

vol. 44, no. 2, pp. 279–288, 2005.
10. M. Jambalsuren and Z. Cheng, “An interactive programming environment for enhancing

learning performance,” in Databases in Networked Information Systems, 2002, pp. 201–212.
11. K. M. Anderson and N. O. Bouvin, “Supporting project awareness on the www with the

iscent framework,” SIGGROUP Bull., vol. 21, no. 3, pp. 16–20, 2000.
12. R. Barcia, “Build enterprise soa ajax clients with the dojo toolkit and json-rpc,” http://www-

128.ibm.com/developerworks/websphere/library/techarticles/0606 barcia/0606 barcia.html.
13. S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo, “Dynamic XML documents

with distribution and replication,” in SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. New York, NY, USA: ACM Press, 2003,
pp. 527–538.

14. G. Fox, H. Bulut, K. Kim, S.-H. Ko, S. Lee, S. Oh, S. Pallickara, X. Qiu, A. Uyar, M. Wang,
and W. Wu, “Collaborative web services and peer-to-peer girds,” in Collaborative Technolo-
gies Symposium, 2003.

15. X. Qiu, B. Carpenter, and G. Fox, “Internet collaboration using the w3c document object
model.” in International Conference on Internet Computing, 2003, pp. 643–647.

16. M. Brambilla, S. Ceri, M. Passamani, and A. Riccio, “Managing asynchronous web services
interactions.” in ICWS, 2004, pp. 80–87.

17. M. MURATA, “Extended path expressions for XML,” in PODS, 2001, pp. 126–137.

Interaction Soundness for Service Orchestrations

Frank Puhlmann and Mathias Weske

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering

at the University of Potsdam
D-14482 Potsdam, Germany

{puhlmann, weske}@hpi.uni-potsdam.de

Abstract. Traditionally, service orchestrations utilize services accord-
ing to a choreography where they are a part of. The orchestrations as
well as the choreographies describe pre-defined sequences of behavior.
This paper investigates if a given orchestration can be enacted without
deadlocks, i.e. is interaction sound, inside an environment made up of dif-
ferent services. In contrast to existing approaches, we utilize link passing
mobility to directly represent dynamic binding as found in service ori-
ented architectures. Thus, the sequences of interaction behavior are not
statically pre-defined but rather depend on the possible behavior of the
services in the environment.

1 Introduction

Service oriented architectures (SOA) comprise service orchestrations and chore-
ographies [1]. While orchestrations resemble the internal processes of services,
choreographies defines how different services should interact with each other. In
this paper we focus on orchestrations that are enacted inside an environment of
different services. Instead of reasoning on pre-defined sequences of interactions
as given by a choreography, we would rather like to know if a certain orchestra-
tions works seamlessly, i.e. without deadlocks, inside an environment made up of
different services as possible interaction partners. The services are not statically
connected to the orchestration, but are dynamically bound. For this dynamic
binding to take place, we consider a service broker able to return semantically
matching services that, however, might have different interaction behaviors. To
cope with these different behaviors, we present an approach to determine if a
certain orchestration is capable of interacting with a given set of dynamically
bound services regardless of a pre-defined behavior.

The approach introduced, denoted as interaction soundness, utilizes lazy sound-
ness for deciding deadlock freedom of orchestrations without considering interac-
tions with the environment [3]. Interaction soundness extends lazy soundness by
taking these interactions into account. As already motived in [1], the core of a SOA
is dynamic discovery and binding of interaction partners. Lazy soundness has been
chosen because it can be proven using bisimulation techniques of a process algebra,
the π-calculus. The π-calculus in turn supports link passing mobility, a key feature

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 302–313, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Interaction Soundness for Service Orchestrations 303

Stock Exchange Repository

Stock
Exchange A

Stock
Exchange B

Stock
Exchange C

...

Find & Bind
Stock Exchanges

Bid at first Stock
Exchange

Bid at second
Stock Exchange

1

S
to

ck
 B

ro
ke

r

Place
Order

B1 B2

B3

B4

B5
B6

B7 B8
e1 e2

e3

e4

e5

e6

e7 e8

Fig. 1. Stock Exchange Choreography

required for representing dynamic binding [4]. An extended discussion on our mo-
tivation for using the π-calculus can be found in [5]. Furthermore, the paper builds
on existing work on using the π-calculus for business process management and ser-
vice oriented architectures [6,7].

The remainder of the paper is structured as follows. We first motivate the
topic by introducing an example and refer to related work. Preliminaries are
introduced, including π-calculus as well as the representation of orchestrations
and choreographies in it. Based thereon, interaction soundness is defined. The
paper concludes with a demonstration of existing tool support and a discussion
of the achievements.

2 Motivation and Related Work

To motivate the topic, an example is shown in figure 1, denoted in a slightly ex-
tended variant of the Business Process Modeling Notation (BPMN). The exam-
ple describes the orchestration of a Stock Broker service and its environment. The
stock broker offers the ability of bidding at two different stock exchanges at the
same time and place the order at the first stock exchange responding positive, i.e.
where the order can be placed. This functionality is realized inside the orchestra-
tion using a discriminator pattern [8], denoted as a BPMN gateway containing the
number of required incoming edges. Since there aremany stock exchanges available
with different properties such as fees, rates, and of course business hours, a Stock
Exchange Repository is contained as a service in the environment. It is invoked as
the first task of the stock broker, Find & Bind Stock Exchanges. The repository has
knowledge about a number of Stock Exchanges, connected in the BPMN diagram
using associations. Two of them matching the requested conditions are returned
to the stock broker. The stock broker is now able to dynamically bind to the stock
exchanges formerly unknown. This is denoted using in- and outgoingmessage flows
at the activitiesBid at first StockExchange andBid at second StockExchange. Each
stock exchange returns a special token if the bid has been accepted. This token is

304 F. Puhlmann and M. Weske

used inside Place Order to place the order at the corresponding stock exchange. Of
course, only the successful bidder should be able to place the order.

We now argue why reasoning regarding the soundness of the example is far
from trivial. First of all, the stock broker’s orchestration contains a discrimi-
nator. As already shown in [3], a discriminator leaves running (lazy) activities
behind, i.e. the second activity before the discriminator remains active after
the first one has completed. This might even be true if the final activity of the
orchestration has already been reached. In terms of Petri nets, token remain
in the net. According to the Petri net based soundness definition [9], however,
an orchestration that contains tokens after the final marking has been reached,
is not sound. Secondly, the orchestration is contained inside an environment,
where the services are dynamically bound at runtime. Thus, reasoning includes
all combinations of services that can be potentially bound.

To overcome these problems, we propose adapting lazy soundness based on the
π-calculus for interaction soundness. Lazy soundness takes care of lazy activities,
thus solving the first problem (an extended discussion including other kinds of
soundness can be found in [3]). More importantly, the π-calculus features link
passing mobility, required for describing and reasoning on dynamic binding [4].

Related work comprises for instance Martens using Petri nets [10], Bordeaux
and Salan using CCS [11], or Busi et al. using a proprietary process algebra [12].
However, these approaches do not adress dynamic binding. Recent research on
interaction patterns by Barros et al. in general [13] and SOA in particular by
Guidi and Lucci [14] showed that mobility is indeed required for service oriented
architectures.

3 Preliminaries

This section introduces the π-calculus and the representation of orchestrations
and environments in it.

3.1 The π-Calculus

The π-calculus is an algebra for the formal description and analysis of concurrent,
interacting processes with support for link passing mobility. It is based on names
and interactions used by processes defined according to [15].

Definition 1 (Pi Calculus). The syntax of the π-calculus is given by:

P ::= M | P |P ′ | vzP | !P | P (y1, · · · yn)
M ::= 0 | π.P | M + M ′

π ::= x〈ỹ〉 | x(z̃) | τ | [x = y]π .

P and M denote the processes and summations of the calculus. The informal
semantics is as follows: P |P ′ is the concurrent execution of P and P ′, vzP is the
restriction of the scope of the name z to P , !P is an infinite number of copies
of P , and P (y1, · · · , yn) denotes parametric recursion. 0 is inaction, a process

Interaction Soundness for Service Orchestrations 305

that can do nothing, M + M ′ is the exclusive choice between M and M ′. The
actions of the calculus are given by π. The output prefix x〈ỹ〉.P sends a sequence
of names ỹ over the co-name x and then continues as P . The input prefix x(z̃)
receives a sequence of names over the name x and then continues as P with
z̃ replaced by the received names (written as { ˜name/z̃}). Matching input and
output prefixes might communicate, leading to an interaction. The unobservable
prefix τ.P expresses an internal action of the process, and the match prefix
[x = y]π.P behaves as π.P , if x is equal to y. Throughout this paper, upper
case letters are used for process identifiers and lower case letters for names. The
formal semantics of the π-calculus is based on a transition system. We only give
short definitions of the required concepts and refer to [15,16] for details.

Definition 2 (Transition Sequence). A sequence of interactions on names
or unobservable actions is denoted as P

α−→ P ′, where α describes the sequence
of actions required to transform a process P to P ′. �
Thus, a transition sequence describes how a certain state P of a process is
transfered to another denoted P ′.

Definition 3 (Bound and Free Names). The π-calculus has two operators
for name binding, x(z) and vzP . In both cases the name z is bound inside
process P . Names which are not bound by a name binding operator are called
free names of a process. �
Bound names can not be accessed from processes outside of P . Free names
can be used for interactions between different processes. The free names of a
processes can furthermore be observed outside of the process P for reasoning on
bisimulation equivalence.

Definition 4 (Weak Open Bisimulation Equivalence). Informally, two π-
calculus processes P and Q are weak open bisimulation equivalent, denoted as
P ≈o Q, if they have the same observable behavior regarding their free names
while abstracting from all internal actions. �
Weak open bisimulation is used to prove interaction soundness later on. Formal
details can be found in [16].

3.2 Orchestrations in the π-Calculus

Orchestrations can be formalized using set theory and π-calculus. The former
is used to denote the static structure of the orchestration called process graph;
the latter gives a formal semantics to a process graph. Since orchestrations are
usually denoted graphically, a breakdown from graphical representations over
process graphs up to π-calculus is possible.

Definition 5 (Process Graph). A process graph is a four-tuple consisting of
nodes, directed edges, types and attributes. Formally: P = (N, E, T, A) with

– N is a finite, non-empty set of nodes.
– E ⊆ (N × N) is a set of directed edges.

306 F. Puhlmann and M. Weske

– T : N → 2TY PE is a function mapping nodes to sets of types.
– A : N � KEY × V ALUE is a partial function mapping nodes to key/value

pairs. �

The nodes N of a process graph define the activities (incl. routing elements) of
an orchestration, and the directed edges E define dependencies between activi-
ties. Each node can have none, one, or more types assigned by the function T .
Furthermore, each node can hold optional attributes represented by key/values
pairs assigned by the function A. Details will become more clear by looking at
the process graph of the stock broker from figure 1. We now utilize the identifiers
from the figure:

Example 1 (Process Graph of the Stock Broker Orchestration).

1. N = {B1, B2, B3, B4, B5, B6, B7, B8}
2. E = {(B1, B2), (B2, B3), (B3, B4), (B3, B5), (B4, B6), (B5, B6),

(B6, B7), (B7, B8) }
3. T ={(B1, {Start Event}), (B2, {Task}), (B3, {AND Gateway}),

(B4, {Task}), (B5, {Task}), (B6, {N-out-of-M-Join}), (B7, {Task}),
(B8, {End Event})}

4. A = {(B6, (continue, 1))} �

Each node of the orchestration is denoted as an element of N , whereas sequence
flows between nodes are denoted in E. The types are simply represented as
the textual name of the corresponding BPMN element in T . Other notations
like EPCs or UML2 Activity Diagrams cause other types. The discriminator is
denoted as a special kind of n–out–of–m–join with n = 1. This threshold is
denoted in the set A.

However, since a process graph only denotes a static structure of an orches-
tration, in particular even with different types for the nodes, a formal semantics
is given by mapping the process graph to π-calculus expressions. Therefore, we
assume each node of the process graph to represent one of the workflow patterns
[8]. The steps for mapping process graphs to π-calculus can then be sketched as
follows (see [3] for a complete description).

Algorithm 1 (Sketch: Mapping Process Graphs to π-Calculus
Processes). A process graph P = (PN , PE , PT , PA) is mapped to the π-
calculus as follows:

1. Assign all nodes of P a unique π-calculus process identifier N1 · · ·N |PN |.
2. Assign all edges of P a unique π-calculus name e1 · · · e|PE |.
3. Define the π-calculus processes according to the π-calculus mapping of the

workflow patterns found in [6,4] as given by the type of the corresponding
node. Each functional part of an activity is represented by the unobservable
prefix τ since it is abstracted from concrete realizations.

4. Define a global process N = (ve1, · · · , e|PE |)∏|PN |
i=1 Ni. �

Section 5 contains a π-calculus mapping of the example.

Interaction Soundness for Service Orchestrations 307

3.3 Environments in the π-Calculus

Environments can be split into static ones with pre-defined bindings and such
supporting dynamic binding. For static environments, a corresponding concept
to a process graph, called interaction graph IG, can be introduced. An inter-
action graph relates several process graphs by interaction flow, according to
Message Flow in BPMN.

However, the focus of this paper is on environments that support dynamic
binding as given in the example. These environments are closely linked to the
service interaction patterns by Barros et al. [13]. The patterns describe pos-
sible interaction behavior between services. To our knowledge, there exists no
graphical notation that supports the representation of dynamic binding. Since a
graphical representation is missing, we define the environments from scratch in
π-calculus. This is done according to [4], where correlations and dynamic service
invocation in π-calculus have been introduced. A synchronous service invocation
is denoted in the π-calculus as:

A = b〈msg〉.A′

B = b(msg).B′ ,

where A is the service requester and B is the service provider. The formalization
leaves it open if A knows the link b at design time or acquired it during runtime.
If the system is defined as

S = (vb)(A | B) ,

A and B share the link b since design time. Using link passing mobility in π-
calculus, we can model a repository R = lookup〈b〉.R that transmits the link at
runtime:

S = (vlookup)(lookup(b).A | (vb)(B | R)) .

An overview of formalizing more complex service interaction patterns in π-
calculus including further references is given in [7].

4 Interaction Soundness

This section derives interaction soundness for orchestrations based on lazy sound-
ness. Lazy soundness proves an orchestration containing lazy activities to be free
of deadlocks and livelocks. Interaction soundness extends lazy soundness by in-
corporating the interactions between the orchestration and the environment.

4.1 Lazy Soundness

Lazy soundness requires structural soundness and semantic reachability. A process
graph representing an orchestration is called structurally sound if it has exactly
one initial node, exactly one final node and all nodes lie on a path from the initial
to the final node.

308 F. Puhlmann and M. Weske

Definition 6 (Structural Sound). A process graph P = (N, E, T, A) is struc-
tural sound if and only if:

1. There is exactly one initial node Ni ∈ N .
2. There is exactly one final node No ∈ N .
3. Every node is on a path from Ni to No. �

Semantic reachability extends reachability by taking the semantics of the nodes
into account.

Definition 7 (Semantic Reachability). A node N1 ∈ N of a process graph
P = (N, E, T, A) is semantically reachable from another node N2 ∈ N , denoted
as N1 � N2, if and only if there exists a path leading from N1 to N2 according
to the semantics of all nodes.

Regarding the mapping of a π-calculus process from a process graph, a π-calculus
process P1 representing a node is semantically reachable from another π-calculus
process P2 representing a node, if and only if there exists a transition sequence
from the functional abstraction τ of P1 to the functional abstraction τ of process
P2. Lazy soundness is now defined as follows:

Definition 8 (Lazy Sound). A structural sound process graph P = (N, E, T, A)
is lazy sound if and only if:

1. The final node No must be semantically reachable from every node n ∈ N
semantically reachable from the initial node until No has been reached for
the first time. Formally: ∀n ∈ N : Ni � n � No holds until No has been
reached for the first time.

2. The final node No is reached exactly once.

Definition 8 states that a lazy sound process graph representing a business
process is deadlock and livelock free as long as the final node has not been
executed (8.1). Once the final node has been executed, other nodes might still
be executed, however they do not semantically reach the final node again (8.2).
Lazy soundness can be proven by tracing the initial and the final activity of a
process graph mapped to π-calculus processes.

4.2 Interaction Soundness for Service Orchestrations

Interaction soundness is defined for service graphs that enhance a process graph
with interaction behavior.

Definition 9 (Service Graph). A service graph extends a process graph by
adding in- or outbound interaction edges used as a behavioral interface. Formally,
SG = (PS, C, L):

– PS = (NPS , EPS , TPS , APS) is a structural sound process graph.
– C ⊆ (NPS × ⊥) × (⊥ × NPS) is a set of directed interaction edges.
– L ⊆ (C × LABEL) is a set of labels of directed interaction edges. �

Interaction Soundness for Service Orchestrations 309

PS is an orchestration describing the internal process of a service. Interactions
with the environment are denoted by C, representing in- and outgoing commu-
nication (e.g. Message Flows in BPMN). The symbol ⊥ is used as a connector
to the environment. L attaches labels based on π-calculus names used to denote
channels and data (examples can be found in section 5).

A counterpart to a service graph is given by an environment that can be
utilized by the service graph.

Definition 10 (Environment). Let SG be a service graph. An environment
E for SG is given if E utilizes all in- and outgoing interaction edges C of SG
by providing a matching process structure.

Furthermore, a service graph SG unified with an environment E is denoted as
SG � E. Interaction soundness is now given by:

Definition 11 (Interaction Soundness). A service graph SG is interaction
sound regarding environment E if and only if SG � E is lazy sound.

Interaction soundness states that a service graph representing an orchestration
is deadlock and livelock free under consideration of all related interactions with
the environment as long as the final activity of the orchestration has not been
reached.

4.3 Reasoning on Interaction Soundness

Since interaction soundness is defined using service graphs and environments
that do not yet have a formal semantics like process graphs, we now show how
to enhance them for reasoning. First of all, the π-calculus mapping of the process
graph contained in the service graph is annotated with π-calculus names used
for interaction with the environment. This is done according to the labels and
directed interaction edges of the service graph. Secondly, the environment is
defined using π-calculus processes being able to interact with the π-calculus
mapping of the service graph according to [4,7]. This is currently a manual task.

Once the π-calculus representation of a system consisting of the π-calculus
mapping of a service graph and an environment has been defined, it can be
enhanced for reasoning on lazy soundness as described in [3]. Basically the π-
calculus process representing the initial activity of the orchestration is enhanced
with the free name i and the π-calculus process representing the final activity is
enhanced with the free name o. Due to that, we are able to observe the occurrence
of the initial activity and the final activity.

The distinction between interaction soundness and lazy soundness is given by
the fact that not only the structure of the service graph is checked for confor-
mance, but also the agile interaction with the environment using link passing
mobility. For the π-calculus mapping of an orchestration and an environment to
be interaction sound, i and o have to be observed exactly once for all possible
transition sequences, including the ones between the participants. Thereby, i is
just a helper to denote the start of the orchestration. The interesting part is
o. If o is not observed for all possible transition sequences, the orchestration

310 F. Puhlmann and M. Weske

contains a deadlock or livelock since property (1) of definition 8 is violated. If
o is observed more then once, property (2) of definition 8 is violated, i.e. the
orchestration contains uncontrolled loop or parallel process structures. To prove
the π-calculus representation of an orchestrations and an environment to be in-
teraction sound, it is compared for weak open bisimulation against a manually
proved lazy sound π-calculus process given by SLAZY = i.τ.o.0.

Proposition 1. A π-calculus representation SY S of a service choreography con-
sisting of (1) a π-calculus mapping of an orchestration annotated with the free
names i for the π-calculus process representing the initial and o for the π-calculus
process representing the final activity of the orchestration, and (2) a π-calculus
representation of a corresponding environment is interaction sound if and only
if CHO ≈o SLAZY .

5 Example and Tool Support

This section discusses how the theoretical results described in the last section can
be applied using existing π-calculus tools like the Mobility Workbench (MWB)
[17]. We utilize the example shown in figure 1.

The π-calculus representation of the stock broker’s orchestration is generated
from the BPMN diagram using a tool chain developed at our group.1 The repos-
itory and different stock exchanges have been modeled manually, since their
agile interaction behavior can not be modeled in BPMN. Interaction between
the different participants is represented using π-calculus names. The π-calculus
processes corresponding to figure 1 are printed below. To enable direct reason-
ing, the notation of the Mobility Workbench has been used, i.e. output prefixes
are written as ′x instead of x and ∧ denotes v. Processes in the π-calculus are
denoted as agents.

Example 2. Pi-Calculus Processes for the Stock Exchange Choreography.

agent SE_A(ch) = (^o)ch(b).t.’b<o>.o.SE_A(ch)
agent SE_B(ch) = (^o)ch(b).t.’b<o>.o.SE_B(ch)
agent SE_C(ch) = (^o)ch(b).t.’b<o>.o.SE_C(ch)

agent R(r,s1,s2,s3)=r(ch).’ch<s1>.r(ch).’ch<s2>.R(r,s1,s2,s3) +
r(ch).’ch<s2>.r(ch).’ch<s3>.R(r,s1,s2,s3) + r(ch).’ch<s1>.r(ch).’ch<s3>.R(r,s1,s2,s3)

agent B(i,o,r)=(^e1,e2,e3,e4,e5,e6,e7,e8)(B1(e1,i) | B2(e1,e2,r) | B3(e2,e3,e4) | B4(e3,e5) |
B5(e4,e6) | B6(e5,e6,e7) | B7(e7,e8) |B8(e8,o))

agent B1(e1,i)=i.t.’e1.0
agent B2(e1,e2,r)=(^ch)e1.’r<ch>.ch(s1).’r<ch>.ch(s2).t.(’e2<s1,s2>.0 | B2(e1,e2,r))
agent B3(e2,e3,e4)=e2(s1,s2).t.(’e3<s1>.0 | ’e4<s2>.0 | B3(e2,e3,e4))
agent B4(e3,e5)=(^b)e3(s).’s.b(o).t.(’e5<o>.0 | B4(e3,e5))
agent B5(e4,e6)=(^b)e4(s).’s.b(o).t.(’e6<o>.0 | B5(e4,e6))
agent B6(e5,e6,e7)=(^h,run)(B6_1(e5,e6,e7,h,run) | B6_2(e5,e6,e7,h,run))
agent B6_1(e5,e6,e7,h,run)=e5(o).’h<o>.0 | e6(o).’h<o>.0
agent B6_2(e5,e6,e7,h,run)=h(o).’run<o>.h(o).B6(e5,e6,e7) | run(o).t.’e7<o>.0
agent B7(e7,e8)=e7(o).’o.t.(’e8.0 | B7(e7,e8))
agent B8(e8,o)=e8.t.’o.B8(e8,o)

1 http://bpt.hpi.uni-potsdam.de/twiki/bin/view/Piworkflow/Reasoner

Interaction Soundness for Service Orchestrations 311

The first three lines of the example denote simple kinds of services that are used
for reasoning. They simply create an order token o, wait for a connection via
ch(b), where b is a response channel used to signal back the o token. In between,
however, complex computation takes place that is abstracted from by τ . Note
that the different services do not differ in their interaction behavior right now,
thus we could utilize each of them inside our orchestration.

The process R denotes a very simple kind of a repository that simply returns
two arbitrary services. We omitted a complex structure based on lists that would
allow arbitrary services to register and to de-register. The stock broker’s orches-
tration is represented in the third block. B is a π-calculus process containing all
activities of the stock broker, that in turn are represented according to figure
1 by B1 . . . B8. Note the processes B2, where the stock exchanges are found at
the repository (’r<ch>.ch(s1).’r<ch>.ch(s2)), B4 and B5, where the stock
exchanges are dynamically bound and invoked (’s.b(o)). Furthermore, the
successful bidding activity forwards the order token to B7, where the order is
finally placed. To allow activities of the orchestration to be observed according
to lazy soundness, B1 and B8 are enhanced with i and ’o accordingly. The
process SY S(i, o) places all participants into a system leaving only i and o as
free names. SY S can then be compared to S LAZY required for deciding lazy
soundness.

The formalization given allows reasoning on the orchestration and the envi-
ronment. The problems motivated in section 2 are solved using the π-calculus
representation. Lazy (left–behind) activities before the discriminator are han-
dled using lazy soundness. The π-calculus mapping of the discriminator, found
in process B6, enables the outgoing sequence flow (denoted using e7) exactly
once for the first incoming sequence flow (here e5 or e6). The second incoming
sequence flow is simply captured. Furthermore, dynamic binding of different ser-
vices is represented using link passing mobility as shown in the example. A tool
session using MWB to prove interaction soundness is shown below:

MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are equal.

The orchestration of the stock broker inside the environment represented by
SY S is weak open bisimulation equivalent to S LAZY , hence the orchestration
is interaction sound. Since the orchestration includes the interactions with the
repository and stock exchanges, all possible behaviors of the services are accept-
able and will not lead to a deadlock. But what happens if one of the possible
interaction partners, e.g. one of the services, shows a different interaction behav-
ior? This can be investigated for instance by changing the definition of SE A(ch)
to wait for a confirmation of the bidding via b before proceeding.

MWB>agent SE_A(ch) = (^o)ch(b).b(confirm).t.’b<o>.o.SE_A(ch)
MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are equal.

Once again, the orchestration is interaction sound. This is even true if the ”de-
fective” service represented by agent SE A(ch) is dynamically bound to our

312 F. Puhlmann and M. Weske

orchestration. In this case, always the second service will be utilized (due to
the discriminator). Hence, the orchestration will not deadlock even if a non–
matching, defective service is contained in the environment. However, if we
introduce a second defective service by changing SE B(ch), the possibility of
selecting and binding to two defective services exists, thus leading to a serious
problem:

MWB>agent SE_B(ch) = (^o)ch(b).b(confirm).t.’b<o>.o.SE_A(ch)
MWB>weq SYS(i,o) S_LAZY(i,o)
The two agents are NOT equal.

The orchestration contained in the modified system is not interaction sound
anymore, since there exist possible combinations of services in it that will lead
to deadlock situations.

6 Conclusion

In this paper it has been shown how orchestrations that dynamically bind to
services in a given environment can be proved to be interaction sound. The ap-
proach presented is generic in a sense that it is not limited to certain kinds of
orchestrations or interactions. This is due to the possibility of representing all
routing and interaction patterns, either workflow or service interaction ones, in
a precise way in π-calculus [6,7]. Thus, existing orchestrations can be formal-
ized and analyzed. The soundness criterion used for interaction soundness, lazy
soundness, furthermore supports lazy activities. Since orchestrations can contain
lazy activities, these do not disturb the reasoning.

The approach presented in this paper is a starting point for investigating
formal properties of dynamic bindings. First of all, existing graphical notations
like BPMN do not support the representation of systems containing dynamic
binding. Without a graphical representation, user acceptance is limited. So one
direction of further work is creating such a notation. Second, tool support for
π-calculus is currently limited. The existing tools are not optimized for reasoning
on service orchestrations. For instance, they use depth-first search strategies that
cause problems regarding the detection of certain loop constructs.

References

1. Burbeck, S.: The Tao of E-Business Services. Available at:
http://www-128.ibm.com/developerworks/library/ws-tao/ (2000)

2. Aalst, W., ter Hofstede, A.H., Weske, M.: Business Process Management: ASurvey.
In van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M., eds.: Proceedings of the
1st International Conference on Business Process Management, volume 2678 of
LNCS, Berlin, Springer-Verlag (2003) 1–12

3. Puhlmann, F., Weske, M.: Investigations on Soundness Regarding Lazy Activities.
In Dustdar, S., Fiadeiro, J., Sheth, A., eds.: Proceedings of the 4th International
Conference on Business Process Management (BPM 2006), volume 4102 of LNCS,
Berlin, Springer Verlag (2006) 145–160

Interaction Soundness for Service Orchestrations 313

4. Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Service
Discovery and Integration. In Verma, K., Sheth, A., Zaremba, M., Bussler, C., eds.:
Proceedings of the International Workshop on Dynamic Web Processes (DWP
2005). IBM technical report RC23822, Amsterdam (2005)

5. Puhlmann, F.: Why do we actually need the Pi-Calculus for Business Process
Management? In Abramowicz, W., Mayr, H., eds.: 9th International Conference on
Business Information Systems (BIS 2006), volume P-85 of LNI, Bonn, Gesellschaft
für Informatik (2006) 77–89

6. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In van der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the 3rd
International Conference on Business Process Management, volume 3649 of LNCS,
Berlin, Springer-Verlag (2005) 153–168

7. Decker, G., Puhlmann, F., Weske, M.: Formalizing Service Interactions. In Dust-
dar, S., Fiadeiro, J., Sheth, A., eds.: Proceedings of the 4th International Confer-
ence on Business Process Management (BPM 2006), volume 4102 of LNCS, Berlin,
Springer Verlag (2006) 414–419

8. Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns. Dis-
tributed and Parallel Databases 14 (2003) 5–51

9. Aalst, W.: Verification of Workflow Nets. In Azéma, P., Balbo, G., eds.: Application
and Theory of Petri Nets, volume 1248 of LNCS, Berlin, Springer-Verlag (1997)
407–426

10. Martens, A.: Analyzing Web Service based Business Processes. In Cerioli, M., ed.:
Proceedings of Intl. Conference on Fundamental Approaches to Software Engi-
neering (FASE’05). Volume 3442 of Lecture Notes in Computer Science., Springer-
Verlag (2005)

11. Bordeaux, L., Salaün, G.: Using Process Algebra for Web Services: Early Results
and Perspectives. In Shan, M.C., Dayal, U., Hsu, M., eds.: TES 2004, volume 3324
of LNCS, Berlin, Springer-Verlag (2005) 54–68

12. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration: A Synergic Approach to System Design. In Benatallah, B., Casati,
F., Traverso, P., eds.: Proceedings of the 3rd International Conference on Service-
oriented Computing, volume 3826 of LNCS, Berlin, Springer-Verlag (2005) 228–240

13. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In van
der Aalst, W., Benatallah, B., Casati, F., eds.: Proceedings of the 3rd Interna-
tional Conference on Business Process Management, volume 3649 of LNCS, Berlin,
Springer-Verlag (2005) 302–318

14. Guidi, C., Lucchi, R.: Mobility mechanisms in Service Oriented Computing. In:
Proc. of 8th International Conference on on Formal Methods for Open Object-
Based Distributed Systems (FMOODS06). (2006 (to appear))

15. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Paper-
back edn. Cambridge University Press, Cambridge (2003)

16. Sangiorgi, D.: A Theory of Bisimulation for the Pi-Calculus. In: CONCUR ’93:
Proceedings of the 4th International Conference on Concurrency Theory, Berlin,
Springer-Verlag (1993) 127–142

17. Victor, B., Moller, F., Dam, M., Eriksson, L.H.: The Mobility Workbench. Avail-
able at: http://www.it.uu.se/research/group/mobility/mwb (2005)

Modeling Web Services by Iterative Reformulation of
Functional and Non-functional Requirements

Jyotishman Pathak, Samik Basu, and Vasant Honavar

Department of Computer Science
Iowa State University

Ames, IA 50011-1040, USA
{jpathak, sbasu, honavar}@cs.iastate.edu

Abstract. We propose an approach for incremental modeling of composite Web
services. The technique takes into consideration both the functional and non-
functional requirements of the composition. While the functional requirements
are described using symbolic transition systems—transition systems augmented
with state variables, function invocations, and guards; non-functional require-
ments are quantified using thresholds. The approach allows users to specify an
abstract and possibly incomplete specification of the desired service (goal) that
can be realized by selecting and composing a set of pre-existing services. In the
event that such a composition is unrealizable, i.e. the composition is not func-
tionally equivalent to the goal or the non-functional requirements are violated,
our system provides the user with the causes for the failure, that can be used to
appropriately reformulate the functional and/or non-functional requirements of
the goal specification.

1 Introduction

With the recent advances in networking, computation grids and WWW, automatic Web
service composition has emerged as an active area of research in both academia and
industry (see [1,2] for a survey). The main objective of these approaches is to build and
deploy new, value-added applications from existing ones in various domains such as
e-Science, e-Business and e-Government.

Typically, automation in service composition relies on developers to formally de-
scribe a complete specification of the desired service (goal). In most situations, how-
ever, the task of developing such a complete functional description of a complex Web
service is difficult and error prone as the developer is faced with the cognitive burden
to deal with a large set of available components and their possible compositions. Fur-
thermore, the existing techniques adopt a “single-step request-response” paradigm to
service composition—that is, if the goal specification provided to a composition an-
alyzer cannot be realized using the available component services, the entire process
fails. Thus, it becomes the responsibility of the developer to identify the cause(s) for
the failure of composition, which becomes a non-trivial task when modeling complex
Web services. Additionally, baring a few approaches, most of the techniques for service
composition focus only on the functional aspects of the composition. In practice, since
there might be multiple component services that can provide the same functionality, it

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 314–326, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modeling Web Services by Iterative Reformulation 315

is of interest to explore the non-functional properties of the components to reduce the
search space for determining compositions efficiently.

Towards this end, we introduce a framework for Modeling Service Composition and
Execution (MoSCoE). Our approach allows the developer to start with an abstract, and
perhaps incomplete specification of the goal (composite) service. In the event that the
goal service is not realizable using the existing component services, the technique iden-
tifies the cause(s) for the failure of composition to help guide the developer in refor-
mulating the goal specification and iterating the above process. In previous work, we
modeled such a formalism for the iterative development of services in the context of
sequential [3] and parallel [4] compositions of service functionalities. In this paper, we
focus our attention on incorporating specification of non-functional requirements (e.g.,
Quality of Service) to the modeling of composite Web services in MoSCoE.

Specifically, given the component services STS1,STS2, . . . ,STSn and a goal ser-
vice STSg as Symbolic Transition Systems (STSs), the objective is to generate a compo-
sition strategy [STSi1 ,STSi2 , . . . ,STSim] (where STSij is deployed before STSij+1),
that satisfies both the functional and non-functional requirements. The non-functional
requirements are quantified using thresholds, where a composition is said to conform
to a non-functional requirement if it is below or above the corresponding threshold, as
the case may be. For example, for a non-functional requirement involving the cost
of a service composition, the threshold may provide an upper-bound (maximum allow-
able cost) while for requirements involving reliability, the threshold usually
describes a lower-bound (minimum tolerable reliability). If more than one com-
position strategy meets the goal specifications, our algorithm generates all such strate-
gies and ranks them. Strategies with higher rank are better than those with the lower
rank in terms of meeting the non-functional requirements. For example, given two valid
composition strategies A and B, if the cost of A is more than B, then A is ranked
lower than B. It is left to the user’s discretion to select the best strategy according to
the requirements. Note that it is desirable to identify all the strategies, not just the best
one, since the strategies are likely to be used multiple times in future to realize the goal
service, and the component services that are part of the best strategy may become un-
available at the time of execution. In such situations, the user can select an alternate
strategy from the generated set of alternative composition strategies.

The contributions of our work are:

1. A framework for incrementally composing complex Web services taking into con-
sideration both the functional and non-functional requirements.

2. An algorithm for validating the conformance of composition to non-functional re-
quirements. At its core, the algorithm relies on recursive forward-backward ex-
ploration of the search-space (various possible service compositions) to identify
all possible compositions that meet the specified functional and non-functional re-
quirements.

3. An approach to determine the causes of failures (due to violation of functional
and/or non-functional requirements) of composition to assist the user in reformula-
tion of functional and non-functional requirements of the goal specification.

316 J. Pathak, S. Basu, and V. Honavar

The rest of the paper is organized as follows: Section 2 introduces an illustrative
example used to explain the salient aspects our work, Sections 3 and 4 present a logical
formalism and our algorithm for determining feasible composition strategies that meet
the functional and non-functional requirements, Section 5 illustrates our approach for
identifying the cause(s) for failure of composition, Section 6 briefly discusses related
work, and finally Section 7 concludes with future avenues for research.

2 Illustrative Example

We present a simple example where a service developer is assigned to model a new Web
service, LoanApproval, that allows potential clients to determine whether an amount
of loan requested will be approved or not. The service takes as input the requested loan

checkAppr(Appr;Confirm)

0

S1

S2 S4 S6

S7S5S3

S8S9

S10 S11

S13

S12

S14 S15

storeInfo(SSN,Amt,APR,Time)

checkAppr(Appr;Confirm)

[Confirm=0] [Confirm!=0]

[OverDue!=0][OverDue=0]

CC & Pay

LoanApproval

[Amt<$30,000] [Amt>$30,000]

creditScore(SSN;Appr)
payment(APR,Time;Appr2)

isAppr(Appr1,Appr2;Appr)

checkLoans(SSN;OverDue)

creditScore(SSN;Appr1)

S

(a)

0
t

9
t

10
t

creditScore(SSN)
(Appr)

4
t (SSN)
2

t (SSN,APR,Time)

t (Appr1,APR,Time)
5

t (Appr1,Appr2)
6

creditScore(SSN)
(Appr1)

payment(APR,Time)
(Appr2)

t (Appr)
3

t (Appr)
7

t (Confirm)
8

[Confirm=0] null [Confirm!=0] null

t (SSN,Amt,APR,Time)
1

[Amt>$30,000] null

storeInfo(SSN,Amt,APR,Time)

[Amt<$30,000] null

(b)
11
t

14
t

13
t

t (OverDue)

12

[OverDue=0] null [OverDue!=0] null

checkLoan(SSN)(OverDue)

(c)

11
t ’

14
t ’

13
t ’

12

[OverDue=0] null [OverDue!=0] null

checkLoan(SSN)(OverDue)

t ’ (OverDue)

(d)

Fig. 1. (a) State machine representation of LoanApproval (b) STS representation of
Approver, cost=$100 (c) STS representation of Checker, cost=$50 (d) STS represen-
tation of Checker’, cost=$200

amount and social security number (SSN) of the client along with the annual percent-
age rate (APR) and payment duration (in months) for approval of the loan. Additionally,
to assist in the decision-making process, the service also checks payment overdues of
the client for his/her existing loans (if any). Figure 1(a) shows the state-machine rep-
resentation of such a service. Each transition labeled by functions along with their input

Modeling Web Services by Iterative Reformulation 317

0,12
s

10,12
s

11,12
s

10,14
s

10,15
s

11,14
s

11,15
s

1,12
s

2,12
s

4.6.12
s

s (Confirm)
9,12

s (OverDue)
10,13

s (OverDue)
11,13

0,14
s

0,15
s

1,15
s

2,15
s

4.6.15
s

s (Confirm)
9,15

10,15
s 11,15

s

s (OverDue)
0,13

storeInfo(SSN,Amt,APR,Time)

checkLoan(SSN)

[OverDue!=0]

5,7,12
s (Appr1,Appr2)

s (Appr)
3,12 5,6,12 4,7,12

s (Appr1) s (Appr2)

8,12
s (Appr)

(Confirm)

[Confirm!=0] null

isAppr(Appr1,Appr2)

[OverDue=0]

checkLoan(SSN)

creditScore(SSN)
(Appr)

creditScore(SSN)
(Appr1)

(Appr2)
payment(APR,Time) creditScore(SSN)

(Appr1)

payment(APR,Time)
(Appr2)

checkAppr(Appr)

(OverDue)
checkLoan(SSN)

(OverDue)

[OverDue=0]

[Amt>$30,000] null

checkAppr(Appr)

(Confirm)

[Confirm=0] null

[OverDue!=0]

5,7,15
s (Appr1,Appr2)checkAppr(Appr)

(Confirm)

s (Appr)
3,15 5,6,15 4,7,15

s (Appr1) s (Appr2)

8,15
s (Appr)

isAppr(Appr1,Appr2)

storeInfo(SSN,Amt,APR,Time)

[Confirm!=0] null

[OverDue=0] [OverDue!=0]

checkAppr(Appr)

creditScore(SSN)
(Appr) (Appr1)

creditScore(SSN) payment(APR,Time)
(Appr2)

payment(APR,Time)
(Appr2)

creditScore(SSN)
(Appr1)

[Amt>$30,000] null

(Confirm)

(OverDue)

[Amt<$30,000] null

[Amt<$30,000] null

[Confirm=0] null

Fig. 2. Partial view of LoanApproval transition system

and output parameters (separated by “;”). Guards on transitions are enclosed in “[...]”
and denote the conditions under which the transition is enabled. State machine repre-
sentation is desirable because it allows the developer to present the functionality in a
modularized and hierarchical fashion. For example, in Figure 1(a) the user modular-
izes the design of the desired service using composite states in the state machines; e.g.
CC & Pay is present inside LoanApproval, and there are “and-” states where each
partition is separated by dotted lines1.

In MoSCoE, this goal state machine is internally translated into Symbolic Transition
Systems (see Definition 1); the corresponding transition system of LoanApproval is
presented in Figure 2. Transitions with no function invocation makes a call to a dummy
function null and the dotted lines represent sequence of transitions (not shown) orig-
inating due to various interleaving choices of transitions in the and-partition (s12 in
this case). Furthermore, the component services published by the service providers are
also represented using STSs2. Figures 1(b) and 1(c) show the corresponding STS for
component services Approver and Checker, respectively.

Our aim is to compose these component services to realize the goal service, thereby
providing the desired capability. However, in reality, there might be multiple compo-
nent services which provide the same functionality, but have different non-functional
characteristics (e.g., cost). For example, consider services Checker (Figure 1(c))
and Checker’ (Figure 1(d)), which provide the same functionality, but have differ-
ent cost associated to their usage. Accordingly, depending on the user need, a valid
composition is one which satisfies both functional and non-functional requirements. We
formally describe present our approach to model such compositions in the remainder of
this paper.

1 An and-state represents the behavior where the transitions in its partition can interleave in any
order.

2 These specifications can be obtained from service descriptions provided in high-level lan-
guages such as BPEL or OWL-S by applying translators similar to those proposed in [5,6].

318 J. Pathak, S. Basu, and V. Honavar

3 Composition Based on Functional Requirements

3.1 Modeling Services Using Transition Systems

State machines have emerged as a promising approach for modeling Web services
[5,6,7,8] specifically because they possess formal semantics, have well-established
modeling notations, and are intuitive and widely used in industrial software develop-
ment. As mentioned earlier, our approach also relies on providing the goal specification
in the form of a state machine (Figure 1(a)). In our framework, the state-machine rep-
resentation is automatically translated to corresponding Symbolic Transition Systems
(STS) [3,4]. The STS-model is used to apply the existing formalisms on transition-
system “equivalence” which will be the basis for automatically identifying a valid com-
position strategy. Formally, an STS can be defined as:

Definition 1 (Symbolic Transition System [9]). A symbolic transition system is a tu-
ple (S, −→, s0, SF , A) where S is a set of states represented by terms, s0 ∈ S is the
start state, SF ⊆ S is the set of final states and −→ is the set of transition relations
where s

γ,α,ρ−→ t is such that

1. γ is the guard where, vars(γ) ⊆ vars(s)
2. α is a term representing service-functions of the form a(x)(y) where x represents

the input parameters and y denotes the return valuations
3. ρ relates vars(s) to vars(t)

Finally, A is a set of non-functional attributes and the respective values corresponding
to the service whose behavior is represented by the STS.

Here, we assume that the values for non-functional attributes can be obtained from the
“profiles” of the services [10] and can be mapped to a scale between 0 & 1 by ap-
plying standard mathematical maximization and minimization formulas depending on
whether the attribute is positive or negative. For example, the values for attributes such
as latency and fault rate need to be minimized, whereas availability
need to be maximized. Figure 3 shows example STSs.

Semantics of STS. The semantics of STS is given with respect to substitutions of vari-
ables present in the system. A state represented by the term s is interpreted under sub-
stitution σ over the state variables (sσ). A transition s

γ,α,ρ−→ t is said to be enabled
from sσ if and only if γσ = true and γ ⇒ ρ. The semantics of the transition under
substitution σ is sσ

ασ−→ tσ.

3.2 Composition of Symbolic Transition Systems

A sequential composition of STSi and STSj , denoted by STSi ◦ STSj , is obtained
by merging the final states of STSi with the start state of STSj , i.e., every out-going
transition of start state of STSj is also the out-going transition of each final state of
STSi. We say that given a goal service representation STSg and a set of component
representations STS1...n, the former is said to be (partially) realizable from the latter

Modeling Web Services by Iterative Reformulation 319

6
s

c()(x)

x=0
d(x)(y)

s (x,y)
3

h(x)(y)
x!=0

x=y x!=y
f()()

1

e()()

s

2
s (x)

4
s

5
s

1
t

2
t (x)

3
t

5
t

4
t

c()(x)

x<0
h(x)(y) h(x)(y)

x>0

d(x)(y)
x=0

(a) (b)

Fig. 3. Example Symbolic Transition Systems. (a) STSg (b) STS1.

if there exists a composition of components such that STSg simulates STSi ◦ STSj ◦
. . .STSk. In essence, simulation relation ensures that the composition can ‘mimic’ the
goal service functionality. We present the definition of simulation in the context of STSs.

Definition 2 (Late Simulation). Given an STS S = (S, −→, s0, SF), late simulation
relation with respect to substitution θ, denoted by R θ, is a subset of S × S such that

s1 R θs2 ⇒ (∀s1θ
α1−→ t1θ.∃s2θ

α2−→ t2θ.∀σ.α1θσ = α2θσ ∧ t1 R θσt2)

Two states, under the substitution θ over state variables, are equivalent with respect to
simulation if they are related by the largest similarity relation R θ. We say that an STSi

is simulated by STSj , denoted by (STSi R θSTSj) iff (s0i R θs0j).
For example, consider the STSs in Figure 3(a) and 3(b). If state t1 is simulated by

s1, then t2(x) is simulated by s2(x) for all possible valuations of x. The above can be
represented using logical expressions as follows:

t1 Rtrue s1 ⇒ ∀x.(t2(x) R[x] s2(x))
⇒ (t2(x) R[x>0] s2(x)) (t2(x) R[x<0] s2(x)) ∧ (t2(x) R[x!=0] s2(x))
⇒ (∀y.(t3 R[x>0,y]s4)) ∧ t4 R[x=0,y]s3(x, y))) ∧ t3 R[x<0,y]s4))

(1)

Note that the simulation of the STS1 by STSg leads the latter to the states s3(x, y) and
s4 with the constraints x = 0 and x > 0 ∨ x < 0, respectively. In terms of sequential
composition, it can be stated that a selected component (simulated by the goal) drives
the goal to some specific states and the start state of the next component in the compo-
sition must be simulated by these goal states. These goal states and the corresponding
constraints can be identified easily by expanding the simulation relation to also record
the constraints and the goal-states that simulates the final state of the component under
consideration (see [3] for details). We will use STSi Rθ

[SgΔ] STSg to denote STSi be-
ing simulated by STSg under the constraint θ, which leads to the simulation of the final
states of STSi by the goal states sg under the constraint δ such sgδ ∈ SgΔ.

Therefore, the composition [STS1 ◦STS2 ◦ . . .◦STSn] is said to (partially) replicate
the goal STSg if and only if:

[STS1 ◦ STS2 ◦ . . . ◦ STSn] Rtrue
SgΔ STSg such that Sg ⊆ SF

g

320 J. Pathak, S. Basu, and V. Honavar

Proceeding further, we can state that:

∀s1θ1 ∈ S1Θ1 : STS1 Rtrue
S1Θ1

STSg ∧ [STS2 ◦ STS3 ◦ . . . ◦ STSn] Rθ
SgΔ s1

⇔ ∀s1θ ∈ S1Θ1 : STS1 Rtrue
S1Θ1

STSg ∧ ∀s2θ ∈ S2Θ2 : STS2 Rθ1
S2Θ2

s1 ∧
[STS3 ◦ . . . ◦ STSn] Rθ2

SgΔ s2

such that Sg ⊆ SF
g

4 Composition Based on Non-functional Requirements

In order to determine a suitable ordering of the available components, it is necessary
to select the appropriate components from the pool of candidates. This becomes chal-
lenge with the increasing size of the search space of available component services.
Hence, we consider non-functional aspects (e.g., QoS) to winnow components (thereby
reducing the search space) and composition strategies which violate the requirements
desired by the user. We assume the existence of a shared controlled vocabulary [10]
which is needed to specify the non-functional attributes of the component services.
These attributes can be either domain-dependent or domain-independent, and are used
to compose a quality matrix comprising of a set of quality attribute-values, such that
each row of the matrix corresponds to the value of a particular QoS attribute and each
column corresponds to a particular component service. Next, we describe an algorithm
that considers both the functional and non-functional user requirements to determine
feasible composition strategies as illustrated in Section 3.

4.1 Algorithm for Service Composition

The algorithm for determining feasible composition strategies (Figure 4) that are “equiv-
alent” to the goal service works as follows: the procedure forwardSearch([], v,
g, F, OP) is invoked by providing the threshold value v of a desired non-functional
attribute3 (e.g., cost of using the composite service should be less than $150), the
start state g of the goal STS, an optimization function F that corresponds to maximiza-
tion/minimization4 of the non-functional attribute under consideration, and the
composition operator OP for the specific optimization function. The initial composition
strategy prefixStrat is incrementally built as the algorithm proceeds recursively by
performing forward-backward traversals: The forward traversal tries to identify a feasi-
ble composition (by applying the simulation relation, Definition 2) that comply to the
user-specified non-functional requirements; the backward traversal tries to explore alter-
nate compositions (if any). If multiple compositions are identified, then it is left at user’s
discretion to select one amongst them.

More specifically, given a state g of the goal STS as input, the procedure forward
Search selects a component from the available set of components CompSet, such

3 In this paper, we consider only one non-functional attribute at a time for determining feasible
compositions; considering multiple attributes simultaneously is part of our on-going work.

4 Assuming that F is a minimization function, F(x,y) = 1, if x < y.

Modeling Web Services by Iterative Reformulation 321

/*
v0 is the user-defined threshold value, prefixStrat is the valid strategy obtained so far
v is non-functional attribute-value prefixStrat, g is the current goal state,
F is optimization function, OP is the composition operation for a specific optimization,
CompSet is the set of components

*/
1: proc forwardSearch(prefixStrat, v, g, F, OP) {
2: if (g is not final goal-state) {
3: select ci ∈ CompSet s.t. ∀ cj ∈ CompSet, j �= i : F(vci, vcj) = 1 and
4: ci is simulated by g to reach g’;
5: /* update the attribute-value */
6: v = v OP vci;
7: if (F(v,v0)�= 1) { backwardSearch(prefixStrat, F, OP); return; }
8: /* add the component with the goal-state */
9: prefixStrat = prefixStrat + (ci,g);
10: forwardSearch(prefixStrat, v, g’, F, OP);
11: }
12: else /* if the goal state is final, strategy is achieved */ {
13: assertPath(prefixStrat projection on components, v);
14: backwardSearch(prefixStrat, F, OP);
15: }
16: }

17: proc backwardSearch(prefixStrat, F, OP) {
18: if (prefixStrat = ∅) return;
19: prefixStrat = [(c1, g1), (c2, g2), ..., (cn, gn)];
20: select ci ∈ CompSet s.t. ∀ cj ∈ CompSet, j �= i, F(vcj , vcn) �= 1 : F(vci, vcj) = 1 and
21: ci is simulated by gn to reach g’;
22: /* update the value and begin the forward search */
23: v = v0 OP vc1 OP vc2 OP . . . OP vci

;
24: if (F(vci,v) = 1)
25: forwardSearch([(c1, g1), (c2, g2), ..., (ck, gi)], v, g’, F, OP);
26: backwardSearch([(c1, g1), (c2, g2), ..., (cn−1, gn−1)], F, OP)
27: }

Fig. 4. Algorithm for Identifying Compositions Satisfying Functional & Non-Functional User
Requirements

that its value for the non-functional attribute under consideration (e.g., cost) is max-
imum/minimum (depending on F) and verifies whether the component state is “sim-
ulation equivalent” to the goal state g (line 3). If no such component exists, then
an exception causing a failure of composition is raised and the user is notified (Sec-
tion 5). On the other hand, if such a component is available, the value of the desired
non-functional property is appropriately updated (line 6) and the component that
simulates the goal state is added to the composition strategy (line 9). The procedure
is recursively invoked with the updated non-functional attribute-value and a new goal
state g′, until the final state of the goal STS is reached; after which the corresponding
composition strategy is stored with the associated non-functional attribute-value of the
composition (line 13). This value will be either below or above the threshold v0
(line 7), depending on composition optimization function F. Once this step is exe-
cuted, the algorithm backtracks to determine alternate composition strategies that are
feasible. Note that, the forwardSearch procedure is a local greedy approach for
finding out a feasible composition and essentially identifies at least one path (beginning
at the start and ending at the final state of the goal STS) in the composition graph that
can be realized using the available component services.

322 J. Pathak, S. Basu, and V. Honavar

When there are multiple components that provide the same functionality, it is pos-
sible to generate more than one composition strategy to realize the composite service.
backwardSearch achieves this by replacing one component at a time (beginning
with the last component in the composition strategy, line 20) with an “equivalent”
component and then invokes forwardSearch to determine if the replacement vio-
lates the non-functional requirement under consideration (line 24--25). If there is
no such violation, then the derived strategy is stored with its associated value of the
corresponding non-functional attribute. The procedure proceeds further by recursively
backtracking (line 26) until all feasible composition strategies are determined. How-
ever, if the replacement violates the non-functional requirements, then the replaced
component as well as the corresponding composition strategy are disregarded. Thus,
eliminating composition strategies (and components) that violate non-functional re-
quirements yield significant reduction in the size of the search space.

4.2 Modeling LoanApproval Composite Service

We now show how to model the LoanApproval composite service introduced in Sec-
tion 2 using the algorithm and the formalisms described above. Figures 2, 1(b) & 1(c)
show the transition system of the goal (LoanApproval) and the component services
(Approver and Checker, respectively). To determine whether LoanApproval
can be realized from Approver and Checker services, we need to find out if STSLA
simulates the composition of STSApp and STSChck as well as whether the non-
functional requirements are met or not. Assume that the non-functional attribute we
are interested is cost, and we want that the cost of the composite service is less than
or equal to $150 (i.e., minimization of cost).

From Figure 4, if the algorithm selects componentApproverfirst, it can be seen that
STSApp is late-simulated by STSLA. The path starting from s0,12 in LoanApproval
simulates the paths in Approver such that s10,12 and s11,12 are the states in STSLA
that are simulation equivalent to final states t9 and t10 of STSApp under a true con-
straint. Also, the cost of STSApp is less than the threshold value of $150. Thus, this
component is added to the composition strategy being constructed. Proceeding further,
STSChck is also simulated by states s10,12 and s11,12 of STSLA, and the correspond-
ing cost of STSChck is $50, which makes the total cost of the composition strategy
equal to the threshold value. Thus, the composition of STSApp ◦ STSChck realizes
the goal service STSLA. Note that, there is another solution to the above problem where
Checker service is followed by Approver service.

Once this strategy is identified, the backward traversal procedure is invoked. Here,
we try to replace STSChck with STSChck’ (Figure 1(d)) since it can also be sim-
ulated by STSLA. However, replacing STSChck by STSChck’ violates the cost
requirement.

5 Reformulation of Goal Specification

The composition of a goal service from available component services using the process
outlined above will fail when some aspect of the goal specification cannot be realized

Modeling Web Services by Iterative Reformulation 323

using the available component services. When this happens, our approach seeks to pro-
vide to the user, information concerning the cause of the failure in a form that can be
used to further refine the goal specification. In our framework, the reason for failure of
an attempted composition to simulate a component by single or multiple states in the
goal is obtained by examining the simulation relation R:

s1 R
θ

s2 ⇐ ∃s1θ
α1−→ t1θ.∀s2θ

α2−→ t2θ.∃σ.(α1θσ = α2θσ) ⇒ t1 R
θσ

t2 (1)

Two states are said to be not simulation equivalent if they are related by the least solu-

tion of R. We say that STSi Rθ
STSj iff s0

i Rθ
s0

j . From Equation 1, the cause of
the state s1 not simulated by s2 can be due to:

1. ∃σ.α1θσ �= α2θσ (i.e., that actions do not match), or

2. ∃σ.α1θσ = α2θσ and the subsequent states are related by Rθσ
, or

3. ∃s1θ
α1−→ t1θ, but there is no transition enabled from s2 under the substitution θ.

For example, consider the STSs in Figure 5(a) & 5(b). The component STS is not
simulated by the first STSg (rooted at s1) as there exists a transition from t2(x) to t4
when the x is not equal to zero, which is absent from the corresponding state s2(x)
in the goal. The state t1 is also not simulated by state s4 of STSg′ as the state t2(x)
is not simulated by s5(y). This is because x and y may not be unified as the former is
generated from the output of a transition while the latter is generated at the state. In fact,
a state which generates a variable is not simulated by any state if there is a guard on
the generated variable. Such generated variables at the states are local to that transition
system and hence, cannot be ‘mimicked’ by another transition system. In our example,
t2(x) is not simulated by s5(y).

Note that in some cases, the failure to realize a feasible composition can also be due
to non-compliance of non-functional requirements specified by the user. In essence, this
refers to argument prefixStrat of procedure forwardSearch (Figure 4) being
null after exploring all possible composition strategies. When such a situation arises,
the framework identifies the particular non-functional requirement (v0) that cannot be
met using the available components, and provides this information to the service devel-
oper such that it can be used for appropriate refinement of the requirement.

Failure-Cause Analysis for LoanApproval. Returning to our example from Section
2, assume that we replace the Checker component service (Figure 1(c)) with another
service for determining client payment overdues (NewChecker Figure 5(c)), which

1
t

2
t (x)

3
t 4

t

c()(x)

x=0
d()() e()()

x!=0
2
s (x)

3
s

c()(x)

x=0

1

d()()

s

s (y)

6
s 7

s

c()(x)

y=0
e()()

y!=0

4

d()()

s

5

11
t

14
t

13
t

t (OverDue)
12

checkLoan(SSN)(OverDue)

t (OverDue,Charged)
13

[OverDue!=0 || Charged!=0]
null

checkRecord(SSN)(Charged)

[OverDue=0 & Charged=0]
null

(a) (b) (c)

Fig. 5. (a) Component STS (b) Goal STSs STSg & STSg′ (c) STS for NewChecker

324 J. Pathak, S. Basu, and V. Honavar

functions exactly like Checker, but additionally checks the criminal record of the
client. The service first checks whether the client has payment overdues for the existing
loans (if any) and then determines if the client has been previously charged for a crimi-
nal act. Since, the ‘additional’ criminal verification transition is not present in STSLA,,
the component start state t11 is not simulated by states s10,12, s11,12 or s0,12. On the
other hand, assuming that we replace Checker with Checker’ (Figure 1(d)), even
though the functional requirements are satisfied (due to equivalence), the non-functional
requirements are violated. Note that such failure-cause information can be provided to
the user which can be used for refining the goal specification in an iterative manner.
In this case the user can add the criminal verification transition (with appropriate pa-
rameters) to the goal specification or change the threshold value of the non-functional
attribute cost and try to determine a feasible composition strategy. These steps can be
iterated until such a strategy is found or the user decides to abort.

6 Related Work

A number of approaches have been proposed in the literature which adopt a transition-
system based framework to service composition. Fu et al. [11] model Web services as
automata extended with a queue, and communicate by exchanging sequence of asyn-
chronous messages, which are used to synthesize a composition for a given specifica-
tion. Their approach is extended in Colombo [8] which deals with infinite data values
and atomic processes. Colombo models services as labeled transition systems and de-
fine composition semantics via message passing, where the problem of determining a
feasible composition is reduced to satisfiability of a deterministic propositional dynamic
logic formula. Pistore et al. [5,6] represent Web services using non-deterministic state
transition systems, which also communicate through messaging. Their approach relies
on symbolic model checking techniques to determine a parallel composition of all the
available component services and then generates a plan that controls the services, based
on user-specified functional requirements.

Several techniques have also been developed which consider non-functional require-
ments for service composition. Cardoso et al. [12] describe a model that allows pre-
diction of quality of service for workflows based on individual QoS attributes for the
component services. Their technique allows compensation of composition deficiency
if many services with compatible functions exist. Benatallah et al. [7,13] consider ser-
vice selection task as a global optimization problem and apply linear programming to
find solution that represents service composition optimizing a target function, where
the function is defined as a combination of multiple non-functional parameters. Yu and
Lin [14] modeled the service selection as a complex multi-choice multi-dimension 0-1
knapsack problem, which takes into consideration difference in QoS parameters offered
by multiple services by assigning weights.

The proposed framework, MoSCoE, is inspired by and builds on the above men-
tioned approaches. One of the unique features of MoSCoE is its ability to work with
abstract (and possibly incomplete) goal service specifications for realizing composite
services, and in the event of failure of composition, determining the cause(s) for the fail-
ure. In addition, provides an approach to consider both functional and non-functional

Modeling Web Services by Iterative Reformulation 325

characteristics of services simultaneously to determine feasible composition strategies.
We believe that such a technique holds the promise of efficiently modeling complex
composite Web services; empirically verifying this claim is part of our current work.

7 Summary and Discussion

We introduce a novel approach for automatically developing composite services by the
applying the techniques of abstraction, composition and reformulation in an incremental
fashion. The framework provides a goal-directed approach to service composition and
adopts a symbolic transition system-based approach for computing feasible composi-
tion strategies. Our formalism allows us to identify and validate all possible composi-
tion strategies that meet the user-specified functional and non-functional requirements.
However, in the event that a composition cannot be realized using the existing set of can-
didate services, the technique determines the cause(s) for the failure (due to violation
of functional and/or non-functional requirements), and assists the user in reformulation
of those requirements in the goal specification.

Our on-going work is aimed at developing heuristics for hierarchically arranging
failure-causes to reduce the number of refinement steps typically performed by the user
to realize a feasible composition. We also plan to explore approaches to reducing the
number of candidate compositions that need to be examined e.g., by exploiting domain
specific information to impose a partial order over the available services. Other work
in progress is aimed at automatic translation of the composition strategy into BPEL
process flow code that can be executed to realize the composite service. Of particular
interest to us is a systematic evaluation of scalability and efficiency of the proposed ap-
proach on a broad class of benchmark service composition problems [15]. More details
about our framework can be obtained from http://www.moscoe.org.

Acknowledgment. This research has been supported in part by the NSF-ITR grant
0219699 to Vasant Honavar and NSF grant 0509340 to Samik Basu. The authors would
like to thank Robyn Lutz for her help in preparing this manuscript.

References

1. Hull, R., Su, J.: Tools for Composite Web Services: A Short Overview. SIGMOD Record
34(2) (2005) 86–95

2. Dustdar, S., Schreiner, W.: A Survey on Web Services Composition. International Journal
on Web and Grid Services 1(1) (2005) 1–30

3. Pathak, J., Basu, S., Lutz, R., Honavar, V.: Selecting and Composing Web Services through
Iterative Reformulation of Functional Specifications. In: 18th IEEE International Conference
on Tools with Artificial Intelligence. (2006)

4. Pathak, J., Basu, S., Lutz, R., Honavar, V.: Parallel Web Service Composition in MoSCoE: A
Choreography-based Approach. In: 4th IEEE European Conference on Web Services. (2006)

5. Pistore, M., Traverso, P., Bertoli, P.: Automated Composition of Web Services by Planning in
Asynchronous Domains. In: 15th Intl. Conference on Automated Planning and Scheduling.
(2005) 2–11

326 J. Pathak, S. Basu, and V. Honavar

6. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into Executable
Processes. In: 3rd Intl. Semantic Web Conference, Springer-Verlag (2004) 380–394

7. Benatallah, B., Sheng, Q., Dumas, M.: The Self-Serv Environment for Web Services Com-
position. IEEE Internet Computing 7(1) (2003) 40–48

8. Berardi, D., Calvanese, D., Giuseppe, D.G., Hull, R., Mecella, M.: Automatic Composition
of Transition-based Semantic Web Services with Messaging. In: 31st Intl. Conference on
Very Large Databases. (2005) 613–624

9. Basu, S., Mukund, M., Ramakrishnan, C.R., Ramakrishnan, I.V., Verma, R.M.: Local and
Symbolic Bisimulation Using Tabled Constraint Logic Programming. In: Intl. Conference
on Logic Programming. Volume 2237., Springer-Verlag (2001) 166–180

10. Pathak, J., Koul, N., Caragea, D., Honavar, V.: A Framework for Semantic Web Services
Discovery. In: 7th ACM Intl. Workshop on Web Information and Data Management, ACM
press (2005) 45–50

11. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: 13th Intl. confer-
ence on World Wide Web, ACM Press (2004) 621–630

12. Cardoso, J., Sheth, A., Miller, J., et al.: Quality of Service for Workflows and Web Service
Processes. Journal of Web Semantics 1(3) (2004) 281–309

13. Zeng, L., Benatallah, B.: QoS-Aware Middleware for Web Services Composition. IEEE
Transactions on Software Engineering 30(5) (2004) 311–327

14. Yu, T., Lin, K.: Service Selection Algorithms for Composing Complex Services with Mul-
tiple QoS Constraints. In: International Conference on Service Oriented Computing, LNCS
3826 (2005) 130–143

15. Oh, S.C., Kil, H., and, D.L.: WSBen: A Web Services Discovery and Composition Bench-
mark. In: 4th International Conference on Web Services, IEEE Press (2006) 239–246

SOCK: A Calculus
for Service Oriented Computing�

Claudio Guidi, Roberto Lucchi, Roberto Gorrieri,
Nadia Busi, and Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy
{cguidi, lucchi, gorrieri, busi, zavattar}@cs.unibo.it

Abstract. Service oriented computing is an emerging paradigm for de-
signing distributed applications where service and composition are the
main concepts it is based upon. In this paper we propose SOCK, a three-
layered calculus equipped with a formal semantics, for addressing all the
basic mechanisms of service communication and composition. The main
contribute of our work is the development of a formal framework where
the service design is decomposed into three fundamental parts: the be-
haviour, the declaration and the composition where each part can be
designed independently of the other ones.

1 Introduction

Service oriented computing (SOC) is an emerging paradigm for designing dis-
tributed applications where service and composition are the main concepts it is
based upon. A service can be seen as an application which performs a certain
task when it is invoked. A composition of services can be seen as a group of ser-
vices that, by means of collaborating message exchanges, fulfills a more complex
task than those performed by the single services it is composed of. The key fact
is that a suitable composition of services is a service. The most credited service
oriented technology is the Web Services. A lot of industries and consortia in the
world like Microsoft, IBM, W3C, OASIS (just to mention a few) have developed
standards which define Web Services interfaces such as WSDL [Wor] and com-
position languages such as WS-BPEL [OAS]. Such a kind of languages are based
on XML and are not equipped of a formal semantics.

In this paper, we propose SOCK, Service Oriented Computing Kernel, which
is a process calculus equipped with a formal semantics, for addressing all the ba-
sic mechanisms of service communication and composition that takes inspiration
from Web Services specifications. Our approach aims at dealing with different
service features by considering them separately and in an orthogonal way. We
distinguish among service behaviour, service declaration, service engine and ser-
vices system. The service behaviour deals with the internal behaviour of the
service and communication primitives, the service declaration is a description of
the service deployment, the service engine is the execution environment where
� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 327–338, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

328 C. Guidi et al.

the service is actually deployed and the services system is the composition of
service engines. The main contribute of our work is the development of a formal
framework where the service design is decomposed into three fundamental parts:
the behaviour, the declaration and the composition. Each part can be designed
independently of the other ones. We present a three-layered calculus which is an
evolution of those proposed in our previous work [BGG+05, BGG+06, GL06]. It
is formed by three calculi: the service behaviour calculus, the service engine calcu-
lus and the services system calculus. The former allows for the design of service
behaviours by supplying computation and external communication primitives
inpired to Web Services operations and workflow operators such as sequence,
parallel and choice. The second calculus is built on top of the former and it al-
lows for the specification of the service declaration where it is possible to design
in an orthogonal way three main characteristics: execution modality, persistent
state flag and correlation sets. The execution modality deals with the possibility
to execute a service in a sequential order or in a concurrent one; the persistent
state flag allows to declare if each session (of the service engine) has its own
independent state or if the state is shared among all the sessions of the same
service engine; the correlation sets is the mechanism for distinguishing sessions
initiated by different dialoguers by means of the values received within some
specified variables. Finally, the services system calculus allows for the definition
of the whole system including all the involved services that interact each others.

The paper is organized as follows. In Section 2 we present the SOCK calculi:
the service behaviour calculus, the service engine calculus and the services system
one. In Section 3 conclusions and future research are reported.

2 SOCK

In this section we present calculi of SOCK for representing service behaviours,
service engines and services system. They are an extension of those presented in
our previous work [BGG+05, BGG+06] even if, for the sake of brevity, here we
do not model asynchronous communications1. The semantics of the calculi are
defined in terms of labelled transition systems (lts for short) [Kel76] and they are
organized as follows. There are five lts layers: the service behaviour lts layer ; the
service engine state lts layer ; the service engine correlation lts layer ; the service
engine execution modality lts layer and the services system lts layer. The first
layer is the lower one. Each lts layer catches the actions raised by the underlying
one and will enable or disable them. If an action is enabled by an lts layer it will
be raised to the overlying one. The service behaviour lts layer describes all the
possible execution paths generated by a session behaviour. The service engine
state lts layer defines the rule for joining a service behaviour with a service
engine local state. The service engine correlation lts layer deals with correlation
set mechanism and the service engine execution modality lts layer represents
rules for executing sessions concurrently or in a sequential order. Finally, the
1 The reader interested to asynchoronous modelling in this setting may consult

[BGG+06].

SOCK: A Calculus for Service Oriented Computing 329

services system lts layer deals with a composed service engine system. A SOCK
example can be found in [GLZ+].

2.1 Service Behaviour Calculus

Before introducing the calculus we discuss some important issues such as the
external input and output actions and the service locations. The external input
and output actions deal with those actions that are exploited by the service be-
haviour for communicating with other services. The primitives related to such a
kind of actions are called operations and they are inspired to those of Web Ser-
vices. Each operation is described by a name and an interaction modality. There
are four kinds of peer-to-peer interaction modalities divided into two groups:

– Operations which supply a service functionality, Input operations :
• One-Way : it is devoted to receive a request message.
• Request-Response: it is devoted to receive a request message which im-

plies a response message to the invoker.
– Operations which request a service functionality, Output operations :

• Notification: it is devoted to send a request message.
• Solicit-Response: it is devoted to send a request message which requires

a response message.

The input operations are published by a service behaviour in order to receive mes-
sages on them. The output operation, on the contrary, are exploited for sending
messages to the input ones exhibited by the service behaviour to invoke. Here we
group the operations into single message operations and double message opera-
tions. The former ones deal with the One-Way and the Notification operations
whereas the latter with the Request-Response and the Solicit-Response ones. Let
O and OR be two disjoint sets of operation names where the former represents
the single message operation names and the latter the double message ones. Let
Sup = {(o, ow) | o ∈ O} ∪ {(or, rr) | or ∈ OR} be the set containing all the input
operations where ow and rr indicate One-Way and Request-Response operations,
respectively. Let Inv = {(o, n) | o ∈ O}∪{(or, sr) | or ∈ OR}be the set containing
all the output operations where n and sr denote Notification and Solicit-Response
operations. Let Op = Sup ∪ Inv be the set of all the possible operations. In our
framework, locations represent the address (let it be a logical or a physical one)
where a service is located. In order to perform an output operation it is fundamen-
tal to explicit both the operation name and the location of the receiver in order
to achieve a correct message delivery. In the following, locations will appear into
the output operation primitives of the service behaviour calculus and, since they
deal with the external communication, they will be exploited into the services sys-
tem calculus for synchronizing external inputs with the corresponding output ones.
Formally, let Loc be a finite set of location names ranged over by l.

The Syntax. In the following we present the syntax of the calculus devoted to
represent services. Let Signals be a set of signal names exploited for synchroniz-
ing processes in parallel within a service behaviour. Let V ar be a set of variables

330 C. Guidi et al.

ranged over by x, y, z and V al, ranged over by v, be a generic set of values on which
it is defined a total order relation. We exploit the notations x = 〈x0, x1, ..., xi〉 and
v = 〈v0, v1, ..., vi〉 for representing tuples of variables and values respectively. Let
k range over V ar ∪ Loc where V ar ∩ Loc = ∅. The syntax follows:

P, Q ::= 0 | ε | ε | x := e | χ?P : Q | P ; P | P |P | ∑+
i∈W εi; Pi | χ ⇀↽ P

ε ::= s | o(x) | or(x, y, P)
ε ::= s̄ | ō@k(x) | or@k(x, y)

We denote with SC the set of all possible processes ranged over by P and Q. 0
is the null process. Outputs can be a signal s̄, a notification ō@k(x) or a solicit-
response or@k(x, y) where s ∈ Signals, o ∈ O and or ∈ OR, k ∈ V ar ∪ Loc
represents the receiver location which can be explicit or represented by a vari-
able2, x is the tuple of the variables which store the information to send and y
is the tuple of variables where, in the case of the solicit-response, the received
information will be stored. Dually, inputs can be an input signal s, a one-way
o(x) or a request-response or(x, y, P) where s ∈ Signals, o ∈ O and or ∈ OR,
x is the tuple of variables where the received information are stored whereas y
is the tuple of variables which contain the information to send in the case of
the request-response; finally P is the process that has to be executed between
the request and the response. x := e assigns the result of the expression e to
the variable x. For the sake of brevity, we do not present the syntax for repre-
senting expressions, we assume that they include all the arithmetic operators,
values in V al and variables. χ?P : Q is the if-then-else process, where χ is a
logic condition on variables whose syntax is: χ ::= x ≤ e | e ≤ x | ¬χ | χ ∧ χ.
It is worth noting that conditions such as x = v, x �= v and v1 ≤ x ≤ v2
can be defined as abbreviations; P is executed only if the condition χ is satis-
fied, otherwise Q is executed. P ; P and P | P represent sequential and parallel
composition respectively whereas

∑+
i∈W εi; Pi is the non-deterministic choice re-

stricted to be guarded on inputs. Such a restriction is due to the fact that we
are not interested to model internal non-determinism in service behaviour. Our
calculus indeed aims at supplying a basic language for designing service be-
haviours where designers have a full control of the internal machinery and the
only non-predictable choices are those driven by the external message reception.
Finally, χ ⇀↽ P is the construct to model guarded iterations. As far as the se-
mantics is concerned, here we consider the extension of SC which includes also
the the terms ōr@l(x), ōr@z(x) and or(x). These terms allows us to reduce the
semantics rules for the Request-Response message exchange mechanism. In the
semantics indeed, we will consider the response message as a One-Way message
exchange as well. It is worth noting that the service behaviour calculus does
not deal with the actual values of variables and locations but it models all the
possible execution paths for all the possible variable values and locations. The
semantics follows this idea by means of an infinite set of actions where external

2 It is worth noting that the receiver location is contained within the variable z in
order to fullfil location mobility. The reader interested to this topic may consult
[GL06].

SOCK: A Calculus for Service Oriented Computing 331

inputs, external outputs and assignment actions report all the value substitu-
tions for both variables and locations except the actions ō@l(v/x), ōr@l(v/x)
and or@l(v/x, y) where locations are defined. Formally, let ω range over O∪OR

and let Act be the set of actions, ranged over by γ, defined as follows:
Act = In ∪ Out ∪ Internal

In = {ω(v/x), or(v/x, y, P)@l}
Out = {ω̄@l/z(v/x), ω̄@l(v/x), or@l/z(v/x, y), or@l(v/x, y)}
Internal = {s, s̄, x := v/e, χ?, ¬χ?}

We define →⊆ SC×Act×SC as the least relation which satisfies the axioms and
rules of Table 1 and closed w.r.t. ≡, where ≡ is the least congruence relation
satisfying the axioms at the end of Table 1. The rules are divided into ax-
ioms and rules for defining composition operators that are quite standard. Rules
One-WayOutLoc and Req-OutLoc deals with output operations where the
location l is explicit whereas rules One-WayOut and Req-Out deal with out-
put operations where the location is represented by the variable z. Rule ReqIn
produces a process which executes P and then performs a notification joined
with the sender location l. It is worth noting that the actual location will be
joined at the level of the services system lts layer where synchronizations among
service engines are defined. Rule Synchro defines the synchronization between
signals which allows us to exploit them for synchronizing parallel processes of the
same service behaviour. Finally, rules Iteration and Not Iteration model
iteration in a way which resembles that of imperative programming.

Definition 1. (Well-formedness) Let P ∈ SC be a service behaviour calculus
process. Let Ψ the set of all the possible external input operation terms. We say
that P is a well-formed process if:

∃γ1, ..., γn ∈ Ψ, ∃Q1, ..., Qn ∈ SC, P = γ1; Q1 + ... + γn; Qn

We denote the set of all the well-formed processes with the symbol XSC .

Definition 2. Let P ∈ XSC , a trace γ∗ of P is a session iff P
γ∗
→ 0.

The condition of Definition 1 states that a service behaviour process is well-
formed if it is formed by a set of processes, composed by means of an alternative
choice, which start with an external input operation. By defintion it follows that
XSC ⊆ SC.

2.2 Service Engine Calculus

This section is devoted to present the service engine calculus. Before presenting
its syntax, we introduce some basic concepts such as state, correlation sets and
service declaration. In a service engine indeed, all the executed sessions of a
service behaviour are joined by a state and a correlation set. Furthermore, a
service engine always executes sessions by following the specifications defined
within the service declaration. A state is represented by a function S : V ar →
V al ∪ {⊥} from variables to the set V al ∪ {⊥} ranged over by w. V al, ranged

332 C. Guidi et al.

Table 1. Rules for service behaviour lts layer

(In)

s
s
→ 0

(Out)

s̄
s̄
→ 0

(One-WayOut)

ω̄@z(x)
ω̄@l/z(v/x)

−→ 0

(One-WayOutLoc)

ω̄@l(x)
ω̄@l(v/x)
−→ 0

(One-WayIn)

ω(x)
ω(v/x)
→ 0

(Assign)

x := e
x:=v/e
→ 0

(Req-Out)

or@z(x, y)
or@l/z(v/x,y)

−→ or(y)

(Req-OutLoc)

or@l(x, y)
or@l(v/x,y)

−→ or(y)

(Req-In)

or(x, y, P)
or(v/x,y,P)@l

→ P ; ōr@l(y)

(If then)

χ?P : Q
χ?
→ P

(Else)

χ?P : Q
¬χ?
→ Q

(Iteration)

χ ⇀↽ P
χ?
→ P ; χ ⇀↽ P

(Not Iteration)

χ ⇀↽ P
¬χ?
→ 0

(Synchro)

P
s
→ P ′, Q

s̄
→ Q′

P | Q
τ
→ P ′ | Q′

(Sequence)

P
γ
→ P ′

P ; Q
γ
→ P ′; Q

(Parallel)

P
γ
→ P ′

P | Q
γ
→ P ′ | Q

(Choice)

εi
γ
→ 0 i ∈ I∑+

i∈I
εi; Pi

γ
→ Pi

Structural Congruence

P | Q ≡ Q | P P | 0 ≡ 0 P | (Q | R) ≡ (P | Q) | R 0; P ≡ P

over by v, is a generic set of values on which it is defined a total order relation3.
We use S[v/x], whose definition follows, to denote the variable state update:

S[v/x] = S′ S′(x′) =
{

v if x′ = x
S(x′) otherwise

Conditions can be evaluated over states. We exploit the notation S � χ for de-
noting that the state S satisfies the condition χ. The satisfaction relation for
� is defined by the following rules, where e denotes an expression and e ↪→S v
denotes that, when the state is S, the expression e is evaluated into the value
v or, when some variables within the expression are not instantiated, into the
symbol ⊥:
1. e ↪→S v, S(x) ≤ v ⇒ S � x ≤ e 2. e ↪→S v, v ≤ S(x) ⇒ S � e ≤ x
3. S � χ′ ∧ S � χ′′ ⇒ S � χ′ ∧ χ′′ 4. ¬(S � χ) ⇒ S � ¬χ

Sessions often require to be distinguished and accessed only by those dialoguers
which hold some specific references. In the object oriented paradigm such a ref-
erence is the object reference guaranteed by the object oriented framework. In
service oriented computing in general, we cannot assume the existence of an un-
derlying framework which guarantees references management. Correlation sets,
which are a mechanism defined within WS-BPEL, allows us to address such an

3 We extend such an order relation on the set V al∪{⊥} considering ⊥ < v, ∀v ∈ V al.

SOCK: A Calculus for Service Oriented Computing 333

issue. A correlation set is a set of variables called correlated variables. Formally,
let CSet = P(V ar) be the set of all the correlation sets ranged over by c. In
a service engine a session is identified by the values assigned to the correlated
variables by the current state. The session identification issue is raised when a
message is received on an input operation. Since there should be several sessions
that are waiting on the same input operation indeed, the right session to which
the message is delivered is identified by means of the correlated variables values.
Given a variable x, two values v and w where the former is the value which is
willing for being replaced within the variable x and the latter is the actual value
of x and a correlation set c, we say that v is correlated to x coherently with c,
v/x �c w, if: the variable x belongs to c and its actual value is w = v;the variable
x belongs to c and its actual value is w = ⊥; the variable x does not belong to
c. Formally we exploit the following notation:

v/x �c w ⇐⇒ (x ∈ c ∧ (v = w ∨ w = ⊥)) ∨ x /∈ c

We extend such a definition to vector of variables and values:
v/x �c w ⇐⇒ ∀xi, vi/xi �c wi

As far as the service declaration is concerned, it contains all the necessary in-
formation for executing sessions. In particular, it specifies: the service behaviour
whose sessions are executed by the service engine; if each session has its own
state or if there is a common state shared by all the sessions (in the former case
the state is renewed each time the execution of a session starts and it expires
when the session terminates: we say that the state is not persistent whereas in
the latter case, the state is never renewed and the variables hold their values
after the termination of the sessions: we say that the state is persistent); the
correlation set which guards the executed sessions; if the sessions are executed
in a sequential order or in a concurrent one. The syntax follows:

U ::= P× | P• W ::= c � U D ::=!W | W ∗

where P ∈ XSC is a service behaviour, flag × denotes that P is equipped with a
not persistent state and flag • denotes that P is equipped with a persistent one.
c is the correlation set which guards the execution of the sessions, !W denotes a
concurrent execution of the sessions and W ∗ denotes the fact that sessions are
executed in a sequential order. D is a service declaration.

The Service Engine Calculus Syntax. Here we present the service engine
calculus syntax:

Y ::= D[H] H ::= c � PS PS ::= (P, S) | PS | PS

where D is a service declaration, P is a service behaviour process and S is a
state. Y is a service engine and it is composed of a service declaration D and an
execution environment H . H represents the actual sessions which are running
on the service engine modelled as the parallel composition of service behaviour
process coupled with a state (P, S). All the couples are guarded by the same
correlation set c; it is worth noting that a service engine is not correlated when
c = ∅. We denote with HC the set of all the possible processes ranged over by
Y . The semantics is defined in terms of different label transition system layers

334 C. Guidi et al.

Table 2. Rules for service engine state lts layer

(In)

P
s→ P ′

(P, S) s→ (P ′, S)

(Out)

P
s̄→ P ′

(P, S) s̄→ (P ′, S)

(Synchro)

P
τ→ P ′

(P, S) τ→ (P ′, S)

(One-WayOut)

P
ω̄@l/z(v/x)→ P ′, S(z) = l, S(x) = v

(P, S)
ω̄@l(v)−→ (P ′, S)

(One-WayOutLoc)

P
ω̄@l(v/x)→ P ′, S(x) = v

(P, S)
ω̄@l(v)−→ (P ′, S)

(One-WayIn)

P
ω(v/x)→ P ′

(P, S)
ω(v/x) �→S(x)−→ (P ′, S [v/x])

(Req-In)

P
or(v/x,y,P)@l→ P ′

(P, S)
or(v/x,y,P)@l�→S(x)−→ (P ′, S [v/x])

(Req-Out)

P
or@l/z(v/x,y)→ P ′, S(z) = l, S(x) = v

(P, S)
or@l(v,y)−→ (P ′, S)

(Req-OutLoc)

P
or@l(v/x,y)→ P ′, S(x) = v

(P, S)
or@l(v,y)−→ (P ′, S)

(Assign)

P
x:=v/e→ P ′, e ↪→S v

(P, S) τ→ (P ′, S [v/x])

(Satisfaction)

P
χ?→ P ′, χ � S

(P, S) τ→ (P ′, S)

(Not Satisfaction)

P
¬χ?→ P ′, χ �/S

(P, S) τ→ (P ′, S)

presented in Tables 2,4 and 5. Table 2 deals with the rules for the service engine
state lts layer which defines the semantics for a couple of a service behaviour
process and a state, Table 4 deals with the rules for service engine correlation lts
layer where it is defined the semantics for managing correlation sets and Table
4 deals with the service engine execution modality lts layer which defines the
semantics for executing sessions in a concurrent or in a sequential way. As far as
Table 2 is concerned, an action is enabled if the current state contains variables
values which correspond to those reported into the action. An action is disabled,
i.e. it is not raised to the overlying lts layer, when the variables values into the
state do not correspond to those reported into the action. The enabled action,
when raised to the overlying lts layer, will be modified in order to forward only
the needed information. Table 3 reports the one-to-one mapping from the service
behaviour lts layer actions to the service engine state lts layer ones. Actions a),
b) are not altered since they do not deal with the state whereas actions g) are
replaced with a τ action because they do not carry any information needed by
the overlying layer. Actions c) and e) are related to the output operations and,
when enabled, they resolve the values of the variables and locations. Indeed,
if we consider rules One-WayOut and Req-Out they contain the conditions
S(z) = l and S(x) = v which allows for the verification of the actual values of the
variables within the current state. In particular, rules One-WayOutLoc and
Req-OutLoc do not resolve locations because they are explicitly represented.

SOCK: A Calculus for Service Oriented Computing 335

Actions d) and f) deal with the input operations (rules One-WayIn, Req-In)
and, when enabled, they do not resolve the values of the variables but they
forward the actual values of the variables involved into the action (�→ S(x)).
This is due to the fact that some variables could be correlated and it will be
necessary to verify if they satisfy the current correlation set. Such a control will
be done in the overlying layer whose rules, closed w.r.t. the structural congru-
ence, are reported in Table 4. Also in this case the actions, if enabled, will be
modified and raised for the overlying layer4. In Table 4 rules CorrelatedOne-
WayIn and CorrelatedReq-In deal with the actions d) and f) of Table 3
where the values of the variables are resolved only if the condition on correlation
set is satisfied (v/x �c w). As far as Table 5 is concerned, the actions are en-
abled at the level of the service engine (rule Execution) and session execution
modalities, concurrent or sequential with a persistent or a not persistent state,
are defined (rules ConcurrentNotPersistent, ConcurrentPersistent,
SequentialNotPersistent and SequentialPersistent). Rule Concur-
rentNotPersistent deals with a concurrent execution of the sessions and
with a not persistent state. In particular, each session has its own state, that
is initially fresh (S⊥), and it is executed concurrently with the other ones. It is
worth noting that condition ∃� Si ∈ PS c � (P, Si)

γ→ c � (P ′, S′
i)

5 states that
it is not possible to start a new session with a set of values for the correlated
variables that belong to another running session. Rule ConcurrentPersis-
tent deals with the concurrent execution of sessions which share a common
state. Rule SequentialNotPersistent deals with the sequential execution of
sessions which have their own state. In this case there is always no more than
one executed session at a time. The state is not persistent and it is renewed each
time a new session is spawned. Finally, rule SequentialPersistent deals with
the sequential execution of the sessions where the state is shared and it does not
expire after session termination.

2.3 Services System Calculus

Here we present the services system calculus which is based on the service engine
one and it allows for the composition of different engines into a system. The
service engines are composed in parallel and they are equipped with a location
that allows us to univocally distinguish them within the system. The calculus
syntax follows:

E ::= Yl | E ‖ E

A service engine system E can be a located service engine Yl, where l is a
location, or a parallel composition of them. The semantics is defined in terms
of a labelled transition system whose rules are described in Table 6 and closed
w.r.t. the structural congruence. At the level of services system there are only
4 For the sake of brevity, we do not report the mapping table for the actions. It is easy

to extract it from the rules of Table 4.
5 We abuse of the notation Si ∈ PS for meaning that it exists a couple (P, Si) within

the term PS.

336 C. Guidi et al.

Table 3. Enabled action mapping

Service behaviour actions Service engine state actions

a) s s
b) s s
c) ω̄@l/z(v/x), ω̄@l(v/x) ω̄@l(v)
d) ω(v/x) ω(v/x) �→ S(x)
e) or@l/z(v/x, y), or@l(v/x, y) or@l(v, y)
f) or(v/x, y, P)@l or(v/x, y, P)@l �→ S(x)
g) χ?, ¬χ?, x := v/e, τ τ

Table 4. Rules for service engine correlation lts layer

(Not Correlated)

PS
γ→ P ′

S

c � PS
γ→ c � P ′

S

γ 	= o(v/x) �→ w
or(v/x, y, P)@l �→ w

(Parallel)

c � PS
γ→ c � P ′

S

c � PS | QS
γ→ c � P ′

S | QS

(CorrelatedOne-WayIn)

PS
ω(v/x) �→(w)→ P ′

S, v/x �c w

c � PS
ω(v)−→ c � P ′

S

(CorrelatedReq-In)

PS
or(v/x,y,P)@l�→(w)→ P ′

S, v/x �c w

c � PS
or(v,y)@l−→ c � P ′

S

Structural Congruence

PS | QS ≡ QS | PS PS | (QS | RS) ≡ (PS | QS) | RS PS | (0, S) ≡ PS

Table 5. Rules for service engine execution modality lts layer

(ConcurrentNotPersistent)

(P,S⊥)
γ
→ (P ′,S ′), ∃� Si ∈ PS c � (P,Si)

γ
→ c � (P ′,S ′

i)

!c � P×[c � PS]
γ
→!c � P×[c � PS | (P ′,S ′)]

(ConcurrentPersistent)

c � (P,S)
γ
→ c � (P ′,S ′)

!c � P•[c � (Q,S)]
γ
→!c � P•[c � (Q | P ′,S ′)]

(SequentialNotPersistent)

c � (P,S⊥)
γ
→ c � (P ′,S ′)

(c � P×)∗[c � (0,S ′′)]
γ
→ (c � P)∗×[c � (P ′,S ′)]

(SequentialPersistent)

c � (P,S)
γ
→ c � (P ′,S ′)

(c � P•)∗[c � (0,S)]
γ
→ (c � P)∗•[c � (P ′,S ′)]

(Execution)

H
γ
→ H ′

D[H]
γ
→ D[H ′]

two kinds of action label: τ and τ̃ where the former represents synchronizations
among service engines and the latter represents not observable internal actions of
service engines (rule Internal). Rules One-WaySync and Req-Sync describe
synchronizations among different service engines. The former models a One-Way

SOCK: A Calculus for Service Oriented Computing 337

Table 6. Rules for services system lts layer

(One-WaySync)

Yl
ω̄@l′(v)→ Y ′

l , Zl′
ω(v)→ Z′

l′

Yl ‖ Zl′
τ→ Y ′

l ‖ Z′

l′

(Req-Sync)

Yl
or@l′(v,y)→ Y ′

l , Zl′
or(v,y)@l→ Z′

l′

Yl ‖ Zl′
τ→ Y ′

l ‖ Z′

l′

(Par-Ext)

E1
γ→ E′

1

E1 ‖ E2
γ→ E′

1 ‖ E2

(Internal)

Yl
γ→ Y ′

l

Yl
τ̃→ Y ′

l

γ �=
ō@l(v)
o(v)
or@l(v, y)
or(v, y)@l

(Structural Congruence over E)

E1 ‖ E2 ≡ E2 ‖ E1 E1 ‖ (E2 ‖ E3) ≡ (E1 ‖ E2) ‖ E3

message exchange and the latter models the request message exchange in the case
of a Request-Response. It is worth noting that the response message exchange,
in the case of a Request-Response, is modelled by the former rule indeed, by
means of rules of Table 1, Request-Response operations can be externally seen
as two One-Ways.

3 Conclusion

In this paper we have proposed a set of process calculi for dealing with service
design and composition. There are other works which exploit formal models for
representing services and service composition. In general, they use different mod-
els for representing service behaviours and service composition and they do not
deal with service deployment features. In [DD04] the authors use Petri Nets for
describing service behaviours but they focus only on workflow aspects without
distinguishing among the different kind of operations. In [LM] a semantics of
WS-BPEL is defined in terms of pi-calculus processes but correlation sets are
not considered. In [MC06] the authors present a language, called Orc, where
services are considered as functions and a service invocation is expressed by
a function call. Finally, as far as correlation sets are concerned, in [Vir04] Vi-
roli propose a first formalization of the mechanism specified within BPEL4WS
specification.

Our work must be considered within a wider framework context we are work-
ing on where we have analyzed orchestration and choreography calculi for ad-
dressing system design issues. The relationship between the two views has been
given by exploiting a notion of conformance based on bisimulation. Jointly with
the formal investigation, we are developing a Java interpreter for the orchestra-
tion language called JOLIE (Java Orchestration Language Interpreter Engine)
[MGLZ]. At the present, JOLIE is able to intepret the service behaviour calculus
and it allows us to compose different JOLIE services over the Internet. In the
future, we intend to extend it in order to interpret the service engine calculus.

338 C. Guidi et al.

References

[BGG+05] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography
and orchestration: A synergic approach for system design. In ICSOC’05,
volume 3826 of LNCS, pages 228–240, 2005.

[BGG+06] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreog-
raphy and orchestration conformance for system design. In Proc. of 8th
International Conference on Coordination Models and Languages (COOR-
DINATION’06), volume 4038 of LNCS, pages 63–81, 2006.

[DD04] R. Dijkman and M. Dumas. Service-oriented Design: a Multi-viewpoint
Approach. Int. J. Cooperative Inf. Syst., 13(4):337–368, 2004.

[GL06] C. Guidi and R. Lucchi. Mobility mechanisms in service oriented com-
puting. In Proc. of 8th International Conference on on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’06), volume 4037
of LNCS, pages 233–250, 2006.

[GLZ+] C. Guidi, R. Lucchi, G. Zavattaro, N. Busi, and R. Gorrieri. Techni-
cal Report UBLCS-2006-20, Dep. of Computer Science, Univ. of Bologna
[http://www.cs.unibo.it/research/reports/], 2006.

[Kel76] R. M. Keller. Formal verification of parallel programs. Commun. ACM,
19(7):371–384, 1976.

[LM] R. Lucchi and M. Mazzara. A pi-calculus based semantics for WS-BPEL.
Journal of Logic and Algebraic Programming. Elsevier Press. To appear.

[MC06] J. Misra and W. Cook. Computation orchestration, a basis for wide-area
computing. Journal of Software and Systems modeling, 2006. To appear.

[MGLZ] F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro. JOLIE: a Java Or-
chestration Language Interpreter Engine. In CoOrg06, volume to appear
of ENTCS.

[OAS] OASIS. Web Services Business Process Execution Language Version 2.0,
Working Draft. [http://www.oasis-open.org/committees/download.php/
10347/wsbpel-specification-draft-120204.htm].

[Vir04] M. Viroli. Towards a Formal Foundation to Orchestration Languages. In
Proc. of 1st International Workshop on Web Services and Formal Methods
(WS-FM 2004), volume 105 of ENTCS. Elsevier, 2004.

[Wor] World Wide Web Consortium. Web Services Description Language
(WSDL) 1.1. [http://www.w3.org/TR/wsdl].

A Priori Conformance Verification for Guaranteeing
Interoperability in Open Environments�

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti

Dipartimento di Informatica — Università degli Studi di Torino
C.so Svizzera, 185 — I-10149 Torino, Italy

{baldoni, baroglio, mrt, patti}@di.unito.it

Abstract. An important issue, in open environments like the web, is guarantee-
ing the interoperability of a set of services. When the interaction scheme that the
services should follow is given (e.g. as a choreography or as an interaction proto-
col), it becomes possible to verify, before the interaction takes place, if the inter-
active behavior of a service (e.g. a BPEL process specification) respects it. This
verification is known as “conformance test”. Recently some attempts have been
done for defining conformance tests w.r.t. a protocol but these approaches fail
in capturing the very nature of interoperability, turning out to be too restrictive.
In this work we give a representation of protocol, based on message exchange
and on finite state automata, and we focus on those properties that are essential
to the verification of the interoperability of a set of services. In particular, we
define a conformance test that can guarantee, a priori, the interoperability of a
set of services by verifying properties of the single service against the protocol.
This is particularly relevant in open environments, where services are identified
and composed on demand and dynamically, and the system as a whole cannot be
analyzed.

1 Introduction

In this work we face the problem of verifying the interoperability of a set of peers by
exploiting an abstract description of the desired interaction. On a hand, we will have
an interaction protocol (possibly expressed by a choreography), capturing the global
interaction of a desired system of services; on the other, we will have a set of service
implementations which should be used to assemble the system. The protocol is a speci-
fication of the desired interaction, as thus, it might be used for defining several systems
of services [3]. In particular, it contains a characterization of the various roles played
by the services [6]. In our view, a role specification is not the exact specification of a
process of interest, rather it identifies a set of possible processes, all those whose evo-
lutions respect the dictates given by the role. In an open environment, the introduction
of a new peer in an execution context will be determined provided that it satisfies the

� This research has partially been funded by the European Commission and by the Swiss Federal
Office for Education and Science within the 6th Framework Programme project REWERSE
number 506779 (cf. http://rewerse.net), and it has also been supported by MIUR PRIN 2005
“Specification and verification of agent interaction protocols” national project.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 339–351, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

340 M. Baldoni et al.

protocol that characterizes such an execution context; as long as the new entity satisfies
the rules, the interoperability with the other components of the system is guaranteed.

In the literature it is possible to find works that tackle the composition of specific
entities (or services). In this context the issue of verifying that the desired services
can actually interact is crucial. For instance, in [20] the aim is to verify the existence
of a partner that is able to interact with a service of interest. This property is called
“controllability”. In [9], instead, the problem that is faced consists in verifying if there
is a composition of certain web services that respects a partial sequence of actions given
by a client. Works in this line of research differ from ours in the fact that we consider
the choreography, which is given a priori, as a model. This allows the distribution of
the verification in time and among the various candidate players. A candidate player
can autonomously check its conformance to the model independently from the others
because it only compares its behavior to the role that it means to play. To do this it
is not necessary to have the implementations of the other roles. In our framework, the
verification of the correctness of the model is supposed to preceed the verification of the
interoperability of the various players. This modularity meets the requirements given
by interaction protocol engineering: in fact, the expected properties of the composition
are captured by the model, defined at design time, which preceeds the verification of
the conformance of the peers to be composed. On the contrary, in works where the
compatibility of a set of peers is studied, the verification of the designer’s specifications
is to be done after the composition is made.

The computational model of web services shows some analogies with of method-
invocation over objects [17], in the sense that as an object cannot refuse to execute a
method, which is invoked on it and that is contained in its public interface, a service
cannot refuse to execute over an invocation that respects its public interface (although
it can refuse the answer). This, however, is not the only possible model of execution. In
multi-agent systems, for instance, an agent sending a request message to another agent
cannot be certain that it will ever be answered, unless the interaction is ruled by a proto-
col. The protocol plays, in a way, the role of the public interface: an agent conforming
to a protocol must necessarily answer and must be able to handle messages sent by
other agents in the context of the protocol itself. The difference between the case of
objects and the case of protocols is that the protocol also defines an “execution context”
in which using messages. Therefore, the set of messages that it is possible to use varies
depending on the point at which the execution has arrived. In a way, the protocol is a
dynamic interface that defines messages in the context of the occurring interaction, thus
ruling this interaction. On the other hand, the user of an object is not obliged to use all
of the methods offered in the public interface and it can implement more methods. The
same holds when protocols are used to norm the interaction. Generally speaking, only
part of the protocol will be used in an entity’s interaction with another, moreover, an
entitycan understand more messages than the one forseen by the protocol. Moreover,
we will assume that the initiative is taken from the entity that plays as a sender, which
will commit to sending a specific message out of its set of alternatives. The receiver
will simply execute the reception of the message. Of course, the senders should send
a message that its counterpart can understand. For all these reasons, performing the

A Priori Conformance Verification 341

conformance test is analogous to verifying at compilation time (that is, a priori) if a
class implements an interface in a correct way and to execute a static typechecking.

Sticking to a specification, on the other hand, does not mean that the service must
do all that the role specification defines; indeed, a role specification is just a formal
definition of what is lawful to say or to expect at any given moment of the interaction.
Taking this observation into account we need to define some means for verifying that a
single service implementation comforms to the specification of the role in the protocol
that it means to play [16]. The idea is that if a service passes the conformance test it will
be able to interact with a set of other services, equally proved individually conformant
to the other roles in the protocol, in a way that respects the rules defined in the protocol
itself.

A typical approach to the verification that a service implementation respects a role
definition is to verify whether the execution traces of the service belong to the protocol
[1,14,7]. This test, however, does not consider processes with different branching struc-
tures. Another approach, that instead takes this case into account, is to apply bisimula-
tion and say that the implementation is conformant if it is bisimilar to its role or, more
generally, that the composition of a set of policies is bisimilar to the composition of
a set of roles [10,24]. Bisimulation [21], however, does not take into account the fact
that the implementor’s decisions of cutting some interaction path not necessarily com-
promise the interaction. Many services that respect the intuitions given above will not
be bisimilar to the specification but it would be very restrictive to say that they are not
conformant (see Section 3.1). Thus, in order to perform the conformance test we need a
softer test, a test that accepts all the processes contained in a space defined by the role.
Moreover, (bi)simulation does not take into account the asymmetry between messages
that are sent (outgoing messages) and messages that are, instead, received (incoming
messages) [5]. In this work we provide such a test (Section 3). This proposal differs
from previous work that we have done on conformance [7,8] in various aspects. First
of all, we can now tackle protocols that contain an arbitrary (though finite) number of
roles. Second, we account also for the case of policies and roles which produce the same
interactions but have different branching structures. This case could not be handled in
the previous framework due to the fact that we based it exclusively on a trace semantics.

2 Protocols, Policies, and Conversations

A conversation policy is a program that defines the communicative behavior of an in-
teractive entity, e.g. a service, implemented in some programming language [3]. A con-
versation protocol specifies the desired communicative behavior of a set of interactive
entities. More specifically, a conversation protocol specifies the sequences of messages
(also called speech acts) that can possibly be exchanged by the involved parties, and
that we consider as lawful.

In languages that account for communication, speech acts often have the form m(as,
ar, l), where m is the kind of message, or performative, as (sender) and ar (receiver)
are two interactive entities and l is the message content. In the following analysis it
is important to distinguish the incoming messages from the outgoing messages w.r.t a
role of a protocol or a policy. We will write m? (incoming message) and m! (outgoing

342 M. Baldoni et al.

message) when the receiver or the utterer and the content of the message is clear from
the context or they are not relevant. So, for instance, m(as, ar, l) is written as m?
from the point of view of ar, and m! from the point of view of the sender. By the term
conversation we will, then, denote a sequence of speech acts that is a dialogue of a set
of parties.

Both a protocol and a policy can be seen as sets of conversations. In the case of the
protocol, it is intuitive that it will be the set of all the possible conversations allowed
by its specification among the partners. In the case of the single policy, it will be the
set of the possible conversations that the entity can carry on according to its imple-
menting program. Although at execution time, depending on the interlocutor and on
the circumstances, only one conversation will actually be expressed, in order to verify
conformance a priori we need to consider them all as a set. It is important to remark be-
fore proceeding that other proposal, e.g. [2], focus on a different kind of conformance:
run-time conformance, in which only the ongoing conversation is checked against a
protocol. In this line also [23] where data mining techniques are used to compare event
logs to a desired business process.

Let us then introduce a formal representation of policies and protocols. We will use
finite state automata (FSA). This choice, though simple, is the same used by the well-
known verification system SPIN [18], whose notation we adopt. FSA will be used for
representing individual processes that exchange messages with other processes. There-
fore, FSA will be used both for representing the roles of a protocol, i.e. the abstract
descriptions of the interacting parties, as well as for representing the policies of spe-
cific entities involved in the interaction. In this work we do not consider the translation
process necessary to turn a protocol (e.g. a WS-CDL choreography) or an entity’s policy
(e.g. a BPEL process) in a FSA; our focus is, in fact, conformance and interoperability.
It is possible to find in the literature some works that do this kind of translations. An
example is [14].

Definition 1 (Finite State Automaton). A finite state automaton is a tuple (S, s0, L, T,
F), where S is a finite set of states, s0 ∈ S is a distinguished initial state, L is a finite
set of labels, T ⊆ (S × L × S) is a set of transitions, F ∈ S is a set of final states.

Similarly to [18] we will denote by the “dot” notation the components of a FSA, for
example we use A.s to denote the state s that belongs to the automaton A. The definition
of run is taken from [18].

Definition 2 (Runs and strings). A run σ of a FSA (S, s0, L, T, F) is an ordered,
possibly infinite, set of transitions (a sequence) (s0, l0, s1), (s1, l1, s2), (s2, l2, s3), . . .
such that ∀i ≥ 0, (si, li, si+1) ∈ T , while the sequence l0l1 . . . is the corresponding
string σ.

Definition 3 (Acceptance). An accepting run of a finite state automaton (S, s0, L, T, F)
is a finite run σ in which the final transition (sn−1, ln−1, sn) has the property that sn ∈
F . The corresponding string σ is an accepted string.

Given a FSA A, we say that a state A.s1 ∈ A.S is alive if there exists a finite run
(s1, l1, s2), . . . , (sn−1, ln−1, sn) and sn ∈ A.F . Moreover, we will write A1 ⊆ A2 iff
every string of A1 is also a string of A2.

A Priori Conformance Verification 343

In order to represent compositions of policies or of individual protocol roles we need
to introduce the notions of free and of synchronous product. These definitions are an
adaptation to the problem that we are tackling of the analogous ones presented in [4]
for Finite Transition Systems.

Definition 4 (Free product). Let Ai, i = 1, . . . , n, be n FSA’s. The free product A1 ×
· · · × An is the FSA A = (S, s0, L, T, F) defined by:

– S is the set A1.S × · · · × An.S;
– s0 is the tuple (A1.s0, . . . , An.s0);
– L is the set A1.L × · · · × An.L;
– T is the set of tuples ((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′
1, . . . , An.s′n)) such

that (Ai.si, li, Ai.s
′
i) ∈ Ai.T , for i = 1, . . . , n; and

– F is the set of tuples (A1.s1, . . . , An.sn) ∈ A.S such that si ∈ Ai.F , for i =
1, . . . , n.

We will assume, from now on, that every FSA A has an empty transition (s, ε, s) for
every state s ∈ A.S. When the finite set of labels L used in a FSA is a set of speech
acts, strings will represent conversations.

Definition 5 (Synchronous product). Let Ai, i = 1, . . . , n, be n FSA’s. The synchro-
nous product of the Ai’s, written A1 ⊗· · ·⊗An, is the FSA obtained as the free product
of the Ai’s containing only the transitions ((A1.s1, . . . , An.sn), (l1, . . . , ln), (A1.s

′
1,

. . . , An.s′n)) such that there exist i and j, 1 ≤ i �= j ≤ n, li = m!, lj = m?, and for
any k not equal to i and j, lk = ε.

The synchronous product allows a system that exchanges messages to be represented.
It is worth noting that a synchronous product does not imply that messages will be
exchanged in a synchronous way; it simply represents a message exchange without any
assumption on how the exchange is carried on.

In order to represent a protocol, we use the synchronous product of the set of FSA’s
associated with its roles (each FSA represents the communicative behavior of the role).
Moreover, we will assume that the automata that compound the synchronous product
have some “good properties”, which meet the commonly shared intuitions behind proto-
cols. In particular, we assume that for the set of such automata the following properties
hold:

1. any message that can possibly be sent, at any point of the execution, by a role to
another, will be handled by that interlocutor;

2. whatever point the conversation has reached, there is a way to bring it to an end.

An arbitrary synchronous product of n FSA’s might not meet these requirements, which
can, however, be verified by using automated systems, like SPIN [18].

Note that protocol specification languages, like UML sequence (activity) diagrams
and automata [22], naturally follow these requirements: an arrow starts from the lifeline
of a role, ending into the lifeline of another role, and thus corresponds to an outgoing
or to an incoming message depending on the point of view. Making an analogy with the
computational model of distributed objects, one could say that the only messages that

344 M. Baldoni et al.

are sent are those which can be understood. Moreover, usually protocols contain finite
conversations.

We will say that a conversation is legal w.r.t. a protocol if it respects the specifications
given by the protocol, i.e. if it is an accepted string of the protocol.

3 Interoperability and Conformance Test

We are now in position to explain, with the help of a few simple examples, the intuition
behind the terms “conformance” and “interoperability”, that we will, then, formalize.
By interoperability we mean the capability of a set of entities of actually producing a
conversation when interacting with one another [5]. Interoperability is a desired prop-
erty of a system of interactive entities and its verification is fundamental in order to
understand whether the system works. Such a test passes through the analysis of all
the entities involved in the interaction. In an open system, however, it is quite unlikely
to have a global view of the system either because it is not possible to read part of
the necessary information (e.g. some services do not publish their behavior) or because
the interactive entities are identified at different moments, when necessary. Protocols
are adopted to solve such problems, in fact, having an interaction schema allows the
distribution of the tests in time, by checking a single entity at a time against the role
that it should play. The protocol, by its own nature guarantees the interoperability of
the roles that are part of it. One might argue why we do not simply verify the system
obtained by substituting the policy in place of its corresponding role within the protocol
and, then, check whether any message that can be sent will be handled by some of the
interlocutor roles, bringing to an end the conversations. Actually, this solution presents
some flaws, as the following counter-example proves. Let us consider a protocol with
three roles: A1 sends m1 to A2, A2 waits for m1 and then waits for m2, and A3 sends
m2 to A2. Let us know substitute to role A2 the policy which, first, waits for m2 and
then it waits for m1. The three partners will perfectly interoperate and successfully
conclude their conversations but the conversation that is produced is not legal w.r.t. the
protocol. In protocol-based systems, the proof of the interoperability of an entity with
others, obtained by checking the communicative behavior of the entity against the rules
of the system (i.e. against an interaction protocol itself), is known as conformance test.
Intuitively, this test must guarantee the following definition of interoperability.

Definition 6 (Interoperability w.r.t. an interaction protocol). Interoperability w.r.t.
an interaction protocol is the capability of a set of entities of producing a conversation
that is legal w.r.t. the protocol.

Let us now consider a given service that should play a role in a protocol. In order to
include it in the interaction we need to understand if it will be able to interact with the
possible players of the other roles. If we assume that the other players are conformant
to their respective roles, we can represent them by the roles themselves. Roles, by the
definition of protocol, are interoperable. Therefore, in order to prove the interoperability
of our service, it will be sufficient to prove for it the “good properties” of its role. First
of all, we should prove that its policy does not send messages that the others cannot
understand, which means that it will not send messages that are not accounted for by

A Priori Conformance Verification 345

the role. Moreover, we should prove that it can tackle every incoming message that the
other roles might send to it, which means that it must be able to handle all the incoming
messages handled by the role. Another important property is that whatever point of
conversation has been reached, there is a way to bring it to an end. In practice, if a role
can bring to an end a conversation in which it has been engaged, so must do the service.
To summarize, in order to check a service interoperability it will be sufficient to check
its conformance w.r.t. the desired role and this check will guarantee that the service will
be able to interact with services equally, and separately, proved conformant to the other
roles. This, nevertheless, does not mean that the policy of the service must be a precise
“copy” of the role.

m2!

m3!

m1?

No!
m2!

m1?
Ok!

m2?

m3?

m1!

Ok!
m2?

m1!

m2!
m1?

m2!

m4!

m1?

m2?
m1!

m2?

m4?

m1!

(a)

(b)

(c)

(d)

�≤

≤

≤

�≤

Policy Protocol role

No! Missing edge

Fig. 1. A set of cases that exemplifies our expectations about a conformant policy: cases (b) and
(c) do not compromise interoperability, hence they should pass the conformance test; cases (a)
and (d) instead should not pass the conformance test

3.1 Expectations for Interoperability

Let us now discuss some typical cases in which a policy and a role specification that
differ in various ways are compared in order to decide if the policy conforms to the
role so as to guarantee its interoperability with its future interlocutors that will play the
other roles in the protocol. With reference to Figure 1, let us begin with considering the
case reported at row (a): here, the service can possibly utter a message m3 that is not
foreseen by the role specification. Trivially, this policy is not conformant to the protocol
because the service might send a message that cannot be handled by any interlocutor
that conforms to the protocol. The symmetric case in which the policy accounts for
less outgoing messages than the role specification (Figure 1, row (b)) is, instead, legal.
The reason is that at any point of its conversations the entity will anyway always utter
only messages that the entities playing the other roles will surely understand. Hence,

346 M. Baldoni et al.

interoperability is preserved. The restriction of the set of possible alternatives (w.r.t. the
protocol) depends on the implementor’s own criteria.

Let us now consider the case reported in Figure 1, row (c). Here, the service policy
accounts for two conversations in which, after uttering a message m1, the entity expects
one of the two messages m2 or m3. Let us also suppose that the protocol specification
only allows the first conversation, i.e. that the only possible incoming message is m2.
When the entity will interact with another that is conformant to the protocol, the mes-
sage m3 will never be received because the other entity will never utter it. So, in this
case, we would like the a priori conformance test to accept the policy as conformant to
the specification.

Talking about incoming messages, let us now consider the symmetric case (Figure 1,
row (d)), in which the protocol specification states that after an outgoing message m1,
an answer m2 or m4 will be received, while the policy accounts only for the incoming
message m2. In this case, the expectation is that the policy is not conformant because
there is a possible incoming message (the one with answer m4) that can be enacted by
the interlocutor, which, however, cannot be handled by the policy. This compromises
interoperability.

m2!

m3!

m1!

m1!

m2?

m3?

m1!

m1!

m3?

m2?
m1!

m3!

m2!
m1! No!

m3!

m2!
m1!

m3?

m2?
m1!

m2!

m3!

m1!

m1!

m2?

m3?

m1!

m1!

(a)

(b)

(c)

(d)

Policy

≤

�≤

�≤

≤

Protocol role

No! Missing edge

No! Missing edge

Fig. 2. A set of cases that exemplifies our expectations about a conformant policy: differently
than in Figure 1, for every row, the policy and the role produce the same conversations but the
structure of their implementations differ

To summarize, at every point of a conversation, we expect that a conformant policy
never utters speech acts that are not expected, according to the protocol, and we also
expect it to be able to handle any message that can possibly be received, once again
according to the protocol. However, the policy is not obliged to foresee (at every point

A Priori Conformance Verification 347

of conversation) an outgoing message for every alternative included in the protocol but
it must foresee at least one of them if this is necessary to proceed with the conversation.
Trivially, in the example of row (b), a policy containing only the conversation m1? (not
followed either by m2! or by m4!) would not be conformant.

Let us now consider a completely different set of situations, in which the “structure”
of the policy implemented and the structure of the role specification are taken into
account. These situations are taken from the literature on communicating processes
[15]. Figure 2 reports a set of cases in which the role description and the policy allow
the same conversations but their structure differs: in rows (a) and (c) the policy decides
which message to send (receive, respectively) after m1 from the very beginning, while
in the protocol this decision is taken after m1 is sent. In row (b) and (d) the situation is
inverted.

The case of row (a) does not compromise conformance in the same way as the case
reported at row (b) of Figure 1 does not: after a non-deterministic choice the set of
alternative outgoing messages is restricted but in both cases only legal messages that
can be handled by the interlocutor will be sent. The analogous case reported in row (c),
concerning incoming messages, instead, compromises the conformance. In fact, after
the non-deterministic step the policy might receive a message that it cannot handle,
similarly to row (d) of Figure 1.

The case of row (b), Figure 2, compromises the conformance because after the non-
deterministic choice the role specification allows a single outgoing message with no
alternatives. The policy, instead, might utter one out of two alternative messages (sim-
ilarly to row (a) of Figure 1). Finally, the case of row (d) does not compromise the
conformance, following what reported in Figure 1, row (c).

3.2 Conformance and Interoperability

In this section we define a test, for checking conformance, that is derived from the ob-
servations above. A first consideration is that a conformance test is not an inclusion test
w.r.t. the set of possible conversations that are produced. In fact, for instance, in row
(d) of Figure 1 the policy produces a subset of the conversations produced by the role
specification but interoperability is not guaranteed. Instead, if we consider row (c) in
the same figure, the set of conversation traces, produced by the policy, is a superset of
the one produced by the protocol; despite this, interoperability is guaranteed. A second
consideration is that a conformance test is not a bisimulation test w.r.t. the role specifi-
cation. Actually, the (bi)simulation-based test defined in concurrency theory [21] is too
strict, and it imposes constraints, that would exclude policies which instead would be
able to interoperate, within the context given by the protocol specification. In particular,
all the cases reported in Figure 2 would not be considered as conformant because they
are all pairs of processes with different branching structures. Despite this, we would like
our test to recognize cases (a) and (d) as conformant because they do not compromise
interoperability.

The solution that we propose is inspired by (bi)simulation, but it distinguishes the
ways in which incoming and outgoing messages are handled, when a policy is compared
to a role. In the following, we will use “A1 ≤ A2” to denote the fact that A1 conforms
to A2. This choice might seem contradictory after the previous discussion, in fact, in

348 M. Baldoni et al.

general A1 ≤ A2 does not entail A1 ⊆ A2. However, with symbol “≤” we capture
the fact that A1 will actually produce a subset of the conversations forseen by the role,
when interacting with entities that play the other roles in the protocol (see Propositions
1 and 2). This is what we expect from a conformant policy and from our definition of
interoperability.

Definition 7 (Conformant simulation). Given two FSA’s A1 and A2, A1 is a confor-
mant simulation of A2, written A1 ≤ A2 iff there is a binary relation R between A1
and A2 such that

1. A1.s0RA2.s0;
2. for every outgoing message m! ∈ A1.L and for every state si ∈ A1.S, for every

sj ∈ A2.S such that siRsj and (si, m!, si+1) ∈ A1.T , then there is a state sj+1 ∈
A2.S such that (sj , m!, sj+1) ∈ A2.T and si+1Rsj+1;

3. for every incoming message m? ∈ A2.L and for every state sj ∈ A2.S, for every
si ∈ A1.S such that siRsj and (sj , m?, sj+1) ∈ A2.T , then there is a state si+1 ∈
A1.S such that (si, m?, si+1) ∈ A1.T and si+1Rsj+1.

Particularly relevant is the case in which A2 is a role in a protocol and A1 is a policy
implementation. Notice that, in this case, conformance is defined only w.r.t. the role that
the single policy implements, independently from the rest of the protocol. As anticipated
above, Definition 7 does not imply the fact that “A1 ≤ A2 entails A1 ⊆ A2”. Instead,
the following proposition holds.

Proposition 1. Let A1 ⊗ · · · ⊗ Ai ⊗ · · · ⊗ An be a protocol, and A′
i a policy such that

A′
i ≤ Ai, then A1 ⊗ · · · ⊗ A′

i ⊗ · · · ⊗ An ⊆ A1 ⊗ · · · ⊗ Ai ⊗ · · · ⊗ An.

This proposition catches the intuition that a conformant policy is able to produce a
subset of the legal conversations defined by the protocol but only when it is executed in
the context given by the protocol.

The above proposition can be generalized in the following way. Here we consider a
set of policies that have been individually proved as being conformant simulations of
the various roles in a protocol. The property states that the dialogues that such policies
can produce will be legal w.r.t. the protocol.

Proposition 2. Let A1 ⊗ · · · ⊗ An be a protocol and let A′
1, . . . , A

′
n be n policies such

that A′
i ≤ Ai, for i = 1, . . . , n, then A′

1 ⊗ · · · ⊗ A′
n ⊆ A1 ⊗ · · · ⊗ An

In order to prove interoperability we need to prove that our policies will actually pro-
duce a conversation when interacting, while so far we have only proved that if a con-
versation will be generated, it will be legal. By assumption, in a protocol it is always
possible to conclude a conversation whatever the point at which the interaction arrived.
We expect a similar property to hold also for a set of policies that have been proved con-
formant to the roles of a protocol. The relation ≤ is too weak, so we need to introduce
the notion of complete conformant simulation.

Definition 8 (Complete conformant simulation). Given two FSA’s A1 and A2 we
say that A1 is a complete conformant simulation of A2, written A1 � A2, iff A1 is a
conformant simulation of A2 under a binary relation R and

A Priori Conformance Verification 349

– for all si ∈ A1.F such that siRsj , then sj ∈ A2.F ;
– for all sj ∈ A2.S such that sj is alive and siRsj , si ∈ A1.S, then si is alive.

Now, we are in the position to give the following fundamental result.

Theorem 1 (Interoperability). Let A1 ⊗· · ·⊗An be a protocol and let A′
1, . . . , A

′
n be

n policies such that A′
i�Ai, for i = 1, . . . , n. For any common string σ′ of A′

1⊗· · ·⊗A′
n

and A1 ⊗ · · · ⊗ An there is a run σ′σ′′ of the protocol such that σ′σ′′ is an accepted
string of A′

1 ⊗ · · · ⊗ A′
n.

Intuitively, whenever two policies, that have independently been proved conformant to
the two roles of a protocol, start an interaction, thanks to Proposition 2, they will be
able to conclude their interaction producing a legal accepted run. Therefore, Theorem 1
implies Definition 6 (interoperability).

4 Conclusions and Related Works

In this work we have given a definition of conformance and of interoperability that is
suitable to application in open environments, like the web. Protocols have been for-
malized in the simplest possible way (by means of FSA) to capture the essence of
interoperability and to define a fine-grain conformance test.

The issue of conformance is widely studied in the literature in different research
fields, like multi-agent systems (MAS) [11] and service-oriented computing (SOA). In
particular, in the area of MAS, in [7,5] we have proposed two preliminary versions of
the current proposal, the former, based on a trace semantics, consisting in an inclu-
sione test, the latter, disregarding the case of different branching structures. The second
technique was also adapted to web services [8]. Both works were limited to protocols
with only two roles while, by means of the framework presented in this paper we can
deal with protocols with an arbitrary finite number of roles. Inspired to this work the
proposal in [1]: here an abductive framework is used to verify the conformance of ser-
vices to a choreography with any number of roles. The limit of this work is that it does
not consider the cases in which policies and roles have different branching structures.
The first proposal of a formal notion of conformance in a declarative setting is due to
Endriss et al. [13], the authors, however, do not prove any relation between their defin-
itions of conformance and interoperability. Moreover, they consider protocols in which
two partners strictly alternate in uttering messages.

In the SOA research field, conformance has been discussed by Foster et al. [14], who
defined a system that translates choreographies and orchestrations in labeled transition
systems so that it becomes possible to apply model checking techniques and verify
properties of theirs. In particular, the system can check if a service composition com-
plies with the rules of a choreography by equivalent interaction traces. Violations are
highlighted back to the engineer. Once again, as we discussed, basing on traces can be
too much restrictive. In [10], instead, “conformability bisimulation” is defined, a variant
of the notion of bisimulation. This is the only work that we have found in which differ-
ent branching structures are considered but, unfortunately, the test is too strong. In fact,
with reference to Figure 1, it excludes the cases (b) and (c), and it also excludes cases
(a) and (d) from Figure 2, which do not compromise interoperability. A recent proposal,

350 M. Baldoni et al.

in this same line, is [24], which suffers of the same limitations. In other approaches, like
[19,12], bisimulation is used to check that an implementation respects its specification,
given at design time; in this case there is no reuse of software.

References

1. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and M. Montali. An abductive
framework for a-priori verification of web services. In Principles and Practice of Declarative
Programming, PPDP’06). ACM Press, 2006.

2. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Specification and
verification of agent interaction protocols in a logic-based system. In ACM SAC 2004, pages
72–78. ACM, 2004.

3. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, 2004.
4. André Arnold. Finite Transition Systems. Pearson Education, 1994.
5. M. Baldoni, C. Baroglio, A. Martelli, and Patti. Verification of protocol conformance and

agent interoperability. In Post-Proc. of CLIMA VI, volume 3900 of LNCS State-of-the-Art
Survey, pages 265–283. Springer, 2006.

6. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction protocols for
customizing web service selection and composition. J. of Logic and Algebraic Programming,
special issue on Web Services and Formal Methods, 2006. To appear.

7. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying protocol confor-
mance for logic-based communicating agents. In Proc. of CLIMA V, number 3487 in LNCS,
pages 192–212. Springer, 2005.

8. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying the conformance
of web services to global interaction protocols: a first step. In Proc. of WS-FM 2005, volume
3670 of LNCS, pages 257–271. Springer, September, 2005.

9. Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Massimo Mecella, and Diego
Calvanese. Synthesis of underspecified composite -services based on automated reasoning.
In ICSOC, pages 105–114, 2004.

10. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration:
a synergic approach for system design. In Proc. of 4th International Conference on Service
Oriented Computing (ICSOC 2005), 2005.

11. Amit K. Chopra and Munindar P. Singh. Producing compliant interactions: Conformance,
coverage, and interoperability. In M. Baldoni and U. Endriss, editors, Declarative Agent Lan-
guages and Technologies IV: Fourth International Workshop, DALT 2006, LNAI. Springer,
Hakodate, Japan, 2006. To appear.

12. G. Decker, J. M. Zaha, and M. Dumas. Execution semantics for service choreographies. In
M. Bravetti, M. Núñez, and G. Zavattaro, editors, Proc. of WS-FM 2006, volume 4184, pages
163–177. 2006.

13. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication proto-
cols. In Advances in agent communication languages, volume 2922 of LNAI, pages 91–107.
Springer-Verlag, 2004. invited contribution.

14. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based analysis of obligations in web
service choreography. In Proc. of IEEE International Conference on Internet&Web Applica-
tions and Services 2006, 2006.

15. R.J. van Glabbeek. Bisimulation. Encyclopedia of Distributed Computing (J.E. Urban &
P. Dasgupta, eds.), Kluwer, 2000. Available at http://Boole.stanford.edu/pub/
DVI/bis.dvi.gzz.

A Priori Conformance Verification 351

16. F. Guerin and J. Pitt. Verification and Compliance Testing. In H.P. Huget, editor, Communi-
cation in Multiagent Systems, volume 2650 of LNAI, pages 98–112. Springer, 2003.

17. B. Heckel. Thinking Java. Prentice Hall, 2005.
18. Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual. Addison-

Wesley Professional, 2003.
19. R. Kazhamiakin and M. Pistore. Choreography conformance analysis: Asynchronous com-

munications and information alignment. In M. Bravetti, M. Núñez, and G. Zavattaro, editors,
Proc. of WS-FM 2006, volume 4184, pages 227–241. 2006.

20. Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg. Analyzing Interact-
ing BPEL Processes. In Business Process Management, 4th International Conference, BPM
2006, Vienna, Austria, September 5-7, 2006, Proceedings, volume 4102 of Lecture Notes in
Computer Science, pages 17–32. Springer-Verlag, September 2006.

21. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
22. OMG. Unified modeling language: Superstructure, 2005.
23. W.M.P. van der Aalst. Business alignment: Using process mining as a tool for delta analysis

and conformance testing. Requirements Engineering Journal, 10(3):198–211, 2005.
24. X. Zhao, H. Yang, and Z. Qui. Towards the formal model and verification of web service

choreography description language. In M. Bravetti, M. Núñez, and G. Zavattaro, editors,
Proc. of WS-FM 2006, volume 4184, pages 273–287. 2006.

A Business-Aware Web Services
Transaction Model

Mike P. Papazoglou and Benedikt Kratz

Tilburg University, Infolab
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

{mikep, B.Kratz}@uvt.nl

Abstract. Advanced business applications typically involve well-defined
standard business functions such as payment processing, shipping and
tracking, managing market risk and so on, which apply to a variety of
application scenarios. Although such business functions drive transac-
tional applications between trading partners they are completely exter-
nal to current Web services transaction mechanisms as they are only ex-
pressed as part of application logic. To remedy this situation, this paper
proposes a business aware Web services transaction model and support
mechanisms. The model allows expressing and blending business and
QoS aware transactions on the basis of business agreements stipulated
in SLAs and business functions.

1 Introduction

As enterprises follow the path to e-business, business processes are becoming in-
creasingly complex and integrated both within internal corporate business func-
tions (e.g., manufacturing, design engineering, sales and marketing, and enter-
prise services) and across the external supply chain. In this environment there
is a clear need for advanced business applications to coordinate multiple Web
services into a multi-step business transaction. This requires that several Web
service operations or processes attain transactional properties reflecting business
semantics, which are to be treated as a single logical (atomic) unit of work. For
example, consider, a manufacturer that develops Web service based solutions to
automate the order and delivery business functions with its suppliers as part of
a business transaction. The transaction between the manufacturer and its sup-
pliers may only be considered as successful once all products are delivered to
their final destination, which could be days or even weeks after the placement
of the order, and payment has ensued.

In contrast to Web service transactions, which are driven by purely technical
requirements such as coordination, data consistency, recovery, and so on, business
transactions are driven by economic needs and their objective is accomplished
only when the agreed upon conclusion among trading parties is reached, e.g.,
payment in exchange for goods or services.

This approach requires distilling from the structure of a business collaboration
the key capabilities that must necessarily be present in a business transaction

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 352–364, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Business-Aware Web Services Transaction Model 353

and specifying them accurately and independently of any specific implemen-
tation mechanisms. The business transaction then becomes the framework for
expressing detailed operational business semantics.

Conventional approaches to business transactions, such as Open EDI
(http://www.iso.org) and more recently ebXML, focus only on the documents
exchanged between partners, and ignore important constituents in a business
transaction such as business operations and their behavioral semantics. A more
natural approach to business transactions is to make common business opera-
tional requirements and operational level relationships between trading partners
first class tenets in a business transaction. This requires providing a common
core of well-understood business operational principles (or business transaction
functions) such as ordering, transport, distribution and payment that can be ra-
tionalized and appropriately combined across any supply chain to create seman-
tically enhanced business transactions. Developers can then build transactional
applications by using, combining, and, possibly specializing, these constructs in
a similar way that abstract data types are used in programming languages.

This paper focuses on introducing an advanced business transaction model
and on providing operational business principles for specifying and modeling
business transactions along with their QoS characteristics. The approach taken
mimics business operation semantics and does not depend upon underlying
technical protocols and implementations. The paper also presents a Business
Transaction Model Language (BTML) that is used at design time to specify the
elements of a business transaction. Run-time support for this environment is pro-
vided by conventional Web services standards such as BPEL, WS-Coordination
and WS-Transaction and will be briefly highlighted in the context of a reference
architecture. Detailed descriptions of the run-time environment as well as run-
time transformations between the BTML and equivalent constructs supported
by Web services transaction standards are outside the scope of this paper.

2 The Business Transaction Model

An important requirement in making cross-enterprise business process automa-
tion happen is the ability to describe the collaboration aspects of the business
processes, such as business commitments, mutual obligations and exchange of
monetary resources, in a standard form that can be consumed by tools for busi-
ness process implementation and monitoring. This gives raise to the concept
of a business transaction model that encompasses a set of business transaction
functions and several standard business primitives and conventions that can be
utilized to develop complex business applications involving transactional and
monetary exchanges.

Central to the business transaction model is the notion of a business trans-
action. Business transactions cover many domains of activity that businesses
engage in, such as request for quote, supply chain execution, purchasing, manu-
facturing, and so on. A business transaction is defined as a trading interaction
between possibly multiple parties that strives to accomplish an explicitly shared

354 M.P. Papazoglou and B. Kratz

business objective, which extends over a possibly long period of time and which is
terminated successfully only upon recognition of the agreed conclusions between
the interacting parties. A business transaction is driven by well-defined business
tasks and events that directly or indirectly contribute to generating economic
value, such as processing and paying an insurance claim. If a business transac-
tion completes successfully then each participant will have made consistent state
changes, which, in aggregate, reflect the desired outcome of the multi-party busi-
ness interaction. The purpose of a business transaction is to facilitate specifying
common business procedures and practices in the form of business application
scenarios that allow expressing business operational semantics and associated
message exchanges as well as the rules that govern business transactions. Such
rules include operational business conventions, agreements, and mutual obliga-
tions. The combination of all these factors characterizes the nature of business
relationships among the parties involved in a business transaction. It enforces
trading parties to achieve a common semantic understanding of the business
transaction and the implications of all messages exchanged.

The business transaction is initiated by a single organization and brings about
a consistent change in the state of a business relationship between two or more
trading parties. A business relationship is any distributed state held by the
parties, which is subject to contractual constraints agreed by those parties. A
business transaction needs to express features like the parties that are involved
in the transaction; the entities under transaction; the destination of payment
and delivery; the transaction time frame; permissible operations; links to other
transactions; receipts and acknowledgments; and finally, the identification of
money transferred outside national boundaries.

The previous definition of a business transaction has been derived from (clas-
sical) commerce models and serves as a common high-level, non-technical view of
how business organizations interact with each other. The definition emphasizes
the operational business view of a transaction. There are four key components
in a business transaction model that help differentiate it from (general) message
exchange that business processes involve. These are: (1) commitment exchange;
(2) the party (or parties) that has the ability to make commitments; (3) busi-
ness constraints and invariants that apply to the message exchanged between
the interacting parties; and (4) business objects (documents) that are operated
upon by business activities (transactional operations) or by processes. These
terms are introduced and explained below, while Fig. 1 represents them and
their inter-relationships in UML.

A commitment exchange occurs between two or more interacting parties and
concerns tasks or functions to be carried out and usually involves formal trading
partner agreements. A commitment exchange identifies such things as the overall
business process, the partner roles, the business documents used, message and
document flow, legal aspects, security aspects, business level acknowledgments
and status, and so on. Partners inside a transaction have distinct roles (such as
buyer and seller) and the ability to make commitments, being held responsible
for, having rights and obligations, in the context of the business transactions.

A Business-Aware Web Services Transaction Model 355

BusinessFunction

BusinessTransaction Party

1 * -commits to1*

BusinessPrimitive

1 *

Role

**

Order

Payment

Delivery

Transport

DescriptiveReferential

BusinessConstraint
1*

-restrict

* *

InterParty Invariant SectorialInvariant

BusinessOperation

1
*

SimpleOperation Process

BusinessObject

-worksOn

1
*

Protocol Activity

Business

Technical

1 *

-performedDuring*

*

Fig. 1. UML view of a business transaction

One party can act as the initiator of the transaction while the others can act as
responders.

A business transaction constraint is defined as an explicitly stated rule that
prescribes, limits, or specifies any aspect of a business transaction that forms
part of the commitment(s) mutually agreed to among the interacting parties.
Business invariants are constraints external to constraints agreed by interacting
parties in a transaction and include universal legal requirements, commercial
and/or international trade and contract terms, public policy (e.g., privacy/data
protection, product or service labeling, consumer protection), laws and regula-
tions that are applicable to parts of a transaction. Invariants ensure the nature
of the business transaction and/or the goods or services delivered while guar-
anteeing that no regulations are compromised. Business invariants are universal
(or horizontal) in nature and apply regardless of the type of business or sec-
tor within which the business occurs. There are, however, constraints external
to parties that are of a sectorial nature called Sectorial invariants which can
be found in sectors such as telecommunications, transportation and delivery, fi-
nancial/banking, and so on. Universal and sectorial invariants can be combined
with inter-party business constraints for building application use scenarios. It is
important to understand that in such situations invariants take precedence over
internal constraints in a business transaction.

Business transactions may be characterized by universally acceptable business
operational primitives (or simply business functions), which represent functions
that are critical to the conduct of business. A business function is a description of
a well-defined and commonly acceptable critical business principle, e.g., payment
or delivery of goods or services, that transforms business values and causes state
changes to transaction participants, e.g., transforms an unpaid order to paid
order. To achieve this the business function uses contextually aware polymor-
phic business operations, e.g., cancel an order or cancel a payment, constraints

356 M.P. Papazoglou and B. Kratz

and dependencies, (see Sect. 4 for further details). Business transactions usually
operate on business (document-based) objects. These are traditionally associ-
ated with items such as purchase orders, catalogues (documents that describe
products and service content to purchasing organizations), inventory reports,
ship notices, bids and proposals. Document objects are usually associated with
agreements, contracts or bids.

In a Web services environment business transactions are used to capture and
define the integration between business operational requirements and technical
transactional requirements. Business transactions are found only in the applica-
tion (business-logic) level and essentially trigger transactional Web service in-
teractions between organizations at the systems-level (using Web services-based
business processes and transactional standards) in order to accomplish some
well-defined shared business objective. A business transaction in its simplest
form could represent an order of some goods from some company. The comple-
tion of an order results in a consistent change in the state of the affected business:
the back-end order database is updated and a document copy of the purchase
order is filed. More complex business transactions may involve activities such as
payment processing, shipping and tracking, determining new product offerings,
granting/extending credit, and so on.

At run-time the business transaction model requires support from systems-
level transactional frameworks provided by Web Services standards that include
the Web Services Coordination and Transaction [1,2,3] and the Web Services
Composite Application Framework (WS-CAF) [4]. Objective of systems-level
transactional support is to automate the internal flow of transaction process-
ing, spanning multiple disparate applications provide solutions for reliable, con-
sistent, and recoverable composition of back-end services. Important systems-
related aspects of a business transaction include features like the ability to
support long-running interactions; to specify exceptional conditions; to support
compensatible and contingency transactions; to make use of alternate trans-
actions; to reconcile and link transactions with other transactions; to support
secure transactions and to allow transactions to be monitored, audited/logged
and recovered.

3 Integrated Logistics Example

In this section we present a simple integrated logistics example based on standard
business protocol RosettaNet PIPs [5], which we shall enhance in subsequent
sections with transactional functions and business operational semantics as well
as QoS features.

Fig. 2 depicts an integrated logistics scenario involving a customer, suppliers
and a logistics service provider. This logistics model consists of forecast notifi-
cation, forecast acceptance, inventory reporting, shipment receipt, request and
fulfil demand, consumption and invoice notification processes provided by Roset-
taNet PIPs. In Fig. 2 PIP 4A2 supports a process in which a forecast owner sends
forecast data to a forecast recipient. PIP 4A5 provides visibility of available

A Business-Aware Web Services Transaction Model 357

SuppliersSuppliers

Logistics Logistics
Service ProviderService Provider

3.Inventory Reporting
(PIP 4C1)

3.Inventory Reporting
(PIP 4C1)

5.Shipment
Receipt (PIP 4B2) 5.Shipment

Receipt (PIP 4B2)

6. Consumption Notification (PIP 4B3)

7.Invoice Notification (PIP 3C3)

2. Forecast Acceptance (PIP 4A5)

1. Notify of Forecast (PIP 4A2)

4.Request and
Fulfill Demand
(PIP 3B2)

4.Request and
Fulfill Demand (PIP
3B2)

CustomerCustomer Information Flow: Request purchase order

Info
rmatio

n fl
ow: R

equ
est

 sh
ipp

ing
 ord

er

Info
rmatio

n fl
ow: R

equ
est

 sh
ipp

ing
 ord

er
Physical Flow: Deliver product

Physical Flow: Deliver product

8. Remittance Advice (PIP 3C6)

SuppliersSuppliers

Logistics Logistics
Service ProviderService Provider

3.Inventory Reporting
(PIP 4C1)

3.Inventory Reporting
(PIP 4C1)

5.Shipment
Receipt (PIP 4B2) 5.Shipment

Receipt (PIP 4B2)

6. Consumption Notification (PIP 4B3)

7.Invoice Notification (PIP 3C3)

2. Forecast Acceptance (PIP 4A5)

1. Notify of Forecast (PIP 4A2)

4.Request and
Fulfill Demand
(PIP 3B2)

4.Request and
Fulfill Demand (PIP
3B2)

CustomerCustomer Information Flow: Request purchase order

Info
rmatio

n fl
ow: R

equ
est

 sh
ipp

ing
 ord

er

Info
rmatio

n fl
ow: R

equ
est

 sh
ipp

ing
 ord

er
Physical Flow: Deliver product

Physical Flow: Deliver product

8. Remittance Advice (PIP 3C6)

Fig. 2. Integrated logistics example using RosettaNet PIPs

forecasted product quantity between two trading partners. PIP 4C1 supports
a process in which an inventory information provider reports the status of the
inventory to an inventory user. The inventory report can include any product,
active or inactive, held in inventory. PIP 3B2 allows a shipper to notify a re-
ceiver that a shipment has been assigned. This notification is often a part of the
shipment process. PIP 4B2 supports a process used by a consignee to report the
status of a received shipment to another interested party, such as a shipper. The
customer then issues an invoice notification (PIP 4B3) to communicate material
consumption to the supplier, allowing the supplier to trigger invoicing for the
consumed material. PIP 3C3 enables a provider to invoice another party, such
as a buyer, for goods or services performed. Finally, PIP 3C6 enables a payer
to send remittance advice to a payee (in this case the supplier) which indicates
which payables are scheduled for payment.

4 Operational Business Principles and QoS Functions

In the previous we argued for the identification of functional capabilities nec-
essary to support business transactions and introduced the concept of critical
business functions. Figure 3 describes the elements of the business functions in
the business transaction model which is described schematically in Fig. 1. Note
that Fig. 3 due to reasons of brevity depicts only constraints and not invariants.
In particular, this figure illustrates that the business transaction model divides
trade into four broad areas - ordering, paying, delivery and transportation, which
are referred to as operational business principles (or business functions) in this
figure. These areas represent common business functions that are generic, indus-
try neutral and re-usable and can be used to develop business transactions in a
multiplicity of business scenarios. In this way we remove excess complexity from
the business transaction, allowing common business functions such as ordering,

358 M.P. Papazoglou and B. Kratz

D
es

cr
ip

ti
ve

p
ri

m
it

iv
es

R
ef

er
en

ti
al

p
ri

m
iti

ve
s

(C
o

n
te

xt
 a

w
ar

e)
B

u
si

n
es

s
O

p
er

at
io

n
s

Order Payment Delivery Transport General QoS Security Transactional
Identification Value + Negotiable Means Means Accessibility Authentication Means
Method Means Method Method Accuracy Integrity Operative

Settlement Pick-Up Pick-Up Efficiency Confidentiality Participants
Status Status Reliability Authorization/Access Control Dependencies
Restrictions Restrictions Responsiveness Repudiation

Immediacy Immediacy Immediacy Immediacy
Order Order

Payment Payment Payment Temporal Location Routing
Delivery Transport Time Spatial Point Sequential
Repudiation Repudiation Repudiation Repudiation Date Route Parallel

Refund Duration URI Selective
Respend Interval Spectra Choice
Transfer
Trace
Retry Retry Retry General BO BO Associations Operations

Change Change Change Change Identification Business Function Reference set/get
Cancel Cancel Cancel Cancel Properties Other BO Reference change

QoS Operational Principles

Business Objects

Constraints

Operational Business Principles

D
es

cr
ip

ti
ve

p
ri

m
it

iv
es

R
ef

er
en

ti
al

p
ri

m
iti

ve
s

(C
o

n
te

xt
 a

w
ar

e)
B

u
si

n
es

s
O

p
er

at
io

n
s

Order Payment Delivery Transport General QoS Security Transactional
Identification Value + Negotiable Means Means Accessibility Authentication Means
Method Means Method Method Accuracy Integrity Operative

Settlement Pick-Up Pick-Up Efficiency Confidentiality Participants
Status Status Reliability Authorization/Access Control Dependencies
Restrictions Restrictions Responsiveness Repudiation

Immediacy Immediacy Immediacy Immediacy
Order Order

Payment Payment Payment Temporal Location Routing
Delivery Transport Time Spatial Point Sequential
Repudiation Repudiation Repudiation Repudiation Date Route Parallel

Refund Duration URI Selective
Respend Interval Spectra Choice
Transfer
Trace
Retry Retry Retry General BO BO Associations Operations

Change Change Change Change Identification Business Function Reference set/get
Cancel Cancel Cancel Cancel Properties Other BO Reference change

QoS Operational Principles

Business Objects

Constraints

Operational Business Principles

Fig. 3. Description of common business functions, QoS principles and constraints

distribution and payment to be expressed in a form analogous to abstract data
types and rationalizing them across an integrated supply chain.

Figure 3 shows that each business function uses a number of descriptive prim-
itives (or attributes) that describe a certain business function, e.g., the means
of payment. There are also referential primitives that refer to other business
functions, e.g., payment refers to an associated order. Finally, the context aware
business operations introduce a set of polymorphic business operations that col-
lectively transform business values and cause state changes to the business trans-
action participants.

Business functions not only help streamline and rationalize common business
practices across an integrated supply chain, they also help enforce participant
commitments. They introduce a mandatory set of four business level atomicity
criteria that reflect the operational semantics the four standard business func-
tions (ordering, payment, delivery and transportation). For instance, payment
atomicity affects the transfer of funds from one party to another in the transac-
tion. This means that the transaction would fail if payment is not made within a
pre-specified time period that was agreed between a supplier and a customer. De-
livery atomicity, on the other hand, implies that the right goods will be delivered
to a customer at the time that has been agreed.

Each atomicity criterion is treated as a single indivisible logical unit of work,
which determines a set of viable outcomes for a business transaction. The out-
comes of a business transaction may involve non-critical partial failures, or se-
lection among contending service offerings, rather than the strict all-or-nothing
assumption of conventional ACID transactions, and govern the duration and
character of participation in a transaction. They also allow provisional results to
be revealed deliberately to allow such business activities as probabilistic inven-
tory management. Atomicity criteria can be characterized as vital or non-vital.
If a business level atomicity criterion is characterized as vital and fails then
the transaction aborts at the system-level. If, however, the atomicity criterion is
characterized as non-vital then a contingency activity may be issued in case that
a given atomicity criterion, e.g., transportation, fails. For instance, using another
shipper in case that the chosen one fails to deliver. The above characteristics give

A Business-Aware Web Services Transaction Model 359

Means <!- The means of the delivery (depends on nature of goods) -->
•setMeans

•setChannel
•Online <!- intangible goods --> / offline <!- tangible goods -->

•setDeliveryMeans
•Air / Sea / Ground / Combinations

Method <!- Method of the delivery -->
•setDeliveryMethod <!- How will goods be delivered (e.g., batch, all in once, etc) -->

•setNumberOfDeliveries <!- How often will goods be delivered (if in batches) -->
•setDeliveryOptions

•Express
•Type

•Next day / Two day / ...
•Boolean Delivery_Signature_Required

•setTransportCompany <!- Which company is responsible for the transport -->
•setTransportCompanyDetails

•setDeliveryPeriod
•Temporal

Fig. 4. Describing the delivery business function attributes

the ability to a business transaction to explicitly describe business operational
semantics, specify the proper behavior of common business functions and their
implications in case of success or failure.

The business transaction model not only expresses the purpose of each busi-
ness collaboration interaction but is also capable of capturing the timing and
sequence of message exchanges. The model has fixed sequencing semantics which
require that ordering occurs first and is followed by transport and delivery. Pay-
ment can happen before or after the delivery function. For instance, in the
integrated logistics scenario described in the previous section, there might be an
implicit or explicit agreement that the delivery of goods must take place before
the payment and that payment always follows the confirmation of an order. This
situation is depicted by the following code snippet that uses BTML:

<BTx>
<name>LogisticsScenario</name> ...
<sequence>
<BF> <name>Order</name> </BF>
<BF> <name>Delivery</name> </BF>
<BF> <name>Payment</name> </BF> ...
</sequence>
</BTx>

By using these constructs, each participant can understand and plan for con-
formance to the business protocol being employed.

Figure 4 shows two of the attributes of the delivery business function. These
are means and method which describe the means and method of delivery, respec-
tively. The delivery business function is seen from Fig. 3 to also use referential
primitives to refer to such other functions as payment, and transport. It also
uses context aware polymorphic business operations, such as retry to retry a
failed delivery, change to change a delivery and cancel to cancel a delivery. All
attributes and operations in Fig. 3 have been defined and formalized and are
available on request.

Finally, an important element of the business model is the quality of ser-
vice required from the functional capabilities for the business transactions. For

360 M.P. Papazoglou and B. Kratz

instance, one of the referential primitives used in business functions such as or-
dering, payment, transport and delivery, is the issue of non-repudiation using
digital signatures, see Fig. 3. In this way business transactions can also become
QoS-aware and QoS principles can be blended with constraints and business re-
quirements enforced by the business functions. Other QoS primitives that can
be attached to a business transaction and govern its behavior may include gen-
eral QoS primitives such as desired performance rates, mean time to respond,
accessibility periods, time-to-repair a service that has failed, desirable security
protocols and tokens, and so on. These are also depicted in Fig. 3. QoS criteria
can be registered in a Service Level Agreement, which specifies the agreements
and commitments of trading partners involved in a business transaction. More
specifically, they form part of the agreed service-level objectives, which define
the levels of service that both the service customers and the service providers
agree on, and usually include a set of service level indicators, like availability,
performance and reliability.

5 Business Transaction Reference Architecture

The reference architecture that supports the business transaction model is de-
picted in Fig. 5. Application scenarios are specified by using the business re-
lated aspects of the model, e.g., business principles, constraints, QoS criteria,
and so forth. Both the business aspects of the model are connected to a run-
time infrastructure providing the system-level support for executing a business
transaction. Each business level construct is appropriately mapped to a cor-
responding infrastructure primitive(s) that that can be found in Web services
standards, such as BPEL, WS-Coordination, WS-AtomicTransaction and WS-
BusinessActivity. For instance, constructs such as activities, sequences and roles
map directly to BPEL constructs as presented in [6], while vital business level
atomicity criteria map directly to WS-AtomicTransaction and non-vital atom-
icity criteria map to WS-BusinessActivity. Currently, the above set of Web ser-
vices standards is used to implement business transactions. This infrastructure
is based on open an source implementation framework provided by JBoss Trans-
actions (http://www.jboss.org) which supports the latest Web services transac-
tions standards, providing all of the components necessary to build interoperable,
reliable, multi-party, Web services-based applications quickly and easily.

Figure 5 also shows how QoS criteria can be registered in an SLA. An SLA
contains several entries that are related to a business transaction. These include
the scope of the agreement (the services covered in the agreement), penalties
(sanctions should apply in case the service provider under-performs and is unable
to meet the objectives specified in the SLA), optional services (any services that
are not normally required by the user, but might be required in case of an
exception) and exclusion terms (specify what is not covered in the SLA). QoS
criteria in the context of a business transaction are expressed as assertions by
an assertion sub-language of BTML. This assertion language is an extension of
the WS-Policy assertion language [7] thereby reusing existing functionality like

A Business-Aware Web Services Transaction Model 361

WS-Sec WS-C/T WS-CAF BPEL WS-AG WS-Pol

Business Applications

QoS
Principles

Business
Principles

Constraints

Transformation

Infrastructure Primitives
(cancel, commit, compensate, sign, etc)

SLA

B
usiness P

rotocols

T
echnical P

rotocols

WS-Sec WS-C/T WS-CAF BPEL WS-AG WS-Pol

Business Applications

QoS
Principles

Business
Principles

Constraints

Transformation

Infrastructure Primitives
(cancel, commit, compensate, sign, etc)

SLA

B
usiness P

rotocols

T
echnical P

rotocols

Fig. 5. Business transaction reference architecture

normal form, referential and combined policies. BTML’s assertion language also
contains context specific assertion definitions for a business transaction. This
part of the BTML can then be incorporated as guarantee terms into agreements
templates specified by WS-Agreement [8] to enable the specification, negotiation
and acceptance of SLAs that are used to drive business transactions.

Finally, the reference architecture supports the use of business and techni-
cal protocols in the context of the business transaction model. Currently, the
architecture supports one business protocol namely, RosettaNet, and one tech-
nical protocol, the Secure Electronic Transactions (SET) [9]. In the following
section we however concentrate on illustrating how to semantically enhance the
RosettaNet business protocol, which lacks the notion of a business transaction
as defined in Sect. 2, by injecting into it business functions, explicit sequencing
of interactions, partner commitments and constraints.

6 Emulating Business and Technical Protocols

In this section we will illustrate how we can supplant transactional primitives into
the integrated logistics scenario in Fig. 2 to semantically enhance the operational
characteristics of the interacting RosettaNet processes.

This procedure is performed according to the following steps. We start first
by grouping the individual PIPs into related sets that realize a specific common
business function. We observe that PIPs 4A2, 4A5 and 4C1 are all part of the
order business function. PIP 3B2 is part of the transport function and PIPs 4B2
and 4B3 are part of the delivery function. The payment function is covered by
PIPs 3C3 and 3C6.

Following this we need to capture the message and commitment exchange re-
quirements between any trading partners, identifying the timing and sequence
of message exchanges. We assume that the trading partners have agreed on a
business protocol (developed on the basis of RosettaNet) which requires that
payment follows order and delivery. This is specified in BTML as shown in
Sect 4. Subsequently, we can specify the business functions using BTML. We
assume that in the integrated logistics example the customer and the supplier
have agreed on an all or nothing express delivery method, which specifies that

362 M.P. Papazoglou and B. Kratz

<BF>
<name>Delivery</name>
<Means>
<DeliveryMeans>Air</DeliveryMeans>

</Means>
<Method>
<DeliveryMethod>Complete</DeliveryMethod>
<TransportCompany>UPS</TransportCompany>...

</Method>
<Goods><!-- References Goods Business Objects -->
</Goods>
<Change>
<permitted>true</permitted>
<element>location</element>
<numberoftimes>2</numberoftimes>
<prize monetary="$">150</prize>
<paymentmeans>invoice</paymentmeans>

</Change>...
</BF>

<BF>
<name>Payment</name>
<BusinessProtocol>
<participant>
<name>SteelWorks</name>
<role>Supplier</role>
<activities>
<activity>
<name>Create&Send Invoice</name>
<messages>
<messageOutgoing>InvoiceMessage</messageOutgoing>...
</messages>

</activity>...
</activities>

</participant>...
<sequence>
<activity>Create&Send Invoice</activity>
<activity>Receive&Check Remittance Advice</activity>
<selective>
<sequence>
<activity>Accept Remittance Advice</activity>
<activity>Process Remittance Advice</activity>

</sequence>
<activity>Decline Remittance Advice</activity>

</selective>
</sequence>...

</BusinessProtocol>...
</BF>

Listing 1 Listing 2

Listing 3<activities>
<activity>
<name>Create&Send Invoice</name>
<messages>
<messageOutgoing>
<name>Invoice Notification</name>
<acknowledgeable>true</acknowledgeable>
<tta type="maxdurationinhours">2hours</tta>
<signed>
<encryptionalgorithm keylength ="1024">
DES</encryptionalgorithm>

<hashalgorithm keylength="256">
SHA</hashalgorithm>...

</messageOutgoing>...
</messages>

</activity>
</activities>

Fig. 6. Listings of BTML snippets

if the goods are ready for transport the delivery should not take more than two
days (which requires delivery by air). The specification in BTML can be found
in Listing 1 of Fig. 6. Listing 1 also specifies that the delivery location is change-
able at most twice at a cost of 150 $ per time and that the fees will be added
to the original invoice. Listing 2 of the same figure specifies part of a simple
payment protocol seen from the vantage point of the supplier. Finally, Listing 3
adds QoS properties to the elements of the business transaction. In particular,
we may wish to indicate that the InvoiceNotification process (PIP 3C in Fig.
2) requires that the time to acknowledge an Invoice Notification message send
from the Create&Send Invoice activity of the Supplier to the Receive Invoice
activity of the Customer is no longer then 2 hours. This property can be speci-
fied using the Responsiveness primitive in the General QoS field in Fig. 3. The
QoS Responsiveness primitive has an operator called setAcknowledgeable that
specifies whether a particular message should or should not be acknowledgeable
and also the time frame for this to happen. We may also wish to add other QoS
constraints on messages or message parts. For example we may wish to spec-
ify further security primitives indicating whether or not a message or message
part should be non-reputable or signed with a particular hash and encryption
function. All of this can be specified in BTML as shown in Listing 3 of Fig 6.

Another important aspect of the business reference architecture is that it can
blend business with technical protocols. For instance, the business application
that we sketched in the previous does not have any concrete way to handle the
actual payment so that it can transfer funds using a financial service provider.

A Business-Aware Web Services Transaction Model 363

This situation also holds for the RosettaNet PIPs. To remedy this situation
we also extended the payment part of the business transaction described in
the previous with a technical protocol, such as SET, that guarantees secure
payments [10].

7 Related Work

Automated business transactions are a new category of research, wider than his-
torical data-centric local, distributed of federated transactions. This third gener-
ation of transaction management builds out from core transactional technology,
particularly the concept of a open nested transactions and multi-phase distrib-
uted outcomes (two-phase commit in conventional database/messaging transac-
tions). Research in this paper was inspired by the work found in [11], which
motivates the need for using transactions that mimic real business exchanges
and presents an overview of several technologies and protocols that may sup-
port a business transaction framework. Research in the business transactions
area is also related to the creation of meta-models for Web service transaction
models. In [12], a meta-modeling approach to transaction management is pro-
posed; that approach however focuses on the modeling and representation of
transaction models driven purely from database technology perspective without
taking into account business and workflow requirements. To support our imple-
mentation efforts, the work found in [13] is used, where the authors propose to
combine multiple transaction models as WS-C coordination types into BPEL
specifications that can support transactional workflows. The work reported in
this paper can also benefit from other ongoing research in the SOC domain. Of
particular interest is the work on SLAs reported in [14]. Here, the authors define
a template-based approach that enables automated service provisioning. This
provisioning can be guided by the WS-Agreement [8] protocol. Finally, the work
reported in [15] is quite relevant as it describes many non-functional properties
applicable for Web services that can also benefit business transactions.

8 Summary

In the previous we have described a business transaction model, business transac-
tion specification language and associated reference architecture. Key character-
istics of this model is that it sharply distinguishes between a business related and
a systems related view of transactions. At the business-level, the transactions of
our model are weaved around commonly standard business functions that apply
to a variety of application scenarios and can represent business exchanges, the
sequencing and timing, business agreements stipulated in SLAs, liabilities and
dispute resolution policies, and blends these transactions with QoS criteria. Busi-
ness transactions in the systems-level retain the driving ambition of consistency
and provide support for conventional ACID as well as open-nested long-running
transactions. Implementation of the systems-level services is currently provided
by Web services standards like BPEL, WS-Coordination, and WS-Transaction.

364 M.P. Papazoglou and B. Kratz

The potential benefits of this approach arise largely from its ability to stan-
dardize common business functions, better align business processes with business
objectives and provide information to enable monitoring and troubleshooting of
problems and delays. Business decisions can be made at every step of the business
transaction to align it with business objectives and to alleviate undesirable con-
ditions. For example, in case of a purchase order cancellation due to a faulty part,
an order transaction can automatically reserve a suitable replacement product
and notify the billing and inventory processes of the changes. When all inter-
actions between the various business processes have been completed and the
new adjusted schedule is available, the purchase order Web service notifies the
customer sending her an updated invoice.

References

1. Cabrera, L.F., et al.: Web Services Coordination (2005)
2. Cabrera, L.F., et al.: Web Services Atomic Transaction (2005)
3. Cabrera, L.F., et al.: Web Services Business Activity Framework (2005)
4. Bunting, D., et al.: Web Services Composite Application Framework (2003)
5. RosettaNet: Standards required to support xml-based b2b integration (2001)

http://xml.coverpages.org/rosettanetStandardsForIntegration.pdf.
6. Khalaf, R.: From rosettanet pips to bpel processes: A three level approach for

business protocols. In BPM, Proceedings. Volume 3649 of LNCS (2005) 364–373
7. Bajaj, S., et al.: Web Services Policy 1.2 - Framework (WS-Policy). W3C (2006)

http://www.w3.org/Submission/WS-Policy/.
8. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement). TR,

Grid Resource Allocation Agreement Protocol (GRAAP) WG (2005)
9. Merkow, M.S., et al.: Building SET Applications for Secure Transactions. Wiley

& Sons, USA (1998)
10. Kratz, B.: Emulating SET in BTML. ITRS 30, Infolab, Tilburg University (2006)
11. Papazoglou, M.: Web services and business transactions. World Wilde Web: In-

ternet and Web Information Systems 6(1) (2003) 49–91
12. Hrastnik, P., Winiwarter, W.: Using advanced transaction meta-models for cre-

ating transaction-aware web service environments. International Journal of Web
Information Systems 1(2) (2005) 89–99

13. Tai, S., et al.: Transaction policies for service-oriented computing. Data & Knowl-
edge Engineering 51 (2004) 59–79

14. Ludwig, H., et al.: Template based automated service provisioning supporting the
agreement driven service life-cycle. In ICSOC 2005, Proceedings. Volume 3826 of
LNCS (2005) 283–295

15. O’Sullivan, J., et al.: Formal description of non-functional service descriptions.
TR, QUT (2005) http://www.bpm.fit.qut.edu.au/about/docs/non-functional.jsp.

Licensing Services: Formal Analysis and
Implementation

G.R. Gangadharan and Vincenzo D’Andrea

Department of Information and Communication Technology,
University of Trento,

Via Sommarive, 14, Trento, 38050 Italy
gr@dit.unitn.it, dandrea@dit.unitn.it

Abstract. The distribution of services spanning across organizational
boundaries raises problems related to intellectual value that are less ex-
plored in service oriented research. Being a way to manage the rights
between service consumers and service providers, licenses are critical to
be considered in services. As the nature of services differs significantly
from traditional software and components, services prevent the direct
adoption of software and component licenses. We propose a formalisa-
tion of licensing clauses specific to services for unambiguous definition
of a license. We extend Open Digital Rights Language to implement the
clauses of service licensing, making a service license compatible with all
the existing service standards.

1 Introduction

Service oriented computing (SOC) is an emerging distributed systems paradigm
referring to systems structured as networks of loosely coupled, communicating
services [1]. While software behaves as a stand-alone application, services intend
making network-accessible operations available anywhere and anytime.

In contrast to traditional software components [2], the functionality of a ser-
vice resides and runs at the provider’s host in a distributed way beyond organi-
zational boundaries, and consumers are not required to download the service
executable for consuming the service. While components encapsulate coarse
grained functionalities, the granularity of services could range from finer to
coarse. Further, services allow the applications to be constructed on-the-fly and
to be reused everywhere.

As service oriented applications are rapidly penetrating the society, there
arises a need for governing their access and distribution. Although services are
software fragments, the distinguishing characteristics of services preclude them
to be licensed under traditional software / component licenses. While we do not
intend to discuss the similarities and differences between services and compo-
nents in general, we explicate the significant differences of services with respect
to the components from the perspective of licensing. In case of components,
the provider of a component is responsible for functionality of the component.
Components are downloaded and executed in the environment of clients, within

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 365–377, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

366 G.R. Gangadharan and V. D’Andrea

an organization. Services could span across different participating organizations.
Services run through provider and the responsibility for operations of a service is
more complex than that of components. We have explored in [3] the dimensions
of services inducing a new paradigm of licensing. Nevertheless, being services
accessed and consumed in a number of ways, there is the need to carefully define
a set of licenses suitable for services.

Researches focusmainly on the expression of functional aswell as non-functional
properties of services. There exists an obvious paucity of licensing clauses for a
service and embedding a license within a service. In order to fulfill this gap, we
study the strategy of implementing licenses within a service. The salient features
of our approach are:

– Formal representation of licensing clauses to unambiguously describe a ser-
vice license.

– Extension of Open Digital Rights Language (ODRL) to encompass the ser-
vice licensing clauses.

As licenses form the basis for distribution of services, in this paper, we
elucidate a formal analysis of service licenses together with an implementation
scenario of expressing the licensing terms in services. We describe by presenting
various examples how a service interface and realization could be exploited by
other services in Section 2. Section 3 compares various languages illustrating
functional and non-functional properties of services as complementary to WSDL
and elucidates their lack of expressiveness in describing the clauses of licensing.
The formal description of licenses are presented in Section 4. We implement
some of the service licensing clauses by extending ODRL in Section 5. Finally,
we illustrate licensing of a service by extended ODRL in Section 6.

2 Exploring Service Licensing Clauses

A service is represented by an interface part defining the functionality visible to
the external world and an implementation part realizing the interface [4]. In this
section, we will analyze some of the prominent combinations of reproduction
(or not) of the service interface, relationship between services (compositional
properties), and derivation (or not) from the source code.

As service interfaces (WSDL) together with bindings are publicly available, sev-
eral services could be created with the same interface. These services can vary in
their performance and Quality of Service (QoS) issues. However, copying and us-
ing the interface with or without modifications are twined with intellectual values.

By the following example, we show how a service could simply be reused by
an other service copying the interface directly: Let SA be a service providing a
spell checking operation for words, say, Spell(word). Consider SA provides this
service by wrapping a proprietary word processor (PWP) spell checker API. As
the WSDL interface of this service is publicly available, any service, say SB could
copy this interface and the interface of SA could be used by SB with or without
modifications. Thus, SB is an another independent service, wrapping an other

Licensing Services: Formal Analysis and Implementation 367

proprietary word processor (QWP) spell checker API, created by replicating the
WSDL of the SA. Albeit SA and SB are performing spell checking, SA and SB

are two different services, executed separately.
The prominent scenarios on reproduction of interface with modifications are

as follows:

1. The interface of a service could be modified by changing the name of some
operations such as for translation i.e. the expression of a service in a language
other than that of the original version.

2. The interface of a service could be modified by some changes in the service
parameters such as for data translation or by some pre-processing and/or
post-processing of the service.

Following the styles of [5] for representing figures, services are denoted by the
shadowed rectangular boxes. An operation of a service interface is represented
as an Unified Modeling Language package marked by a stereotype << desc >>.
The wrapped application for the service is shown on the left side of the service.

The reproduction by interface translation is illustrated in Figure 1. The in-
terface of SA is translated by SB to provide a spell checking operation in Italian
language, say Ortografia(parole). In this case, SB translates the interface of
SA and results in the Italian version of SA as an independent service.

We refer to composition as the federation of a service with other remote
services. In other words, the operations of a composite service relies on the
availability of services being composed [6].

Let SB be a service providing a spell checking operation Spell(sentence) for
sentences, that could compose internally operations for spelling of words with
a parser. SB could be designed in such a way (See Figure 2) that Spell(word)
of SB directly invokes the operation of SA, executing on the host of SA. In the
absence of SA, SB fails to perform.

A service could deny or allow to use and/or modify the service realization. A
service could allow to use its realization as an executable in an other service. For
example, a service SA could allow its realization to be used as an executable by
an other service SB. However, SA could restrict SB not to modify the operations
of SA.

Fig. 1. Reproduction Fig. 2. Composition of Services

368 G.R. Gangadharan and V. D’Andrea

A service could allow to modify its realization by other service. The modifica-
tion of a service realization, termed as derivation of a service, is an inspiration
by Free1 and Open Source2 Software (FOSS) movement.

Consider a service SA providing Spell(word) operation for spell checking of a
word. A new service SB, performing spell checking for a sentence, could be
derived from SA. The derived service SB contains an operation for parsing
Parser() in addition to the operation of SA. In this case (See Figure 3), SB

significantly modifies the operation of SA and thus SB is a derivative service
of SA.

Fig. 3. Normal Derivation Fig. 4. Replica Derivation

Making replica of a service uses the service realization and service interface.
If the WSDL interface as well as realization of a service allows copying, replica
services (See Figure 4) are created. Consider SB as an independent service cre-
ated by replicating/mirroring the source code of realization and WSDL of SA.
Though SA and SB are performing the same operations, SA and SB are two
different services, executed separately. Theoretically, there will be no differences
(may include network delays!) in performances of both the services. Thus, de-
rived service is a manifestation of ‘Free Culture’.

Beyond these aspects, a service may expect certain moral rights [7] to be
satisfied. A service, SA, could expect the service, say SB, being composed /
derived / reproducing the interface to reflect the same terms and condi-
tions of the SA (Similar to ‘Sharealike’ of CreativeCommons [8] or Copyleft
of GNU3).

A service may expect the attribution for its use by the other service in
any of the forms. As attribution is considered a basic requirement, a service
should give the proper credit for the service that it uses. In case of composition,
the composite service could be required to give attribution for every level of
composition as in a BSD license4.

Further, a service could allow/deny the other service depending on the usage
either for non-commercial purposes or for commercial purposes.
1 http://www.fsf.org/
2 http://www.opensource.org/
3 http://www.gnu.org/copyleft/
4 http://www.openbsd.org/policy.html

Licensing Services: Formal Analysis and Implementation 369

3 Licensing Clauses in Service Descriptions Languages

WSDL is the standard way to describe what a service does. Researches focusing
on languages to enhance and to complete the description provided by WSDL are
continually in progress. These languages being complementary to WSDL address
functional/non-functional properties and business/management information of
services with varying levels of details.

Web Service Level Agreement (WSLA):The WSLA framework [9] describes
the complete life cycle of a Service Level Agreement (SLA) including SLA es-
tablishment by negotiation (signing of a SLA by signatory parties for a given
service offering), SLA deployment (checking the validity of the SLA and dis-
tributing it), Service level measurement and reporting (configuring the run-time
system to meet a set of SLAs and comparing measured SLA parameters against
the thresholds defined in the SLA), Management actions (determining SLA
violations and corrective management actions to be taken), and SLA termina-
tion (specifying the conditions for termination). The WSLA framework enables
to specify and monitor a wide variety of SLAs for web services. Based on XML,
the WSLA language defines a type system for the various SLA artifacts. A SLA
in WSLA is comprised of parties (identifying all the contractual parties), service
description (specifying the characteristics of service and the observable para-
meters like service availability, throughput, or response time), and obligations
(defining various guarantees and constraints to be imposed on SLA parame-
ters).

The WSLA language is a general purpose way to express performance char-
acteristics of web services.WSLA encompasses the agreed performance
characteristics and the way to evaluate and measure them. However, WSLA
does not focus on the rights to be associated with service provider and service
consumer.

SLA Notation generator (SLAng): SLAng [10] is a XML based language,
for describing Service Level Specifications in the domain of distributed systems
and e-business. This language has been modeled by Object Constraints Lan-
guage (OCL) and Unified Modeling Language (UML) in order to define SLA
precisely. SLAng formally defines SLA vocabulary in terms of the behaviour of
the services and clients involved in service usage, with reference to a model of
service usage. A SLA described in SLAng comprises information on parties in-
volved (end point description of contractors), contractual statements (defining
the agreement), and QoS description with the associated metrics (service level
specifications). Further, SLAng supports the inter-service composition of SLAs
as a description of relationship between possible service behaviors.

Although SLAng has a broader scope beyond web services enabling different
types of SLAs, SLAng is silent about the intellectual rights associated with
services.

Web Service Offering Language (WSOL):WSOL [11], a language for speci-
fying constraints, management information, and service offering, provides

370 G.R. Gangadharan and V. D’Andrea

different service levels defined by several classes of services. The same WSDL
description with differing constraints (functional, non-functional, and access
right) and managerial statements (price, penalty, and responsibility) is referred
as ‘classes of service’ of a web service in WSOL. Consequently, different classes of
services could vary in prices and payment models. WSOL offers several reusabil-
ity elements to enable easier derivation of a new service offering from the existing
offerings.

The value of WSOL lies in the simplicity of the negotiation process and the
simplified management infrastructure of WSOL.However, WSOL misses the syn-
tax of business and legal contents of contracts.

WS-Policy: WS-Policy [12] provides a general framework to specify and com-
municate (publish) policies for web services. It is a model for expressing the
capabilities, requirements, and general characteristics of a web service as poli-
cies. WS-Policy provides a base set of constructs that can be used and extended
by other web services specifications to describe a broad range of service require-
ments, preferences, and capabilities.

WS-Policy defines a policy as a collection of policy alternatives. In turn, each
policy alternative comprises a collection of policy assertions. Each policy as-
sertion indicates an individual requirement, capability or other property of a
behaviour. WS-policy is one of the fundamental works for specifying policies for
web services. However, WS-Policy does not detail the specification of functional
constraints, QoS policies, and other related management information.

We have analysed the current attempts by some of the web service languages
to describe functional and/or non-functional properties and managerial infor-
mation of services. Every language describes certain properties of services en-
tirely. Generally, all the standards focus on the QoS and the terms and condi-
tions agreed by the provider and consumer. However, in our view, none of them
intensively describe the distribution aspects and the ownership clauses of licens-
ing. The business and legal contractual information are not focused in detailed
level by the services research community. The issues of copyrights and moral
rights [13] are unexplored by the currently available service description stan-
dards. We think, there is a need to be considered to enable a broad usage of
service that preserves certain rights of the owner and presents certain rights to
the consumer.

From a different perspective, few languages and models capable of expressing
a range of licenses are existing in the domain of Digital Rights Management
(DRM) [14] for digital contents and multimedia. In the pioneering work of [15],
a mathematical model for describing payment and rendering events is described.
In [16], the properties of licenses are stated and proved by using deontic logic.
LicenseScript [17] based on multi-set rewriting, expresses dynamic conditions of
audio/video contents. As these models and languages restrict themselves within
the domain of digital contents and multimedia, they could not be adaptable for
describing services. Copyrights and other related rights are also not formalised
in all these models.

Licensing Services: Formal Analysis and Implementation 371

4 Formalising the Service Licenses

A service could allow/deny itself to be used by other services. Further, a service
could allow/deny to reuse its interface with or without modification. Allowing
or denying composition and derivation influences reuse of services significantly.
For drafting a family of machine readable licenses, the clauses of a service license
should be unambiguous. We will formalise the clauses of rights detailed in Section
2 to avoid ambiguity in describing service licenses.

Let {op(SA)} be the set of operations offered by a service SA. We refer to
each clause (C) of the license for service SA as CSA .

We define Interface Expressive Power (E) as the degree to which a service
interface is explainable, described by the number of operations involved and the
number and type of parameters of operations5. We define E as,

E = n +
∑n

i=1

(
m
j=1 δj

m

)

where n is the number of operations of an interface and for each operation,
m is the number of parameters. δj is the measure of the complexity of the data
type. Following WSDL definitions, we consider the values for simple, derived,
and complex data types as 1, 2, and 3 respectively.

Derivation (D): Derivation of a service, inspired by FOSS, is a new aspect of
creating a new service from existing service, modifying the WSDL interface and
implementation. We define a service as a Free/Open Service [18] if the service
provides its WSDL interface as well as source code freely available for creat-
ing a new and independent service. The open service allows the new service to
use a modified version of the original source code. A service SB is said to be
derived from SA if {op(SB)} ⊇ {op(SA)} on satisfying the following two condi-
tions: (i) To exist SB, SA should be a Free/Open Service and (ii) SA and SB

are independent in execution. Normal Derivation (See Figure 3) is represented
formally as {op(SB)} ⊃ {op(SA)}. Replica Derivation (See Figure 4) is repre-
sented by {op(SB)} ≡ {op(SA)}. In any case of derivation, the E of the derived
service is always higher than or equal to the E of the service used for derivation.
Thus, E(SB) ≥ E(SA). However, network latency issues in delivery of SA and
SB could exist.

Reproduction (R): Reproduction signifies making a new independent service
from an existing service interface. If a service SA is reproduced as an other inde-
pendent service SB, then {op(SB)} �= {op(SA)} and SA and SB are independent
in execution.

Weyuker’s property number 8 of software complexity [19] explicitly states that
if a program is a straight renaming of another program, its complexity would be

5 The interface expressive power of services could be defined based on several metrics.
We have considered a few relevant metrics and we do not claim this as an optimal
solution. Nevertheless, our general line of thought is not affected by the interface
expressive power computation.

372 G.R. Gangadharan and V. D’Andrea

same as the original program. Observing this property for a reproduction that
unmodifies the interface, the E of the reproduced service remains unchanged:
E(SB) = E(SA). In case of a reproduced service changing the interface, the E of
the reproduced service could differ from the service being reproduced: E(SB) �=
E(SA).

Composition (C): Composition is a form of integration of services with value
addition provided a composite service could be further composable [20]. Compo-
sition of services specifies the participating services, the invocation sequence of
services and the methods for handling exceptions [21]. A service S is said to be
composite if {op(S)} ⊃ {Of : Of ε {op(Si)}} and ∃ S | Si, i = [1, .., n]. Of could
be a single operation or a set of operations adding value addition by combining
all or some of the operations of Si.

Based on Weyuker’s properties (property numbers 5 and 9) of software com-
plexity, we propose the E of a composite service differing from the E of the
composing services obviously. Thus, E(S) �= E(Si, Sj). Though the underlying
assumption of SOC is composition, a service can deny or limit other services to
use itself in a composition.

Attribution (A): Attribution means to ascribe a service to the entity respon-
sible for its creator. If a service SB uses a service SA, then the attribution to SA

could be formally represented as ASB ⊃ ASA . The levelled attribution as in BSD
styled service licensing is represented by ASC ⊃ ASB ⊃ ASA where the service
SC uses SB and SB uses SA.

Similar Terms (T): A service SB may expect another service SA (which uses
SB) to have the same terms as of SB. In other words, L(SA) = L(SB) where SB

uses SA and L(S) is the service license defined as below.

Non-Commercial Use (N): A service SB could deny its use for commercial
purposes. NSB = 1 implies that an other service SA could use SB if SA is not
commercial.

Now, we define the license L of a service S as6

L(S) = (D, R, C, A, T, N).
The combinations of these licensing clauses define a family of licenses for

services ranging from the most restrictive to the most unrestrictive.

5 Implementing Licenses in Services

Instead of proposing a new language for describing the licensing aspects of ser-
vices, we could draft the terms and agreements of license using existing rights
expression languages. XrML [23] is a comprehensive right expression language,

6 Further, a service license comprises the financial terms, warranties, indemnification
and limitation of warranties, and other clauses [22]. These terms are integral for a
legally enforceable license. In this paper, we are primarily concerned with the clauses
directly associating the scope of rights of a service license.

Licensing Services: Formal Analysis and Implementation 373

created by the ContentGuard Inc.7, currently the basis of MPEG-218. Content-
Guard has a portfolio of patented technologies, covering the distribution and use
of digital works and the use of a grammar in connection with the distribution
of digital works. Though the terms are not specific to XrML, XrML is restricted
to be used for a context covered by the patents. Hence, to obviate any kinds of
patent infringements, we avoid XrML for implementing the terms of licenses in
services.

Open Digital Rights Language (ODRL) [24] is an open standard language
for the expressions of terms and conditions over assets, in open and trusted en-
vironments. The models for the ODRL language and data dictionary contain
the structure and core semantics for the expressions. These models provide the
overall framework for the expressions into which elements can be applied. The
core entities of ODRL are as follows:

• Assets: a resource being licensed (to be identified uniquely), for instance, a
web service.

• Rights: rules concerning permissions (the actual usages or activities allowed
over the assets), constraints (limits to these permissions), requirements (the
obligations needed to exercise the permission), and conditions (the specifi-
cations of exceptions that, if become true, expire the permissions and re-
negotiation may be required).

• Parties: information regarding the service provider, consumer, broker etc.,

With these three entities, ODRL expresses offers (proposals from rights holders
for specific rights over their assets) and agreements (contracts or deals between
the parties, with specific offers). These core entities together allow for a wide
and flexible range of ODRL expressions to be declared.

Our motivations for ODRL as an appropriate rights expression language for
describing machine readable licensing agreements for services are as follows:

• ODRL is an open standard language, for expressing rights information.
• Being defined in XML, ODRL provides syntactic and semantic interoper-

ability.
• ODRL is extensible and capable of incorporating specific clauses related to

service licenses.
• Several business scenarios across various domains are expressable in ODRL.
• Being published in the World Wide Web Consortium (W3C), ODRL has a

wide acceptance
• ODRL is supported by several industries and consortia like the Dublin Core

Metadata Initiative (DCMI)9 and the Open Mobile Alliance (OMA)10.

With this proposal, we extend ODRL to define the clauses of a service li-
cense L(S), by creating a new data dictionary that imports the ODRL expres-
sion language schema (See Table 1) to describe the scope of rights of services.
7 http://www.contentguard.com/
8 http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-21.htm
9 http://dublincore.org/

10 http://www.openmobilealliance.org/

374 G.R. Gangadharan and V. D’Andrea

Table 1. ODRL/L(S) Data Dictionary Semantics and Schema

ODRL Element Identifier Description
Permission Derivation (D) The service may be derived.
<xsd:element name="Derivation" type="o-ex:permissionType"
substitutionGroup="o-ex:permissionElement"/>

Permission Reproduction (R) The service may be reproduced.
<xsd:element name="Reproduction" type="o-ex:permissionType"
substitutionGroup="o-ex:permissionElement"/>

Permission Composition (C) The service may be composed.
<xsd:element name="Composition" type="o-ex:permissionType"
substitutionGroup="o-ex:permissionElement"/>

Requirement Attribution (A) The use of service must always include
attribution of the service.

<xsd:element name="Attribution" type="o-ex:requirementType"
substitutionGroup="o-ex:requirementElement"/>

Constraints SimilarTerms (T) The license terms should be same with
out changed when used/reused.

<xsd:element name="SimilarTerms" type="o-ex:constraintType"
substitutionGroup="o-ex:constraintElement"/>

Constraints NonCommercialUse
(N)

The service is for non-commercial pur-
poses.

<xsd:element name="NonCommercialUse" type="o-ex:constraintType"
substitutionGroup="o-ex:constraintElement"/>

ODRL/L(S)11 Data Dictionary Semantics expresses the core L(S) semantics in
the ODRL.

6 A Scenario of Service Licensing

In order to illustrate our approach, we consider a simple scenario where R
is a restaurant service providing the following operations (and parameters):
R0, information on location and opening hours (address : complex; hours :
complex); R1, the facility for reserving table (seats : simple; name : simple;
reservedTable : simple); R2, a catalogue of specialty cuisines (menuType :
simple; listing : complex); R3, a daily recipe for one of the specialty cuisine
(ingredients : complex; difficulty : simple; timeforPreparation : simple;
preparation : complex). In this scenario, the interface expressive power (E) of

11 Though few semantics of ODRL/L(S) resembles to the ODRL Creative Commons
Profile [25], the underlying clauses of a service license and the proposal of implemen-
tation within the WSDL of a service differ entirely. The meanings and motivations
of ODRL/L(S) data dictionary are related to the field of SOC. To the best of our
knowledge, there exists no previous works on the aspects of service licenses using
ODRL.

Licensing Services: Formal Analysis and Implementation 375

R is given by,

E = n +
∑n

i=1

(
m
j=1 δj

m

)
= 4 + ((3+3)

2 + (1+1+1)
3 + (1+3)

2 + (3+1+1+3)
4) = 12

Consider R having the following clauses of licensing:

1. The license clauses of R may deny the provision of R3 to other services
intended for providing recipe information exclusively that means the service
R denies reproduction.

2. R requires a service to be licensed same as R.
3. R allows composite works for noncommercial purposes.

The above clauses could be represented in ODRL/L(S) as follows:

<!-- Namespace Declarations -->
1 <o-ex:offer>
2 <o-ex:asset>
3 <o-ex:context>
4 <o-dd:uid>............</o-dd:uid>
5 </o-ex:context>
6 </o-ex:asset>
7 <o-ex:permission>
8 <ls:Composition/>
9 </o-ex:permission>
10 <o-ex:constraint>
11 <ls:NonCommercialUse/>
12 <ls:SimilarTerms/>
13 </o-ex:constraint>
14 <o-ex:requirement>
15 <o-dd:attribution/>
16 </o-ex:requirement>
17 </o-ex:offer>

From the given licensing clauses of R, it is perceptible that R denies re-
production. A new service could not be created by directly using R. How-
ever R allows composition. Assuming R as a non-open service, R forbids
derivation.

Another service, F , a restaurant finder service uses R, for the following op-
erations: F1, a restaurant locator giving a list of restaurants close to a given
location and using R0 (as well as similar operations for other restaurants); F2,
for intermediating table reservation, using R1; F3, a daily recipe randomly se-
lected among the recipes provided by the restaurants listed using F (in the case
of R, it will use operation R3). F can use R in a composition even the repro-
duction is prohibited. R expects SimilarTerms license for F that is using R. In
this case, the license terms of F will have to comply with R, for the request and
deny provision of F3 to other services intended to provide the recipe information
exclusively (See Table 2).

376 G.R. Gangadharan and V. D’Andrea

Table 2. ODRL/L(S) Clauses and Values for Service R

Identifier Value Line numbers in ODRL/L(S)
listing

Derivation (D) No (Denied)
Composition (C) Yes 7 - 9
Reproduction (R) No (Denied)
Attribution (A) Yes 14 - 16
SimilarTerms (T) Yes 10 - 13
NonCommercialUse (N) Yes 10 - 13

7 Concluding Remarks

Being a way to enable widespread use of services and to manage the rights
between service consumers and service providers, licenses are critical to be con-
sidered in services. We have proposed a formal representation of licensing clauses
to describe the licenses in machine understandable form that would be recog-
nizable by services. We have extended ODRL to define the licensing clauses of
services, as ODRL licenses are compatible with all service standards. We have
focused on the aspects of copyrights and moral rights in this paper, introducing
a free culture of services.

As composition federates independently developed services into a more com-
plex service, the license proposed for the composed service should be consonant
with the implemented licenses of individual services. In our future work, we
intend to propose a framework to compare the service licenses, iterating over
the licensing clauses of services to be composed. Based on the comparison of
the rights expressed on services to be composed, the framework would also be
able to suggest dynamically a license(s) for the composed service, yet legally
enforceable.

Acknowledgements

We are grateful to Dr. Renato Ianella for his suggestions on enhancing ODRL for
services. We acknowledge Prof. Michael Weiss and Prof. Fabio Casati for their
suggestions. We thank anonymous reviewers for their helpful comments.

References

1. Foster, I.: Service Oriented Science. Science 308 (2005) 814–817
2. Szyperski, C.: Component Software: Beyond Object Oriented Programming. ACM

Press, New York (1998)
3. D’Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: Proceedings

of the IEEE Web Services Based Systems and Applications (ICIW’06), Guade-
loupe, French Caribbean. (2006) 142–147

Licensing Services: Formal Analysis and Implementation 377

4. Papazoglou, M., Georgakopoulos, D.: Service Oriented Computing. Communica-
tions of the ACM 46(10) (2003) 25–28

5. Heckel, R., Lohmann, M., Thone, S.: Towards a UML Profile for Service Oriented
Architectures. In: Proceedings of the Workshop on Model Driven Architecture:
Foundations and Applications (MDAFA) . (2003)

6. Hamadi, R., Benatallah, B.: A Petri Net-based Model for Web Services Compo-
sition. In: Proceedings of the Fourteenth Australasian Database Conference on
Database Technologies. (2003) 191–200

7. Goldstein, P.: International Copyright Principles, Law, and Practice. Oxford Uni-
versity Press (2001)

8. Fitzgerald, B., Oi, I.: Free Culture: Cultivating the Creative Commons. Media
and Arts Law Review (2004)

9. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Management
11(1) (2003)

10. Skene, J., Lamanna, D., Emmerich, W.: Precise Service Level Agreements. In:
Proc. of 26th Intl. Conference on Software Engineering (ICSE). (2004)

11. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management Applications
of the Web Service Offerings Language. In: Proc. of the 15th CAiSE. (2003)

12. Jeffrey Schlimmer (Ed.): Web Services Policy Framework (WS-Policy).
http://www-128.ibm.com/developerworks/webservices/library/ specification/ws-
polfram/ (2004)

13. World Intellectual Property Organization: WIPO Copyright Treaty (WCT).
http://www.wipo.int/treaties/en/ip/wct/trtdocs wo033.html (1996)

14. Rosenblatt, B., Trippe, B., Mooney, S.: Digital Rights Management: Business and
Technology. M & T Publishers, New York (2002)

15. Gunter, C., Weeks, S., Wright, A.: Models and Languages for Digital Rights. In:
Proceedings of the HICSS-34. (2001)

16. Pucella, R., Weissman, V.: A Logic for Reasoning about Digital Rights. In: IEEE
Proceedings of the Computer Security Foundations Workshop. (2002)

17. Chong, C., Corin, R., Etalle, S., Hartel, P., Law, Y.: LicenseScript: A Novel Digital
Rights Language. In: Proceedings of the International Workshop for Technology,
Economy, Social and Legal Aspects of Virtual Goods. (2003)

18. D’Andrea, V., Gangadharan, G.R.: Licensing Services: An “Open” Perspective.
In: Open Source Systems (IFIP Working Group 2.13 Foundation Conference on
Open Source Software), Vol. 203, Springer Verlag. (2006) 143–154

19. Weyuker, E.: Evaluating Software Complexity Measures. IEEE Transactions on
Software Engineering 14(9) (1988) 1357–1365

20. D’Andrea, V., Fikouras, I., Aiello, M.: Interface Inheritance for Object Oriented
Service Composition Based on Model Driven Configuration. In: Proceedings of
ICSOC (Short Papers). (2004) 66–74

21. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures, and Applications. Springer Verlag (2004)

22. World Intellectual Property Organization: Successful Technology Licensing. WIPO
Publishers, Geneva, Switzerland (2004)

23. ContentGuard Inc.: XrML: The Digital Rights Language for Trusted Contents and
Services. http://www.xrml.org/ (Accessed on May 2006)

24. Renato Iannella (Ed.): Open Digital Rights Language (ODRL) Version 1.1.
http://odrl.net/1.1/ODRL-11.pdf (2002)

25. Renato Ianella (Ed.): ODRL Creative Commons Profile. http://odrl.net/
Profiles/CC/SPEC.html (2005)

QoS Assessment of Providers with Complex
Behaviours: An Expectation-Based Approach

with Confidence

Gareth Shercliff, Jianhua Shao, W. Alex Gray, and Nick J. Fiddian

School of Computer Science, Cardiff University, UK

Abstract. Service Level Agreements (SLAs) define a set of consumer
expectations which must be met by a provider if a contract is not to be
broken. Since providers will potentially be providing many different ser-
vices to thousands of different consumers, they must adopt an efficient
policy for resource management which differentiates consumers into ser-
vice ranges. Existing approaches to QoS assessment of providers assume
that the policy of a provider with respect to consumers is handled on
an individual basis. We maintain that such approaches are ineffective
when providers adopt a policy based on service differentiation and in
response introduce and evaluate an expectation-based approach to QoS
assessment which presupposes the classification of consumers into ranges
defined by their expectation. As well as carrying out assessment to de-
termine the likely future behaviour of a provider for a given consumer
expectation, we attach a confidence value to our assessment to indicate
the level of certainty that the result is accurate. Our results suggest that
our confidence-based approach can help consumers make better informed
decisions in order to find the providers that best meet their needs.

1 Introduction

Before a consumer and provider enter into an instance of service provision, a
set of mutually agreeable criteria must be defined in the form of an SLA[2] in
order that both sides are aware of their commitments and of what they should
expect from the other party. In such an agreement, the consumer’s commit-
ments are usually limited in number and trivial in enaction. Conversely, the
commitments of a provider to an individual consumer may be numerous and
complex. Consumers may specify QoS parameters such as availability, through-
put and response time[9] and there may be interrelationships between particular
clauses of the contract. A provider may concurrently be providing several service
types, interacting with thousands of consumers and having to efficiently manage
resources[11][7] in order that their commitments to each individual SLA are met.

Service differentiation[7] is a generally accepted solution to dealing with the
complexity of resource management in flexible domains such as service oriented
environments[6]. Taking this approach, consumers are classified into performance
classes, where each class represents a set of consumers with particular SLA-
defined expectations and commitments. Consumers within the same performance

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 378–389, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

QoS Assessment of Providers with Complex Behaviours 379

class can be expected to be treated equally - that is, consumers with similar ex-
pectations and commitments will be treated in a similar way by the provider. The
policy adopted in classifying and managing consumers in performance classes will
differ from provider-to-provider and it can be assumed that providers will not
publish details of their policy. Hence, providers are unlikely to advertise each
service level as a separate service - to consumers and third-parties it will ap-
pear as if all service levels are actually one offering. This presents a challenge to
third-party services such as QoS Assessment tools and reputation brokers that
attempt to evaluate the likely future performance of a provider, and exposes
inadequacies in existing approaches.

Our contribution, which we present in this paper, is an approach to QoS assess-
ment which presupposes that an individual provider may be offering a set of func-
tionally identically services differentiated only by QoS but which are advertised
as a single service. We previously introduced an approach to assessment which
recognised this differentiation of services[13]. Here we build on our approach by
taking into account confidence in the assessment process as an indicator of how
likely it is that our assessment is accurate. In this paper we outline our improved
approach and demonstrate cases where the confidence in an assessment result may
be a discriminating factor in evaluating and choosing between providers.

The remainder of this paper is structured as follows. In Section 2 we briefly
discuss existing work similar to our own, identifying points of difference and simi-
larity between the approaches.This is followed in Section 3 by a brief formalisation
of the concepts and processes of a model SOC environment that we refer to in our
work. In Section 4, we provide a description of our expectation-based approach to
assessment, focussing on the incorporation of confidence into our model. In Section
5, we provide evidence of and discuss a set of experiments that we have carried out
in order to verify the effectiveness of our approach compared to a non-confidence
based equivalent. Finally, in Section 6, we present our conclusions.

2 Related Work

Our work falls into the area of QoS Aware Service Discovery and Selection
(QoSDS) the goal of which is to develop techniques to determine the likely future
behaviour of a provider based on information that may be provided as ratings[5]
or by directly monitoring services[1]. Whilst having the same overall goal, our
approach can be distinguished from the majority in taking an expectation-based
approach by recognising that the level of service delivered by a provider is par-
tially dependent upon the expectation of the consumer. We previously devel-
oped such an approach based upon consumer ratings[4]. An expectation-based
approach is also adopted by Scherchan et al.[12] who concur with our assertion in
using similar expectation as a discriminating factor in selecting relevant past pro-
vision instances for use in assessment. However, we maintain that when delivered
values are used instead of ratings, simply choosing past instances of provision
where expectation is similar is ineffective when providers adopt a differentiated
services approach to service provision[13].

380 G. Shercliff et al.

The research into trust and reputation has developed techniques to choose the
best provider to meet a consumer’s needs, though the emphasis in this case is on
how likely the provider will be to keep to contractually agreed levels of service[10],
rather than determining the actual level of service that can be expected. In
[8] Maximillien and Singh provide a comprehensive approach to establishing
reputation of providers taking into account both rated and recorded levels of
service.

3 Problem Statement

We here provide a brief formalisation of the concepts and processes of a service-
oriented environment relevant to our work, concluding the section with a state-
ment of the problem addressed by our approach.

3.1 Quality

Weadhere to the conformance viewof quality, used commonly in the literature[5][3]
- specifically,we take the approach that conformance is the act ofmeeting consumer
expectation.

Definition 1 (Quality). Let Q be the degree of conformance of the service
delivered (D) by a service provider to a consumer’s expectation (E).

We assume that the definition of quality above is used rationally by both con-
sumers and providers in their environment. That is, consumers are happier when
their expectations are being met and providers believe that they are able to keep
consumers happy by minimising the distance between the level of service they
are providing and the consumer’s expectation.

3.2 Service Provider Behaviour

We assume a problem space within an SOC environment, in which a set of service
providers PSet = {P1, ..., Pn} offer functionally identical services. Each individ-
ual service provider will adopt a policy to resource management by classifying
consumers based on their expectation - effectively dividing the range of consumer
expectation into partitions such that the whole range of expectation is covered.
We refer to each partition as a service range (SR). The ranges are defined by
an upper and lower expectation - all consumers with expectation falling into a
particular range will be treated similarly by the provider.

Within each service range, at a givenpoint in time,we assume that aprovider has
a target level of service that they attempt to provide (denoted Dt) though generally
they will not be able to maintain performance at exactly this level. We represent
the actual level of service delivered at any point as consisting of Dt and an error,
ε. Dt may change over time dependent on other factors such as a change in the
amount of resources allocated by a provider to a particular service range.

QoS Assessment of Providers with Complex Behaviours 381

Definition 2 (Target Service Level). Let Dt be the level of service which a
provider attempts to meet for all consumers classified within a single expectation-
delimited service range and ε be the difference between the level of service received
by the consumer at any point and Dt.

It is important to reiterate at this point that explicit knowledge about a provider’s
target service levels or the extent of the service ranges remains unavailable to any-
one except the provider.

3.3 Collection and Utilisation of QoS Information

When a service is provided to a consumer, we assume that data about the instance
is collected. We refer to all QoS information about a single instance as a quality
datum QD, and the set of all quality datum as the quality database (QDB):

QDB = {QD0, ..., QDp}
QDi = (timei, Pi, expi, deli)

Where timei was the time that the service instance terminated, Pi was the
provider that provided the service (from PSet), expi was the consumer’s expec-
tation and deli was the average level of service provided (measured on the same
scale as expi). For simplicity and ease of presentation, we assume that exp and
del are normalised onto a scale of (0..1).

Definition 3 (Quality Assessment). Given a consumer expectation Ec, a
provider P ∈ PSet and the contents of QDB, the goal of QoS assessment is to
determine the likely behaviour of P if he were to agree to provide Ec.

Incarryingoutsuchanassessment, it isnecessarytoconsiderboththeeffectofdiffer-
ing expectation of consumers - two individualswith different expectationsmay gain
adifferentutility fromthe samedelivered level of service (fromDefinition1); andthe
behaviourof individualproviders in relationtoaconsumer’s expectation -providers
will adopt different policies with respect to defining and adhering to service levels
and these are not explicitly available to the assessment service (from Definition 2).

3.4 Notation

We can consider the data from the QDB regarding a single provider as being
a set of tuples (e,d). In order to illustrate our approach, we utilise a graphical
notation (Figure 1) in which we define two interconnected spaces: e-space and
d-space; containing tuple data with a one-to-one mapping between spaces. That
is, each tuple corresponds to exactly one point in each space.

4 An Expectation-Based Approach with Confidence

In this section we describe our approach to QoS assessment. A more compre-
hensive overview of our intial approach is provided in [13]. Here, we concentrate
on identifying the factors which will affect the confidence of our assessment,

382 G. Shercliff et al.

Fig. 1. Quality Spaces: e-space and d-space

formalising their calculation and describing how they are used to improve the
effectiveness of our approach.

We consider our approach as consisting of four main phases (Figure 2) which
we describe below.

Fig. 2. Stages of the Approach - Mapping, Selection and Aggregation

Initial Selection from D-Space (Figure 2(a)). In order to ascertain whether
it is possible for a provider (Pi) to meet the consumer’s expectation (without
constraining the circumstances under which this might happen), we attempt to
find past instances in which the delivered level of service is similar to that of
the consumer’s expectation. We define similarity through the use of a threshold
value δ - the range delimited by Ec and δ specifying a range of provided level

QoS Assessment of Providers with Complex Behaviours 383

of service for which we assume the consumer will be satisfied (with Ec at the
centre of the range).

ProviderData = {pd | pd ∈ QDB, pd.prov = Pi}

SimilarInstances = {sim | sim ∈ ProviderData, Ec − δ ≤ sim.del < Ec + δ}

If any similar instances are found this is an indication that the provider is capable
(or has been capable) of providing service at the level desired by the consumer.
However, the instances of provision which have been selected may have been
provided as a result of a consumer having a different expectation to Ec - for
instance, if a provider consistently over- or under-provides. In the next step, we
identify whether this is the case.

D-Space to E-Space Mapping (Figure 2(b)). In order to determine the
level of consumer expectation which results in Ec being provided, we identify the
corresponding e-space points for each element of SimilarInstances, determining
the lower and upper range of expectation covered by the points - denoted as
lowerExp and upperExp respectively.

If Ec is in the range delimited by lowerExp and upperExp this should increase
our confidence that the provider is capable of delivering a level of service similar
to Ec when asked to do so. i.e. the provider has a high degree of conformance
when asked for Ec. At this stage, however, we must still consider the fact that
the provider’s level of service is not constant over time. That is, for other in-
stances with consumer expectation in the range identified, the provider may have
delivered different values in the past - if this were the case, it would lower our
confidence in our provider’s ability to maintain a consistent behaviour at the
level Ec.

In general, the confidence that the points identified in e-space are relevant to
our assessment is inversely proportional to the distance of Ec from the mean of
the expectation identified.

confexp = 1− | Ec − μexp |
E-Space Selection (Figure 2(c)). We now select all points in e-space where
the consumer’s expectation in each instance falls into the range delimited by
lowerExp and upperExp. The points identified now cover all data that is poten-
tially relevant to the result of our assessment.

PotentiallyRelevant = {ran | ran ∈ ProviderData, lowerExp ≤ ran.exp <
upperExp}

E-Space to D-Space Mapping (Figure 2(d)). Finally, we aggregate the
values from the corresponding points from d-space in order to determine the
predicted behaviour of the provider. As indicated above, the set of data used to
carry out the final aggregation and thus predict the performance of the provider
contains all past instances which are potentially relevant. In an ideal situation,

384 G. Shercliff et al.

the points used in the final aggregation will fall into a single service range of the
provider (Figure 3 (a)). If this is the case, by aggregating the delivered values
we should obtain a prediction which falls into the same range and is thus a good
indication of performance. However, in other situations the instances which we
identify may fall across multiple service ranges (Figure 3 (b)). In this case, ag-
gregating the delivered values will produce a prediction which falls between the
ranges identified and is thus unlikely to be accurate.

Fig. 3. Confidence in data used for final aggregation

To quantify the level of confidence we have in the data we consider the likely
distribution of data within each of the service ranges. As discussed in Section
3.2, a provider will attempt to meet a target level Dt but in each instance will
generally miss this objective by an error defined as ε. It is reasonable to assume
that in each case, the probability of ε being small is greater than the probability
of ε being large - that is, in general the provider is likely to miss Dt by a
small amount more often than a large amount. We can therefore consider the
distribution of recorded delivered values in each service range as being normal,
with Dt as the mean.

The confidence which we can have in the data is proportional to the probability
that the data we have found falls into a single service range. We use likelihood
estimation to determine the probability of the observed data being generated as
the result of a normal distribution (whose mean and variance are derived from
the data). The higher the likelihood, the more likely that our data falls into a
single range.

μ =
∑n

i=1 deli
n

(1)

σ2 =
∑n

i=1 del2i − (
∑n

i=1 deli)2/n

n − 1
(2)

confdel = P (RelevantInstances|Mμ,σ) = Πn
i=1P (relevantinstancesi.del|Mμ,σ)

(3)
Where M is a model of a normal distribution defined by μ and σ.

QoS Assessment of Providers with Complex Behaviours 385

Overall Confidence and Result Calculation. The overall confidence in
assessment is defined as the product of the two separate confidences from d-
space and e-space. The predicted value of performance for the provider is taken
as the mean of the final set of points identified in d-space.

conf = confexp ∗ confdel (4)

prediction =
∑n

i=1 deli
n

(5)

Once overall confidence and the predicted performance for the provider have
been determined, both values are passed back to the consumer.

5 Evaluation

We have created a discrete-time event simulator which allows fine-grained con-
trol over the parameters of a model SOC environment described in Section 3.
The simulator allows the modelling of provider behaviour in terms of service
levels and QoS delivered over time; service discovery and provision in which ex-
pectation and delivered values are recorded in a QDB; and provides a scripting
language for the description and simulation of specific scenarios. We used this
simulator in order to carry out a number of experiments in order to validate our
assertions and to verify the effectiveness of our approach.

5.1 Empirical Results

In the first experiment, we observed the behaviour of our approach in terms
of how well the performance of a single provider could be predicted. Figure
4 illustrates the behaviour of a single provider over time. Here, the provider’s
policy divides the expectation space into two ranges - the provider giving a level
of service of around 0.55 for exp > 0.35 and a level of service of around 0.4 for
exp < 0.35. The performance of the approach can be evaluated by observing how
far the predicted value falls from the actual delivered level of service. The bars
for each point on the graph indicate the confidence in the result - the larger the
bar, the higher the confidence.

In our second experiment, we compared the performance of non-confidence and
confidence based approaches in selecting between two providers. In this case, the
graphs (Figure 5) illustrate the behaviour of each provider for the consumer’s ex-
pectation. For each approach, we plot a point at each assessment during the sim-
ulation to indicate which provider was chosen by each algorithm. At any point in
the simulation, the best provider (and hence the one that should be selected by
the algorithm) is the one whose delivered level of service is closest to Ec.

Experiment 1 - Confidence as an Indicator of Uncertainty. We defined
a provider behaviour in which the delivered values for each service range both
intersect the range defined by Ec±δ i.e. from 0.4 - 0.6. In this case, the actual
delivered level of service which would be received for Ec is defined by the upper

386 G. Shercliff et al.

service range (since Ec > 0.35). However, in this instance we are providing the
assessment algorithm with a behaviour in which the delivered values for both
service ranges overlap the range defined by Ec±δ. We are therefore concerned
with both how the effectiveness of prediction is affected and the level of confi-
dence that the algorithm has in its assessment. The results of this experiment
are illustrated in Figure 4.

Figure 4 shows that initially the confidence-based algorithm predicts a de-
fault value for the provider (this is to be expected as the algorithm has not yet

Fig. 4. Experiment 1 - Confidence as an Indicator of Uncertainty

observed any provision in the range defined by Ec±δ). From t=100 to t=400,
the algorithm correctly predicts performance in accordance with the upper ser-
vice range. However, between t=450 and t=750 the level of service delivered by
the lower service range falls into the range Ec±δ. In this case, the assessment
algorithm predicts a level of service between the two service ranges, though the
confidence in the assessment is now substantially reduced. As the delivered level
of service for the ower service range drops towards t=1000, both the predictive
accuracy and confidence of the assessment return to normal. This experiment
illustrates that the inclusion of confidence within the assessment has the desired
effect. When the predictive performance of the approach is affected by an overlap
in the performance of the provider’s service levels, confidence in the assessment
falls appropriately.

Experiment 2 - Choosing between multiple providers. In our second
experiment, we defined behaviour for two providers. Provider 1 has a single be-
haviour which begins providing service at 0.6, but drops to about 0.4 (Ec in
this case) later in the simulation. Provider 2 has multiple service ranges - in
this simulation, the level of service offered to consumers requesting Ec = 0.4

QoS Assessment of Providers with Complex Behaviours 387

Fig. 5. Experiment 2 - Choosing between Multiple Providers

begins at 0.4, but falls to 0.2 later in the simulation. The second behaviour of
Provider 2 would be received from the provider for Ec �= 0.4, and as such should
be irrelevant to our assessment.

388 G. Shercliff et al.

The behaviour observed in Figure 5 can be described in terms of three phases.
In the first phase (t=0 to t=200) both algorithms alternate between Provider 1
and Provider 2. This is due to the fact that the information available to the algo-
rithms in making their assessments is not sufficient in order to adequately eval-
uate each provider so each is given a default assessment and a random provider
is selected. From t=200 to t=450, both algorithms assess Provider 2 as being the
provider that will closest meet Ec. At the beginning of this phase, this is certainly
the case. However, by the end of the phase the performance of Provider 2 has de-
creased such that it is now significantly poorer than Provider 1 at meeting Ec.
During the final phase (t=500 to t=1000) the non-confidence based approach be-
gins to alternate between assessing Provider 1 and Provider 2 as the best provider.
This is due to the phenomenon observed in Experiment 2 - the range defined by
Ec±δ overlaps with both service ranges of Provider 2 and thus provides an in-
accurate assessment, which in this case predicts a level of service very close to
that of Provider 1. Conversely, although the confidence-based approach will pre-
dict the same level of service as the non-confidence based approach, it will be less
confident in Provider 2’s capability than Provider 1’s. This can be observed in the
final phase as the confidence-based approach consistently recommends Provider 1
as the provider who is closest to Ec. This reaffirms the effects of the results already
observed in Experiment 1 and illustrates the significance of including confidence
as part of an expectation-based approach to assessing and choosing between mul-
tiple providers in an SOC environment.

6 Conclusion

In this paper we have presented an improved approach to expectation-based
QoS assessment which attaches a confidence indicator to each assessment result
indicating a degree of certainty in its accuracy. The derivation of the confi-
dence measure is based on a combination of the relevance of the range of ex-
pectation identified to that of the consumer; and the likelihood of the set of
data identified as relevant in making the assessment corresponding to a service
range defined by the provider’s resource management policy. We have demon-
strated using experimental evidence that by adding confidence to the assessment
process, consumers are able to make a better informed decision of which provider
to select, thus increasing their overall utility. In future work, we intend to build
upon our approach by using clustering techniques in order to explicitly identify
the service ranges offered by a particular provider.

References

1. Rashid J. Al-Ali, Omer F. Rana, and David W. Walker. G-QoSM: Grid Service
Discovery Using QoS Properties. Journal of Computing and Informatics, 2003.

2. A. Dan, D. Davis, R. Kearney, R. King, A. Keller, D. Kuebler, H. Ludwig, M. Polan,
M. Spreitzer, and A. Youssef. Web Services on Demand: WSLA-Driven Auto-
mated Management. IBM Systems Journal, Special Issue on Utility Computing,
43(1):136–158, March 2004.

QoS Assessment of Providers with Complex Behaviours 389

3. V. Deora, J. Shao, W.A. Gray, and N.J. Fiddian. A Quality of Service Management
Framework Based on User Expectations. In Lecture Notes in Computer Science,
volume 2910, pages 104–114, January 2003.

4. Vikas Deora, Jianhua Shao, W. Alex Gray, and Nick J. Fiddian. Expectation
based quality of service assessment. to appear in International Journal on Digital
Libraries, 2006.

5. Sravanthi Kalepu, Shonali Krishnaswamy, and Seng Wai Loke. Reputation = f(User
Ranking, Compliance, Verity). In Proceedings of the IEEE International Confer-
ence on Web Services (ICWS’04). IEEE Computer Society, 2002.

6. Ronald M. Levy, Jay Nagarajarao, Giovanni Pacifici, Mike Spreitzer, Asser N.
Tantawi, and Alaa Youssef. Performance Management for Cluster Based Web
Services. In Germán S. Goldszmidt and Jürgen Schönwälder, editors, Integrated
Network Management, volume 246 of IFIP Conference Proceedings, pages 247–261.
Kluwer, 2003.

7. Heiko Ludwig. Web Services QoS: External SLAs and Internal Policies or: How
do we deliver what we promise? In Fourth International Conference on Web In-
formation Systems Engineering Workshops (WISEW’03), pages 115–120, 2003.

8. E. Michael Maximilien and Munindar P. Singh. Toward Autonomic Web Services
Trust and Selection. In ICSOC ’04: Proceedings of the 2nd International Confer-
ence on Service Oriented Computing, pages 212–221. ACM Press, 2004.

9. Daniel A. Menasce. QoS Issues in Web Services. IEEE Internet Computing,
6(6):72–75, November 2002.

10. Sarvapali D. Ramchurn, Dong Hunyh, and Nicholas R. Jennings. Trust in Multi-
Agent Systems. Knowledge Engineering Review, 2004.

11. A. Sahai, J. Ouyang, V. Machiraju, and K. Wurster. BizQoS: Specifying and
Guaranteeing Quality of Service for Web Services through Real Time Measurement
and Adaptive Control. HPL-2001-134. Technical report, HP Labs, 2001.

12. Wanita Sherchan, Shonali Krishnaswamy, and Seng Wai Loke. Relevant Past Per-
formance for Selecting Web Services. In QSIC ’05: Proceedings of the Fifth Inter-
national Conference on Quality Software, pages 493–445, Washington, DC, USA,
2005. IEEE Computer Society.

13. Gareth Shercliff, Jianhua Shao, W. Alex Gray, and Nick J. Fiddian. A Multiple
Quality-Space Mapping Approach to Qos. In CIT 2006: Proceedings of the Sixth
IEEE International Conference on Computer and Information Technology [to ap-
pear]. IEEE Computer Society, September 2006.

A QoS-Aware Selection Model for Semantic
Web Services

Xia Wang1, Tomas Vitvar1, Mick Kerrigan2, and Ioan Toma2

1 Digital Enterprise Research Institute(DERI)
IDA Business Park, Lower Dangan Galway, Ireland

2 Digital Enterprise Research Institute (DERI),
Leopold-Franzens Universität Innsbruck, Austria

{xia.wang, tomas.vitvar, michael.kerrigan, ioan.toma}@deri.org

Abstract. Automating Service Oriented Architectures by augmenting
them with semantics will form the basis of the next generation of comput-
ing. Selection of service still is an important challenge, especially, when
a set of services fulfilling user’s capabilities requirements have been dis-
covered, among these services which one will be eventually invoked by
user is very critical, generally depending on a combined evaluation of
qualities of services (Qos). This paper proposes a QoS-based selection
of services. Initially we specify a QoS ontology and its vocabulary using
the Web Services Modeling Ontology (WSMO) for annotating service
descriptions with QoS data. We continue by defining quality attributes
and their respective measurements along with a QoS selection model.
Finally, we present a fair and dynamic selection mechanism, using an
optimum normalization algorithm.

1 Introduction

Web services with well-defined semantics, called semantic Web services (SWS),
provide interoperability between Web services by describing their own capabili-
ties in a computer-interpretable way [10, 11]. The greatest advantage of SWS is
that they enable machines to automatically perform complex tasks by manipu-
lating a series of heterogeneous Web services based on semantics. Most aspects
of SWS, such as automatic discovery, selection, composition, invocation, or mon-
itoring of services are tightly related to the quality of these services (Qos). QoS
as part of the service description is an especially important factor for service
selection [5] and composition [14].

In order to discover services, a service requester provides some requirements
on the capability of a requested service. Furthermore, many service providers
publish their services by advertising the service capabilities. Hence a service
discovery engine can be used to match requirements of a user against advertised
capabilities of service providers. In such a case that several similar services are
yielded by the discovery process, which has carried out the matchmaking of the
non-functional and functional properties of services. Of these similar services,
the one which will be finally invoked by the user depends mostly on the qualities
of services.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 390–401, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A QoS-Aware Selection Model for Semantic 391

In the literature, this issue has not been thoroughly addressed, due to the
complexity of QoS metrics. Sometimes, the quality of a service is dynamic or
unpredictable. Moreover, most of the current work focuses on the definition of
QoS ontology, vocabulary or measurements and to a lesser extent on an uniform
evaluation of qualities. In our former work, we defined a selection model for
semantic services [12]1, in which we specified details of quality-based selection
algorithm. This paper will go on to elaborate the synthetical evaluation of the
multiple and diverse qualities of services for selection of service.

The Web Service Modeling Ontology (WSMO) [13] is a conceptual model
for describing Web services semantically, and defines the four main aspects of
semantic Web service, namely Ontologies, Web services, Goals and Mediators.
With respect to WSMO, only a small amount of work has been carried out on
the selection of services, mainly in [3], which introduces a number of generic
selection mechanisms to be used conjunction with WSMO. In this paper, we use
the WSMO model and features to describe a QoS model, specific quality metrics,
value attributes, and their respective measurements. Furthermore, we propose an
algorithm to normalize different quality attributes, providing a dynamic and fair
evaluation of services. This is done by considering users’ quality requirements
together with a set of quality advertisements provided by a service provider.
Then we synthetically evaluate all of the metrics closeness in quality attributes
by normalization. A weight matrix is applied to obtain the final evaluation.

The paper is structured as follows, Section 2 provides an overview on the
current related work. In Section 3, a QoS ontology language designed for the
needs of Web services is defined in the context of WSMO, and a QoS model
for service selection is presented. Our QoS-based service selection algorithm is
evaluated in Section 4. In Section 5 experimental results are presented to show
the validity of the algorithm.

2 Related Work

Most of the related work in using QoS for service selection focuses on the devel-
opment of QoS ontology languages and vocabularies, as well as on the identifi-
cation of various QoS metrics and their measurements with respect to semantic
services. For example, [9] and [4] emphasized the definition of QoS aspects and
metrics. In [9], all of the possible quality requirements were enumerated and
organized into several categories, including runtime-related, transaction support
related, configuration management and cost-related QoS, and security-related
QoS. Also, they shortly present their definitions or possible determinants. Un-
fortunately, they failed to present quantifiable measurements.

In [8] and [2], the authors focused on the creation of QoS ontology models,
which proposed QoS ontology frameworks aiming to formally describe arbitrary
QoS parameters. From their on-going work, we know that they did not con-
sider, yet, QoS-based service matching. Additionally, the work [5], [6], and [7]
1 This research was supported by FernUniversitaet, in Hagen and by DAAD, the

German Academic Exchange Service.

392 X. Wang et al.

tries to attempt to conduct a proper evaluation and proposes QoS-based service
selection, despite the authors failing to present a fair and effective evaluation
algorithm.

Especially, the work was presented in [5], which is also similar to ours. There
are, however, some differences to our approach: 1) The measurement of linguistic-
based qualities was not considered; 2) The algorithm uses average ranking, ne-
glecting nuances in different quality properties; 3) A possible maximum value is
used to normalize the QoS matrix, although such kind of value is worth deliber-
ating; 4) Upon analyzing the experimental data, after normalization, the final re-
sult looks as G′ = ({0.769, 1.429, 1.334, 1.111}, {0.946, 0.571, 0.666, 0.889}). For
their way of normalisation, it is hard to make a fair evaluation of all qualities,
because the metrics do not have the same range. One quality attribute even has
a higher weight, while its real impact is decreased by its smaller value. Therefore,
our approach is to normalize each quality metric into values between 0 and 1 by
specifically defined measurements, which are fair to each quality metric. That
means, we propose a different normalization algorithm.

Additionally, [17] focused on augmenting QoS classes and properties to extend
the DAML-S [1] profiles. [16] defined a QoS ontology for DAML+OIL using
description logic notions to express different QoS templates. [9] incorporated QoS
into UDDI and SOAP messages [4] to improve the service discovery process. This
paper however emphasizes the extension of WSMO with a QoS ontology class.

3 QoS Ontology Language and Vocabulary in WSMO

The Web Service Modeling Ontology (WSMO) [13] is a conceptual model for
describing various aspects related to semantic Web services. WSMO is made
up of four top level elements, namely ontologies, web services, goals and me-
diators. Briefly, ontologies provide the terminology and formal semantics for
the other elements of WSMO. Web services define a semantic description of
services including their functional and non-functional properties. Goals spec-
ify the requesters requirements for a Web Service. And mediators resolve the
heterogeneity problem by implementing ooMediators (between ontologies), gg-
Mediators (between goals), wgMediators (between web services and goals), and
wwMediators (between services).

In WSMO, quality aspects are part of the non-functional information of a
Web service description and are simply defined as: Accuracy, Availability, Fi-
nancial, Network-related QoS, Performance, Reliability, Robustness, Scalability,
Transactional and Trust. Such kinds of QoS definition are neither expressive nor
flexible enough for QoS attributes. Therefore in this paper, for the purpose of
selecting services, we introduce a new class, QoS concept classes, that refines the
non-functional properties class in WSMO. Furthermore, we define a QoS model
following the same syntax to extend the WSMO model. The defined QoS model
may be referred to by the web service and goal entities, and quality factors can
adequately be considered during the process of service selection.

A QoS-Aware Selection Model for Semantic 393

We will specify a QoS upper ontology named WSMO-QoS. It is a complemen-
tary ontology that provides detailed quality aspects about services. Developers
benefit from WSMO-QoS for QoS-based matchmaking and QoS measurement.

3.1 QoS Ontology and Vocabulary

Based on [2, 6, 8], we define a new class QoS (Table. 1) which is a subclass
of nonFunctionalProperties class already defined in WSMO. Class QoS can be
attached to class webService or Goal. Please notice that the current WSMO
conceptual model remains unchanged, we however simply refine the class non-
FunctionalProperties.

Table 1. QoS Ontology in WSMO

Class QoS sub-Class nonFunctionalProperties
hasMetricName type string
hasValueType type valueType
hasMetricValue type value
hasMeasurementUnit type Unit
hasValueDefinition type logicalExpression

multiplicity = single-valued
isDynamic type boolean
isOptional type boolean
hasTendency type {small, large, given}
isGroup type boolean
hasWeight type string

Each QoS metric is generally described by MetricName, ValueType, Value
(given or calculated at service run-time), MeasurementUnits (e.g. $, millisecond),
ValueDefinition (how to calculate the value of this metric), and Dynamic/Static.
For the purpose of QoS-based selection, there are four additional features defined,
namely: isOptional, hasTendency, isGroup, and hasWeight. The following is an
simple interpretation of every property in Table. 1:

– Types of the parameter valueType may be linguistic, numeric (int, float,
long), boolean (0/1, True/False) or other. Therefore, there will be different
forms of preprocessing according to the different value types.

– The property MetricV alue defines a metric’s values which are either real
ones or a string such as ′calculate′. If MetricV alue =′ calculate′, then this
attribute should refer to its valueDefinition for a dynamic value calculation.

– The property MeasurementUnit specifics the concrete unit of every quality
metric, with possible types such as Unit={$, millisecond, percentage, kpbs,
times, ...}. In addition, class Unit has a conversion function between different
measurement units, e.g., to transform second to millisecond.

394 X. Wang et al.

– Parameter hasV alueDefinition is either a logical expression defined as
in [13] or the string ′NULL′. If hasV alueDefinition =′ NULL′, then this
value definition cannot explicitly extracted from the context of service de-
scription, but must dynamically be invoked from its service provider. In this
case this quality attribute must be dynamic, that is isDynamic = True.

– Through property isDynamic, the nature of a quality is defined as static or
dynamic. For a static quality, its values are given by a priori, and can be
directly used during the selection process. If isDynamic = True, this quality
metric must be dynamically invoked and obtained from its service provider,
and its values must be calculated at run-time.

– If isOption = 0, this attribute, assumed to be noted as qk, is necessary,
such that qk ∈ QN , where QN is the necessary quality set. This property is
described in Subsection 3.2.

– hasTendency is an object property representing the expected tendency of
the value from the user’s perspective. For example, the price of a service is
expected to be as low as possible, so that its hasTendency =′ low/small′. On
the contrary, the quality of security of a service should be as high as possible,
i.e., hasTendency =′ high/large′. When hasTendency =′ given′, the user
expects the value of this quality to be as close the given value as possible.
Also, in a quality inquiry, hasTendency = {low/small, high/large, given}
denotes, respectively, that {≥, ≤, =} for its MetricV alue.

– isGroup indicates if this quality attribute is defined by a group of other qual-
ities or not. For example, security is composed of nonRepudiatior, DataEn-
cryption, Authorisation, Authentication, Auditability, and Confidentiality [2].
Hence, isGroup = True means that in the preprocessing stage, the group
value must be calculated first.

– Finally, hasWeight is a value denoting the weightiness of the property, espe-
cially when synthetically measuring several metrics. In this context we define
the weight value either ranges in [0, 10] or ’NULL’, different end users have
different weight values for their service requirements. Note, in this paper,
this property is used only by a WSMO goal, which describes user’s desire;
In the description of a WSMO web service, its value is ’NULL’.

Duringtheselectionprocess,whenaQoSprofile isparsed, inordertoobtainamet-
ric’svalueforwhichhasMetricV alue =′ calculate′holds, itshasV alueDefinition
property must be checked to determine how to calculate it. If hasV alueDefin
ition =′ NULL′ and isDynamic = 1, then the invocation function is to inquire
the real-time value, otherwise an error is encountered. If isDynamic = 0, its corre-
sponding hasMetricV alue is an existing value, or again an error occurs.

In [15,4,9], all of the possible QoS requirements for Web services were defined,
mainly including: performance, reliability, scalability, capacity, robustness, ex-
ception handling, accuracy, integrity, accessibility, availability, inter-operability,
security and network-related QoS requirements. Fig. 1 gives a simple view on
QoS vocabulary, which consists of many general QoS attributes and the scalable
domain-specific QoS subset used; for example, to define the hotel category for
a hotel service. The definition and the discussion of concrete measurement of
qualities is out of this paper’s scope.

A QoS-Aware Selection Model for Semantic 395

Fig. 1. QoS ontology and vocabulary Fig. 2. QoS-based selection of services

3.2 QoS Selection Model

The scenario of QoS-based service selection is described as follows. The user pro-
vides his requirements (including non-functional, functional, and quality prop-
erties) for the expected service, which are formed into a requirement profile,
noted as sR = (NFR, FR, QR, CR), where the denotations are the identifers of
Non-Functionality, Functionality, Quality and Cost (the details of such selec-
tion model can be found in [12]). On the other side, there can be thousands
of available services published in either a service repository or a kind of peer-
to-peer service environment. The advertisement of a service s is denoted as
sA = (NFA, FA, QA, CA), similarly.

The first filter of service selection matches sR with any available sA on the
basis of non-functional-NF (bascially only the service name and service cat-
egory) and functional-F (including inputs, outputs, preconditions and effects)
features of services. We assume that m similar services are yielded, namely,
S = {s1, s2, ..., sm}, m ∈ N .

The second filter synthetically considers all quality features to select the ser-
vice among S satisfying the user’s requirements best. This matchmaking takes
place between the pair of the QoS requirements QR and a quality profile QA of
a candidates service sA ∈ S, as illustrated in Fig. 2.

For the purpose of matching, a QoS selection model is defined, in which metrics
are defined both from the perspectives of users and providers of web services. We
assume that Q = {q1, q2, ..., qi}, i ∈ N , and QI denotes the quality set. Thus,

– QN is the necessary quality set for each service defaulted by machine, and
QN ⊆ QI ;

– QO is the optional quality set of the service defined as QO = QI \ QN ; and
– QD is the default quality set of the service. When user does not explicitly give

any quality requirements, i.e., when QR = ∅ and QD ⊆ QI , then QD will be
taken as QR, i.e., QR = QD, where QR are the user’s quality requirements.
Generally, QN ⊆ QD.

396 X. Wang et al.

There are two reasons for distinguishing between different QoS sets. One is
to free the customer from multifarious definitions of his quality requirements,
which sometimes need professional knowledge. For example, a customer cannot
understand the meaning of availability of a service, but he apparently has a
requirement for it. So, the customer may only provide qualities based on his
personal opinions, whereas the complementary part is left to be defined in the
default quality set. The other reason is for the simple, high effective QoS-based
approach for service selection.

Basing on the above analysis, there are three kinds selection modes with
respect to QR:

– Default mode. When QR �= ∅, QR is redefined as union of the original user
requirements and the default ones about service performance, as QR :=
QR ∪ QN ;

– Totally based on the user’s requirements, and QR �= ∅;
– Totally based on default definitions, if QR = ∅.

Further, for purposes of efficient and flexible service selection and from the user’s
perspective, in our model only several qualities are defined in the necessary set,
viz., QN={cost, responseTime, reliability, accurary, security, reputation}, and
similarly QD={cost, responseTime, reliability, accuracy, security, reputation, ex-
ecutionTime, exceptionHandling}. Of course, the definitions are extendable and
changeable for specific application system.

There are many approaches to collect values of quality metrics:

– Directly from the service descriptions, e.g., sometimes the price of invoking
a service is given a priori.

– Simple calculation of a quality value based on the defining expression in the
service description.

– Collection through active monitoring, e.g., execution duration defined in [5].
– Dynamical inquiry from the current server.
– Periodical update of quality values for statistical purposes in a log.
– Obtaining the customers’ feedbacks on quality characteristics, e.g., Reputa-

tion of a service [5] .

Not only are the collection of quality requirements dynamic, unpredictable,
and even difficult during run-time, but the value characteristics of quality metric
can be concluded approximately as:

– Numerical metric, denoted by a number but with different value ranges.
– Ordinal and linguistic-based metric, denoted by a term from an ordered

finite collection of terms, e.g., the reputation of a service may be evaluated
by {Low, veryLow, Medium, veryHigh, High}.

– Regional metric, denoted by a numerical region [min, max].
– Graded metric, e.g., rank of a hotel service in {1, 2, 3, 4, 5}.
– Boolean value numeric or enumerative scales.

A QoS-Aware Selection Model for Semantic 397

It is worth noting that this QoS model is easy to extend or customize. The user
may customize his/her QN , QD, QI at will. The detailed definition of all quality
attributes is out of this paper’s scope. Instead, we focus mainly on the QoS
foundation of the selection model, and the combined evaluation of the quality
attributes.

4 Selection Algorithm

QoS-based selection of services is very complex, not only due to the diversity
of multifarious quality metrics with different value types, value range, and mea-
surements, but also since an effective algorithm, which evaluates all metrics in
combination, is missing.

We assume that QR = {r1, r2, ..., rk} expresses the profile of a user’s quality
requirements, which includes k quality metrics. Similarly, the quality profile of
m candidate services in set S is denoted as QS = {QA1 , QA2 , ..., QAm}, where
QAi = {qi1, qi2, ..., qij}, i, j ∈ N . It defines that the advertisement of service Si

has j quality metrics provided.
It is well-known that there are two cases during the matchmaking,

– QR = ∅, then QR := QD;
– QR �= ∅, then QR := QR ∪ QN . The QR is matched with each QAi, i ∈ N .

It is quite obvious that it is rather unlikely that any QR or QAi will have the
same number of quality metrics. So, in the first preprocessing step, we take QR

as benchmark for alignment with every QAi . This process includes:

1. To re-arrange the metrics of QAi in the same order.
2. If QAi is lacking a quality, then one can add a metric and set its value to 0.
3. To tailor the qualities which are not listed in QR.

Therefore, the matrix of QoS for service matchmaking MQ = {QR, QA1 , QA2 , ...,
QAm} looks like:

MQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1 r2 r3 ... rk

q11 q12 q13 ... q1k

q21 q22 q23 ... q2k

...

qm1 qm2 qm3 ... qmk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(m+1)×k

Here, MQ is a (m+1)×k matrix, with the quality requirements QR in the first
row, and the quality information of candidates services in the other rows. Each
column contains values of the same quality property. For uniformity, matrix MQ

has to be normalized with the objective to map all real values to a relatively
small range, i.e., the elements of the final matrix are real numbers in the closed
interval [0, 1]. The main idea of the algorithm is to scale the value ranges with the

398 X. Wang et al.

maximum and minimum values of each quality metric for thousands of current
candidate services. Accordingly, the maximum and minimum values are mapped
to the uniform values 1 and 0, respectively, depending totally on their definition
of hasTendency.

For instance, a user searches a flight constraining the ticket price to be below
$300, and three service providers ask for $250, $280, and $260, respectively. In
this case the minimum and maximum are $250 and $280. Then, the calculation of
relative closeness for this quality metric reads as (1− 250−250

280−250) = 1, (1− 280−250
280−250) =

0, and (1 − 260−250
280−250) = 0.667.

The second preprocessing step is uniformity analysis. We distinguish differ-
ent quality metrics with their value features. In our QoS model, we take the
information of hasTendency as a quality metric ri, i ∈ k:

1. if hasTendency =′ given′, then we calculate the ratio by

q′ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − qmax−qij

qmax−qmin
if rj ≥ qmax

qij−qmin

qmax−qmin
if rj ≤ qmin

1 − (| |qij−rj |−m
n−m |) if rj ∈ (qmin, qmax)

(1)

2. if hasTendency =′ small/low′, then the ratio is calculated by

q′ij = (1 − qij − qmin

qmax − qmin
) (2)

3. if hasTendency =′ large/high′, then the ratio is calculated by

q′ij = (1 − qmax − qij

qmax − qmin
) (3)

where qmax = max{qij}, qmin = min{qij}, n = max{|qij − rij |}, and m =
min{|qij − rij |}, i ∈ k, j ∈ m. In Fig. 3, three cases of matchmaking are shown,
and the area from the left to the right of the scale line corresponds to the growing
values, whose tendency is small/low, given, and large/high, respectively. Also the
value of rj , j ∈ k is scattered either among qij , i ∈ m or the right side or the
left side of the candidates values. Formula 1-3. present their algorithms.

By taking the Formula 1. as an example, it describes the case that a user
requires the value of a quality to be as close to his given value as possible. We
assume rj with its value as uj and the other quality {qa, qb, ..., qh} with their
value as {va, vb, ..., vh}. There are also three cases in Formula 1. First, when
uj ≥ qmax, just as the candidate set is {qa, qb, qd, qd}, then by Formula 1 we
know qd gets the best ratio as 1. A similar situation occurs when uj ≤ qmin.
When rj scatters in {qc, qd, qe, qf}, the range of scale should be first defined by
(n − m), then ratios are calculated following the third case of Formula 1.

The weighted value for each quality metric is defined in the parameter of
hasWeight. These are brought into the form of a diagonal matrix as W =
{w1, w1, ..., , wk}. Here, we assume that

∑n
i=1 wi = 10 (which is not defined as 1,

A QoS-Aware Selection Model for Semantic 399

Fig. 3. Quality Measurement

for the reason of magnifying the effect of experiments). Then, W is applied to
matrix MQ yielding

MQ′ = MQ × W =
m∑

i=1

(q′ij × wi) (4)

Finally, we can calculate the evaluation result for each quality metric by sum-
ming the values of each row. These abstract values are taken as a relative eval-
uation of each service’s QoS.

5 Experiments

For reasons of comparison and simplification we borrowed test data from [5]. In
their experiments, they implemented a hypothetical phone service (UPS) reg-
istry, which provides various phone services such as long distance, local, wireless,
and broadband. They simulated 600 users to collect the experimental data. Es-
pecially, two phone services’ test data are presented with seven quality criteria,
including Price, Transaction, Time Out, Compensation Rate, Penalty Rate, Ex-
ecution Duration, and Reputation. Their corresponding value types are $, 0/1,
microsecond, percent, percent, microsecond, and rank value in [0, 5].

In order to be applied into our selection mode, we assume a requirement of a
service customer and another two services for testing, then the MQ is as Table.2.

Table 2. Experiment Data

Data Pri Trans TimeOut ComRat PenRat Execu Repu
R 30 1 80 0.4 0.8 120 4.0
ABC 25 1 60 0.5 0.5 100 2.0
BTT 40 1 200 0.8 0.1 40 2.5
A1 28 1 140 0.2 0.8 200 3.0
A2 55 1 180 0.6 0.4 170 4.0

The first row is the supposed QR, the next two rows are taken from [5], and
the last two ones are also hypothetical candidates services. From the definitions
of each quality criterion of that example, we know that Price and Execution
Duration are expected to be smaller, Compensation Rate, Penalty Rate, and
Reputation are to be bigger, and Time Out is required to be as close as possible.

400 X. Wang et al.

The result of normalization carried out by our algorithm for the four candidate
services referring to QR is:

Q′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0.870 0.500 0.571 0.625 0

0.500 1 1 1 0 1 0.250

0.900 1 0.522 0 1 0 0.500

0 1 0 0.667 0.429 0.188 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Assuming W = {4, 0, 0, 2, 1, 1, 2}, we apply Formula 4. to obtain a quality eval-
uation set, named Q′′ = {6.196, 5.500, 5.600, 3.951}. That is, in case of putting
a high weight on price, service s1 is the best choice, the order of the results is in
line with human intuition, see Fig. 4, and the result is consistent with [5], too.

Fig. 4. Combined evaluation of qualities Fig. 5. Combined evaluation of qualities

Here a short discussion is presented. Our Qos-based model is dynamic and
real-time, which is fully adapted to the current distributed network environment,
and which is kept a well relativity and up-to-date, it is also fair on this point.
Since it is always basing on the current available services to compare their current
integrative capability. If services are added or deleted, the evaluation should be
updated.

Also, in a certain relatively stable service environment, a service provider
may consider to change one of its property, it is easy to forecast its constraint
for value. For instance, we take the service s1 (the service ABC in Table. II)
as an example to analysis the effect of the price on its QoS. From Fig. 5., we
knew that if its price were to go beyond the current maximum, it will lose its
competition on price and keep an invariable QoS value.

6 Conclusion

This paper proposed a QoS-based approach for web service selection, by pre-
senting a fair and simple algorithm for evaluating multiple quality metrics in
combination. First, we specified a QoS ontology and its vocabulary in order

A QoS-Aware Selection Model for Semantic 401

to augment the QoS information in WSMO. Furthermore, various quality at-
tributes, their respective measurements, and a QoS selection model were defined
in detail. Finally, a fair and dynamic selection mechanism was presented, which
uses a normalization algorithm oriented at optimal value range. This approach
was validated by a case study for a kind of phone service.

Acknowledgment. This material is based upon work supported by the Science
Foundation Ireland under Grant No. 02/CE1/I131, and the European projects
KnowledgeWeb (FP6-507482), and Adaptive Services Grid (FP6-C004617).

References

1. DAML-S Coalition, DAML-S: Web Service Description for the Semnatic Web. In
Proc. Internatioal Semantic Web Conference (ISWC02), 2002.

2. D.T. Tsesmetzis, I.G. Roussaki, I.V. Papaioannou and M.E. Anagnostou, QoS
awareness support in Web-Service semantics, AICT-ICIW06, 2006, pp.128-128.

3. M. Kerrigan, Web Service Selection Mechanisms in the Web Service Execution
Environment (WSMX), In Proceedings of the 21st Annual ACM Symposium on
Applied Computing (SAC), Apr 2006, Dijon, France.

4. K. Lee, J. Jeon, W. Lee, S. Jeong and S. Park, QoS for Web Services: Requirements
and Possible Approaches, W3C Working Group Note 25, 2003.

5. Y. Liu, A.H.H. Ngu and L. Zeng, QoS Computation and Policing in Dynamic
Web Service Selection. Proceeding 13th International Conference World Wide Web,
2004.

6. Y. Mou, J. Cao, S.S. Zhang, J.H. Zhang, Interactive Web Service Choice-Making
Based on Extended QoS Model, CIT 2005, pp.1130-1134.

7. D.A. Menasce, QoS Issues in Web Services. IEEE Internet Computing, 2002, 6(6).
8. I.V. Papaioannou, D.T. Tsesmetzis, I.G. Roussaki, and E.A. Miltiades, QoS On-

tology Language for Web-Services, AINA2006.
9. S.P. Ran, A Model for Web Services Discovery with QoS. SIGecom Exchange, 2003,

4(1):1-10.
10. S. McIlraith, T.C. Son and H. Zeng, Semantic Web Services, IEEE Intelligent

Systems, Special Issue on the Semantic Web, 2001, 16(2):46–53.
11. S. McIlraith and D. Martin, Bringing Semantics to Web Services, IEEE Intelligent

Systems, 2003, 18(1):90–93.
12. X. Wang, Y. Zhao, B.K. Kraemer and H. Wolfgan, Representation and Discovery

of Intelligent E-Services. In: E-Service Intelligence – Methodolgies, Technologies
and Applications, Lu, J., Ruan,D., and Zhang, G.(Eds.) 2006.

13. D. Roman, H. Lausen, and U. Keller, D2v1.1. Web Service Modeling Ontology
(WSMO), WSMO Final Draft 10 February 2005.

14. L.Z. Zeng, B. Benatallah, H.H.Ngu Anne, M. Dumas, J. Kalagnanam and H.
Chang, QoS-Aware Middleware for Web Services Composition, IEEE Transaction
Software Engineer, 2004, 30(5):311-327.

15. A. Mani and A. Nagarajan, Understanding Quality of Service for Web Services,
IBM Developerworks, 2002.

16. C. Zhou, L.T. Chin and B.S. Lee, DAML-QoS Ontology for Web Services. In
International Conference on Web Services (ICWS 2004), 2004, pp.472-479.

17. C. Zhou, L.T. Chia and B.S. Lee, Semantics in Service Discovery and QoS
Measurement, IT Professional, 2005, 7(2):29–34.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 402 – 414, 2006.
© Springer-Verlag Berlin Heidelberg 2006

UML-Based Service Discovery Framework

Andrea Zisman and George Spanoudakis

Department of Computing
City University

Northampton Square, London EC1V 0HB, UK
{a.zisman, gespan}@soi.city.ac.uk

Abstract. The development of service centric systems, i.e software systems
constructed as compositions of autonomous services, has been recognised as an
important approach for software system development. Recently, there has been
a proliferation of systems which are developed, deployed, and consumed in this
way. An important aspect of service centric systems is the identification of web
services that can be combined to fulfill the functionality and quality criteria of
the system being developed. In this paper we present the results of the evalua-
tion of a UML-based framework for service discovery. This framework sup-
ports the identification of services that can provide the functionality and satisfy
properties and constraints of service centric systems as specified during their
design. Our approach adopts an iterative design process allowing for the (re-)
formulation of the design models of service centric systems based on the dis-
covered services. A prototype tool has been developed and includes (a) a UML
integration module, which derives queries from behavioural and structural
UML design models and integrates the results of the queries; and (b) a query
execution engine, which performs queries against service registries based on
similarity analysis.

1 Introduction

Service centric systems (SCS) has been recognised as an important paradigm for
software system development in which service integrators, developers, and providers
need to create methods, tools, and techniques to support cost-effective development
and use of dependable services and service oriented applications. In the SCS para-
digm software systems are constructed based on the composition of autonomous web
services. Moreover, this paradigm centres on the creation, discovery, and composition
of autonomous services that can fulfil various functional and quality requirements.
Recently, software systems are being developed, deployed, and consumed in this way.
The emergence of important standards in the last years has enabled the SCS vision.
However, new processes, methods and tools are necessary to support the engineering
of complex and dependable SCS.

Our interest relies in the engineering of hybrid service centric systems, i.e. soft-
ware systems that are composed of services, but may also use legacy code or software
components when no services can be found to fulfil the requirements and functional-
ities of the system. To assist the engineering of hybrid SCS, we developed a

 UML-Based Service Discovery Framework 403

UML-based framework supporting service discovery. This framework allows the
identification of services that can provide the functionality and satisfy properties and
constraints of SCS specified during the design phase of the development life-cycle. It
also supports the design of SCS by allowing for the (re-)formulation and amendment
of the design models based on the services that have been discovered. Our framework
uses UML to specify structural and behavioural design models of an SCS being de-
veloped and includes two main components: (a) a UML 2.0 integration module, which
derives queries from UML design models and integrates back the results of the que-
ries, and (b) a query execution engine, which performs the queries against service reg-
istries. The execution of queries is based on a two-stage approach. In the first stage,
services that satisfy certain functional and quality criteria are located. In the second
stage, the similarity of these services against additional functional and quality discov-
ery criteria is assessed based on a similarity analysis algorithm [23].

The use of UML as a basis for our approach is due to several reasons: (a) UML is
the de facto standard for designing software systems and can effectively support the
design of SCS as it has been argued in [5][7][16]; (b) the use of services as well as
legacy code and software components in the system; and (c) the expressive power of
UML to represent the design models necessary in our approach and to specify queries
to identify the services.

Our framework addresses important challenges and requirements that have been
identified by industrial partners in the areas of telecommunications, automotive, and
software in an integrated European project on service centric systems engineering
(SeCSE [21]).

This paper focuses on the evaluation of our UML-based framework in terms of its
precision. This evaluation has been conducted by three users with substantial knowl-
edge in the areas of service centric engineering and object oriented modelling. In the
evaluation, a total of 48 query iterations with various level of complexity have been
performed in two different scenarios. These queries have been executed against a ser-
vice registry with 97 real services and a total of 1028 operations with different num-
bers of parameters, data types associated with the parameters, and complexity. The re-
sults of the evaluation are encouraging and well accepted by our industrial partners, as
described in the paper.

The remainder of this paper is structured as follows. In Section 2, we present an
overview of the UML-based framework. In Section 3, we describe the evaluation of
the framework and present the results of the experiments. In Section 4 we present
some related work. Finally, in Section 5, we conclude and discuss future work.

2 Overview of UML-Based Service Discovery Framework

The UML-based service discovery framework adopts an iterative process in which the
service discovery activity relies on the ongoing design of SCS and the available ser-
vices identified during this process can be used to amend and reformulate the design
models of the system. The reformulation of the design models may trigger new ser-
vice discovery iterations. The result of this iterative process is a complete specifica-
tion of the SCS structural and behavioural design models. In the framework, queries

404 A. Zisman and G. Spanoudakis

are derived from system design models and support the identification of services that
can subsequently be integrated into these models. The framework uses structural
(SySM) and behavioural (SyBM) models of SCS expressed in UML as sequence and
class diagrams, respectively.

Figure 1 shows an overview of the iterative process. The process starts from the
construction of initial system structural (SySM) and behavioural (SyBM) models by
the system designers. The SyBM model describes interactions between operations of
an SCS that can be provided by web services, legacy systems or software compo-
nents. The SySM model specifies the types of the parameters of the operations in
SyBM, and constraints for these operations and their parameters (e.g., variants, pre-
and post-conditions). When the result of the discovery process is not adequate, de-
signers may decide to reformulate their queries and run the process again. It is also
possible, that during the process the designers realise that parts of the system cannot
be fulfilled by available services. In this case, designers may alter the design of the
system to reflect the fact that the relevant part will be realised by existing legacy code
and components, or by the development of new software code. Designers may termi-
nate the process at any time or when further queries cannot discover services that
match the existing design models.

SySM/SyBM

Query Candidate Bindings

query specification /
extraction

binding re-integration

query execution

query reformulation

service / operation
selection

Fig. 1. Process overview

The interactions in SyBM and classes and interfaces in SySM are used to specify
queries which are used to identify candidate services and operations that can fulfil
parts of (or all) the functionality of the system. Designers may select some of the dis-
covered services and operations and bind them to the design models. This binding re-
sults in a reformulation of both the SyBM and the SySM models. The new versions of
these models may be used to specify further queries to discover other services that can
satisfy more elaborated functionality, properties, and constraints of the system. When
the results of the queries are not adequate, designers may reformulate their queries
and execute them again.

The UML-based framework is composed of two main components. The UML 2.0
integration module component is combined with a UML CASE tool and is responsi-
ble for (a) extracting queries specifying the service functionality, properties, and con-
straints from the design models, based on the designer’s selections, and (b) integrating
the discovered candidate services back into the design models. The query engine
component executes the queries by searching for services in different service regis-
tries. The search is based on a graph-matching algorithm [23] that computes similari-
ties between queries and service specifications. We assume that service specifications

 UML-Based Service Discovery Framework 405

are composed of parts, called facets, which describe different aspects of services. Fac-
ets include information stored in service registries based on standard UDDI and
ebXML technologies such as service interface specifications expressed in WSDL
[29], behavioural service specifications expressed as BPEL4WS [4] or OMML [8],
semantic service specifications expressed in OWL [19], WSMO [31], or WSML [30],
quality of service information, and other information types (e.g., textual description)
described in XML format.

Query Specification and Result. Queries are specified by system designers who se-
lect an interaction I from SyBM, create a copy of I called query interaction (I’), select
the messages in I’ that should be realised by operations of services to be discovered,
and specify various constraints on these operations or the interaction as a whole.

A query and its results are specified by using a UML 2.0 profile that we have de-
veloped. The profile defines a set of stereotypes for different types of UML elements
that may be found in (a) query interaction (e.g., messages), (b) results of query execu-
tion (e.g. messages, services), or (c) SySM model of a system that are referenced by
elements of the query interaction (e.g., operations, classes that define the types of the
arguments of interaction messages) or result parameters. The profile also contains
metamodels of the facets that may be used for specifying services. A query is repre-
sented as a UML package stereotyped as <<asd_query_package>>1. A detailed de-
scription of the profile can be found in [15].

The messages of the interaction may be stereotyped as: (i) query messages
<<asd_query_message>> that indicate the service operations that should be discov-
ered; (ii) context messages <<asd_context_message>> that imply additional con-
straints for the query messages (e.g. if a context message has a parameter p1 with the
same name as a parameter p2 of a query message, then the type of p1 should be taken
as the type of p2); and (iii) bound messages <<asd_bound_message>> that are bound
to concrete operations that have been discovered by executing the queries in previous
iterations. All the messages in a query interaction, which are not stereotyped by any
of the above stereotypes, are treated as unrelated messages in I'. These messages
should not restrict the services to be discovered in any way and do not play any role in
the query execution apart from being copied back to the results of a query execution.
The operations corresponding to the query messages are stereotyped as
<<asd_query_operation>>. The Profile also defines stereotype properties, which are
used to specify parameters and constraints for the elements to which the stereotypes
containing these properties are applied. Both <<asd_query_package>> and
<<asd_query_message>> stereotypes can specify query parameters.

Query parameters are used to limit the search space and the amount of information
returned by the query execution engine (e.g., the number of services to be returned),
and are specified as scalar values. Query constraints stereotyped as
<<asd_constraint>> provide specific selection criteria for choosing services based on
their various characteristics. The constraints may be formulated in terms of UML
metamodel or facets metamodel.

A constraint includes (a) a type (hard or soft), (b) an OCL [18] expression, and
(c) an optional weight if the constraint is soft (real value between 0.0 and 1.0). Hard

1 The stereotype names used in the profile have prefix “asd” indicating the name of the UML-

based framework in the SeCSE project (Architecture-driven Service Discovery-ASD).

406 A. Zisman and G. Spanoudakis

constraints must be satisfied by all the discovered services and operations. Soft con-
straints influence the identification of the best services/operations but may not be sat-
isfied by all the services/operations that are discovered. The use of OCL is motivated
by the fact that OCL is the standard formal language for specifying constraints for
UML models and, therefore, queries which are based on these models. Apart from
functional constraints, OCL expressions can be used to describe quality of service
constraints in our framework.

Following the specification of a query interaction, the framework generates a query
package that contains the context and query messages of the query, the classes that
define the types of the parameters of these messages, as well as other classes that may
be directly or indirectly referenced by these classes.

The result of a query identified by the query execution engine (see below) is also
specified by using the profile and is represented as a UML package stereotyped as
<<asd_results_package>>. The result package contains a refinement of the query in-
teraction used by the designer to create the query together with the structural model
for the elements in the interaction, and various UML service packages, for each can-
didate service identified by the query execution engine.

The service packages contain elements representing concrete discovered services
together with all data types used in the XSD schemas reversed engineered from the
WSDL specification of the services. The attributes and relationships of these data
types are represented as a class diagram. The operations in the service packages can
be bound, candidate, or uncharacterised. A bound operation signifies the service op-
eration with the best match to a query message. A candidate operation reflects another
possible result for the query message, but not necessarily the best match. The unchar-
acterised operations are other operations in the services WSDL specifications.

The framework allows the designer to analyse the results of a query and select can-
didate operations to become bound operations. After a particular service from the
returned candidates is selected, the structural model in the results package is auto-
matically updated with concrete data of the chosen service, and the interaction is
modified to reflect the binding of the services and operations. The result package can
be used as a basis for a new iteration.

Query Execution Engine. The query package is submitted to the query execution
engine to be processed. The execution of queries is a two-stage process. In the first
stage (filtering), the query execution engine searches service registries in order to
identify services with operations that satisfy the hard constraints of a query and
retrieves the specifications of such services. In the second stage (best operation
matching), the query execution engine searches through the services identified in the
filtering phase, to find operations that best match the soft constraints of the query.

Detection of the best possible matching between the operations required by a query
and the candidate service operations identified in the filtering stage is formulated as
an instance of the assignment problem following the approach proposed in [23]. More
specifically, an operation matching graph G is constructed with (a) two disjoint sets
of vertices: one set of vertices represent operations required by a query and another
set of vertices represent the service operations identified in the filtering stage; and (b)
edges that connect each of the operations in the query with all the operations of the
retrieved services, and vice versa. Each edge e(vi,vj) in graph G is weighted by a
measure that indicates the overall distance between vertices vi and vj. This measure

 UML-Based Service Discovery Framework 407

has a value between [0.0, 1.0] and is computed as the weighted sum of a set of partial
distances quantifying the semantic differences between vi and vj, with respect to each
facet F in the description of vi and vj.

Following the computation of the distances between the vertices, the matching be-
tween the operations in the query and the operations in the candidate services is de-
tected in two steps. In the first step, a subset S of the edges in graph G is selected,
such that S is a total morphing between the vertices in G and has the minimal distance
values (this subset is selected by applying an assignment problem algorithm [23])1. In
the second step, the subset S is restricted to include edges with distances that do not
exceed a certain threshold value.

The partial distances are computed based on functions that take into consideration
the distance of the signature of two operations. These functions account for the lin-
guistic distance of the names of the operations and distance between the set of input
and output parameters. The distance between the set of parameters is computed by
finding the best matching between the structures of the data types of these parameters.

The best matching is identified by comparing edges in the graphs representing
the structure of the data types of the input and output parameters. The graph of the in-
put and output parameters of an operation is constructed taking into consideration
both primitive data types and non-primitive data types. In the graph, the operation
name is represented as the root of the graph with immediate input_pi and output_po
children nodes, for each input and output parameter in the operation, respectively. The
data type associated with an input parameter or output parameter is added to the graph
as a child node of the respective input_Pi node or output_po node (datatype_pi and
datatype_po nodes). The name of the input and output parameters are represented in
the graph as the name of the edges between input_pi and datatype_pi, and ouput_po and
datatype_po. In the case of a data type datatype_i that is a non-primitive type, a sub-
graph for this data type is constructed such that each data type of the attributes in the
class representing datatype_i is added to the graph as a child of datatype_i with the
name of the attribute as the name of the respective edge. If the data type of an attrib-
ute is also non-primitive the process is repeated for this data type. The process termi-
nates when all the node edges of the graph has only primitive data types.

An example of graphs of parameter data types is shown in Figure 2 for a query op-
eration getBusinessInfo(business:Business):string (represented in white) and service
operation getStockDailyValueByValueXML(getstockdailyvalue:GetStockDailyValue):
string (represented in grey). In the figure, the dashed lines represent the matching of
edges of the input and output parameters in both operation graphs based on the simi-
larity of the names of the edges and their respective data types. For instance, edge ex-
change of complex type Stock is matched to edge strStockExchange in complex type
GetStockDailyValue.

The matching process can support modifications to the set of facets F for service
specifications. When new facets are added, the matching process can be extended by
incorporating partial distance functions for enabling operation comparisons with respect
to the new facets. A detailed description of the process with the distance functions is pre-
sented in [15].

1 When the number of operations is not the same between the query and candidate services,

special vertices are added in the graph representing dummy operations, in order to make the
number even.

408 A. Zisman and G. Spanoudakis

Fig. 2. Examples of data type graphs

3 Evaluation of UML-Based Service Discovery Framework

To evaluate our UML-based service discovery framework, we conducted a set of ex-
periments using descriptions of real services that were identified in the Internet and que-
ries that were constructed as part of two different design scenarios. The objectives of
these experiments were to: (i) evaluate the service discovery precision that can be
achieved using our framework, and (ii) investigate the effect of different factors on this
precision including the complexity of queries, the number of query messages, the use of
OCL constraints in them, the use of iterative queries incorporating context messages.

Precision was measured according to its standard definition in the information re-
trieval literature [6], i.e: Precisioni = | SO ∩ UOi| / |SO|, where SO is the set of ser-
vice operations returned for a query Q; UOi is the set of the retrieved operations for
query Q (SO) that a user i considered to be adequate candidate answers for the query
(i.e., relevant operations); and |X| is the cardinality of set X.

3.1 Experimental Set Up

Service Registry. In our experiments, we used a service registry containing descriptions
of 97 real services that were taken from various service providers including Across
Communications [1], Arc Web [3], ViaMichelin [26], WebServiceX [27], Woogle [28],
and Xignite [33]. Eighty two of these services were: (a) communication services (i.e.,
services that perform communication activities such as sending a fax, making a phone
call, sending a text message); (b) location services (e.g., services identifying points of in-
terest, verifying postal addresses, identifying best routes between locations); and (c)
business services (e.g.. services providing stock information and market news). The re-
maining 15 services in the registry were not related to any of the above categories. The
services in the registry had a total of 1028 operations of different complexity (see Section
3.2 below).

 UML-Based Service Discovery Framework 409

Queries. The queries used in our experiments were specified in reference to two SCS
design scenarios. The first scenario (AirportTrip) was concerned with the design of a
global positioning SCS offering its users various functionalities including: (i) identifica-
tion of certain locations and airports in different cities, (ii) identification of best route to
airports, (iii) checks for traffic problems in certain routes, (iv) displaying of maps, news
reports and weather forecasts, and (v) translation of news reports between different lan-
guages. The second scenario (BrokerInfo) was concerned with the design of SCS stock
purchasing system allowing users to: (a) purchase shares in different stock exchanges,
(b) get stock market news, (c) get information about different companies, (d) find pre-
sent and historical information about stocks, (e) get equity option information, (f) get in-
formation about exchange rates, and (g) send transaction documents by fax.

For each of the above scenarios we created a behavioural model (SyBM) of the in-
tended system interactions and a structural model (SySM) defining the data types used in
the behavioural model. These models can be found in [25]. Based on these models we
specified 24 different service discovery queries for each of the scenarios. These queries
were constructed in a way that ensured their variability with respect to four different
characteristics that were introduces to investigate whether different types of queries may
affect the precision of the results obtained for them and are described below.
(a) Query complexity: We used queries of low and medium-high complexity. The

complexity of a query was measured by the number of edges in the graph of the
data types of the parameters of the query messages in the query (see Section 2).
Based on this measure, low and medium-high complexity queries were defined as
queries that had query messages whose data type graphs had up to 10 edges and
more than 10 edges, respectively. The threshold distinguishing between the low
and medium-high complexity queries was identified by an analysis of the com-
plexity of the service operations in the registry. This analysis shown that 49%
of the service operations had data type graphs with less than 10 edges, 39% of
the service operations had data type graphs with 10 to 19 edges, and 12% of the
service operations had data type graphs with 20 or more edges. To have query
complexity categories representative of the complexity of the operations in the
registry, we set the threshold complexity value to 10 representing the median
complexity of the operations in the registry.

(b) Number of query messages: We used queries with one, two and three query mes-
sages.

(c) Existence or absence of context messages: We used queries with no context mes-
sages and queries with one context message.

(d) Existence or absence of OCL expressions: We used queries with no OCL constraints
and queries with one OCL constraint. The same type of OCL constraint was used for
all the queries of the latter type. This constraint was global and restricted the services
that should be returned by a query to be offered by a particular service provider (the
form of the constraint was self.description.Provider.contains(‘nameOfProvider’)).

Table 2 shows a summary of the different types of queries used in the experiment. The
numbers (1) to (24) in the cells of the table represent a different query type. A specific
query was created for each query type in each of the two scenarios. Furthermore, we set
the number of candidate service operations that should be returned for each query mes-
sage in a query to be three. This number was fixed to guarantee that precision would be
measured in a consistent way across all queries. The value three was selected as it

410 A. Zisman and G. Spanoudakis

Table 2. Different types of queries used in the experiment

 No Context Message With Context Message

#Query Msg 1 2 3 1 2 3
OCL N Y N Y N Y N Y N Y N Y

Low 1 2 5 6 9 10 13 14 17 18 21 22 Com-
plex-
ity

Med/High 3 4 7 8 11 12 15 16 19 20 23 24

was the average number of returned relevant service operations in a sample of queries
that we executed prior to the main experiment and, therefore, it would allow for the re-
trieval of all relevant operations in a query. The complete list of the queries used in the
experiment is presented in [25].

Users. In the experiments three different users indicate whether the operations discovered
by each query were relevant to the corresponding query message. These users had sub-
stantial knowledge in the areas of service centric engineering and object oriented model-
ling. Each user provided relevance assessments for all 48 queries executed across the
scenarios.

3.2 Experimental Results

Tables 3 and 4 show an overview of the precision that we observed in our experiments.
More specifically, Table 3 presents the average precision that was recorded for all the
queries executed for each of the scenarios and users, and the general precision across all
scenarios, queries and users. These results show that on average the precision of the ser-
vice discovery results for all users in all scenarios is 67%. Also the average measures
recorded for the different scenarios were not significantly different: 68% for AirportTrip
scenario, 67% for BrokerInfo scenario. Although some differences were observed for
the different users, there was no specific trend for the different scenarios.

Table 4 shows the precision for the different types of queries averaged across the dif-
ferent scenarios and users. As shown in the table (#Query Mes / Total AVG row), queries
with a larger number of query messages had slightly higher precision than queries with
fewer messages (precision ranged from 60% in queries with 1 message to 65.7% in que-
ries with 2 messages and 68.8% in queries with 3 messages). Also, we observed that que-
ries of low complexity had a lower precision than queries of medium/high complexity
(60.7% and 70%, respectively, as shown in row Complexity / Total AVG). Both these ob-
servations confirmed the expectation that as the specification of a query becomes more
elaborated (more query messages, messages with more complex data types), precision
improves as the models provide a basis for computing more fine-grain distance measures.
This trend, however, was not confirmed in the case of OCL constraints where queries
with no OCL constraints had higher precision than queries with OCL constraints (69.2%
and 60%, respectively as shown in row OCL / Total AVG). This was a consequence of
the form of the constraint used, which restricted results to services provided by a specific
provider and in some queries the required provider did not offer any service with opera-
tions relevant to the queries.

The detailed results of our experiments for each scenario and each user with the
distance measures of the operations can be found in tables presented in [25].

Our experiments have also demonstrated that the average distance of a discovered
service operation that is considered to be relevant to a query message is less than the

 UML-Based Service Discovery Framework 411

Table 3. Summary of precision results

Scenario User Average per User and Scenario
U1 0.71
U2 0.68

AirportTrip

U3 0.64

AVG: 0.68

U1 0.65
U2 0.65

BrokerInfo

U3 0.70

AVG: 0.67

Total Average 0.67

Table 4. Summary of precision results by query characteristics

 No Context Message
 No OCL With OCL
 1 2 3 AVG 1 2 3 AVG
Low Complexity 0.34 0.84 0.68 0.61 0.34 0.69 0.78 0.60
Med/High Complexity 0.84 0.72 0.81 0.79 0.84 0.47 0.57 0.62
Average 0.59 0.78 0.74 0.7 0.59 0.58 0.675 0.61
 With Context Message
 No OCL With OCL
 1 2 3 AVG 1 2 3 AVG
Low Complexity 0.44 0.86 0.76 0.68 0.44 0.69 0.48 0.54
Med/ High Complexity 0.78 0.5 0.74 0.67 0.78 0.67 0.70 0.72
Average 0.61 0.59 0.75 0.67 0.61 0.68 0.59 0.63

#Query Mes / Total AVG 1 0.600 2 0.657 3 0.688
Complexity / Total AVG Low 0.607 Med/High 0.700
OCL / Total AVG No OCL 0.692 With OCL 0.620
Context /Total AVG No Context 0.660 With Context 0.653

average distance of a discovered service operation that is considered not to be relevant
to a query message. Furthermore, the difference between these two average distances
is statistically significant. This is evident from Table 5 which shows the average dis-
tances between operations which were considered to be relevant and not relevant to a
query message. The average distances shown in this table have been calculated across
the different query scenarios for the individual users who participated in the experi-
ments. The table also shows the standard deviation of the distances of relevant and not
relevant operations to query messages and the number of observed cases.

The statistical significance of the difference between the average distance of rele-
vant service operations and query messages and the average distance between not rele-
vant service operations and query messages was checked using the t-test assuming
samples with non equal variances [24]. The values of the t-statistic that were calculated
for the three different users are also shown in Table 5 (row t-value) and demonstrate
that the probability of the difference in the average distances be incidental was almost
0. Thus, the differences in the averages can be considered as statistically significant (at
α=0.01). It should also be noted that the average distance of relevant operations to
query messages was less than the average distance of non-relevant operations to query
messages. These two observations demonstrate that the distance functions which un-
derpin the querying process implemented by the framework produce distance measures
which can differentiate between relevant and not relevant operations in a way that is
compliant with assessments provided by designers.

412 A. Zisman and G. Spanoudakis

Table 5. Average distances of relevant and irrelevant operations
g p

U1 U2 U3
Relevant
Ops

Not rele-
vant Ops

Relevant
Ops

Not relevant
Ops

Relevant
Ops

Not rele-
vant Ops

AVG
distance

0.1326 0.1660 0.1342 0.1655 0.1320 0.1687

Standard
deviation

0.0233 0.3567 0.0250 0.0383 0.0220 0.0402

observa-
tions

276 155 274 159 257 174

t-value 10.46 -9.225 -10.986
d-f 229 237 243

Overall, the average precision measured in our experiments (i.e., 67%) is an en-
couraging result. Our results are comparable to the results achieved in [32]. An
evaluation of the approach in [32] has shown precision measures between 42% and
62% for similarity analysis of names and types of parameters of service operations
(interface similarities). Furthermore, the UML-based framework is supposed to be
used in an interactive process in which the discovery activity relies on the ongoing
development of the design of an SCS and the available services identified during the
process can be used to amend and reformulate the design models of the system by the
SCS engineer. Thus, in our view a precision of 67% provides a good basis for obtain-
ing more precise results in subsequent discovery queries defined using amended and
more elaborated design models by SCS designers.

4 Related Work

Semantic matchmaking approaches have been proposed to support service discovery
based on logic reasoning of terminological concept relations represented on ontolo-
gies [2][10][12][14][17]. The METEOR-S [2] system adopts a constraint driven
service discovery approach in which queries are integrated into the composition proc-
ess of a SCS and represented as collections of tuples of features, weight, and con-
straints. In our approach, the queries contain information about features, weights,
constraints, and parts of the design models of the SCS being developed. In [10] the
discovery of services is addressed as a problem of matching queries specified as a
variant of Description Logic (DL). The work in [14] extends existing approaches by
supporting explicit and implicit semantic by using logic based, approximate matching,
and IR techniques. Our work differs from the above approaches since it supports the
discovery of services not only based on the linguistic distances of the query and ser-
vice operations and their input and output parameters, but also on the structure of the
data type graphs of these parameters. Moreover, our approach is not restrictive to re-
turn exact matches, but instead it returns a set of best matches for a request. These
best matches give the designer the opportunity to choose the most adequate service
and become more familiar with the available services and, therefore, design the
system based on this availability. Matching based on the structure of data types is im-
portant during the design phase of (hybrid) SCS since they specify the functionality
and constraints of the system being constructed during design phase.

Hausmann et al. [9] propose the use of graph transformation rules for specifying
both queries and services. The matching criteria in our work are more flexible and are

 UML-Based Service Discovery Framework 413

based on distance measures quantifying similarities between the graphs. Another ap-
proach that uses graph-matching is [11] although details of the matching algorithm
are not described. The approach in [13] focuses on interface queries where operation
signature checking is based on string matching and cannot account for changes in the
order or names of the parameters. In [8] the authors advocate the use of (abstract) be-
havioural models of service specifications in order to increase the precision of service
discovery process. Similarly, in [22], the authors propose to use service behaviour
signatures to improve service discovery. We plan to conduct new evaluations using
behavioural specifications, as proposed in [8].

Some specific query languages for web services have been proposed [20][34], al-
though they cannot be integrated with UML-based system engineering design process.
The use of UML to support SCS has been advocated in [5][7][16]. However, none of
these approaches combines service discovery as part of the UML-based design proc-
ess of SCS. When comparing to the existing discovery approaches, our UML-based
service discovery framework has demonstrated that UML can be used to support de-
sign of SCS and service discovery.

5 Conclusions

In this paper we have presented the results of the evaluation of a UML-based frame-
work to support service discovery in terms of its precision. Our UML-based frame-
work adopts an iterative design process for service centric systems (SCS) and allows
the (re-)formulation and amendment of design models of SCS based on discovered
services. The framework identifies services based on queries derived from UML be-
havioural and structural models of SCS. The results of our experiments have shown
that on average the precision of the UML-based framework is around 67%. The
experiments have also demonstrated that the average distance between relevant dis-
covered service operations and query messages was less than the average distance
between not relevant discovered service operations and query messages, and that the
difference between these average distances was statically significant. We are conduct-
ing new evaluations of our framework that take into consideration behavioural service
models and quality constraints.

Acknowledgements. The work reported in this paper has been funded by the Euro-
pean Commission under the Information Society Technologies Programme as part of
the project SeCSE (contract IST-511680).

References

[1] Across Communications, http://ws.acrosscommunications.com/
[2] Aggarwal R., Verma K., Miller J., Milnor W. “Constraint Driven Web Service Composi-

tion in METEOR-S”, IEEE Int. Conf. on Services Computing, 2004.
[3] Arc Web, http://www.esri.com/software/arcwebservices/
[4] BPEL4WS. “Business Process Execution Language for WS”, http://www.106.ibm.com/

developerworks/library/ws-bpel.
[5] Deubler M., Meisinger M., and Kruger I. "Modelling Crosscutting Services with UML

Sequence Diagrams", ACM/IEEE 8th International Conference on Model Driven Engi-
neering Languages and Systems, MoDELS 2005, Jamaica, October 2005.

414 A. Zisman and G. Spanoudakis

[6] Faloutsos C. and Oard D. “A Survey of Information Retrieval and Filtering Methods”,
Tech. Report CS-TR3514, Dept. of Computer Science, Univ. of Maryland, 1995.

[7] Gardner T., “UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS”, 2nd European Workshop on OO and Web Services (ecoop), 2004.

[8] Hall R.J. and Zisman A. “Behavioral Models as Service Descriptions”, 2nd Int.
Conference on Service Oriented Computing, ICSOC 2004, New York, November 2004.

[9] Hausmann, J. H., Heckel, R. and Lohmann, M., “Model-based Discovery of Web Ser-
vices”, IEEE International Conference on Web Services (ICWS’04), USA, 2004.

[10] Horrocks, I., Patel-Schneider, P.F. and van Harmelen, F. “From SHIQ and RDF to OWL:
The making of a Web ontology language”, J. of Web Semantics, 1(1), 7-26, 2003.

[11] Hoschek W. “The Web Service Discovery Architecture”, IEEE/ACM Supercomputing
Conf., Baltimore, USA, 2002.

[12] Keller U., Lara R., Lausen H., Polleres A., and Fensel D. “Automatic Location of
Services”, Proc. of 2nd European Semantic Web Conference (ESWC), Greece, 2005.

[13] Klein M. and Bernstein A. “Toward High-Precision Service Retrieval”. IEEE Internet
Computing, 30-36, January 2004.

[14] Klusch M., Fries B, and Sycara K. “Automated Semantic Web Service Discovery with
OWLS-MX”, 5th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS),
Japan, 2006

[15] Kozlenkov A., Spanoudakis G., Zisman A., Fasoulas V., and Sanchez F. “A Framework
for Architecture Driven Service Discovery”. International Workshop on Service Oriented
Software Engineering – IW-SOSE’06, in conjunction with ICSE’06, Shanghai, May
2006.

[16] Kramler G., Kapsammer E., Kappel G., and Retschitzegger W. "Towards Using UML 2
for Modelling Web Service Collaboration Protocols", Proc. Of the 1st Conference on In-
teroperability of Enterprise Software and Applications (INTEROP-ESA '05), 2005.

[17] Li L. and Horrock I. “A Software Framework for Matchmaking based on Semantic Web
Technology”, 12th Int. WWW Conference Workshop on E-Services and the Semantic
Web, 2003

[18] OCL. http://www.omg.org/docs/ptc/03-10-14.pdf
[19] OWL-S. http://www.daml.org/services/owl-s/1.0, 2003.
[20] Papazoglou M., Aiello M., Pistore M., Yang J. “XSRL: A Request Language for web ser-

vices” http://citeseer.ist.psu.edu/575968.html
[21] SeCSE, http://secse.eng.it/pls/secse/ecolnet.home.
[22] Shen, Z. and Su, J. “Web Service Discovery Based on Behavior Signature”. IEEE Inter-

national Conference on Services Computing, SCC 2005, USA, July 2005.
[23] Spanoudakis G, Constantopoulos P., “Elaborating Analogies from Conceptual Models”,

International Journal of Intelligent Systems, 11(11), pp917-974, 1996.
[24] Swinscow T.D.V., "Statistics at Square One", BMJ Publishing Group 1997,:

http://bmj.bmjjournals.com/collections/statsbk/index.shtml
[25] UML-based Framework.. http://www.soi.city.ac.uk/~zisman/ASD_Evaluation
[26] ViaMichelin, http://ws.viamichelin.com/wswebsite/gbr/jsp/prs/MaKeyFeatures.jsp
[27] WebServiceX, http://www.webservicex.net/WS/default.aspx
[28] Woogle, http://haydn.cs.washington.edu:8080/won/wonServlet
[29] WSDL. http://www.w3.org/TR/wsdl.
[30] WSML. http://www.wsmo.org/wsml/wsml-syntax
[31] WSMO.http://www.w3.org/Submission/2005/SUBM-WSMO-20050603.
[32] Wu J. and Wu Z. "Similarity-based Web Service Matchmaking". IEEE International Con-

ference on Services Computing, SCC 2005, USA, July 2005.
[33] Xignite, http://www.xignite.com/
[34] Yunyao L.Y., Yanh H., and Jagadish H. “NaLIX: an Interactive Natural Language Inter-

face for Querying XML”, SIGMOD 2005, Baltimore, June 2005.

BPEL-Unit: JUnit for BPEL Processes

Zhong Jie Li and Wei Sun

IBM China Research Lab, Beijing 100094, China
{lizhongj, weisun}@cn.ibm.com

Abstract. Thanks to unit test frameworks such as JUnit, unit testing
has become a common practice in object-oriented software development.
However, its application in business process programming is far from
prevalent. Business process unit testing treats an individual process as
the unit under test, and tests its internal logic thoroughly by isolating
it from the partner processes. This types of testing cannot be done by
current web service testing technologies that are black-box based. This
paper proposes an approach to unit testing of Business Process Execution
Language for Web services (BPEL4WS, or WS-BPEL as the new name),
and introduces a tool prototype named BPEL-Unit, which extends JU-
nit. The key idea of this approach is to transform process interaction via
web service invocations to class collaboration via method calls, and then
apply object-oriented test frameworks. BPEL-Unit provides the following
advantages: allow developers simulate partner processes easily, simplify
test case writing, speed test case execution, and enable automatic re-
gression testing. With BPEL-Unit, BPEL process unit testing can be
performed in a standardized, unified and efficient way.

1 Introduction

Over the last decade, businesses and governments have been giving increasing
attention to the description, automation, and management of business processes
using IT technologies. This interest grows out of the need to streamline business
operations, consolidate organizations, and save costs, reflecting the fact that the
process is the basic unit of business value within an organization.

The Business Process Execution Language for Web Services [1] (BPEL4WS,
or WS-BPEL as the new name, abbr. BPEL) is an example of business process
programming language for web service composition. Other languages include:
BPMN, WfXML, XPDL, XLANG, WSFL [2], etc. They all describe a business
process by composing web services. Generally speaking, a business process is
defined in terms of its interactions with partner processes. A partner process may
provide services to the process, require services from the process, or participate
in a two-way interaction with the process.

Mission-critical business solutions need comprehensive testing to ensure that
it performs correctly and reliably in production. However, in current industrial
practice, business process testing focuses on system and user acceptance testing,
whereas unit testing [3] has not gained much attention. This is strange, given the
fact that unit testing has been prevalent in object-oriented software development

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 415–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

416 Z.J. Li and W. Sun

[4]. We expect that business process, e.g. BPEL process, unit testing will draw
more attention along with the maturation and adoption of SOA and BPEL
specification. BPEL unit testing treats an individual BPEL process as the unit
under test, and tests its internal logic thoroughly.

Current web service testing methods and tools like [5][6] (open source) and
[7][8] (commercial) are not applicable to business process unit testing, as they are
black-box based, and only deal with simple request-response interaction patterns
between a web service and its client. [9] presents a BPEL unit test framework
that uses a proprietary approach, specially, a self-made test specification format
in xml and the associated test execution.

We show in this paper how to use, adapt and extend current object-oriented
unit test frameworks (specially, JUnit [10] and MockObjects [11]) to support
BPEL process unit testing. The key idea is to transform process interaction via
web service invocations to class collaboration via method calls, and then apply
object-oriented test framework and method. The proposed method has been
implemented in a tool prototype named BPEL-Unit, an extension of JUnit.

This paper is organized as follows. Section 2 introduces some preliminary
knowledge, including JUnit, MockObjects and a BPEL process example. Section
3 describes BPEL unit test method in an abstract view. Section 4 presents the
BPEL-Unit tool implementation in detail. Section 5 concludes the paper with
future work prediction.

2 Preliminaries

2.1 JUnit

JUnit is an open source Java testing framework used to write and run repeat-
able tests. Major JUnit features include: assertions for testing expected results,
test fixtures for sharing common test data, test suites for easily organizing and
running tests, graphical and textual test runners. For a quick tour, please go to
http://junit.sourceforge.net/doc/faq/faq.htm.

2.2 MockObjects

MockObjects is a generic unit testing framework that supports the test-first
development process. It is used to simulate the collaborator class or interface
dynamically in order to test a class in isolation from its real collaborators. A
mock implementation of an interface or class mimics the external behavior of a
true implementation. It also observes how other objects interact with its methods
and compares actual behavior with preset expectations. Any discrepancy will be
reported by the mock implementation. EasyMock [12] is a specific MockObjects
implementation that is adopted in BPEL-Unit.

2.3 Example BPEL Process

Through this paper, we’ll use the purchase process in the BPEL specification as
the running example. It is shown graphically in Figure 1.

BPEL-Unit: JUnit for BPEL Processes 417

Fig. 1. Purchase process example

The purchase process runs as follows. On receiving a purchase order from
a customer (sendPurchaseOrder), the process communicates with three part-
ner processes - ShippingProvider, InvoiceProvider and SchedulingProvider - to
carry out the work. It initiates three tasks concurrently: requesting for shipment
(requestShipping), calculating the price for the order (initiatePriceCalculation),
and scheduling the production and shipment for the order (requestProduction-
Scheduling). While some of the processing can proceed concurrently, there are
control and data dependencies between the three tasks. In particular, the ship-
ping price is required to finalize the price calculation (as is indicated by the link
between requestShipping and sendShippingPrice), and the shipping date is re-
quired for the complete fulfillment schedule (as is indicated by the link between
sendSchedule and sendShippingSchedule). When the three tasks are completed,
invoice processing can proceed and the invoice is sent to the customer (reply).

Fig. 2. Service contract between the purchase process and its partners

418 Z.J. Li and W. Sun

Interfaces that are provided by the purchase process and its partner processes
are defined in WSDL documents as a set of portType definitions. They are visu-
alized in Figure 2. The purchase process provides three interfaces: Purchasing,
ShippingCallback and InvoiceCallback, each with one operation. Each partner
process - Ship, Invoice and Schedule - provides one interface: ShippingService,
ComputePriceService and SchedulingService, respectively.

3 BPEL Unit Test Method

A BPEL process could interact with several partner processes (partners, for
short), which in turn interact with other partners, resulting in a network of
processes. Figure 3a only shows a process and its direct neighbors. The Process
Under Test is abbreviated as PUT, and its Partner Process is abbreviated as
PP. A partner may be a simple stateless web service, or a complex process that
choreographs several web services / processes and exposes one or several web
service interfaces to the caller process. Treating a partner as a generic process
makes the method applicable for general cases.

Fig. 3. Process composition model and test methods

A conversational relationship between two processes is defined in a partner
link. Each partner link defines up to two role names and lists the web service
interfaces that each role provides to the other in this conversation. Thus we use
arrow lines to connect two processes, indicating the service invocation from the
consumer to the provider. Note that the arrow lines do not specify the type of
the web service operations, which may either be 1-way or 2-way. For the present,
let’s ignore the circled numbers beside the arrow lines.

Figure 3b shows a basic unit test method for the process composition model in
Figure 3. A Test Process (TPi, i=1,2,3) is used to simulate the behavior of each

BPEL-Unit: JUnit for BPEL Processes 419

Partner Process (PPi). A variation of this method is used in [3] and implemented
in a tool prototype named B2B, where test processes are specified in BPEL and
executed in a BPEL engine.

Comparatively, this paper uses a different variation of the basic test method
as shown in Figure 3c, wherein test processes are simulated by mock objects in
Java code and executed in any Java runtime. In this method, each test process
(TPi) only describes one direction of interactions - service invocation from the
PUT to its partners. This fact can be seen from the direction of the arrow lines
between the PUT and TPi. The other direction of invocation - service invocation
from the partner processes to the PUT - is delegated to a Service Proxy. Thus
the invocations of PUT services that are originally made in partner processes are
now made in the Service Proxy to execute in testing. This decision is made based
on the fact that a mock object can only specify how its methods are invoked,
but not how it calls other methods. There is a special test process named TP0,
which describes the expected service invocations into the PUT and its expected
responses. The requests and responses are used by the service proxy to actually
invoke PUT services and verify the actual responses. In addition, the dashed lines
between test processes indicate activity synchronization between test processes.
This will be explained in more detail later.

4 BPEL-Unit Implementation

The implementation of BPEL-Unit is centered around the following idea: trans-
form process interaction using web service invocations to class collaboration
using method calls, then apply object-oriented testing techniques.

Web service definitions are described in WSDL files and optionally XSD files.
The structure of a typical WSDL file is shown in Figure 4 which contains the
following elements: type, message, portType, binding, and service. The portType
groups a set of operations that can be invoked by a service requester, type
and message definitions provide the data model of the operation. Binding gives
protocol and data format specification for a particular portType, and service
declares the addressing information associated with defined bindings.

Figure 4 also shows the implementation details: how to map web service ele-
ments to Java equivalents, how to simulate partner interfaces with mock objects,
how to use partner stubs to connect the PUT to the simulated partners, and how
to write the test logic inside mock objects based on the PUT behavior. Each is
described in a separate section below.

4.1 Web Service to Java Interface Mapping

For the purpose of writing Java tests, firstly the WSDL elements should be
mapped to Java language equivalents. Specially, each web service interface de-
finition of the involved processes is mapped to a Java interface definition. As
Figure 4 shows, this consists of two parts: a web service interface (denoted as
A) maps to a Java interface (denoted as C); and web service types and messages

420 Z.J. Li and W. Sun

E

F

G

Fig. 4. Method details

map to Java data type classes. Java data type classes will be used to define test
data. A Java interface will be used to generate a mock object (or simply called
mock, denoted as E) of the interface, and a partner stub of the interface (de-
noted as F, introduced later). Each WSDL operation (denoted as B) will have a
correspondent Java method (denoted as D).

The following code snippet illustrates the mapping between the ShippingSer-
vice portType of the purchase process example and a Java interface.

<portType name="ShippingService">
<operation name="requestShipping">

<input message="wsdl:ShippingRequest"/>
<output message="wsdl:ShippingInfo"/>
<fault message="wsdl:ShippingFault" name="fault"/>

</operation>
</portType>
-->
public interface ShippingService {

public ShippingInfo requestShipping(ShippingRequest
shippingRequest) throws java.lang.Exception;

}

4.2 Mock Objects

With a mapped Java interface (denoted as C in Figure 4), a mock implementation
(a mock control and a mock object, denoted as E in Figure 4) can be created to
simulate that interface, as exemplified in Section 2.2.

Each portType (defining a web service interface) of the PUT and its partner
processes has a mock implementation. Therefore, a process may correspond to
several mock objects, one for each portType. For the purchase process example,
there will be six mock objects: three for the purchase order process (Purchasing,
InvoiceCallback and ShippingCallback), one for each partner process - Ship-
pingService, ComputePriceService and SchedulingService.

BPEL-Unit: JUnit for BPEL Processes 421

A mock object for a process sets the expected invocations on the process
as well as the return values, and verifies at runtime that the expected invoca-
tions occur with the correct parameters. For example, say that mockShip is the
mock object of ShippingService, we use mockShip.requestShipping(shipRequest)
to set the expectation of the invocation of requestShipping with a parameter
shipRequest, and use setReturnValue(“ShippingService”, shipInfo) to set the re-
turn value shipInfo of the invocation. Therefore, a mock object simulates the
services provided by a non-existent partner process. The mock objects for part-
ner processes will be called by the PUT at run time by relay of partner stubs.

However, mock objects for the PUT are handled differently. We use mock
objects for the PUT not to simulate its behavior, but to tell the service proxy
to make an invocation to the PUT and then check if the return value of the
invocation is correct. Let’s see the following example. mockPurchasing is the
mock object of the PUT Purchasing interface. The first statement tells the service
proxy that it should invoke the sendPurchaseOrder operation with the specified
parameters, and the second statement tells the service proxy to check that the
PUT should return invoice as the response.

mockPurchasing.sendPurchaseOrder(po, customerInfo);
setReturnValue("Purchasing", invoice);

The service proxy does so on behalf of the relevant partner process which
makes the invocation originally, because the MockObjects framework does not
allow specifying outgoing call behavior in a mock object. The service proxy also
invokes the mock object when it invokes the PUT. This is a unified way of ex-
pressing test logic, allowing all the interactions to be verified by the MockObjects
built-in verification function, no matter it is from the PUT to a partner process
or reverse. Nevertheless, this may bring in some confusion on the semantics of
mock objects. A simple cure for this problem is to treat the PUT as nonexistent
process too in writing test cases.

4.3 Partner Stubs

In a process execution, how to interact with a service, and the address of that
service are described in the WSDL binding and service elements. The original
WSDL binding and service definitions of a partner process may be varied: SOAP,
JMS, EJB, etc. For unit testing, all the partner processes will be simulated as
local services implemented in Java. So we should define test-specific WSDL Java
binding and service endpoints.

In testing, each service endpoint of a partner process should be a Java class. As
we know, mock objects are dynamically created Java artifacts and cannot serve
this purpose. So we decide to define a separate stub Java class for each web ser-
vice interface and name it “partner stub”. A partner stub class (denoted as F in
Figure 4) implements an interface (C). The implementation of each method (D)
in a stub class is simple: it dynamically gets the mock object (E) that simulates

422 Z.J. Li and W. Sun

the service and calls the mock object’s correspondent method (D), collects the
return value (if not void) and returns that value. In this way, the partner stub
is essentially a simple wrapper of the real service provider implementation in
mock (E), and doesn’t contain any test logic. The exact behavior of the mock
objects can be defined dynamically in test cases. The partner stubs are stateless
and independent of test behaviors, and can be automatically generated. For the
purchase process example, the ShippingServiceStub is shown below.

public class ShippingServiceStub implements ShippingService{
public ShippingInfo requestShipping(ShippingRequest
shippingRequest) {
ShippingService service = MockUtil.getMockObject("ShippingService");
ShippingInfo result = service.requestShipping(shippingRequest);
return result; }

}

The address of the partner stubs will be referenced in the correspondent
WSDL service endpoint definition so that the invocation of a web service op-
eration (B) will go to the correct method (D) of a correct partner stub (F).
In this way, a partner stub and its associated mock object collectively imple-
ment a simulated partner process. For the purchase process example and the
ShippingServiceStub, the service endpoint information is shown below.

<service name="ShippingServiceJavaService">
<port binding="ShippingServiceJavaBinding" name="ShippingServiceJavaPort">

<java:address className="ShippingServiceStub"/>
</port>
</service>

The java:address specifies that ShippingServiceStub is the service endpoint.
Note that this binding and service information should replace the original one
in deploying the process under test to test it. Therefore, these artifacts should
be taken as part of the test resource and thus managed as such in the project.

This is different from current use of stub processes in that stub processes
contain the real test logic, and are connected to the process under test directly,
so that we have to write and maintain a lot of stub processes, redeploy and restart
the processes for each test scenario. Through a separation of responsibilities onto
a partner stub and a mock object, only one partner stub is needed, and also
dynamic changing of test logic without redeploying and restarting is supported.

4.4 Test Logic Specification

Test logic specifies the behavior of the process under test and the simulated
partner processes. As aforementioned, test logic will be written in the mock
objects that simulate the partner processes.

The first question is where to get the behavior of each partner process. The
answer is the process under test. It may have many execution scenarios that

BPEL-Unit: JUnit for BPEL Processes 423

are resulted from different decision-making in the control flow. Each of these
execution scenarios consists of a set of activities, which are either internal or
external. The external activities are those related to service invocation, includ-
ing invoke, receive, reply and so on. These external activities form a service
invocation sequence, which can be used as a test scenario. From a test scenario,
interactions with different partners can be separated and used to specify the
partner behaviors in mock objects.

Then in a test case, in each mock object of a partner, we record a sequence
of calls that the correspondent partner process is expected to receive from the
PUT, and prescribe the return values. If the PUT makes a wrong invocation at
runtime (including method call with wrong parameters, wrong call numbers or
sequencing), the verification mechanism of MockObjects will report the error.

Concurrency and synchronization. In a BPEL process, the service compo-
sition follows certain sequencing, which is expressed using programming con-
trol structures. BPEL defines the following control structures among others:
sequence, flow, while and switch. A flow construct creates a set of concurrent ac-
tivities directly nested within it. It further enables expression of synchronization
dependencies between activities that are nested within it using link.

Therefore, in test processes that simulate real processes, we need similar con-
trol structures to express the original activity ordering constraints. Note that
complex test logic is not encouraged in unit testing, whereas fast-written, simple,
correct, and easy to read/maintain test logic is favored. Applying this principle
in BPEL unit testing, a piece of test logic should simply describes an execu-
tion path of the PUT; complex behaviors like branching should be avoided as
far as possible. However, concurrency and synchronization is a common kind of
ordering constraints put on an execution path, so it’s unavoidable and must be
supported in test behavior description. In Figure 3c, activity synchronization is
denoted by dashed lines. It only shows synchronization dependencies between
test processes. Actually, the synchronization can also occur inside a test process.
Figure 5 shows both cases. Figure 5a specifies: op1, op3, op6 are concurrent ac-
tivities; op1 must be invoked before op4; op5 must be invoked after op2 and op4.
Figure 5b specifies: op1 must be invoked before op5; otherwise is a violation.

With such synchronization capabilities provided, the service interaction or-
dering indicated in Figure 3a is supported in the test logic as Figure 3c shows.
For example, the logic “firstly a PUT service is invoked, then a TP3 service is
invoked” could be supported.

Test logic support in MockObjects implementations. Usually a MockOb-
jects implementation provides some flexible behavior description and verification
mechanism. For example, EasyMock has three types of MockControl. The nor-
mal one will not check the order of expected method calls. Another strict one will
check the order of expected method calls. For these two types, an unexpected
method call on the mock object will lead to an AssertionFailedError. The re-
maining nice one is a more loose version of the normal one, it will not check the

424 Z.J. Li and W. Sun

Fig. 5. Activity synchronization

order of expected method calls, and an unexpected method call will return an
empty value (0, null, false).

These preset and special MockControl types could be used to express two
basic types of control logic / method call ordering: sequence and random (un-
ordered). Take the purchase process as an example. If we want to ensure that
several service invocations from the PUT to another process occur in the right
sequential order as specified, the strict MockControl could be used to create the
mock implementation of that process. Besides sequence and random, there is
generic control logic such as alternative (switch), timer operations (start, can-
cel, timeout), and concurrency that probably haven’t been supported by existing
MockObjects implementations. Ideally, the testing of business processes requires
the MockObjects implementation to support generic control logic. Practically,
the MockObjects implementation should support the concurrency and synchro-
nization logic described previously.

For this purpose, extension to current MockObjects implementation may be
necessary. For example, a possible extension is to allow testers specify a succes-
sive relation on several methods, say, by an API syncMethods(m1, m2, . . .) that
specifies the occurrence order of the methods m1, m2, etc. This extension has
been implemented on EasyMock in BPEL-Unit.

Then for inner-process concurrency and synchronization shown in Figure 5a,
the logic could be expressed as follows: use normal MockControl to create the
mock implementation so that the method calls will be unordered, then the or-
dering constraints are expressed by the syncMethods() API like this: syncMeth-
ods(op1, op2, op5); syncMethods(op3, op4, op5); syncMethods(op1, op4).

For inter-process concurrency and synchronization shown in Figure 5b, the
logic could be expressed as follows: use strict MockControl to create the mock
implementations for TP1 and TP2 so that the method calls on each mock object
will be checked for their correct ordering, e.g. op1 before op2 before op3, then
use syncMethods(op1, op5) to designate the synchronization between TP1 and
TP2. Note that different mock objects are independently invoked at run time so
their behaviors are pure concurrent unless explicit synchronization is specified.

BPEL-Unit: JUnit for BPEL Processes 425

4.5 BUTestCase

BUTestCase extends JUnit TestCase class. It is implemented to add business
process testing specific APIs and override JUnit APIs to facilitate business
process unit test case design. For example, the tearDown() method is overrode
to include MockObjects verification logic. For each test method of a test case,
tearDown() will be automatically called after the test method is run, thus saving
the tester’s effort to write verification logic in each test method.

The code below shows a test case for the example purchase process, named
PurchaseTest, which extends BUTestCase. In the test case, firstly variables for
mock objects and test data objects are declared. Then the variables are initial-
ized in the setUp() method. There can be many test methods defined in a test
case, one for each test scenario. The example test method testNormal() checks
a complete execution of the purchase process: from the submission of a pur-
chase order to the reply of an invoice. In this method, firstly we set the process
input and predict the output. Note that mockPurchasing is a mock object of
the PUT. The sendPurchaseOrder() operation tells the service proxy to start
the process, and the invoice specified in setReturnValue() is used to verify the
response of the PUT. Then mockShip, mockPrice and mockSchedule object will
receive method calls in parallel. If the method has a return, the return value
is set using the setReturnValue() method. Finally, the possible synchronization
relationship between activities are expressed using the syncMethods() API.

public class PurchaseTest extends BUTestCase {
// variables for mock objects and data objects
public void setUp() {

// get mock objects & read Process Data Objects
}
public void testNormal() throws Exception {

// Process Input/Output
mockPurchasing.sendPurchaseOrder(po, customerInfo);
setReturnValue("Purchasing", invoice);
// Interaction with Shipping Provider
mockShip.requestShipping(shipRequest);
setReturnValue("ShippingService", shipInfo);
mockShipCallBack.sendSchedule(scheduleInfo);
//Interaction with Invoice Provider
mockPrice.initiatePriceCalculation(po, customerInfo);
mockPrice.sendShippingPrice(shipInfo);
mockInvoiceCallBack.sendInvoice(invoice);
// Interaction with Scheduling Provider
mockSchedule.requestProductionScheduling(po, customerInfo);
mockSchedule.sendShippingSchedule(scheduleInfo);
// Synchronization
MethodSynchronizer.syncMethods(new String[] {

"ShippingService.requestShipping(ShippingRequest)",
"ShippingCallback.sendSchedule(ScheduleInfo)" });

...}
}

426 Z.J. Li and W. Sun

5 Conclusion and Future Works

With the increasing attention to business processes in the e-business age, busi-
ness process testing is becoming more and more important. Lack of unit test
tools has resulted in inefficient practices in developing, testing and debugging
of automated business processes, e.g. BPEL processes. To address this problem,
this paper proposed a BPEL test framework - BPEL-Unit that extends JUnit.

BPEL-Unit has several advantages in supporting BPEL process unit testing.

1. Does not rely on the availability of partner processes. BPEL-Unit provides
an easy way to simulate partner processes using mock objects. Thus a single
process can be easily tested in isolation.

2. Simplify test case writing. Most developers are already familiar with the JU-
nit test framework. BPEL-Unit allows process interaction to be programmed
in object-oriented flavor. With this tool, developers will no longer be con-
cerned with XML document manipulation, interface, binding and service
details in testing.

3. Speed test execution. BPEL-Unit allows “one-deploy, multiple tests”. The
process under test is deployed only once to run all the test cases associated
with this process. This is compared to those methods using stub processes
to simulate the partner processes, in which any modification of the stub
processes mandates the process redeployment and server restart.

4. Enable automatic regression testing. Process testing is automated by encap-
sulating all the required test logic and data in formal JUnit test cases. Each
time the process under test is modified, its test cases can be re-run (after
possible modification) to detect potential function break due to modification.

Currently, we are working on automatic unit test case generation for BPEL
processes, which includes searching various execution scenarios, and giving proper
test data to enable the execution scenario. The generated BPEL tests can be con-
cretized into BUTestCase format and run in BPEL-Unit.

References

1. http://www.ibm.com/developerworks/library/ws-bpel
2. Process Markup Languages. http://www.ebpml.org/status.htm
3. Z. J. Li, W. Sun, Z. B. Jiang, and X. Zhang. Bpel4ws unit testing: framework and

implementation. ICWS2005, volume 1, pages 103 C 110, 11-15 July 2005.
4. Test Driven Development. http://www.testdriven.com
5. WS-Unit. The Web Service Testing Tool. https://wsunit.dev.java.net/
6. ANTEater. Ant based functional testing. http://aft.sourceforge.net/
7. WebServiceTester. http://www.optimyz.com
8. SOAPtest. http://www.parasoft.com/soaptest
9. Philip Mayer and Daniel Lubke. Towards a BPEL unit testing framework. TAV-

WEB’06, Pages: 33-42.
10. JUnit. http://www.junit.org
11. MockObjects. http://www.mockobjects.com
12. EasyMock Projects.

http://www.easymock.org/EasyMock1 2 Java1 3 Documentation.html

A User Driven Policy Selection Model

Mariagrazia Fugini, Pierluigi Plebani, and Filippo Ramoni

Politecnico di Milano, Dipartimento di Elettronica e Informazione
{fugini, plebani, ramoni}@elet.polimi.it

Abstract. This paper introduces a model for expressing quality accord-
ing to both applications and human users perspectives. Such a model,
compliant with the WS-Policy framework, not only mediates between
the application and human user perspectives, but is also capable of con-
sidering the different importance that the user can assign to a quality
dimension. In addition, the paper introduces a policy selection model
based on the adopted quality model. So a human user expresses its re-
quirements according to a high level language and such requirements are
matched against a lower level service quality specification.

1 Introduction

Web service selection plays a crucial role in Service Oriented Computing, since
it is responsible for identifying which is the best Web service among a set of
available Web services with respect to the user needs. It is worth noting that
service selection can be performed by two kind of users: applications and hu-
man being with different perspectives. For example, technical parameters such
as throughput, bandwidth, latency, framerate could be comprehensible by ap-
plications and developers but not by final users: the latter have not skills to
define the quality by technical parameter but they need a set of higher level
dimensions such as video quality and audio quality defined according to discrete
scales such as, for instance, good, average, and worst. The aim of this paper is
twofold. On one hand, it introduces a model for expressing the quality of service
according to both applications and human users perspectives, also considering
the different importance that the user can assign to a given quality dimension.
On the other hand, the paper introduces a policy selection model based on the
adopted quality model. According to this selection model, a human user can
express its requirements according to a high level language and such require-
ments are matched against to the Web service quality specification expressed
through a more technical language. Both models are based on AHP (Analytical
Hierarchical Process) developed by T.L. Saaty [6].

2 Quality Dimension Model

In the literature 1 several quality models have been proposed. In our opinion they
are able to express the non-functional properties of a service, but they do not
1 see http://www.cs.uni-magdeburg.de/∼ rud/wsqos-links.html

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 427–433, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

428 M. Fugini, P. Plebani, and F. Ramoni

deal with the difference between user and service perspective. In the same way,
not all the quality dimensions have the same importance and such importance
depends on both the application domain and the service users.

The quality of Web service model we propose in this work aims at dealing with
this aspect and it is based on three main elements: a quality dimension model,
a quality of Web service definition model, and a quality evaluation model.

A quality dimension, also known as quality parameter, is a non-functional
aspect related to an entity that we are describing. Thus, the quality dimension
is close to the application domain we are taking into account and it can be
directly measured or estimated starting from other dimensions. We identify two
classes of quality dimensions, namely, primitive and derived. A primitive quality
dimensions (pqd hereafter) is a directly measurable quality dimension and it is
defined as follows:

pqd =< name, values > (1)

– name: uniquely identifies the quality dimension (e.g., framerate, bandwidth).
– values: defines the domain of values of the dimension. The domain can be

either continue (e.g., 0..100) or discrete (e.g., high, medium, low).

On the other hand, a derived quality dimension (dqd hereafter) is not directly
measurable but it depends on other quality dimensions:

dqd =< name, f(pqdi, dqdj) > i = 0..n, j = 0..m (2)

– name: uniquely identifies the quality dimension.
– f(pqdi, dqdj): the dependency function stating the influence of other quality

sub-dimension (both pqd or dqd). The nature of the function may vary from
a simple expression to a composite function.

2.1 Quality of Web Service Definition Model

Quality of Web service can be defined as the set of quality dimensions which
express the non-functional aspects of a Web service. Due to the strong depen-
dency of a quality dimension of the considered application domain, in our quality
model we include an actor called quality designer that is in charge of collecting
and organizing the relevant quality dimensions. Since the quality designer is a
domain expert, he is also able to state if a quality dimension is primitive or
derived. As stated above a dqd depends on both pqds and dqds, thus the work
of the quality designer results in a tree named quality tree (QT) (see Figure 1):

QT = < dqdQoS , tree nodek > k = 1..p (3)
tree node = [< pqd > | < dqd, v(pqdi, dqdj), w(pqdi, dqdj) >]

i ≤ n, j ≤ m, domain(fdqd) ⊇ domain(g) = domain(w)

A QT refers to a given application domain and it includes and organizes all
the relevant quality dimensions identified by the quality designer. Given a class

A User Driven Policy Selection Model 429

Quality of
Service

Video
Quality

Sound
Quality

PriceResolution Framerate Colordepth Encoding Sampling

0.150 0.785 0.065 0.250 0.750

0.480 0.115

0.405
High = res >= 1024x768;
 fr>20;cd>8
Low = res<1024x768;
 fr >= 20;cd <= 8

High: ENC = ALAC, SAM > 128
Medium: ENC = WMA,
 64 <= SAM <= 128
Low: ENC = MP3, SAM < 64

320x320 0.058
800x600 0.207
1024x768 0.735

[10-20] 0.060
[20-25] 0.352
[26-30] 0.586

8 0.041
16 0.155
24 0.396
32 0.406

MP3 0.2
WMA 0.2
ALAC 0.6

[64-128] 0.3
[128-192] 0.7

[0 – 3] 0.75
(3 – 10] 0.25

videoqualityV (res,fr, cd) soundqualityV (enc, sam)

evaluation
functions

pqd

dqd

Fig. 1. Quality tree for video-on-demand Web services

of Web services (e.g.: video-on-demand, flight booking), both service providers
and users will rely on the related QT tree to describe the offered and desired
quality. So, the tree offers a common knowledge for reasoning about quality.

About the structure of a QT, the root is a dqd named QoS, leaves refers
to pqds, and internal nodes are dqds. The function v(pqdi, dqdj) derives from
f(pqdi, dqdj) and returns the value of a dqd with respect to the quality dimen-
sions which the dqd depends on. The domain of f might contain the domain of
v since the quality designer can decide to include in the quality tree only some
of the dependent quality dimensions which usually define a given dqd.

In addition to the function v, a tree node is also specified by a weigth function
w expressing the importance of the quality dimensions which the dqd depends on:
the higher the weight value, the higher the importance of the quality dimension.
The weight assignment is a quite critical activity and we decide to adopt the
AHP (Analytic Hierarchy Process) approach, developed by T.L. Saaty [6], to
perform such an activity. This is a decision-making technique that assigns to
each sub-dimension a score that represents the overall performance with respect
to the different parameters. AHP is suitable for hierarchical structure as QT and
proposes to user some pairwise comparisons between sub-dimensions.

According to this approach, given a dqd the quality designer should fill tables
like the one shown in Table 1. The first column and the first row are populated
with the name of the sub-dimensions influencing the given dqd. For each cell,
the quality designer assigns a number in [19 ..9] range according to the meaning
defined in Table 2 which is the usually adopted one in AHP. About our example,
the eigenvector of the matrix in Table 1 is {0.150; 0.785; 0.065}. This motivates
the values reported in QT of Figure 1.

2.2 Quality Evaluation Model

In some case, e.g., bandwidth, lower value means lower quality; in some other
cases, e.g., latency, higher value means lower quality. For this reason, nearby
the QT, the quality designer also defines, for each quality dimensions in QT, an
evaluation function which captures the quality trend with respect to the quality
dimension value.

430 M. Fugini, P. Plebani, and F. Ramoni

Table 1. Comparison Matrix
for VideoQuality dimension

Res FR CD
Resolution 1 1

7 3
Framerate 7 1 9
ColorDepth 1

3
1
9 1

Table 2. The Saaty Pairwise Combination
Scale

aij Definition
1 Equal importance
3 Moderate importance
5 Essential or strong importance
7 Demonstrated importance
9 Extreme importance

2, 4, 6, 8 Intermediate values (compromise)

The evaluation function has different forms with respect to the kind of quality
dimension. In case of pqd, the evaluation function – epqd(values) – is a punctual
function required to state how a quality value is close or far to the best quality
value. Such values can be obtained exploiting the AHP approach.

In case of dqd, the evaluation function – epqd(QT, pqdi, dqdj) – is a linear
combination of the quality dimensions which influence such a dqd according to
the considered QT (i.e., domain(e) = domain(vpqd)). In particular, since the
influencing quality dimensions can be both primitive or derived, the evaluation
function of a dqd will be:

edqd(QT, pqdi, dqdj) =
∑

i=0..n

epqd(pqdi.values) ∗ w(pqdi) + (4)

+
∑

j=0..m

edqd(QT, domain(gdqdi)) ∗ w(dqdi)

2.3 Policy Model

A policy is a document stating the requirements or the offering of a Web service.
Following the quality dimension model, a policy document collects a set of rele-
vant quality dimensions included in a QT and defines the admissible values for
each of them. According to WS-Policy specification and the model introduced
in [5], a policy P can be defined by a set of mutually exclusive alternatives A:

P (QT) =
⊕

k=1..l

Ak(QT) (5)

where an alternative A is defined as a set of assertions a:

Ak(QT) =
∧

pqdi∈QT

a(pqdi) (6)

An assertion a(pqd) is a specialization of a quality dimension with a restricted
admissible value set, i.e., a(pqd) =< pqd.name, values ⊆ pqd.values >.

At the provider side, we have a service policy document SP (QT) (SP here-
after) which specifies the quality of service with respect to several configurations,
i.e. alternatives. At user side we have both a user policy document UP (QT) and
the user quality tree (UQT), a version of QT customized by the user.

A User Driven Policy Selection Model 431

Service Policy (SP)
A1: Res = [800x600;1024x768]
 Fr = [10...30]
 Cd = [16..24]
 Price = [0..3]
 Enc = [MP3, WMA]
 Sam = [64-192]
A2: Res = [800x600;1024x768]
 Fr = [20...30]
 Cd = [16..32]
 Price = [0..1]
 Enc = [MP3, WMA]
 Sam = [128-192]

User Policy (UP)
A1: Res = [800x600;1024x768]
 Fr = [20...25]
 Cd = [16..24] (mandatory)
 Price = [1-2]
 SoundQ = medium

User Policy (UP)
A1: Res = [800x600;1024x768]
 Fr = [20...25]
 Cd = [16..24] (mandatory)
 Price = [1-2]
 Enc = WMA
 Sam = [64..128]

Satisfiability
evaluation

Matched Policy (MP)
A1: Res = [800x600;1024x768]
 Fr = [20...25]
 Cd = [16..24]
 Price = [0..3]
 ENC = WMA
 Sam = [64..128]

e_qosA1 = 0.903

(0.207*0.150+0.352*0.785+0.275*0.065) +
(0.750*0.405) +
(0.2*0.250 + 0.3*0.750) =
0.325+0.303+0,275= 0,903

Alternative
ranking

Fig. 2. Example of SP, UP and quality evaluation

3 Policy Selection Model

Given a user request and a set of Web service policies, the policy selection is
in charge of figuring out the best Web service policy with respect to the user
preferences. The policy selection considers Web services of the same type so, the
related quality tree (QT) can be obtained by the quality designer for the given
application domain.

The selection process starts when an input of type SP , UP and UQT 2 is
received. The process output is a revised policy (RP) where the alternatives
included in SP are sorted from the alternative which best matches the user
requirements to the worst one.

The selection process is composed by two main steps: Satisfiability evaluation
and Alternative ranking. Figure 2 exemplifies the process considering the video-
on-demand scenario.

3.1 Satisfiability Evaluation

Given a Ai ∈ SP , the satisfiability evaluation aims at stating if

∀uj ∈ UP, ∃si ∈ Ai | si satisfies uj (7)

The operator satisfies considers both the name and the values of a quality
dimensions. About the former:

si satisfies uj ⇒ si.name = uj .name (8)

Roughly speaking, during this activity, the selection process verifies that, for
all the service requests expressed in UP , there exists at least one of the service
2 For the sake of simplicity, we only describe the matching between a UP and a single

SP where the latter expresses several configurations. In addition, we assume that
the user does not modify the QT so UQT = QT . The general scenario where a set
of SP s are considered and UQT �= QT can be simply derived.

432 M. Fugini, P. Plebani, and F. Ramoni

offering assertions which satisfies such a request. This means that all the quality
dimensions included in UP must be included in SP as well. If at least one of
the quality dimensions in UP is not satisfied, then the process considers the
alternative Ai not compliant with respect to the user request.

At the opposite, it might happen that a quality dimension included in the SP
could not be considered in the UP . In this case, the process continues since the
user might be unaware about a quality dimension that the Web service offers.

The operator satisfies also considers the values describing an assertion.
About this analysis, we first need to distinguish between mandatory and non-
mandatory value ranges. If a value range is mandatory then the following defi-
nition holds:

si satisfies uj ⇒ si.value ⊇ uj .value (9)

Instead, if a user defines a non-mandatory value range then:

si satisfies uj ⇒ si.value ∩ uj .value �= ∅ (10)

The satisfiability evaluation results in a MP (matched policy), a revised ver-
sion of SP where the structure remains the same of SP and the value ranges
are redefined according to the user request:

MP =
⊕

Am | (∀Am, ∃Ak ∈ SP |
(∀si ∈ Ak, ∃mi ∈ Am |
(mi.name = si.name = uj .name∧
mi.values = si.values ∩ uj .values)))

(11)

3.2 Alternative Ranking

The second step of the selection process has to sort the alternatives included
in MP taking into account the importance assigned by the user to the quality
dimensions. So, the inputs of the alternative ranking phase are both MP and
UQT whereas the output is the final policy RP (Ranked Policy).

Similarly to what done during the satisfiability evaluation, RP has the same
structure of MP and is defined as follows:

RP =
⊕

Ar | (∀Ar, ∃Am ∈ MP |Ar = Am)∧
(∀Ai, Aj ∈ RP, i < j ⇒
eqosAi(UQT, domain(gqosAi)) ≥ eqosAj (UQT, domain(gqosAj))

(12)
The quality of an alternative that we need to rank is calculating using the

evaluation functions of the assertions composing the alternatives. An alternative
in MP, in fact, is expressed in terms of assertions related to pqd which, in turns,
are the leaves of the quality tree associated to the alternative as well. Actually,
during the quality calculation we do not consider the original quality tree but
UQT , i.e., the version that the user customizes.

quality(A, UQT) = eqos(pqdi) pqdi.name ∈ UQT = ak.name ∈ A (13)

A User Driven Policy Selection Model 433

4 Concluding Remarks

In this work we have proposed an approach for selecting Web services by analyz-
ing the offered quality. A quality definition and evaluation model are introduced
to allow both Web service providers and users to specify, namely, the offered
and desired quality. Such models also deal with the different levels of details in
expressing quality by these two actors.

Based on this model, the selection process we propose is capable of automati-
cally matching user and provider policies and ranking several quality alternatives
to identify the best Web service. A prototype implementing our approach is un-
der development.

Comparable approaches are given by WSOL [7] and WSLA [2], which provide
some description model which our work can use to express pqd. Focusing on
the selection process, in [4] the dynamics selection of the services is discussed
proposing a solution based on agents, using the Web Services Agent Framework
(WSAF), that includes an ontology for the QoS and a ad-hoc language to specify
quality. The proposed approach only evaluate services with feedback assigned
from the user that have already used the service, and does not consider the
actual users’ needs. In [3], the proposed utility theory uses utility functions to
estimate every quality parameter without any focus on the dynamic creation
and personalization of the dimensions. In our work we have adopted WS-Policy
as policy language; other languages, such as Features and Properties (F&P), are
also available. Different work, like [1], show the substantially equivalence between
the two languages, finding the differences at the syntax level.

References

1. G. Daniels. Comparing Features & Properties and WS-Policy. W3C Workshop on
Constraints and Capabilities for Web Services, 2004.

2. A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Technical Report RC22456(W0205-171), IBM
Research Division, T.J. Watson Research Center, May 2002.

3. S. Lamparter and S. Agarwal. Specification of Policies for Web Service Negotiations.
Semantic Web and Policy Workshop, Galway, November 2005.

4. E. M. Maximilien and M. P. Singh. A Framework and Ontology for Dynamic Web
Services Selection. IEEE Internet Computing, September-October 2004.

5. T. Mikalsen, N. K. Mukhi, P. Plebani, and I. Silva-Lepe. Supporting Policy-driven
behaviors in Web services: Experiences and Issues. ICSOC-04, 2004.

6. T. L. Saaty. The Analytic Hierarchy Process. Mc Graw Hill, New York, 1980.
7. V. Tosic, K. Patel, and B. Pagurek. WSOL - Web Service Offerings Language.

In Web Services, E-Business and the Semantic Web, CAiSE 2002 International
Workshop (WES 2002), Toronto, Canada, May 2002.

Abstract Transaction Construct: Building
a Transaction Framework for Contract-Driven,

Service-Oriented Business Processes�

Ting Wang, Paul Grefen, and Jochem Vonk

Information Systems Subdepartment,
Department of Technology Management,

Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{t.wang, p.w.p.j.grefen, j.vonk}@tm.tue.nl

Abstract. Transaction support is vital for reliability of business processes
which nowadays can involve dynamically composed services across organi-
zational boundaries. However, no single transaction model is comprehen-
sive enough to accommodate various transactional properties demanded
by these processes. Therefore we develop the Business Transaction Frame-
work, which is built on Abstract Transactional Constructs (ATCs). ATCs
are abstract types of existing transaction models that can be composed
and executed in a service-oriented transaction framework according to the
ATC algebra. By selecting and composing ATCs on demand, flexible and
reliable process execution is guaranteed.

1 Introduction

With the expanding scale and scope of business process collaboration, the com-
plexity and dynamism of a business process has been dramatically increased. To-
day’s business processes may involve a huge amount of activities, resources and
business relationships thus impose a big challenge to compose and manage such
processes. Service-Oriented Architecture (SOA) allows distributed applications
to be loosely coupled into a cross-organizational business process. E-contracting
technology provides an efficient and effective way to ensure trustworthiness be-
tween the business parties. Therefore, contract-driven service-oriented processes
have been emerging in mission-critical business paradigms (e.g. outsourcing).

Transaction management, which has been widely used in information sys-
tems for exception handling and fault tolerance, guarantees reliable and robust
process execution. However, the traditional approach of transaction management
by locking and afterwards releasing the shared resources per access is not applica-
ble in today’s complex and long-lasting processes. Driven by the growing need of
reliable service composition and execution in complex business environment, a lot
� The research reported in this paper has been conducted as part of the eXecution

of Transactional Contracted Electronic Services (XTC) project (No. 612.063.305)
funded by the Dutch Organization for Scientific Research (NWO).

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 434–439, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Abstract Transaction Construct: Building a Transaction Framework 435

of research efforts have been made from both industry and academia. For exam-
ple, within the CrossFlow project, the X-transaction model for contract-driven
enterprise processes in outsourcing paradigms has been proposed[1]. Within the
ADAPT project, support for multiple different transaction models for basic and
composed services is created [2]. In addition, Web services transaction protocols
[3,4] have been proposed by different standardization bodies. These attempts
usually address the transaction issues in a very specific application or business
environment that are not comprehensive and flexible enough.

According to [5], a solution towards a general transaction support for service-
oriented processes is to orchestrate loosely coupled services into a single business
transaction by guaranteeing coordinated, predictable outcomes for the partici-
pating partners. Following this thought, the XTC (eXecution of Transactional
Contracted Electronic Services) project was proposed to develop a Business
Transaction Framework (BTF) that provides comprehensive and flexible trans-
action support for contract-driven, service-oriented business processes. The basic
idea of the BTF is to abstract existing transaction models into Abstract Trans-
action Constructs (ATCs) and compose proper ATCs into a transaction scheme
to provide on-demand transaction support. We specify three phases along the
BTF life cycle. During the definition phase, the ATC templates are designed.
Then during the second composition phase, the needed ATCs are selected to
build a transaction scheme according to the process specification. The trans-
action scheme can be adjusted to accommodate the changes that might take
place later on. Last, during the execution phase, real business transactions are
instantiated and executed.

In this paper, we introduce and elaborate the novel concept of ATCs, which are
the building blocks of the BTF to achieve both comprehensiveness and flexibility.
We apply XTraCalm (Cross-organizational Transaction and Contract Algebra
and Logic Method) for correct ATC composition and specification. We propose
to use e-contracts to specify the Transactional Quality of Service (Tx-QoS) of
ATCs. Thus reliable and robust process execution is guaranteed by the ATC-
based BTF with Tx-QoS specifications. Due to the page limit, we briefly present
our work here and more detailed explanations and examples can be found in [6].

2 Abstract Transaction Construct (ATC) Concept

ATCs are a series of abstract constructs representing the existing transaction
models. In fact, they are transactional services that encapsulate transactional
semantics and behaviors. ATCs are created during the design phase and the
ATC templates exist in the ATC library for later configuration and enactment.
We define an ATC as an artifact with the below characteristics:

An ATC has an internal structure. We identify four types of ATC struc-
tures: Flat(no internal structure), Sequence, Complex and Tree. A flat ATC is a
basic unit representing an ACID transaction. A sequence ATC has the internal
structure corresponding to chained or Saga transactions. A complex ATC has the
internal structure of the mixed type of arbitrary sequences and parallels, which

436 T. Wang, P. Grefen, and J. Vonk

roughly corresponds to some complex workflow transaction models. A tree ATC
has the internal structure like a tree, which corresponds to nested or similar
transaction models. Please note that the tree-like ATCs have the structure of
parent-child relationship with no control flow between the nodes. By abstracting
existing models with various structures, we mean a semantic abstraction and
do not consider their implementation details (e.g. the underlying transaction
processing systems).

ATCs are composed in a recursive manner. When viewed from multiple
layers, a top-level ATC can be decomposed into several second-level ATCs and
the decomposition can go further if necessary. We regard a business process as
a single transaction. In service-oriented environment, the component services
within a process are regarded as sub-transactions, connecting with each other
horizontally or vertically. This way, the whole business transaction can be ab-
stracted as a top-level ATC, while each sub-transaction is abstracted as a second-
level ATC and this may go on to get the Nth-level ATCs. For example, Figure 1-b
illustrates an ATC ‘A’, consisting of the second-level ATCs of ‘B’, ‘C’, ‘D’, ‘E’
and ‘F’. ‘F’ represents a complex process operated by another party, therefore
it needs to be assigned as a complex ATC type and may have many levels of
decomposition inside. The complexity of the ATC composition within ‘F’ de-
pends on the transparency level agreed by the two parties. In our example, only
one sub-level in ‘F’ is relevant. This multi-level view of ATC recursion allows
a comprehensive transaction scheme that supports complex cross-organizational
business processes.

Each ATC guarantees specific transactional qualities. We define these
qualities as Transactional Quality of Service (Tx-QoS). In a service-oriented envi-
ronment, Tx-QoS can be enclosed in the service description files or service agree-
ments. With the unambiguous specification of transactional qualities, process
reliability can be enhanced. We define two sets of Tx-QoS: customer-oriented
Tx-QoS representing the transactional requirements in a business context, and
provider-oriented Tx-QoS representing the system capacity and technical ability
from the service provider. With a mapping between these two sets, the service
consumers can expect what Tx-QoS can be offered by the service provider thus
can better choose services or partners. Meanwhile the service providers can make
use of the Tx-QoS specifications for better monitoring and management of their
service quality. In Section 4, an algebra and logic method for specifying ATC
composition for Tx-QoS specifications is introduced.

An ATC has a parameterizable interface. Like the description file of a
service, the interface of each ATC contains the information of the above charac-
teristics. First the names of the parameters in the ATC specifications are defined
while the assignment of these parameters take place the next. There are three
types of parameters. The first type of parameters specify the internal structure
of an ATC e.g. the specific structure type. The second type of parameters spec-
ify the composition information of an ATC such as its predecessors, successors
and parallels. The third type of parameters specify the transactional qualities

Abstract Transaction Construct: Building a Transaction Framework 437

Sales Book

Finance

Prep.

Docs
Send

Docs

Select

Car

Select

Select

Hotel

Select

Trans.

PaymentInvoice

Calc. Finance

A = Saga with Safepoints (i.e. C)

B = Open Nested with Non Critical

C = Flat (ACID)

D = Flat (ACID)

E = Flat (ACID)

F = X-Transaction (WS based)

G = Saga

H = Saga

F

A

B

NC

C D E

F

G H

1-a: Booking Process 1-b: Recursive ATC Composition

Fig. 1. Example Travel Agency

e.g. atomicity, consistency. When necessary, the composer can assign the recur-
sion level and further refer to other ATCs.

3 Abstract Transaction Construct (ATC) Composition

Upon receiving a process specification, proper ATCs are selected from the ATC
library and recursively composed into a top-level ATC for later enactment. To
illustrate the ATC concept and especially the composition, we use a variation
of the well-known example of a travel agency, shown in Figure 1-a. Customers
can create a trip by selecting a hotel, transportation, and an optional rental car
(in parallel), after which the costs are calculated and the trip can be booked.
Then in parallel the required documents are prepared and the financial issues
are dealt with (i.e., invoicing and payment checking), after which the documents
are sent to the customer. Being a small travel bureau, the financial dealings are
outsourced to a specialized organization, which offers this function through a
Web Service. The internal of this Web service consists of invoicing and payment
activities, which in turn consist of other activities not relevant for the example.

Assigning certain ATCs, or by redividing the process over ATCs, the transac-
tional behavior will be different depends on the composer’s choice upon a particu-
lar process specification. As the example process is a long-running one, the entire
process might best be supported by a Saga-like transaction model that comprises
‘sales’, ‘book’, ‘prep. docs’, ‘finance’ (the grayed-out one), and ‘send docs’. The se-
lection activities can be supported by an (variation of the) open nested transaction
model, as these tasks can be done in parallel. The Web Service needs to be executed
under some Web Services transaction model, while the internals of this Web Ser-
vice, i.e., ‘invoice’ and ‘payment’ can be supported by a Saga again. As the Web
Service cannot run in isolation, the travel agency might need to see intermediate
results when its customers ask for status information, but needs to run in an atomic

438 T. Wang, P. Grefen, and J. Vonk

fashion so that the available web service transaction protocols (e.g., WS-BA in [4])
do not suffice. In this case, we therefore choose a variation of the X-transaction
model [1] that is suitable for the Web Services environment. The resulting ATC
composition for this example is shown in Figure 1-b where ATCs are represented
by rectangles and the dashed lines represent encapsulation. Eight ATCs are identi-
fied and named ‘A’ through ‘H’, which correspond to the activities/services shown
in Figure 1-a. Note that the unnamed activities that belong to activities ‘G’ and
‘H’ are also ATCs but not relevant here.

4 Abstract Transaction Construct (ATC) Formalization

To be able to (automatically) manipulate ATC structures and (automatically)
reason about them, we need a more formal approach. In this section, we provide
a brief introduction into XTraCalm, a hybrid framework consisting of an algebra
and a first order logic. The algebra component of XTraCalm is used to specify
ATC structures, the logic component to specify characteristics of (constraints
over) ATC structures. As such, XTraCalm forms the basis for Tx-QoS speci-
fication in electronic service contracts. For reasons of brevity, this paper only
presents a brief glance of XTraCalm and more details can be found in [6].

ATC graphs form the structure of ATC compositions where the XTraCalm
algebra is defined. We take A as the domain of ATCs. An element of G is a
directed graph of which the nodes are ATCs. Consequently, we can define G
as follows: G = 〈N, E〉, N = a ∈ A, E = {〈a, a〉 ∈ A × A}. The second
level of the ATC structure of the example as shown in Figure 1 can be specified
as:〈{B, C, D, E, F}, {〈B, C〉, 〈C, D〉, 〈C, F 〉, 〈D, E〉, 〈F, E〉}〉.

XTraCalm algebra is used to manipulate elements in G. It is a true algebra
in the mathematical sense: it consists of operators that take one or more operands
of type G and result type G (it is a closed mathematical system). Currently, we
have formally defined operators to combine (both composition resulting forests
and concatenation resulting connected graphs) and subtract ATC graphs, as well
as operators to extract subgraphs (various forms of chopping and slicing). For
example, the nodes and edges functions result in the nodes and the edges of
an ATC graph respectively. The heads and tails functions result in the sets of
ATCs without incoming and outgoing edges respectively. Using the composition
(+) and concatenation (⊕) operators, we can construct the example graph A
introduced above as follows: 〈B, ∅〉 ⊕ 〈C, ∅〉 ⊕ (〈D, ∅〉 + 〈F, ∅〉) ⊕ 〈E, ∅〉. Apart
from these horizontal operators (operating on graphs at the same aggregation
level), we have operators to wrap and unwrap ATC graphs to deal with recursive
refinement of ATCs: the wrap operator inserts an ATC graph into a higher-level
singleton graph, the unwrap operator results the ATC graph encapsulated in a
singleton graph.

XTraCalm logic allows to specify characteristics of ATCs. It is a first-order
logic with predicates over A. Using the constructs of the XTraCalm algebra,
characteristics over complex ATC structures can be specified. The basis of the
logic is formed by base predicates that specify transactional properties of ATCs.

Abstract Transaction Construct: Building a Transaction Framework 439

Examples of these base predicates are: atomic(a) that asserts ATC a is strictly
atomic and savepoint(a) that asserts ATC a is a savepoint in a saga-like struc-
ture. If, for example, we want to specify that in an example graph g, all second
‘steps’ (in our example case only ATC C) must be atomic and that at least one
savepoint must be contained, we can use the following logic expression (↓ repre-
sents a graph slicing operator): (∀a ∈ g ↓ 2)(atomic(a))∧(∃a ∈ g)(savepoint(a)).
The XTraCalm logic now has a mathematical notation only.

5 Summary and Future Work

To provide flexible and comprehensive transaction support for contract-driven,
service-oriented business processes, we have developed the ATC-based BTF. As
the building blocks of the BTF, ATCs are encapsulated, parameterizable, com-
posable transactional services, which abstract existing transaction models as
reusable constructs. Our main contribution of such a transaction framework lies
in three folds. First, it achieves flexibility by selecting and composing ATCs on
demand. Second, it uses contractual agreements to specify transactional quali-
ties for processes thereby guaranteeing business trustworthiness. Third, a hybrid
transactional algebra and logic for composition and execution is developed to
guarantee correctness.

In our future work, the ATC specification will be refined to accommodate even
more advanced transactional semantics, which then also requires extending the
ATC language. XTraCalm will be extended further to cope with the additional
transactional semantics so that reasoning about them, also in compositions with
other ATCs, in terms of Tx-QoS is possible. For example, more predicates are
needed for full expressions of possible transactional semantics. Moreover, we have
to extend the BTF design to specifically cover the cross-organizational aspect
that is left out by our present architecture design.

References

1. Vonk, J., Grefen, P.: Cross-organizational transaction support for e-services in vir-
tual enterprises. Distributed and Parallel Databases 14 (2003) 137–172

2. Sorrosal, F.P., no Mart́ınez, M.P., Peris, R.J.: Prototype of the transactional engine,
deliverable d4, adapt project (2004) http://adapt.ls.fi.upm.es/.

3. Bunting, D., et al.: Web Services Composite Application Framework. available at
http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf (2003)

4. Cabrera, L.F., et al.: Web Services Transactions. Available at http://www-
128.ibm.com/developerworks/library/specification/ws-tx/ (2005)

5. Papazoglou, M.: Web services and business transactions. World Wide Web: Internet
and Web Information Systems 6 (2003) 49–91

6. Wang, T., Vonk, J., Grefen, P.: Analysis on a contract-driven workflow process
from a transactional perspective. XTC working document, Eindhoven University of
Technology (2006)

Securing Web Service Compositions: Formalizing
Authorization Policies Using Event Calculus

Mohsen Rouached and Claude Godart

LORIA-INRIA-UMR 7503
BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France

{mohsen.rouached, claude.godart}@loria.fr

Abstract. This paper presents a formal model for composing security
policies dynamically to cope with changes in requirements or occurrences
of events. We address one particular issue - that of authorization within
a Web services composition. In particular, we propose a dynamic au-
thorization model which allows for complex authorization policies whilst
ensuring trust and privacy between the components services.

1 Introduction

Service Oriented Computing (SOC) is gaining prominence as the technology of
choice for integrating applications in diverse and heterogeneous distributed envi-
ronments. It is widely recognized that one of the barriers preventing widespread
adoption of this technology is a lack of products that support non-functional
features of applications, such as security, transactionality and reliability. Such
properties are of utmost importance for Web service composition languages to
keep their promises. Security is a challeging aspect of Web service composition
that has not been so far deeply investigated despite its importance [2,3]. For in-
stance, a first challenge is the definition, the verification, and the enforcement of
security policies as the complexity of composite Web services grows. To cope with
this complexity, it is useful to design a conceptual model that gives a structured
way to think about security policies. Another challenge is that non-functional
concerns should be addressed by external specifications for a better separation
of concerns and for more modular composition specification. For example, if we
extend WSBPEL with new constructs for each non-functional concern of the
composition, it would evolve into a very complex language, which in turn would
limit its acceptance. Furthermore, mixing the specification of the core logic of
the composition with specifications of security features and other non-functional
concerns into one unit would make the composition specification too complex
and hard to maintain and evolve.

In this paper, we propose to use a formalism based on the Event Calculus (EC)
[5] to specify authorization policies Web services compositions. EC is interesting
because it supports the direct representation of events that are used in such
policies, and the advantage of such a formalism is that it allows for having a
common representation for different security models, every service having its
own security model.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 440–446, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Securing Web Service Compositions: Formalizing Authorization Policies 441

In the rest of the paper, we introduce in Section 2 the notion of authoriza-
tion in the context of Web services composition. In Section 3, we present how
we specify the policies using the EC, and how the consistency can be checked.
Section 4 is dedicated to related works. Finally, Section 5 concludes the paper
and outlines some future directions.

2 Formalizing Authorization for Composite Web Services

Service Oriented Architecture allows for considerably more complex interaction
models than the classical client/server model, including symmetric peer-to-peer
interactions where both parties want to check authorisations, or multi-party
composed services where authorization is an issue for each component service.
Therefore, an appropriate authorization framework is needed to smooth the flow
of a transaction between multiple services whilst respecting the privacy of the
data used. This is a complex task since each individual service may have its own
authorization requirements

2.1 Basic Notations and Definitions

In this work, we use two booleans autho+ and autho− to model positive and
negative authorizations respectively. Therefore a positive authorization is de-
noted by autho+(s, o, a), where s, o, and a stand for subject, object, and action
respectively. This authorization holds if the value of autho+(s, o, a) equals true
and does not hold otherwise. Similarly, autho−(s, o, a) models a negative au-
thorization. Positive and negative authorizations are used at the specification
level to state who is or is not allowed to do what. As we will show, the use of
signed (i.e positive/negative) authorizations gives more flexibility in handling
authorization rules.

Given a Web service, we distinguish between two states according to its role in
the request. The first one is given by ssrc to express that the service s represent the
source (who submit the request). The second type is denoted by starg to precise
that the service s is the target (who receive the request). To summarize, a service is
seen as a resource that is provided within the system, to which access is controlled.
A service can also request other services and is actively involved in computation.

2.2 Authorization Model

To provide a formal specification of the authorization policies, we adapt a simple
classical logic form of the EC, whose ontology consists of (i) a set of time-points
isomorphic to the non-negative integers, (ii) a set of time-varying properties
called fluents, and (iii) a set of event types (or actions). The logic is corre-
spondingly sorted, and includes the predicates Happens, Initiates, Terminates
and HoldsAt, as well as some auxiliary predicates defined in terms of these.
Happens(a, t) indicates that event (or action) a actually occurs at time-point t.
Initiates(a, f, t) (resp. Terminates(a, f, t)) means that if event a were to occur

442 M. Rouached and C. Godart

at t it would cause fluent f to be true (resp. false) immediately afterwards.
HoldsAt(f, t) indicates that fluent f is true at t.

To achieve a complete specification that supports formal reasoning in EC, the
following elements must be represented in the model.

– Separation between source services (ssrc) and target services (starg) depend-
ing on the role of the service when performing or receiving the effect of an
operation.

– Functions that can be used as parameters in the basic predicate symbols of
EC. We define these functions as events that may occur during the composi-
tion execution. Below, the introduced events are explained. In these formulas,
Vp represents the set of parameters values for the operations supported by
services.

• operation(s, Action(Vp)) : used to denote the operations specified in a
policy function or event (see below).

• requestAction(ssrc, operation(starg, Action(Vp))) : represents the event
that occurs whenever a service source attempts to perform an operation
on a target service. Therefore, this is the event that will trigger a per-
mission (or denial) decision to be taken by the target service’s access
controller.

• doAction(ssrc, operation(starg, Action(Vp))) : represents the event of the
action specified in the operation term being performed by the service ssrc

on the service starg.
• rejectAction(ssrc, operation(starg, Action(Vp))) : the event that occurs

after the enforcement decision to reject the request by a particular source
service to perform an action is taken.

• permit(ssrc, operation(starg, Action(Vp))) : represents the permission gr-
anted to a source service to perform the action defined in the operation
on the target service.

• deny(ssrc, operation(starg, Action(Vp))) : used to denote that the source
service, ssrc, is denied permission to perform that action on the target
service starg.

– In addition to the described EC predicates, we add specific predicate symbols.
Indeed, in our case many of the function definitions above contain the tuple
(ssrc, operation(starg, Action(Vp)). To check if the members of this tuple are
consistent with the specification of the Web service composition, we define
the isV alidComp predicate. As such it must be used in any rule where
functions with the tuple (ssrc, operation(starg, Action(Vp)) are involved.

Having specified these elements, it is now possible to explain how the various
symbols defined above can be incorporated into rules that represent the differ-
ent types of information required to specify authorization policies able to support
Web service composition requirements in terms of security. The complete autho-
rization enforcement model is illustrated in Figure 1. As shown, once the service
source makes a request to perform an action on the service target, the target ser-
vice’s access controller processes it. To do this, the access controller evaluates the

Securing Web Service Compositions: Formalizing Authorization Policies 443

request by referring to the policy repository and the access control model. If the ac-
tion is permitted, the access control model will proceed to do the requested action.
Otherwise, if the action should be denied, the access control system will reject the
action. We precise that the scheme is symmetric, i.e each of the two services could
be target, source, or target and source at the same time. As shown in Figure 1,

Access
control model

A
ccess controller

permit/deny

Policies
repository

Access
control model

A
cc

es
s

co
nt

ro
lle

r

permit/deny

Policies
repository

Source service
execution environment

Target service
execution environment

requestAction(src,
op(targ,params))

Permit
doAction(…)

Deny
rejectAction(…)

Fig. 1. Authorization Enforcement Model

we distinguish two scenarios to represent the enforcement model. The first sce-
nario models the behaviour of the target service’s access controller, generating a
doAction event when an action is permitted. This event would trigger the relevant
service behaviour rules thus causing the composition state to change according to
the specification. The second one models a target service’s access control monitor
rejecting the action to prevent a denied operation from being performed.

2.3 Authorization Specification

In order to correctly interact with the enforcement model described above, each
policy specification rule should initiate the appropriate policy function symbol
(permit, deny) for each of the events. So for example, a positive authoriza-
tion policy rule should specify that permit(ssrc, Operation(starg, Action(Vp)))
holds when the requestAction(ssrc, Operation(starg, Action(Vp))) event occurs
and the constraints that control the applicability of the policy hold. Additionally,
the fluent permit(ssrc, Operation(starg, Action(Vp))) should cease to hold once
the action has been performed thus making it possible to re-evaluate the policy
rule on subsequent requests to perform the action. The EC representation of this
functionality is indicated in the auto+ specification shown in Figure 2. This also
shows how each of the other policy types would be represented by rules in the
formal notation. For each rule, the terms, ssrc, starg, Action and Constraint,
can be directly mapped to the source service, target service, action, constraint
and event clauses used when specifying policies. The Constraint predicate is
introduced to specify the pre- and post-conditions for each operation. It can be
represented by a combination of HoldsAt terms.

The autho− specification shown in Figure 2 represents a negative authorization
policy by stating that, if the Constraint holds and the event requesting the action
is performed happens, the action is denied. The second part of the rule shows how
the deny fluent will be terminated once the decision to reject that action has been

444 M. Rouached and C. Godart

Policy Specification

autho+

Initiates(requestAction(ssrc, operation(starg, Action(Vp))), permit(ssrc,
operation(starg, Action(Vp))), t1)←
isV alidComp(ssrc, operation(starg, Action(Vp))) ∧ Constraint

T erminates(doAction(ssrc, operation(starg, Action(Vp))), permit(ssrc,
operation(starg, Action(Vp))), t1) ←
isV alidComp(ssrc, operation(starg, Action(Vp)))

autho−

Initiates(requestAction(ssrc, operation(starg, Action(Vp))), deny(ssrc,
operation(starg, Action(Vp))), t1) ←
isV alidComp(ssrc, operation(starg, Action(Vp))) ∧ Constraint

T erminates(rejectAction(ssrc, operation(starg, Action(Vp))), deny(ssrc,
operation(starg, Action(Vp))), t1) ←
isV alidComp(ssrc, operation(starg, Action(Vp)))

Fig. 2. Event Calculus Specification for Authorization Policies

taken, thus allowing the specification to be re-evaluated on subsequent requests.
Note that the termination parts for these policies do not have any constraints and
can be generically specified for the whole service composition.

2.4 Conflicts

In order to detect conflicts involving authorization policies, i.e. those that arise
when it exists two policies defined for the same source, target and action: one
being an authorization and the other one being a prohibition, we introduce the
authConflict predicate that holds if an authorization conflict is detected. This
predicate is defined as:

HoldsAt(authConflict(ssrc, operation(starg, Action(Vp))), t1)←
HoldsAt(permit(ssrc, operation(starg, Action(Vp))), t1)∧
HoldsAt(deny(ssrc, operation(starg, Action(Vp))), t1)

Let consider a typical example of authorization conflict, which arises when
the same service is assigned to two roles that have opposite authorization per-
missions. To enable a complete specification of the different conflict cases that
may arise, we introduce a further set of predicates, events, and fluents.

The additional predicates are Service(name), Action(name), Role(name),
and ContradictoryRoles(r1, r2, t, a). Service(name) denotes a service with a
name name. Action(name) defines an action with a name name that a source
can process on a target. Role(name) determines a role with the name name.
ContradictoryRoles(r1, r2, t, a) describes that roles r1 and r2 have opposite
permissions for processing an action a at t.

Then, the events introduced are AssignServiceRole(s, r) that denotes a re-
quest of a service s for assignment to a role r, RolePermitAction(r, a) that speci-
fies a request for permission of an action a for a role r, and RoleDenyAction(r, a)
that defines a request for denial of action a for a role r.

Finally, three fluents are specified: Assigned(s, r) indicates that service s is
assigned to a role r, RoleHavePermission(r, a) defines that a role r is permitted

Securing Web Service Compositions: Formalizing Authorization Policies 445

to process action a, and AuthorizationConflict(r1, r2) denotes that there is an
authorization conflict in the composition (a service is assigned to contradictory
roles).

Considering the elements described above, it is possible to define rules that
can be used to recognise conflicting situations in the authorization policy speci-
fication. These rules are formalized as shown in Figure 3.

Rule Specification
R1 Initiates(RoleHavePermission(r, a), RolePermitAction(r, a), t)←

Happens(RolePermitAction(r, a), t) ∧ (¬HoldsAt(RoleHavePermission(r, a)
, t))

R2 Terminates(RoleHavePermission(r, a), RoleDenyActivity(r, a), t)←
Happens(RoleDenyActivity(r, a), t) ∧ HoldsAt(RoleHavePermission(r, a), t)

R3 Initiates(Assigned(s, r1), AssignUserRole(s, r1), t)←
Happens(AssignUserRole(s, r1), t) ∧ (¬HoldsAt(AuthorizationConf lict(r1,
r2), t))

R4 ContradictoryRoles(r1, r2, t, a)← (HoldsAt(RoleHavePermission(r1, a), t) ∧
(¬HoldsAt(RoleHavePermission(r2, a), t)))|(HoldsAt(RoleHavePermission
(r2, a), t) ∧ (¬HoldsAt(RoleHavePermission(r1, a), t)))

R5 Happens(conf lictEvent, t)∧Initiates(AuthorizationConf lict(r1, r2),
conf lictEvent, t)← HoldsAt(Authorized(s, r2), t)∧Happens(Authorize −
Request(r1, s), t)∧ContradictoryRoles(r1, r2, a, t)

Fig. 3. Rules for Authorization Conflicts

The first rule initiates the fluent RoleHavePermission(r, a) when the event
RolePermitAction(r, a) happens if this fluent is currently not true. The second
rule implements deny for role r to process the action a as a termination of
fluent RoleHavePermission(r, a) when RoleDenyActivity(r, a) event happens.
The third rule assigns service s to the role r when AssignUserRole(s, r) event
happens if AuthorizationConflict(r1, r2) between the role r1 and some other
role r2 is not presented in the composition process. The fourth rule defines two
roles, one of which has and another one does not have permission for some action.
Here we note that we not fix which role has positive permission and which role
has negative permission. Thus, ContradictoryRoles is symmetrical regarding r1
and r2. Finally, the fifth rule defines a notion of authorization conflict: the user
requested the assignment for the second of two contradictory roles.

3 Related Work

There are few papers on security in the context of Web service compositions. We
are aware only of the work presented in [4], which presents an access control frame-
work for business processes in BPEL. Like our’s, this framework is specific to the
authorization problem. Our proposal is more formalized and it can be easily ap-
plicable to more security facets in Web service compositions (confidentiality,

446 M. Rouached and C. Godart

integrity, and authentication). In [7] the authors present a tool giving a simplified,
business-policy-oriented view to its users, who are configuring secure Web services
in their systems. They also based their proposal on WS-Security and WS-Policy
but their tool does not support composite Web services.

In the project SECTINO1, a system architecture for local and global workflow
system is proposed based on the XACML[6] and SAML. Security concerns are
defined in OCL(Object Constraint Language) with model-driven UML tools.
XACML is good for specifying policy in a specified domain. But it is not se-
mantic rich enough for cross-organisational orchestration and high-level security
requirements.

AO4BPEL[1] proposes an aspect-oriented extension to BPEL. It uses aspects-
oriented concept to modularize cross-cutting concerns like security and perfor-
mance in business processes. Although the AO4BPEL framework offers the mod-
ularity and dynamic adaptability to the Web service composition, it lacks seman-
tic description of security aspects, business processes and business rules. This
make conflicts detection and policy negotiation infeasible for securing the Web
service composition.

4 Conclusion

In this paper, we presented a framework for managing authorization policies
for Web service compositions. Specifically, we have described the use of Event
Calculus and abductive reasoning for developing a language that supports spec-
ification and analysis of authorization policies for Web service composition. A
complete implementation and an EC plug-in for Web service were developed and
tested using test cases.

References

1. A. Charfi and M. Mezini. Aspect-oriented web service composition with ao4bpel.
In ECOWS, volume 3250 of LNCS, pages 168–182. Springer, 2004.

2. D. Geer. Taking steps to secure web services. IEEE Computer, 36(10):14–16, 2003.
3. P. Hung, E. Ferrari, and B. Carminati. Towards standardized web services pri-

vacy technologies. In Proc of the IEEE International Conference on Web Services
(ICWS’04), San Diego, CA, USA, July 2004.

4. H. Koshutanski and F. Massacci. An access control framework for business processes
for web services. In XMLSEC ’03: Proceedings of the 2003 ACM workshop on XML
security, pages 15–24, New York, NY, USA, 2003. ACM Press.

5. R. Kowalski and M. J. Sergot. A logic-based calculus of events. New generation
Computing 4(1), pages 67–95, 1986.

6. T. Moses. Extensible access control markup language (xacml) version 2.0 3, Feb
2005.

7. M. Tatsubori, T. Imamura, and Y. Nakamura. Best-practice patterns and tool sup-
port for configuring secure web services messaging. In ICWS ’04: Proceedings of the
IEEE International Conference on Web Services (ICWS’04), page 244, Washington,
DC, USA, 2004. IEEE Computer Society.

1 http://qe-informatik.uibk.ac.at

Supporting QoS Monitoring in Virtual
Organisations

Patrick J. Stockreisser, Jianhua Shao, W. Alex Gray, and Nick J. Fiddian

School of Computer Science
Cardiff University, UK

{p.j.stockreisser, j.shao}@cs.cf.ac.uk

Abstract. There are methods proposed for managing various aspects
of quality of service (QoS) in service oriented computing environments,
but existing effort tends to adopt a provider-centric perspective, aiming
largely at optimising and guaranteeing QoS for service delivery. In this
paper, we consider QoS monitoring from a service user’s perspective. We
describe an approach in which monitoring requirements are expressed
as queries in a simple language and are processed against continuously
arriving QoS data streams.

1 Introduction

In recent years there has been considerable interest in the service oriented com-
puting paradigm. The goal of this research is to create a large-scale distributed
computing environment [6] where flexible resource sharing and dynamic collabo-
ration among autonomous individuals are made possible. One particular form of
such collaboration is the idea of virtual organisation (VO), where some service
providers may team up, at some point in time, to form an alliance in order to
respond to or exploit a particular market opportunity [5].

In this paper, we consider one important supporting mechanism for the effec-
tive operation of a VO – the monitoring of quality of services (QoS). Typically, a
VO manager will establish some measurable, agreed-to performance targets for
the service providers in the VO and record them in a Service Level Agreement
(SLA) [7]. It is easy to see that in order for an SLA to be truly useful, the ability
to monitor the level of QoS that is actually delivered is essential. To achieve this,
the following issues need to be addressed:

– As many types of service may exist, a VO manager must be allowed to specify
a variety of monitoring requirements.

– The use of different monitoring metrics must be supported to enable different
interpretations of a QoS attribute.

– Efficiency and scalability must be considered due to the potentially vast
number of services and monitoring requests to be handled.

While some methods have been proposed for managing various aspects of
QoS in service oriented computing environments, existing effort tends to adopt

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 447–452, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

448 P.J. Stockreisser et al.

a provider-centric perspective, aiming largely at optimising and guaranteeing
QoS for service delivery. In this paper, we consider QoS monitoring from a ser-
vice user’s perspective. More specifically, we propose a simple language for VO
managers to express various monitoring requests concisely, independent of any
specific application domains, and we adopt a data stream [1] based approach
to processing such requests efficiently as continuous queries over potentially-
unbounded streams of observed QoS data.

The rest of this paper is structured as follows. In Section 2, we describe
related work. Section 3 discusses QoS monitoring requirements and introduces
our language. In Section 4, we consider the processing of monitoring requests
using a data stream based approach. Finally, we conclude in Section 5.

2 Related Work

Various languages exist for describing services and SLAs. WSDL (Web Service
Description Language) allows the functionality of a service as well as its invo-
cation details to be described, but it does not support SLA specifications. More
recently, Web Service Level Agreement Language (WSLA) [8], WS-Agreement
[4] and the Web Services Management Framework (WSMF) [2] have been devel-
oped which allow, in addition to functional specifications, SLA elements such as
QoS agreements, monitoring metrics and actions to take when agreements are
violated to be included. In terms of supporting QoS monitoring, the language
that we propose in this paper can be considered similar to WSLA. That is, both
have a similar goal to achieve. However, our language is designed and intended
to be used as a query language that treats each monitoring request expressed in
it as a query to be continuously answered against the observed QoS data stream.

Much work exists in monitoring, optimising and guaranteeing QoS for specific
application domains, for example, optimising network traffic, delivering audio
and video over distributed networks, running services on mobile networks and
establishing participants’ reputation in e-commerce applications. These tech-
niques are rather limited in their applicability. Typically, QoS parameters to be
monitored are fixed and there is little need to express different monitoring re-
quirements in such applications. In contrast, our proposal attempts to develop
techniques that support QoS monitoring in an application independent manner.

Another area of study related to our work is that of data stream processing
pursued by the database community in recent years [1]. Different data stream
models, such as sliding windows [3], have been considered, some advanced tech-
niques for maintaining summary data structures over potentially-unbounded,
seen-once-only data sequences, such as histograms, wavelets and sketches, have
been developed, and the results from these studies have been applied to a num-
ber of monitoring application domains, e.g. sensor networks, stock market tick-
ers and network traffic management. We treat monitored QoS data sequences as
data streams and use existing stream processing models and techniques, such as
sliding windows and approximate aggregations, in our work, but configure them
specifically for processing QoS monitoring requests.

Supporting QoS Monitoring in Virtual Organisations 449

3 Expressing QoS Monitoring Requirements

In this section, we describe how QoS monitoring requests are expressed through
examples. The reader is referred to [10] for details. We refer to each provision of
a service from a service provider (SP) to a service user (SU) as a service instance,
and we assume that for each service instance relevant QoS data is collected in
the following form: Observation(SIID, QoSAttribute, Value, Time) where
SIID identifies the service instance, QoSAttribute is the QoS attribute being
monitored, Value is the observed value of the QoS attribute (nomalised to values
in [0, 1]), and Time is the time at which the observation was made.

The collected QoS data is then streamed into the Monitoring Component
in our system, where QoS monitoring requests, expressed by VO managers as
queries in a simple language that we propose in this paper, will be processed.
The design of our language has been influenced by what is expressible in WSLA,
and it consists of five main components as shown in the following template:

REPORT <items>
FOR <instance>
ON <content>
AT EVERY <frequency>
DURING <period>

and a query expressed in it is to be interpreted as a request for monitoring the
<instance> in terms of the <content> during the <period>, and reporting the
<items> of interest with a specified <frequency>.

The ON clause is most significant and allows different types of monitoring to
be specified. The simplest is direct monitoring of an attribute, as demonstrated
by the following example:

REPORT observation
FOR ServiceProvider = "SP1",

ServiceUser = "SU7",
Service = "MovieService",
SIID = "MS234"

ON "Availability"
DURING [2005-12-12T12:30:00,2005-12-12T14:45:00];

Here, the REPORT clause indicates that it is the value (observation) generated by
the ON clause that will be returned to the requester. Since the ON clause contains a
single attribute, it will simply return each received measure of Availability as
the value for output by the REPORT clause. As the AT EVERY clause is not present
in this case, a default reporting frequency (returning every value generated by
the ON clause to the requester) is assumed. Direct monitoring is useful in cases
where the requester prefers to perform its own analysis of the raw monitored
data. However, such monitoring can result in excessive network traffic.

To support more efficient monitoring, we allow selective and aggregative mon-
itoring to be specified in the ON clause. A selective monitoring clause considers a
single observation at a given point in time to check if it satisfies a required con-
dition for reporting. The following is a selective monitoring request which asks

450 P.J. Stockreisser et al.

the Monitoring Component to report if the Reliability of the service instance
MS234 drops below 0.8, from start (SOS) to end (EOS) of the service:

REPORT "Reliability", Timestamp
FOR SIID = "MS234"
ON "Reliability" < 0.8
DURING [SOS ,EOS];

Here, the REPORT clause indicates that it is the value of the attribute (Reliability)
together with the associated timestamp that will be returned to the requester. Dif-
ferent from direct monitoring, however, the value of Reliabilitywill only be re-
ported to the requester when the condition specified in the ON clause is satisfied.
Generally speaking, we can regard the ON clause as a conditional statement for the
REPORT clause - report the items when the ON clause is true - if a non-conditional
ON clause is assumed to be always true.

Aggregative monitoring is another form of summative monitoring that is sup-
ported in our language. With this monitoring, observations made at several
points over a given period are aggregated to a single measure. The following is
an example of an aggregative monitoring which requires the Monitoring Com-
ponent to report the average Framerate over 10 observations every 30 seconds
for the movie service MS234 from start to end of the service:

REPORT observation
FOR SIID = "MS234"
ON AVG("Framerate", 10)
AT EVERY 00:00:30
DURING [SOS,EOS];

The AT EVERY clause declares a time interval for which a monitoring report is
to be sent. Here, a report will be sent every 30 seconds with the most current
reading. Note that when selective monitoring is specified in the ON clause, the
AT EVERY clause is ignored.

What we have introduced so far (direct, selective and aggregative moni-
toring) may be regarded as primitive requirements. It is also possible to use
a combination of them in a single query. For example, it is possible to use
COUNT(AVG("Framerate",5) < 24,100) in an ON clause, which will report the
number of times within 100 observations that the average Framerate over 5 ob-
servations has dropped below 24 to the requester. The reader is referred to [10]
for further discussion on the proposed language.

4 Processing QoS Monitoring Requests as Data Streams

In this section, we discuss how monitoring requests expressed as queries in our
language are processed. Note that such queries are of a “continuous” nature,
that is, they are evaluated not once but continuously as new observations arrive.
Processing such requests poses two key challenges: we only have limited time
and memory capacity to process the data.

To address these challenges, we adopt data stream techniques in the heart of
our query processing engine. More specifically, we use a sliding window model

Supporting QoS Monitoring in Virtual Organisations 451

which enables response to queries to be made based on statistics gathered over re-
cently observed data elements, rather than the actual data items themselves [3].
We have implemented two generic algorithms as part of our Monitoring Compo-
nent for evaluating aggregate functions allowed in our language. SUM, COUNT
and AVERAGE are calculated by maintaining statistics of a data stream using
exponential histograms [3], and MAX and MIN are computed using a Treap
structure [9].

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation Delivery Count

Q
ue

ry
 M

ea
su

re

Query: avg(qa,100000) Data Rate: 0.005/millisecond

Base Case
Non SA − 1 query/delivery
Non SA − 10 queries/del.
Non SA − 100 queries/del.
SA (err: 0.5) − 1 query/delivery
SA (err: 0.5) − 10 queries/del.
SA (err: 0.5) − 100 queries/del.
SA (err: 0.01) − 100 queries/del.

Stream Based
N EM M ID
1 0.5 88 79
10 0.5 88 81
100 0.5 88 107
100 0.01 1764 921
Non-Stream Based
N EM M ID
1 n/a 100000 1770
10 n/a 100000 20602
100 n/a 100000 91249

Fig. 1. Experiment Results

We have implemented our Monitoring Component as part of the CONOISE-G
project [5]. Figure 1 shows the result of one set of experiments we performed.
We ran our experiments with a simple query avg(qa, 100000) (an internal rep-
resentation of an aggregative monitoring query which has qa as a QoS attribute
and a span of 100000 observations), over an input data stream of 200000 obser-
vations with a varying number of queries to be handled simultaneously. We set
the sliding window size to be 100000 and simulated a data generation rate of
one new observation every 200ms.

As can be seen from Figure 1, the non-stream-based method (averaging obser-
vations over a span each time when a new observation is received) performed well
when the number of queries handled by the system was small. However, when
more queries were handled, the measured average deviated substantially away
from the expected average (the base case in Figure 1). This is because as the
number of queries to be handled increased, more time was required to compute
them and computation could not keep up with the rate of data arrival. Conse-
quently, some data was lost resulting in errors in measures. This is explained in
the table on the right in Figure 1.

As we can see the amount of items dropped (ID) got increasingly severe as the
number of queries (N) to be handled increased. In contrast, the stream-based
method (maintaining exponential histograms) handled the workload much better
- the performance was largely independent of the varying number of queries.
This is because the stream-based method can “guess” the outcome using the

452 P.J. Stockreisser et al.

data synopsis maintained on the stream. However, the quality of stream-based
method depends on the allowed error margin (EM). When the allowed error
margin was set to 0.01, a more accurate result was produced than that of 0.5.
However, a lower error margin requires more memory space (M) in computation,
hence some tradeoff must be exercised in practice.

5 Conclusions and Future Work

QoS monitoring is an important issue to the effective operation of a VO. In this
paper, we described an approach which allows VO managers to express moni-
toring requests as queries in a simple language and processes such queries using
data stream based algorithms. Our initial experiments have shown that stream-
based operations are effective in handling fast-arriving, potentially unbounded
sequences of QoS data.

Our work is at an early stage, and more is still to be done. The language
is still quite primitive in that only simple conditions involving single attributes
have been considered. There is a need to extend the language to allow multiple
attributes and logical operators such as AND and OR. These extensions will
however require more complex query processing to be considered. Also, optimi-
sation strategies need to be investigated, particularly when multiple requests are
handled at the same time.

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues
in Data Stream Systems. In Proc. of PODS, pages 1–16. ACM Press, 2002.

2. N. Catania, P. Kumar, B. Murray, H. Pourhedari, W.Vambenepe, and K.Wurster.
Overview: Web Services Management Framework. Technical report, HP, July 2003.

3. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining Stream Statistics
Over Sliding Windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

4. A. Andrieux et al. Web Services Agreement Specification (WS-Agreement). Tech-
nical report, Global Grid Forum, 2006.

5. J. Patel et al. Agent-Based Virtual Organisations for the Grid. Intl. J. of Multi-
Agent and Grid Systems, 1(4):237–249, 2005.

6. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Intl. J. Supercomputer Applications, 15(3), 2001.

7. A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services. J. Net. Sys. Mngt., 11(1), 2003.

8. H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web Service Level Agree-
ment (WSLA) Language Specification. Technical report, IBM, 2003.

9. R. Seidel and C. R. Aragon. Randomized Search Trees. Algorithmica, 16(4-5):464–
497, 1996.

10. P. J. Stockreisser, J. Shao, W. A. Gray, and N. J. Fiddian. Supporting QoS Mon-
itoring in Virtual Organisations. Technical report, Cardiff University, 2006.

Event Based Service Coordination over Dynamic and
Heterogeneous Networks

Gianluigi Ferrari1, Roberto Guanciale2, and Daniele Strollo1,2

1 Dipartimento di Informatica,
Università degli Studi di Pisa, Italy

{giangi, strollo}@di.unipi.it
2 Istituto Alti Studi IMT Lucca, Italy

{roberto.guanciale, daniele.strollo}@imtlucca.it

Abstract. This paper describes the design and the prototype implementation of
a programming middleware for coordinating services distributed over dynamic
and heterogeneous networks without a public addressing schema (i.e. service ad-
dresses are not always public available). We illustrate the problems posed by
relaxing the public addressing schema in the context of service orchestration.
We discuss the design choices of our middleware. Then, we discuss the actual
network technologies underlying the prototype implementation and the formal
foundations that drive our approach.

1 Introduction

Modern distributed systems demand not only heterogeneity but also a higher degree of
adaptability. The so called Service Oriented Architectures (SOAs) provide evidence of
this issue. In the SOA approach, applications are developed by coordinating the behav-
ior of autonomous components distributed over an overlay network. Several research
and implementation efforts are currently devoted to design and to implement middle-
ware for coordinating distributed services (see ORC [6], BPEL [8] and WS-CDL [10]
to cite a few). These efforts have focused on overlay networks based on a public ad-
dressing schema, namely the address of each service is directly visible and reachable
from any part of the network. Indeed, very few approaches address coordination of ser-
vices over overlay networks where services reside on hosts without a public address or
are hosted behind a firewall hiding their addresses. Other modern distributed systems
raise similar demands with respect to the visibility of addresses. Illustrative examples
are peer-to-peer networks. Coping with these issues is therefore a challenging task for
the SOA paradigm.

This paper attempts to explore the features of the SOA approach within computing
environments without a public addressing schema where visibility of service addresses
is not always guaranteed. Our goal is twofold. First, we describe the design and the
implementation of a programming middleware for service coordination where identifi-
cation of services endpoints is more structured while preserving, at the same time, in-
dependence from the underlining network technologies. Second, we aim at developing
a formal model that drive our implementation choices. In our approach, the primitives
of the calculus represent the basic programming constructs supplied by the middleware.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 453–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

454 G. Ferrari, R. Guanciale, and D. Strollo

The starting point of our work is the event-notification paradigm where service behav-
iors are coordinated through the exchange of (typed) signals. This coordination model
has been adopted for developing a middleware for service choreography called JSCL
(Java Signal Core Layer [9]). To cope with the event notification paradigm within a for-
mal setting, in [4] we introduced the Signal Calculus (SC). The SC calculus has driven
the design and the prototype implementation of JSCL. The JSCL prototype has been
used in [1] for implementing a framework for programming Long Running Transac-
tions (LRTs) [2]. In this paper we extend the JSCL framework to deal with partial visi-
bility of services. Services have no public addresses and their visibility over an overlay
network is obtained through intermediate entities called gateways. Gateways are di-
rectly reachable from the network, and communication from services to gateways can
be performed (e.g. by using SOAP). However, services can open a ”channel” with sev-
eral gateways by exploiting registration facilities, and can receive messages from other
services through gateways. We discuss how JSCL has been extended to accommodate
the new features. In particular, we investigate how the addressing of private services
can be implemented by exploiting the SOAP binding proposed in 3.1, preserving the
ability to support different coexisting bindings. Then we provide the formal semantic
characterization for the operations that SC makes available to handle the new model.

2 Java Signal Core Layer

JSCL is a Java middleware to implement the choreography of distributed services ex-
ploiting the event notification style. JSCL has been originally proposed in [4] to deal
with services with a public addressing schema (e.g. each service is directly reachable
from the network). To abstract from the particular underlaying network adopted, the
middleware has been programmed with a pluggable part, the Inter Object Communi-
cation Layer (iocl), which provides an unique interface to deal with communication
primitives (e.g. message exchange, addressing, etc.).

The main concepts of JSCL are signals, components, gateways, input ports and sig-
nal links. The messages exchanged among participants are modeled as signals that are
uniquely identified by a name and are tagged with a topic, that represents the event class
to which they belong to. AJSCL component represents an autonomous service deployed
over at least one overlay network. Here we assume that the public addressing schema of
components is relaxed. Hence, to supply service visibility, we introduce intermediate en-
tities called gateways. Gateways have a unique public name and are directly reachable
from each service. In order to receive signals, a component must join a gateway that
acts like bridge among different heterogeneous networks (using several iocl instances).
To avoid centralization, while allowing interoperability among networks, the same com-
ponent can join with more gateways. The JSCL component interface is structured into
input ports and signal links. Input ports describe component behavior and the parame-
ters bound upon signal reception. Indeed, the reception of a signal acts like a trigger
that activates the execution of a new computation within the component. Orchestration
among components is implemented through signal links that connect outgoing signals to
input ports of other components. Signal links, on their turn, are strictly related to a par-
ticular topic thus offering the possibility to express different topologies of connectivity,

Event Based Service Coordination over Dynamic and Heterogeneous Networks 455

depending on the topic of the outgoing signals. Both input ports and signal links can be
dynamically modified by the components.

3 Implementation Overview

In this section, we outline the design choices adopted for implementing the JSCL ex-
tension supporting the two level addressing. Gateways become the unique public visible
entities in the global network. Having several iocl plugins, one for each network over-
lay, gateways need to make available on the iocls they are interested to operate in. In
the following we only deal with two kinds of overlay networks: SOAP with standard
HTTP binding and SOAP with the binding proposed in 3.1. Depending on the protocol
used to identify a component or a gateway, JSCL instantiate the proper iocl (e.g. to
rhttp corresponds the iocl with multipart, etc.). Communication from a gateway to a
public service hosted on the same ”domain” can be obtained through HTTP binding or
through more scalable and efficient ad-hoc solutions (e.g. JMS).

3.1 X-Mixed-Replace SOAP Binding

We propose an alternative SOAP binding for HTTP 1.1 to supply an envelope transport
mechanism for services that cannot open local tcp ports (e.g. firewalled applications),
or that are executed on machines without public address (e.g. internet applications) or
that are hosted in an environment that disallows socket management (e.g. Ajax and
Comet applications inside a Web Browser). The proposed binding is based on the X-
MIXED-REPLACE [7] mimetype and is structured as follows. (Step1) The service opens
a HTTP 1.1 connection to a potential requester and performs a GET request specifying
the information needed for the publication. (Step2) The requester sends back a response
having mimetype X-MIXED-REPLACE. Usually, this mimetype informs a client that the
server will send a stream of multiple versions of the same document. The client and the
server must keep opened the HTTP connection, until the server terminates to deliver
the stream. (Step3) When the requester wants to send a SOAP request to a previously
published service, it sends a SOAP envelope over the active HTTP connection, as a
new version of the multipart document. (Step4) When a new version of the multipart
document is received, the SOAP envelope is extracted and the local service is invoked.

As we will see in section 3.2, the first and second steps are performed by the gate-
way.register method, which creates the virtual channel between the gateway and the
component, and the third and forth steps are performed for routing signals from the
gateway to the component.

3.2 JSCL Implementation Outline

The UML-like sequence diagram (Figure 1) illustrates the steps performed by JSCL to
implement the component registration to a gateway (block 1) and the signal exchanging
between two components (blocks 2, 3 and 4). In the following we will use the notation
PS

X to represent proxies for an entity S (a component or a gateway) communicating
through the network via protocol X . Analogously, AS

X represents an address of the
entity S over the network via protocol X .

456 G. Ferrari, R. Guanciale, and D. Strollo

The block 1, defined in Figure 1, describes the steps performed by the component
S1, hosted on Host1, to activate a registration on the gateway G, located on Host2. S1
demands to the iocl to create a proxy PG

X for the gateway G, having address AG
X , which

will be encapsulated into the proxy instance. The registration method is invoked on the
proxy which makes an HTTP request, specifying the encapsulated gateway address and
the component identifier (see Step 1 in section 3.1). The request is received by the iocl
on the Host2 that creates the local proxy PS1

X for the component requester. Notice that
the connection (socket) established with PG

X and the component identifier S1.id are
stored into the component proxy. The gateway stores, into the table H , the association
between the component identifier and the proxy bound to it. Finally, the iocl sends back
an HTTP response to declare that further messages will be send on that stream (see
Step 2 of section 3.1). As result of a signal emission, the component S2 retrieves the
set of component link descriptors of the form (AG

H , S1id). For each component, S2
requests a proxy for the intermediate gateway (PG

H), then invokes its method spawn
(block 2). The gateway proxy sends a HTTP Post request, containing the signal and the
target component identifier, using standard SOAP HTTP binding. At the reception of
the message, the iocl on Host2 retrieves the proper gateway and invokes its method
spawn. The gateway retrieves, from the table H , the proxy for the target component
that has been created at the registration phase (block 3). The component proxy forwards
the signal through the multipart stream using the previously encapsulated connection
with PG

X (see Step 3 of section 3.1). Finally, in block 4, the gateway proxy retrieves
the locally registered component and demands to it the signal handling (see Step 4 of
section 3.1).

4 Signal Calculus

SC is a process calculus in the style of [5, 3] introduced in [4] as foundational model
of the JSCL middleware. In this section we describe the extension of SC introduced to
formal represent the network model considered in this paper.

Component behaviors (B) are defined by the following grammar:

B ::= 0 | +R[x : τ → B] | +F [τ � g[a]] | �g | s̄ : τ.B | B|B | !B

Behaviors represent JSCL computations executed inside a component, while the set
of primitives represents the JSCL programmer API. The flow update (+F [τ � g[a]])
represents the JSCL API to create a new outgoing signal link, it extends the compo-
nent flow, appending the gateway g handling all signal communications of schema τ
with component named a. The gateway join (�g) represents JSCL API to publish the
component, it opens a channel between the service and the gateway g, suppling the
addressing schema for the service. A gateway body contains a tuple (possibly empty)
of envelopes to route to the joined components. Gateway bodies (G) are defined by the
following grammar:

S ::= ∅ | S|S | < s@a : τ >

Networks (N) are defined by the following extended grammar:

N ::= ∅ | a[B](R,F,g) | g[S](a) | N ||N | < s@g[a] : τ >

Event Based Service Coordination over Dynamic and Heterogeneous Networks 457

S1 iocl P iocl ioclG S2G
X PS1

X PG
H

getGateway()

return

register(S1)
GET / ? S1.id

new SProxyX(S1.id, socket)

register()

RESPONSE
MIMETYPE=
XMULTIPART

MIXED

H[.id ->]

return

new GWProxyX()

return
PGX

POST signal, S1_id

spawn(signal, S1_id)

MULTIPART STREAM

spawn(signal, S1_id)

SP.handle(signal)
SP = H[S1_id]

new GWProxyH()

return

handle(signal)

getGateway()

return

AGX
AGX

PGX

AGX

PS1X

PS1X PS1X

PS1X

AGH

PGH

AGH

PGH

A
GH

1

2

4

foreach
(

,S
1_id)

in
getH

andlersForS
ignal(sigT)

3

HOST1 HOST2 HOST3

Fig. 1. Registration and signal emission protocol

A network describes the component and gateway topologies, and it is an abstraction of
the set of JSCL iocls shared among services and gateways. The new primitive gateway
(g[S](a)) describes a public gateway. The set a identifies the set of component names
that have joined the gateway. The component primitive (a[B](R,F,g)) has been extended
with the tuple (g) of gateway names to which the component is linked. Analogously, the
signal envelope primitive (< s@g[a] : τ >) has been adapted to contain the gateway g
that will effectively deliver the message.
SC components and gateways are closely related to the notion of Ambient [3], but

enriched with mechanisms to control the interaction policies among ambients. The SC
semantics is defined in a reduction style. Hereafter, we simply provide an example of
the reduction rules.

a ∈ a g ∈ g R ↓s:τ= (σ, B)
(IN)

g[< s@a : τ > |S](a)||a[Q](R,F,g) → g[S](a)||a[σB|Q](R,F,g)

This rule allows an envelope contained into the gateway to react with the component
whose name is specified inside the envelope (see step 4 in Figure 1).

5 Concluding Remarks

We have introduced a framework to program coordination policies of distributed ser-
vices with a two level addressing schema. Unlike current industrial coordination tech-
nologies (e.g. BPEL [8]), our solution is based on top of a clear foundational approach.

458 G. Ferrari, R. Guanciale, and D. Strollo

This should provide strategies to prove coordination properties based on model check-
ing or type systems. A semantic definition of the basic set of primitives can also drive
the implementation of translators from industrial specification languages (e.g. WS-
CDL [10]) to our framework. Our approach differs from other event based proposals,
since it focuses the implementation on the more distributed environment of services.
Moreover, neither industrial technologies nor formal approaches handle with a two-
level addressing schema without introducing a centralization point.

Acknowledgments. Research partially supported by the EU, within the FETPI Global
Computing, Project IST-2005-16004 SENSORIA and by MURST-FIRB Project TO-
CAI.IT

Bibliography

[1] R. Bruni, G. L. Ferrari, H. C. Melgratti, U. Montanari, D. Strollo, and E. Tuosto. From
theory to practice in transactional composition of web services. In M. Bravetti, L. Kloul, and
G. Zavattaro, editors, EPEW/WS-FM, volume 3670 of Lecture Notes in Computer Science,
pages 272–286. Springer, 2005.

[2] R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical foundations for compensations in
flow composition languages. In J. Palsberg and M. Abadi, editors, POPL, pages 209–220.
ACM, 2005.

[3] L. Cardelli and A. D. Gordon. Mobile ambients. In M. Nivat, editor, FoSSaCS, volume
1378 of Lecture Notes in Computer Science, pages 140–155. Springer, 1998.

[4] G. Ferrari, R. Guanciale, and D. Strollo. JSCL: a Middleware for Service Coordination. In
Proc. FORTE’06, Lecture Notes in Computer Science, 2006. To appear.

[5] R. Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer, W. Brauer, and H. Schwicht-
enberg, editors, Logic and Algebra of Specification, Proceedings of International NATO
Summer School (Marktoberdorf, Germany, 1991), volume 94 of Series F. NATO ASI, 1993.
Available as Technical Report ECS-LFCS-91-180, University of Edinburgh, October 1991.

[6] J. Misra. A programming model for the orchestration of web services. In SEFM, pages
2–11. IEEE Computer Society, 2004.

[7] Netscape. An Exploration of Dynamic Documents. http://wp.netscape.com/
assist/net sites/pushpull.html, 1999.

[8] OASIS Bpel Specifications. OASIS - BPEL. http://www.oasis-open.org/
cover/bpel4ws.html.

[9] D. Strollo. Java Signal Core Layer (JSCL). Technical report, Dipartimento di Informatica,
Università di Pisa, 2005. Available at http://www.di.unipi.it/ ˜strollo.

[10] W3C. Web Services Choreography Description Language (v.1.0). Technical report.

Implicit vs. Explicit Data-Flow Requirements
in Web Service Composition Goals

Annapaola Marconi, Marco Pistore, and Paolo Traverso

ITC-irst
Via Sommarive 18, Trento, Italy

{marconi, pistore, traverso}@itc.it

Abstract. In this paper we compare two different approaches to specify data-
flow requirements in Web service composition problems, i.e., requirements on
data that are exchanged among component services. Implicit data-flow require-
ments are a set of rules that specify how the functions computed by the component
services are to be combined by the composite service. They implicitly define the
required constraints among exchanged data. Explicit data-flow requirements are
a set of explicit specifications on how the composition should manipulate mes-
sages and route them from/to components. In the paper, we compare these two
approaches through an experimental evaluation, both from the point of view of
efficiency and scalability and from that of practical usability.

1 Introduction

Service composition is one of the fundamental ideas underlying service-oriented appli-
cations: composed services perform new functionalities by interacting with component
services that are available on the Web. In most real-world applications, service compo-
sitions must be at the “process-level”, i.e., they must take into account that component
services are stateful processes [1] and that they require to follow complex interaction
protocols specified in language such as WS-BPEL [2], The automated synthesis of com-
posed services is one of the key tasks that supports the design and development of
service oriented applications: given a set of available component services and a compo-
sition goal, the task corresponds to the synthesis of a composition, e.g., a new service,
or a set of constraints on the behaviors of existing services, which satisfies the require-
ments expressed by the composition goal.

Recent works address the problem of the automated synthesis of composed services
at the process level, see, e.g., [1,3,4,5,6,7]. However, most of them do not take into
account a key aspect of the composition problem: the specification of data-flow re-
quirements, i.e. requirements on data that are exchanged among component services.
This is a significant and challenging problem, since, in real life scenarios, business an-
alysts and developers need a way to express complex requirements on the exchanged
data. Moreover, to make the automated composition an effective and practical task, the
requirements specification should be easy to write and to understand for the analyst.
Surprisingly, very little effort has been devoted in the literature to address this problem.

In this paper we compare two different approaches to the specification of data-flow
requirements for the automated synthesis of composed services specified in WS-BPEL.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 459–464, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

460 A. Marconi, M. Pistore, and P. Traverso

The first approach is based on implicit data-flow requirements [7]. It exploit the func-
tions that define the tasks carried out by the component services, and that annotate their
WS-BPEL descriptions. Composition goals contain references to such functions that im-
plicitly define constraints on data flows. Consider, for instance, a virtual travel agency
(VTA from now on) that composes two component services, a Flight and a Hotel reser-
vation service. The implicit data-flow requirement stating that the cost offered to the
Customer is a specific function (prepare cost) of the costs of the Hotel and of the Flight
can be specified as follows:

C.cost = prepare cost(H.costOf(C.loc,C.date),F.costOf(C.loc,C.date))

We assume that the cost functions F.costOf and H.costOf appear as “semantic” annota-
tions in the WS-BPEL processes of the flight and hotel components, respectively. This
requirement implicitly specifies a data flow from the messages of the components to
the composed service. The composition task should determine from this specification
which messages and which data should be sent from a service to another. In [7] it is
shown how the framework for process-level composition defined in [5,6] can be ex-
ploited to generate the composition starting from implicit data-flow requirements.

The second approach is based on explicit data-flow requirements. In this case, com-
position goals contain constraints that define the valid routings and manipulations on
the messages of the component services, i.e., these constraints specify how the out-
put messages of the composed service are obtained by manipulating and combining in
suitable ways the input messages obtained from the component services. In the VTA
example, the explicit data flow requirement is the following:

It directly specifies that the VTA must apply its internal function prepare cost on the
costs received from the Hotel and from the Flight, to obtain the cost to be sent in the
offer to the Customer. In [8] it is shown that explicit data-flow requirements can be
described in a graphical way, as data-nets. It is also shown how to adapt the composition
framework of [5,6] to the case of explicit data-flow requirements.

2 Comparison of the Two Approaches

We now compare the two proposed approaches for modeling data-flow requirements
from a technical point of view, from the point of view of the performance, and for what
concerns usability.

The two approaches present some similarities. First of all, both of them extend the
automated composition framework proposed in [6,5]. Moreover, the analysis of the ap-
proaches described in [7] and in [8] shows that they adopt the same strategy to encode
data manipulation and exchange at an abstract level in the composition domain: in-
troducing goal variables (which model variables of the new composite process) and
encoding data-flow requirements as constraints on the operations that can be performed

Implicit vs. Explicit Data-Flow Requirements 461

on goal variables. Another similarity is that both approaches do not require to enu-
merate the values that these variables can assume; this task would be impossible since
variables often require very large or infinite ranges that prevent an explicit enumera-
tion — consider for instance the variables representing the costs in the VTA example.
The main difference lies in the way the two approaches reason on goal variables. The
implicit approach reasons on what is “known” about the goal variables in the states of
the composition domain (e.g., H.costOf(C.loc, C.date) becomes a goal variable, and the
composition approach reasons on whether the value of this variable is “known”), and
uses this information to check whether the goal is satisfied. The explicit approach does
not encode at all data within the composition domain: its states simply model the evo-
lution of the processes, and data-flow constraints are modeled as additional “services”
(e.g. the requirement in the VTA example is modeled as a ’service’ that transforms the
flight and hotel cost into the cost for the customer). This difference is reflected in the
size of the obtained composition domain, which in the implicit approach is much larger.

In order to test the performance of the proposed approaches, we have conducted some
experiments on a scalable domain. Since we wanted to compare the two approaches
on realistic domains, we consider here a real e-commerce scenario, the Virtual Online
Shop (VOS from now on). The VOS consists in providing an electronic purchase and
payment service by combining a set of independent existing services: a given number
of e-commerce services Shops and a credit-card payment service Bank. This way, the
Customer, also described as a service, may directly ask the composite service VOS to
purchase some given goods, which are offered by different Shops, and pay them via
credit-card in a single payment transaction with the Bank. For the Bank we modeled a
real on-line payment procedure offered by an Italian bank. Such a process handles sev-
eral possible failures: it checks both the validity of the target bank account (the Store’s
one in our case) and the validity of the credit card, it checks whether the source bank ac-
count has enough money and whether the owner is authorized for such a money transfer.
The Shop models a hypothetical e-commerce service, providing a complex offer nego-
tiation and supporting a transactional payment procedure. This composition problem
requires a high degree of interleaving between components (to achieve the goal, it is
necessary to carry out interactions with all component services in an interleaved way)
and both the implicit and explicit models of data-flow requirements are pretty complex
(due to the number of functions and to the need of manipulating data in a complex
way). To evaluate the scalability of the two approaches when the number of (complex)
component services grows, we increased the number of stores participating to the com-
position. The following table reports the experimental results.

Implicit Explicit WS-BPEL

domain time (sec.) domain time (sec.) num
goal nr. of max model composition goal data nr. of max model composition complex
vars states path construction & emission vars constr. states path construction & emission activities

VOS 6 1357 54 11.937 3.812 14 6 390 26 1.612 0.218 52
VO2S 9 8573 64 185.391 84.408 20 9 1762 32 1.796 0.688 84
VO3S 12 75289 74 M.O. - 26 12 12412 38 1.921 2.593 109
VO4S - - - - - 32 15 122770 44 2.218 12.500 136
VO5S - - - - - 38 18 1394740 50 2.547 26.197 165
VO6S - - - - - 44 21 16501402 56 2.672 246.937 196

462 A. Marconi, M. Pistore, and P. Traverso

For each considered scenario the table shows some parameters that characterize the
complexity of the composition domain, the automated composition time, and the size
of the generated composite process. The complexity of the implicit approach is given
in terms of the number of goal variables that encode the pieces of “knowledge” that the
composite process acquires while interacting with the component services and manip-
ulating messages (see [7] for the details). For what concerns the explicit approach, we
consider the number of data-flow constraints and the number of goal variables (as shown
in [8], the variables correspond to number of nodes of the data net obtained by combin-
ing all the data-flow constraints). To complete the characterization of the complexity of
the composition domain, for both approaches we report the number of states and the
number of transitions of the longest path in the composition domain that is passed as
input to the automated generation techniques of [5,6]. These measures characterize the
size of the search space for the composed service.

The complexity of the composition task can also be deduced from the size of the new
composite WS-BPEL process, which is reported in the last column of the table. We re-
mark that we report the number of WS-BPEL basic activities (e.g. invoke, receive,
reply, assign, onMessage) and do not count the WS-BPEL structured activi-
ties that are used to aggregate basic activities (e.g. sequence, switch, flow).
Indeed, the former activities are a better measure of the complexity of the generated
process, while the latter are more dependent on the coding style used in the composite
WS-BPEL process. Notice that we report only one measure for the composite process.
Indeed, the processes generated by the two approaches are basically identical: they
implement the same strategy, handle exceptions and failures in the same way and
present the same number of activities. The only difference is the way in which such
activities are arranged, e.g. the order of invocation of the different shops or of the as-
signments when preparing different parts of a message to be sent.

The composition times have been obtained on a Pentium Centrino 1.6 GHz with 512
Mb RAM of memory running Linux. We distinguish between model construction time
and composition and emission time. The former is the time required to obtain the com-
position domain, i.e., to translate the WS-BPEL component services into a finite state
domain and to encode the composition goal. The latter is the time required to synthe-
size the controller according to [5,6] and to emit the corresponding WS-BPEL process.
The experiments show that the implicit approach has worse performances both for the
model construction time and for the composition time. In particular, the implicit ap-
proach is not able to synthesize the VOS scenario with three shops: a memory out is
obtained in model construction time. In the case of the explicit approach, instead, the
time required to generate the composition domain is very low for all the scenarios, and
also the performance for the composition scales up to very complex composition scenar-
ios: the VO6S example (6 Stores, 1 Bank and 1 Customer) can be synthesized in about
4 minutes. We remark that this example is very complex, and requires several hours of
work to be manually encoded: the corresponding WS-BPEL process contains about 200
non-trivial activities! We also remark that the number of states in the implicit domain
for the VO6S example is much larger than the number of states of the VO3S example
in the explicit approach. The fact that the former composition has success while the
latter has not shows another important advantage of the explicit approach: the domain

Implicit vs. Explicit Data-Flow Requirements 463

is very modular, since each data-flow constraint is modeled as a separated “service”,
which allows for a very efficient exploitation of the techniques implemented by [5,7].

For what concerns usability, the judgment is not so straightforward, since the two
approaches adopt very different perspectives. From the one side, modeling data-flow
composition requirements through a data net requires to explicitly link all the messages
received from component services with messages sent to component services. More-
over, a second disadvantage is that component services are black boxes exporting only
input and output ports: there is no way to reason about their internal data manipulation
behaviors. From the other side, data nets models are easy to formulate and understand
through a very intuitive graphical representation. It is rather intuitive for the designer
to check the correctness of the requirements on data routings and manipulations. Also
detecting missing requirements is simple, since they usually correspond to WS-BPEL

messages (or part of messages) that are not linked to the data net. Finally, the practical
experience with the examples of the experimental evaluations reported in this section
is than the time required to specify the data net is acceptable, and much smaller that
the time required to implement the composite service by hand. In the case of the VO6S
scenario, for instance, just around 20 minutes are sufficient to write the requirement,
while several hours are necessary to implement the composite service.

The implicit approach adopts a more abstract perspective, through the use of anno-
tations in the process-level descriptions of component services. This makes the goal
independent from the specific structure of the WS-BPEL processes implementing the
component services, allowing to leave out most implementation details. It is therefore
less time consuming, more concise, more re-usable than data nets. Moreover, annota-
tions provide a way to give semantics to WS-BPEL descriptions of component services,
along the lines described in [9], thus opening up the way to reason on semantic anno-
tations capturing the component service internal behavior. Finally, implicit knowledge
level specifications allow for a clear separation of the components annotations from the
composition goal, and thus for a clear separation of the task of the designers of the com-
ponents from that of the designer of the composition, a separation that can be important
in, e.g., cross-organizational application domains. However, taking full advantage of the
implicit approach is not obvious, especially for people without a deep know-how of the
exploited composition techniques. There are two main opposite risks for the analysts:
to over-specify the requirements adding non mandatory details and thus performing the
same amount of work required by the explicit approach; to forget data-flow requirements
which are necessary to find the desired composite service. Moreover, our experiments
have shown that, while the time required to write the implicit data-flow requirements
given the annotated WS-BPEL processes is much less than the time to specify the data
net, the time required to write the requirements and to annotate the WS-BPEL processes
is much more (and the errors are much more frequent) than for the data net.

3 Conclusions and Related Works

We have compared two different approaches to the definition of data flow require-
ments for the automated synthesis of process-level compositions for component ser-
vices described in WS-BPEL. Implicit requirements [7] compose functions that annotate

464 A. Marconi, M. Pistore, and P. Traverso

WS-BPEL descriptions of component services. Explicit requirements [8] directly specify
the routing and manipulations of data exchanged in the composition. Both approaches
have their pros and cons. Explicit models allow for much better performances, due to
the very modular encoding of requirements. Moreover, they are rather easy to write and
to understand for the analyst. Implicit requirements allow for a higher degree of re-use
and abstraction, as well as for a clear separation of the components annotations from
the composition goal.

Most of the works that address the problem of the automated synthesis of process-
level compositions do not take into account data flow specifications. This is the case of
the work on synthesis based on automata theory that is proposed in [1,3], and of work
within the semantic web community, see, e.g., [10]. Some other approaches, see, e.g.,
[11], are limited to simple composition problems, where component services are either
atomic and/or deterministic.

The work closest to ours is the one described in [4], which proposes an approach to
service aggregation that takes into account data flow requirements. The main difference
is that data flow requirements in [4] are much simpler and at a lower level than in our
framework, since they express direct identity routings of data among processes, and
do not allow for manipulations of data. The examples reported in this paper clearly
show the need for expressing manipulations in data-flow requirements and higher level
requirements.

References

1. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-Services: A Look Behind the Curtain. In:
Proc. PODS’03. (2003)

2. Andrews, T., Curbera, F., Dolakia, H., Goland, J., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weeravarana, S.: Business Process Execution Language
for Web Services (version 1.1) (2003)

3. Berardi, D., Calvanese, D., Giacomo, G.D., Mecella, M.: Composition of Services with
Nondeterministic Observable Behaviour. In: Proc. ICSOC’05. (2005)

4. Brogi, A., Popescu, R.: Towards Semi-automated Workflow-Based Aggregation of Web
Services. In: Proc. ICSOC’05. (2005)

5. Pistore, M., Traverso, P., Bertoli, P., A.Marconi: Automated Synthesis of Composite
BPEL4WS Web Services. In: Proc. ICWS’05. (2005)

6. Pistore, M., Traverso, P., Bertoli, P.: Automated Composition of Web Services by Planning
in Asynchronous Domains. In: Proc. ICAPS’05. (2005)

7. Pistore, M., Marconi, A., Traverso, P., Bertoli, P.: Automated Composition of Web Services
by Planning at the Knowledge Level. In: Proc. IJCAI’05. (2005)

8. Marconi, A., Pistore, M., Traverso, P.: Specifying Data-Flow Requirements for the Auto-
mated Composition of Web Services. In: Proc. SEFM’06. (2006)

9. Pistore, M., Spalazzi, L., Traverso, P.: A Minimalist Approach to Semantic Annotations of
Web Processes. In: Proc. of ESWC’05. (2005)

10. McIlraith, S., Son, S.: Adapting Golog for Composition of Semantic Web Services. In: Proc.
KR’02. (2002)

11. Ponnekanti, S., Fox, A.: SWORD: A Developer Toolkit for Web Service Composition. In:
Proc. WWW’02. (2002)

Light-Weight Semantic Service Annotations
Through Tagging

Harald Meyer and Mathias Weske

Hasso-Plattner-Institute for IT-Systems-Engineering at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany
{harald.meyer, mathias.weske}@hpi.uni-potsdam.de

Abstract. Discovering and composing services is a core functionality of
a service-oriented software system. Semantic web services promise to sup-
port and (partially) automate these tasks. But creating semantic service
specifications is a difficult, time-consuming, and error prone task which
is typically performed by service engineers. In this paper, we present a
community-based approach to the creation of semantic service specifica-
tions. Inspired by concepts from emergent semantics and folksonomies,
we introduce semantic service specifications with restricted expressive-
ness. Instead of capturing service functionality through preconditions and
effects, services are tagged with categories. An example illustrates the
pragmatic nature of our approach in comparison to existing approaches.

1 Introduction

The goal of service orientation is the alignment of the IT infrastructure to the
business goals of a company [1,2,3]. Service-oriented architecture (SOA) defines
the elements and relations of such an IT infrastructure. Two of the core tasks in
a SOA are discovering services and composing services into new services to fulfill
complex tasks [4,5]. In the presence of hundreds or thousands of services, both
tasks become challenging. Semantic web services [6] are a promising approach
to find services based on functionality. Service functionality is described through
preconditions and effects. Creating them and writing queries to find services
according to preconditions and effects is a complex task.

In this paper, we present a novel approach towards service semantics for ser-
vice discovery and composition. Instead of assuming fully automated discovery
and composition, we want to assist users with these tasks. For this, preconditions
and effects are not necessary. Service users (process designers, etc.) tag services
with keywords. These tags enable them to find services. While a service engineer
can provide an initial categorization for a service, users can refine categoriza-
tions incrementally. This helps capturing real world aspects of service usage and
bridging the gap between service description and real world service usage.

The approach presented is similar to service categories in OWL-S [7] and
WSDL-S [8]. But service categories are static. During development, the service
engineer assigns suitable service categories to the new service. A strict separa-
tion between service development and service usage prevents changes by people

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 465–470, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

466 H. Meyer and M. Weske

other than the service engineer. Systems like NAICS (North American Indus-
try Classification System), UNSPSC (United Nations Standard Products and
Services Code), or RosettaNet have defined processes for changes to their tax-
onomies. Adding new concepts may take up to 5 years (for NAICS). Categories
are statically assigned: it rarely makes sense to change a service categorization
in UNSPSC from 4410260214 (Retail of Printers) to 4410310314 (Retail of Ton-
ers). Instead one would remove the existing service and publish a new one.

Our work is inspired by the recent advent of emergent semantics and folk-
sonomies. Both approaches do not depend on a-priori semantical commitments.
Instead, semantic commitment is achieved incrementally. In the next section we
go into more details of emergent semantics and present a formalization for tags.
This formalization serves as the foundation for our application of emergent se-
mantics to service discovery in Section 3. The paper concludes with a summary
and an outlook on future work.

2 Emergent Semantics

Technologies for semantic annotation originate in the annotation of documents.
Recently, these technologies are also used to specify service functionality [6]. When
annotatingdocuments, annotations are created either bydedicatedprofessionals or
the authors of the documents [9,10]. Professionally created annotations are of high-
quality, but their creation is costly and rarely scales for large amounts ofdocuments.
Author-created annotations overcome this problem. But in both approaches the
actual users are detached from the creation of the annotations. Annotations might
therefore not match the actual usage of the documents. If the usage of document
changes or it is used in unintended ways, the annotations cannot reflect this.

Emergent semantics [11] replaces a-priori agreements by incremental, local
agreements. The recent rise in folksonomies can be seen as an application of
emergent semantics. The term folksonomy is a composition of folk and taxonomy.
In a folksonomy annotations for documents are created by the users of the system
through tagging. The most prominent examples for systems based on folksonomy
are del.icio.us (http://del.icio.us/) and flickr (http://flickr.com/) book-
mark and photo management systems. When adding a bookmark in del.icio.us
you can add multiple tags or categories to the bookmark. Later, tags can be
used to find the bookmark again. Another feature of folksonomies is their com-
munity orientation. Bookmarks and tags are shared among all users. Hence, a
user cannot only find all the bookmarks he tagged with a given tag, but he can
also find all the bookmarks tagged with the same tag by all other users.

The freedom resulting from the usage of tags leads to problems illustrated by
Golder and Huberman [12]. It is possible that a tag has multiple homonymous or
polysemous meanings. Synonyms can appear as well. Such synonyms can be espe-
cially complicated in a tagging-based system as user using one tag, will not find
documents tagged with the other tag. User do not need to adhere to a naming
convention. This is problematic as it is unclear whether a tag should be in sin-
gular (e.g. book) or in plural (e.g. books). How tags consisting of more than one

Light-Weight Semantic Service Annotations Through Tagging 467

words are composed is also undefined: write them as one word, separate them with
underscore, or two tags. Similar problems occur on the level of message-level het-
erogeneities when Web services exchange data [13,14] and in multidatabase sys-
tems [15,16]. Michlmayer [17] identifies spamming as an additional problem. The
assumption why these problems do not interfere with the actual usability of exist-
ing systems, is that most of them do not matter if only enough users participate.
For example, the problems with synonyms is that two different tags for the same
meaning lead to separated document landscapes. But if enough users participate,
chances are high that most documents get tagged with both tags.

As a last point in this section we describe a formalization for emergent seman-
tics introduced by Mika [18]. This formalization will later serve us as the basis for
our formalization of emergent semantics for service annotation. A folksonomy:

Definition 1. A folksonomy F ⊆ A × T × O is hypergraph G(F)=(V,E) with

– V = A ∪ T ∪ O as the vertices. The disjoint sets A = {a1, ..., ak}, T =
{t1, ..., tm}, O = {o1, ..., on} are the set of actors, the set of tags, and the set
of objects.

– E = {{a, t, o}|(a, t, o) ∈ F} as the hyperedges connecting an actor a who
tagged an object o with the tag t.

3 Emergent Semantics for Service Annotation

To find services it is important to annotate them with a description of their
functionality. Existing author-created or professionally created semantic anno-
tations, are costly to produce and have the risk of not matching the actual usage
of the service. Hence, we will apply the concept of tagging in this section as a
light-weight approach towards semantic service annotations. As a first step we
introduce service landscapes:

Definition 2. A service is a discrete business functionality. It is described by a
service description. A service landscape is the set of available services described
by service descriptions S = {s1, s2, ..., sn}.
In the upcoming semantic web service standards OWL-S [7] and WSMO [19]
services are described through preconditions and effects. WSMO also introduces
assumptions and postconditions. It distinguishes between information space and
world space. SAWSDL [20] explicitly excludes ”expression of Web services con-
straints and capabilities, including precondition and effect”. The precondition
defines if a service is invokable in the current state. A formal specification of
the functional description of services can be found in [21]. If the precondition
is satisfiable by the current state, the service is invokable. The effect describes
the changes to the current state that result from invoking the service. With our
approach preconditions and effects are no longer necessary. Instead tagging is
applied to semantic services:

Definition 3. A tagging-based semantic service system with a service landscape
S is a folksonomy where the objects are the service landscape: F ⊆ A × T × S.

468 H. Meyer and M. Weske

This means service descriptions are tagged to express service functionality. The
actors in such an environment are for example process designers, service land-
scape managers, and service engineers.

3.1 Example

This example will from now on serve as an illustration for our findings. The
example is about leave requests by employees. Two different kinds of leave re-
quests can be distinguished: vacation and sabbatical. Figure 1 shows the service
landscape S = {s1, s2, s3, s4, s5, s6}. On the left side of each service the input pa-
rameters and on the right side the output parameters are denoted. The services
s1, s2, and s3 deal with vacation requests. After requesting a vacation (s1), the
request’s validity (e.g. whether enough vacation days are left) is checked (s2),
and finally the vacation is approved or rejected (s3).

Services s4 and s5 are the respective services for sabbatical requests. In con-
trast to vacation requests, no automated validity check is performed. Instead
the supervisor needs to manually check the eligibility of the employee to go on
a sabbatical. Finally, service s6 is used to update the information about sab-
baticals and vacations of employees in the human resources system. The human
resources system then publishes the information to the project planning tools so
that no work is planned for employees, who are on leave.

s1 s2 s3

s5s4

EID

Duration

EID

Duration

Vacation
Request

Sabbatical
Request

Vacation
Request

Sabbatical
Request

Vacation
Request

Vacation
Request

Sabbatical
Decision

Vacation
Decision

s6

Vacation
Decision /
Sabbatical
Decision

Fig. 1. Employee leave request: service landscape

Pete and Mary are process designers. Pete is the first one to model a process.
He wants to model a process for vacation request approval. As no tags exist, he
needs to browse the service landscape to find the required services s1, s2, s3, and
s6. To help him and other persons in finding these services in the future, he tags
them with the new tag vacation. This leads to the following folksonomy: F =
{(Pete, vacation, s1), (Pete, vacation, s2), (Pete, vacation, s3), (Pete, vacation,
s6)}. Mary works in another department that currently not tracks spent vaca-
tion days in the human resources system. Instead, the head of department uses a
spreadsheet for this purpose. Hence, she does not need to use service s2. As she
sees Pete’s vacation tag, she can easily figure out all useful services. The system
does not store relations between services, so Mary has to model the process man-
ually without the usage of s2. While she found Pete’s tags useful, she thinks fine
granular tags are better. Hence, she introduces vacation request to tag s1, vaca-
tion approval to tag s3, and update leave info to tag s6. She also models a new

Light-Weight Semantic Service Annotations Through Tagging 469

process for sabbatical requests using services s4, s5, and s6. The folksonomy now is
(Figure 2): F = {(Pete, vacation, s1), (Pete, vacation, s2), (Pete, vacation, s3),
(Pete, vacation, s6), (Mary, vacation request, s1), (Mary, vacation approval,
s3), (Mary, update leave info, s6), (Mary, sabbatical request, s4), (Mary,
sabbatical approval, s5).

Pete

vacation

Mary

A T S

s1

s2

s3

s4

s5

s6

vacation_
request

vacation_
approval

update_
leave_info

sabbatical_
request

sabbatical_
approval

Fig. 2. Service Folksonomy

4 Conclusion

In this paper we presented a novel approach to service semantics. Instead of
modeling service semantics up-front by service engineers, they are incrementally
refined by the users. Existing Folksonomy implementations like del.icio.us are
positive examples how the problems of community-based tagging can be solved.
Systems like del.icio.us overcome these problems through their large user base.
In comparison to several thousand users using such web-based system, we have
to deal with a significantly smaller user base. In an intra-enterprise scenario
maybe only a few dozen users use the system. While the user group is smaller,
it is also of higher quality. Users have a direct gain in their daily work and have
responsibility for their doings.

We already implemented a preliminary prototype for the displayed function-
ality. The next step is to integrate this functionality into an existing BPM suite
and UDDI repository. As a part of this work, experiments will be conducted to
prove the applicability and usefulness in real world process modeling.

References

1. Burbeck, S.: The tao of e-business services. IBM developerWorks (2000)
2. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing: Introduction.

Communications of the ACM 46 (2003) 24–28

470 H. Meyer and M. Weske

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services – Concepts, Ar-
chitectures and Applications. Data-Centric Systems and Applications. Springer
(2004)

4. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The next step in
web services. Communications of the ACM 46 (2003) 29–34

5. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE
Internet Computing 8 (2004) 51–59

6. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent
Systems 16 (2001) 46–53

7. http://www.daml.org/services/owl-s/1.0/: OWL-S 1.0 Release. (2003)
8. http://www.w3.org/Submission/WSDL-S/: WSDL-S. (2005)
9. Rowley, J., Farrow, J.: Organizing Knowledge: Introduction to Access to Informa-

tion. Gower Publishing Limited (2000)
10. Mathes, A.: Folksonomies - cooperative classification and communication through

shared metadata. (2004)
11. Aberer, K., et al.: Emergent Semantics Principles and Issues. In: 9th International

Conference on Database Systems for Advanced Applications. (2004) 25–38
12. Golder, S., Huberman, B.A.: The structure of collaborative tagging systems. Jour-

nal of Information Science (2005)
13. Sheth, A.P.: Changing focus on interoperability in information systems: From

system, syntax, structure to semantics. In: Interoperating Geographic Information
Systems, Kluwer Academic Publishers (1998) 5–30

14. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J.A., Lathem, J.: Semantic inter-
operability of web services – challenges abd experiences. In: Proceedings of the 4th
IEEE Intl. Conference on Web Services. (2006) (to appear).

15. Sheth, A.P., Kashyap, V.: So far (schematically) yet so near (semantically). In:
Conference on Semantics of Interoperable Database Systems. (1992) 283–312

16. Kim, W., Choi, I., Gala, S.K., Scheevel, M.: On resolving schematic heterogeneity
in multidatabase systems. Distributed and Parallel Databases 1 (1993) 251–279

17. Michlmayr, E.: A Case Study on Emergent Semantics in Communities. In: Pro-
ceedings of the Workshop on Social Network Analysis, International Semantic Web
Comference (ISWC). (2005)

18. Mika, P.: Ontologies are us: A unified model of social networks and semantics.
In: Proceedings of the 4th International Semantic Web Conference (ISWC2005).
Number 3729 in LNCS, Springer (2005) 522–536

19. http://wsmo.org: Web Service Modeling Ontology. (2005)
20. http://www.w3.org/2002/ws/sawsdl/: SAWSDL Working Group. (2006)
21. Keller, U., Lausen, H., Stollberg, M.: On the semantics of functional descriptions

of web services. In: Proceedings of the 3rd European Semantic Web Conference
(ESWC2006) (to appear). (2006)

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 471 – 476, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Service-Oriented Model-Driven Development: Filling the
Extra-Functional Property Gap*

Guadalupe Ortiz and Juan Hernández

Quercus Software Engineering Group
University of Extremadura

Computer Science Department
Spain

{gobellot, juanher}@unex.es

Abstract. Although vendors provide multiple platforms for service
implementation, developers demands approaches for managing service-oriented
applications at all stages of development. In this sense, approaches such as
Model-Driven Development (MDD) and Service Component Architecture
(SCA) can be used in conjunction for modeling and integrating services
independently of the underlying platform technology. Besides, WS-Policy
provides a XML-based standard description for extra-functional properties. In
this paper we propose a cross-disciplinary approach, in which the
aforementioned MDD, SCA and WS-Policy are assembled in order to develop
extra-functional properties in web services from a platform independent model.

Keywords: Extra-Functional property, web service, model-driven development,
aspect oriented techniques, WS-policy, service component architecture.

1 Introduction

Web Services provide a successful way to communicate distributed applications, in a
platform independent and loosely coupled manner. Although development middlewares
provide a splendid environment for service implementation, methodologies for earlier
stages of development, are not provided in a cross-disciplinary scope. At present,
academy and industry are beginning to focus on the modeling stage; two representative
approaches are described below:

To start with, SCA provides a way to define interfaces independently of the final
implementation [3]. This proposal allows the developer to define a high level model;
however, it does not face how to integrate this definition with other stages of
development. As the second trend, many proposals are emerging where MDA is being
applied to service development. MDA solves the integration of the different stages of
development, but it does not provide a specific way to do so for service technology.

Let us consider now that we want to provide our modeled services with extra-
functional properties; the way to do so has not been considered yet neither by SCA
approach nor by model-driven ones. On the other hand, WS-Policy provides a

* This work has been developed thanks to the support of MEC under contract TIN2005-09405-

C02-02.

472 G. Ortiz and J. Hernández

standardized way for describing extra-functional service capabilities; however, it does
not determine how the properties are to be modeled or implemented.

Closely related to this is the aim of this paper, which consists on offering a model-
driven methodology in order to deal with extra-functional properties, that is,
additional functionality which should not be part of the system’s main functionality.

The rest of the paper is organized as follows: Section 2 gives an overview of the
whole process followed in this approach. Section 3 shows how the PIM should be
implemented; then, Section 4 explains the PSM stage. Section 5 explains the rules
used to obtain code from PSMs. Other related approaches are examined in Section 6,
whereas the main conclusions are presented in Section 7.

2 Model-Driven Transformations

In this section we provide and depict (Figure 1) a general overview of the presented
approach: The first thing to be done is to define the metamodel to be followed by the
platform independent model. In this sense, we propose to use a UML profile (MOF
compliant) for the platform independent model, consequently the UML metamodel is
our PIM’s metamodel. Afterwards, three different metamodels are proposed in this
approach for PSM stage, which will be explained later on.

Fig. 1. ATL transformation process

Subsequently the transformation from the PIM to the PSMs has to be defined. We
used ATL tool, which provides an Eclipse plugin and which has its own model
transformation language. The ATL transformation file will define the correspondence
between the elements in the source metamodel (PIM) and the target ones (PSMs) and
will be used to generate the target model based on the defined rules and the input
model. Finally, once we have obtained the specific models, we will transform them
into code automatically by using additional transformation rules.

Code

PSM models PIM
Model

PSM Metamodels

PIM
metamodel

MOF

MM
UML

MM SOAP Tag MM AOP MM POLICY

MM
ATL

CT
CT

CT

CT

UML
Model

PIM-PSM
Transformation

Rules(A)

SOAP Tag Model
AOP Model

Policy Model

CT

CT
CT

CT

CT
CT

Transf. A
Transf. A

Transf. A

PSM-Code
Transformation

Rules (B) Java Code AspectJ Code Policy Code

Transf. B Transf. B Transf. B

CT

to

 Service-Oriented Model-Driven Development 473

3 Extra-Functional Property PIM

In order to maintain our system loosely coupled when adding extra-functional
properties to the model, we propose the profile in Figure 2, whose elements will be
explained as follows and are deeply detailed in [9]:

• First of all, we define the stereotype extra-functional property, which extends
operation metaclass or interface metaclass: when applied to an interface the
property will be applied to all the operations in it. The stereotype provides five
attributes: actionType indicates whether the property behavior will be performed
before, after or instead of stereotyped operation’s execution – or if no additional
behavior is needed it will have the value none, only possible in the client side,
which is out of the scope of this paper. Secondly, optional will indicate whether the
property is performed optionally or compulsorily. ack, when true it means that it is
a well-known property and its functionality code can be generated at a later stage;
it will have the value false when it is a domain-specific property and only the
skeleton can be generated. Finally, PolicyId will contain the name to be assigned to
generated policy; policyDoc will be the url where the policy will be available.

• In order to define actionType, an enumeration is provided with four alternative
values: before, after, instead or none.

• If the property is applied in an offered interface, then it will be implemented when
the stereotyped operations are executed. If the property is applied in a required
interface, it will be performed when the operations are invoked; in this case the
service is acting as a client, which is beyond the purpose of this paper.

Fig. 2. Extra-functional property profile

Consider now we have a tourist information service. We will represent this service
as a component, stereotyped as serviceComponent, which will offer a provided
interface. Let us imagine now that we want to include some extra-functional
properties to the touristInformation service model. We have devised three different
sample properties:

• First of all, a Log property, which will be applied to all the operations offered by
the service to record information related to all received invocations.

• Secondly, RealTime will be required discretionarily by the client when invoking
weatherInformation: subject to a different pricing, the real time weather in a city
may be obtained; under the regular price the average weather will be obtained.

474 G. Ortiz and J. Hernández

• Finally, a Login property, used to control access to RentingCar, since it will only
be possible to rent a car for those who have a username and a password.

We have to extend the extra-functional property stereotype with the specific
properties to be applied, as shown in Figure 3. Properties are added then to
touristServiceInterface. In order to provide all the operations with Log, we have
stereotyped the interface with log, whose attributes indicate that the property will be
performed after any operation in the interface is executed (not optional); information
will be recorded in logFile; it is a well-known property; policyID is Log and
policyDoc is null. RealTime and Login would also be interpreted similarly.

Fig. 3. PIM with extra-functional properties

4 Extra-Functional Property PSMs

Regarding target metamodels, there will be three of them: our specific models will be
based, first of all, on an aspect-oriented approach to specify the property behavior,
secondly on a soap tags-based approach, to lay down the necessary elements to be
included or checked in the SOAP message header and, finally, a policy-based one for
property description. Metamodels are explained and depicted below:

Fig. 4. PSM metamodels

SOAP
TAG
MM

POLICY MM ASPECT METAMODEL

 Service-Oriented Model-Driven Development 475

• Every aspectClass will have an attribute target which indicates the method or
interface for the property to be applied; actionType informs of when the property
has to be applied; ack indicates whether the property is well-known or not and,
finally, an action provides the corresponding functionality. All additional
characteristics from the particular property will be included as attributes.

• New tags are included in the SOAP Header to select –client - or to check –service -
the properties to be applied, when optional, or to deliver additional information [8].
Every Soap tag element will have a target which will instruct the method or
interface for the property to be applied, value, to indicate the tag to be included;
and side, which indicates whether it is included from the client or service side.

• A policy will be generated for every property. The policy will contain the policy
name, whether the property is optional or not, well-known o domain-specific (ack);
targetType indicates if the policy is to be applied to a portType or to an operation
and targetName gives the name of the specific element.

Once the transformation rules are applied to the PIM, the specific models
containing information about the properties are obtained, which are going to be
described. Due to space restrictions only one characteristic element from each
metamodel has been described: Log is applied to the interface, thus one aspect will be
generated for each operation in the interface. The aspect would be named
TS_hotelInformation_Log; target and actionType would have the values
touristServiceInterface.hotelInformation and after, respectively, and action would be
also included. Additionally, ack would have the true value. Regarding the policy
element, name would be http://aop4ws/Log; optional would be false. Finally, for
policyAttachment, targetType would take portType and targetName
touristServiceInterface. The RealTime transformation would be similar, but being
optional, a new attribute would be included in the SOAP Handler.

5 Code Layer: Extra-Functional Property Generated Code

In the last transformation stage, Java code will be generated to check if soap tags are
included in the SOAP message and AspectJ code will be created for the aspects, , thus
maintaining properties decoupled from the services implemented and the transparency
in the property selection by the client [8]. With regard to description, it is proposed to
generate the WS-Policy [1] documents for each property, which are integrated with
the aspect-oriented generated properties [10]. This allows properties to remain
decoupled not only at modeling stage, but also in during implementation.

ATL tools have also been used for code generation, where the transformation rules
identify the different elements in the specific models and generate code from them.
Transformation rules will generate skeleton code for the three model elements:

An AspectJ aspect will be generated for each aspect class in our model. Pointcuts
will be determined by the execution of the target element. Regarding the advice,
depending on the actionType attribute value, before, after or instead, the advice type
will be before, after or around, respectively. Regarding property description, an xml
file based on the WS-Policy standard is generated and attached to the service by the
file based on the WS-PolicyAttachment standard. Code for the inclusion of SOAP
Tags will be generated for every SOAP Tag Class in the model.

476 G. Ortiz and J. Hernández

6 Related Work

As regards Web Service modeling proposals, the research presented by J. Bezivin et
al. [4] is worth a special mention; in it Web Service modeling is covered in different
levels, using Java and JWSDP implementations in the end. It is also worth mentioning
the paper from M. Smith et al. [11], where a model-driven development is proposed
for Grid Applications based on the use of Web Services. Our work provides the
possibility of adding extra-functional properties to the services and is not oriented to
the service modeling itself; thus it could be considered as complementary to them.

Concerning proposals which focus on extra-functional properties, we can
especially mention the one from D. Fensel et al. [7], where extra-functional properties
are modeled as pre and post conditions in an ontology description. Secondly, L.
Baresi et al. extend WS-Policy by using a domain-independent assertion language in
order to embed monitoring directives into policies [2]. Both are interesting proposals,
however they do not follow the UML standard, which we consider essential for
integrating properties in future service models.

7 Conclusions

This paper has shown a model-driven approach to including extra-functional
capabilities in web service development in a loosely coupled manner. Properties are
included in the PIM by using a UML profile. The initial PIM has been converted into
three specific models which conform to three provided metamodels, based on the soap
tags information, aspect oriented elements and policy based ones. All the code related
to extra-functional property has been automatically generated from PSMs.

References

[1] Bajaj, S., Box, D., Chappeli, D., et al. Web Services Policy Framework (WS-Policy),
ftp://www6.software.ibm.com/ software/developer/library/ws-policy.pdf, September 2004

[2] Baresi, L. Guinea, S. Plebani, P. WS-Policy for Service Monitoring. VLDB Workshop on
Technologies for E-Services, Trondheim, Norway, September 2005

[3] Beisiegel, M., Blohm, H., Booz, D.,et al. Service Component Architecture. Building
Systems using a Service Oriented Architecture. http://download.boulder.ibm.com/ibmdl/
pub/software/dw/specs/ws-sca/SCA_White_Paper1_09.pdf, November 2005

[4] Bézivin, J., Hammoudi, S., Lopes, D. et al. An Experiment in Mapping Web Services to
Implementation Platforms. N. R. I. o. Computers: 26, 2004

[5] Fensel, D., Bussler, C. The Web Service Modeling Framework WSMF. http://
informatik.uibk.ac.at/users/c70385/ wese/wsmf.bis2002.pdf

[6] Ortiz G., Hernández J., Clemente, P.J.How to Deal with Non-functional Properties in Web
Service Development, Proc. Int. Conf. on Web Engineering, Sydney, Australia, July 2005

[7] Ortiz G., Hernández J., Toward UML Profiles for Web Services and their Extra-Functional
Properties, Proc. Int. Conf. on Web Services, Chicago, EEUU, September 2006.

[8] Ortiz, G., Leymann, F. Combining WS-Policy and Aspect-Oriented Programming. Proc. of
the Int. Conference on Internet and Web Applications and Services, Guadeloupe, French
Caribbean, February 2006.

[9] Smith, M., Friese, T. Freisbelen, B. Model Driven Development of Service-Oriented Grid
Applications. Proc. of the Int. Conference on Internet and Web Applications and Services,
Guadeloupe, French Caribbean, February 2006

WSMX: A Semantic Service Oriented
Middleware for B2B Integration�

Thomas Haselwanter1, Paavo Kotinurmi1,2, Matthew Moran1, Tomas Vitvar1,
and Maciej Zaremba1

1 Digital Enterprise Research Institute
University of Innsbruck, Austria

National University of Ireland in Galway, Ireland
firstname.lastname@deri.org

2 Helsinki University of Technology, Finland

Abstract. In this paper we present a B2B integration scenario building
on the principles of Semantic Web services. For this scenario we show the
benefits of semantic descriptions used within the integration process to
enable conversation between systems with data and process mediation of
services. We illustrate our approach on the WSMX – a middleware plat-
form built specifically to enact semantic service oriented architectures.

1 Introduction

Although Business-to-Business (B2B) standards such as RosettaNet, EDI and
ebXML have brought new value to inter-enterprise integration, they still suffer
from two drawbacks. All partners must agree to use the same standard and of-
ten the rigid configuration of standards makes them difficult to reconfigure, reuse
and maintain. In order to overcome some of the difficulties of B2B integration, se-
mantic technologies offer a promising potential to enable more flexible integration
that is more adaptive to changes that might occur over a software system’s life-
time [4]. There remains, however, very few realistic publicly implemented scena-
rios demonstrating the benefits of this technology. In this respect, we aim to show-
case how Semantic Web service (SWS) technology can be used to facilitate the
dynamics for B2B integration. We base our work on specifications of WSMO[5],
WSML[5] and WSMX[3] providing a conceptual framework, ontology language
and execution environment for Semantic Web services. In addition, we make use of
the RosettaNet B2B standard – an industry standard providing definition of inter-
company choreographies (e.g. PIP3A4 Request Purchase Order (PO)) as well as
structure and semantics for business messages. In this paper we show how these
technologies are used in a real-world scenario involving (1) semantic representa-
tion of XML schema for RosettaNet as well as a proprietary purchase order using
the WSML ontology language, (2) semantic representation of services provided
� This work is supported by the Science Foundation Ireland Grant No.

SFI/02/CE1/I131, and the EU projects Knowledge Web (FP6-507482), DIP (FP6-
507483) and ASG (FP6-C004617).

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 477–483, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

478 T. Haselwanter et al.

by partners using WSMO, (3) executing a conversation between partner services
using the WSMX integration middleware, and (4) application of data and process
mediation between heterogeneous services where necessary.

2 Architecture

In figure 1, a fictitious trading company called Moon uses two back-end systems to
manage its order processing, namely, a Customer Relationship Management sys-
tem (CRM) and an Order Management system (OMS). Moon has signed agree-
ments to exchange purchase order messages with a partner company called Blue
using the RosettaNet PIP 3A4. We use SWS technology to facilitate conversation
between all systems, to mediate between the PIP 3A4 and the XML schema used by
Moon, and to ensure that the message exchange between both parties is correctly
choreographed. Following is a description of the basic blocks of the architecture.

WSMX middleware

C
o

m
m

u
n

ic
at

io
n

M

an
ag

er

P
ar

se
r

D
is

co
ve

ry

D
at

a
M

ed
ia

to
r

C
h

o
re

o
g

ra
p

h
y

E
n

g
in

e

P
ro

ce
ss

 M
ed

ia
to

r
Execution Semantics

Persistence Layer

Services Ontologies Mediators

Adapter

C
R

M
/O

M
S

-W
S

M
X

A
d

ap
te

r

Customer
Relationship

System
(CRM)

Order
Management

System
(OMS)

Blue Company

R
o

se
tt

aN
et

-W
S

M
X

A
d

ap
te

r

Send PO

Receive
POC

Adapter Moon Back-end
Systems

Moon Company

RosettaNet
System

Fig. 1. Architecture Overview

– Existing Systems. The existing systems are Moon’s back-end applications
including CRM and OMS systems as well as Blue’s RosettaNet system. Each
system communicates using different formats, i.e. Blue’s RosettaNet system
communicates according to the RosettaNet PIP 3A4 PO, whereas commu-
nication with the CRM and OMS systems is proprietary, specified in their
WSDL descriptions.

– Adapters. Since WSMX internally operates on the semantic level (WSML),
adapters facilitate lifting and lowering operations to transform between XML
and WSML. In addition, it also identifies the WSMO Goal that corresponds
to a PO request and sends it to WSMX.

– WSMX. WSMX is the integration platform which facilitates the integra-
tion process between different systems. The integration process is defined
by the WSMX execution semantics, i.e. interactions of middleware services
including discovery, mediation, invocation, choreography, repository, etc.

WSMX: A Semantic Service Oriented Middleware for B2B Integration 479

There are two phases to the integration of the Blue and Moon partners: (1) in-
tegration setup phase and (2) integration runtime phase. During the setup phase,
the development of adapters, WSMO ontologies and services, rules for lifting/lo-
wering, mapping rules between ontologies are carried out for RosettaNet, OMS
and CRM systems. The focus of this paper is on the runtime phase describing
interactions between Blue and Moon systems.

2.1 Activity Diagram

In this section we describe interactions between the Blue and Moon systems
facilitated by WSMX through its middleware services as depicted in the figure
2. We refer to parts of the figure using numbers before title of each subsection.

1 – Sending Request. A PIP3A4 PO message is sent from the RosettaNet
system to the entry point of the RosettaNet-WSMX adapter. On successful re-
ception of the message by the adapter, an acknowledgment is sent back to the
RosettaNet system. In the RosettaNet-WSMX adapter, the PO XML message
is lifted to WSML according to the PIP3A4 ontology and rules for lifting using
XSLT. Finally, a WSMO Goal is created from the PO message including the
definition of the desired capability and a choreography. The capability of the
requester (Blue company) is used during the discovery process whereas the Goal
choreography describes how the requester wishes to interact with the environ-
ment. After the goal is created, it is sent to WSMX through the AchieveGoal
entrypoint. In return, a context is received containing the identification of the
conversation – this information is used in subsequent asynchronous calls from
the requester.

2 – Discovery and Conversation Setup. The AchieveGoal entrypoint is
implemented by the WSMX Communication Manager – the WSMX middleware
service, which facilitates the inbound and outbound communication with the
WSMX environment. After receipt of the goal, the Communication Manager
initiates the execution semantics which manages the whole integration process.
The Communication Manager sends the WSML goal to the instance of the exe-
cution semantics, which in turn invokes the WSMX Parser returning the Goal
parsed into an internal system object. The next step is to invoke the discovery
middleware service in order to match the requested capability of the Goal with
the capabilities of services registered in the WSMX repository. Since we do not
concentrate on the discovery in this paper, we use a very simplified approach
when only one service in the repository (CRM/OMS service) can be matched
with the goal. After discovery, the execution semantics registers both the re-
quester’s and the provider’s choreography with the Choreography Engine (these
choreographies are part of the goal and service descriptions respectively). Both
choreographies are set to a state where they wait for incoming messages that
could fire a transition rule. This completes the conversation setup.

3 – Conversation with Requester. The instance data for the goal is sent from
the RosettaNet-WSMX adapter to the WSMX asynchronously by invoking the

480 T. Haselwanter et al.

Parsing WSMLmsg...

pa
rs

in
g

purchaseOrder (XML)

Blue Company
RosettaNet

System

parse (WSMLGoal)

Initiate
Execution
Semantics

Object Goal

discover(Goal) Get Services

Services

Discovered Service

registerChoreography
(Goal, Service)

receiveData
(context, WSMLmsg) ...

addData
(context, msg) mediate(SourceOnt,TargetOnt, msg)

achieveGoal(WSMLGoal)

context

send(msg’)
[searchCustomerRequest]

D
ata

M
ediation

purchaseOrderAck (XML)

searchCustomerRequest
(searchString)

receiveData
(context, WSMLmsg)

searchCustomerResponse
(customerObject)

... Parsing WSMLmsg...

addData
(context, msg)

Parsing WSMLmsg...

send(msg)
[createNewOrder]

createNewOrder
(WSMLmsg, context)createNewOrder (XML)

receiveData
(context, WSMLmsg)

orderID (XML) ... Parsing WSMLmsg...

addData
(contextId, msg)

...

closeOrderAck (XML)

send(msg’)
[purchaseOrderConfirmation]

purchaseOrderConfirmation
(WSMLmsg, context)

purchaseOrderConfirmation
(XML)

end of conversation

Moon
OMS

Moon
CRM

Adapter
RosettaNet-

WSMX

Adapter
CRM/OMS-

WSMX

WSMX
Communication

Manager

WSMX
Execution
Semantics

WSMX
Choreography

Engine

WSMX
Parser

WSMX
Data

Mediatior

WSMX
Discovery

WSMX
Service
Registry

searchCustomerRequest
(WSMLmsg, context)

1 2

WSMX
Process
Mediator

msg’

updateChoreography
(context, msg’)

updateChoreography
(context, msg)

updateChoreography
(context, msg)

send(msg)
[closeOrder]

closeOrder
(WSMLmsg, context)closeOrder (XML)

addData
(contextId, msg) Data Mediation...

updateChoreography
(context, msg’)

end of conversation

orderConfirmation (XML)

receiveData
(context, WSMLmsg)

purchaseOrderConfirmationAck
(XML)

send(msg)
[addLineItem]

addLineItem
(WSMLmsg, context)addLineItem (XML)

addLineItemAck (XML)

3

4

Goal Choreography
State

Service Choreography
State

WSMLmsg Unparsed WSML
message

msg Parsed WSML message
into the memory object

msg’ Parsed WSML message
after data mediation

Legend

5

updateChoreography
(context, msg)

Fig. 2. Activity Diagram

receiveData entrypoint. The data in WSML (WSMLmsg) is passed through the
Communication Manager to the execution semantics, they are parsed and sent to
the WSMX Process Mediator. The first task of the WSMX Process Mediator is to
decide, which data will be added to requester’s or provider’s choreography1 – this
decision is based on analysis of both choreographies and concepts used by these
choreographies. Process Mediator first updates the memory of the requester’s
choreography with the information that the PO request has been sent. The
Process Mediator then evaluates how data should be added to the memory of
the provider’s choreography – data must be first mediated to the ontology used
by the provider. For this purpose, the source ontology of the requester, target

1 Choreographies of WSMO services are modeled as Abstract State Machines [2].

WSMX: A Semantic Service Oriented Middleware for B2B Integration 481

ontology of the provider and the instance data are passed to the WSMX Data
Mediator. Data mediation is performed by execution of mapping rules between
both ontologies (these mapping rules are stored within WSMX and have been
created and registered during the integration setup phase). Once mediation is
complete, the mediated data is added to the provider’s choreography.

4 – Conversation with Provider (Opening Order, Add Line Items,
Closing Order). Once the requester’s and provider’s choreographies have been
updated, the Choreography Engine processes each to evaluate if any transition
rules could be fired. The requester’s choreography remains in the waiting state
as no rule can be evaluated at this stage. For the provider’s choreography, the
Choreography Engine finds the rule shown in the listing 1.1 (lines 14-21). Here,
the Choreography Engine matches the data in the memory with the the antece-
dent of the rule and performs the action of the rule’s consequent. The rule says
that the message SearchCustomerRequest with data searchString should be sent
to the service provider (this data has been previously added to the choreography
memory after the mediation - here, searchString corresponds to the customerId
from the requester’s ontology). The Choreography Engine then waits for the
SearchCustomerResponse message to be sent as a response from the provider.
Sending the message to the service provider is initiated by Choreography En-
gine passing the message to the Communication Manager which, according to
the grounding defined in the choreography, passes the message to the searchCu-
stomer entrypoint of the CRM/OMS-WSMX Adapter. In the adapter, lowering
of the WSML message to XML is performed using the lowering rules for the
CRM/OMS ontology and the CRM XML Schema. After that, the actual ser-
vice of the CRM system behind the adapter is invoked, passing the parameter
of the searchString. The CRM system returns back to the CRM/OMS Adapter
a resulting customerObject captured in XML. The XML data is lifted to the
CRM/OMS ontology, passed to the WSMX, parsed, evaluated by the WSMX
Process Mediator and added to the provider’s choreography memory. Once the
memory of the provider’s choreography is updated, the next rule is evaluated
resulting in sending a createNewOrder message to the Moon OMS system. This
process is analogous to one described before. As a result, the orderID sent out
from the OMS system is again added to the memory of the provider’s choreo-
graphy. After the order is created (opened) in the OMS system, the individual
items to be ordered need to be added to that order. These items were previously
sent in one message as part of order request from Blue’s RosettaNet system (i.e.
a collection of ProductLineItem) which must be now sent to the OMS system
individually. As part of the data mediation in the step 3, the collection of items
from the RosettaNet order request have been split into individual items which
format is described by the provider’s ontology. At that stage, the Process Me-
diator also added these items into the provider’s choreography. The next rule
to be evaluated now is the rule of sending addLineItem message with data of
one lineItem from the choreography memory. Since there is more then one line
item in the memory, this rule will be evaluated several items until all line items

482 T. Haselwanter et al.

from the ontology have been sent to the OMS system. When all line items have
been sent, the next rule is to close the order in the OMS system. The closeOrder
message is sent out from the WSMX to the OMS system and since no additional
rules from the provider’s choreography can be evaluated, the choreography gets
to the end of conversation state.

The listing 1.1 shows the fragment of the provider’s choreography and the
first selected rule from the requester’s choreography described above. The cho-
reography is described from the service point of view thus the rule says that
the service expects to receive the SearchCustomerRequest message and send the
reply SearchCustomerResponse message. The choreography is part of the service
definition which in addition also contains definition of non-functional properties
and capability. For brevity, these elements are not included in the listing.

� �
1 ...
2 choreography MoonWSChoreography
3 stateSignature ”http://www.example.org/ontologies/sws−challenge/MoonWS#statesignature”
4 importsOntology { ”http://www.example.org/ontologies/sws−challenge/Moon”,
5 ”http://www.example.org/ontologies/choreographyOnto” }
6

7 in moon#SearchCustomerRequest withGrounding { ”http://intranet.moon.local/wsmx/services/
CRMOMSAdapter?WSDL#wsdl.interfaceMessageReference(CRMOMSAdapter/CRMsearch
/in0)”}

8 ...
9 out moon#SearchCustomerResponse

10 ...
11 controlled oasm#ControlState
12

13 transitionRules ”http://www.example.org/ontologies/sws−challenge/MoonWS#transitionRules”
14 forall {?controlstate, ?request} with (
15 ?controlstate[oasm#value hasValue oasm#InitialState] memberOf oasm#ControlState and
16 ?request memberOf moon#SearchCustomerRequest
17) do
18 add(?controlstate[oasm#value hasValue moonc#SearchCustomer])
19 delete(?controlstate[oasm#value hasValue oasm#InitialState])
20 add(# memberOf moon#SearchCustomerResponse)
21 endForall
22 ...

� �

Listing 1.1. Requester’s Service Choreography

5 – Conversation with Requester (Order Confirmation, End of Con-
versation). When the order in OMS system is closed, the OMS system replies
with orderConfirmation. After lifting and parsing of the message, the Process
Mediator first invokes the mediation of the data to the requester’s ontology and
then adds the data to the memory of the requester’s choreography. The next rule
of the requester’s choreography can be then evaluated saying that purchaseOr-
derConfirmation message needs to be sent to the RosettaNet system. After the
message is sent, no additional rules can be evaluated from the requester’s choreo-
graphy, thus the choreography gets to the end of conversation state. Since both
requester’s and provider’s choreography are in the state of end of conversation,
the Choreography Engine notifies the execution semantics and the conversation
is closed.

WSMX: A Semantic Service Oriented Middleware for B2B Integration 483

3 Conclusion and Future Work

This work addresses the fact that although research into the area of Semantic
Web services is well established, there is a scarcity of implemented use cases de-
monstrating the potential benefits. Existing approaches to dynamic or semantic
B2B integration such as [1], [4], [6] are mostly conceptual with lack of demonstra-
tion and evaluation of real-world case scenarios. The system presented here has
been implemented according to the scenario from the SWS Challenge2 addres-
sing data and process heterogeneities in a B2B integration. It has been evaluated
how our solution adapts to changes of back-end systems with needs to change
the execution code (success level 1), data/configuration of the system (success
level 2), no changes in code and data (success level 3)3. For data mediation we
had to make some changes in code due to forced limitations of existing data
mediation tools. For process mediation we changed only description of service
interfaces (choreographies) according to the changes in back-end systems. Ulti-
mately, we aim to the level when our system adapts without changes in code and
configuration – the adaptation will be purely based on reasoning over semantic
descriptions of services, their information models and interfaces. We also plan to
expand our solution to cover more B2B standards and to integrate key enterprise
infrastructure systems such as policy management, service quality assurance, etc.

References

1. N. Anicic, N. Ivezic, and A. Jones. An Architecture for Semantic Enterprise Appli-
cation Integration Standards. In Interoperability of Enterprise Software and Appli-
cations, pp. 25–34. Springer, 2006.

2. E. Brger and R. Strk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

3. A. Haller, et al. WSMX – A Semantic Service-Oriented Architecture. In Proc. of
the 3rd Int. Conf. on Web Services, pp. 321 – 328. IEEE Computer Society, 2005.

4. C. Preist, et al. Automated Business-to-Business Integration of a Logistics Supply
Chain using Semantic Web Services Technology. In Proc. of 4th Int. Semantic Web
Conference. 2005.

5. D. Roman, et al. Web Service Modeling Ontology. Applied Ontologies, 1(1):77 –
106, 2005.

6. K. Verma, et al. The METEOR-S Approach for Configuring and Executing Dynamic
Web Processes, available at http://lsdis.cs.uga.edu/projects/meteor-s/techRep6-24-
05.pdf. Tech. rep., 2005.

2 http://www.sws-challenge.org
3 http://sws-challenge.org/wiki/index.php/Workshop Budva

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 484 – 489, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Top Down Versus Bottom Up in Service-Oriented
Integration: An MDA-Based Solution for Minimizing

Technology Coupling

Theo Dirk Meijler, Gert Kruithof, and Nick van Beest

Information Systems, Faculty of Management and Organization
{t.d.meijler, g.h.kruithof}@rug.nl,
n.r.t.p.van.beest@student.rug.nl

Abstract. Service-oriented integration typically combines top-down
development with bottom-up reverse engineering. Top-down development
starts from requirements and ends with implementation. Bottom-up reverse
engineering starts from available components and data sources. Often, the
integrating business processes are directly linked to the reverse-engineered web
services, resulting in a high degree of technology coupling. This in turn leads to
a low level of maintainability and low reusability. The Model-Driven
Architecture (MDA) provides an approach aimed at achieving technology
independency through full top-down development. However, this approach
does not handle the bottom-up reverse-engineered components very well. In this
paper, an approach is introduced that combines top-down with bottom-up
realization, while minimizing the technology coupling. This is achieved by an
explicit buffer between top-down and bottom-up. “High-level” web services are
derived through top-down development, whereas “Low-level” web services are
reverse-engineered, and a mapping is created between the two. The approach
focuses on engineering web services reversely, while retaining the advantages
of the MDA with respect to platform independency, maintainability and
reusability.

Topics: Business Service Modeling, Service Assembly.

Scientific Area: Service-oriented software engineering.

1 Introduction

Various approaches have been proposed for developing enterprise information
systems (EISs) in a top-down manner [1],[2]. An important characteristic of a pure
top-down development approach is that it starts from the desired business situation
(rather than from the current situation) and finally results in the implementation of a
new system. In the approaches adopted by [1],[2] the Model-Driven Architecture
(MDA) plays an important role. Models serve as a better form of communication with
the domain expert than code does, and so the domain expert can be given a bigger role
in the development process. A Service-Oriented Architecture (SOA) [3] can also play
an important role in the top-down development of reconfigurable business processes.
A bottom-up approach, in contrast, starts from a system’s existing components

 Top Down Versus Bottom Up in Service-Oriented Integration 485

(including data sources). The SOA enables publishing of legacy components into the
standard form of web services. An effective combination of top-down and bottom-up
development is clearly required because enterprises both need to reuse their legacy
components and work toward a desired business situation.

According to the standard SOA integration approach top-down development
results in process realizations. These processes are directly linked to the web services
that result from the bottom-up reverse engineering of legacy components. Changes in
the relatively autonomous legacy components have an impact on the business
processes. Thus, due to this form of technology coupling, the process model no longer
reflects the “real” business process and becomes less understandable to the domain
expert, making it more difficult for him/her to maintain. So, linking top-down and
bottom-up development in this way undermines flexibility.

This paper presents an alternative approach to the linking of top-down and bottom-
up development in a SOA on the basis of which technology decoupling is achieved.
This approach improves the integration of MDA and SOA, as already presented by
other authors [4][5].

2 Example from the Financial Sector

Generally, banks already have several components and data sources at their disposal,
and they may integrate these by adopting a SOA approach. This example represents a
highly simplified process of loan provision. The main legacy component is a data
source. The schema of the initial database contains two tables: client and loan (Fig.
1a). Fig. 1 also shows the bottom-up reverse-engineered web services that represent
this data source.

Web Services:

GetClientObject(),
GetClientObjectForSocialSecurityID(),
GetClientObjects(), GetNextClientObject(),
GetPreviousClientObject(),

GetLoanObject(),
GetLoanObjectForLoanId(),
GetLoanObjects() GetNextLoanObject()
GetPreviousLoanObject()
GetLoanObjectsForSocialSecurityID().

Client

SocialSecurityId Name

BehindWithPayments

Loan

LoanId SocialSecurityId LoanAmount

b)

a)

SocialSecurityId Name CreditWorthiness

Fig. 1. Initial data structure and some web services

Fig. 2 shows a part of the business process model. The business process invokes
the web service GetClientForSocialSecurityID() directly from an activity in the
process. The SocialSecurityID of the Client has to be passed on to the LoanProvision
subprocess, which can only continue if the client is creditworthy. The second activity
in the process therefore involves the calculation of creditworthiness by iterating over
all loans to assess whether in one of these loans the value of the
“BehindWithPayments” property is set to true.

486 T.D. Meijler, G. Kruithof, and N. van Beest

Now, the bank may decide to add a new “CreditWorthiness” property to the Client
table (Fig. 1b). From the perspective of the business process, it is irrelevant whether
creditworthiness is calculated in advance and stored as a Client attribute, or calculated
at the time it is being requested in the process. However, the process will be strongly
impacted by this change: the additional activity of calculating creditworthiness is no
longer required.

This example shows that in a standard top-down and bottom-up integration,
changes in the structure of the data sources of the bottom-up web services have an
undesired impact on the structure of the business process.

Start business process

End business process

Creditworthiness =NotOk

Creditworthiness=OK

SubProcess Loan Provision

Input: SocialSecurityID

Output: New Loan

WebService: GetClientObjectForSocialSecurityID

Input: SocialSecurityID

Output: ClientInfo

Web Service: GetLoanObjectsForSocialSecurityID

FOR EACH Loan:

IF BehindWithPayments=True THEN

Creditworthiness = NotOk

Input: SocialSecurityID

Output: Creditworthiness

Fig. 2. Initial Business process of providing loans to clients

3 Approach

Figure 3 illustrates the solution presented in this paper. The solution itself is
represented in the middle of the figure. Figure 3a, b and c are used to indicate the
application of the solution to the example. The solution contains the following main
components:

1. The solution applies the standard MDA subdivision between PIM (Platform
Independent Model), PSM (Platform Specific Model) and Implementation. The
lowest implementation part is represented by BPEL and WSDL files for the
executable business process and web services that can be invoked. In a PSM a
process is modeled in a SOA-specific way, indicating which activities call which
web services, where these are located etc. (See [4] for a SOA specific UML

 Top Down Versus Bottom Up in Service-Oriented Integration 487

profile). A PIM may be a process model invoking interfaces that map to web
services (See also [5]); Figure 3a depicts the PIM process model in our example,
which abstracts from the implementation of creditworthiness.

2. New in comparison to other approaches to integrating MDA and SOA [4][5] is that
the PIM not only contains a process model but also a data model. While the PIM
process model serves to do top-down development of the BPEL process
implementation, the PIM data model serves to do a top-down development of a set
of so-called “high-level” (abbreviated: hl) web services (abbreviated: ws). Figure
3b shows the PIM data model and corresponding high-level web services. Thus,
the addition of a data-model serves to enable a full-fledged top-down derivation of
an implementation.

PIM
process

PSM
process

PSM
wshl

WS
WSDL

BPEL

derive

generate

invokes

PSM
wsll

WS
WSDL

reverse

PIM
data model
+interfaces

generate

generate

Intermediate layer

invokes

invokes

Client

SocialSecurityID (PK)

IBAN

Creditworthiness

Loan

LoanId (PK)

SocialSecurityID (FK)

LoanAmount

1

0..*

HLGetClientObject(),
HLGetClientObjectForSocialSecurityID(),
HLGetClientObjects(), GetNextClientObject(),
HLGetPreviousClientObject(),

HLGetLoanObject(),
HLGetLoanObjectForLoanId(),
HLGetLoanObjects() HLGetNextLoanObject()
HLGetPreviousLoanObject()

HLGetLoanObjectsForSocialSecurityID().

c

Creditworthi
ness =NotOk

Creditworthiness
=OK

SubProcess Loan
Provision

Activity:

getClientObject

a
b

HLGetClientObject

LLgetClientObject

LLgetLoanObjectsForSSID

FOR EACH Loan

IF BehindWithPayments…

Fig. 3. Illustration of the approach

3. Another new element is the use of an intermediate decoupling layer between the
top-down derived high-level web services and the web service that have been
bottom-up reverse-engineered on the basis of legacy components. These web
services will be called the “low-level” (abbreviated: ll) web services. The
intermediate layer has been implemented by means of a simple design-time
composition. In figure 3c the mapping is presented between high-level web services
based on the data model of b, and the web services based on the database schema as
presented in Fig. 1a. This mapping itself is presented and realized by means of a
process model. The high-level low-level mapping can absorb unwanted changes
from bottom-up to top-down. Thus, changing the database to the one presented in
Fig. 1b does not affect the process. The mapping can, moreover, hide semantic
heterogeneity aspects and integrate the results of different low-level web services.

488 T.D. Meijler, G. Kruithof, and N. van Beest

4 Related Work and Future Research

Both technology decoupling as well as web services composition for the purpose of
heightening the level of abstraction are well-known in SOA literature. Aspects such as
automatic composition [6], matching the Quality of Services to what is requested and
what is provided [7] and dynamic composition, e.g. on the basis of semantic
information [8] have generated quite some interest.

Due to the focus on integrated EIS, the reuse of existing components and the
creation of right mappings are more important than automatic composition and
dynamism [8]. Furthermore, dynamic matching undermines performance, which
should be avoided in this context.

Technological support for our approach is useful and has not been elaborated in
this paper. This could be:

• Technological support for the development of a mapping to determine whether a
used web service “fits” the requirements of the high-level web service [7].

• Simplifying the composition mechanism for these specific purposes, e.g.,
describing and realizing the mapping in a model-driven manner.

Moreover, methodological support is required to prevent “unconstrained” top-
down development. Developers should be supported in case there is a large difference
in functionality between top-down derived business models and the legacy
components.

The approach presented is related to other (non-SOA) approaches to decoupling
interfaces and languages. It is for example related to work on Database integration [9]
where a federal database provides a newly modeled view on underlying databases that
are integrated. It is also related to the so-called “data mapper” [10], and the Adapter
and Bridge patterns [11], patterns for decoupling a client from an underlying
implementation.

5 Conclusion

To develop an integrated Enterprise Information System both a top-down model
driven development approach is needed as well as a bottom-up development. A
standard top-down bottom-up linking however breaks the principle of top-down
model driven development, as the process model is partly determined by the
availability of components and data sources. Thus, a technology coupling is
introduced that impairs the understandability and maintainability of the process
model.

This paper introduces a decoupling between full-fledged top-down development
following the Model-driven Architecture (MDA) and bottom-up development in the
context of a SOA. Full-fledged top-down development consists of a platform
independent process model as well as a data model as normal in the MDA. The data-
model is used to generate so-called “high-level” web services. Thus a process model
invokes these high-level web services and is no longer dependent of the availability of
the bottom-up derived “low-level” web services of which the change can also not be
controlled. The high-level web services are mapped using a simple design-time

 Top Down Versus Bottom Up in Service-Oriented Integration 489

composition to the bottom-up derived low-level web services. The mapping can
buffer the unwanted impact of change. The simplicity of a design-time composition
enables its direct application in industrial setting, this while more complex dynamic
composition mechanisms are neither needed nor optimal for these purposes.

Acknowledgements

This work is framed the project “Software Mass Customization” and is paid by the
Dutch ministry of Economic Affairs. We thank Cordys, one of the partners of this
project for their time and giving us access to their platform. We furthermore thank
Bart Orriëns and Douwe Postmus for valuable comments.

References

[1] R. Hubert Convergent Architecture, Wiley Computer Publishing, ISBN 0-471-105600
2002

[2] D.S. Frankel Model Driven Architecture Applying MDA to Enterprise Computing, OMG
Press – Wiley Publishing, ISBN 0-471-31920-1 2003

[3] T. Erl. A Field Guide to Integrating XML and Web Services, Pearson Education,
Publishing as Prentice Hall Technical Reference, ISBN 0-13-142898-5 2004

[4] D. Skogan, R. Groenmo, I. Solheim, Web service composition in UML Proceedings of
the Eighth IEEE International Enterprise Distributed Object Computing Conference,
(EDOC 2004) IEEE 2004

[5] B. Orriëns, J. Yang and M.P. Papazoglou, Model Driven Service Composition, Service-
Oriented Computing - ICSOC 2003 Eds. M. E. Orlowska, S. Weerawarana, M. P.
Papazoglou, J. Yang LNCS 2910 / 2003, ISBN 3-540-20681-7 2003

[6] M. Aiello, M. Papzoglou, J. Yang, M. Carman, M. Pistore, L. Serafini, P. Traverso, A
request language for web-services based on planning and constraint satisfaction,
Proceedings of the VLDB workshop on Technologies for E-Services, Hongkong, China,
2002

[7] J. Cardoso, A. Sheth, J. Miller, J. Arnold, K. Kochut, Quality of Service for Workflows
and Web Service Processes, Journal of Web Semantics, Elsevier, Vol. 1, No. 3, pp. 281-
308, Amsterdam, The Netherlands, 2004

[8] P. Rajasekaran, J. Miller, K. Verma, A. Sheth, Enhancing Web Services Description and
Discovery to Facilitate Composition, International Workshop on Semantic Web Services
and Web Process Composition, 2004 (Proceedings of SWSWPC 2004)

[9] H. Balsters, E.O. de Brock, An object-oriented framework for managing cooperating
legacy databases; 9th International Conference Object-Oriented Information Systems;
Lecture Notes in Computer Science LNCS 2817, Springer, September 2003

[10] M. Fowler, Patterns of Enterprise Application Architecture, Eddison Wesley Pearson
Education, ISBN 0-321-12742-0, 2003

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable
object-oriented software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA
ISBN 0-201-63361-2 1995

Semantic Service Mediation

Liangzhao Zeng1, Boualem Benatallah2, Guo Tong Xie3, and Hui Lei1

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
{lzeng, hlei}@us.ibm.com

2 School of Computer Science and Engineering University of New South Wales,
Sydney, Australia

boualem@cse.unsw.edu.au
3 IBM China Research Laboratory

Building 19, Zhongguancun Software Park, ShangDi, Beijing, 100094, P.R. China
xieguot@cn.ibm.com

Abstract. The service mediation that decouples service interactions is a key
component in supporting the implementation of SOA solutions cross enterprises.
The decoupling is achieved by having the consumers and providers to interact via
an intermediary. The earliest service mediations are keyword and value-based,
which require both service providers and consumers to adhere same data formats
in defining service interfaces and requests. This requirement makes it inadequate
for supporting interactions among services in heterogeneous and dynamic envi-
ronments. In order to overcome this limitation, semantics are introduced into ser-
vice mediations, for more flexible service matchings. In this paper, we proposed
a novel semantic service mediation. Different from existing semantic service me-
diations, our system uses ontologies not only for one-to-one service matchings,
but also for one-to-multiple service matchings. By performing service correla-
tion systematically as part of the service mediation, services can be composted
automatically, without any programming efforts (neither composition rules nor
process models). We argue that a service mediator like ours enables more flexible
and on-demand mediation among services.

1 Introduction

The service mediation enables decoupling among the service providers and consumers,
which is a key component in Enterprise Service Bus (ESB) for supporting SOA solu-
tions cross enterprises. Typically, the service mediation system contains three roles: (1)
service providers, who publish services; (2) service consumers, who request services,
(3) service mediators, who are responsible for service repository management, service
matching, service invocation and invocation result delivery. The earliest service media-
tions are keyword and value-based (e.g., UDDI [6]). There are two major limitations in
such service mediations: (i) the service discovery is keyword-based; (ii) service invoca-
tions are based on value of exchanged messages. For example, a service request is about
retrieving a sports car’s insurance quote, where the input parameter is SportsCar and
output parameter is CarPremium. For the value-based service mediation, only the ser-
vices that have input parameter SportsCar and output parameter CarPremium can
match the request. In case service request and service interfaces’ input/output parame-
ters are not exactly matched, then data format mapping needs to be provided.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 490–495, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Semantic Service Mediation 491

Consequently, as an improvement to keyword and type-based solutions, semantics
are introduced into service mediations [1,5], wherein ontologies enable richer seman-
tics in service publication and more flexible matchings. However, current semantic ser-
vice mediations only support one-to-one service matchings. Any sophisticate one-to-
multiple services matchings (i.e., composing a collection of services to fulfill a service
request) requires either defining knowledge base (e.g., composition rules) or creating
process models [7,8]. In order to overcome these limitations, in our semantic service me-
diation, one-to-multiple matchings are enabled using correlation-based composition, by
utilizing the semantics derived from service interface definitions. In particular, proposed
correlation-based composition is transparent to service consumers, i.e., requires neither
defining service composition knowledge bases nor creating process models. It should be
noted that our correlation-based solution is complementary to those knowledge-based
and process-based solutions. With our correlation-based solution, either knowledge-
based or process-based service composition developers can focus on high level business
logic to develop composition services, without understanding extraordinary details of
service interfaces. In the case of the expected service interfaces that defined in knowl-
edge bases or process models are not currently available, the service mediator can locate
multiple services and correlate them to a ”virtual service” to fulfill the service request.

The remainder of this paper is organized as follows: Section 2 introduces some im-
portant concepts. Section 3 presents the overview of the semantic service mediation.
Section 4 discusses the correlation-based service composition. Finally, Section 5 dis-
cusses some related work and Section 6 provides concluding remarks.

2 Preliminaries

In our system, we adopt an object-oriented approach to the definition of ontology, in
which the type is defined in terms of classes (See Definition 1) and an instance of a
class is considered as an object (See Definition2). It should be noted that this ontology
formulation can be easily implemented using OWL [4] and IODT [3]. We will present
details on how to use ontologies to perform semantic matchings and correlation match-
ings in following sections.

Definition 1 (Class). A class C is defined as the tuple C =〈N, S, P, R〉, where

– N is the name of the class;
– S is a set of synonyms for the name of class, S = {s1, s2, ..., sn} ;
– P is a set of properties, P = {p1, p2, ..., pn}. For pi ∈ P , pi is a 2-tuple in form

of 〈T, Np〉, where T is a basic type such as integer, or a class in an ontology, Np is
the property name. p1 (p1 ∈ P) is the key property for identification;

– R is a set of parent classes, R = {C1, C2, ..., Ck}. �

In the definition of class, the name, synonyms, and properties present the connotation
of a class; while parent classes specify relationships among the classes, i.e., present the
denotation of a class. A class may have parent classes for which it inherits attributes. For
example, class sportsCar’s parent class is Car, so the class sportsCar inherits
all the attributes in class Car.

492 L. Zeng et al.

Definition 2 (Object). An object o is a 2-tuple〈Nc, V 〉, o is an instance of a class C,
where

– Nc is the class name of C;
– V = {v1, v2, ..., vn}, are values according to the attributes of the class C. For

vi ∈ V , vi is a 2-tuple in form of 〈Np, Vp〉 , where Np is the property name, Vp is
the property value. �

A service interface is denoted as Is(Pin, Pout), where Pin (Pin = 〈C1, C2, ..., Cn〉)
indicates input parameter classes, and Pout (Pout = 〈C1, C2, ..., Cm〉) indicates output
parameter classes. An example of a service s’s interface can be Is (Pin〈SportsCar〉,
Pout〈CarInsurance, CarFinance〉), which contains one input parameter and two out-
put parameters.

A service request is denoted as Q(Oin, Eout), where Oin (Oin = 〈o1, o2, ..., on〉)
indicates input objects, and Eout (Eout = 〈C1, C2, ..., Cm〉) indicates expected output
parameters from the services. An example of a service request can be Q(Oin〈car〉,
Eout〈CarInsurance, CarFinance〉), which contains one input object car and ex-
pects a service provides two outputs: CarInsurance and CarFinance.

Table 1. Examples

Entity Example

service request Q1(Oin〈sportsCarA〉, Eout〈CarInsurance, CarFinance〉)
candidate service’s interface Is (Pin〈Car〉, Pout〈CarInsurance, CarFinance〉)

interface set Ik={I1, I2}, where I1 (Pin〈Car〉, Pout〈CarInsurance〉),
I2 (Pin〈Car〉, Pout〈CarFinance〉)

3 Service Matching in Semantic Service Mediation

By introducing ontologies into the service mediation, other than exact matching, we
extend the service matching algorithm with two extra steps: semantic matching and
correlation matching. Therefore, three steps are involved in our matching algorithm:-

Step 1. Exact Matching. The first step is to find exact matches, which returns service
interfaces that have exactly the same parameter (input and output) classes as the service
request;

Step 2. Semantic Matching. The system searches service interfaces that have para-
meter classes that are semantically compatible with the service request. In our system,
the semantic matching is based on the notion of Semantic Compatibility.

Definition 3 (Semantic Compatibility). Class Ci is semantically compatible with class
Cj , denoted as Ci

s= Cj , if in the ontology, either (i) Ci is the same as Cj (same name
or synonym in an ontology) , or (ii) Cj is a superclass of Ci. �

By adopting the definition of semantic compatibility, we say a class C semantically be-
longs to a class set C (denoted as C ∈s C) if ∃Ci ∈ C, C

s= Ci. Using the notion of

Semantic Service Mediation 493

semantic compatibility, we define a Candidate Service Interface as a service interface
that can accept service request’s input objects and provide all outputs that are seman-
tically compatible with the outputs required by the service request. For example (see
Table 1), with regard to the service query Q, the interface Is can be invoked by the ser-
vice request as the input object sportsCarA ”is a” Car (semantic compatibility). At
the same time, Is can provide all the outputs required in Q since two output parameters
are exactly matched. Therefore, Is is a candidate service interface for Q.

Step 3. Correlation Matching. The system searches a set of service interfaces that
can accept the input object from service request and be correlated to provide expected
output for the service request. It is worth noting that the type-based service media-
tion only performs step 1. Most of the semantic service mediations perform semantic
matching which is step 2. In our semantic service mediation, we also consider correla-
tion matchings, which are unique to our semantic service mediation. In this paper, we
assume that both service consumers and providers use the same ontology for a domain.
If a consumers and providers use different ontologies for a domain, then a common on-
tology can be created. Detailed discussion on creating a common ontology is outside the
scope of the paper. Therefore, by engineering ontologies, our system allows different
services to exchange information using their native information format to define inter-
faces and request. The cost of engineering ontologies is much less than that of develop-
ing object adaptors for value-based service mediations as ontologies are declaratively
defined. Further, ontologies are reusable, while developing object adaptors requires case
by case programming efforts.

4 Correlation-Based Service Composition

Obviously, multiple service interfaces can be correlated to one if they have share some
input parameters and different output parameters. For example, two service interfaces I1
and I2 in Ik (see Table 1) can be correlated as they both have the field Car as the input
parameter. Therefore, when the service mediator performs the correlation matching, in
order to compose a service interface that can provide all the required outputs for the
service request, it first searches a correlation service interface set, i.e., a set of service
interfaces that are correlatable by a key input parameter that is specified by the service
request and can provide all the outputs required by the service request. The formal
definition of correlation interface set is shown as follows.

Definition 4 (Correlation Interface Set). I (I = {I1, I2, ..., In}) is a set of service
interfaces, CPini is the class set consists of all the input parameter classes in interface
Ii; CPouti is the class set that consists of output parameter classes in Ii; Q is the service
request where COin is the class set consists of the input object classes, CEout is the
class set that consists of expected output parameter classes; ok is an input object for
correlation key. I is a Correlation Service Interface Set of Q iff:

1. ∀C ∈ CPin, C ∈s COin, where CPin(CPin = ∪n
i=1CPini) is union of all the

input parameter class sets in I;
2. ∀C ∈ CEout, C ∈s CPout, where CPout(CPout = ∪n

i=1CPouti) is union of all the
output parameter class sets in I;

494 L. Zeng et al.

3. ∀CPini , ∃C
′
k, Ck

s= C
′
k , where Ck is class for key object ok;

4. ∀CPouti , ∃C, C ∈ (CPouti − (∪i−1
j=1CPoutj

⋃ ∪n
j=i+1CPoutj)) and C ∈s CEout.

�

In this definition, four conditions need to be satisfied when correlating a set of service
interfaces to fulfill a service request: condition 1 indicates any outputs required by the
service request can be provided; condition 2 indicates the service request can provide
all the required input for each interface in the set; condition 3 implies all the interfaces
have the key field as an input parameter, therefore, are correlatable; condition 4 evinces
any interfaces in the set contributes at least one unique output. It should be noted that
both condition 1 and 2 are necessary condition of the definition, while condition 3 and
4 are the sufficient conditions for the definition. Using above example, the aggregation
of I1 and I2 provides all the required outputs for the service request, which satisfy
condition 1; and their input can be provided by the service request, which satisfies
condition 2. These two interfaces have the input parameter Car and Car is ancestor
of SportsCar, the key class in service request Q, which satisfies condition 3. Also,
I1 (resp. I2) provides unique output CarInsurance (resp. CarFinance), which
satisfied condition 4. Therefore, I1 and I2 compose a correlation service interface set
for the service request.

5 Related Work

Service mediation is a very active area of research and development. In this section,
we first review some work in area of service discovery (matching), and then we look at
some service composition prototypes.

Service discovery and matching is one of the cornerstones for service mediation.
Current Web service infrastructure have limitation on providing flexibility of choose se-
lection criteria along multiple dimensions. For instance, UDDI provides limited search
facilities that allows only keyword-based search of services. To overcome this limita-
tion, semantic technology [1] is used to support multiple dimensions searching criteri-
ons for services. In [1], a flexible matchmaking between service description and request
by adopting Description Logics (DLs). However, most of existing semantic solutions fo-
cus on one-to-one matchings. In our service mediation, semantic information in service
descriptions and request enables one-to-multiple service matchings, which initiates an
other type of automatic service composition.

It should be noted that our correlation-based service composition is different from
existing industrial and academic service composition framework. The industrial solu-
tion typically does not provide explicit goals of the composition and does not describe
the pre- and post-conditions of individual services. A service is viewed as a remote
procedure call.A service composition is quite often specified as a process model (e.g.
BPEL4WS [2]) though a richer process specification is needed. The composition itself
is mostly done manually by IT specialists in an ad-hoc manner. Our approach, using a
semantic ontology and a correlation based composition, enables us to construct a com-
posed service based on the semantics of service interfaces, without much programming
efforts.

Semantic Service Mediation 495

6 Conclusion

In this paper, we propose a novel semantic service mediation, which is another step
forward in the development of current service mediation systems. We introduce seman-
tics to understand the interface of service. Our system not only considers single service
interface for a service request, but also automatically correlates multiple interfaces for
a service request when there is not exactly matched interface. Unlike knowledge-based
or process-based solution, the service correlation in our system is transparent to devel-
opers. We argue that the proposed service mediation is essential to enable cooperative
service interactions in service-oriented computing. Our future work includes optimiza-
tion of semantic service matching and correlation, and a scalability and reliability study
of the system.

References

1. B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On automating web services
discovery. The VLDB Journal, 14(1):84–96, 2005.

2. Business Process Execution Language for Web Services, Version 1.0, 2000. http://www-
106.ibm.com/developerworks/library/ws-bpel/.

3. IBM Integrated Ontology Development Toolkit, 2006. http://www.alphaworks.ibm.com/
tech/semanticstk.

4. OWL, 2006. http://www.w3.org/TR/owl-ref/.
5. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic Matching of Web Services

Capabilities. In First International Semantic Web Conference, 2002.
6. Universal Description, Discovery and Integration of Business for the Web, 2005.

http://www.uddi.org.
7. L. Zeng, B. Benatallah, H. Lei, A. Ngu, D. Flaxer, and H. Chang. Flexible Composition

of Enterprise Web Services. Electronic Markets - The International Journal of Electronic
Commerce and Business Media, 2003.

8. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Software Engineering,
30(5):311–327, 2004.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 496 – 502, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Examining Usage Protocols for Service Discovery

Rimon Mikhaiel and Eleni Stroulia

Computing Science Department, University of Alberta, Edmonton AB, T6G 2H1, Canada
{rimon, stroulia}@cs.ualberta.ca

Abstract. To date, research on web-service discovery has followed the tradition
of signature matching based on the interface description captured in WSDL.
WSDL specifications, however, can be information poor, with basic data types,
and unintuitive identifiers for data, messages and operations. The nature of the
usage of the WSDL component in the context of a BPEL composition can be an
extremely useful source of information in the context of service discovery. In
this paper, we discuss our method for service discovery based on both interface
and usage matching, exploiting the information captured in the WSDL and
BPEL specifications. Our approach views both WSDL and BPEL as
hierarchical structures and uses tree alignment to compare them. We illustrate
our method with an example scenario.

Keywords: service discovery, WSDL matching, BPEL matching, process
matching.

1 Motivation and Background

Service discovery is an essential task in the process of developing service-oriented
applications. In a typical service-discovery scenario, the service requester has specific
expectations about the candidate service. In general, there are three types of
desiderata for a service: it has (a) to be capable of performing a certain task, i.e.,
maintain a shopping cart, (b) to expose a particular interface, i.e., provide view, add-
product and remove-product, and (c) to behave in a certain manner, i.e., ignore any
request for product removals if no product additions have been performed yet. Such
expectations motivate and guide the developers’ searches through web-services
repositories, as they try to discover and select the service that best matches their
needs.

When not all these dimensions are considered in concert, the precision of the
discovery process tends to be limited. For example, applying only a capability
matching method between a service and a request does not guarantee that they are
interoperable. Additionally, even when the interface of a service matches a request's
interface, it is not necessarily clear how exactly its data and operations match the
requestor’s specification, especially when the parameter types are simple.
Furthermore, in some cases, interface matching may get confused because the
operation signatures are not significantly distinct.

In this paper, we propose an integrated service matching approach that is based on
both interface and behavioral matching. For example, a WSDL [5] (interface)
specification of a complex web service may be associated with a BPEL [1]

 Examining Usage Protocols for Service Discovery 497

(behavioral) specification that provides semantic information about the usage protocol
of the provided operations and the overall usage patterns of the data types. In the
proposed integrated matching approach, WSDL components are matched not only in
a syntactic manner, but also in a way that complies with their BPEL's usage protocols.

Our method involves two steps: First, relevant information from the WSDL and
BPEL descriptions of the desired and candidate services is parsed and represented in a
special-purpose tree representation. Next, the tree representing the desired service is
compared against the trees representing each of the candidate services to select the
most similar one and to precisely identify how the data and operations offered by the
candidate map to the requestor’s needs in a way that respects their usage protocols.

The rest of this paper is organized as follows. Section 2 reviews related research on
service discovery. Section 3 discusses a case study illustrating the insufficiency of
WSDL for effective service discovery and the relevance of BPEL and usage-protocol
information to the task. Section 4 presents our service-matching method based on tree
alignment. Section 5 shows how the presented method resolves the issues raised in
Section 3. Finally, Section 6 concludes with the essential ideas of our work.

2 Related Research

According to the literature, there are three categories of service discovery approaches.
Capability matching examines whether a published service can satisfy the requested
needs. UDDI matching is an example of such an approach. However, such capability
matching is not enough to establish a real interaction; it does not specify the ontology
of the involved data types nor the operations applicable for this service. Interface
matching is based on signature matching between the published operations and the
requested ones [8], [9], [10], [11]. However, this approach suffers from two
drawbacks: first, interface matching does not guarantee a successful interaction
because interfaces do not usually specify the usage conditions of the operations
involved. Hence, an improper usage of the published operations may lead to an
interaction failure. Second, interface matching may easily get confused when the
services specifications are not distinctive; because it relies on documentation and
operation signatures, when the data types are simple and there is not much
documentation there is not enough information on the basis of which to assess
(dis)similarity. Finally, behavior matching examines whether both the requested and
provided service behave according to a similar interaction protocol. This approach is
only concerned about either control-structure matching (like Petri nets [4], and -
calculus [7]), or message-flow matching (like WSDL [2] [3], and BPEL finite state
machines [12]).

Our method integrates ideas from both interface and behavior matching. In this
paper, we demonstrate that such integration is essential not only to enhance the
matching quality but also to resolve ambiguities that may occur when each approach
is applied separately. Additionally, this method requires a capability-matching step to
be performed to maintain a set of candidate services, out of which this method selects
the best inter-operable service.

498 R. Mikhaiel and E. Stroulia

3 The Service-Discovery Problem in an Example

In general, when looking for a service, a developer has in mind both the signatures of
the operations desired and some behavioral scenarios, in which the candidate service
is expected to participate. Discovery based simply on WSDL matching is concerned
with the matching of the operations desired and provided. However, given a candidate
service, there usually exist multiple likely mappings between the desired operations
and the ones provided by the candidate service. Unambiguously selecting one of these
mappings is often impossible, when neither the syntactic types nor the identifiers and
documentation are distinctive.

For example, consider the case illustrated in Fig. 1, when the provided service
performs an asynchronous task. The consumer is expected to first submit the task, to
obtain a receipt, and then to return (after a while) asking for the results associated to
that receipt; if, at that time, the task is completed the results are returned to the
consumer otherwise an exception is returned. Fig. 1 illustrates the WSDL
specifications of a provided and a requested service, both involving such a task-
submission service. However, it is not clear how the two published operations can be
mapped to the consumer's expected ones; both accept a string parameter and return a
string parameter. Applying WSDL matching only cannot unambiguously select a
mapping of their operations.

(a) A published WSDL description (b) A requested WSDL description

Fig. 1. A visual representation of two WSDL descriptions showing each operation, connected
to its associated input and output messages. Each message description includes its associated
parameter name and type.

4 The Method

The specific research question that our method is designed to address is: “how should
service components be matched in a way that respects both their interface description
and usage protocols?”. Its underlying intuition is that both these aspects of a service
description provide information that can be useful when considering a candidate
service as a potential match for a requested one. More specifically, ambiguities in
operations’ mapping can be resolved by examining the behaviors in which these
operations are involved. Consequently, our method is based on a two-level
comparison of the corresponding service aspects, where a specialized tree-alignment
approach is adopted for each level. First, the BPEL behavioral specification of the

 Examining Usage Protocols for Service Discovery 499

provided service is compared against the behaviors expected of the requested service.
Second, the WSDL operations of the desired and the candidate services are compared,
using a cost function that is based on the results of the first step.

4.1 Web-Service Matching as Tree-Edit Distance

Both BPEL and WSDL descriptions are expressed in terms of XML documents that
can be represented as ordered labeled trees, where the attributes of the XML elements
are represented as their children.

For each of the two steps in the service aspects’ comparison, we adopted the SPRC
[6] tree-alignment algorithm, developed in the context of our work in RNA structure
alignment. This algorithm is based on the Zhang-Shasha's tree-edit distance [13]
algorithm, which calculates the minimum edit distance between two trees given a cost
function for different edit operations (e.g. change, deletion, and insertion). In addition,
SPRC uses an affine–cost policy and reports all the alignment solutions that are
associated with the calculated tree edit distance. Additionally, in a post-processing
step, SPRC applies a simplicity-based filter to discard the more unlikely solutions
from the solution set produced by the SPRC tree-alignment phase.

4.2 A Usage-Aware Cost Function

The usage similarity between two components is the similarity of how they are
referenced by higher-order descriptions. For example, the result of BPEL matching
should be considered while performing a WSDL operation-matching step. If the
BPEL references to two operations are similar, then the cost of mapping them in the
WSDL-matching step is reduced, proportionally to their degree of mapping (DOM).
The degree of mapping between two operations is defined as double the number of
mappings between the references two the two operations divided by the total sum of
their references. Incorporating the DOM ratio of a BPEL-matching step into the
WSDL-matching step effectively incorporates the usage similarity of the components
references with their signature matching.

5 The Example Revisited

Fig. 2(a) shows the BPEL description of the published service where the service
provider describes how that service is supposed to be used, while Fig. 2(c) shows the
expected scenario from the consumer point of view. Additionally, Fig. 2(b) and Fig.
2(d) show the tree representation of the published and requested services,
respectively.

The result of aligning the BPEL descriptions of Fig. 2(a) and Fig. 2(c) is shown in
Fig. 2(b) and Fig. 2(d): the receive action named “receive task” associated with the
operation named SubmitTask is mapped to the receive action named “place a job”
associated with the operation named PlaceJob. Additionally, the send action named
"Send task-no" is mapped to "Reply with Job ID". Hence, the two (out of two)
references to the operation SubmitTask are mapped to two (out of two) references to
the operation PlaceJob, which leads to a DOM ratio of (2*2)/(2+2)=1. Similarly,
Fig. 2(b) and Fig. 2(d) show that 3 (out of 4) references to the operation GetResult

500 R. Mikhaiel and E. Stroulia

are mapped to the three (out of three) references to the operation RetrieveOutput
and vice versa, which also results in DOM ration (2*3)/(4+3)=0.86. Therefore, the
cost function for the subsequent alignment step is advised to reduce the mapping cost
for both (SubmitTask, PlaceJob) and (GetResult, RetrieveOutput) by
100% and 86%, respectively. Thus, there is no longer any ambiguity for how the
operations and messages of the two WSDL specifications should be mapped.

(a) Visual representation (b) Tree representation (c) Visual representation (d) Tree representation
Provider’s published BPEL Consumer’s expected BPEL

Fig. 2. BPEL descriptions of the published and requested services. Figures (a) and (c) are visual
representations showing two types of actions receive and send actions; each of them is
accompanied by the associated operation name. Figures (b) and (d) are annotated tree
representations, e.g. a strike labels refer to deleted nodes, while highlighted labels refer to
changed nodes.

It is interesting to note that the BPEL description of the published service imposes
the pre-condition that a call to SubmitTask is to be invoked before a call to
GetResult. Similarly, according to the requester BPEL description, the consumer
expects to invoke an operation that has a semantic like PlaceJob before invoking an
operation that has the semantic of RetrieveOutput. This is exactly the information
that our method is designed to respect.

 Examining Usage Protocols for Service Discovery 501

6 Conclusions

In this paper, we discussed our approach for resolving ambiguities in the mapping of
published service elements to those of the requested service, by examining the usage
of these elements in the context of BPEL-specified behavioral specifications of the
service in action. The basic intuition underlying our work is to match operations
usage references in order to get a measure of how a certain published operation is
used similarly to a requested one. Our service discovery method is based on tree-
alignment of the two corresponding specifications (BPEL and WSDL), with results
from the BPEL matching step feeding into the WSDL matching step. It is designed to
match the semantics implicitly embedded in the BPEL description in order to enhance
the quality of the WSDL signature matching, and to resolve any possible ambiguities.
Although BPEL specifications of services may not yet be widely used, their potential
usefulness, as outlined in this paper, should motivate service providers to develop
BPEL descriptions for their services, in order to improve the potential quality of
automated discovery methods.

Acknowledgements

This research was supported by ICORE and the Alberta IBM CAS.

References

[1] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S. “Business Process
Execution Language for Web Services.” version 1.1, 2003, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/

[2] Blanchet, W., Elio, R., Stroulia, E. “Conversation Errors in Web Service Coordination:
Run-time Detection and Repair”. Proc. International Conference on Web Intelligence
(WI), 2005.

[3] Blanchet, W., Elio, R., Stroulia, E. “Supporting Adaptive Web-Service Orchestration
with an Agent Conversation Framework”. Proceedings of the third IEEE International
Conference on Web Services (ICWS), 2005.

[4] Brockmans, S., Ehrig, M., Koschmider, A., Oberweis, A., and Studer, R., “Semantic
Alignment of Business Processes”. In 8th International Conference on Enterprise
Information Systems, 2006.

[5] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., “The web services
description language WSDL.” http://www.w3.org/TR/wsdl

[6] Mikhaiel, R., Lin, G., Stroulia, E., “Simplicity in RNA Secondary Structure Alignment:
Towards biologically plausible alignments”. In Post Proceedings of the IEEE 6th
Symposium on Bioinformatics & Bioengineering (BIBE 2006), October 16 - 18, 2006

[7] Milner, R., Parrow, J., and Walker, D., “A Calculus of Mobile Processes, Part I+II”.
Journal of Information and Computation, September 1992, 1--87.

[8] Payne, T.R., Paolucci, M., and Sycara, K., “Advertising and Matching DAML-S Service
Descriptions”. Semantic Web Working Symposium (SWWS), 2001.

502 R. Mikhaiel and E. Stroulia

[9] Syeda, T., Shah, G., Akkiraju, R., Ivan, A., and Goodwin, R., “Searching Service
Repositories by Combining Semantic and Ontological Matching”. ICWS, 2005, 13--20.

[10] Stroulia, E., and Wang, Y., “Structural and Semantic Matching for Assessing Web-
Service Similarity”, Int. Journal of Cooperative Information Systems, 14(4):407-437,
June 2005.

[11] Wang, Y., Stroulia, E. “Flexible Interface Matching for Web-Service Discovery”. 4th
International Conference on Web Information Systems Engineering, 2003, pp. 147-156,
IEEE Press.

[12] Wombacher, A., Fankhauser, P., and Neuhold, E. “Transforming BPEL into Annotated
Deterministic Finite State Automata for Service Discovery.” ICWS, 2004, 316--323.

[13] Zhang, K., Stgatman, R., and Shasha, D. “Simple fast algorithm for the editing distance
between trees and related problems.” SIAM Journal on Computing, 18(6), 1989, 1245--
1262.

Sliver: A BPEL Workflow Process Execution
Engine for Mobile Devices

Gregory Hackmann, Mart Haitjema,
Christopher Gill, and Gruia-Catalin Roman

Dept. of Computer Science and Engineering, Washington University in St. Louis

Abstract. The Business Process Execution Language (BPEL) has be-
come the dominant means for expressing traditional business processes
as workflows. The widespread deployment of mobile devices like PDAs
and mobile phones has created a vast computational and communica-
tion resource for these workflows to exploit. However, BPEL so far has
been deployed only on relatively heavyweight server platforms such as
Apache Tomcat, leaving the potential created by these lower-end devices
untapped. This paper presents Sliver, a BPEL workflow process execu-
tion engine that supports a wide variety of devices ranging from mobile
phones to desktop PCs. We discuss the design decisions that allow Sliver
to operate within the limited resources of a mobile phone or PDA. We
also evaluate the performance of a prototype implementation of Sliver.

1 Introduction

In today’s world, there is an ever-growing need for collaboration among teams of
people on complex tasks. The workflow model offers a powerful representation
of groupware activities. This model is defined informally as “the operational
aspect of a work procedure: how tasks are structured, who performs them, what
their relative order is, how they are synchronized, how information flows to
support the tasks and how tasks are tracked” [1]. In other words, workflow
systems coordinate and monitor the performance of tasks by multiple active
agents (people or software services) towards the realization of a common goal.

Many traditional business processes — such as loan approval, insurance claim
processing, and expense authorization — can be modeled naturally as workflows.
This has motivated the development of Web standards, such as the Business
Process Execution Language [2] (BPEL), which describe these processes using a
common language. Each task in a BPEL process is represented as a service that
is invoked using the Simple Object Access Protocol [3] (SOAP). A centralized
BPEL server composes these services into complex processes by performing an
ordered series of invocations according to the user’s specifications. Because BPEL
builds on top of standards like XML and SOAP that are already widely deployed,
it has been accepted readily in business settings.

The ubiquity of inexpensive mobile and embedded computing devices, like
PDAs and mobile phones, offers a new and expanding platform for the deploy-
ment and execution of collaborative applications. In 2004, over 267 million Java-
capable mobile phones were deployed worldwide, and Sun estimates that up to

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 503–508, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

504 G. Hackmann et al.

1.5 billion will be deployed by the end of 2007 [4]. Though each device is indi-
vidually far less powerful than a standalone server, their aggregate computation
and communication potential is remarkable, and has yet to be fully realized.

Many collaborative applications, such as those described in [5], could incor-
porate such devices advantageously. These applications can benefit greatly from
Web standards like BPEL and SOAP. By defining a common language for inter-
service interactions and data flow, these standards encourage the composition of
simple services into powerful distributed applications.

Unfortunately, these applications pose several important challenges that the
current state-of-the-art in SOAP and BPEL systems cannot meet. First, typical
mobile devices feature severely constrained hardware requiring a very lightweight
software infrastructure. Second, in the absence of a stable Internet connection,
it may be impossible, impractical, or too expensive for mobile devices to con-
tact centralized servers. Finally, wireless network links among mobile devices
may be disrupted frequently and unpredictably. These challenges necessitate a
lightweight, decentralized Web service middleware system which can perform
on-the-fly replanning, reallocation, and/or reconfiguration in the face of network
failure. Addressing these issues is a significant software engineering challenge.

In this paper, we describe Sliver, our first milestone in this long-term effort.
Sliver supports the execution of SOAP services and BPEL processes on mobile
devices like mobile phones and PDAs. Because Sliver builds on existing Web stan-
dards, it can be used in conjunction with a wide array of existing development
tools. We emphasize that Sliver is not intended to replace existing SOAP and
BPEL middleware: rather, it extends the Web services paradigm to new devices
which did not previously support it. In Section 2, we discuss the fundamental char-
acteristics of mobile devices that compel a new kind of middleware. Section 3 pro-
vides an overviewof Sliver’s architecture. The resulting prototype implementation
is evaluated in Section 4. Finally, we give concluding remarks in Section 5.

2 Problem Statement

Today, developers can choose from a wide variety of support platforms for SOAP
services and BPEL processes. Unfortunately, there are several practical issues
that prevent existing SOAP and BPEL middleware packages from being deployed
on mobile devices. The first issue is the combined footprint of the middleware
and its support layers. For example, the open-source ActiveBPEL [6] engine
depends on the Java Standard Edition 1.4.2 runtime and Apache Tomcat [7]
application server, with a total footprint of 92 MB of disk space and 22 MB of
RAM. While this requirement is reasonable for desktop computers and servers,
only a handful of the highest-end mobile phones and PDAs can support systems
with such large footprints.

The second issue is that these middleware frameworks and their support layers
are often designed with Java 2 Standard Edition (J2SE) in mind. Generally, J2SE
runtimes are not available for mobile devices. These devices support a more limited
Java runtime, such as one based on the Mobile Information Device Profile (MIDP)

Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices 505

standard. Such runtimes support only a fraction of the features provided by a full
J2SE runtime. Among other features, MIDP 2.0 does not offer most of J2SE’s ab-
stract data structures; its support for runtime reflection is minimal; and it features
a unified API for file and network I/O that is incompatible with J2SE’s I/O APIs.

Finally, existing BPEL systems typically use HTTP for all communication
between hosts. However, this protocol is not a reasonable choice for many mo-
bile devices. Because of network restrictions, many mobile devices (such as most
mobile phones) cannot accept incoming TCP/IP sockets, and hence cannot serve
HTTP requests. Incoming requests are often restricted to less-conventional trans-
ports, such as SMS messages, which current systems do not support.

Thus, if a SOAP or BPEL execution engine is to be deployed on mobile devices,
it must embody three major traits: (1) it must have a suitably small storage and
memory footprint, including all the libraries on which it depends; (2) it must de-
pend only on the Java APIs that are available on all devices; and (3) itmust support
a wide variety of communication media and protocols flexibly. In the next section,
we discuss how these traits influenced our design and implementation of Sliver.

3 Design and Implementation

Sliver exhibits several architectural decisions which fit the traits described above.
Sliver uses a pluggable component architecture, as shown in Figure 1. This ar-
chitecture provides a clean separation between communication and processing.
Communication components can therefore be interchanged without affecting
the processing components, and vice versa. In place of a heavyweight, general-
purpose XML parser, Sliver uses a series of hand-written parsers developed using
the lightweight kXML [8] and kSOAP [9] packages. These packages are designed
with mobile devices in mind: they have a small combined footprint (47 KB of
storage space) and operate on most available Java runtimes.

Excluding the communication components, Sliver is implemented using the
features that J2SE, Java Foundation Profile, and MIDP 2.0 have in common.
Sliver can be deployed on devices which support any of these standards, which
includes most mobile phones and PDAs sold today. Sliver’s streamlined API
allows users to deploy an embedded SOAP or BPEL server in under 15 lines
of Java code. Further information on Sliver’s architecture and implementation,
including sample code, can be found in [5].

4 Evaluation

Sliver currently supports BPEL’s core feature set and has a total code base
of 114 KB including all dependencies (excluding an optional HTTP library).
Sliver supports all of the basic and structured activity constructs in BPEL, with
the exception of the compensate activity, and supports basic data queries and
transformations expressed using the XPath language [10]. Sliver also supports
the use of BPEL Scopes and allows for local variables and fault handlers to be
defined within them. However, Sliver does not currently support some of BPEL’s

506 G. Hackmann et al.

XML Parser

SOAP Parser

SOAP
Service

SOAP Server

Transport

BPEL Parser

BPEL Server

BPEL
Process

Provider by userSliverThird-party library

BPEL Documents

Fig. 1. The architecture of the Sliver execution engine

most advanced features, including Serializable Scopes and Event Handlers. In
future work, we will extend Sliver to support these features.

In order to provide an adequate evaluation of Sliver, it is important not only
to benchmark its performance against an existing BPEL engine, but also to
examine to what extent the expressive power of BPEL is preserved by Sliver. A
framework has been proposed which allows for the analysis of workflow languages
in terms of a set of 20 commonly reoccurring workflow patterns [11]. A study of
the BPEL language in terms of this framework shows that BPEL can support in
full 16 of these 20 workflow patterns, and partially supports one other pattern
[12]. Sliver currently supports all but 2 of these 17 patterns.

Our performance benchmark consists of 12 of the 20 patterns listed in [11].
The Multi-Merge, Discriminator, and Arbitrary Cycle patterns are excluded be-
cause BPEL does not support them. Sliver also does not presently support all of
the BPEL features used by the one of the Multiple Instances patterns and the
Interleaved Parallel Routing pattern. The Multiple Instances without Synchro-
nization pattern is not a practical benchmark, since it creates child processes
which may continue executing even after the parent process has completed. Fi-
nally, the Deferred Choice and Milestone patterns are non-deterministic and
therefore do not make practical benchmarks.

In Figure 2, we compare Sliver’s execution of these 12 patterns versus the
combination of ActiveBPEL 2.0.1.1 and Apache Axis 1.4, popular open source
engines for BPEL and SOAP respectively1. Our test platform for this comparison
is a desktop computer equipped with a 3.2 GHz Pentium 4 CPU, 512 MB of
RAM, Linux 2.6.16, and Sun Java 1.5.0 07. Both ActiveBPEL and Apache Axis
are hosted on Apache Tomcat 5.5.15. Additionally, this figure shows Sliver’s
performance running these processes on a Dell Axim X30 PDA which is equipped
with a 624 MHz XScale CPU, Windows Mobile 2003, and IBM WebSphere Micro

1 We once again emphasize that Sliver is not intended to replace feature-rich SOAP
and BPEL engines on capable hardware, but rather to support the execution of
BPEL processes on resource-limited devices. Our comparison is only intended to
provide a metric for acceptable performance.

Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices 507

0

100

200

300

400

500

600

700

800

ecneuqeS

tilpSlellaraP

noitazinorhcnyS

eciohC
evisulcxE

egreM
elp

miS

eciohC-itluM

egreM
gnizinorhcnyS

noitani
mreTticilp

mI

)e
miT-ngiseD(IM

)iroirP
A(IM

ytivitcAlecnaC

esaClecnaC

Pattern

)s
m(

e
mi

T

ActiveBPEL (PC)
Sliver (PC)
Sliver (PDA)
Sliver (Phone)

Fig. 2. The cost of executing BPEL patterns; results are the mean of 100 runs

Environment 5.7; and on a Nokia 6682 mobile phone which is equipped with a
220 MHz ARM9 CPU, Symbian OS 8.0a, and a bundled MIDP 2.0 runtime. To
isolate the cost of process execution from network delays, the BPEL process and
SOAP service are colocated.

Where not noted otherwise, 105 runs of each benchmark were used to generate
Figure 2. The first few runs of each benchmark have unusually high costs (often
5 to 10 times the mean) due to class loading, etc. For this reason, we discarded
the first 5 runs of each benchmark and computed the mean of the remaining 100
runs. The error bars indicate the standard deviation.

These results demonstrate that it is feasible to deploy BPEL processes on lim-
ited hardware. Even on the resource-limited PDA and phone platforms, the cost
of carrying out most processes is on the order of 100 ms. (The only exceptions are
the Multiple Instances patterns, which contain loops that make them inherently
slower than the other patterns.) As noted above, in order to isolate the costs of
the BPEL engine, we evaluated processes which invoke a trivial SOAP service
located on the same host. Realistically, the cost of executing non-trivial SOAP
services (including network delays) is expected to dwarf the cost of supporting
the BPEL process in Sliver.

5 Conclusion

In this paper, we have presented Sliver, a middleware engine that supports BPEL
process execution on mobile devices. Our design flexibly supports many different
communication protocols and media, while still maintaining a minimal footprint.
2 Due to the complexity of the MI (A Priori) pattern, and very limited hardware

resources, the Nokia 6682 is unable to perform 100 runs of this benchmark consec-
utively. 50 consecutive runs of this pattern were used on the Nokia platform.

508 G. Hackmann et al.

Sliver uses a series of small, hand-written parsers in place of a heavyweight,
fully-validating XML parser. These parsers keep Sliver’s code size and runtime
overhead suitably low for deployment on even the most resource-limited mobile
devices. In its current implementation, which is available as open-source software
at [13], Sliver can host many useful processes on hardware ranging from mobile
phones to desktop computers. In future work, we plan to address the remaining
BPEL compliance issues and consider ways to further modularize Sliver.

The development of middleware engines like Sliver is an important step to-
ward the long-term goal of bringing groupware to mobile devices. Other impor-
tant challenges — including task allocation, data distribution, and user interface
design — still remain. Nevertheless, Sliver’s runtime performance demonstrates
that today’s mobile devices are already capable of hosting sophisticated group-
ware applications, and that this ultimate goal is practical as well as desirable.

Acknowledgment. This research is supported by the NSF under grant number
IIS-0534699. Any opinions, findings, and conclusions expressed in this paper are
those of the authors and do not necessarily represent the views of the research
sponsors.

References

1. Wikipedia: Workflow. http:// en.wikipedia.org/wiki/Workflow (2006)
2. OASIS Open: OASIS web services business process execution language (WSBPEL)

TC. http://www.oasis-open.org/ committees/ tc home.php?wg abbrev=wsbpel
(2006)

3. Box, D., et al.: Simple object access protocol (SOAP) 1.1. Technical Report 08
May 2000, W3C (2000)

4. Ortiz, C.E.: J2ME technology turns 5! http://developers.sun.com/techtopics/
mobility/j2me/articles/5anniversary.html (2004)

5. Hackmann, G., Haitjema, M., Gill, C., Roman, G.C.: Sliver: A BPEL workflow
process execution engine for mobile devices. Technical Report WUCSE-06-37,
Washington University, Department of Computer Science and Engineering (2006)

6. ActiveBPEL LLC: ActiveBPEL engine. http://www.activebpel.org/ (2006)
7. Apache Software Foundation: Apache tomcat. http:// tomcat.apache.org/ (2006)
8. Haustein, S.: kXML 2. http:// kxml.sourceforge.net/ kxml2/ (2005)
9. Haustein, S., Seigel, J.: kSOAP 2. http:// ksoap.org/ (2006)

10. Clark, J., DeRose, S.: XML path language (XPath) version 1.0. Technical Report
16 November 1999, W3C (1999)

11. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

12. Wohed, P., et al.: Pattern based analysis of BPEL4WS. Technical Report FIT-
TR-2002-04, Queensland University of Technology (2002)

13. Hackmann, G.: Sliver. http://mobilab.wustl.edu/ projects/ sliver/ (2006)

Automated Discovery of Compositions of
Services Described with Separate Ontologies�

Antonio Brogi1, Sara Corfini1, José F. Aldana2, and Ismael Navas2

1 Department of Computer Science
University of Pisa, Italy

2 Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga, Espãna

Abstract. We present a matchmaking system that exploits ontology-
based (OWL-S) service descriptions to discover service compositions ca-
pable of satisfying a client request. Efficiency is achieved by pre-computing
off-line a (hyper)graph that represents the functional dependencies among
different (sub)services. The notion of Semantic Field [1] is employed to
cross different ontologies.

1 Introduction

The synergy between Web services and the emerging area of the Semantic Web
[2] is promoting the development of so-called semantic Web services. A seman-
tic Web service is a software service which self-describes its functionalities by
annotating them with (instances of) concepts defined by means of ontologies.

The development of fully-automated, semantics-based service discovery mech-
anisms constitutes a major open challenge in this context, and it raises several
important issues. One of them is the ability of coping with different ontolo-
gies, as different services are typically described in terms of different ontologies.
Another important feature is the capability of discovering service compositions
rather than single services. Indeed it is often the case that a client query cannot
be fulfilled by a single service, while it may be fulfilled by a suitable composition
of services. Last, but not least, efficiency is obviously an important objective of
service discovery mechanisms.

In this perspective, we proposed in [3] an algorithm for the composition-
oriented discovery of (semantic) Web services. The algorithm in [3], as well as
its evolved version described in [4], takes a client query, specifying inputs and
outputs of the desired service (composition), and performs a flexible matching
over a registry of OWL-S advertisements to determine whether there exists a
service (composition) capable of satisfying the query. A limitation of [3,4] is that
they do not properly address the problem of crossing ontologies: in [3] all services
are (unrealistically) assumed to share the same ontology, while in [4] multiple
ontologies are (inefficiently) crossed at query-time.
� Work partially supported by the SMEPP project (EU-FP6-IST 0333563) and by the

project TIN2005-09098-C05-01 (Spanish Ministry of Education and Science.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 509–514, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

510 A. Brogi et al.

In this paper, we extend [3] and [4] by presenting a semantic-based compo-
sition-oriented discovery system which employs the notion of Semantic Fields
[1] to cross different ontologies, and it achieves efficiency by pre-computing
off-line all the query-independent tasks (viz., to determine the dependencies
within/among services as well as the relationships among ontologies). The pro-
posed system is the first one – at the best of our knowledge – that addresses
all the previously described issues, namely, composition-oriented discovery, on-
tology crossing and efficiency. The matchmaking system consists of two main
modules: the hypergraph builder, which builds a hypergraph representing intra-
service and inter-service data relationships, and the query solver, which analyses
the hypergraph, given a client query that specifies the set of inputs and outputs
of the desired service (composition).

The hypergraph builder and the query solver are described in Sections 2 and
3, respectively. Some concluding remarks are drawn in Section 4.

2 Hypergraph Builder

The hypergraph builder analyses the ontology-based descriptions of the registry-
published services in order to build a labelled directed hypergraph, which synthe-
sises all the data dependencies of the advertised services. Although this module
performs a time consuming task, it does not affect the efficiency of the matching
process, as the hypergraph construction is completely query independent and
can be pre-computed off-line before query answering time.

According to [5], a directed hypergraph H = (V, E) is a pair, where V is a
finite set of vertices and E is a set of directed hyperedges. A directed hyperedge
is an ordered pair (X, Y) of (possible empty) disjoint subsets of V , where X and
Y denote the tail and the head of the hyperedge, respectively.

The vertices of the hypergraph constructed by the hypergraph builder corre-
spond to the concepts defined in the ontologies employed by the analysed service
descriptions, while the hyperedges represent relationships among such concepts.
More precisely, an hyperedge has one of the following three types:

• E⊂ = (D, {c}, nil) – subConceptOf relationship. Let c be a concept defined
in an ontology O and let D ∈ O be the set of the (direct) subconcepts of c.
Then, there is a E⊂ hyperedge from D to c.

• E≡ = ({e}, {f}, sim) – equivalentConceptOf relationship. Let e, f be two
concepts defined in two separate ontologies and let sim be the similarity
between e and f , i.e., the probability that e is (semantically) equivalent to
f . As we will see, if sim is above a given similarity threshold, there is a E≡
hyperedge from e to f labelled by sim.

• ES = (I, O, {s}) – intra-service dependency. Let s be (a profile of) a service
and let I be the set of inputs that s requires to produce the set O of outputs.
Then, there is a ES hyperedge from I to O labelled by s.

The hypergraph builder updates the hypergraph whenever a new service s is
added to the registry. More precisely, the hypergraph builder firstly adds to the
hypergraph the concepts defined in the ontologies employed by s (independently

Automated Discovery of Compositions of Services 511

of whether they directly occur in the specification of s). Next, it draws the hy-
peredges representing the subConceptOf relationships, the equivalentConceptOf
relationships, and the intra-service dependencies between the newly added on-
tology concepts.

As mentioned in the Introduction, in order to cope with different ontologies,
the hypergraph builder exploits the notion of Semantic Fields [1,6], which are
groups of interrelated ontologies that may be relevant to a given information
request. To find Semantic Fields we firstly compute the similarity between pairs
of concepts and next we calculate the distance between pairs of ontologies (i.e.,
how similar two ontologies are). The Semantic Field Tool1 (SemFiT) determines
mappings between concepts by combining the results of individual matchers
which analyse the similarity between pairs of concepts with different strategies:
exact match, same prefix, same suffix, synonyms in wordNet v.1.7 and similar
path in the ontology. The hypergraph builder determines the subConceptOf and
equivalentConceptOf relations by suitably exploiting the SemFiT methods.

Consider now the intra-service dependencies of s. As one may expect, sev-
eral intra-service dependencies can be drawn out from a service description,
as a service may behave in different ways and feature different functionalities.
The different profiles of s can be determined by analysing the OWL-S2 process
model which describes the behaviour of s. The hypergraph builder inserts in the
hypergraph a intra-service dependency for each profile of s.

Finally, it is worth observing that the inter-service dependencies are directly
represented by the hypergraph and they are automatically updated whenever
a service is added to the registry. Indeed, an inter-service dependency between
two services s and t occurs if there exists (at least) a concept which belongs
both to the head of a s-labelled ES hyperedge and to the tail of a t-labelled ES

hyperedge. Note that there is a inter-service dependency between s and t also if
there exist two concepts cs and ct linked together by means of E⊂ and/or E≡
hyperedges, where cs belongs to the head of the s-labelled ES hyperedge and ct

belongs to the tail of the t-labelled ES hyperedge.
We present next an example which illustrates the behaviour of the hypergraph

builder. Let us consider an empty registry where we add the hotelService and the
conferenceService. The former allows a client to search for and/or to reserve
hotels, and the latter allows a client to register to academic events. Figure 1
depicts the OWL-S process models of hotelService and conferenceService, which
employ three different ontologies, namely hotel, e-commerce and event3.

The hypergraph builder firstly adds to the hypergraph all the concepts de-
fined in the hotel, e-commerce and event ontologies together with the subCon-
ceptOf and the equivalentConceptOf relationships returned by SemFiT. Then,
it computes and inserts also the intra-service dependencies of HotelService and
ConferenceService. The resulting hypergraph is shown in Figure 2.

1 Available through a Web Service at http://khaos.uma.es/SemanticFieldsWS/
services/SemFieldsConceptHierarchy?-wsdl

2 OWL-S: Semantic Markup for Web Service. http://www.daml.org/services/owl-s
3 Available at http://khaos.uma.es/esp/ont/br/[hotel,e-commerce,event].owl

512 A. Brogi et al.

Fig. 1. Process models of HotelService and ConferenceService

3 Query Solver

The query solver takes as input a client query specifying the set of inputs and
outputs of the desired service (composition), and next it analyses the hypergraph
in order to discover the (compositions of) services capable of satisfying the client
request. The formulation of the query is eased by a suitable interface that displays
the available concepts (e.g., with an expandable tree structure) and highlights
the (computed) equivalences between concepts.

Fig. 2. A simple dependency hypergraph

The query solver explores the hypergraph, by suitably considering the intra-
service and inter-service dependencies to address the discovery of (compositions
of) services as well as by considering the subConceptOf and equivalentConceptOf
relationships to cope with (different) ontologies. Before describing in more de-
tails the behaviour of the query solver, let us extend the notion of subConceptOf

Automated Discovery of Compositions of Services 513

between two concepts c, d defined in two given (possibly equivalent) ontologies.
c is subConceptOf d if and only if in the dependency hypergraph there exists a
path from c to d which consists of subConceptOf relationships and/or equiva-
lentConceptOf relationships.

The query solver starts by choosing an output o from the goal set (initially
the query outputs). A new instance of query solver is generated for each service
s which produces (a sub-concept of) o. If there exists no service yielding o, the
query solver fails. Each instance updates the goal set by removing the concepts
that are now available (i.e., the outputs of s) and by adding the inputs of s
which are not contained in the query inputs nor produced by some previously
selected service. If the goal set is empty, the query solver returns the set of
services selected so far (i.e., a successful composition), otherwise it continues
recursively. The efficiency of the query solver can be improved by enumerating
the non-deterministic generation of the possible solutions in order to return the
first successful service (composition) only. Moreover, the large number of services
taken into account by the query solver can be reduced by introducing a suitable
service pre-selection phase (e.g., using UDDI to filter services not belonging to
certain service categories), and by selecting services which produce a needed
output with respect to some heuristics (e.g., the number and/or on the quality
of the produced outputs) in order to consider the “most promising” services only.

Let us continue the example introduced at the end of Section 2. Consider now
a client wishing to plan its participation in an international conference by regis-
tering to the conference and by booking her hotel accomodation, and receiving
the conference and hotel confirmations. The client query may be composed by
the following parameters:

• inputs – event#internationalConference, hotel#hotel, e-commerce#contact-
Information, e-commerce#creditCard

• output – e-commerce#registrationReceipt, e-commerce#invoice.

As one may note, neither hotelService nor conferenceService satisfies the given
query by itself. Yet, the query can be fulfilled by suitably composing the two
available services. Indeed, after visiting the hypergraph in Figure 2, the query
solver returns two successful service compositions, represented by the hyperedges
{H2, C1} and {H3, C1}, while it discards compositions {H2, C2} and {H3, C2},
as e-commerce#bankAccount cannot be produced by any available service.

4 Concluding Remarks

We have presented a new fully-automated semantic-based matchmaking system
for discovering (compositions of) services capable of satisfying a given client
request. As already mentioned in the Introduction, our proposal addresses three
main issues of service discovery, namely, composition-oriented discovery, crossing
different ontologies and efficiency.

Given the increasing availability of Web services, several composition-oriented
discovery systems have been recently proposed, such as [7,8,9], which address the
discovery of service compositions by operating in the domain of hypergraphs,

514 A. Brogi et al.

finite state automata and interface automata, respectively. Although [7,8,9] deal
with ontology-based service descriptions, they do not address the task of crossing
ontologies. A composition-oriented discovery algorithm capable of coping with
different ontologies has been presented in [10], however, it crosses ontologies at
query time, hence severely affecting the efficiency of the whole procedure. An
interesting approach for discovering semantic Web services has been proposed in
[11], where efficiency is achieved by pre-processing the available ontologies and
by pre-classifying the registry-published services before query answering time.
Still, [11] does not address the discovery of service compositions.

Our plan for future work includes: to develop fresh indexing and/or ranking
techniques to sensibly improve the efficiency of the query solver, to complete
our system by employing a behavioural analyser module to determine whether
the candidate services can really be composed together and satisfy the query
without dead-locking, and finally, to extend SemFiT by employing other existing
matching tools in order to achieve better results for the ontology matching prob-
lem. Our long-term goal is to develop a well-founded methodology to support
an efficient and fully-automated discovery and composition of Web services.

References

1. Navas-Delgado, I., Sanz, I., Aldana-Montes, J.F., Berlanga, R.: Automatic Gen-
eration of Semantic Fields for Resource Discovery in the Semantic Web. In: 16th
Int. Conf. on Database and Expert Systems Applications. LNCS 3588. (2005)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. In: Scientific Amer-
ican. (2001)

3. Brogi, A., Corfini, S., Popescu, R.: Composition-oriented Service Discovery. In
Gschwind, T., Aßmann, U., Nierstrasz, O., eds.: Software Composition. LNCS
3628, Springer-Verlag (2005) 15–30

4. Brogi, A., Corfini, S.: Behaviour-aware discovery of Web service compositions. In:
University of Pisa, Department of Computer Science - Tech. Rep. TR-06-08. (2006)

5. Gallo, G., Longo, G., Nguyen, S., Pallottino, S.: Directed hypergraphs and appli-
cations. Discrete Applied Mathematics 42 (1993) 177–201

6. Aldana-Montes, J.F., Navas-Delgado, I., del Mar Roldan-Garcia, M.: Solving
Queries over Semantically Integrated Biological Data Sources. In: Int. Conf. on
Web-Age Information Management (WAIM 2004). LNCS 3129. (2004)

7. Benatallah, B., Hacid, M.S., Rey, C., Toumani, F.: Request Rewriting-Based Web
Service Discovery. In Goos, G., Hartmanis, J., van Leeuwen, J., eds.: The Semantic
Web - ISWC 2003, LNCS 2870, Springer-Verlag (2003) 242–257

8. Mokhtar, S.B., Georgantas, N., Issarny, V.: Ad Hoc Composition of User Tasks in
Pervasive Computing Environment. In Gschwind, T., Aßmann, U., Nierstrasz, O.,
eds.: Software Composition, LNCS 3628, Springer-Verlag (2005)

9. Hashemian, S., Mavaddat, F.: A Graph-Based Approach to Web Services Compo-
sition. In IEEE Computer Society, ed.: SAINT 2005, CS Press (2005) 183–189

10. Aversano, L., Canfora, G., Ciampi, A.: An Algorithm for Web Service Discovery
through Their Composition. In Zhang, L., ed.: IEEE International Conference on
Web Services (ICWS’04), IEEE Computer Society (2004) 332–341

11. Mokhtar, S.B., Kaul, A., Georgantas, N., Issarny, V.: Towards Efficient Matching
of Semantic Web Service Capabilities. In: Proceedings of WS-MATE 2006. (2006)

Dynamic Web Service Selection and Composition:
An Approach Based on Agent Dialogues

Yasmine Charif-Djebbar and Nicolas Sabouret

Laboratoire d’Informatique de Paris 6.
8, rue du Capitaine Scott. 75015 Paris

{yasmine.charif, nicolas.sabouret}@lip6.fr

Abstract. In this paper, we are motivated by the problem of auto-
matically and dynamically selecting and composing services for the sat-
isfaction of user requirements. We propose an approach dealing with
requirements freely expressed by the user, and in which agents perform
service composition through unplanned interactions. Our architecture is
based on agents that offer semantic web services and that are capable
of reasoning about their services’ functionalities. We propose to provide
such agents with an interaction protocol that allows them, through di-
alogues, to select and compose appropriate services’ functionalities in
order to fulfill a complex set of requirements specified by a user.

Keywords: Service Composition, Service Selection, Agent-based SOA,
Interaction Protocol, Agents’ Dialogues.

1 Introduction

Service-Oriented Architectures have been recognized as advantageous architec-
tural styles for future enterprise and scientific applications. However, on top of
already available middleware layers, many problems regarding service engineer-
ing and management, such as service composition [8], have been identified as
open issues.

In recent years, web service composition in service-oriented architectures has
been actively investigated in the database and semantic web communities. Some
of the existing approaches propose to specify manually the composition process
[3,9,10]; others need a designer’s assistance in a semi-automated approach to
composition [6,7]; and others tackle this problem as a planning task [1,15]. How-
ever, these approaches present recurring limitations:

– Most of them require the user to have low-level knowledge of the composition
process; e.g. in the case of [9,10], the user is expected to set up a workflow at
the XML level, and the tools proposed in [6,7] propose to the user low-level
semantic suggestions. Consequently, these approaches cannot be handled by
ordinary users of the web.

– In some of these approaches, e.g. [11,16], the user is not free to express
his or her requirements and is rather constrained to choose a “generic goal”
in a predefined list, e.g. “Making the travel arrangements for the ICSOC
conference trip”.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 515–521, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

516 Y. Charif-Djebbar and N. Sabouret

– Automated service composition requires handling the discovery and selec-
tion of services. Solutions that are proposed for these tasks are based on
semantic annotations, which does not guarantee (on its own) the provision
of the service that fulfills all the user’s request. For instance, suppose that a
service has been annotated as providing a sports coach and a user expresses
the query “I would like to engage a sports coach starting 4 July”. A service
discovery process based on semantic annotations may encounter scalability
problems, as it will propose all the sports coach services, while the user needs
a more specific service available from 4 July.

– Most of these approaches assume that the services to compose are elementary
since they only propose solutions to compose the overall services and not the
specific functionalities required [1,15].

These drawbacks lead us to propose a new approach for a dynamic service
selection and composition. In such an approach, services are selected and com-
posed on the fly according to requirements freely expressed by the user [12].
Therefore, this is the suitable approach for end-user applications in the web
where available components are dynamic and expected users may vary.

The composition approach we are developing is based on multi-agent systems
(MAS). Indeed, dynamic service selection and composition can benefit from
solutions provided by research in MAS. For instance, service composition can
be performed dynamically through agent collaboration, without predefining ab-
stract plans. In addition, agent technology offers well-developed approaches to
formally express and utilize richer semantic information, such as nonfunctional
characteristics of web services or qualitative constraints on the results proposed
by a service. On another hand, local and reactive processing in MAS can avoid
centralized systems’ bottlenecks and improve scalability.

Overview of Our Composition Approach

In our approach, we define semantic web services provided by interactive agents
capable of reasoning about their services’ functionalities. Our overall approach
can be broadly decomposed into three steps (see figure 1):

1. Formalize and decompose the user’s requirements into one or several inter-
dependent requests, which are sent to a mediator agent responsible for the
discovery of candidate services;

2. Discover and retrieve the candidate services from a registry using keywords
extracted from the user’s requests;

3. Select and compose the services’ functionalities through the interactions of
the mediator agent and the agents providing the candidate services, until
the user’s requirements are satisfied.

In this paper, we assume that the first two phases have been performed and
we focus on the service composition phase by defining an interaction protocol
allowing agents/services to dialogue so as to respond to a complex query requir-
ing the coordination of several services. Three features distinguish our proposal

Dynamic Web Service Selection and Composition 517

registry
UDDI WS

Service
1

Web

Web
Service

3

Web
Service

2Agent

1 2

3

Question
Mediator

Answer

Human user

keyword−based
discovery

candidate
services

interactions,
composition
and selection

Fig. 1. Overview of our Agent-based Composition Approach

from other work in the area. First, in our approach web services are pro-active
and can thus engage in complex conversations, instead of just simple invocation
and response with a result or error. Second, since it is performed through a dia-
logue model, our composition process is dynamic and doesn’t require predefined
plans or a predefined order of invocation of the services’ operations. Finally, the
use of agent technology allows for the expression of global constraints, making
it possible to select services according to specific user requirements.

In the rest of this paper, we present briefly our web service architecture based
on MAS in section 2. We describe in section 3 the interaction protocol making
it possible for agents/services to manage their dialogues so as to select and
compose the appropriate services with respect to user’s requests and constraints.
Finally, in section 4 we discuss the limitations of our current work, and place it
in perspective.

2 A Web Service Architecture Based on MAS

The aim of our research is to take draw on solutions provided in MAS to propose
an approach for service selection and composition. To this end, we implemented
a web service architecture following the definition given by the W3C [5] where a
service is viewed as part of an agent. Our web service architecture is thus based
on interactive agents that are capable of providing semantic web services and
reasoning about them.

We designed these agents as the combination of three layers. A concrete agent
reasoning about its offered service and processing the inter-agent communication
issues; an abstract service representing an XML-based declaration of the func-
tionalities offered by the service, associated to an ontology defining the concepts
and actions it handles; and a web service which is the WSDL interface of the
abstract service deployed on the web. To model such agents, we propose to use
the VDL formalism. VDL (for View Design Language) [14] is a programming
language for autonomous agents capable of interacting with the human user
and other agents. VDL allows to implement agents able to offer semantic web

518 Y. Charif-Djebbar and N. Sabouret

services, described in VDL-XML, to about reason them and answer requests for
them. As illustrated in figure 2, using a generated HTML interface, a human
user can interact with a VDL agent (a mediator agent) or invoke the service
it provides. This mediator agent can in turn discover services from a registry
and interact with other agents about their services so as to satisfy the user’s
requirements.

In our architecture, the human-agent interactions are made possible by the
VDL request model [13]. This model ensures the formalization of the user and
agents requests and makes it possible to represent a wide range of questions,
commands, assertions, etc. The inter-agent interactions are ensured by the agent
communication language (ACL) encompassing requests about services into struc-
tured messages. The content of each message is a set of requests among which
dependencies can be raised. Services can then either be invoked by SOAP or, as
we previously mentioned, accessed via the agent offering it through the ACL.

HTML
Interface

Agent

Agent
VDL

Agent
VDL

UDDI WS
registry

Service
(VDL−XML)

(WSDL)

(RDF)

Question

VDL

 (SOAP) Ontology

 Web Service

WS Invocation

Communication Layer

Human user

(VDL
request
model)

 (ACL)
Dialogue

 (SOAP)

Discovery

Publication
Answer

Fig. 2. Our Agent-based SOA

3 The Agent’s Interaction Protocol

In our approach, the user’s requirements are formalized as a set of (dependent)
requests, e.g. “I want to buy and have delivered a piano, and remove my old
wardrobe“, plus a set of constraints about the services discovered, e.g. QoS or
trust parameters, or constraints about the results they provide, e.g. “I want
to pay less than $300 for both the wardrobe removal and the piano delivery”.
These requests and constraints are stored within the mediator agent in a record
(gathering the information related to a composition goal), comprising also the
set of messages exchanged with other services to satisfy the user’s requests. Such
a record is stored within a history table, provided for each agent, containing all
the information related to an agent interactions.

To design our protocol, we consider that an agent has not only to answer to a
message according to its services’ functionalities, but also to take the initiative

Dynamic Web Service Selection and Composition 519

whenever the message comprises requests requiring the coordination of several
services. More precisely, the agent tries to discover services that may be com-
posed so as to fulfill the user’s needs. This composition and selection mechanism
is performed following three main phases supported by three algorithms we de-
fined. For each phase, agents’ behaviors have been defined according to their role
(mediator agent, or participant agent providing a candidate service).

3.1 Processing Triggering Messages

The mediator agent starts by broadcasting the triggering message, i.e. the mes-
sage containing the user’s requests, to the discovered services. When a partic-
ipant agent, providing a service, receives such a message, it builds an answer
to each request following its service’s functionalities and knowledge using its re-
quest processing module (RPM) [13]. This module builds for each request range
(assertion, command, etc) the corresponding answer according to the service’s
functionalities. The agent then returns the answering message to the sender.

Suppose in our example that the mediator agent discovered a music equipment
service, a removal service, a delivery service, and another delivery service offering
to remove equipments under certain conditions. In this step, each service answers
according to its functionalities and knowledge. For instance, the music equipment
servicesendsaproposal forapianospecifying itscharacteristicsandprice,andoneof
the delivery services informs the mediator agent that it can’t answer to the delivery
request as long as it hasn’t been sent information related to the piano (the delivery
cost could for instance depend on the value and weight of the equipment to deliver).

3.2 Message Composition

The processing of a non triggering message depends on the role of the agent
receiving it. If this agent is the mediator agent, it analyzes it together with the
stored messages in order to relaunch the interaction if needed. For instance, if
one of the services sent an answer stating that it needs a variable value, and if the
received message provides an assertion about this variable, the mediator agent
builds a composed message containing this assertion and invokes the specific
service requiring it. If a participant agent receives a non triggering message,
in addition to it’s service’s functionalities and knowledge, it uses the assertions
contained in the received messages as knowledge to solve the received requests.

In our example, the delivery service needs information related to the piano that
the music equipment service sent to the mediator agent. Following the second step
of our protocol, the mediator agent sends a composed message containing the as-
sertion about the piano characteristics and invokes the delivery service needing it.

3.3 Service Selection

The mediator agent is provided with a timeout value over which, if no more
message arrives, it proceeds to service selection. This step aims at selecting
services that best fit to the user’s constraints among those which could answer
to the user’s requests.

520 Y. Charif-Djebbar and N. Sabouret

To perform this selection, the mediator agent builds for each triggering re-
quest (composing the triggering message) a candidate answers list storing the
ids and answers of the services that could respond to this request. For each stored
constraint, for instance deliveryCost+removalCost<$300, the mediator agent
builds the corresponding expression using the services answers. In our exam-
ple, the mediator agent build the expression deliveryCost+removalCost and
assesses it first with the first delivery service and the removal service answers
(where the expression is assessed to $350), then the second delivery service which
offers equipments removal (where the expression is assessed to $280). Comparing
the obtained results with respect to the constraint, the mediator agent removes
from the candidate answers list the services that don’t respect the constraint. In
our example, the first delivery service and the removal service are removed from
the candidate answers lists. The mediator agent then returns to the user, for
each triggering request, the corresponding service and the answer it provided.

4 Conclusion and Future Work

We have proposed in this paper a dynamic approach to performing web service
selection and composition using unplanned agent-based dialogues. Our approach
rests on a web service architecture that supports pro-active and interactive web
services provided by agents. We have specified an interaction protocol that allows
agents interacting about their services functionalities so as to satisfy a composi-
tion goal with respect to requests and constraints freely expressed by the user.
This protocol specifies the agents’ behaviors according to their role (mediator or
participant) in the composition process and allows them to coordinate so as to
solve dependent requests. As a result, the mediator agent performs a selection
over the proposed answers with respect to the user constraints and provides the
user with the set of services, together with their answers, that could respond to
both his requests and constraints.

However, even though our interaction protocol performs well in the presented
example, in future work we need to consider several improvements in order to
achieve greater scalability in the composition and selection techniques. For in-
stance, if a user constraint involves the results of several services, as in the
presented scenario, the service selection step should try different answer combi-
nations. We propose to use MAS algorithms for negotiation [2] during this step to
retrieve the best combinations of answers respecting complex constraints. More-
over, we also envision for our interaction protocol to consult with the human
user whenever more information is needed by a service to answer a request, or to
solve conflicts or multiple choice situations. On another hand, rule-based policies
[4] might condition the evolution of the conversation, e.g. the requester might
require a certificate to be sent by the service provider in order to disclose his
credit card details. Finally, we plan to study (both theoretically and empirically)
the performance of our system, so as to provide a quantitative demonstration of
the benefit to our system’s scalability from the use of MAS techniques.

Dynamic Web Service Selection and Composition 521

References

1. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint Driven Web Ser-
vice Composition in METEOR-S. In Special Issue of the International Journal of
Electronic Commerce (IJEC), 2004.

2. S. Aknine. Improving Optimal Winner Determination Algorithms Using Graph
Structures. In Proc. Agent Mediated Electronic Commerce, 2004.

3. B. Benatallah, Q.Z. Sheng, and M. Dumas. The Self-Serve Environment for Web
Services Composition. IEEE Internet Computing, 7(1):40–48, 2003.

4. P. A. Bonatti, N. Shahmehri, C. Duma, D. Olmedilla, W. Nejdl, M. Baldoni,
C. Baroglio, A. Martelli, P. Coraggio V. Patti and, G. Antoniou, J. Peer, and
N. E. Fuchs. Rule-based Policy Specification: State of the Art and Future Work.
Technical report, Project deliverable D1, Working Group I2, EU NoE REWERSE,
Sep 2004.

5. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web Services Architecture. Technical report, W3C Working Group Note
11, 2004.

6. L. Chen, N.R. Shadbolt, C. Goble, F. Tao, S.J. Cox, C. Puleston, and P. Smart.
Towards a Knowledge-based Approach to Semantic Service Composition. In Proc.
2nd International Semantic Web Conference, 2003.

7. J. Domingue and S. Galizia. Towards a Choreography for IRS-III. In Proc. of the
Workshop on WSMO Implementations (WIW 2004), 2004.

8. A. Gustavo, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts,
Architectures and Applications, 2004.

9. IBM Alphaworks. BPWS4J. http://www.alphaWorks.ibm.com/tech/bpws4j,
2002.

10. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Description Language (WS-CDL). Technical report, W3C, 2004.

11. S. McIlraith and T.C. Son. Adapting golog for Composition of Semantic Web
Services. In Proc. of the 8th International Conference on Knowledge Representation
and Reasoning (KR’02), 2002.

12. T. Osman, D. Thakker, and D. Al-Dabass. Bridging the Gap between Workflow
and Semantic-based Web services Composition. In Proc. of the Web Service Com-
position Workshop WSCOMPS05, 2005.

13. N. Sabouret. A model of requests about actions for active components in the
semantic web. In Proc. STAIRS 2002, pages 11–20, 2002.

14. N. Sabouret. Representing, requesting and reasoning about actions for active com-
ponents in human-computer interaction. Technical Report 2002-09, LIMSI-CNRS,
2002.

15. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into
Executable Processes. In Proc. of the 3rd International Semantic Web Conference,
Hiroshima, Japan (ISWC’04), pages 380–394, 2004.

16. M. Vallée, F. Ramparany, and L. Vercouter. Flexible Composition of Smart Device
Services. In Proc. of the 4th International Conference on Pervasive Computing,
pages 91–96, 2006.

Leveraging Web Services Discovery with
Customizable Hybrid Matching

Natallia Kokash1, Willem-Jan van den Heuvel2, and Vincenzo D’Andrea1

1 DIT - University of Trento, Via Sommarive, 14, 38050 Trento, Italy
{kokash, dandrea}@dit.unitn.it

2 Infolab, Tilburg University, 5000 LE, PO Box 90158, Tilburg, The Netherlands
wjheuvel@uvt.nl

Abstract. Improving web service discovery constitutes a vital step for
making a reality the Service Oriented Computing (SOC) vision of dy-
namic service selection, composition and deployment. Matching allows
for comparing user requests with descriptions of available service imple-
mentations, and sits at the heart of the service discovery process. This
paper firstly evaluates the efficacy of several key similarity metrics for
matching syntactic, semantic and structural information from service in-
terface descriptions, using a uniform corpus of web services. Secondly, it
experiments with a hybrid style of matching that allows for blending var-
ious matching approaches and makes them configurable to cater service
discovery given domain-specific constraints and requirements.

1 Introduction

Service Oriented Architectures (SOAs) offer tantalizing possibilities for enter-
prizes by allowing large-scale reuse of loosely-coupled services, defining service
description, discovery and composition at heart of its paradigm. Web services has
become the preferred implementation technology for realizing the SOA promise
of service sharing and interoperability. By now, a stack of standards and specifi-
cations supports the description, discovery, invocation, composition, security and
deployment of web services, and many tools to develop applications from web
services have become commercially available. However, the vision of dynamic
composition of heterogeneous web services still seems far away.

Web service discovery is generally perceived a key step to reach automation of
service composition, and further realizing the SOA vision. It is concerned with
locating web services that match a set of functional and non-functional criteria.
Discovery involves three interrelated phases: (1) matching, (2) assessment and
(3) selection. During the first phase, the description of a service is matched to
that of a set of available resources. Next, the result of matching (typically a set of
ranked web services) is assessed, filtered by a set of criteria. Finally, services are
actually selected so they may be subsequently customized and combined with
others. This paper focuses on the first phase of service discovery - matching.

In [1] we present the overview of the existing approaches to web service match-
ing. Unfortunately, in many cases an evaluation of the proposed matching tech-
niques is lacking. And, if available, each experimental evaluation uses its own

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 522–528, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Leveraging Web Services Discovery with Customizable Hybrid Matching 523

corpus, making an objective judgement about their efficacy very cumbersome.
To analyze their merits, it is useful to classify the existing algorithms as uniform
or hybrid. Uniform approaches refer to atomic matching techniques that can
not be further decomposed in finer-grained methods. Hybrid approaches on the
other hand may combine various matching methods into a composite algorithm.

In Section 2, we introduce a web service matching approach that serves to
highlight the basic workings of hybrid matching and compare several similarity
measures using a similar WSDL corpus. Based on these evaluations, Section 3
proposes a customizable approach towards hybrid service matching. Section 4
concludes this paper by summarizing our main findings and exploring new re-
search areas.

2 The WSDL Matching Method (WSDL-M2)

We present a matching algorithm, named WSDL-M2, that was inspired by sev-
eral existing discovery methods. It is oriented to work with incomplete web
service specifications and combines two techniques: lexical matching to calculate
the linguistic similarity between concept descriptions, and structural matching
to evaluate the overall similarity between composite concepts.

All WSDL specifications are parsed in order to allow extraction of their struc-
tured content. The parsed document is tagged to enable lexical analysis. The
implementation of the method considers five WSDL concepts that are supposed
to contain meaningful information: services, operations, messages, parts and data
types. Each element has a description, i.e., a vector that contains semantic in-
formation about this element extracted from the specification.

The tagged WSDL specifications can be further analyzed and subsequently in-
dexed using different IR models. The most widely-used IR technique constitutes
the Vector-Space Model. It weights indexed terms to enhance retrieval of relevant
WSDL documents and then computes a similarity coefficient after which they
may be ranked. Traditionally, term weights are assigned using the tf-idf (term
frequency-inverse document frequency) measure. After this assignment, the sim-
ilarity between descriptions is determined using associative coefficients based on
the inner product of the description vectors. To address the major shortcom-
ing of VSM, the fact that VSM considers words at the syntactic level only, our
method expands both the query and the WSDL concept descriptions using syn-
onyms that are extracted from WordNet. Next, we compare the obtained word
tuples as in VSM. Finally, we used a measure that reflects the semantic relation
between two concepts using the WordNet lexicon1. Formally, it is defined as
sim(c1, c2) = 1 − (

icwn(c1) + icwn(c2)
)
/2 + maxc∈S(c1,c2) icws(c), where icwn(c)

denotes information content value of a concept c and S(c1, c2) is a set of con-
cepts that subsume c1 and c2. More details of this method are outlined in [2]. In
principle, any other algorithm could have been chosen instead.

1 Java implementation of the algorithm that defines the semantic similarity of two
terms is available on http://wordnet.princeton.edu/links.shtml.

524 N. Kokash, W.-J. van den Heuvel, and V. D’Andrea

Using these metrics, the matching phase then continues with the comparison
of service descriptions and the set of service operations, which are later combined
in a single-number measure. The similarity between operations, in their turn, is
assessed based on the descriptions of operations and their input/output messages.
To compare message pairs we again evaluate similarity of their descriptions and
parts. Since one part with a complex data type or several parts with primitive data
types can describe the same concept, we compare message parts with subelements
of complex data types as well. We rely on “relaxed” two-level structural matching
of data types since too strict comparison can significantly reduce recall. At the first
level, description of complex types are compared. At the second one, all atomic
subelements of the complex type are compared. For each element, names of higher-
level organizational tags such as complexType or simpleType and composers such
as all or sequence are included in the element description. Order constraints are
ignored since parser implementations often do not observe them. This does not
harm well-behaved clients and offers some margin for errors.

The structural matching is treated as Maximum Weight Bipartite Matching
problem that can be solved in polynomial time using, for example, Kuhn’s Hun-
garian method. We use this method for two purposes: (i) to calculate semantic
similarity between concept descriptions, (ii) to compute similarity of complex
WSDL concepts taking into account their constituents (sub-types). Weight wij

of each edge is defined as a lexical similarity between elements i and j. The total
weight of the maximum weight assignment depends on the dimensions of the
graph parts. There are many strategies to acquire a single-number dimension-
independent measure in order to compare sets of matching pairs. The simplest
of them is to calculate the matching average. Alternatively, we can consider two
elements i ∈ X, j ∈ Y to be similar if wij > γ for some parameter γ ∈ [0, 1]. In
this case, Dice, Simpson, and Jaccard coefficients may be applied. Due to space
reasons, we are not able to include the entire formal details of the matching
algorithm. We refer to [3] for a detailed formal treatment.

We have conducted a series of experiments to evaluate the efficacy of the pre-
sented matching method. We have compared the efficacy of the tf-idf heuristic,
its WordNet-based extension and the semantic similarity metric described above.
We ran our experiments using two web service collections presented in [4] and
[5]2. For each service we queried the complete data set for the relevant services
(i.e., services classified in the same group). The similarity assigned to different
files with respect to the query can be treated as a level of the algorithm confi-
dence. It ranges from 0 (no match) to 1 (WSDL documents contain all concepts
from the query regardless of the order). To avoid dependency from the chosen
similarity threshold, the efficacy of the matching algorithm was accessed by av-
erage precision that combines precision, relevance ranking, and overall recall [6].

For the first collection of the classified web services WSDL-M2 proved to be
very effective (46-100%). For several categories of the second collection average

2 Stroulia and Wang describe a collection of 814 services. However, we excluded a
group of 366 unclassified WSDL specifications and 1 WSDL file was not parsed
correctly.

Leveraging Web Services Discovery with Customizable Hybrid Matching 525

precision was dramatically low (15-40%) reaching 100% for the other groups
in the same time. This can be explained by the fact that the most categories
in the corpus were very coarse-grained and too generic in nature. Further, our
experimental results have shown that the VSM was the most effective method
for the overwhelming majority of the queries despite the fact that it is lim-
ited to syntactic matching only. Application of the tf-idf heuristic applied on
the WSDL specifications enriched with synonyms from the WordNet lexicon,
did not improve the quality of the matching results for the first collection. For
the second data set the Wilcoxon signed rank tests indicate that these two ap-
proaches are significantly different (p-value = 0.00693 < 0.01) and prove that the
average precision of the VSM is consistently better (p-value = 0.003465 < 0.01).
The semantic correlations between WSDL concepts found with the help of the
WordNet-based semantic similarity measure in most cases are wrong or too weak.
As a result many irrelevant files for the query have a high similarity score. At
the same time, WordNet is restricted to a fixed set of six semantic relationships
(including: hypernyms, synonyms, entailment, etc.) when the similarity measure
that we need is the relation “can be converted” rather than the general lexi-
cal (synonymy) similarity. Aside from the efficacy of this particular application
of tf-idf, the semantic matching approach has a significantly lower performance
than the previous two approaches.

Due to the absence of a standard corpus in combination with the usage
of different data models, WSDL-M2 cannot be compared quantitatively with
the existing approaches for which some empirical validations are available, no-
tably, [4][5][7]. A challenging anomaly occurs: groups with better precision in [4]
correspond to the groups with worse average precision in our experiments. This
may be caused by a different proportion (weight) of structure vs. semantic sim-
ilarity impact on the final similarity score.

The above provides empirical evidence that one of the key factors that influ-
ence on the performance of the matching methods that we studied this far, is the
quality of the vocabulary used in description of various services. These observa-
tions point towards the idea that a customizable hybrid matching is needed to
increase confidence in matching results. For example, hybrid matching can help
to reduce the processing time of semantic matching using structural matching
to reduce the number of WSDL documents to be compared.

3 Customizable Hybrid Matching Approaches

In this section, we introduce a customizable hybrid approach towards matching
of web services. The significance of customization lies in the fact that it caters for
composition of a new hybrid approach from various existing techniques. Hence,
this approach may in fact be perceived as a meta-matching strategy, which is
very flexible as it is not restricted to any matching technique, but enables ad-
hoc composition of several (pre-existing) matching approaches.

It is of critical importance to make matching methods customizable so that
they may be tailored to meet organization-, domain- and/or context-specific

526 N. Kokash, W.-J. van den Heuvel, and V. D’Andrea

constraints and needs, including, (non-)absence of domain-specific taxonomies,
quality of the request/available web service descriptions, availability of textual
descriptions, number of available services, usage of topic-specific terminology
and the such. For example, hybrid matching seems a viable solution in case one
has more confidence in structural than semantic matching due to the fact that
WSDL labels carry poor semantics and service descriptions are lacking. The level
of confidence may be expressed by parameterizing the hybrid algorithm so that
more weight can be assigned to structural and less weight to semantic matching.

Let us illustrate our approach using a simple example. Suppose that two
kinds of matching algorithms are available: Sy, which compares service descrip-
tions using syntax driven techniques and Se, that relies on semantic matching.
Let simSy(q, x) designate a similarity score between query q and web service
(operation) x defined by the syntactic matching algorithm, and simSe(q, x)
be a similarity score between query q and web service (operation) x defined
by the semantic matching algorithm. Given query q and threshold γ > 0, let
XA(q, γ) = {x|simA(q, x) > γ} denote a set of services (operations) found by
the algorithm A. Now, we propose three compositional operators to combine
matching approaches:

– Mixed - a series of matching techniques are executed in parallel. In fact,
these matching techniques may be homogenous (e.g., all of them of the same
type) or heterogenous (various types of matching, e.g., a mixture of semantic
and syntactic matching). This type of composition combines sets of services
found by the different matching techniques in a single list. For example,
syntactic and semantic matching algorithms are grouped in a single rank-
ing list, i.e., XH1a(q, γ) = {x|simH1a(q, x) > γ}, where simH1a(q, x) =
f{simSy(q, x), simSe(q, x)} such that f = {max, min}. Alternatively, the
results of the two approaches are fused based on weights allocated to each
matching constituent, i.e., XH1b(q, γ) = {x|simH1b(q, x) > γ} such that
simH1b(q, x) = w1sim

Sy(q, x)+w2sim
Se(q, x) | w1+w2 = 1, 0 ≤ w1, w2 ≤ 1.

– Cascade - each matching technique that is part of the composite matching
algorithm reduces the searching space of relevant service specifications. In
other words, each subsequent matching algorithm refines the matching re-
sults of the previous one. For example, given a set of services found by the
syntactic matching algorithm, choose those services whose similarity that is
computed by the semantic matching algorithm is higher than a predefined
threshold, i.e., XH2a(q, γ1) = {x|simH2a(q, x) > γ1}, where simH2a(q, x) =
simSy(q, x) | x ∈ XSe(q, γ2). Alternately, from the set of services found
by the semantic matching algorithm, we select those services whose syn-
tactic similarity is higher than a predefined threshold, i.e., XH2b(q, γ2) =
{x|simH2b(q, x) > γ2}, where simH2b(q, x) = simSe(q, x) | x ∈ XSy(q, γ1).

– Switching - this category of composition allows to switch between different
matching algorithms. In principle, the decision to switch to another matching
technique is driven by predefined criteria. For example, based on the number
of the found services for a query after using a uniform algorithms we can
alter between cascade and mixed combinations.

Leveraging Web Services Discovery with Customizable Hybrid Matching 527

Parametrization entails a prime mechanism to allow for customization.
Principally, the weights may be applied to hybrid matching techniques, being as-
sembled using mixed, cascading and switching styles of composition. In fact, con-
figuration of hybrid matching may not only be achieved at the level of matching
techniques, but also at the level of the data models underlying them. There exist
two fundamental choices to combine data-models underpinning hybrid matching:

– Combination - different data models are combined by a single algorithm.
– Augmentation - various data-models are used sequentially to enrich the in-

formation that serves as an input to the matching process. This style of
data-model combination is most effective for cascading or switching style
of composition. Typically, this strategy involves interaction with the service
requester and/or information that is gathered from a service monitor.

Fig. 1. Average precision of four hybrid algorithms on the first data set

We have experimented with a combination of the approaches presented in Sec-
tion 2 to increase confidence in matching results and demonstrate the potential
of parameterizing hybrid matching more in general. Some preliminary experi-
ments using the same corpus as before, yielded the outcome drawn in Figure 1.
Four mixed algorithms were tested: in the first two approaches, different weights
for syntactic matching were assigned, 60% and 80% correspondingly. Other two
methods experimented with ranking of the retrieved services using maximum
and minimum similarity scores between those assigned by the semantic and
syntactic uniform algorithms. First two hybrid approaches over-performed the
purely semantic matching, while two others showed both increases and decreases
in average precision for different categories of web services.

4 Conclusions and Outlook

Web service discovery plays a pivotal role in the SOC paradigm. In this paper
we have introduced the WSDL-M2 matching algorithm that was implemented in
a prototypical toolset. We have conducted a comparative analysis of WSDL-M2
with three lexical similarity measures: tf-idf and two WordNet-based metrics,
using a uniform corpus.

528 N. Kokash, W.-J. van den Heuvel, and V. D’Andrea

To leverage WSDL matching, we have proposed a multi-dimensional com-
position model, having matching techniques and data models as its main con-
stituents. The research findings that were presented in this paper are core results
in nature. More research is needed in various directions. Though promising in
nature, empirical evidence for hybrid matching is in need of experimentation in
larger settings. We intend to conduct more experiments with hybrid matching
approaches, equipping them with learning strategies.

Also, we believe that the augmentation strategy towards data model composi-
tion of matching approaches is a promising research direction. This composition
model assumes that extra information may be gathered from monitoring tools. In
particular, we plan to scrutinize application of the following types of knowledge:

– Service knowledge - knowledge about the existing services and their features,
such as service documentation, interface description, ontology-based seman-
tic extensions, service reputation and monitored information.

– Client knowledge - client’s profile that includes his/her area of expertise,
location, history of searches and previously used web services.

– Functional knowledge - knowledge required by the matching algorithm to
map between the client needs and the services that might satisfy those
needs. The chain query → knowledge-based reasoning → response is im-
plied. For example, if the client asks for a currency exchange web service,
and the algorithm knows that given a particular currency the client can
define the country where this currency is used, it may recommend service
conversionRate(fromCurrency, toCurrency).

Additionally, in future work we are going to consolidate and extend our current
empirical study with other IR models.

References

1. Kokash, N., van den Heuvel, W.J., D’Andrea, V.: Leveraging web services discovery
with customizable hybrid matching. Technical Report DIT-06-042, DIT-University
of Trento, Italy (2006)

2. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic
similarity in wordnet. In: Proceedings of the ECAI, IOS Press (2004) 1089–1090

3. Kokash, N.: A comparison of web service interface similarity measures. In: Proceed-
ings of the STAIRS, IOS Press (2006) 220–231

4. Wu, Z., Wu, Z.: Similarity-based web service matchmaking. In: Proc. of the IEEE
Int. Conference on Services Computing. Volume 1. (2005) 287–294

5. Stroulia, E., Wang, Y.: Structural and semantic matching for accessing web service
similarity. Int. Journal of Cooperative Information Systems 14(4) (2005) 407–437

6. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: Proc. of
SIGIR. (2000) 33–40

7. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: Proceedings of the VLDB Conference. (2004) 372–383

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 529 – 539, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Assembly of Business Systems
Using Service Component Architecture

Anish Karmarkar1 and Mike Edwards2

1 Oracle, 1211 SW 5th Ave, Suite 900, Portland, OR, USA
2 IBM Corporation, Hursley Park, Winchester, SO21 2JN, UK

anish.karmarkar@oracle.com,
mike_edwards@uk.ibm.com

Abstract. Service Component Architecture (SCA) is a set of specifications which
provide a programming model for the creation and assembly of business systems
using a service oriented architecture. SCA uses service components as the build-
ing blocks of business systems. SCA supports service components written using a
very wide range of technologies, including programming languages such as Java,
BPEL, C++ and also declarative languages such as XSLT.

SCA also provides a composition model for the assembly of distributed groups
of service components into a business solution, with composites used to group
collections of components and wires modeling the connections between compo-
nents. SCA aims to remove “middleware” concerns from the programming code,
by applying infrastructure concerns declaratively to compositions, including as-
pects such as Security and Transactions.

SCA is being evolved by an industry collaboration, with the aim of eventual
submission to a standards body.

Keywords: SOA, SCA, service assembly, composition, integration, service
component architecture.

1 Introduction

Service Component Architecture (SCA) is a set of specifications [1] which define a
model for building applications and systems using a Service-Oriented Architecture.

In SCA, services are provided by service components, which may in turn use ser-
vices provided by other components. Multiple service components can be configured
and assembled into groupings called composites, to provide specific business capabili-
ties, which model connections between components through wires.

SCA supports the creation and reuse of service components using a wide variety of
implementation technologies. Components can be built with programming languages
such as Java, C++, PHP, COBOL, and BPEL [2]. Components using frameworks such
as Java Enterprise Edition [3] and the Spring Framework [4] are also supported. SCA
enables the use of declarative languages such as XSLT [5] and SQL for components. In-
tegration of both new and existing components is a key feature of SCA assemblies, in-
cluding the ability to assemble existing components that are not SCA-aware.

SCA provides for the use of a wide range of specific protocols, transports and in-
frastructure capabilities when configuring and assembling components and services

530 A. Karmarkar and M. Edwards

within composites. Examples include access methods or bindings such as SOAP-
based [6] Web services, REST web services, JMS [7], EJB (RMI-IIOP) [8] and JCA
[9]. SCA aims to make the protocol used for communication transparent to the im-
plementation code within components.

The set of SCA specifications consists of the following:

1. SCA Assembly specification. The SCA Assembly Model defines the configuration
of an SCA system in terms of service components which implement and/or use
services and composites which describe the assembly of components into packages
of function, including the connections between components, the configuration of
component properties and how services and references are exposed for use.

2. SCA Policy Framework. The SCA Policy Framework provides a framework to
support specification of constraints, capabilities, and Quality of Service (QoS) ex-
pectations from component design through to concrete deployment. The SCA Pol-
icy Framework allows the specification of interaction and implementation policies
such as those related to security, reliability and transactions.

3. SCA Client and Implementation specifications. The SCA Client and Implementa-
tion specifications each specify how SCA components and service clients can be
built using a particular language or framework, including language- or framework-
specific APIs and annotations. Examples of current language specifications are-
Java, C++ and BPEL. Examples of supported frameworks include Java Enterprise
Edition (EJBs), the Spring Framework and JAX-WS [10].

4. SCA Binding specifications. The SCA Binding specifications each describe how
services can be accessed and references can be satisfied using a particular access
method, protocol or transport. Examples include SOAP-based Web services, JMS
and EJB (RMI-IIOP).

The next section gives a simple example of how an application can be assembled and
implemented using SCA. This paper then goes on to explain the assembly model for
configuring and connecting components, services and references; a brief overview of
SCA bindings; SCA Client and Implementation models; and the SCA Policy Frame-
work. The paper ends with a description of ongoing and future work and describes the
collaboration which is continuing to enhance the specifications.

2 SCA Assembly Example

“A picture is worth a thousand words” as the saying goes – and so it is with SCA.
While the formal content of an SCA assembly is captured as a set of XML files and
possibly also as annotations in code artifacts, SCA also has a graphical representation
of components and composites, which is designed to provide an “at a glance” picture
of the relationship of the services and components which make up an SCA business
solution. This section starts the description of the SCA model by looking at an exam-
ple diagram of a service assembled from a set of business components.

First, an explanation of some of the elements in the assembly diagrams. An SCA
component appears like this:

 Assembly of Business Systems Using Service Component Architecture 531

Component… …

services

references

properties

Implementation
- Java
- BPEL
- Composite
…

Fig. 1. Diagram of SCA component

The chevrons on the left (pointing in) each represent a service offered by the com-
ponent. The chevrons on the right (pointing out) each represent a reference that this
component makes to a service supplied elsewhere (ie the component uses those ser-
vices to perform its business function). The small boxes at the top represent settable
property values that the component has that may be configured. The “middle” of the
component represents some implementation code – this may be any of the implemen-
tation types supported by SCA.

Groups of components can be assembled into composites. Composites can be used
to create particular business capabilities from the assembled components, with wiring
used to connect the components in the right way – each wire represents the connec-
tion of a reference of one component to the service of another – alternatively, services
and references may be exposed out of the composite for use in “higher level” compo-
sitions. This is useful in structuring and organizing larger business solutions. A sim-
ple example of a composite is shown in figure 2:

Composites can provide services and make references to other services. They can
also have settable properties. These all relate to some aspects of the components con-
tained in the composite.

Having introduced the general form of SCA diagrams, next is a simple example of
a business service built from a series of components to give a flavor of how SCA is
used in practice. The example is an order processing service. The function provided
by the service is to take an order for products. This involves information about the
products being ordered, information about the customer placing the order such as
payment information and dispatch address.

532 A. Karmarkar and M. Edwards

Composite A

Component
AService

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Component
B

Interface
- Java interface
- WSDL PortType

Interface
- Java interface
- WSDL PortType

Wire WireWire

Reference

Property
setting

Properties

Fig. 2. SCA Diagram for a composite

In the Assembly diagram for the ordering system, the Order Processing Service is
the large chevron on the left – this represents the external service endpoint, for exam-
ple a Web service endpoint, which is available for calling by external customers of the
business. The order processing service is implemented by the Order Processing Com-
ponent. The Order Processing component in turn uses a series of other services to per-
form the order processing service – these are signified by the three references that the
Order Processing Component has. These services are

• Payment Service – for taking the payment associated with the order
• Warehouse service - for checking availability of the ordered goods and for getting

the goods dispatched to the customer
• Logging service – for recording details of the services invoked

The payment service is provided by the Accounts Composite, while the Warehouse
service is provided by the Warehouse Composite. The Event logging service is rela-
tively simple so that it is provided by a simple component – the EventLog component.

The Accounts Composite provides a payment service using a Payments component
working in alliance with an Accounts Ledger component and with a reference to a
Banking service which is an external service provided by the bank used by the busi-
ness (eg this service may provide credit card services for collecting payments). In a
real business, it is likely that the Accounts composite would be much larger, with a
wide range of services available of which the payments service is just one.

The Warehouse composite provides the Warehouse service using a Warehouse
broker component, which is able to talk with the Warehouse component representing
the warehouse within the business, but also with external Warehouse services pro-
vided by other businesses, represented by the External Warehouse reference on the
right. The broker can make queries to the warehouse services to find stock of

 Assembly of Business Systems Using Service Component Architecture 533

Warehouse
Service

WarehouseComposite

Warehouse
Broker

Component

Warehouse
Component

EventLog
Component

Order
Processing
Service

OrderProcessing
Component

EventLog
Reference

External
Warehouse

Reference

Payments
Component

Payment
Service

AccountsComposite

External
Banking

Reference

Accounts
Ledger

Component

Fig. 3. SCA Assembly Diagram of an Order Processing System

products and also to request dispatch of those products. The components in the
Warehouse composite make use of the Event Logging service, which is again con-
nected to the EventLog component.

To summarize, the Assembly model shows which services are offered from our
business for others to use. It also models those references that our business makes to
services provided by others. The model also shows how particular services are im-
plemented by specific components – and shows that these components may in turn
have references that need to be satisfied by services provided by other components –
or by services provided outside our business system by other businesses.

Note that an SCA assembly models the set of components that are used to make a
particular business function and it models the way in which they are connected. It
does not model the time sequences involved in executing particular service opera-
tions. Such business process sequencing can be provided by specialized component
implementations such as BPEL processes.

534 A. Karmarkar and M. Edwards

3 SCA Assembly

The core of SCA is the Assembly model. The assembly model describes applications
and solutions in terms of components which provide services and in terms of compos-
ites which group, organize and connect components into larger assemblies.

3.1 Services and Service Components

Service components provide services and in turn they may rely on services provided
by others through dependencies called references. Service components may also have
settable property values that can affect their operation.

Services and references are described in terms of their interfaces – which is a set of
operations with defined input and output parameters. The parameters are best defined
as data structures (as opposed to objects), in order to ensure interoperability between
components implemented using different technologies, which is one of the goals of
systems built using service-oriented architecture. In SCA, interfaces can be defined
using one of a number of languages, including WSDL and Java interfaces. This sup-
port of multiple technologies is one of the hallmarks of SCA, which aims to accom-
modate many current technologies.

In SCA, Service components can be implemented with any of a wide range of
technologies. Java classes, BPEL processes, C++ classes, PHP scripts and XSLT
transforms are just a few of the possible implementation types. In addition, a compo-
nent can be implemented by an SCA composite. SCA allows for a nested structuring
of applications making it easier to construct and manage large applications.

It is the implementation code which provides the business function of an SCA as-
sembly. The implementation code provides the services, makes the references and
provides settable properties that can be configured when the implementation is used
in a component within an SCA assembly. SCA aims to abstract from the implementa-
tion code everything that is not a business concern. In particular the interfaces for
services and for references are business oriented and should not be concerned with
technical details such as the communication mechanisms used to invoke services or of
which component satisfies a particular reference. These details are left to the configu-
ration applied in the composites which use the implementation code within service
components.

3.2 Composites and the Assembly Process

The assembly of components into a larger solution is described in SCA in terms of
composites. Composites contain service components which are configured through the
setting of values for their properties and through the connecting of services to references
through wires. The wires represent communication between components - they resolve
which service gets called when a component invokes a reference and they represent
messages flowing back and forth between a service consumer and the service.

A composite can control which services are made available for use outside the
composite, through service elements on the composite itself. Similarly, the composite
can define which references are satisfied outside the composite, through reference
elements on the composite.

 Assembly of Business Systems Using Service Component Architecture 535

Part of the configuration which the composite can specify is which mechanism to
use for a wire, for example Web services or JMS messaging. The composite can
also provide configuration details about the endpoint at which a service is made
available. The composite can also apply policies to components, services and refer-
ences. Policies can be used to apply infrastructure capabilities such as message en-
cryption and user authentication.

SCA has a formal language which is used to describe composites and their con-
tents. This is an XML dialect. An example of a composite follows:

<composite name=”AccountsComposite”>

 <service name=”PaymentService”>
 <interface.wsdl interface=
 ”http://example.org/Payment#wsdl.interface(pay)” />
 <binding.ws>
 <soapbinding version=”1.1”/>
 </binding.ws>
 <reference>PaymentsComponent</reference>
 </service>

 <component name=”PaymentsComponent”>
 <implementation.java class=”org.example.MyImpl”/>
 <property name=”currency”>USD</property>
 <reference name=”Banking”>
 ExternalBankingReference
 </reference>
 <reference name=”Accounts”>
 AccountsLedgerComponent
 </reference>
 </component>

 <component name=”AccountsLedgerComponent”>
 ...
 </component>

 <reference name=”ExternalBankingReference”>
 <interface.wsdl interface=
 ”http://example.org/bank#wsdl.interface(credit)”/>
 <binding.ws endpoint=
 ”http://example.org/bank#wsdl.endpoint(svc/port)”/>
 </reference>

</composite>

Example 1. Composite file for AccountsComposite

This example corresponds to the AccountsComposite of the Order Processing Sys-
tem shown in Figure 3. It shows the two components, PaymentsComponent and
AccountsLedgerComponent, the service PaymentService and the reference External-
BankingReference. The wires connecting these elements are defined by the <refer-
ence…/> subelements of the service and the components.

536 A. Karmarkar and M. Edwards

Composites can be used as implementations within components of other compos-
ites. This nesting of composites provides for structured assembly of larger systems
avoiding the need to place a large number of components into a single composite and
supporting the design concept of high-level, coarse grained services (such as our Or-
der Processing example) being implemented by lower level more fine grained services
that deal with specific aspects of the high level service.

4 Client and Implementation - Languages and Frameworks

SCA aims to support a wide range of technologies for the implementation of service
components. This includes not only specific programming languages but also frame-
works and other extensions built using those programming languages. SCA does this
so that it can support the integration of existing applications and components into an
assembly with minimal effort. SCA also aims to appeal to many different program-
ming communities since building service components can be done in many languages.

There are SCA specifications which deal with implementing components in a
range of programming languages and a set of frameworks, but this is not meant to im-
ply that SCA is limited to supporting only those technologies. SCA is explicitly ex-
tensible to include other technologies and it is expected that additional languages and
frameworks will be covered by new SCA specifications.

The current SCA specifications cover BPEL, C++ and Java as implementation lan-
guages. There are additional Java specifications that describe the use of components
written using Enterprise Java Beans (versions 2.1 and 3.0); using the Spring Frame-
work and using the JAX-WS specification.

The general principle of the SCA client and implementation specifications is to re-
duce the use of special “middleware” APIs to a minimum. The focus is to identify and
call the service interface(s) offered by a component and to provide business interfaces
for the service references that the component needs to invoke. For example, in Java, it
is possible to provide all necessary property values and reference objects via injection.

5 Communication Mechanisms – SCA Bindings

SCA Bindings apply to SCA services and SCA references. Bindings allow services to
be provided, and references to be satisfied, via particular access methods, protocols or
transports. Bindings are typically added to an SCA assembly late in the development
process – often during the deployment steps when the assembly is made available in the
runtime system. This late attachment of Bindings gives the deployer great flexibility in
adapting the business solution to new requirements, such as the need to change the sup-
plier of an external service, who may use a different protocol from a previous supplier.

There are four standard SCA bindings currently being developed: Web service
binding, Messaging/JMS binding, EIS/JCA binding, and EJB binding. Bindings can
be added to SCA and it is likely that other bindings will be added in the near future.

Web service bindings expose an SCA service or allow access to an external refer-
ence using Web services technologies. Web services provide an interoperable way to
access the service components. The Web service binding provides the glue between

 Assembly of Business Systems Using Service Component Architecture 537

an SCA system and other services that are external to the SCA system but are used by
composites within the SCA system.

Messaging and JMS bindings provide for communication between service con-
sumers and service implementations using messaging protocols. JMS bindings apply
to messaging made available through the Java JMS API. The messaging bindings
provide more general access to messaging protocols such as WebSphere MQ.

The EIS/JCA Bindings allow access from the SCA runtime to the services pro-
vided by the Enterprise Information Systems residing outside the SCA system. The
JCA Binding is the specialization of the EIS Binding, where the access to the external
services is provided via Java JCA Resource Adapter.

The EJB binding allows references to access to services provided by stateless and
stateful EJBs implemented using the Java EJB 2.1 or the EJB 3.0 technologies, via the
RMI-IIOP protocol.

6 SCA Policy Framework

The SCA Policy Framework provides a solution to the problem of applying infra-
structure capabilities to an SOA composite application. The kinds of capabilities in-
clude features such as security, reliability and transactions.

SCA aims to apply these infrastructure capabilities declaratively to components
and the wires that connect them. This approach removes the need for the developer to
code complex features into service components, allowing her to concentrate on busi-
ness capabilities. The infrastructure capabilities are then applied by the SCA runtime
in the ways defined in the assembly.

The policy framework defines two kinds of policy types –

1. Interaction policies, which apply to services, references and the wires between
them. An example is the encryption of the messages sent between service con-
sumer and the service implementation.

2. Implementation policies, which apply to components. An example is the security
role which must apply when a component runs.

Detailed policies, which define fine-grained features of the way in which infra-
structure capabilities are applied at runtime, are held in policy sets. An example of a
detailed policy is the specific encryption method to use for confidentiality purposes
when transmitting messages when a service is invoked. Policy sets are typically
closely related to specific bindings used for a service and will be applied to an assem-
bly at the time that the binding is chosen, possibly at deployment time.

SCA also provides a mechanism that the component developer can use to indicate
the general capabilities required by a service or a component, in the case where the
developer does not know in advance which bindings will be used with the component,
or where multiple bindings might be used. These are high-level intents, which can be
used to select an appropriate policy set at the later time when bindings and policy sets
are applied to an assembly containing the component.

An example of a high level intent is ‘confidentiality’, which is a security intent ap-
plying to a service or a reference requesting that messages should be sent with a level

538 A. Karmarkar and M. Edwards

of encryption to ensure that no one but the intended recipient can read the message.
The presence of this intent means that at runtime a policy set must be chosen for the
service which includes an appropriate level of message encryption. For some intents,
it may not be possible to find a policy set for every binding that will provide the
capability requested by the intent – this is an indication to the deployer that they must
choose a different binding in order to meet the needs expressed by the intent.

6.1 Infrastructure Capabilities – Security, Transactions, Reliability

The SCA policy framework defines general mechanisms for attaching intents and
policies to components, services and references. In principle, the policy framework
can accommodate a very wide range of policy statements. In practice, SCA defines
policies relating to infrastructure capabilities in the areas of Security, Transactions
and Reliability.

Reliability refers to the reliable delivery of messages with various delivery assur-
ances such as “once and only once”. This is not true for all protocols. SCA provides
the means for a service to indicate that it requires reliable delivery of its messages.

“Security” is a catch-all term that covers a range of capabilities. Examples include
authentication and authorization of users and encryption of messages. SCA supports
these capabilities.

Transactions refers to transactional behavior of components and in particular the
ability to commit or to roll back a series of updates. SCA supports transactional ca-
pabilities.

7 Ongoing and Future Work

The SCA specification set is being developed under the aegis of Open Service Ori-
ented Architecture (OSOA) collaboration [11]. The OSOA collaboration is a group of
vendors who have come together to develop specifications for Service Oriented Ar-
chitecture. The first version of the specification set is expected to contain:

1. SCA Assembly Model
2. SCA Policy Framework
3. SCA Client and Implementation Model for Spring Framework
4. SCA Client and Implementation Model for EJB
5. SCA Client and Implementation Model for JAX-WS
6. SCA Client and Implementation Model for BPEL
7. SCA Client and Implementation Model for Java
8. SCA Client and Implementation Model for C++
9. SCA Web Service Binding
10.SCA EJB Binding
11.SCA Messaging/JMS Binding
12.SCA EIS/JCA Binding

These specifications are expected to be completed by the end of this year and are
expected to be submitted to a standards development organization for standardization
in an open forum.

 Assembly of Business Systems Using Service Component Architecture 539

A subsequent version of the SCA specification set is expected to contain:

1. SCA Eventing Model
2. SCA Client and Implementation Model for PHP
3. SCA Client and Implementation Model for COBOL

Extensibility is built into the SCA model as a design principle. Therefore, it is ex-
pected that SCA will be extended by vendors and users to accommodate various im-
plementation- and binding-specific technologies and needs.

There are several ongoing implementations of SCA by various vendors participat-
ing in the OSOA collaboration. In addition, there are two open source projects:
Apache Tuscany [12] and Eclipse SOA Tools Platform [13] that implement and sup-
port the SCA specifications.

References

[1] Service Component Architecture (SCA) Specifications http://www.osoa.org/display/
Main/Service+Component+Architecture+Specifications

[2] “Web Services Business Process Execution Language Version 2.0,” A. Alves et al, 23rd
August 2006, OASIS Public Review Draft, http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.pdf

[3] “Java™ Platform, Enterprise Edition (Java EE) Specification, v5,” Bill Shannon, 28th
April 2006, Final Release, http://jcp.org/aboutJava/communityprocess/final/jsr244/
index.html

[4] Spring Framework, http://www.springframework.org
[5] “XSL Transformations (XSLT) Version 1.0,” James Clark, 16th November, 1999, W3C

Recommendation, http://www.w3.org/TR/1999/REC-xslt-19991116
[6] “SOAP Version 1.2 Part 1: Messaging Framework,” M. Gudgin et al, 24th June 2003,

W3C Recommendation, http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
[7] “Java Message Service version 1.1,” M. Hapner et al, 12th April, 2002,

http://java.sun.com/products/jms/docs.html
[8] “JSR 220: Enterprise JavaBeansTM,Version 3.0,” L. DeMichiel et al, 2nd May, 2006, Fi-

nal Release, http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
[9] “J2EE™ Connector Architecture Specification, Version 1.5,” November, 2003, Final Re-

lease, http://jcp.org/aboutJava/communityprocess/final/jsr112/index.html
[10] “The Java API for XML-Based Web Services (JAX-WS) 2.0,” R. Chinnici et al,

April 19, 2006, Final Release, http://jcp.org/aboutJava/communityprocess/final/jsr224/
index.html

[11] Open Service Oriented Architecture (OSOA) Collaboration http://www.osoa.org/
display/Main/Home

[12] Tuscany Apache Incubator project, http://incubator.apache.org/tuscany/
[13] Eclipse SOA Tools Platform Project http://www.eclipse.org/stp/

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 540 – 544, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The End of Business as Usual:
Service-Oriented Business Transformation

Andy Mulholland

Capgemini, 76 Wardour Street, London W1F 0UU, UK
andy.mulholland@capgemini.com

Abstract. Service-Oriented Architecture (SOA) is a new approach for organiz-
ing and isolating application functionality, built on a flexible and reusable
foundation of services. It has the capacity to expand the reach of the enterprise
by enabling services to define and transform relationships and, in so doing, ex-
pand the scope of what Information Technology can make possible. Above all,
service orientation focuses on the business imperative and offers opportunities
to approach business issues in a different way. In short, SOA means the end of
business as usual. This paper briefly outlines some of the key challenges busi-
nesses need to overcome in order to become Service-Oriented Enterprises. For
more in depth discussion on the topic, read the book Mashup Corporations: The
End of Business as Usual.

Keywords: Service-Oriented Architecture, Information and Communications
Technology, shadow IT, mashups, composite applications, web services, gov-
ernance, compliance.

1 Introduction

Services-Oriented Architecture (SOA) is a new structure and a set of mechanisms for
organizing and isolating application functionality, built on a flexible and reusable
foundation of services. But services are not drivers of business change in and of them-
selves. The transformations promised by SOA will never take place unless a new cul-
ture and innovative business models take shape around it. SOA will gradually expand
the scope of what Information Technology (IT) can make possible, but only if leaders
possess the imagination to make use of it.

Unlike most discussions of SOA that focus on its mechanisms—services, model-
ing, patterns, messaging, events—we will explore the shape and value of a service-
enabled business and how you can lead your company through the necessary cultural
transformation. You will hear quite a bit about mashups because they demonstrate the
power of utilizing SOA capabilities. But mashups are the thin end of a larger wedge
of change that SOA will bring about, while SOA represents a new era in computing
evolution.

In simplest terms, SOA expands the reach of the enterprise by allowing services to
define and transform relationships. We will examine the five kinds of relationships
upon which SOA will make the most impact:

 The End of Business as Usual: Service-Oriented Business Transformation 541

• The relationships between a company and customer-focused innovators in-
side and outside the company.
How can you harness the ideas and energy of outsiders eager to help?

• The relationships between a company and its customers.
How can you bring your customers closer to your core business processes?

• The relationships between a company and its suppliers.
How can you strengthen the connection between yourself and your suppli-
ers? How can you create a win-win relationship instead of an adversarial
one?

• The relationships between the IT department and the larger company.
How can IT support employee initiatives instead of stifling them? How can
innovation break new ground while protecting critical data?

• The relationships amongst the IT professionals within a company.
How can you best structure your IT resources to reflect the needs and new
capabilities of SOA? How can SOA help IT balance demands (e.g. security
and ease-of-use)?

The culture that meshes best with SOA is one of empowerment and flexibility. For
SOA to achieve its potential, many assumptions that have ruled business and IT must
be abandoned. New rules will govern the creation of an SOA business culture, a cul-
ture that is focused on putting as much power as possible in the hands of those closest
to the customer in order to create and discover new markets and to unlock value that
had never previously been accessible.

It’s a culture of change and experimentation, and for IT to keep up, some reorgani-
zation will be necessary. Before that happens, however, forces that are currently driv-
ing deep structural changes within companies must be acknowledged and harnessed.
A partial list of those challenges follows.

2 ICT Versus IT

A new term: Information and Communications Technology (ICT) is rapidly being
adopted to refer to a larger world of possibilities and techniques that have developed
since the term Information Technology (IT) was born. Here and there, where we are
speaking about the future and technology, we use ICT. Primarily, we will stick with
the term IT in this book referring to the IT Department itself or because for the most
part we are referring to the commonly held understanding of IT, which is the applica-
tion of technology in an enterprise or large organization.

3 “Shadow IT” and the IT Generation Gap

In the history of enterprise computing, up until this moment, IT was mostly a world
unto itself, whether centralized or decentralized. The willful isolation of IT into a nar-
row focus on recording transactions shaped several generations’ attitudes toward the
role of IT within the larger context of the organization. For older executives (defined
for our purposes as 45 years old and older), the traditional mode of dealing with IT
involved creating requirements and then asking IT to do what needed to be done.

542 A. Mulholland

But in the last decade, since the advent of the Internet era, a generational split has
occurred. Employees under the age of 35 (and including many who are older) entered
the workplace and took for granted plentiful bandwidth, desktop productivity tools,
open source software, and a wealth of networks, including social networking, peer-to-
peer technologies, and other beneficiaries of Metcalfe’s Law. The members of this
generation seized the tools of IT production for themselves as they configured their
email, cell phones, instant messaging, wikis, and blogs to help them transact business.
This do-it-yourself capability has become known as Shadow IT. To maximize the im-
pact and breadth of use of services, Shadow IT must be encouraged, supported, and
officially recognized as a critical component of day-to-day operations.

For SOA to work, Shadow IT must be acknowledged and supported.

4 The Architectural Shift Toward Mashups and Composites

It’s no longer enough to simply be on the Web. The browser window is increasingly
competitive real estate, and relying on advertising-infused HTML invites uncontrolla-
ble interruptions. Head to a travel web site, for example, and the first thing you’re
likely to notice are popup ads for the site’s competitors. Such is the dark side of the
Web’s ongoing shift to ad-supported models.

But the pioneering efforts of independent developers in tandem with services pro-
vided by companies like Google, Amazon.com, and many others, have enabled the
assembly of simple composite applications commonly called “mashups” to appear on
the scene.

Mashups may run inside browsers or in new, richer environments called composite
applications. They aren’t based exclusively on HTML delivered by a server. Instead,
mashups use services typically delivered in XML from many different sites to knit to-
gether a useful experience for the customer. Perhaps the best-known mashups marry
the basic functionality of Google or Yahoo!® Maps with specialized data sets to cre-
ate customized, searchable maps.

This mashup environment is self-contained and controlled. And its ease of use her-
alds the next generation of flexibly recombined services.

For SOA to work, services to support mashup/composite applications must be made
available.

5 User-Driven Innovation

Mashups aren’t invented during the IT department’s annual offsite meetings, except
for the rare exception in which an IT organization is promoting the reuse of com-
monly used corporate services. Instead, they spring from the minds of entrepreneurial
virtuosos who are continually sifting through the services they discover on the Inter-
net and imagining the emergent possibilities.

Companies that “get” SOA do everything in their power to turn their value-creating
processes into services and then place them in the hands of their most innovative
thinkers whose efforts become the company’s bridge to new customers. To the

 The End of Business as Usual: Service-Oriented Business Transformation 543

outside world, the company becomes increasingly defined by the services it offers
others to use as a springboard for innovation and creating new kinds of business rela-
tionships.

For SOA to work, companies must remove barriers to innovation and put tools in the
hands of innovators.

6 Transformed Business Models

Providing services to innovators, inside the company and out, profoundly changes the
way it appears to customers, partners and competitors. Some of these new business
processes create markets where none existed before; others change the role the com-
pany plays within the value chain. Most of these processes feel completely unnatural
at fi rst and arrive with a complete checklist of objections and excuses explaining why
they will never work.

Lightweight, reusable services offer the perfect building blocks for inexpensive
experiments that may fail, as expected, or may create a massive opportunity.

For SOA to work, new and imperfect business models must be implemented so they
can be debugged and perfected.

7 Incremental, Agile Development

Applications based on services frequently use better, more user friendly development
tools that expand the pool of potential developers far beyond the boundaries of the IT
department. Ideas for new solutions will arrive in the form of half-baked applications
created by lay users who start down a path toward a solution, but lack the expertise to
finish it. To exploit the full potential of SOA, the development lifecycle must accept
partial solutions from wherever they originate and nudge them toward completion so
that their potential can be fully measured. Agile development methods are suspicious
of requirements gathered in a vacuum and promote an incremental approach in which
applications are built, deployed, and then improved in a succession of rapid steps. The
best solutions will ultimately emerge from these small steps forward, with the final
step representing the sum total of accumulated experience.

For SOA to work, development methods must allow rapid cycles based on learning
from experience.

8 Governance, Security, and Operational Stability

Exposing services to the outside world inevitably places power in the hands of outsid-
ers who are directed by their own self-interest.

What are those outsiders allowed to do? How much power do they need to inno-
vate? How can abuse be discouraged? And how can the services be created to embed
rules for governance, security, and operational stability? Policies governing all of

544 A. Mulholland

these issues and more must be created in parallel with technical efforts to build an
SOA, and in many cases, will be built into the services themselves.

For SOA to work, governance, security, and operational stability must be designed
into services.

9 Conclusion

SOA means the end of business as usual. However, it can only be achieved if leaders
possess the knowledge, the imagination and the roadmap to make optimal use of it.
Services are not drivers of business change. The transformations promised by service
orientation will not happen without the adoption of a new culture and innovative busi-
ness models.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 545 – 556, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Service Oriented Reflective Wireless Middleware

Bora Yurday1 and Halûk Gümü kaya2

1 TUBITAK-MAM, ETCBASE Yazılım
Gebze, Turkey

bora.yurday@etcbase.com
2 Department of Computer Engineering, Fatih University

34500 Istanbul, Turkey
haluk@fatih.edu.tr

Abstract. The role of middleware has become increasingly important in mobile
computing, where the integration of different applications and services from
different wired and wireless businesses and service providers exist. The re-
quirements and functionalities of the wireless middleware can be achieved by
Service Oriented Computing which can be an ideal paradigm for mobile ser-
vices. Reflective middleware responses are optimized to changing environments
and requirements. In this paper a Service Oriented Reflective Wireless Middle-
ware (SORWiM) is proposed. It provides basic (Event, Messaging, Location,
and Redirection) and composite services for efficient and reliable information
discovery and dissemination in ad hoc mobile environments. One of the
primary goals of this research is to investigate how the construction of mobile
services can benefit from the Service-Oriented paradigm.

1 Introduction

Middleware is distributed software that sits above the operating system and below the
application layer and abstracts the heterogeneity of the underlying environment [1].
It provides integration and interoperability of applications and services running on
heterogeneous computing and communications devices, and simplifies distributed
programming. Middleware can be decomposed into multiple layers such as host infra-
structure middleware (Java Virtual Machine (JVM)), distribution middleware (Java
RMI, CORBA, Simple Object Access Protocol (SOAP)), common middleware
services (J2EE, .NET), and domain-specific middleware services (developed for par-
ticular domains, such as telecom, or e-commerce) [2]. Conventional middleware tech-
nologies, such as CORBA and RMI have been designed and used successfully with
fixed networks. However, there are significant challenges to design and optimize
middleware for mobile computing. Since conventional middleware platforms are not
appropriate for mobile computing, because, first of all, they are too big and inflexible
for mobile devices. Mobility, quality of service, security, management of services,
service discovery, ad hoc networking and dynamic configuration are main middle-
ware issues for mobile computing. It is therefore essential to devise new middleware
solutions and capabilities to fulfill the requirements of emerging mobile technologies.

546 B. Yurday and H. Gümü kaya

Service-Oriented Computing (SOC) [3] is a distributed computing paradigm based
on the Service-Oriented Architecture (SOA) [4], which is an architectural style for
building software applications that use services. SOC and SOA are not completely
new concepts; other distributed computing technologies like CORBA and RMI have
been based around similar concepts. SOA and SOC are merely extensions of the ex-
isting concepts and new technologies, like XML, and Web Services, are being used to
realize platform independent distributed systems.

The SOA appears to be an ideal paradigm for mobile services. However, it is cur-
rently focused only on enterprise and business services. In addition, most of SOA
research has been focused on architectures and implementations for wired networks.
There are many challenges that need to be addressed by wireless middleware based on
SOA. Wireless middleware will play an essential role in managing and provisioning
service-oriented applications. In this paper a Service Oriented Reflective Wireless
Middleware (SORWiM) is proposed. It provides a set of services for efficient and
reliable information discovery and dissemination in ad hoc mobile environments. One
of the primary goals of this research is to investigate how the construction of mobile
services can benefit from the Service-Oriented paradigm.

This paper is structured as follows. In section 2, the properties affecting the design
of wireless middleware and why conventional middleware platforms are not appropri-
ate for mobile computing are presented. In section 3, the service oriented approach to
wireless middleware and SORWiM are introduced. In section 4, the detailed architec-
ture and services are given. In section 5, service orchestration and mobile application
scenarios are introduced. In section 6, the performance evaluation of SORWiM is
presented, and finally in section 7, our future work is given.

2 Wireless Middleware for Mobile Computing

Limited resources, heterogeneity, and a high degree of dynamism are the most com-
mon properties that usually exist in mobile devices such as pocket PCs, PDAs, sensors,
phones, and appliances. Although limited resource availability varies from device to
device; mobile devices generally don’t have powerful CPUs, large amount of memory
and high-speed I/O and networking compared to desktop PCs. Different hardware and
software platforms, operating systems imply changes in some parameters such as byte
ordering, byte length of standard types, and communication protocols. The degree of
dynamism present in ubiquitous computing does not exist in traditional servers and
workstations. A PDA, for example, interacts with many devices and services in differ-
ent locations, which implies many changing parameters such as the type of communi-
cation network, protocols, and security policies. Therefore, because we can’t predict all
possible combinations, the software running on a PDA device must be able to adapt to
different scenarios to cope with such dynamism.

All these properties affect the design of the wireless middleware infrastructure re-
quired for mobile computing. Conventional middleware platforms are not appropriate,
because, first of all, they are too big and inflexible for mobile devices [5], [6]. A wire-
less middleware should be lightweight as it must run on hand-held, resource-scarce
devices. Conventional middleware platforms expect static connectivity, reliable chan-
nels, and high bandwidth that are limited in resource-varying wireless networks.

 A Service Oriented Reflective Wireless Middleware 547

Wireless middleware should support an asynchronous form of communication, as
mobile devices connect to the network opportunistically and for short periods of time.
It should be built with the principle of awareness in mind, to allow its applications to
adapt its own and the middleware behavior to changes in the context of execution, so
as to achieve the best quality of service and optimal use of resources. Hiding network
topologies and other deployment details from distributed applications becomes both
harder and undesirable since applications and middleware should adapt according to
changes in location, connectivity, bandwidth, and battery power.

New wireless network middleware is required to increase performance of applica-
tions running across potentially mixed wireless networks (from GPRS to WLANs),
supporting multiple wireless devices, providing continuous wireless access to content
and applications, as well as to overcome periods of disconnection and time-varying
bandwidth delivery. Wireless middleware could also ensure end-to-end security and
dependability from handheld devices to application servers.

We cannot customize existing middleware platforms manually for every particular
device. It is not flexible or suitable for coping with dynamic changes in the execution
environment. Reflective middleware presents a comprehensive solution to deal with
ubiquitous computing [7]. Reflective middleware system responses are optimized to
changing environments or requirements, including mobile interconnections, power
levels, CPU/network bandwidth, latency/jitter, and dependability needs. Reflection is
the ability of a program to observe and possibly modify its structure and behavior. In
the SORWiM architecture, reflection was used in the service level. A fully reflective
middleware was not implemented initially; instead we worked on reflective services
that take decisions according to context information.

Principles and guidelines for designing middleware for mobile computing have
been published in literature [5], [6], [7], [8], and some wireless middleware projects
have been developed for some specific areas, such as sensor networks [9], [10]. A few
researchers have also published service oriented computing imperatives for wireless
environments [11], [12]. To the best of our knowledge, there are no or a few real
implemented wireless middleware platforms based on SOA.

3 A Service Oriented Approach to Wireless Middleware

A SOA-based service is self-contained, i.e., the service maintains its own state [4]. A
service consists of an interface describing operations accessible by message exchange.
Services are autonomous, platform-independent and can be described, published,
dynamically located, invoked and (re-)combined and programmed using standard
protocols. SOA promotes loose coupling between software components.

The building block of SOA is the SOAP [13]. SOAP is an XML-based messaging
protocol defining standard mechanism for remote procedure calls. The Web Service
Description Language (WSDL) [14] defines the interface and details service interac-
tions. The Universal Description Discovery and Integration (UDDI) protocol supports
publication and discovery facilities [15]. Finally, the Business Process Execution
Language for Web Services (BPEL4WS) [16] is exploited to produce a service by
composing other services.

548 B. Yurday and H. Gümü kaya

The high level architecture of SORWiM using the reference model of the web ser-
vices standards stack is shown in Fig 1. There are four services, Event (Notification),
Messaging, Location, and Redirection. These are some of the first important and basic
services in a typical wireless environment. We have also developed some example
composite services using these basic services in our implementation.

Fig. 1. The high level architecture of SORWiM based on the Web Services Standards Stack

4 The Architecture of SORWiM and Its Services

The architecture of SORWiM is shown in Fig 2. Each service is depicted by a WSDL
document, which describes service accessing rules. Web services are registered to the
central UDDI database. The client searches the UDDI to find out the service it needs,
fetches the WSDL file, and generates the stub with the WSDL to stub code generator
provided by the web service toolkit, and starts calling remote methods.

Fig. 2. The architecture of SORWiM

The package diagrams of SORWiM basic services are shown in Fig 3. A package
describes a stateless service which can communicate with other services through ser-
vice interfaces. That is there is no dependency between services which is one of the

 A Service Oriented Reflective Wireless Middleware 549

primary goals of SOA. By defining relations between services we create composite
services that form new application scenarios in our wireless framework. We exten-
sively used the design patterns [17] in the implementation of the SORWiM architec-
ture. Design patterns codify design expertise, thus providing time-proven solutions to
commonly occurring software problems in certain contexts [17], [18].

Fig. 3. The UML package diagrams of SORWiM basic mobile services

All basic services use the util package which organizes logging, error cases, data-
base operations, initializing parameters. Since we need single instances of the classes
in this package and a global point of access to them, the Singleton pattern [17] is used
in the implementation.

A mobile client application, TestPad, which aims to test the basic services, was
written using the PocketBuilder, the Sybase’s the rapid application development tool
for building mobile and wireless applications running on Microsoft Pocket PC devices
[19]. In the middleware implementation we used the Apache Axis which is a proven
service oriented platform to develop Java web services [20]. In the following, first,
the basic services are explained. Then how composite services are orchestrated using
these basic services are presented.

The EventService is one of the first basic services of SORWiM. It provides an in-
terface schema for four main functions, authentication, profiles and preferences, noti-
fication (alert), and system and user information as shown in Fig. 4. A behavioral
pattern, the Observer pattern [17], is used in the implementation of the notification
engine. This pattern defines a one-to-many dependency between a subject object and
any number of observer objects so that when the subject object changes state, all its
observer objects are notified and updated automatically.

550 B. Yurday and H. Gümü kaya

Mobile services imple-
mented in the Axis 1.2

Authentication
• register: Mobile user logs in the system
• unRegister: Log off the system

Profiles and Preferences
• setProfile: Detailed user profile and preferences

Notification
• setDeviceProperty: Device info such as battery power, mem-

ory, and communication bandwidth
• setLocationContext: Location info
• setTimeEvent: Time based-notification event

System and User Information
• getInformation/ listTopic: get system and user information

such as profiles, preferences/list a topic

Fig. 4. The services in the EventService

The MessagingService package has basic messaging services to create, send, re-
ceive and read XML based messages for mobile applications. This service can send
messages using RPC, SMTP, SMS, and MMS types. The simplified class diagram of
MessagingService is shown in Fig. 5. We used the Factory pattern [17] for creating
different message types. This pattern deals with the problem of creating objects with-
out specifying the exact class of object that will be created. The asynchronous com-
munication is provided by the message oriented middleware approach of SORWiM
using a messaging queue structure. The MessagingService class provides the func-
tionality of the Facade pattern [17] for the messaging service package. It decouples
the other classes of the MessagingService package from its clients and other subsys-
tems, thereby promoting service independence and portability.

Fig. 5. The simplified class diagram of the MessagingService

 A Service Oriented Reflective Wireless Middleware 551

The Location Service handles the problem of searching and updating locations of
mobile nodes in a wireless network. This service is also used by other services for
giving decisions and providing active context-awareness that autonomously changes
the application behavior according to the sensed location information.

We designed and implemented an indoor positioning system, WiPoD (Wireless Po-
sition Detector), which locates and tracks a user having an IEEE 802.11 supported
device across the coverage area of a WLAN [21]. With high probability, WiPoD can
estimate a user’s location to within a few meters of his/her actual location. The loca-
tion information for the SORWiM indoor applications will be provided by WiPoD.

The services such as redirectionRequest and replicationRequest in the Redirection
package are responsible for client redirection to different servers and server reference
translation. There are two main problems dealt with in redirection: Address migration
and data replication, both provide migration transparency. Migration transparency
allows components to change their location, which is not seen by a client requesting
these components. Server translation and redirection can be done transparently or non
transparently. The Redirection Service needs to be aware of the state of connectivity
and the location of the client at any point in time. The steps of redirection:

• Request- sent from a client to a server to signal that the client wishes to carry
out a request on the server

• Response-sent from the server to a client in response to a request
• Redirection – Sent from a server to a client signaling that the client should

send its request to another server whose reference will be embedded in redirec-
tion response.

In an asynchronous replication one server acts as the master, while one or more
other servers act as slaves. The master server writes updates to log files, and main-
tains an index of the files to keep track of log rotation. These logs serve as records of
updates to be sent to any slave servers. The slave receives any updates that have taken
place, and then blocks and waits for the master to notify it of new updates. These
replication functions are provided by the replication servers of different vendors.

5 Service Orchestration and Mobile Application Scenarios

Composite services provide standardized interfaces for state transfer between basic
services. The first step in SORWiM Services was to create the stateless basic services
as Event, Messaging, Location and Redirection, and their descriptions (WSDL) as
explained above. The second step was to aggregate the functionality provided by each
independent service and create the composite services which receive client requests,
make the required data transformations and invoke the component web services.

The basic services and their usage in service composition are shown in Fig 6 using
two example composite services, Location Based Redirection Composite Service
(LBRCS) and Context Aware Notification Delivery Composite Service (CANDCS).
To evaluate the development of mobile applications on SORWiM, TestPad was im-
plemented to emulate several wireless application scenarios. The TestPad screen for
basic services is shown in Fig 7(a).

552 B. Yurday and H. Gümü kaya

Fig. 6. Two example composite mobile services in service orchestration

LBRCS maintains transparent redirection according to changes in the mobile loca-
tion using basic Location and Redirection services. This service first obtains the de-
vice location (Location Service) and redirects to the available addresses (Redirection
Service). We will give a scenario to explain how LBRCS can be used in a mobile
application. In this scenario, there are three locations. These are the user’s home and
user’s office which both are covered by a Wireless LAN, and the outdoor location
between the home and office where GPRS connection is available. In all these three
locations the user can connect to these networks using Pocket PCs or laptops. When
the user has left his/her office and moved out from the office WLAN coverage area,
his mobile device keeps connected to SORWiM through the GPRS connection. The
WLAN-to-GPRS handover is generally initiated by the mobile user. In our approach,
the mobile user sets the location information based on the local measurement of
WLAN signal quality. When LBRCS decides that a WLAN-to-GPRS handover is
required, it sends a handover-required message and an available endpoint (IP, port
number, and service name) of the server to the mobile device. The mobile user then
performs a handover and switches from the WLAN connection to the GPRS connec-
tion. When the user arrives in home, and discovers a wireless access point, the mobile
device sends the location information to LBRCS through the GPRS connection.
SORWiM then sends the response of the endpoint of the server that is accessible in
the office. The user performs a handover again and switches from GPRS to the
WLAN connection again. The TestPad screen for this last scenario is shown in Fig
7(b). The user sets the new location as Home and gets a response message from
SORWiM. The response is a new connection end point for the WLAN network. The
old and new end points are also shown in the lower part of the screen in Fig 7(b).

CANDCS which composes the services of Messaging, Event and Location, notifies
all registered users who are interested in a specific event. Imagine the following sce-
nario using this composite service: Haluk is waiting for Bora’s arrival and types in his
Pocket PC as “notify me as soon as Bora appears on the campus”. This message is
sent to SORWiM using the Pocket PC’s window shown in the upper part of the screen
in Fig 7(c). When Bora arrives and enters the campus, immediately a notification is
sent to Haluk’s Pocket PC as a message or SMS as shown in the lower part of the
screen in Fig 7(c).

 A Service Oriented Reflective Wireless Middleware 553

Fig. 7. Basic services and composite services TestPad screens

CANDCS makes a decision using three basic services for requests similar to “I
want to be registered for notifications about whether person X is in Y location”. The
Event Service provides an interface for registering the notifications. The Location
Service gives location information and can query the nearby objects as shown in Fig
7(a). The Messaging Service that has the ability of sending different types of mes-
sages is responsible for delivering the notification messages.

6 Performance Evaluation of SORWiM

There are a number of research studies for the performance evaluations of web ser-
vices and SOAP compared to middleware technologies, including Java RMI,
CORBA. In these studies, a comparison is made based on the performance of a web
service implementation that calls a simple method and an RMI, CORBA, or other
implementation that calls the same method [22], [23], [24], [25], [26], [27].

We performed similar benchmarking tests to measure the performance of SOR-
WiM to see if its performance is acceptable for a wireless middleware. The technolo-
gies used in this study were: Jakarta Tomcat 5.0.25, Axis 1.2, Java RMI from Java 1.4
SDK. The server specification is Intel Pentium M Processor 1.6 GHz 591 Mhz. 504
MB RAM. The client is an HP IPAQ h6340 Pocket PC. The Messaging Service in
SORWiM is implemented using two middleware technologies, RMI and Web Ser-
vice. The remote interface for performance tests is given below:

554 B. Yurday and H. Gümü kaya

public interface MessagingService extends Remote {
public String getMessage(String from)

 throws RemoteException;
public String sendMessage(String to, String from,

 String subject, String content, String type)
 throws RemoteException;
}

The single request and response CPU-times were measured for both the client
Pocket PC and the server. A sample of our initial test results is given in Table 1.

Table 1. The server and client average CPU times for Web Service (WS) and RMI implementa-
tions of the Messaging Service methods, getMessage and sendMessage

Method Calls CPU Time [ms]
Server WS

CPU Time [ms]
Client WS

CPU Time [ms]
Server RMI

CPU Time [ms]
Client RMI

getMessage 10 30 80 10 20
sendMessage 10 50 180 20 30

Our test results and other research studies showed that web services implementa-
tions performed slower than a Java RMI implementation. The large amount of XML
metadata contained in SOAP messages is the main reason that Web services will
require more network bandwidth and CPU times than RMI. We have concluded that
although the web service implementations are slower, the performance is acceptable
for many real time operations of a wireless middleware. The performance can be
made better and improved if the following issues are known and taken into considera-
tion in middleware server designs.

All numeric and other data in web services are converted to text. Meta-data, defin-
ing structure, are provided as XML mark-up tags. XML parsers allow client and
server implementations to construct their distinct but equivalent representations of
any data structures The use of HTTP, and XML text documents, supports increased
interoperability but also represents a significant increase in run-time cost for web
service solutions as compared with Java-RMI solutions. The XML formatted docu-
ments are inherently more voluminous than the binary data traffic of the other ap-
proaches. More data have to be exchanged across the network, and more control
packets are required.

When considering performance alone, web services provide value when the over-
head of parsing XML and SOAP is outweighed by the business logic or computation
performed on the server. Although web services generally don’t provide value in
performance, but do provide a convenient way to provide user interface, automatic
firewall protection (because they use HTTP for transport and HTTP traffic can nor-
mally pass through firewalls), mobility and heterogeneity of applications, transparent
proxies, and thin clients. The most natural designs for distributed objects are easy to
use but scale poorly, whereas web services have good scaling properties.

The performance studies in literature generally measure RPC-style communication
and do not consider the possibilities of document-oriented designs that demonstrate the
strengths of web services [28]. Web services are not intended to be used RPC-style like

 A Service Oriented Reflective Wireless Middleware 555

other distributed object technologies. Web services provide a literal encoding that can
be used in a document-centric paradigm rather than an RPC-centric one. If the docu-
ment-centric nature of web services is used in implementations, web services can out-
perform other traditional implementations when compared with an RPC-centric
approach. According to [28] the pure-object RMI or CORBA implementation is faster
for small batches of documents and low-latency networks, but performance degrades
rapidly with larger batches and higher latency. The web services have a high initial
cost, but show little or no change with larger batches. Higher latency creates a greater
initial cost, but performance is still independent of batch size. As latency increases, the
performance benefits of the document-oriented approach increase significantly. This is
relevant when in some real world wireless communication scenarios, latency may even
be minutes, or hours, as for disconnected or asynchronous operations.

7 Conclusion

In this paper the design issues of a SOA based reflective wireless middleware, SOR-
WiM have been presented. We will work on the research and development problems
of different mobile location based services (LBS) applications based on service ori-
ented computing using the basic and composite services provided by the middleware.
SORWiM currently has four basic services and two composite services which can be
used as building blocks of such wireless applications. We need develop some more
new basic and composite services for more complex mobile applications and LBS.

The integration of SORWiM and WiPoD will be also one of our next projects. The
WiPoD client application currently has a decentralized architecture and does not need
a server. It will be connected to the SORWiM server to provide the indoor location
information for the mobile user.

References

1. Schantz, R., Schmidt, D.: Middleware for Distributed Systems: Evolving the Common
Structure for Network-Centric Applications. In Encyclopedia of Software Engineering, J.
Marciniak, J., Telecki, G., (Eds): John Wiley & Sons, Inc., New York (2001)

2. Schmidt, D.: Middleware for Real-Time and Embedded Systems. Communications of the
ACM, Vol. 45, No: 6 June (2002)

3. Papazoglou, M. P., Georgakopoulos, D.: Service-Oriented Computing. Communications of
the ACM. Vol. 46, No: 10 (2003)

4. Papazoglou, M. P., Heuvel, W. J. van den: Service Oriented Architectures: Approaches,
Technologies and Research Issues. The VLDB Journal (2005) Available at: http://
infolab.uvt.nl/pub/papazogloump-2005-81.pdf

5. Mascolo, C., Capra, L., Emmerich, W.: Mobile Computing Middleware. Lecture Notes In
Computer Science, Advanced Lectures on Networking, Vol. 2497. Springer-Verlag (2002)
20–58

6. Vaughan-Nichols, S. J.: Wireless Middleware: Glue for the Mobile Infrastructure. IEEE
Computer, Vol. 37, No. 5 (2004) 18–20

7. Roman, M., Kon, F., Campbell, R.: Reflective Middleware: From your Desk to your Hand.
IEEE Communications Surveys, 2 (5) (2001)

556 B. Yurday and H. Gümü kaya

8. Mascolo, C., Capra, L., Emmerich, W.: Principles of Mobile Computing Middleware. In
Middleware for Communications, Wiley (2004)

9. Heinzelman, W. B., Murphy, A. L., Carvalho, H. S., Perillo, M. A. Middleware to Support
Sensor Network Applications. IEEE Network, January/February (2004) 6 – 14

10. Yu, Y., Krishnamachari, B, PrasannaIssues, V. K.: Designing Middleware for Wireless
Sensor Networks. IEEE Network, January/February (2004) 15 – 21

11. Sen, R., Handorean, R., Roman, G.-C., Gill, C.: Service Oriented Computing Imperatives
in Ad Hoc Wireless Settings. Service-Oriented Software System Engineering: Challenges
And Practices, Stojanovic, Z. and Dahanayake, A., eds., Idea Group Publishing, Hershey,
USA, April, (2005) 247 – 269

12. Thanh, D., Jørstad, I.: A Service-Oriented Architecture Framework for Mobile Services.
IEEE Proceedings of the Advanced Industrial Conference on Telecommunications/Service
Assurance with Partial and Intermittent Resources Conference/ELearning on Telecommu-
nications Workshop, September (2005)

13. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, M., Nielsen, H., Thatte,
S., Winer, D.: Simple Object Access Protocol 1.1. , available at http://www.w3.org/

14. Chinnici, R., Gudgina, M., Moreau, J., Weerawarana, S.: Web Service Description Lan-
guage (WSDL), version 1.2. Technical Report (2002)

15. W3C. UDDI Technical White Paper. Technical Report (2000)
16. Andrews, T. et al. Business Process Execution Language for Web Services (BPEL4WS),

ver. 1.1. Technical Report (2003)
17. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns, Elements of Reusable

Object-Oriented Software. Addison-Wesley (1995)
18. Schmidt, D., Stal, M., Rohnert H., Buschmann, F. Pattern-Oriented. Software Architec-

ture: Patterns for Concurrent and Networked Objects. John Wiley (2000)
19. PocketBuilder: http://www.sybase.com/products/developmentintegration/pocketbuilder
20. Apache Axis web site: http://ws.apache.org/axis/
21. Gümü kaya, H., Hakkoymaz, H.: WiPoD Wireless Positioning System Based on 802.11

WLAN Infrastructure. Proceedings of the Enformatika, Vol. 9 (2005) 126–130
22. Davis, D., Parashar, M.: Latency Performance of SOAP Implementations. IEEE Cluster

Computing and the Grid (2002)
23. Demarey, C., Harbonnier, G., Rouvoy, R., Merle, P.: Benchmarking the Round-Trip La-

tency of Various Java-Based Middleware Platforms. Studia Informatica Universalis Regu-
lar Issue, Vol. 4, No. 1, May (2005) 724–

24. Elfwing, R., Paulsson, U., Lundberg, L.: Performance of SOAP in Web Service Environ-
ment Compared to CORBA. in APSEC. IEEE Computer Society (2002) 84–

25. Juric, M. B., Kezmah, B., Hericko, M., Rozman, I., Vezocnik, I.: Java RMI, RMI Tunnel-
ing and Web Services Comparison and Performance Analysis. SIGPLAN Not., vol. 39, no.
5, (2004) 58–65

26. Gray, N. A. B.: Comparison of Web Services, Java-RMI, and CORBA Service Implemen-
tations. Fifth Australasian Workshop on Software and System Architectures (ASWEC
2004), Melbourne, Australia, April (2004)

27. Juric, M. B., Rozman, I., Brumen, B., Colnaric, M., Hericko M.: Comparison of Perform-
ance of Web Services, WS-Security, RMI, and RMI–SSL. The Journal of Systems and
Software 79 (2006) 689–70

28. Cook, W. R., Barfield, J.: Web Services versus Distributed Objects: A Case Study of Per-
formance and Interface Design, Proc. of the IEEE International Conference on Web Ser-
vices (ICWS), September 18-22 (2006)

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 557 – 568, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Procedures of Integration of Fragmented Data in a P2P
Data Grid Virtual Repository*,**

Kamil Kuliberda1,4, Jacek Wislicki1,4, Tomasz Kowalski1,4, Radoslaw Adamus1,4,
Krzysztof Kaczmarski2,4, and Kazimierz Subieta1,3,4

1 Technical University of Lodz, Lodz, Poland
2 Warsaw University of Technology, Warsaw, Poland
3 Institute of Computer Science PAS, Warsaw, Poland

4 Polish-Japanese Institute of Information Technology, Warsaw, Poland
{kamil, jacenty, tkowals, radamus}@kis.p.lodz.pl,
kaczmars@mini.pw.edu.pl, subieta@pjwstk.edu.pl

Abstract. The paper deals with integration of distributed fragmented collections
of data, being the basis for virtual repositories in the data grid or P2P
architecture. The core of the described architecture is based on the Stack-Based
Query Language (SBQL) and virtual updateable SBQL views. Our virtual
repository transparently integrates distributed, heterogeneous and fragmented
data producing conceptually and semantically coherent result. In the background
the system is based on the P2P architecture. We provide three examples of data
integration procedures, for either horizontal and vertical fragmentation. The
procedures are implemented under the integrator prototype.

1 Introduction

A virtual repository becomes an increasingly popular concept in database environments
as a mean to achieve many forms of transparent access to distributed resources
applicable, in particular, in e-Government, e-University or e-Hospital. Data must be
accessible from anywhere, at any time, regardless of its location and a form it is stored
in. There are many approaches attempting to realize such an idea. Some of them are
based on semantic data description and ontology usage extended with logic-based
programs striving to understand users needs, collect data and transform it to a desired
form (RDF, RDFQL, OWL). Commercial systems like Oracle-10G offer a flexible
execution of distributed queries but they are still limited by a data model and SQL, not
quite efficient and convenient for the case. Our novel system offers features necessary to
build such a virtual repository. It keeps programming very simple. The main idea is
based on P2P networks as a model for connecting clients and repositories combined
with a powerful viewing system [2] enabling users to access data exactly in a desired
form [8]. This viewing system also allows an easy-to-operate mechanism for integration
of fragmented data collections into a consistent virtual whole.

* This work is supported by European Commission under the 6th FP project e-Gov Bus, IST-4-
026727-ST.

** This work has been supported by European Social Fund and Polish State in the frame of
“Mechanizm WIDDOK” programme (contract number Z/2.10/II/2.6/04/05/U/2/06).

558 K. Kuliberda et al.

The rest of the paper is organized as follows. Section 2 presents the idea of a data
grid based on a virtual repository. Section 3 presents a virtual network basis for a data
grid. Section 4 presents integration details and section 5 three examples of integration.
Section 6 concludes.

2 Distributed Data in Virtual Repository

The main difficulty of the described virtual repository concept is that neither data nor
services can be copied, replicated and maintained in the centralized server. They are
to be supplied, stored, processed and maintained on their autonomous sites [6, 7]. The
external resources should be easily pluggable into the system as well as users can
appear and disappear unexpectedly. Such a system, by a similarity to an electric grid,
is called a grid database or a data grid [1, 9].

A user as well as a resource provider may plug into a virtual repository and use its
resources according to his or her requirements, availability of the resources and
assigned privileges. The goal of our research is to design a platform where all users
and providers are able to access multiple distributed resources and to work on the
ground of a global schema for all the accessible data and services. A virtual repository
should present a middleware supplying a fully transparent access to distributed,
heterogeneous and fragmented resources from its clients [8].

In the system we distinguish two kinds of data schemata. The first one, named
contributory schema, is the description of a local resource acceptable for the virtual
repository. A virtual repository can deal only with the data that is exported by the
decision of a local administrator. Another reason for limited access to local resources
is some consortium agreement, which is established for the virtual repository. The
agreement has certain business goals and need not to accept any data from any
provider [3, 5].

The second schema, named grid schema or user schema, describes global data and
services available for clients. The task of a virtual repository system is to transform
data from local contributory schemata into a global user schema. The transformation
can perform more sophisticated homogenization of data and integration of fragmented
collections. This is done by updateable views that are able to perform any data
transformation and support view updates with no limitation that are common in other
similar systems. Our views have the full algorithmic power of programming
languages, thus are much more powerful than e.g. SQL views.

The global infrastructure is responsible for managing grid contents through access
permissions, discovering data and resources, controlling location of resources and
indexing whole grid attributes. The design and implementation challenge is a method
of combining and enabling free bidirectional processing of contents of local clients
and resource providers participating in the global virtual store [8].

 Each resources provider possesses a view which transforms its local share into an
acceptable contribution, a contributory view. Providers may also use extended
wrappers to existing DBMS systems [6, 7]. Similarly, a client uses a grid view to
consume needed resources in a form acceptable for his or her applications. This view
is performing the main task of data transformation and its designer must be aware of
data fragmentation, replication, redundancies, etc. [3, 5] This transformation may be
described by an integration schema prepared by business experts or being a result of

 Procedures of Integration of Fragmented Data in a P2P Data Grid Virtual Repository 559

automatic semantic-based analysis. The problem is how to allow transparent plugging
in new resources and incorporate them into existing and working views. This question
is discussed in the next section.

3 Virtual Network for Distributed Resources

The idea of a database communication in a grid architecture relies on transparent
processing data from all database engines plugged to a virtual repository. Our
approach deals not only with an architecture and features of the network, but also with
additional mechanisms to ensure: (1) users joining, (2) transparent integration of
resources, (3) trust infrastructure for contributing participants. The general
architecture of a virtual network concept solves the above issues through a
middleware platform mechanisms designed for an easy and scalable integration of a
community of database users. It creates an abstraction method for a communication in
a grid community, resulting in an unique and simple database grid, processed in a
parallel peer-to-peer (P2P) architecture [8] realized with the JXTA package [14].

Our investigations concerning distributed and parallel systems like Edutella [10]
and OGSA [11] have led us to conclusion that a database grid should be independent
of TCP/IP stack limitations, e.g. firewalls, NAT systems and encapsulated private
corporate restrictions. The network processes (such as an access to the resources,
joining and leaving the grid) should be transparent for the participants.

User’s grid interfaces – in this proposal database engines – are placed over the P2P
network middleware. DBMS-s work as heterogeneous data stores, but in fact they are
transparently integrated in the virtual repository. Users can process their own local
data schemata and also use business information from global schema available for all
contributors. This part of a data grid activity is implemented with top-level user
applications available through database engines and SBQL query language [12, 13],
see OODBMS Engines Layer in Figure 1. In such an architecture, databases connected
to the virtual network peer applications arrange unique parallel communication
between physical computers for an unlimited business information exchange.

Our virtual network has a centralized architecture whose crucial element is a
central management unit (CMU) – see Figure 1. In the virtual network there can exist
only one CMU peer being responsible for a data grid's lifetime. Besides, it manages
the virtual repository integrity and resource accessibility. Inside the P2P network
level, the CMU is responsible for creating and managing the grid network – this
means that CMU creates a peer group which is dedicated to linking data grid
participants. The CMU also maintains this peer group. For regular grid contributors
the virtual network is equipped with participant’s communication peers. They are
interfaces to the virtual repository for OODBMS user’s engines. Each database has its
unique name in local and global schemata which is bound with the peer unique name
in the virtual network. If a current database IDs are stored in the CMU, a user can
cooperate with the peer group and process information in the virtual repository
(according to a trust infrastructure) through a database engine with a transparent peer
application. Unique peer identifiers are a part of P2P implementation of JXTA
platform [14, 15]. A peer contains a separate embedded protocol for a local
communication with OODBMS engine and separate ones for cooperating with an
applicable JXTA mechanism and whole virtual network. All exceptions concerning

560 K. Kuliberda et al.

a local database operation, a virtual network availability and a TCP/IP network state
are handled by a peer application responsible for a local part of grid maintenance.
Notice that in one local environment there are residing two separate applications (a
P2P virtual network application and a database engine) composing (in grid aspects)
one logical application [8].

OODBMS Engines Layer

P2P Applications Virtual Network
Grid Middleware Layer

- Transport Platform

TCP/IP Networks
Phisical Computers

Private Network
behind NAT

Private Network
behind NAT

Central
Management
Unit

Fig. 1. Data grid communication layers and their dependencies

4 Transparent Integration Via Viewing System and Global Index

The presented virtual repository based on a P2P networking must be permanently
updated and this is the most important aspect of its operation. For an easy
management of the virtual repository’s content, we have equipped the CMU with a
global index mechanism, which covers technical networking details, management
activities and also is a tool for efficient programming in a dynamically changing
environment. The global index not necessarily has to be really centralized as there are
many ways to distribute its tasks. The system needs this kind of additional control and
it does not matter how it is organized. Its tasks are: (1) controlling grid views
available for users, (2) keeping information on connected peers, (3) keeping network
statistics, (4) registering and storing information on available resources.

The global index is a complex object which can be accessed with SBQL syntax (as
a typical database object) on every database engine plugged into the virtual
repository. This means that we can evaluate the queries on its contents. There is
however one substantial difference from processing typical virtual repository’s
objects – as a result of an expression evaluation CMU can return only an actual
content of index, like a list of on-line grid participants.

The global index is the basic source of knowledge about the content of the virtual
repository. Basing on indexed information referring the views' system we can easily
integrate any remote data inside the virtual repository. If the data have been indexed

 Procedures of Integration of Fragmented Data in a P2P Data Grid Virtual Repository 561

already, it can be transparently processed without any additional external interference.
The global index has a specified structure which is a reflection of a global schema and
contains mainly additional objects for characterizing the type of a data fragmentation.
These objects are dynamically managed through the views' systems whenever a
virtual repository contents undergoes a change (e.g. when a resource joins or
disconnects). The global index keeps also dependencies between particular objects
(complexity of the objects, etc.) as they are established in the global schema.

Each indexed object in the global index is equipped with a special object called
HFrag (horizontal fragmentation) or VFrag (vertical fragmentation). Each of them
keeps a special attribute named ServerName, whose content is a remote object – an
identifier of a remote data resource (see fig. 5 and 7). If any new resource appears in a
virtual repository, there will be added a suitable ServerName into the global index
automatically with appropriate information about it.

Accessing the remote data can be achieved by calling the global index with:

GlobalIndex.Name_of_object_from_global_scheme.(Name_of_subobject).
HFrag_or_VFrag_object.ServerName_object;

Because every change of the virtual repository’s content is denoted in the global
index, accessing data in this way is the only correct one.

Since every reference to a remote object must explicitly contain its location (a
server it resides on), such a procedure would be too complicated for grid participants.
Moreover, it would not accomplish with transparency requirements and would
complicate an automation of multiple resources integration process. Thus, we have
decided to cover this stage together with automation of integration process behind a
special procedure exploiting updatable object views mechanism [4]. The process is
described in the next section.

5 Examples of Integrators Action

We introduce examples showing how our automatic integration procedure works. The
basic mechanism we utilize during the integration process is presented by object
updatable views. Figure 2 depicts the virtual repository objects accessible through
self-operating integrators on a distributed databases. Basing on this object structure
we create our integrator examples. As the first one we introduce the easiest type of an
integration of fragmented objects – a horizontal fragmentation, as the second we
present more complicated type of fragmentation – a vertical one. After these two
examples we describe an example from a real life – a mixed fragmentation which is a
composition of two above.

Ward [1..*]

Name
ID

* worksIn* worksIn Patient [1..*]

Name
Address
Disease
PESEL

Doctor[1..*]

isAssignedTo

heals

manager Name
Surname

Fig. 2. Virtual repository data schema

562 K. Kuliberda et al.

In all examples we create virtual objects explicitly, what implies that a grid
designer must be aware of fragmented objects in the grid schema. He or she doesn’t
need any knowledge of the fragmentation details, but must know which objects are
fragmented. The rest of the integration process is executed automatically through
SBQL [12, 13] syntactic transformations.

5.1 Horizontal Fragmentation Case

The first example realizes a transparent integration process concerning a horizontal
fragmentation of Doctor and Ward objects (Figure 2). These complex objects are
stored on two different servers, but the data structure for each sever is the same (see
Figure 3), and the corresponding global index content is presented in Figure 7 (see
part of GlobalIndex object and subobjects Ward and Doctor).

The situation where data is horizontally fragmented in distributed resources forces
merging all data as a one virtual structure, transparently achieved by all grid’s clients.
This process can be done by employment the union operator (like in [2]) in updatable
object views. Because in the current example we call GlobalIndex objects, this
operation is performed automatically. Thus we do not need this operator explicitly.
The logical schema of this operation is presented in Figure 3.

ServerA

ServerB

DoctorGrid
[1..*]

Name
Surname

Merging to one virtual object

WardGrid
[1..*]

Name
ID

Ward[1..*]
Name
ID

Ward[1..*]
Name
ID

Doctor[1..*]
Name
Surname

Doctor[1..*]
Name
Surname

Doctor[1..*]
Name
Surname

Merging to one virtual object

Fig. 3. Integration of distributed databases (with identical data structure) into one virtual
structure for virtual repository

The following query presents the use of the defined view (names of all doctors
working in the cardiac surgery ward):

(DoctorGrid where WorksIn.WardGrid.Name = “cardiac surgery”).Name;
The DoctorGrid and WardGrid virtual objects definitions are as follows:

create view DoctorGridDef {

virtual_objects DoctorGrid {
//create and return remote not fragmented objects doc

return (GlobalIndex.Doctor.HFrag.ServerName).Doctor as doc};
//the result of virtual objects retrieval
 on_retrieve do {return deref(doc)};
 create view NameDef {
//create a virtual subobjects Name of DoctorGrid object

virtual_objects Name {return doc.Name as dn};
//the result of virtual objects retrieval
 on_retrieve do {return deref(dn)};};

create view SurnameDef {//…};

create view worksInDef {

 virtual_pointers worksIn { return doc.WorksIn as wi};
 on_retrieve do {return deref(wi)};};
};

 Procedures of Integration of Fragmented Data in a P2P Data Grid Virtual Repository 563

create view WardGridDef {
 virtual_objects WardGrid {

return (GlobalIndex.Ward.HFrag.ServerName).Ward as war};
 on_retrieve do {return deref(war)};

create view NameDef {
 virtual_objects Name {return war.Name as wn};
 on_retrieve do {return deref(wn)};
create view IDDef {//…};

};

5.2 Vertical Fragmentation Case

The second example depicts a transparent integration process concerning vertical
fragmentation, which is more complicated, because we must join different data
structures stored on physically separated servers. For solving this problem we use the
join operator with a join predicate specific for appropriate integration of distributed
objects. The database schema (according to the global schema) is presented in Figure
2, where the complex object Patient is placed on three different servers and the data
structure of stored objects is different, Figure 4. The corresponding global index
content is presented in Figure 5.

ServerA

ServerB

ServerC

Joining to one virtual object

PatientGrid
[1..*]

Name
Address
Disease
PESEL

PatientGrid
[1..*]

Name
Address
Disease
PESEL

Patient[1..*]
Name
PESEL

Patient[1..*]
Name
PESEL

Patient[1..*]
Address
PESEL

Patient[1..*]
Address
PESEL

Patient[1..*]
Disease
PESEL

Patient[1..*]
Disease
PESEL

Fig. 4. Integration of distributed databases (with different data structure) into one virtual
structure for a virtual repository

GlobalIndex

Patient

VFrag
ServerName: “ServerA” ServerName: “ServerB” ServerName: “ServerC”

PESEL

VFrag
ServerName: “ServerA” ServerName: “ServerB” ServerName: “ServerC”

Address

VFrag
ServerName: “ServerB”

Disease

VFrag
ServerName: “ServerC”

Name

VFrag
ServerName: “ServerA”

Fig. 5. The contents of CMU global index for the example of vertical fragmentation

The conclusion about a grid structure from the above example is that each server
participating the virtual repository has a differential structure of stored data except for
the PESEL object (the unique patient person identifier) which has an identical content

564 K. Kuliberda et al.

on each server. We utilize the knowledge about the PESEL object and its content to
make a “join” on the fragmented Patient object. The PESEL attribute is an unique
identifier (predicate) for joining distributed objects into a virtual one.

This integration for a vertical fragmentation can be exemplified with the query
evaluation where we retrieve names of all patients suffering from cancer:
(PatientGrid where Disease = “cancer”).Name;

The PatientGrid virtual objects definitions (through object views) are following:

create view PatientGridDef {
//create and return remote not fragmented Patient objects

virtual_objects PatientGrid {
 return { (((GlobalIndex.Patient.VFrag.ServerName).Patient as pat).(
 ((pat where exist(Name)) as pn) join
 ((pat where exist(Address)) as pa where pa.PESEL = pn.PESEL) join
 ((pat where exist(Disease)) as pd where pd.PESEL = pn.PESEL)).(

pn.Name as Name, pn.PESEL as PESEL, pa.Address as Address,
pd.Disease as Disease)) as Patients };

//the result of virtual objects retrieval
on_retrieve do {return deref(Patients)};

create view PatNameDef {

virtual_objects Name {return Patients.Name as PatN};
on_retrieve do {return deref(PatN)};

create view PatDiseaseDef {

virtual_objects Disease {return Patients.Disease as PatD};
 on_retrieve do {return deref(PatD)};
};

5.3 Mixed Fragmentation Case

Basing on approaches presented, defining an integration mechanism for objects
fragmented horizontally and vertically together is easy. In order to do so, we must
combine them into a specific model. If we mix above examples, at first, we must
define a joining procedures for vertical fragmentations in views. After this, the
resulting virtual objects must be merged with existing physical objects in a horizontal
fragmentation by creating union view’s procedures. As a result, this combination of
views generates complete virtual objects.

The current example shows a method of creating virtual objects from a mixed
fragmentation including extended dependencies between objects in resources having
the same structure, but different data content. This is the most often situation
encountered in business data processing, like our health centre data processing system
(Figure 2). If we assume that every health agency has different location and a some of
them are equipped with a data store containing information of their doctors and
wards, then we will deal with a horizontal fragmentation of “Doctor” and “Ward”
objects within the exampled system. Every health agency must be also equipped with
a database of their patients. This is represented with “Patient” complex objects.

Because these agencies serve specialistic health services according to their
specified roles as health institutions (hospitals, clinics, etc.), the situation in data
fragmentation becomes more complicated. The patient’s personal data should be the
same in every health agency, but their treatment history or medicines prescribed are
different in every place. Moreover, in the system also stores separately the archival

 Procedures of Integration of Fragmented Data in a P2P Data Grid Virtual Repository 565

ServerA

ServerB

DoctorGrid
[1..*]

Name
Surname

Merging to one
virtual object

WardGrid
[1..*]

Name
ID

Ward[1..*]

Name
ID

Ward[1..*]

Name
ID

Ward[1..*]
Name
ID

Ward[1..*]
Name
ID

Doctor[1..*]

Name
Surname

Doctor[1..*]

Name
Surname

Doctor[1..*]

Name
Surname

Doctor[1..*]

Name
Surname

Merging to one
virtual object

Patient[1..*]
Name
Surname
PESEL
Disease
Medicines

Patient[1..*]
Name
Surname
PESEL
Disease
Medicines

Patient[1..*]
Name
Surname
PESEL
Disease
Medicines

Patient[1..*]
Name
Surname
PESEL
Disease
Medicines

PatientGrid
[1..*]

Name
Surname
PESEL
Disease
Medicines

Joining to one virtual object

ServerC

Patient[1..*]
PESEL
Disease

Patient[1..*]
PESEL
Disease

ServerD

Patient[1..*]

PESEL
Medicines

Patient[1..*]

PESEL
Medicines

Fig. 6. Integration of distributed databases (with mixed object fragmentation) into one virtual
structure for a virtual repository

GlobalIndex

Doctor

HFrag
ServerName: “ServerA”
ServerName: “ServerB”

Name

HFrag
ServerName: “ServerA”
ServerName: “ServerB”

Surname

HFrag
ServerName: “ServerA”
ServerName: “ServerB”

Ward

HFrag
ServerName: “ServerA”
ServerName: “ServerB”

Name

HFrag
ServerName: “ServerA”
ServerName: “ServerB”

ID

HFrag
ServerName: “ServerA”
ServerName: “ServerB”

Patient

HFrag
ServerName: “ServerA”
ServerName: “ServerB”

Name

HFrag
ServerName: “ServerA” ServerName: “ServerB”

Disease

VFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerC”

VFrag
ServerName: “ServerA” ServerName: “ServerC”
ServerName: “ServerB” ServerName: “ServerD”

Surname

HFrag
ServerName: “ServerA” ServerName: “ServerB”

Medicines

VFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerD”

PESEL

HFrag
ServerName: “ServerA” ServerName: “ServerC”
ServerName: “ServerB” ServerName: “ServerD”

Fig. 7. The contents of CMU global index for example of mixed fragmentation

566 K. Kuliberda et al.

data. In this case we deal with a mixed form of a data fragmentation. Health-related
patient’s data are fragmented vertically on different servers where their personal data,
in fact, creates implicit replicas. In this situation we also assume that for each
“Patient” object in a mixed fragmentation we have their “PESEL” subobjects – id
number with identical content in every resource. We utilize the knowledge about
“PESEL” content to make join on the fragmented “Patient” objects. The PESEL
attribute is an unique identifier (predicate) for joining distributed objects into a virtual
one. Please notice that in the current example we know explicitly which objects are
fragmented and how. This situation is depicted in Figure 6, according this, the content
of central index is in Figure 7.

In the example where we want to obtain a list of diseases of the patients assigned to
a doctor named Smith. A query formulated according to specified views definitions
should be following:

(PatientGrid where isAssignedTo.DoctorGrid.Surname = “Smith”).Disease;

The DoctorGrid virtual objects definitions (through object views) are the same as
in the example in section 5.1 (horizontal fragmentation), PatientGrid objects must be
defined differently, because we must consider dependencies between objects and its
contents in different resources, in this example we deal with implicit object replicas:

create view DoctorGridDef {
//as in the example of a horizontal fragmentation, section 5.1
};

create view PatientGridDef {
//below procedure integrates all physical “Patient” objects into complete virtual objects “PatientGrid”
independent of fragmentation issues, please notice that some objects may have data replicas which are not
known explicitly for a virtual repository creator (like personal data)

virtual_objects PatientGrid {
 return {

//create a bag of identifiers to all distributed Patient objects
bag ((GlobalIndex.Patient.HFrag.ServerName).Patient as patH),

 (GlobalIndex.Patient.VFrag.ServerName).Patient as patV)).
//create a list of all PESEL objects from all servers excluding repetitions as uniquePesel

((distinct(patH.PESEL) as uniquePesel).
//basing on the unique pesel list, for each unique pesel create bags containing references to Patient objects
with the current pesel from every remote resource/server accessible as Patients virtual object

bag((ref PatH where PESEL = uniquePesel),
(ref PatV where PESEL = uniquePesel))) as Patients };

//as a result we get as many Patient objects as instances of unique PESEL objects available from all
servers, please notice that some PatientGrid objects can have replicas with personal data objects such
Name, Surname, Address, PESEL, moreover to solve the situation where query about Name returns a
number names for one PESEL we propose additional procedures of retrieving and calling these objects
separately.

};
//return a complete information about every Patient

on_retrieve do { return deref(Patients) };
//define an access procedures to achieve Name objects

create view NameDef {
 virtual_objects Name {return distinct(Patients.Name as PatNam};

//return remote not fragmented Name objects without repetitions
 on_retrieve do {return deref(distinct(PatNam))};
};

//define an access procedures to achieve Disease objects
create view DiseaseDef {

 Procedures of Integration of Fragmented Data in a P2P Data Grid Virtual Repository 567

 virtual_objects Disease {return distinct(Patients.Disease as PatDis};
//return remote not fragmented Disease objects without repetitions

 on_retrieve do {return deref(distinct(PatDis))};
};

//here should be situated subview definitions for following objects: Surname, Address, Medicines, PESEL

//here is a virtual pointer definition for Patients and their assigned Doctors

create view isAssignedToDef {
 virtual_pointers isAssignedTo {return Patients.isAssignedTo as iat};
 on_retrieve do {return deref(iat)};
 };
};

The above example is shortened so that it demonstrates only the necessary
procedures of integrating vertically fragmented objects. There are no limitations in
designing a fully automatic integration process by extending the above views with the
integration routines (like for “Disease” and “Name” objects) for every object indexed
in the CMU global index.

6 Conclusions and Future Work

In this paper we have presented an implemented prototype technology addressing
integration of distributed, heterogeneous and fragmented resources through a virtual
repository based on the P2P paradigm. Due to the paper size limits we are unable to
illustrate all the cases, combinations and issues of a transparent integration of
resources, however we will do our best to present more solutions in future
publications. We have proposed the methodology to accomplish the process of
integration and we have implemented virtual repository software supporting this
methodology. The results are illustrated through examples of different data
fragmentation. Our solution utilizes a consistent combination of several technologies,
such as P2P networks (JXTA), SBA object-oriented databases and their query
language SBQL with virtual updatable views. Our preliminary implementation solves
a very important issue of independence between technical aspects of a distributed data
structure management (including additional issues such as participants incorporation,
resource contribution) and a logical virtual repository content scalability (business
information processing). We expect that the presented methods of integration of
fragmented data will be efficient and fully scalable. These factors will be tested
within our implemented prototype.

The future work is oriented on extending the presented idea with new
functionalities permitting solving more complex situations, in particular, when
distributed resources have additional challenges, such as replicas and redundancies.

References

1. Foster I., Kesselman C., Nick J., Tuecke S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Global Grid Forum, 2002.

2. Kaczmarski K., Habela P., Kozakiewicz H., Subieta K.: Modeling Object Views In
Distributed Query Processing on the Grid. OTM Workshops 2005, Springer LNCS 3762,
2005, pp.377-386

568 K. Kuliberda et al.

3. Kaczmarski K., Habela P., Subieta K.: Metadata in a Data Grid Construction. 13th IEEE
International Workshops on Enabling Technologies (WETICE 2004), IEEE Computer
Society 2004, pp. 315-326

4. Kozankiewicz H.: Updateable Object Views. PhD Thesis, 2005, http://www.ipipan.waw.pl/
~subieta/, Finished PhD-s

5. Kozankiewicz H., Stencel K., Subieta K.: Implementation of Federated Databases through
Updateable Views. Proc. EGC 2005, Springer LNCS 3470, 2005, pp.610-619

6. Kuliberda K., Wislicki J., Adamus R., Subieta K.: Object-Oriented Wrapper for Relational
Databases in the Data Grid Architecture. OTM Workshops 2005, Springer LNCS 3762,
2005, pp.367-376

7. Kuliberda K., Wislicki J., Adamus R., Subieta K.: Object-Oriented Wrapper for
Semistructured Data in a Data Grid Architecture. 9th International Conference on Business
Information Systems 2006, LNI vol. P-85, GI-Edition 2006, pp.528-542

8. Kuliberda K., Kaczmarski K., Adamus R., Błaszczyk P., Balcerzak G., Subieta K.: Virtual
Repository Supporting Integration of Pluginable Resources, 17th DEXA 2006
International Workshops - (GRep 2006), IEEE Computer Society, to appear.

9. Moore R., Merzky A.: Persistent Archive Concepts. Global Grid Forum GFD-I.026.
December 2003.

10. Nejdl W., Wolf B., Qu C., Decker S., Sintek M., Naeve A., Nilsson M., Palmer M., Risch
T.: EDUTELLA, a P2P networking infrastructure based on RDF. Proc. Intl. World Wide
Web Conference, 2002.

11. Open Grid Services Architecture, Data Access and Integration Documentation,
http://www.ogsadai.org.uk

12. Subieta K.: Theory and Construction of Object-Oriented Query Languages. Editors of the
Polish-Japanese Institute of Information Technology, 2004 (in Polish)

13. Subieta: Stack-Based Approach (SBA) and Stack-Based Query Language (SBQL).
http://www.ipipan.waw.pl/~subieta, Description of SBA and SBQL, 2006

14. The JXTA Project Web site: http://www.jxta.org
15. Wilson B.: JXTA Book, http://www.brendonwilson.com/projects/jxta/

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 569 – 580, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards Facilitating Development of SOA Application
with Design Metrics

Wei Zhao, Ying Liu, Jun Zhu, and Hui Su

IBM China Research Lab,
Beijing 100094, P.R. China

{weizhao, aliceliu, junzhu, suhui}@cn.ibm.com

Abstract. Applications based on service-oriented architecture (SOA) are
intended to be built with both high cohesion and low coupling. The loosely
coupled services bring forth the lower costs of development and maintenance as
well as the higher reusability and extensibility. To implement each SOA
application with such intention, designs play an important role for the success
of the whole project. The services and the relationships among them
represented in a design are two critical factors to decide the quality of an SOA
application in terms of modularity. At the mean while, they are valuable
indicators for guiding the following development and maintenance phases to
progress in a cost-effective way. In this paper, we present that measurement of
designs for SOA applications can objectively judge the quality and further
facilitate the development and maintenance of SOA applications through
employing two specific metrics. We also performed an experimental study on
an ongoing SOA project. In this study, we applied these two metrics to the
design of this project to acquire judgments and make estimations. The data in
CVS were retrieved to reflect the genuine project situations. The analysis on
these data shows that adopting the measurement in the early stage of SOA
projects may avoid wasting efforts and delaying schedule as well as acquire a
deep grasp and an effective control on the issues in the following phases.

Keywords: SOA, modular design, service design measurement, metrics.

1 Introduction

Modular architectures solve the problem of complexity of the business by
decomposing complex services into modules so that service providers can design and
deliver them independently [1]. These business service modules are implemented by
the corresponding service modules and components (within the implementation
context, service components are programming entities with finer granularity than
service modules) at IT level under the service-oriented architecture (SOA) and the
supporting programming model (e.g. service component architecture, SCA) as an
SOA application. The descriptions of which service modules and components
construct an SOA application and how they are interrelated to provide the business
services are regarded as the architecture design of an SOA application. Accordingly,
these service modules and components at IT level should hold the similar modular

570 W. Zhao et al.

properties in finer granularity to satisfy the modular design of business services. That
is to say, SOA applications consisting of various service modules and components are
intended to be built by showing both high cohesion and low coupling [2]. The
architecture of an SOA application with higher cohesion as well as lower coupling
indicates a better design in terms of modularity. A well-modularized design of an
SOA application brings forth potential benefits in multiple aspects, such as
acceleration of development, reduction of maintenance cost, as well as the enhanced
flexibility and reusability.

The quality of the modular designs for SOA applications often heavily relies on the
experiences and expertise of specific designers. In addition, the best practices and
design patterns as well as frameworks, which are summarized from accumulated
experiences, can be a useful guidance for a better design. However, these facilities are
still kinds of informal aids to modular design and the achieved effectiveness from
them still heavily depends on the experiences and expertise of individual designers to
some extent.

There are no any practical reports in industry to employ measurement technologies
to evaluate whether a certain design of an SOA application is well modularized than
another or to guide the activities in the following development and maintenance
phases through design metrics. Actually, to employ measurement to judge the
modularity of software designs is not new. Many efforts have been dedicated to judge
and reorganize the structural designs of software systems according to the
modularized degrees (e.g. [3] and [4]). However, with the intention to acquire the
loosely coupled SOA applications, service-oriented architecture does provide a
framework to model the constructive entities (i.e. interfaces, service components, and
service data objects) and their interrelationships more explicitly at a higher abstract
level, but it does not mean that any application based on SOA holds the loose
coupling and tight cohesion inherently.

In this paper, we report an initial exploration of measurement on SOA designs. We
present that measurement of designs for SOA applications can quantitatively evaluate
the quality of modular designs through a comparative way and also can facilitate the
development and maintenance of applications.

We performed an experimental study on an ongoing SOA project. In this study, we
employed two metrics on the design of this project to acquire judgments and make
estimations. The corresponding data in CVS were retrieved to reflect the genuine
project situations. The analysis on these data shows that adopting the design metrics
in the early stage of SOA projects may avoid wasting efforts and delaying the
schedule as well as acquire an early grasp and effective control on the issues in the
following phases.

The remainder of this paper is organized as follows. Section 2 introduces the goals
we want to achieve through measuring designs for SOA applications and the
corresponding design metrics we used. An experimental study on an ongoing SOA
application is presented in section 3 to validate the effectiveness of the metrics and
imply their indicating and aiding roles. Section 4 summarizes this paper.

 Towards Facilitating Development of SOA Application with Design Metrics 571

2 Goals and Design Metrics

2.1 Goals

A measurement program identifies and defines metrics to support an organization’s
business goals [5]. These metrics provide insights into the critical quality and
management issues that the organization concerns for its success. During the
establishment of a measurement program, the organization selects metrics traceable to
its business goals. This “goal-driven” approach assures that measurement activities
stay focused on the organization’s objectives.

Because the well modularized designs of SOA applications bring multiple benefits
such as reducing the development and maintenance cost and increasing the reusability
as mentioned above, one of our goals is to quantify the modular designs of SOA
applications in terms of the estimated relative development cost and maintenance cost
in an early stage (i.e. right after acquiring the designs of applications). The design
metrics in this paper refer to these quantitatively estimated indicators for the costs of
following development and maintenance activities based on the design information.
Although we aim to acquire the quantitative insights on how well a modular design is,
it should be noted that we examine such merit through a comparative way. That is to
say, we cannot claim that a specific SOA application is well designed enough in terms
of modularity even with the quantitative metrics. However, given the two candidate
designs for a certain application, we can quantitatively judge that one is better (or
worse) than the other in terms of modularity and make a choice for lower
development and maintenance costs.

In addition to the quantitative evaluation of the whole design, the comparison
based on the design metrics can also be carried out within a specific SOA application
design to pinpoint the modular characteristics of each service module and component.
For a determined design of an SOA application, further scrutinizing each service
module and component based on the design metrics provides the valuable insights to
the following development and maintenance phases. This is the other goal we expect
to pursue through the design metrics.

2.2 Metrics Definition

We adopt a technique called Design Structure Matrix (DSM) [6] to analyze the
designs of SOA applications. A DSM is a tool that highlights the inherent structure of
a design by examining the dependencies that exist between its component elements
using a symmetric matrix.

The component elements in the design of an SOA application are service
components. As service modules are composed of service components, the metrics of a
service module can be acquired through calculating the service components belonging
to it. As a result, the service modules’ corresponding metrics will not be omitted
although they are not explicitly represented in the design structure matrix. To construct
the design structure matrix based on the service components of an SOA application’s
design, we follow Parnas’s “information hiding” criterion [7] to mark the dependencies
among the service components which are further used to measure and judge the
modularity of an SOA application’s design. In more detail, for the design of an SOA

572 W. Zhao et al.

application, each service component may operate (i.e. create, update, read and delete)
some data objects. Due to the dependent operations on the same data objects, the
service components are interrelated among others. These dependencies are the key
factors to identify how well the investigated design is modularized according to the
“information hiding” principle from the perspective of the operated data.

Based on the constructed design structure matrix presented above, we employ two
DSM-based metrics originally proposed by MacCormack et. al. to estimate the
phenomena with which the design structure of software are associated [3].
MacCormack et. al.’s work focuses on the predication through an overall design to
compare the modularity of two candidate designs. Since we aim at not only providing
a quantitative cognition of a current modular design but also facilitating the
subsequent development and maintenance activities, we further employ these two
metrics to scrutinize the designs in the finer granularity. The definitions of these two
metrics, change cost and coordination cost, are introduced as follows:

Change Cost
Change cost is a metric which determines the impact of a change to each service
component, in terms of the percentage of other service components that are
potentially affected. It is an indicator of the efforts needed for the maintenance
activities of an SOA project. Obviously, the higher the change cost, the worse the
design is modularized. In MacCormack et. al.’s work, this metric is computed only for
the overall design of software. We also scrutinize this metric for each service
component of a specific design. Actually, change cost of the overall design is an
average of all service components’ change costs.

 A B C D E F

A 0 1 1 0 0 0
B 0 0 0 1 0 0
C 0 0 0 0 1 0
D 0 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 0 0

Fig. 1. An example design structure matrix

To acquire the change cost of a service component or an SOA application (change
cost of a service module consisting of service components can be acquired through
the same way as the SOA application), a matrix is constructed firstly to represent the
structure of the design of an SOA application as described above. If an SOA
application is composed of n service components, the size of the matrix is n×n. Each
cell of this matrix indicates the modular dependency between the service components
in the corresponding column and row based on the “information hiding” principle
from the perspective of the operated data as mentioned above.

The computation of change cost is illustrated by the following example.
Considering the relationships among service components displayed in the design
structure matrix in Fig. 1, it can be seen that service component A depends on service

 Towards Facilitating Development of SOA Application with Design Metrics 573

component B and C. Therefore any change to service component B may have a direct
impact on service component A. Similarly, service component B and C depend on
service component D and service component E respectively. Consequently, any
change to service component D may have a direct impact on service component B,
and may have an indirect impact on service component A, with a “path length” of 2.

Obviously, the technique of matrix multiplication can be used to identify the
impacted scope of any given service component for any given path length.
Specifically, by raising the matrix to successive powers of n, the results show the
direct and indirect dependencies that exist for successive path lengths. By summing
these matrices together, the matrix V (which is called as the visibility matrix) can be
derived, showing the dependencies that exist for all possible path lengths up to n. It
should be noted that this calculating process includes the matrix for n=0 (i.e., a path
length of zero) when calculating the visibility matrix, implying that a change to a
service component will always affect itself. Fig. 2 illustrates the calculation of the
visibility matrix for the above example.

M0 A B C D E F M1 A B C D E F M2 A B C D E F
A 1 0 0 0 0 0 A 0 1 1 0 0 0 A 0 0 0 1 1 0
B 0 1 0 0 0 0 B 0 0 0 1 0 0 B 0 0 0 0 0 0
C 0 0 1 0 0 0 C 0 0 0 0 1 0 C 0 0 0 0 0 1
D 0 0 0 1 0 0 D 0 0 0 0 0 0 D 0 0 0 0 0 0
E 0 0 0 0 1 0 E 0 0 0 0 0 1 E 0 0 0 0 0 0
F 0 0 0 0 0 1 F 0 0 0 0 0 0 F 0 0 0 0 0 0

M3 A B C D E F M4 A B C D E F V A B C D E F
A 0 0 0 0 0 1 A 0 0 0 0 0 0 A 1 1 1 1 1 1
B 0 0 0 0 0 0 B 0 0 0 0 0 0 B 0 1 0 1 0 0
C 0 0 0 0 0 0 C 0 0 0 0 0 0 C 0 0 1 0 1 1
D 0 0 0 0 0 0 D 0 0 0 0 0 0 D 0 0 0 1 0 0
E 0 0 0 0 0 0 E 0 0 0 0 0 0 E 0 0 0 0 1 1
F 0 0 0 0 0 0 F 0 0 0 0 0 0 F 0 0 0 0 0 1

Fig. 2. Successive powers of the design structure matrix and visibility matrix

From the visibility matrix, the change cost metric can be acquired to give the
insight for each service component and the whole SOA application. Firstly, for each
service component, the change cost is obtained by summing along the column of the
visibility matrix, and dividing the result by the total number of service components. A
service component with higher change cost possibly affects more service components
while changing it. In the above example, service component F has a change cost of
4/6 (or 66.67%) which means a change on it may affect other 4 service components in
the system.

The average change cost of all service components need to be computed for the
whole design. The resulting metric is the change cost for the overall design of a given
SOA application. Intuitively, this metric reflects the percentage of service components
affected on average when a change is made to a certain service component in the

574 W. Zhao et al.

application. In the example above, we can calculate the change cost of the overall
design as [1/6+2/6+2/6+3/6+3/6+4/6] divided by 6 service components = 41.67%.

Coordination Cost
Coordination cost is a metric to evaluate how well the proposed design of an SOA
application in terms of the coordinating efforts needed in the procedure of developing
it in the future. It is an indicator of the efforts needed for the development activities of
an SOA project. The higher the coordination cost, the worse the design is
modularized. Different from the change cost, the coordination cost is not only
determined by the dependencies between the constructing service components but
also affected by how these service components are organized into different service
modules. The calculation of coordination cost metric operates by allocating a cost to
each dependency between service components firstly. Specifically, for an SOA
application, when considering a dependency between service components A and B,
the cost of the dependency takes one of following two forms:

CoordCost (A B|in same module) = (A B)cost_dep×size of modulecost _ cs (1)

CoordCost (A B|not in same module) = (A B)cost_dep×sum size of two modulescost _ cs (2)

Where (A B) represents the strength of the dependency (that is, the number of
correlations between service component A and B) and cost_dep and cost_cs are user-
defined parameters that reflect the relative weights given to the strength of
dependencies versus the size of the modules.

For each service component, the corresponding coordination cost is determined
through summing up all CoordCost between it and all its dependent service
components. The coordination cost of the overall design of an SOA application can be
acquired from summarizing the coordination costs of all the service components in
the design.

3 Experimental Study

3.1 Experimental Method

Rifkin and Cox performed case studies on software measurement programs of
different corporations and reported that the most successful programs they observed
supported experimentation and innovation [8]. Following the similar point of view,
we performed a pilot experimental study to validate effects of adopted metrics and
initiate the measurement program on the designs of SOA applications for some
particular project goals.

The subject system in our study is an SOA project as a proof of concept for early
convincing the customers. The specific requirements on this project include
implementing the basic functionalities as customer needed within a short time as well
as low cost. Although the scope of this project is not big enough as a real SOA
project, it does represent the key factors and characteristics of an SOA application. It
should be noted that we did the experimental study not through applying the design
metrics we introduced above to guide the development and maintenance activities of
this project. We adopted a way using the project data without affected by the design
metrics to provide the evidences whether the design metrics make the right estimates

 Towards Facilitating Development of SOA Application with Design Metrics 575

and whether the estimates can provide the effective advices for the following stages to
help achieve the goals of this project.

3.2 Data Analysis and Observations

The subject SOA project is composed of five service modules each of which are further
implemented by service components. Due to the confidential consideration, we use
ModuleA, ModuleB, ModuleC, ModuleD and ModuleE designating these five service
modules. An overall implementation situation of the subject system is listed in Table 1.
As we can see, ModuleA includes 6 service components which provide services (each
service component implements one service) to be consumed by end users directly or by
other services. Each service component is implemented by an entrance class as well as
other related classes. All these 6 services have 11 operations to perform the specific
tasks provided by these services. Methods of entrance class correspond to each service’s
operations. ModuleA is implemented by 13 Java files including 6 entrance classes for 6
services respectively and 7 related classes (We do not further include those supporting
classes since they are not the interferential factors for the analysis).

Table 1. Modules, services, operations and Java files of subject system

Modules Services Operations Java files
ModuleA 6 11 13
ModuleB 2 4 10
ModuleC 3 10 3
ModuleD 6 13 33
ModuleE 18 26 47

Fig. 3. Design structure matrix of subject system

576 W. Zhao et al.

According to the descriptions of the construction of the design structure matrix in
section 2, we acquired the DSM of the subject system which can be seen in Fig. 3.
The dependencies among the service components of the subject system were picked
out and filled in the matrix through the analysis on the dependent operations on data

Table 2. Change cost and coordination cost of service components and the overall system

Service components Change cost (%) Coordination cost
ServiceA1 60 229
ServiceA2 9 18
ServiceA3 29 123
ServiceA4 9 18
ServiceA5 9 18
ServiceA6 20 44
ServiceB1 31 101
ServiceB2 23 99
ServiceC1 9 12
ServiceC2 3 12
ServiceC3 26 181
ServiceD1 49 197
ServiceD2 26 84
ServiceD3 37 152
ServiceD4 46 196
ServiceD5 29 99
ServiceD6 26 68
ServiceE1 6 90
ServiceE2 6 42
ServiceE3 6 42
ServiceE4 6 42
ServiceE5 54 358
ServiceE6 11 108
ServiceE7 46 315
ServiceE8 6 406
ServiceE9 37 279

ServiceE10 20 126
ServiceE11 17 108
ServiceE12 17 108
ServiceE13 20 126
ServiceE14 6 36
ServiceE15 46 334
ServiceE16 6 36
ServiceE17 14 90
ServiceE18 14 108

Overall 24 4405

 Towards Facilitating Development of SOA Application with Design Metrics 577

objects based on the “information hiding” principle. It can be seen from this figure
that ServiceA1 of ModuleA depends on ServiceA2, A3, A4, A5 and A6 of ModuleA,
ServiceB1, B2 of ModuleB, ServiceC3 of ModuleC, ServiceD1, D3, D4 and D5 of
ModuleD, and ServiceE5, E7, E8, E9 and E15 of ModuleE. According to the
definitions of two metrics presented in section 2.2, change costs and coordination
costs of the overall SOA application and each service component in this application
were acquired correspondingly in Table 2. The change cost of the overall SOA
application is 24% and the coordination cost is 4405. We assigned the value “1” to the
cost_dep and cost_cs just for the simplicity of the calculation. Although we do not
have another candidate design of the subject system as a counterpart to validate the
metrics for the overall design, the following analysis based on each service
component does validate the metrics and present the potential spaces where the
measurement of design could help for the development and maintenance.

As introduced above, ModuleA includes 6 service components which implement 6
services. Fig. 4 shows the development data of each service component in ModuleA
acquired from the project’s CVS database, where Axis-X indicates the working days
passed while the project progresses and Axis-Y indicates the working efforts
consumed until a particular working day. We simply use the lines of code (LOC) to
denote the working efforts since the subject system of our experimental study was at
its initial stage and the complexity of components does not affect much on working
efforts. As a result, in Fig. 4, each service component in ModuleA has a corresponding
pillar when its implementation source code was checked in the CVS database. The
height of a pillar means how many lines of code have been added, deleted or modified
since the beginning rather than the lines of code of current source files checked in for
each service component.

Fig. 4. Development data of ModuleA acquired from CVS

Combining the spent working days and working efforts we can acquire the
cognition of the development cost and the schedule of each service component in
ModuleA. As we can see that the implementations of all service components in
ModuleA began at the same day. Except ServiceA1 and ServiceA3, the other service

578 W. Zhao et al.

Table 3. Sizes of service components in ModuleA

Services in ModuleA Size (LOC)
ServiceA1 213
ServiceA2 54
ServiceA3 134
ServiceA4 110
ServiceA5 157
ServiceA6 54

components in ModuleA finished the initial versions in 9 days. The working efforts on
ServiceA4 at the 15th day as well as ServiceA2 and ServiceA6 at the 17th day were
due to fixing the bugs discovered through the integration testing. ServiceA1 and
ServiceA3 spent 6 more days than others to accomplish their initial versions at the
15th day. Although the size of ServiceA1 (the lines of code of the finally implemented
service component) is larger than other service components as shown in Table 3, the
differentiation at such order of magnitude is not a critical factor for the additional six
working days. Moreover, the size of ServiceA3 is even less than ServiceA5, but it still
costs more. Actually, such situation was caused by the average assignment of
resources for each service component since the different working efforts were not
carefully taken into considered for the schedule. However, as we can see from the
acquired metrics of service components in ModuleA in Table 2, due to ServiceA1 and
ServiceA3 hold the dependencies to the service components in all the other modules
(which can be seen in Fig. 3), the implementation of ServiceA1 and ServiceA3 has to
coordinate with the implementation of other service components and therefore the
higher development cost for ServiceA1 and ServiceA3 (229, 123 respectively) can be
estimated through the design information. Consequently, through the above analysis,
we firstly validate the effectiveness of the coordination cost metric. It does present a
correct estimation of development cost in early stage. Such early indication can help
service designers discover the problems of current service modular design in time. In
addition, in case that the dependencies between services can not be easily resolved
due to some constraints, we also state that the comparative analysis of coordination
costs of the service components can help acquire a reasonable and cost-effective
resource assignment and working schedule. If the coordination cost was taken into
consideration right after the design was acquired, ServiceA1 and ServiceA3 would be
assigned more resources than other service components to avoid wasting the efforts
due to simply average assignment as well as to shorten the working days.

Continuing to investigate the development data of ModuleD in Fig. 5, the
effectiveness and merits of change cost metric can be further discovered. After
finishing the first version of ModuleD (at the 17th working day), there was a change
request to ServiceD4 from customers. However, the individual developers did not
know that ServiceD1 and ServiceD3 depend on ServiceD4 and the change was
performed to ServiceD4 only at first. The modifications on ServiceD1 and D3 were
only accomplished two days later triggered by the testing. From the acquired change
cost metric in Table 2, potential change impacts are estimated for each service
component. Although current project data does not provide the proof to validate this
metric through comparing the costs due to changes on two different service

 Towards Facilitating Development of SOA Application with Design Metrics 579

Fig. 5. Development data of ModuleD acquired from CVS

components, change cost metric does provide a quantitative and conservative estimate
for potentially affected service components according to the case of a change request
to ServiceD1. It is obvious that such metric is an effective aid for the maintenance
activities. Besides, we can further acquire the specific service components potentially
affected through checking the service design structure and therefore provide the
effective guidance for specific change requests to service components.

4 Summary

In this paper, we present that measurement of the designs for SOA applications can
evaluate the quality of modularity and facilitate the development and maintenance of
SOA applications with high efficiency. We performed an experimental study on an
ongoing SOA project. In this study, we employed two metrics (change cost and
coordination cost) on the design of this project to acquire judgments and make
estimations. The project data in CVS was retrieved to reflect the genuine situations of
its implementation, integration and testing. The analysis on these data shows that
adopting the design metrics in early stage of SOA projects may avoid wasting efforts
and delaying the schedule as well as acquire a deep grasp and effective control on the
issues in following phases.

References

1. Bohmann, T. and Loser, K.U.: Towards a service agility assessment - Modeling the
composition and coupling of modular business services. In Proceedings of the 7th IEEE
International Conference on E-Commerce Technology Workshops, 2005: 140-148.

2. Brocke, J. and Lindner, M.A.: Service portfolio measurement: a framework for evaluating
the financial consequences of out-tasking decisions. In Proceedings of 2nd International
Conference on Service-Oriented Computing, November 15-19, 2004: 203-211.

3. MacCormack, A., Rusnak, J. and Baldwin, C.: Exploring the structure of complex software
designs: an empirical study of open source and proprietary code. Harvard Business School
Working Paper, Number 05-016, 2004.

580 W. Zhao et al.

4. Schwanke, Robert W.: An intelligent tool for re-engineering software modularity. In
Proceedings of the 13th International Conference on Software Engineering. Washington,
DC: IEEE Computer Society Press, May 1991: 83-92.

5. Park, R.E., Goethert, W.B., and Florac, W.A.: Goal-driven software measurement - a
guidebook. (CMU/SEI-96-HB-002, ADA313946). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1996. http://www.sei.cmu.edu/publications
/documents/96.reports/96.hb.002.html

6. Steward, Donald V.: The design structure system: a method for managing the design of
complex systems. IEEE Transactions on Engineering Management, vol. 28, pp. 71-74,
1981.

7. Parnas, D.: On the criteria to be used in decomposing system into modules.
Communications of the ACM, 15(12):1053-1058, December 1972.

8. Rifkin, S. and Cox, C.: Measurement in practice. Technical report of CMU SEI, TR16.91,
July, 1991.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 581 – 590, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Service Oriented Architectures Through
Semantic Technology

Suzette Stoutenburg1, Leo Obrst2, Deborah Nichols2, Ken Samuel2,
and Paul Franklin1

1 The MITRE Corporation, 1155 Academy Park Loop
Colorado Springs, Colorado 80910

2 The MITRE Corporation, 7515 Colshire Drive
McLean, Virginia 22102

{suzette, lobrst, dlnichols, samuel, pfranklin}@mitre.org

Abstract. The behavior of Department of Defense (DoD) Command and
Control (C2) services is typically embedded in executable code, providing static
functionality that is difficult to change. As the complexity and tempo of world
events increase, C2 systems must move to a new paradigm that supports the
ability to dynamically modify service behavior in complex, changing
environments. Separation of service behavior from executable code provides
the foundation for dynamic system behavior and agile response to real-time
events. In this paper we show how semantic rule technology can be applied to
express service behavior in data, thus enabling a dynamic service oriented
architecture.

Keywords: Dynamic Service Oriented Architectures, Integrated ontology and
rules, Knowledge Management, Semantic rules, Web services.

1 Introduction

In this paper, we describe an implementation that applies a proposed standard rule
language with ontologies to construct dynamic net-centric web services. We
successfully show that rules for service behavior can be expressed in XML-based
languages with formal semantics. This greatly simplifies the service code and allows
rules for behavior to be changed dynamically with no code modifications, thus
achieving an agile service architecture.

We modeled a military convoy traveling through an unsecured area under changing
conditions. The World Wide Web Consortium (W3C) standard Web Ontology
Language (OWL) [1] was used to describe the battlespace domain and the proposed
W3C Semantic Web Rule Language (SWRL) [2] was used to capture recommended
operating procedures for convoys in theater. We translated the ontologies and rules
into a logical programming language to produce an integrated knowledge base that
derives alerts and recommendations for the convoy commander. In our experiment,
two sets of rules were used: one set models rules of engagement for favorable
visibility conditions on the battlefield, and the other models rules of engagement for
poor visibility conditions. When a dynamic event, such as an unexpected sandstorm,

582 S. Stoutenburg et al.

occurs, this causes the latter set of rules of engagement to be applied to the service to
guide the convoy to safety. In this paper, we provide a description of our approach
and outline the architectural options for constructing dynamic services. We briefly
describe the semantic-based approach utilizing the ontologies and rules that we
developed. We conclude with our findings and recommendations.

2 Use Case

To demonstrate the potential power of agile services, we selected a convoy support
scenario for our use case. In this scenario, a convoy moves through enemy territory.
As the convoy approaches potential threats, a web service consults an integrated
knowledge base (consisting of ontologies and rules) to generate alerts and
recommendations for action. These alerts and recommendations are provided to the
convoy commander for decision support. The integrated knowledge bases can be
switched dynamically, thus achieving instantaneous change in service behavior. In
particular, we implemented an approach in which dynamic events, such as an
unexpected sandstorm, automatically trigger the swapping of knowledge bases, thus
effecting dynamic services. With this scenario, we demonstrate agility in a dynamic
battlefield, a current real mission need, with application to mission challenges of the
Army, Air Force, Joint Forces and others.

3 Implementation Overview

The high-level design of the application is shown in Figure 1. The components of the
system include the following.

• Enterprise Service Bus (ESB)
• Google Earth1 Client
• AMZI Prolog Logic Server2
• Knowledge Base
• Convoy Service
• Adapter
• Message Injector

We selected Mule3 as the ESB solution to manage the interactions of the
components in our solution. The ESB detects messages moving between components,
including events that cause the swapping of knowledge bases. ESB technology also
applies translations when appropriate, by using the XSLT capabilities of the Adapter.

We chose Google Earth as the client, since it offers seamless integration of
multiple data sources via its Keyhole Markup Language (KML). We were able to
show that structured data from heterogeneous sources can be translated to KML and
easily rendered, thus offering the potential for dynamic, user-defined displays.

1 http://earth.google.com/
2 http://www.amzi.com/
3 http://mule.codehaus.org/

 Dynamic Service Oriented Architectures Through Semantic Technology 583

AMZI Logic
Server

Google Earth
Client

Message
Injector

Adapter

Events

Convoy
Service

Knowledge
Base 1

Knowledge
Base 2

Enterprise Service Bus MULE

PROLOG

OWL+SWRL OWL+SWRL

XML/KMLKML

XML Schema

Java Java

AMZI Messages

Fig. 1. High-Level Application Design

AMZI’s Prolog Logic Server was selected as the platform on which to host the
integrated ontologies and rule base. Prolog was selected because it is based on
formal logic and therefore supports the notion of proof.

The Knowledge Base consists of integrated ontologies, rules and instances.
Ontologies were constructed in the Web Ontology Language (OWL) and the rules in
the Semantic Web Rule Language (SWRL). These were then translated to one
Knowledge Base in Prolog. Two knowledge bases were modeled, each reflecting
slightly different service behavior; that is, each knowledge base had different rules of
engagement that are applied when queried by services.

We constructed the Convoy Service, a software service that detects events
(message exchanges over the ESB), consults the knowledge base, and delivers
appropriate alerts and recommendations to the convoy commander via Google Earth
clients. Events can be object movement, changes in weather, changes in alert
conditions, etc.

The service operates under a very basic set of instructions:

“Something moved on the battlefield.
What does that mean for the convoy?”

To determine the answer, the Convoy Service queries the integrated knowledge
base to determine what new events mean to the convoy. So, the rules for behavior of
the Convoy Service are in fact, expressed in data, thus allowing for agile response to
real-time events. The Convoy Service also detects when the rules of behavior should
change (based on message exchanges over the ESB) and triggers the swapping of
rules on the AMZI Logic Server.

The Adapter comprises a set of XSLTs that are invoked by the ESB to translate
messages to the appropriate format as they move between components. XSLTs have
been developed to convert from OWL, SWRL and RuleML4 to Prolog.

4 http://ruleml.org

584 S. Stoutenburg et al.

We constructed a Message Injector, which sends messages over the ESB to
simulate events on the battlefield. For this experiment, we constructed messages
using the Ground Moving Target Indicator (GMTI) Format (STANAG 4607) and the
United States Message Text Format (USMTF) Intelligence Summary (INTSUM)
message format (3/31/2004).

The application works as follows. First, the Message Injector sends event
messages over the ESB, such as convoy movement and weather events. The Adapter
detects the event messages and applies the new information to both knowledge bases,
so that they are both ready to be applied at any time. So, the incoming messages that
report on events are translated to a format that the AMZI Prolog Knowledge Base
understands. Typically, these events are applied to the Knowledge Base as instances.
Custom predicates were built to apply new instances to the Knowledge Base. If the
Convoy Service sees an event that could potentially impact alerts and
recommendations to the convoy commander, a query is sent to the AMZI Prolog
Logic Server, requesting the latest alerts and recommendations. The Google Earth
client then presents them to the convoy commander.

Certain events are recognized by the Convoy Service as events that should trigger a
change in rule sets. For example, if a weather report is issued indicating reduced
visibility on the battlefield, the Convoy Service stops querying the high-visibility
knowledge base, switching to the low-visibility knowledge base. More details on the
separation of rules from software are provided in section 5.

Note that this paper reflects work performed on a research project. The focus on
the research was not to secure the system, but to show how semantic rule languages
could be used to build agile services. If we do transition this capability to operations
in the future, we would investigate use of the Gateway Security Model [3] in which
all incoming requests would be verified through a single gateway before being
processed on the ESB. Regarding scalability, note that Mule 1.2 uses the Staged
Event Driven Architecture (SEDA) processing model [4] to increase the performance
and throughput of events. Mule allows pooling of objects and providers to allow
multiple threads to process events concurrently. Therefore, we believe that this
overall application, while simplistic and focused on a particular research issue, can
form the basis for a secure, scalable architecture in the future.

4 Architecture Options for Dynamic Services

There are a number of issues that must be considered when developing an integrated
knowledge base to support dynamic service behavior. These include design decisions
such as how to structure the rule bases (which impacts how to trigger and implement
the swapping of rules), and whether to store instances in an ontology or a database.

One approach to structuring knowledge bases is to build fully separate knowledge
bases designed to handle different environments or situations. For example, we chose
to build two independent rule sets, one to handle favorable visibility on the battlefield
and one to handle poor visibility on the battlefield. If this approach is used, triggers

 Dynamic Service Oriented Architectures Through Semantic Technology 585

to invoke the applicable knowledge base could be handled by services or through a set
of meta-rules in the knowledge base, as shown in Figures 2 and 3 respectively.

Knowledge

Base1

Knowledge
Base2

Logic Server1 Logic Server2

Service

Fig. 2. Option for Dynamic Services: Service Triggers Knowledge Base Swap

Knowledge

Base1

Knowledge
Base2

Logic Server1

MetaRules

Service

Fig. 3. Option for Dynamic Services: Meta-rules Trigger Knowledge Base Swap

We selected the former case to simplify the rule set necessary to model the use
case. This approach also reduces the risk of unintended interactions of rules. By
instantiating a different logic server for each rule set, each knowledge base is ready to
be swapped at any time, allowing us to change service behavior instantly, whenever a
real-time event is detected. The disadvantage of this approach, however, is that the
burden of detection is on the service, which reduces agility. Applying meta-rules, on
the other hand, offers more flexibility, since these are expressed in data and can
therefore be changed without change in code.

Another design decision involves whether to store instances in a database or
ontology. We chose to store instances in the ontology to simplify the overall
approach. However, since we planned to swap between logic servers in real-time, we
found we had to keep both knowledge bases updated with instance information and
synchronized at all times. This didn’t pose any performance problems and in fact,
worked well in the AMZI environment. Finally, if instances are stored in a database,
then tools for linking database tables to ontological concepts must be used.

586 S. Stoutenburg et al.

5 Ontologies

To understand how we separated rules from service behavior, it is necessary to have a
basic understanding of the ontologies we built to model the use case. The following
ontologies were constructed, each named for its most important class.

• TheaterObject – to describe objects in the battlefield and reports about them.
• RegionOfInterest – to describe regions of interest on the battlefield.
• Convoy –to describe the convoy, its mission, components, etc.
• ConvoyRoute – to describe routes the convoy might take.
• ConditionsAndAlerts – to model conditions and alerts that affect the convoy.

Figure 4 shows the high level relationships between the five major ontologies and
their key concepts. Note that in some cases, the name of an ontology is also the name
of a class. For example, Convoy is the name of the ontology but it is also the name of
a class in the ontology. Thus, it is shown as a subclass of MilitaryUnit. This was
done to show the high level structure of the ontology set.

The heart of the model is the class TheaterObject, representing objects in theater
(i.e., on the battlefield.) Subclasses of TheaterObject include MilitaryUnit, Sniper,
RoadObstacle, and Facility. An instance of TheaterObject has a location, and it may
have a speed, heading, and a combat disposition (combatIntent), among other
features. The property combatIntent is used to represent whether an object in theater
is friendly, hostile or has an unknown intention.

To distinguish the objects in theater from reports about them, we created the class
ObservationArtifact, which is the class of reports about objects in the theater. An
instance of ObservationArtifact has properties such as the time and location of the
observation, the object observed, and the observation source and/or platform. We
found the distinction between theater objects and observations to be very important,

TheaterObject

hasFocalObject

DynamicRegion
ofInterestMilitaryUnit

subclassOf

subclassOf

RegionOfInterest

subclassOf

Convoy ConvoyRoute

hasCurrentRoute

ConditionsAnd
Alerts

conditionAffects

describedBy

Observation
Artifact

GMTIObservation

IntelSummary

VMTIObservation

subclassOf

Primary Ontology

Major class
within ontology

Fig. 4. Ontology Overview

 Dynamic Service Oriented Architectures Through Semantic Technology 587

as it allows inferencing over multiple reports about the same object in theater. This
provided the foundation for using rules to fuse information from multiple sources.
The distinction required that we build rules to transfer, or derive, property values from
an instance of ObservationArtifact to a corresponding instance of TheaterObject. We
modeled subclasses of ObservationArtifact, including GMTIObservation and
IntelSummary, based on the message formats referenced above.

The RegionOfInterest (ROI) ontology models the class of geospatial areas of
special interest surrounding theater objects. Each TheaterObject is the focal object of
a DynamicROI, since most theater objects move on the battlefield. An ROI is
centered on the position of its focal object. An ROI has shape, dimensions and area,
which may depend on the type of threat or interest. For example, ROIs are used to
define a “safety zone” around a convoy which must not be violated by hostile or
suspicious objects. Also, ROIs are used to define the area around a reported hostile
track that delineates the potential strike area of the threat. Currently, the rules can
handle any ROI shape, but we are limited by the Google Earth visualization client to
simply circles.

The Convoy ontology models the class of organized friendly forces moving on the
ground. This ontology allows specification of the mission, components and personnel
associated with a convoy. Convoy is a subclass of TheaterObject. The ConvoyRoute
ontology provides a representation of possible paths of a convoy, including critical
points on primary and alternate routes. Recommended routes can change based on
application of rules.

The ConditionsAndAlerts ontology provides a description of situations on the
battlefield based on aggregations of events and actions of theater objects. As the
knowledge base grows, a set of conditions is constructed based on events on the
battlefield, which can result in alerts and recommendations to friendly forces.
Conditions, alerts and recommendations are generated through the application of
rules.

6 Rules

Rules were used to specify the behavior of the Convoy Service by incrementally
constructing a knowledge base of the situation on the battlefield from which alerts and
recommendations could be derived and made available to the convoy commander.
To that end, rules were applied in numerous ways. First, we used rules to construct a
conceptualization of the battlespace for enhanced situational awareness. This was
done in two major ways. First, rules were used to transfer the characteristics of
ObservationArtifacts to TheaterObjects. If a location, speed, combatIntent, etc., are
reported by (or inferable from) an observation, those characteristics must be
transferred to the observed object, as shown in Example Rule 1 below. Note that this
design positions the model to reason over multiple messages in the future, a potential
mechanism for sensor fusion.

Example Rule 1.

If there is a GMTI report about a mover,
 then the velocity of the mover is assigned the velocity in the GTMI report.

588 S. Stoutenburg et al.

The second way the battlespace was conceptually constructed using rules was to
establish regions of interest (ROIs) around each theater object and derive
characteristics about those ROIs. For example, if the object is hostile, then we
classify its ROI as an AreaOfRedForceActivity. See Example Rules 2 and 3 below.
This also builds the basis for future enhancements, such as defining the ROI radius
size based on the capability of the threat. For example, a dirty bomb would result in a
much wider ROI than a sniper.

Example Rule 2.

If there is a TheaterObject,
 then there exists a RegionOfInterest that surrounds that object.

Example Rule 3.

If the TheaterObject is hostile,
then classify its RegionOfInterest as anAreaOfRedForceActivity.

Rules were also used to synthesize information from multiple sources, for greater

situational awareness. For example, the convoy’s “safety zone,” derived from GMTI
tracking, is correlated with threat locations reported by human intelligence, allowing
convoy commanders to be alerted.

Example Rule 4.

If an AreaOfThreatActivity intersects with the convoy’s RegionOfInterest,
then alert the convoy commander of the threat.

Rules are also used for logical processing of real-time events. Specifically, as

updated information modifies the picture of the battlespace, rules are used to derive
new knowledge relevant to the convoy’s safety. Example Rule 5 ensures that a new
intel report of a threat (such as a mortar emplacement) along the planned convoy
route will result in that route being flagged as unsafe.

Example Rule 5.

If a threat has a range that intersects with planned convoy route,
then classify that route as unsafe.

Accumulated events result in a build-up of conditions that may lead to alerts and

recommendations to the convoy. Examples are provided below.

Example Rule 6.
If a convoy’s planned route is unsafe, then recommend change of route.

Example Rule 7.

If threat is approaching from behind,
then recommend that convoy proceed at maximum speed.

Note that there are currently no good tools to detect inconsistences in a knowledge
base of ontologies and rules expressed in W3C standards. Thus, inconsistency in the
knowledge base is a risk.

 Dynamic Service Oriented Architectures Through Semantic Technology 589

7 Convoy Service Design

The design of the Convoy Service is very simple. The service basically monitors the
ESB for messages that provide information about events on the battlefield. When the
service detects that a relevant event has occurred that may impact the convoy, the
service queries the knowledge base to determine if new alerts and recommendations
may have been generated by the new event. The query is a semantic one, using the
ontologies and rules modeled in the integrated knowledge base. For example,
consider the case in which a track of unknown intent is moving on the battlefield.
The Convoy Service detects the event and queries the knowledge base, basically
querying for the concept of “unknown and hostile movers” and “alerts and
conditions”. The data source of instances of these concepts does not matter, since the
query is semantic; that is, over the concepts not the tables. The query triggers a set of
rules to fire, including rules to apply the new position of the unknown mover,
determine the size and location of the region of interest around that mover, and
whether or not the mover is now within proximity of the convoy. If the unknown
mover is within proximity, additional rules fire to construct conditions that lead to the
generation of alerts and conditions.

The Convoy Service also controlled which Logic Server was consulted when
battlefield events were detected. Recall that we implemented two sets of rules; one
was used to model rules of engagement for favorable visibility conditions and the
other set modeled rules of engagement for poor visibility conditions. When the
Convoy Service detected particular weather events, in particular, an unexpected
sandstorm, the service would switch logic servers. Subsequent queries would be
launched to the logic server instantiated with the more conservative (poor visibility)
rule set.

8 Findings and Conclusions

First, we found that expressing service behavior in structured data is a feasible
solution for constructing dynamic services. By separating the rules from the
executable code, and expressing service behavior in data, we show that dynamic
services can be constructed. So, given a real time event, we can swap rules sets, thus
delivering services that can be agile in real time. We were able to design a generic set
of instructions for the service (i.e., “Something moved on the battlefield, what does
that mean for the convoy?) then express the particular behaviors (which alerts and
recommendations apply?) in data, that is, in SWRL. We were able to build a
demonstration that supported sub second response time, rendering alerts and
recommendations to the Google Earth client.

We believe that a standard XML-based language with formal semantics, such as
SWRL, is the best choice for expressing service behavior since this allows the rules to
be “understandable” by machines, building the foundation for a Machine-to-Machine
Enterprise. Also, since the languages are established or proposed standards, they are
more likely to be used widely. OWL, in particular, is inherently extensible, since it
offers a standard way of expressing meaning, So, as other ontologies and rule sets are
developed using standards, they can potentially be linked and reused for a richer
knowledge model. We also found that ontologies are useful to bridge the “dialects”

590 S. Stoutenburg et al.

of each data source, allowing querying over concepts, thus freeing the application
from having to understand the many ways of representing an event.

Regarding the richness of the W3C semantic languages, we found that OWL is
expressive and meets the majority of identified DoD requirements. However, OWL
should be extended to support uncertainty, n-ary predicates (n > 2) and individual-
denoting functions. We found that neither SWRL (nor RuleML) supports some of the
more important DoD requirements identified in this use case, such as reasoning with
uncertainty, non-monotonic reasoning, assertion of the existence of new instances,
triggers to execute external code, and n-ary predicates. Extensions to these languages
will be proposed to support the DoD.

We found that the state of tools for expressing rules in W3C proposed standards
are immature or non-existent. We believe that an integrated framework of tools and
capabilities is needed to support dynamic service development, particularly in the
DoD. First, we need tools to allow the expression of semantic rules that support the
emerging W3C standards. Further, an integrated approach to specifying ontologies
and rules is needed. For example, we would like to see drop down lists of imported
OWL classes and properties while rules are being built, similar to how XML Spy and
other tools offer drop down lists of valid XML schema entries. We would also like to
see integrated validation of ontologies and rules when rules refer to ontologies or data
sources, and in particular, inconsistency detection. The standard framework should
include tools for specification, validation, translation, execution and debugging. The
GUI should hide the complexity of rule constructs. Most importantly, integrated
reasoning engines to operate over ontologies and rules, with knowledge compilation
for performance, are required.

References

[1] McGuinness, Deborah L; Frank van Harmelen. Web Ontology Language (OWL), W3C
Recommendation, 10 February, 2004. http://www.w3.org/TR/owl-features/

[2] Horrocks,Ian. Peter F. Patel-Schneider; Harold Boley; Said Tabet; Benjamin Grosof;
Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission, 21 May, 2004. http://www.w3.org/Submission/SWRL/

[3] Goldstein, T. The Gateway Security Model in the Java Electronic Commerce Framework.
JavasSoft, November 1996.

[4] Welsh, Matt; David Culler; Eric Brewer. SEDA: An Architecture for Well Conditioned,
Scalable Internet Services. 18th Symposium on Operating System Principles, Banff,
Canada, 21 October 2001.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 591 – 600, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Service Oriented Architecture Supporting Data
Interoperability for Payments Card Processing Systems

Joseph M. Bugajski1, Robert L. Grossman2, and Steve Vejcik2

1 Visa International, P.O. Box 8999, Foster City, CA 94128
2 Open Data Group, 400 Lathrop Ave, Suite 90, River Forest IL 60305

JBugajsk@visa.com, rlg1@opendatagroup.com,
vejcik@opendatagroup.com

Abstract. As the size of an organization grows, so does the tension between a
centralized system for the management of data, metadata, derived data, and
business intelligence and a distributed system. With a centralized system, it is
easier to maintain the consistency, accuracy, and timeliness of data. On the
other hand with a distributed system, different units and divisions can more
easily customize systems and more quickly introduce new products and
services. By data interoperability, we mean the ability of a distributed
organization to work with distributed data consistently, accurately and in a
timely fashion. In this paper, we introduce a service oriented approach to
analytics and describe how this is used to measure and to monitor data
interoperability.

Keywords: data quality, data interoperability, service oriented architectures for
analytics, payments card processing systems.

1 Introduction

VisaNet is the largest private payment data network in the world. The annual total
payment volume on VisaNet recently exceeds USD $4 trillion. The network can
handle about 10,000 payment messages per second. It supports every payment card
brand including approximately 1.0 billion Visa cards. It permits card holders to make
secure payments in 120 countries and most currencies through over 20 million
businesses, who operate over 100 million point-of-sales acceptance devices. Above
all, member banks that own Visa require that all the transactions be completed among
all the member banks error free and with extremely high system reliability.

The systems that comprise VisaNet were, until recently, controlled by one
information technology division. That division assured data interoperability. They
enforced a rule that permitted only one source for defining and modifying payment
transaction record format and semantic definitions. The computing and network
infrastructure ran on IBM TPF and IBM MVS mainframe computers. Each
mainframe ran an identical code base in one of several processing centers strategically
situated around the world. Hence, data interoperability was assured because all data in
VisaNet, and all processes that operated on data, were always the same.

592 J.M. Bugajski, R.L. Grossman, and S. Vejcik

The current guaranteed “uniformity” system environment for data interoperability
comes at a not insignificant price with respect to time to market capability and cost
effectiveness for faster growing economies; e.g., the Asia Pacific and Latin American
regions. Visa determined that the old model for interoperability had to change to meet
the demands of its member banks for quicker market entry for product modification
and entirely new types of payment products.

In this paper, we describe an approach to measuring and monitoring data
interoperability using large numbers of baseline models that are each individually
estimated. These are examples of what, in the context of data interoperability, we call
Key Interoperability Indicators or KIIs. The first contribution of this paper is the
introduction of baseline models as an effective procedure for measuring and
monitoring data interoperability.

The second contribution of this paper is the introduction of a service oriented
architecture for computing the analytics required for estimating, updating, and scoring
using these baseline models.

Section 2 contains background and related work. Section 3 discusses data inter-
operability and baseline models. Section 4 describes a service oriented architecture
supporting baseline models. Section 5 describes a deployed application based upon a
service oriented architecture for analytical models and which is scalable enough to
support millions of baseline models.

2 Background and Related Work

Loosely speaking, the interoperability of data and services means that data and
services can be defined and used independently of the application, programming
language, operating system, or computing platform which implements them.
Interoperability has a long history in computing. Major phases include: Electronic
Data Interchange, object models, virtual machines, and web services, which we now
describe briefly.

Electronic Data Interchange (EDI). EDI introduced a standard syntax and a standard
set of messages for various common business transactions. EDI began by introducing
standard formats for purchase orders, invoices, and bills of lading so that these could
be processed without human intervention. In other words, EDI approached
interoperability by requiring all applications using purchase orders to use a standard
structured format. Each different business document had its own structured format.

Object Models. With the introduction of object models, interfaces for both data and
methods became formalized. A wide variety of object models have been introduced,
including Microsoft’s COM and DCOM, Sun Microsystems Java Beans and
Enterprise Java Beans, and the Object Management Group’s (OMG) Object and
Component Models. OMG’s Common Object Request Broker Architecture or
CORBA is an architecture providing interoperability for objects across different
languages, operating systems, and platforms. For more details, see [4].

 A Service Oriented Architecture Supporting Data Interoperability 593

Virtual Machines. Java popularized the idea of supporting interoperability by
mapping a language to an intermediate format (byte code) which could be executed
on any machine which had an interpreter for byte code (virtual machine). In this way,
the same code could be executed on different operating systems and platforms. Note
though that the same language (Java) must be used.

Service Oriented Architectures. More recently, web services and service oriented
architectures have popularized the use of XML to define data and message formats.
In particular the Web Services Description Language or WSDL provides a way to
define services that can be bound to different programming languages (e.g. Java, Perl,
C/C++) and protocols (http, smtp, etc.)

Our approach to data interoperability is based upon a service oriented architecture
that is specifically designed to support statistical and other analytical models, as well
as various services employing them.

3 Data Interoperability

Not all data in a complex, distributed system needs to be interoperable. In this
section, we distinguish between data that must be interoperable, which we call global
data, and other data, which we call local data.

Our approach is based upon introducing two new primitive concepts: a new class
of data called global data and a new class of services called global services. Data that
is not global and services that are not global are called local. Not all data and not all
services are expected to be global; rather, in general data and services are local and
only when they need to interoperate across the enterprise are then required to be
global. Global data and global services are designed so that different applications
storing, accessing, querying or updating global data using global services can easily
interoperate.

In our approach, the interoperability of global data is measured using statistical
models called Key Interoperability Indicators or KIIs. In the remainder of this
section, we define global data and global services, as is usual for service based
architectures.

3.1 Global Data

Global data is any data with the following properties:

• The schema is defined using UML® or XML.
• Data is accompanied by XML based metadata.
• Associated metadata must be accessible through a metadata repository and

discoverable through discovery services.
• Associated metadata must also specify one or more access mechanisms. Access

mechanisms include service-based mechanisms, message-oriented mechanisms, or
data protocol based mechanisms.

• Permitted values for individual field elements are also stored using XML and
corresponding discovery services

594 J.M. Bugajski, R.L. Grossman, and S. Vejcik

3.2 Global Services

Global services are any services or functions with the following properties:

• Global services operate on data through interfaces. By inspecting the interface, a
service can specify the operation it wants to perform and marshal the arguments it
needs to send. Interfaces are independent of programming languages; on the other
hand, to be useful, interfaces, such as J2EE or the Web Service’s Web Service
Description Language (WSDL), have mappings or bindings to common
programming languages, such as C, C++, Java, Python, Perl, etc.

• Global services transport data using an agreed upon wire protocol. For example,
web service based global services use the protocol specified in the WSDL
corresponding to the service.

• Global services are registered. For example, web services may be discovered
through Universal Description, Discovery & Integration (UDDI) services.

• Global services follow from UML descriptions of requisite functionality to remove
details concerning implementation in the matter of the Model Driven Architecture
(MDA®) and Meta-Object Facility (MOF®), both defined by the Object
Management Group (OMG)1.

Interoperability is achieved in several ways. First, separating interfaces from
implementations facilitates interoperability. Services can inspect interfaces but not
implementations. In this way, multiple languages can be bound to the same interface
and implementations can be moved to a different platform. Second, by supporting
multiple wire protocols, global services can improve their interoperability. Third,
registration provides a mechanism for a client application to obtain sufficient
metadata to ensure that it is bound to the correct global service.

3.3 Key Interoperability Indicators (KIIs)

Our approach to measuring the interoperability of global data is to measure and
monitor a number of indicators of interoperability using statistical baseline models.

• We measure whether the values of fields and tuples of field values change
unexpectedly as transactions move from one system to another.

• We measure whether the values of fields and tuples of field values change
unexpectedly after changes and updates to the processing system and
components of the processing system.

• We measure whether the values of fields and tuples of field values are
correlated to various exception conditions in the system’s processing of data.

These measurements are done by establishing baseline behavior with a statistical
model, and then each day measuring changes and deviations from the expected
baseline. Here is a simple example. A table of counts characterizing certain
behavior in a specified reference baseline period can be measured. Counts during an
observation period can then be computed and a test used to determine whether a

1 UML, MDA, MOF and OMG are registered trademarks of the Object Management Group,

Inc.

 A Service Oriented Architecture Supporting Data Interoperability 595

difference in counts is statistically significant. If so, an alert can be generated, and
used as a basis by subject matter experts for further investigation.

Value %
00 76.94
01 21.60
02 0.99
03 0.27
04 0.20
Total 100.00

Value %
00 76.94
01 20.67
02 0.90
03 0.25
04 1.24
Total 100.00

Table 1. The distribution on the left is the baseline distribution. The distribution

on the right is the observed distribution. In this example, the value 04 is over 6x more
likely in the observed distribution, although the two dominant values 00 and 01 still
account for over 97% of the mass of the distribution. This example is from [1].

4 A Service Based Architecture for Analytics

In the last section, we gave relatively standard definitions, from a service oriented
architecture point of view, of types of data and services (global) that are designed to
be the basis of data interoperability across an enterprise. In this section, we introduce
a service based architecture for analytics based upon four types of services: services
for preparing data, services for producing analytical models, services for scoring, and
services for producing OLAP reports.

4.1 Services for Preparing Data

In practice, extracting, aggregating, and transforming data in various ways represents
a significant fraction of the cost of developing complex enterprise applications. In
addition, small differences in the transformations can result in the lack of
interoperability of an application. For these reasons, our model singles out services
for preparing or transforming data from one format to another. Data preparation and
transformations are generally comprise much of the work of developing analytical
models.

More formally, derived data is the result of applying global services implementing
one or more of a class of predefined transformations. For our applications, we used
the transformations defined by the Data Mining Group [2]. These include:

• Normalization: A normalization transformation maps values to numbers.
The input can be continuous or discrete.

• Discretization: A discretization transformation maps continuous values to
discrete values.

• Value mapping: A value mapping transformation maps discrete values to
discrete values.

• Aggregation: An aggregation transformation summarizes or collects groups
of values, for example by computing counts, sums, averages, counts by
category

596 J.M. Bugajski, R.L. Grossman, and S. Vejcik

The Data Mining Group’s Predictive Model Markup Language or PMML allows
these types of data transformations to be defined in XML. Although these four types
of transformations may seem rather restrictive, in practice, a surprisingly large class
of transformations can be defined from these.

4.2 Services for Producing Models

In our service-oriented approach to analytical processes, services operate on data and
derived data to produce rules, statistical models and data mining models, which we
refer to collectively as analytics. See Figures 1 and 2.

Data Services for
preparing data

Derived
data

Model Producers

OLAP services

Models

Reports

Data

Metadata

InformationData

metadata metadata

Model Consumers

Scores

Fig. 1. Specialized global services applied to global data produces global derived data, which in
turn produces global information such as analytical models, scores, and reports

The DMG’s PMML markup language captures the most common analytical
models [2]. These include statistical models for regression, clustering, tree based
regression and classification models, association rules, neural networks, and baseline
models. So, to be very concrete, analytical services for producing models can be
thought of as operating on data and derived data to produce PMML models. Because
of this, these types of analytical services are sometimes called Model Producers.

4.3 Services for Scoring

Given an analytical model described in PMML, a scoring service processes a stream
of data, computes the required inputs to the analytical models, and then applies the
analytical model to compute scores.

Sometimes scoring services are called Model Consumers since they consume
analytical models to produce scores, in contrast to Model Producers, which consume
data sets, viewed as learning sets, to produce analytical models.

 A Service Oriented Architecture Supporting Data Interoperability 597

data
derived

data

services for
preparing data

services for
producing model

models

data
derived

data scores

model

services for
producing scores

services for
preparing data

+

Fig. 2. This diagram illustrates three types of services used in our service oriented architecture
for analytics: services for preparing data, services for producing models (model producers), and
services for producing scores (model consumers)

One of the main advantages of a service oriented architecture for analytics, is that it
is very common for the model producers and consumers to be deployed on different
systems, with quite different requirements. For example, in the case study described
in Section 5 below, the model producer can be deployed on several systems, while the
model consumer must run on an operational system with very stringent security
requirements.

For many applications, including the application described in Section 5 below,
these scores are then post-processed using various rules to produce reports and alerts.

4.4 Services for Reports

In the same way, although outside of the scope of this paper, one can define OLAP
services as services that operate on global data and global derived data to produce
OLAP reports.

598 J.M. Bugajski, R.L. Grossman, and S. Vejcik

5 Case Study – Key Interoperability Indicators for Monitoring
Data Interoperability

5.1 Introduction

For approximately one year, the Visa KII Monitor, based upon a service oriented
architecture, has been measuring and monitoring millions of separate baselines
models in order to monitor data interoperability.

Separate PMML-based baseline models are estimated periodically and used to
monitor each day behavior for twenty thousand member banks, millions of merchants
and various other entities. Given the very large numbers of individual baseline
models involved and the quantity of data processed each, the production of the
models, scores, alerts, and reports are, by and large, automated by the KII Monitor
and require little human intervention.

5.2 KII Monitor Architecture

The Visa KII Monitor consists of the following components:

• A service oriented application that transforms and prepares data, either for
producing models or producing scores.

• A data mart containing data for the observation period, as well as historical and
historical analytical models.

• A Baseline Producer, which takes a data set over the learning period and estimates
parameters of baseline models.

• A Baseline Consumer / Scorer, which takes the current baseline model and the data
for the current observation period and produces scores indicating the likelihood
that the data differs in a statistically significant fashion from the baseline model.

• A service oriented application that produces alerts and reports by analyzing the
scores produced by the Baseline Consumer and applying certain rules.

5.3 Baseline Models

The Visa KII Monitor measures a large number of different baselines, including the
following.

• The KII Monitor measures whether the values of payment fields change in
unexpected manners as transactions move from one system to another.

• The KII Monitor measures whether the values of payment fields change in
unexpected manners after changes and updates to the processing system and
components of the processing system.

• The KII Monitor measures whether the values of payment fields are correlated to
declines and other exceptions to the normal processing of transactions.

Separate baselines are computed for each member bank, and for merchant, and for
various other entities. This results in millions of individual baselines being computed
and monitored.

 A Service Oriented Architecture Supporting Data Interoperability 599

5.4 KII Alerts and Reporting

Here is an overview of the basic steps that the KII Monitor uses to generate alerts and
reports.

First, parameters used for segmenting baseline models are selected. These include
the time period, the region, the specific payment field values being monitored, and the
various logical entities, such as banks, merchants, etc. For each separate segment, a
baseline model is estimated and periodically updated.

Using the baseline model, during each observation period, usually a day or a week,
the following steps are performed.

1. Scores that represent statistically significant deviations from baselines are
generated by the Baseline Consumer / Scorer.

2. The approximate business value for the scenario associated with the baseline is
estimated. If the business value is above a threshold, a report containing one or
more alerts is generated.

3. The report is passed to a subject matter expert for investigation, and, if
appropriate, for remediation.

4. The scenarios are monitored for future compliance.

5.5 Standards

The Visa KII Monitor described in this section was one of the motivating examples
for a proposal for baseline models that is currently under consideration by the
Predictive Model Markup Language Working Group of the Data Mining Group [3]
for inclusion in PMML version 3.2.

6 Summary and Conclusion

In this paper, we have described how Visa used service oriented architecture to
measure and monitor payment data interoperability. The interoperability of payment
data has emerged as a key requirement as Visa introduces its distributed computing
environment where six operating regions have more local control of their computing
environments.

Data interoperability was defined by introducing the concepts of global data and
global services, which can be defined relatively easily using the standard concepts of
a service oriented architecture.

In this paper, we used baseline models to measure data interoperability and a
service oriented analytics architecture to produce baseline models, as well as alerts
and reports based upon them.

Working with the KII Monitor during the past year has taught us several lessons
concerning data interoperability and the implementation of a service oriented
architecture for analytics:

1. Baseline models are effective for uncovering certain important data
interoperability and data quality problems for complex, distributed systems, such
as the payments card processing system described above.

600 J.M. Bugajski, R.L. Grossman, and S. Vejcik

2. An important practical consideration when using baseline models for monitoring
data interoperability is to select a sufficient number of segments and appropriate
threshold levels so that the number of alerts produced have business meaning and
relevance, but not so many different segments that so many alerts are produced
that they are not manageable.

3. An important design decision for the project was to use the Predictive Model
Markup Language (PMML) to represent baseline models.

4. Once PMML was chosen, it was natural to design the system using services for
preparing data (using PMML-defined transformations), services for producing
PMML models, PMML-based services for scorings, and services for producing
alerts and reports.

For the past year, this service oriented architecture for analytics has provided a
solid foundation for the weekly alerts that are produced by the KII Monitor.

References

1. Joseph Bugajski, Robert Grossman, Eric Sumner, Tao Zhang, A Methodology for
Establishing Information Quality Baselines for Complex, Distributed Systems, 10th
International Conference on Information Quality (ICIQ), 2005

2. Data Mining Group, retrieved from http://www.dmg.org on June 10, 2006.
3. Data Mining Group, PMML 3.1 - Baseline Model, RFC Version 5.2.7, retrieved from

www.dmg.org on June 10, 2006.
4. Aniruddha Gokhale, Bharat Kumar, Arnaud Sahuguet, Reinventing the Wheel? CORBA vs.

Web Services, The Eleventh International World Wide Web Conference, retrieved from
http://www2002.org/CDROM/alternate/395/ on June 20, 2003.

5. Web Services Interoperability Organization, retrieved from http://ws-i.org/ on June 20,
2003.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 601 – 612, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Services-Oriented Computing in a Ubiquitous
Computing Platform

Ji Hyun Kim1, Won Il Lee1, Jonathan Munson2, and Young Ju Tak1

1 IBM Ubiquitous Computing Laboratory, Seoul
2 IBM T. J. Watson Research Center, Hawthorne, New York

jihkim@kr.ibm.com, wilee@kr.ibm.com, jpmunson@us.ibm.com,
yjtak@kr.ibm.com

Abstract. Current telematics services platforms are tightly integrated, relatively
fixed-function systems that manage the entire end-to-end infrastructure of
devices, wireless communications, device management, subscriber management,
and other functions. This closed nature prevents the infrastructure from being
shared by other applications, which inhibits the development of new ubiquitous
computing services that may not in themselves justify the cost of an entire end-
to-end infrastructure. Services-oriented computing offers means to better expose
the value of such infrastructures. We have developed a services-oriented,
specification-based, ubiquitous computing platform called TOPAZ that abstracts
common ubiquitous computing functions and makes them accessible to any
application provider through Web-service interfaces. The nature of the TOPAZ
services, as enabling long-running sessions between applications and remote
clients, presents peculiar challenges to the generic issues of service metering and
resource management. In this paper we describe these challenges and discuss the
approach we have taken to them in TOPAZ. We first motivate and describe the
TOPAZ application model and its service set. We then describe TOPAZ’s
resource management and service metering functions, and its three-party session
model that forms the basis for them.

Keywords: Ubiquitous computing, telematics, resource management, service
metering.

1 Introduction

The term “ubiquitous computing” is often applied to the applications that serve
mobile users such as drivers, healthcare workers, and emergency personnel. They
typically link personal or embedded devices with centrally operated services, using
information (context) gathered from the devices. These applications are particularly
popular in the automotive world, having millions users worldwide, and are now
appearing in other domains as well. In the Republic of Korea, for example, several
municipalities are launching ubiquitous computing initiatives under the collective
name “u-City.” The term encompasses a general vision where information systems for
healthcare, education, and even private residences are responsive to collective
contextual data, and these information systems have a pervasive presence in homes,
streets, buildings, and public places such as convention centers.

602 J.H. Kim et al.

Meeting the diverse and changing needs of these user communities can be
prohibitively expensive given the cost of developing, building, and operating
ubiquitous computing systems serving millions of users, over wireless networks,
using a diverse set of devices. Organizations that could provide valuable services to
telematics or other ubiquitous-computing consumers face a high barrier of entry,
because they must either integrate their service with an existing service provider, or
provide their own end-to-end solution. As a result, business models that can be
supported in this kind of ecosystem are limited.

Fig. 1. The role of TOPAZ in the ubiquitous computing applications marketplace

We envision a marketplace in which application providers are able to easily
compete for the business of users and user communities. They would be able to
inexpensively develop, operate, and maintain the applications, and they would be able
to quickly make them available to end users. In this paper we describe a ubiquitous
computing framework named TOPAZ that we designed to enable this kind of
marketplace. TOPAZ is a platform of core services for ubiquitous-computing
applications, the purpose of which is to factor out the telematics-intensive parts of
telematics applications and make them available in a uniform way to all application
providers, through public applications-programming interfaces. The TOPAZ service
set is provided by TOPAZ Platform Operators (TPOs), who make the services
available to any application provider. Fig. 1 illustrates.

We designed TOPAZ based on this vision and the technology of services-oriented
computing. At the outset of the project we identified services-oriented computing as
the model that would enable us to realize our vision of a new kind of ubiquitous
computing marketplace. Service interfaces would allow us to abstract out ubiquitous-
computing infrastructure functions and provide them to applications through
standards-based interfaces. Web services, in particular, would enable us to clearly
separate the execution environments of the TOPAZ Platform Operator and the
application providers, and enable TPOs to provide their services to any application
provider on the Internet.

The position of TOPAZ with respect to applications and ubiquitous-computing
clients (e.g., cell phones, telematics devices) is illustrated in Fig. 2.

 Services-Oriented Computing in a Ubiquitous Computing Platform 603

The services that TOPAZ provides include managing content flows from the
applications to the clients; managing user-interaction flows from the clients to the
applications; managing the flow of sensor data from clients to applications; detecting
application-specific situations involving clients; and supporting peer-to-peer flows of
data and content among clients. All of these services are accessed through industry-
standard Web-service interfaces. Like other Web-service-based platforms of
application services, TOPAZ has the same concerns of service metering, quality of
service guarantees, and resource management. However, while we have been able to
use some existing models for these functions, we have had to adapt them to the
peculiar nature of our services, and we have had to develop our own implementations
of them. In this paper we describe the nature of our specific application model and
discuss the particular services our platform offers. We then describe our approaches to
the utility-computing issues of resource management, quality-of-service guarantees,
and service metering.

2 TOPAZ Application Services

The set of application services offered by TOPAZ was defined by a process of
requirements gathering and factoring. We sought to define a platform that met the
needs of a wide range of applications with a relatively small number of services.
Automotive and fleet telematics was the applications domain of initial focus. We
began by compiling a large set of application scenarios through surveying a number
of existing telematics systems and industrial telematics consortia. Then, through
analyzing their requirements, we factored out a set of core services that would support
the applications. The services are implemented as WSDL-based Web services.

TOPAZTOPAZ

Web Service APIs

Interaction Flow

Content Flow

Services

Telemetry Flow

Event-detection Flow

ClientClient

Base Platform

TOPAZ Agents Wireless Wireless
NetworkNetwork

Internet

Application Server,
Wireless Gateway,
other infrastructure

Application
Provider

Application
Provider

Application

Application
Provider

Application
Provider

Application

Service ProviderService Provider

Component
Service

Service ProviderService Provider

Component
Service

Service ProviderService Provider

Component
Service

Service ProviderService Provider

Component
Service

Fig. 2. TOPAZ in End-to-end System

TOPAZ services are in general concerned with facilitating and managing data
flows between applications and clients or between peer clients, where the data may be
content flowing from applications to clients, or data and events from clients to

604 J.H. Kim et al.

applications. The services include Telemetry Subscription, Content Push, Client-to-
Client Communication, Spatiotemporal Event Detection, and Event-Based Content
Push. We describe these services in more detail below.

Telemetry Subscription. This service enables service providers to receive dynamic
vehicle data (a.k.a. telemetry data) from individual vehicles or groups of vehicles.
Service providers specify the data that is to be sampled, simple conditions under
which the data is to be sent, the period at which the conditions are to be evaluated,
and an address of a Web service that will receive the data. A TOPAZ Telemetry
Agent fulfils the subscription at the vehicle end and sends to a TOPAZ telemetry
receiver server. The server collects the telemetry from multiple vehicles for a short
time and then forwards it to the requesting application.

Content Push. The Content Push service enables application providers to push
multimedia messages, map features, Web forms, and other content to customers’ in-
vehicle displays. This may be used, for example, by real-time navigation applications
to push routes, route information, and just-in-time turn instructions to drivers. The
Content Push service offers different priority levels and different reliability levels to
the application programmer. Content received from multiple applications concurrently
is aggregated for delivery to the client, for greater efficiency in wireless networks.

Client-to-Client. TOPAZ also provides a service enabling application providers to
connect groups of users directly, for message- or connection-oriented communications.
This service enables applications to link communication applications with the
interactive viewers provided by a TOPAZ client, and it eliminates the need for them to
act as their own communications hub.

Spatiotemporal Event Detection. The Spatiotemporal Event Detection Service
serves those ubiquitous-computing applications that involve sensing conditions in a
user’s physical context and responding to those conditions in real time. Examples
include fleet-management services that alert drivers when they are off-route or off-
schedule, and employee safety applications that notify plant staff that a new employee
has entered a restricted area without an accompanying supervisor. Programmers
represent events of interest in the form of rules that “trigger” when the situations are
detected.

Event-Based Content Push is an extension of Spatiotemporal Event Detection
that enables application providers to associate content with a rule. The ECPS will
push the content to a user that caused the rule to trigger.

Resource Services. TOPAZ provides several services for managing specific kinds of
resources. The User Group service enables applications (and application providers,
through a portal) to create groups and assign users to groups. Each of the services
above allows groups, as well as individual users, to be subjects of service calls. The
Rule Resource service enables applications to create, update, and delete data objects
(such as geographical polygons) that are referenced in rules of the Spatiotemporal
Event Detection service. The User/Device Resources service enables applications to
associate arbitrary data with a user or device, for general-purpose use.

 Services-Oriented Computing in a Ubiquitous Computing Platform 605

Application Example. A typical TOPAZ application is one offering drivers turn-by-
turn driving instructions to a given destination. Use of the application by a client
involves three flows: one for application requests from the user to the application,
another for telemetry data (the vehicle’s position) from the vehicle to the application,
and another for content from the application to the user: routes and turn instructions.
Fig. 3 illustrates. Execution begins with a request from the user to start navigation, the
request including the destination. The request takes the form of an HTTP Post, using
an HTML form provided by the application.

Navigation
Service Provider

TOPAZ

Telemetry
Subscription

Content
Push

Service
Application

Request for
position

Position
updates

Session
Manager

Start navigation
request

Routes, real-time
turn instructions

Fig. 3. Application execution using Telemetry Subscription and Content Push services

When the application receives the request, it invokes the Telemetry Subscription
service, which initiates the second flow, of position data from the vehicle to the
application.

When the application decides it needs to notify the driver of an upcoming turn, or
if it has determined that the driver is off-route, and it needs to send the driver new
instructions, it will compose the content and invoke the Content Push service to do so.
These pushes constitute the third flow.

3 TOPAZ Session Model

The data flows (of content, application requests, telemetry data, and rule-triggering
events) managed by TOPAZ services take place in the context of sessions. TOPAZ
provides a multi-layered session model, shown in Fig. 4. A session may be a device
session, user session, or application session. Each session has a parent session. For
application sessions, the parent session is a user session; for user sessions, the parent
session is a device session. For device sessions, the parent session is the System
session, not shown. Parent relationships of the sessions in Fig. 4 are shown by the tree
in the figure.

A device session is created when a device first connects to a TOPAZ Session
Manager. The Session Manager automatically creates a user session for the device
owner. Then the Session Manager will start any device-dependent auto-startup
applications, creating application sessions for them. Normal user sessions are started
when users log in. Non-device-dependent applications set for auto-startup are then
started at this time. Users can manually start and stop applications at any time following
this. When a device is shutdown, all children sessions of the device session are closed.

606 J.H. Kim et al.

Fig. 4. TOPAZ Session Model

4 Resource Reclamation in TOPAZ

A variety of resources are involved in the facilitation of any given flow in TOPAZ.
What we term a resource is a data object residing on the server relating to the
operation of an application, that lasts at least as long as an application session. A user
group is an example of a resource, as is the internal record of a telemetry subscription.
Resources may be created explicitly through service invocations, such as user groups
created through calls to the User Group Service, or may be created implicitly by
services, such as when telemetry subscriptions are created as the result a rule
subscription to the Spatiotemporal Event Detection Service. Resources may be
passive data objects, such as telemetry subscription records, or they may be active
objects, such as the objects in the Content Push Service that manage content pushes to
individual clients. Applications can elect to manage the lifetimes of resources
themselves, or they can allow TOPAZ to manage the lifetime for them.

Table 1. Resource lifetimes

Lifetime Name Duration

DEVSESSION The life of the associated device session.

USERSESSION The life of the associated user session.

APPSESSION The life of the associated application session.

APPLICATION The life of the application that created the resource.

PROVIDER The life of the provider of the application that created the
resource.

Automatic resource reclamation is an important function in TOPAZ because
forcing applications to do it explicitly is too great a burden on programmers. They
may not properly clean up; the client or the application may quit unexpectedly, or
clients or applications may suffer long periods of disconnection. Without automatic
resource reclamation, dead resources would grow continuously with no way to
reclaim them.

 Services-Oriented Computing in a Ubiquitous Computing Platform 607

Table 2. Resource types

Service Resources Allowable Lifetimes

Telemetry subscriptions APPSESSION or APPLICATION,
chosen by application

Telemetry
Subscription

Per-client subscription
optimizers

DEVSESSION

Content Push Per-client content-push
priority managers

DEVSESSION

User Group User groups APPSESSION, APPLICATION, or
PROVIDER, chosen by application

Client-To-Client Telemetry subscriptions APPSESSION

Rules APPSESSION or APPLICATION,
chosen by application

Rule subscriptions APPSESSION or APPLICATION,
chosen by application

Spatiotemporal
Event Detection

Telemetry subscriptions APPSESSION or APPLICATION,
chosen by application

Rule resources APPLICATION Rule Resources

User rule resources APPSESSION or APPLICATION,
chosen by application

Rules APPLICATION

Rule subscriptions APPLICATION

Telemetry subscriptions APPLICATION

Event-based
Content Push

Event/content table APPLICATION

User/Device
Resources

User/device resources APPLICATION

To facilitate the reclaiming of resource objects, each resource is associated with the
lifetime of a session, an application, or a provider. Table 1 lists the possible resource
lifetimes. Programmers declare the lifetime of resources they create explicitly, while
TOPAZ services declare the lifetime of resources that are created implicitly, as the
result of creation of other resources.

Modular Resource Management. The model for resource management in TOPAZ is
that each application service manages its own set of resources. Each service module is
notified of lifetime events (e.g., session ended), and each module performs the
appropriate resource-management functions. The table below lists the resources
managed by each service.

The lifetime events that each module uses to dispose of resources (and in some
cases create them) originate with the Session Manager, the Applications Manager, and
the Provider Registration Manager. The Resource Manager is a component on the

608 J.H. Kim et al.

server that acts as a central clearinghouse for these events, distributing them to the
other server-side modules that require them.

Internally, the Resource Manager uses an asynchronous messaging mechanism
(J2EE Message-Driven Beans) to decouple the callers of the Resource Manager from
the execution of the management logic at the receivers of the Resource Manager’s
lifetime events.

Table 3. Quality of Service Parameters in TOPAZ Services

Service Parameter Description

Sampling interval Applications specify the sampling interval
of the requested telemetry data.

Telemetry
Subscription
Service Report aggregation Applications can request that the telemetry

reports be delivered in as large batches as
practically possible.

Content Push
Service

Push priority Applications set the priority of content
delivery, on a per-push basis.

User Group Service None

Client-To-Client
Service

Same as Telemetry
Subscription Service

Spatiotemporal
Event Detection
Service

Rule evaluation
interval

Applications specify how frequently rules
are evaluated.

Rule Resources
Service

None

Event-based
Content Push
Service

Same as STED Service
and Content Push
Service

User/Device
Resources Service

None

5 Quality-of-Service in TOPAZ

The conventional notion of quality-of-service in Web services is the response time of
a service invocation. However, since TOPAZ services are client-session-oriented, not
request/response oriented, its notions of quality-of-service are correspondingly
different. Rather than requesting a certain response time, TOPAZ service callers
specify certain qualities of the client session, on a per-session, or finer, basis. Table 3
lists the quality-of-service parameters offered by each service.

In the sections following we discuss the quality-of-service parameters offered by
the Telemetry Subscription Service and the Content Push Service.

QoS for the Telemetry Subscription Service. The Telemetry Subscription Service
offers two parameters related to quality of service, sampling interval and report
aggregation.

 Services-Oriented Computing in a Ubiquitous Computing Platform 609

Sampling Interval. Applications express the sampling interval of a telemetry
subscription as minimum and maximum intervals between any two samples of the
telemetry requested. In order to make most efficient use of its bandwidth to the
TOPAZ server, a TOPAZ client will attempt to send the data for multiple
subscriptions at the same time, and so allowing some variance in the sampling period
of subscriptions is helpful.

Applications choose a maximum interval according to the response-latency
requirements of their application. The shorter the interval, the more quickly the
application can respond to changes in the client’s context. Applications set the
minimum interval to a level high enough to avoid unnecessary expenses due to too-
frequent telemetry reports (because more frequent telemetry result in increased
service charges from the TOPAZ platform operator). However, the usage fee structure
for the Telemetry Subscription service encourages applications to set a reasonably
wide range between the minimum and maximum intervals.

Report Aggregation. Group telemetry subscriptions offer a “maximize
aggregation” parameter, which, when true, instructs TOPAZ to aggregate client
telemetry destined to a single application as much as possible. This will result in
fewer telemetry transmissions to the application, each one aggregating more client
reports. The resulting load on the application server handling subscriber telemetry
should therefore be lower. However, the cost of transmitting data from clients may
increase because TOPAZ has less flexibility in scheduling transmissions from clients
to the TOPAZ servers. Thus the TOPAZ platform operator’s service charges to the
application provider may increase.

The mechanism for doing this is to approximately synchronize the sampling and
transmission of the application’s requested telemetry data at all clients in the group.
TOPAZ synchronizes (roughly) the telemetry streams by telling each client to start
sampling at a common UTM-specified time and to sample at a common interval
thereafter. Clients who miss the start time can synchronize with the group by
beginning sampling at any multiple of the specified maximum sampling interval.

Whether or not clients synchronize their sampling, the Telemetry Subscription
Service will buffer their telemetry reports for a short time before forwarding them
together to the application.

QoS for the Content Push Service. The Content Push service offers two parameters
related to quality of service: the priority of a push, and the reliability required for the
push.

Priority. The Content Push Service is used for content that is time-sensitive, such
as a message from a real-time navigation service instructing a user turn right in 50
meters, and for content that is not time-sensitive, such as telemetry requests. Because
it must handle content push requests from multiple applications simultaneously, it
must therefore make decisions about which content goes first. A simple first-come,
first-served approach would mean that time-sensitive content may unnecessarily wait
for non-time-sensitive content. Therefore, in order to serve applications more
effectively, the Content Push Service offers a “push priority” parameter that can take
on the values URGENT and NORMAL. Callers use URGENT for content that
represents a time-sensitive communication. NORMAL delivery should be used for all
other content. Content sent with NORMAL delivery may experience slight delays for

610 J.H. Kim et al.

efficiency reasons. Content sent as URGENT will not suffer these delays, but will be
charged a higher rate.

Reliability. Not all content has the same importance, and the Content Push Service
offers two levels of reliable delivery: BESTEFFORT and ASSURED. With
BESTEFFORT delivery, the CPS will attempt delivery a limited number of times
before it gives up and discards the push request. With ASSURED delivery the CPS
will retry delivery unless it is clear that delivery is not possible (e.g., user has
unsubscribed from the application).

6 Service Metering

TOPAZ does not mandate a particular business model used by a TOPAZ Platform
Operator, but it does provide models for service metering that a TPO can use as a
basis for its business model. We expect a typical business model for a TPO to be one
in which it charges users for subscriptions to applications, and it charges application
providers for the use of TOPAZ application services. TOPAZ’s service metering
models provide a basis for a TPO’s charges to an application provider.

Rather than metering per service invocation, as do some Web-services platforms
(for example, ESRI’s ArcWeb services [6]), or using monthly or annual fees (for
example Microsoft’s MapPoint services [11]) TOPAZ’s metering models are based
on the aggregated cost of providing flows. In this section we describe how this
orientation toward flows has determined out metering models. Our work in this area is
not complete; we are currently refining our models and determining the various
constants in them empirically.

Each application service has its own metering model, according to how flows in
the service consume system resources. A service’s metering model is a function
whose inputs are the parameters used in invoking the service that generated the flow
and any statistics recorded for the flow, and whose outputs are abstract “cost units”.
These cost units translate directly to monetary charges. The terms in the formulas for
the models reflect how invocation parameters impact the consumption of particular
system resources.

In this section we focus on two services, Telemetry Subscription and Content Push.

Metering Telemetry Subscription. The various parameters used in invoking the
Telemetry Subscription service impact its consumption of system resources in various
ways, but the most important are the minimum and maximum sampling intervals. For
each telemetry report received by the server, it must allocate a thread and a database
connection. Relatively few CPU cycles are consumed in processing the data. In order
to not block the client while sending the data to the application, the TSS decouples the
process of receiving the telemetry from the process of sending it, but this means the
service must allocate another thread for sending. In order to reduce the number of
threads required for this, the service will batch reports together for a short time before
sending them to the application.

The initial TSS metering model we are working with now charges application
providers according to how their subscriptions consume bandwidth, modified by how
the subscriptions impact other system resources. The charge to any one application for

 Services-Oriented Computing in a Ubiquitous Computing Platform 611

a telemetry session is a simple summation of the charges for handling each report,
where the charge for each report is a product of the size of the report and the sampling
parameters in the application’s subscription. Applications reduce their charges by
specifying a generous tolerance between minimum and maximum sampling intervals,
thus allowing the client more flexibility in combining telemetry reports destined for
different applications in the same message sent to the server. Therefore the server
needs to allocate only one thread and one database connection to process multiple
reports. This is reflected in the metering model by applying a discount to the per-
report charges, where the discount is a function of the range between minimum and
maximum sampling intervals.

Metering Content Push. Threads are the primary resources consumed by the Content
Push service. For each URGENT push a thread must be allocated to invoke the
transport mechanism that will carry the data. NORMAL pushes, however, are queued
for a short time before the entire queue is emptied and sent to the client. Therefore,
the metering model for Content Push is a function of the priority used, as well as the
size of the content pushed.

7 Related Work

Our technique for resource reclamation is similar to the “soft state” approach used in
management of network-entity state in Internet protocols[5, 13, 14], RMI and Jini
[12], and more recently the Open Grid Services Architecture [8], in that each
reclaimable resource is associated with a lifetime. In our technique, however, the
lifetime is not an actual time, but instead a link to the lifetime of an entity in the
system—a session, application, or application provider. Resources are known to be
reclaimable when the entity to which they are associated has ceased to exist. In this
respect our technique is similar to reference counting in a distributed system [2],
except that references point in the other direction. Thus, knowing the ID of a deceased
entity, we can query a resource set directly for resources whose lifetime is associated
with it.

Work in quality of service for Web services—how to specify it, measure it, and
monitor it—focuses, for performance metrics, on generic qualities such as response
time, throughput, availability, and reliability [3, 10]. However, our flow-oriented
services require different performance metrics, such as sampling regularity in the
Telemetry Subscription service. In this respect our concerns are more nearly aligned
with multimedia systems, but with looser real-time constraints. See [4].

The abstract cost units our metering models are based on are similar to the credits
used by ESRI’s ArcWeb Services [6]. Our cost units, however, are based on how a
particular service’s flows consume critical resources, and the cost of providing those
resources. We have based our models partly on the modeling of thread and database
connection resources in [7]. While we have implemented our own metering
subsystem, we could also use metering services such as that in the UMI utility
infrastructure [1].

612 J.H. Kim et al.

8 Conclusions

TOPAZ is a Web-services-based platform of services designed to facilitate a
marketplace of ubiquitous computing applications, by making these applications
radically less expensive to develop, deploy, and operate. As with any utility-
computing infrastructure, it faces challenges on how to manage the objects and
resources consumed in the delivery of its services, how to meter the use of its
services, and what quality-of-service parameters to offer to applications. We have
presented our own approaches to these challenges, which take into account the nature
of TOPAZ services as providing “flows” of content, data, and event-detection
between clients and applications. We continue to refine our metering models based on
observations of our system’s runtime characteristics.

We have developed a number of applications for TOPAZ, and external developers
have developed others. We are currently in the process of measuring the performance
of TOPAZ when serving large numbers of clients.

References

1. Albaugh, V., Madduri, H., The Utility Metering Service of the Universal Management
Infrastructure. IBM Systems Journal, Vol. 43, No. 1, 2004, 179–189.

2. Bevan, D.I., Distributed Garbage Collection Using Reference Counting. In Parallel
Architectures and Languages Europe, 1987, Springer-Verlag, LNCS 259, 176–187.

3. Bhoj, P., Singhal, S., Chutani, S., SLA Management in Federated Environments. In
Proceedings of the Sixth IFIP/IEEE Symposium on Integrated Network Management (IM
’99), IEEE, 1999, 293–308.

4. Campbell, A., Coulson, G., Garcia, F., Hutchison, D., Leopold, H., Integrated Quality of
Service For Multimedia Communications. In Proceedings of the 12th Annual Joint
Conference of the IEEE Computer and Communications Societies - IEEE INFOCOM '93;
1993, 732–739.

5. Clark, D.D. The Design Philosophy of the DARPA Internet Protocols. In SIGCOMM
Symposium on Communications Architectures and Protocols, 1988, ACM Press, 106–114.

6. ESRI ArcWeb Services. http://www.esri.com/software/arcwebservices/index.html
7. Ferrari, G., Ezhilchelvan, E., Mitrani, I. Performance Modeling and Evaluation of E-

Business Systems. CS-TR 954, School of Computing Science, University of Newcastle,
March 2006.

8. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S. Grid Services for Distributed Systems
Integration. Computer, Vol. 35, No. 6, 2002.

9. Frølund, S., Koistinen, J. 1998. Quality-of-Service Specification in Distributed Object
Systems, Distributed System Engineering 5: 179–202.

10. Keller, A., Ludwig, H., The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management, Vol. 11,
No. 1, March 2003, 57–81.

11. Microsoft MapPoint. http://www.microsoft.com/mappoint/default.mspx
12. Oaks, S., and Wong, H. Jini in a Nutshell. O’Reilly, 2000.
13. Sharma, P., Estrin, D., Floyd, S., Jacobson, V., Scalable Timers for Soft State Protocols. In

IEEE Infocom ’97, 1997, IEEE Press.
14. Zhang, L., Braden, B., Estrin, D., Herzog, S., Jamin, S., RSVP: A New Resource

Reservation Protocol. In IEEE Network, 1993, 8–18.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 613 – 623, 2006.
© Springer-Verlag Berlin Heidelberg 2006

SCA Policy Association Framework

Michael Beisiegel1, Nickolas Kavantzas2, Ashok Malhotra2,
Greg Pavlik2, and Chris Sharp1

1 IBM
2 Oracle

mbgl@us.ibm.com, nickolas.kavantzas@oracle.com,
ashok.malhotra@oracle.com, greg.pavlik@oracle.com,

sharpc@uk.ibm.com

Abstract. SCA (Service Component Architecture) is a collaborative effort by
the leading vendors in the enterprise software space to define an architecture for
building applications and systems using a Service-Oriented Architecture. SCA
allows developers to define components that implement business logic, which
offer their capabilities through services and consume functions offered by other
components through references in a relatively abstract manner. This paper
discusses how infrastructure and Quality of Service constraints and capabilities
can be associated with SCA artifacts either as abstract desires or as concrete
policies.

Keywords: SCA, QoS, Policy.

1 Introduction

SCA (Service Component Architecture) is a collaborative effort by the leading vendors
in the enterprise such as Web Services [1]. The collaboration started in 2005 and is
ongoing. Another paper in this conference describes the SCA framework in detail.

SCA encourages an SOA organization of business application code based on
components that implement business logic, which offer their capabilities through
service-oriented interfaces called services and which consume functions offered by
other components through service-oriented interfaces, called references. SCA
software space to define an architecture for building applications and systems using a
Service-Oriented Architecture. SCA extends and complements prior approaches to
implementing services, and builds on open standards divides the steps in building a
service-oriented application into two major parts:

The implementation of components which provide services and consume other
services

The assembly of sets of components to build business applications, through the
wiring of references to services.

SCA emphasizes the decoupling of service implementation and of service
assembly from the details of Quality of Service (QoS) or infrastructure capabilities
and from the details of the access methods used to invoke services. SCA components
operate at a business level and use a minimum of middleware APIs.

614 M. Beisiegel et al.

SCA supports service implementations written using any one of several
programming languages including conventional object-oriented and procedural
languages such as Java™, PHP, C++, COBOL; XML-centric languages such as
BPEL and XSLT; and declarative languages such as SQL and XQuery. SCA also
supports a range of programming styles, including asynchronous and message-
oriented, in addition to the synchronous call-and-return style.

SCA supports bindings to a wide range of access mechanisms used to invoke
services. These include Web services, Messaging systems and CORBA IIOP.
Bindings are handled declaratively and are independent of the implementation code.
Infrastructure capabilities, such as Security, Transactions and the use of Reliable
Messaging are also handled declaratively and are separated from the implementation
code.

The capture and expression of non-functional requirements is an important aspect
of service definition, and has impact on SCA throughout the lifecycle of components
and compositions. SCA provides a framework to support specification of
infrastructure capabilities constraints and Quality of Service (QoS) expectations, from
component design through to concrete deployment. Specifically, this paper describes
the SCA policy association framework that allows policies and policy subjects
specified using WS-Policy[2] and WS-PolicyAttachment[3] and possibly other policy
languages to be associated with interactions between SCA components as well as with
component implementations.

DISCLAIMER: This paper describes the SCA Policy Attachment Framework in its
current state of design. Work on the framework is continuing and so the details are
likely to change.

2 Policy Framework

2.1 Overview

The SCA policy framework defines the following key concepts:

Intents

… allow the SCA developer to specify abstract Quality of Service capabilities or
requirements independent of their concrete realization.

Profiles

… allow the SCA developer to express collections of abstract QoS intents.

Policy Set

… collects together concrete policy and policy subject pairings, potentially from
different policy domains, and declares which intents that they realize collectively.

Intent Maps

… are a set of alternative concrete policy and policy subject pairs for a single
policy domain that appear in a Policy Set

 SCA Policy Association Framework 615

… declare defaults and fixed values for alternatives in a single domain

The SCA policy framework utilizes the following key concepts from the SCA
assembly model:

Binding

...some bindings may support intents implicitly through the nature of the
protocols they implement
...other bindings may be configurable to provide support for intents through
extension

(...SCA bindings may be configured using a combination of intents (via profiles)
and concrete policies via policySets)

2.2 Framework Model

SCA Framework model comprises of Intents, Profiles and Policy sets. These concepts
are defined below.

2.2.1 Intents
An intent is an abstract capability or requirement that is expressed independent of its
realization.

Intent names are represented as case-sensitive strings in the SCA Policy
Framework. The name typically designates the name of a policy domain. It may also
contain an additional qualifier separated from the domain name by a “/”. It is possible
to use a “.” In a domain name as a convention to indicate scoping. For example,
“sec.confidentiality” names the confidentiality domain within the security area as an
intent. Qualified intents designate an additional level of specificity. When the intent
contains a qualifier (i.e. is a qualified intent), the value preceding the separator “/”
designates the name of the intent and the value after the separator designates the
specific qualifier.

A qualified intent is a member of a qualified intent set. A qualified intent set is the
union of qualified intents formed from a single intent. As an example, the
sec.confidentiality intent may be qualified with a qualifier from the following
qualifier set: {“message”, “transport”}. The qualified intent set, therefore, is as
follows: {“sec.confidentiality/message”, “sec.confidentiality/transport”}.

To ensure a minimum level or portability, SCA will normatively define a set of
core intents that all SCA implementations are expected to provide a concrete
realization for. Users of SCA may define new intents, or extend the qualifier set of
existing intents.

2.2.2 Profiles
Profile elements aggregate intent names. A set of intents (qualified or non-qualified)
may be expressed by a profile element using the @intents attribute. This takes a
space-separated list of intent names as its value.

616 M. Beisiegel et al.

For example:

<sca:profile intents="sec.authentication
 rel.reliability
sec.confidentiality/message" />

The first two intents state that policies providing authentication and reliability are
required. Although sec.authentication has a qualifier set it has been used in its
unqualified form here. This means that some form of authentication is required, but
the SCA developer has not specified the particular type of authentication mechanism
used to be used. The third intent is used in its qualified form and states that a policy
for a specific capability, “message”, in the confidentiality domain is required.

The intents specified in the profile are mapped to concrete policies specified in
policySets before deployment. An unqualified intent maps to a policySet that
provides a policy or policies for the domain of the intent. If a given policySet
provides multiple policies, corresponding to members of the qualified intent set for
that domain, the default policy is selected. The specific algorithm used to map
intents to PolicySets is outside the scope of this specification.

2.2.3 Policy Sets
A policySet element is used to define a set of concrete policies that correspond to a
set of intents. The structure of the PolicySet element is as follows:

• It must contain a @name attribute that declares a name for the policy set. The
value of the @name attribute is a QName.

• It may contain a @binding attribute. The value of the @binding attribute indicates
the binding to which the policySet applies.

• It may contain a @provides element which is a space-separated list on intent
names. The values in @provides indicate the intents (qualified or unqualified) that
the policySet provides policies for.

A policySet can contain the following element children:

• intentMap element
• policySetReference element
• wsp:PolicyAttachment element
• xs:any extensibility element

Any mix of the above types of elements, in any number, can be included as
children. The extensibility elements may be from any namespace and may be
intermixed with the other types of child elements. The pseudo schema for policySets
is shown below:

<sca:policySet name="xs:QName"
 provides="... list of intent names... "?
 bindings="binding names"?
 xmlns="http://www.osoa.org/xmlns/sca/1.0
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004
/09/policy">

 SCA Policy Association Framework 617

 <sca:policySetReference name="xs:QName"/>*
 <sca:intentMap/>*
 <wsp:PolicyAttachment>*
 <xs:any>*
</sca:policySet>

As an example, the policySet element below declares that it provides
“sec.authentication/basic” and “rel.reliability” using the @provides attribute, for the
“binding.ws” SCA binding.

<sca:policySet name="SecureReliablePolicy"
 provides="sec.authentication
 rel.reliability"
 bindings="sca:binding.ws"
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:wsp=
 "http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:PolicyAttachment>
 <!-- policy expression and policy subject
 for "basic authentication" -->
 </wsp:PolicyAttachment>
 <wsp:PolicyAttachment>
 <!-- policy expression and policy subject for
 "reliability" -->
 </wsp:PolicyAttachment>
</sca:policySet>

2.2.3.1 IntentMaps. Intent maps given below contain concrete policies and policy
subjects for a named policy domain in the policySet. The pseudo-schema for
intentMaps is shown below:

<sca:intentMap provides="xs:QName"
 default="xs:string">
 <sca:qualifier name="xs:string">*
 <wsp:PolicyAttachment>*
 …
 </wsp:PolicyAttachment>
 </sca:qualifier>
 <xs:any>*
</sca:intentMap>

If a policySet contains intentMaps, each intentMap provides alternative policies for
a single policy domain. The intent contained in the @provides of the intent map must
be included in the @provides of the policySet. All intents in the @provides of the
policySet must appear in the @provides of an intentMap.

An intentMap element must contain qualifier element children. Each qualifier
element corresponds to a qualified intent where the unqualified form of that intent is
included in the @provides attribute value of the parent intentMap.

618 M. Beisiegel et al.

A qualifier element in an intentMap designates a set of concrete policy attachments
that correspond to a qualified intent. Concrete policy attachments may be specified
using wsp:PolicyAttachment[3] element children or by using extensibility elements
specific to a policy domain.

The default attribute of an intentMap must correspond to one of the qualifier
elements of its child qualifier elements. It represents the default choice of qualifier,
when only the unqualified form of the intent has been specified as a requirement in a
profile element.

As an example, the policySet element below declares that it provides
“sca:confidentiality” using the @provides attribute. It contains a single intentMap.
The qualifiers (transport and message) each specify the policy and policy subject they
provide. The default is “transport”.

<sca:policySet name="SecureMessagingPolicies"
 provides="sca:confidentiality"
 bindings="sca:binding.ws"
 xmlns="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:wsp=
 "http://schemas.xmlsoap.org/ws/2004/09/policy">
 <sca:intentMap provides="confidentiality"
 default="transport">
 <sca:qualifier name="transport">
 <wsp:PolicyAttachment>

 <!-- policy expression and policy subject
 for "transport" alternative -->

 </wsp:PolicyAttachment>
 <wsp:PolicyAttachment>
 …
 </wsp:PolicyAttachment>
 </sca:qualifier>
 <sca:qualifier name="message">
 <wsp:PolicyAttachment>

 <!-- policy expression and policy subject
 for "message" alternative” -->

 </wsp:PolicyAttachment>
 </sca:qualifier>
 </sca:intentMap>
</sca:policySet>

2.2.3.2 Direct Use of Attachments within Policy Sets. If a policySet contains a
complete policy without the need for defaults or overriding, it can contain policy
attachment elements directly without the use of intentMaps. In this case, there are two
ways of including attachments within a policySet element. Either
wsp:policyAttachment elements may be included directly as children or deployment

 SCA Policy Association Framework 619

specific extension elements (using xs:any) that designate concrete policy attachments
may be included as children.

When a policySet element contains wsp:policyAttachment children, it is assumed
that the set of ALL policy attachments specified as children satisfy the intents
expressed using the @provides attribute value of the policySet element. This
assumption also applies to deployment specific representation of concrete policies.

2.2.3.3 Policy References. A policySet may refer to other policySets by using a
PolicySetReference element. This provides a recursive inclusion capability for
intentMaps, policy attachments or other specific policies from different domains.

When a policySet element contains policySetReference element children, the
@name attribute of the policySetReference element designates a policySet with the
same value for its @name attribute.

The binding attribute of a referenced policySet must be compatible with that of the
policySet referring to it. Compatibility, in the simplest case, is string equivalence of
binding names.

The @provides attribute of a referenced policySet must include intent values that
are compatible with one of the values of the @provides attribute of the referencing
policySet. A compatible intent either is a value in the referencing policySet's
@provides attribute values or is a qualified value of one of the intents of the
referencing policySet's @provides attribute value.

The use of a policySetReference element indicates that a copy of the element
content children of the policySet that is being referred is included within the referring
policySet. If the result of inclusion results in a reference to another policySet,
inclusion is repeated until the contents of a policySet do not contain any references to
other policy sets.

Note that, since the attributes of a referenced policySet are effectively
removed/ignored by this process, it is the responsibility of the author of the referring
policySet to include any necessary intents in its @provides attribute if they wish that
policySet to correctly advertise its aggregate capabilities.

The default values when using this aggregate policySet come from the defaults in
the included policySets. A single intent (or all qualified intents that comprise an
intent) in a referencing policySet must only be included once by using references to
other policySets.

The following example illustrates the inclusion of two other policy Sets in a
policySet element:

<sca:policySet
 name="BasicAuthMsgProtSecurity"
 provides="authentication confidentiality"
 bindings="binding.ws"
 xmlns="http://www.osoa.org/xmlns/sca/1.0">
 <sca:policySetReference
 name="AuthenticationPolicies"/>
 <sca:policySetReference
 name="ConfidentialityPolicies"/>
</sca:policySet>

620 M. Beisiegel et al.

The above policySet refers to two other policySets for authentication and message
protection and, by reference, provides policies and policy subject alternatives in these
domains.

2.3 Attachment of SCA Policy Artifacts

This section describes the mechanisms used to associate profiles or policySets with
SCA artifacts. It describes the various attachment points and semantics for profile
elements and their relationship to other SCA elements within their scope of influence,
and how profiles relate to policySets in these contexts.

2.3.1 Services and References
The SCA developer may declare any requirements that should be satisfied for
interactions with their components by attaching a profile element as a child of a
service or reference. The meaning of this attachment is that, for all interactions with
the service (or via the reference), the intents listed by the profile element should be
concretely realized, irrespective of the specific binding that may be chosen.

The following is a pseudo schema for attachment to services and references:

<sca:service> or <sca:reference>
 ...
 <sca:interface.interface-type/>
 <sca:profile intents="xs:string"/>?
 ...
</sca:service> or </sca:reference>

An example of this is:

<sca:service name="mySpecialService">
 <sca:interface.wsdl portType="..." />
 <sca:profile
 intents="sec.authentication
 rel.reliabilty"/>
</sca:service>

Here, the developer is indicating that it is essential to the operation of
mySpecialService that all interactions with it are authenticated and reliable.

Thus, the presence of a profile element, guides the choice of binding that may be
used for the service/reference concerned. The selected binding must satisfy the
requirements indicated by the profile. In the above example, therefore, any binding
element used with the mySpecialService should be capable of realizing authentication
and reliability.

Bindings may realize intents either natively by virtue of the kind of transport
technology they implement (e.g. an SSL binding would natively support
confidentiality automatically) or through configuration using concrete policy artifacts,
contained in policySets. The following section looks at the relationship between these
three elements (profiles, bindings and policySets) in more detail.

 SCA Policy Association Framework 621

2.3.2 Bindings
Profiles may also be associated with bindings to indicate that the intents specified in
the profile are mapped to concrete policies contained in policySet elements that are
compatible with those bindings. Bindings may also be directly associated with a
policySet and the policies specified by it.

The following is a pseudo schema for attachment to a binding:

<sca:service> or <sca:reference>
 ...
 <sca:binding.binding-type >*
 <sca:profile intents="xs:string"/>?
 <sca:/binding.binding-type>

 ...
</sca:service> or </sca:reference>

2.3.2.1 Associating Profiles with Bindings. When a profile element is in scope of a
binding element (i.e. it is either a sibling or child of that binding) then it should be
used to ensure that the binding will satisfy the intents specified by the profile. In other
words, it is “profiling” the usage of the binding in this instance.

To ensure this, any policySet that may be used to configure that binding (i.e. that
declares the binding in question as a value of its binding attribute) should include all
the intents expressed by the profile element in its provides list:

An intent that is unqualified in the profile element may be qualified in the
policySet @provides attribute.

When an intent is both unqualified in the profile element and the policySet, it may
be subsequently qualified by an intentMap/qualifier element contained within the
policySet.

An intent that is qualified in the profile element may be unqualified in the
@provides attribute of the policySet if and only if that policySet contains an
intentMap/qualifier element for that qualified form of the intent.

In this manner, the profile element designates a selection of concrete policies
specified by a policySet element (thus overriding the defaults specified in the
policySet, should the policySet contain intentMaps).

Although an intentMap typically contains a number of concrete policies to
represent different qualified intents, only one of the qualified intents relating to a
given unqualified intent may be selected and enforced in a given usage of the
policySet. The choice of which qualified intent to use is influenced by the use of
profile elements, but sometimes a profile element may not be specific enough to list
the particular qualified form of the intent. To ensure one and only one qualified form
is chosen a default must be specified.

2.3.2.2 Associating Policy Sets with Bindings. A binding element may specify one or
more policySets to indicate the specific policies that will be used to configure the
binding. The binding element indicates the name of the policy sets by using the
@policySet attribute. This attribute can contain a space separated list of policySet
names.

622 M. Beisiegel et al.

As is the case where a profile element is in scope of a binding element, a profile
element that is a child of a binding element with a @policySet attribute may specify
an attribute named @intents that contain a list of qualified intent values. When used,
the value of @intents attribute specifies a set of intents that override the default
intents provided by the policySets. This overriding is only possible when the
policySet contains intentMaps. For example:

<sca:binding.ws policySet="MyEnterprisePolicy">
 <sca:profile intents="sec.authentication/cert
 sec.confidentiality/message"/>
</sca:binding.ws>

A child profile element adds to or further qualifies the intents specified on profile
elements specified for service of reference elements that are a peer to binding
elements. The following example shows child profile elements that further qualifies
the sca.authentication intent that was specified as a peer to the binding element.

<sca:service>
 <sca:profile intents="sec.authentication
 rel.reliability"/>
 <sca:binding.ws>
 <sca:profile
 intents="sec.authentication/cert"/>
 </sca:binding.ws>
 <sca:binding.ejb>
 <sca:profile
 intents="sec.authentication/kerberos"/>
 </sca:binding.ejb>
</sca:service>

2.3.3 Implementation Policies
Abstract QoS requirements may be associated with SCA components to indicate
implementation policies as shown in the following example.

<sca:component name=’myComponent’>
 <sca:profile intents="logging"/>
</sca:component>

This indicates that all messages to and from the component must be logged. The
technology used to implement the logging is unspecified. Specific technology is
selected when the intent is mapped to a policySet.

Alternatively, one or more policySets may be specified directly by associating
them with the component.

<sca:component name="myComponent">
 policySet="StandardImplementationPolicy"/>

In this usage, the default intents for each intentMap in the policySet are used.
If the default intents in the policySet(s) need to be overridden, this can be

accomplished by specifying the overriding intents by name.

 SCA Policy Association Framework 623

<sca:component name="myComponent">
 policySet="StandardImplementationPolicy"/>
 <sca:profile
 intents=”Access/restricted”/>
</sca:component>

References

1. Service Component Architecture (SCA) http://www.osoa.org
2. Web Services Policy (WS-Policy) http://www.w3.org/TR/2006/WD-ws-policy-20060731
3. Web Services Policy Attachment (WS-PolicyAttachment) http://www.w3.org/TR/2006/

WD-ws-policy-attachment-20060731

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 624 – 636, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Model-Driven Development Approach to Creating
Service-Oriented Solutions

Simon K. Johnson and Alan W. Brown

IBM Rational, 3039 Cornwallis Road, P.O. Box 12195, RTP, NC 27709, USA
{skjohn, awbrown}@us.ibm.com

Abstract. Many challenges face organizations as they describe their business
domains from a services perspective and transform that understanding of their
business into a specific realization targeting a solution infrastructure. However,
one of the most pressing problems involves helping organizations to effectively
transition to service-oriented design of applications. Great benefit could be
gained by using a well-defined, repeatable approach to the modeling of business
domains from a services perspective that supports the application of automated
approaches to realize a service-based solution. In this paper we explore model-
driven approaches to the realization of service-oriented solutions. We describe a
services-oriented design approach that utilizes a UML profile for software
services as the design notation for expressing the design of a services-oriented
solution. We describe how a services model expressed in this UML profile can
be transformed into a specific service implementation, and describe the design-
to-implementation mapping. We then comment on how these technology
elements play in an overall MDD approach for SOA.

Keywords: Software design, Model-driven development, Service-oriented
Architecture, Unified Modeling Language.

1 Introduction

Many organizations are struggling to improve the flexibility and reduce the
maintenance cost of the enterprise solutions that run their businesses. To help them in
their task they are looking for ways to move toward solutions that are more readily
assembled from existing capabilities, and to develop new capabilities that enable
reuse. An approach gaining a lot of support in the industry today is based on viewing
enterprise solutions as federations of services connected via well-specified contracts
that define their service interfaces. The resulting system designs are frequently called
Service Oriented Architectures (SOAs). Systems are composed of collections of
services making calls on operations defined through their service interfaces. Many
organizations now express their solutions in terms of services and their
interconnections. The ultimate goal of adapting an SOA is to achieve flexibility for
the business and within IT.

A number of important technologies have been defined to support an SOA
approach, most notably when the services are distributed across multiple machines
and connected over the Internet or an intranet. For example web service approaches

 A Model-Driven Development Approach to Creating Service-Oriented Solutions 625

rely on intra-service communication protocols such as the Simple Object Access
Protocol (SOAP), allow the web service interfaces (expressed in the Web Services
Definition Language – WSDL) to be registered in public directories and searched in
Universal Description, Discovery and Integration (UDDI) repositories, and share
information in documents defined in the eXtensible Markup Language (XML) and
described in standard schemas.

Of course, SOA is more than a set of standards and service descriptions. Indeed, it
is possible to create an SOA that does not use web services technology, and it is
possible to use web services technology in a way that would not be considered
service-oriented. There is a great deal more that needs to be explored to understand
why a service-oriented viewpoint adds value to the business, and how service-
oriented solutions are designed, implemented, deployed, and managed. However, one
of the most pressing areas involves helping organizations to effectively transition to
service-oriented design of applications. Many challenges face organizations as they
describe their business domains from a services perspective and transform that
understanding of their business into a specific realization targeting a solution
infrastructure. Industry analysts such as Gartner [1] and CBDi [2] place poor services
design and the difficulties of educating software practitioners in the techniques of
service design at the top of their list of inhibitors to success with developing SOA
solutions.

Great benefit could be gained by using a well-defined, repeatable approach to the
modeling of business domains from a services perspective that supports the
application of automated approaches to realize a service-based solution. Fortunately,
we have a rich tradition of modeling and model-driven approaches to software
development on which we can draw. Models, modeling, and model transformation
form the basis for a set of software development approaches that are known as Model-
Driven Development (MDD). Models are used to reason about the problem domain
and the solution domain for some area of interest. Relationships between these models
provide a web of dependencies that record the process by which a solution was
created, and help to understand the implications of changes at any point in that
process. In fact, we can be quite prescriptive in the use of models in a software
development process. If we define the kinds of models that must be produced, and
apply some rigor to the precise semantics of these models, we can define rules for:

• Automating many of the steps needed to convert one model representation to
another;

• Tracing between model elements;
• Analyzing important characteristics of the models.

This style of MDD is called Model-Driven Architecture (MDA). Standards are
emerging to support this approach. The primary driving force behind MDA approaches
based on a standardized set of models, notations, and transformation rules is the Object
Management Group (OMG). They provide an open, vendor-neutral basis for system
interoperability via OMG's established modeling standards: Unified Modeling
Language (UML), Meta-Object Facility (MOF), and Common Warehouse Meta-model
(CWM). Platform-independent descriptions of enterprise solutions can be built using
these modeling standards and can be transformed into a major open or proprietary
platform, including CORBA, J2EE, .NET, XMI/XML, and Web-based platforms [3].

626 S.K. Johnson and A.W. Brown

In this paper we explore model-driven approaches to the realization of service-
oriented solutions. We describe a services-oriented design approach that utilizes a
UML profile for software services as the design notation for expressing the design of
a services-oriented solution. We describe how a services model expressed in this
UML profile can be transformed into a specific service implementation, and define
the design-to-implementation mapping. We then comment on how these technology
elements play in an overall MDD approach for SOA.

2 Model-Driven Generation of Services and Service-Oriented
Solutions

Defining and applying model transformations are critical techniques within any
model-driven style of development. Model transformations involve using a model as
one of the inputs in the automation process. Possible outputs can include another
model, or varying levels of executable code. In practice there are three common
model transformations: refactoring transformations, model-to-model transformations,
and model-to-code transformations [4, 5].

1. Refactoring transformations reorganize a model based on some well-defined
criteria. In this case the output is a revision of the original model, called the
refactored model. An example could be as simple as renaming all the instances
where a UML entity name used, or something more complex like replacing a class
with a set of classes and relationships in both the metamodel and in all diagrams
displaying those model elements.

2. Model-to-model transformations convert information from one model or models to
another model or set of models, typically where the flow of information is across
abstraction boundaries. An example would be the conversion of one type of model
into another, such as the transformation of a set of entity classes into a matched set
of database schema, Plain Old Java Objects (POJOs), and XML-formatted
mapping descriptor files.

3. Model-to-code transformations are familiar to anyone who has used the code
generation capability of a UML modeling tool. These transformations convert a
model element into a code fragment. This is not limited to object-oriented
languages such as Java and C++. Nor is it limited to programming languages:
configuration, deployment, data definitions, message schemas, and others kinds of
files can also be generated from models expressed in notations such as UML.
Model-to-code transformations can be developed for nearly any form of
programming language or declarative specification. An example would be to
generate Data Definition Language (DDL) code from a logical data model
expressed as a UML class diagram.

2.1 Applying Model Transformations

Having described different kinds of model transformations, we also note that in
practice there are several ways in which model transformations can be applied. In
model-driven approaches there are four categories of techniques for applying model
transformations:

 A Model-Driven Development Approach to Creating Service-Oriented Solutions 627

• Manual. The developer examines the input model and manually creates or edits the
elements in the transformed model. The developer interprets the information in the
model and makes modifications accordingly.1

• Prepared Profile. A profile is an extension of the UML semantics in which a
model type is derived. Applying a profile defines rules by which a model is
transformed.

• Patterns. A pattern is a particular arrangement of model elements. Patterns can be
applied to a model and results in the creation of new model elements in the
transformed model.

• Automatic. Automatic transformations apply a set of changes to one or mode
models based on predefined transformation rules. These rules may be implicit to
the tools being used, or may have been explicitly defined based on domain-specific
knowledge. This type of transformation requires that the input model be
sufficiently complete both syntactically and semantically, and may require models
to be marked with information specific to the transformations being applied.

The use of profiles and patterns usually involves developer input at the time of
transformation, or requires the input model to be “marked”. A marked model contains
extra information not necessarily relevant to the model’s viewpoint or level of
abstraction. This information is only relevant to the tools or processes that transform
the model. For example, a UML analysis model containing entities with String types
may be marked variable or fixed length, or it may be marked to specify its maximum
length. From an analysis viewpoint just the identification of the String data type is
usually sufficient. However, when transforming a String typed attribute into, say, a
database column type, the additional information is required to complete the definition.

2.2 Models and Transforms

Transformations such as these can be used to enable efficient development, deployment
and integration of services and services-oriented solutions. Practitioners create models
specific to their viewpoint and needs which are used as the basis of analysis, consistency
checking, integration, and automation of routine tasks. Model-driven approaches allow
developers to create services and service-oriented solutions by focusing on logical
design of services and to apply transformations to the underlying SOA technologies.
Furthermore, as illustrated in the examples later in this paper, substantial improvements
in the quality and productivity of delivered solutions is possible by automating
substantial aspects of these transformations to service implementations.

3 Model-Driven Service Specification and Design

The Unified Modeling Language (UML) is the standard modeling notation for
software-intensive systems [6]. Originally conceived over a decade ago as an
integration of the most successful modeling ideas of the time, the UML is widely used
by organizations, and supported by more than a dozen different product offerings. Its
evolution is managed through a standards process governed by the Object
Management Group (OMG).

1 Apart from raw speed, the significant difference between manual and automated transformations

is that automation is guaranteed to be consistent, while a manual approach is not.

628 S.K. Johnson and A.W. Brown

One of the reasons for the success of UML is its flexibility. It supports the creation
of a set of models representing both the problem domain and solution domain, can
capture and relate multiple perspectives highlighting different viewpoints on these
domains, enables modeling of the system at different levels of abstraction, and
encourages the partitioning of models into manageable pieces as required for shared
and iterative development approaches. In addition, relationships between model
elements can be maintained across modeling perspectives and levels of abstraction, and
specialized semantics can be placed on model elements through built-in UML
extension mechanisms (i.e., stereotypes and tagged values bundled into UML profiles).

One recent effort at IBM has been to create a UML profile for software services, a
profile for UML 2.0 which allows for the modeling of services, service-oriented
architecture (SOA), and service-oriented solutions.2 The profile has been
implemented in IBM Rational Software Architect, used successfully in developing
models of complex customer scenarios, and used to help educate people about the
concerns relevant to developing service-oriented solutions. This profile is used as the
basis for a model-driven approach in which services and service interactions are

Fig. 1. Conceptual Model

described using the UML profile, and realizations of those services are then generated
through an automated model transformation to Web Services Definition Language
(WSDL), a standard language for web services implementation.

2 Details of this UML profile and a downloadable version of the profile for Rational Software

Architect are available at http://www.ibm.com/developerworks/rational/library/05/419_soa.

 A Model-Driven Development Approach to Creating Service-Oriented Solutions 629

3.1 The UML Profile for Software Services

The UML profile for software service provides a common language for describing
services that covers a number of activities through the development lifecycle and also
provides views of those services to different stakeholders [7]. So, for example, the
profile provides capabilities for the architect to map out services early in the lifecycle
using logical partitions to describe the entire enterprise-wide service portfolio. This
view is further detailed by designers who develop the service specifications, both
structural and behavioral that act as the contracts between the service clients and
implementers. The message view provides the ability for designers to reuse
information models for common service data definitions. The profile has been
implemented in Rational Software Architect and used successfully in developing
models of complex customer scenarios and also in educating people to the concerns
relevant to development of service-oriented solutions.

Figure 1 is a model showing the concepts important in modeling services. As you
can see the number of concepts is relatively small and should be reasonably familiar
to anyone having worked on service-oriented solutions.

 Note, however that although the profile is a realization of this model a number of
the concepts are not explicit stereotypes in the profile. For example there is no
stereotype for operation or for protocol as these are existing notions in the UML 2.0
that the profile reuses without any ambiguity or further constraint.

The following table lists the elements of the UML 2.0 meta model that are used as
meta classes for stereotypes in the UML Profile.

UML 2.0

Meta Class
Stereotypes

Class Message, Service Partition, Service
Provider

Classifier Service Consumer

Collaboration Service Collaboration

Connector Service Channel

Interface Service Specification

Port Service, Service Gateway

Property Message Attachment

3.2 The Profile Defined

To describe the concepts supported by the UML profile for software services we can
begin by looking at the details of the profile itself. Figure 2 is a UML 2.0 profile
diagram, it illustrates the details of the profile with each stereotype, its meta class
using the extension notation (filled arrow head). Additionally, a number of constraints
in the model are described, particularly those co-constraints between profile elements.

By reference to Figure 2 we can review the key elements of how services and
service interactions are defined in the profile, and some of the expected uses and
constraints when modeling services and service interactions using the profile.

630 S.K. Johnson and A.W. Brown

Fig. 2. UML 2.0 profile

• Message: A message represents the concept of a container for actual data which
has meaning to the service and the consumer. A message may not have operations,
it may have public properties and associations to other classes (one assumes classes
of some domain model). A message stereotype has a property to denote it’s
assumed encoding form (i.e. “SOAP-literal”, “SOAP-rpc”, “ASN.1”, etc.). The use
of this element may be optional in a tool for two reasons. Firstly the modeler may
simply wish to use elements from a domain model directly as the parameters to an
operation rather than specifying a message. Secondly the modeler may wish to use
the convention of specifying a set of input and output messages on an operation, in
which case the modeling tool would have to construct an input and output message
matching the parameters when generating service descriptions in WSDL.

• Message Attachment: This is used to denote that some component of a message is
an attachment to the message as opposed to a direct part of the message itself. In
general this is not likely to be used greatly in higher level design activities, but for
many processes attached data is important to differentiate from embedded message
data. A message attachment stereotype may only be used on properties owned by
classes stereotyped as message. The stereotype also has a property to denote its
assumed encoding form (i.e. “SOAP-literal”, “SOAP-rpc”, “ASN.1”, etc.). For
example, a catalog service may return general product details as a part of the
structured message but images as attachments to the message; this also allows us to
denote that the encoding of the images is binary as opposed to the textual encoding
of the main message.

• Service: The service model element provides the end-point for service interaction
(in web service terminology) whereas the definition of these interactions is a part
of the service specification. In the model a service not only identifies the provided
interface, but may also identify required interfaces (such as callback interfaces).
This stereotype may only be used on ports owned by Classes or Components
stereotyped as Service Provider. A service has an additional property that denotes
the binding to be used, such as “SOAP-HTTP”, “SOAP-JMS”, etc.

 A Model-Driven Development Approach to Creating Service-Oriented Solutions 631

• Service Channel: A channel represents the communication path between 2
services, importantly it is the channel over which interaction may occur and does
not represent any particular interaction. In the web services world each service
denotes the binding(s) associated with it so that a client may access it. In the
modeling profile we denote binding on the communication between services or
between a service and consumers. In this way we can be flexible in understanding
the binding requirements. The stereotype has a “channel” property denoting the
platform binding mechanism to use in generating the service binding in WSDL;
examples might be SOAP-RPC, SOAP-Doc, HTTP-Get, and so on.

• Service Collaboration: A service collaboration is a way of specifying the
implementation of a service as a collaboration of other services. From a web
services point of view this corresponds to the use of BPEL4WS in specifying
service implementation. A service collaboration is used as the behavior of a service
and, if it is intended to generate to a language such as BPEL it may have other
implementation-specific constraints. Participants in a Service Collaboration may be
Service Consumers, Service Providers or Service Specifications.

• Service Consumer: Any classifier (Class, Component, etc.) may act as the
consumer of a service, and that includes another service. While this stereotype is
most definitely optional it may be useful in identifying elements of a model that are
not services themselves as clients of services. On the other hand it may be
overhead and not used.

• Service Gateway: A service gateway looks like a service but is only available for
use on partitions and not service providers. A gateway acts as a proxy service and
can be used to mediate protocols or denote the interface available to a partition.
This stereotype may only be applied to a port owned by a Service Partition. For
example, we might denote that although a number of services are implemented
within a partition only some are available for use outside the partition and so
gateways are provided for these services. This disallows other services or partitions
from communicating to services that are not exposed via gateways.

• Service Model: The Service Model is an architectural view of an SOA
highlighting the major elements of a system based on an SOA style.

• Service Partition: A service partition represents some logical or physical
boundary of the system. It is optional to model partitions, but frequently this
concept is very useful. For example, partitions could be used to represent the web,
business and data tiers of a traditional n-tier application. Partitions might also be
used to denote more physical boundaries such as my primary data center,
secondary site, customer site, partners etc. in which case the crossing of partitions
may have particular constraints for security, allowed protocols, bandwidth and so
on. A partition may only have properties that represent nested parts, be they
services or other partitions (this is a constraint - no other elements may currently be
represented in a partition). A partition may not have any owned properties,
operations or behaviors. It may have parts that are either Service Providers or
Service Specifications. This stereotype also has a property “classifier” which is
used to group partitions that represent similar concepts. A partition also has the
notion of being “strict”, if a partition denotes that all communication between it
and other partitions must be directed through typed gateways then it is said to be a
strict partition.

632 S.K. Johnson and A.W. Brown

• Service Provider: The Service Provider is a software element that provides one or
more services. In modeling terms one would most usually expect to see a UML
component here, however such a restriction seems arbitrary and so the metaclass is
noted as Class for more flexibility. A service provider has a property that captures
information about its location although the meaning of this is implementation
dependent. The Class acting as the service provider may not expose any at-
tributes or operations directly, only public ports may be provided (stereotyped as
service) and these are typed by service specifications (or classes realizing service
specifications).
A Service Provider may not have any directly owned properties, operations or
behaviors. All operations are provided through the ports on the provider. The
location property, while implementation/platform specific is useful in generating
service endpoint names. For example with WSDL the location may be
http://svc.myco.com/ and a service might be called CustInfo, in which case the
endpoint name for the service could be generated as http://svc.myco.com/
CustInfo.

• Service Specification: The use of an interface denotes a set of operations provided
by a service; note that a service may implement more than one interface. By
convention it is possible to attach a protocol state machine or UML 2.0
Collaboration to such a specification to denote the order of invocation of
operations on a service specification. With such a behavioral specification any
implementing service can be validated against not only a static but dynamic
specification of its structure and behavior. Note that the service specification may
only provide public operations. The service specification may not have owned
properties and all operations shall be public. The stereotype also has a property
“published” that denotes whether the service is assumed to be published into a
service repository; this is a different notion from the public/private property
provided by UML.

4 The Role of a Service Model in MDD

A description of services and service assemblies using the UML profile for software
services is useful in that it provides:

• A consistent set of concepts, notations, and semantics for modeling services and
service interactions.

• A first-class “domain-specific language” for service modeling to support
designers of SOAs as they design and reason about their solution.

• A language that can act as the target for transformations from more abstract,
business-focused analysis models that will result in a logical service design
model used as the basis for a service-oriented solution.

• A consistent basis for generating service realizations from the logical service
model.

These observations are particularly important in terms of supporting a model-
driven approach to service-oriented solutions. The classical approach of mapping
from Computation Independent Model (CIM) to Platform Independent Model (PIM)
to Platform Specific Model (PSM) can be instantiated by equating these three levels

 A Model-Driven Development Approach to Creating Service-Oriented Solutions 633

to a business analysis model, services model, and services implementation,
respectively. Mappings between these models can be defined as the basis for
automation in the form of model transformations. Here, we briefly discuss the CIM-
PSM mapping before a more offering a more detailed concrete example of a PIM to
PSM mapping for model-driven design of services-oriented solutions.

4.1 Generation of a Service Model from an Analysis Model

In many projects detailed business-level analysis takes place to understand the
business context within which any IT solution must operate. The resulting business
analysis model is useful as documentation of the business needs and goals. However,
in addition service models can be generated from business analysis models. A simple
example of a business analysis model consistent with the business modeling discipline
defined in the Rational Unified Process (RUP) is illustrated in Figure 3.

Fig. 3. RUP Analysis Model for Stock Portfolio

A transformation from this model to the service model shown later in Figure 4 is
relatively easy to specify. A number of interesting aspects of that transformation are
of note. For example, the transformation crosses abstraction boundaries and so we
would expect transformations of types and some structures. In this case we would
expect the boundary elements to be transformed to service specifications and service
providers with Entities that are operation parameters being transformed as messages.
Control elements and internal Entities would not be transformed to the service model,
they are appropriate to the implementation of the service and not its specification.

4.2 Generation of WSDL from the Service Model

Based on this profile we are able to define specific model transformations that convert
service models expressed using the profile into various target languages for service
realization. Of particular interest is the Web Services Definition Language (WSDL),
a standard maintained by the World Wide Web Consortium (W3C). WSDL is “an XML
format for describing network services as a set of endpoints operating on messages
containing either document-oriented or procedure-oriented information.”3 Improvements

3 See the WSDL description at the W3C website: http://www.w3.org/TR/wsdl.

634 S.K. Johnson and A.W. Brown

in the design of service implementations can be gained by being able to model the logical
design of services-oriented solutions and generating the WSDL service specifications
from these models by applying a well-defined set of model transforms.

Figure 4 illustrates a simple stock quote service example (derived from an example
discussed in the WSDL specification document). In this example the Service
Specification provides the structural interface specification, the Message elements
model the types of the structures passed into and returned from the operations, and a
service provider realizing the specification.

Fig. 4. UML Model for Stock Quote Service

From this model we can, with a relatively simple set of transformation rules,
generate a WSDL interface definition. A number of possible transformation
approaches are possible, but a specific example is shown in Listing 1 below.

<?xml version="1.0"?>
<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>

Listing 1. Generated WSDL for Stock Quote Service

 A Model-Driven Development Approach to Creating Service-Oriented Solutions 635

 <message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>

 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>

</definitions>

Listing 1. (Continued)

The mapping demonstrated here relies on some relatively simple translation rules
that can readily be automated using a model transformation engine, such as the one
embedded in the IBM Rational Software Architect product:

• The Service Provider is used to denote a logical grouping of services and therefore
it provides the scope for the outer WSDL definitions element.

• Each Service Specification becomes a WSDL port type, all operations are
transformed to WSDL operations defined for the port type.

• All UML2 ports on the service provider become WSDL service definitions, the
port types already derived above.

• A single message is created for input parameters and a single message created for
returned data; each message has a single associated XML Schema element that
aggregates any parameters on the original operation. Best practice is still to define
a single class in the model for all information required by an operation (using the
Message stereotype).

The example above does not demonstrate how the WSDL bindings are derived –
these are derived from the connectors between services or services and their
consumers modeled with UML collaborations.

636 S.K. Johnson and A.W. Brown

5 Summary

Creating solutions for SOA means rethinking the kinds of systems being built today,
reconsidering the skills in an organizations, and redefining the ways in which
members of teams collaborate. Most importantly, adopting a service-oriented to
development of solutions requires a broader review of its impact on how solutions are
designed, what it means to assemble them from disparate services, and how deployed
services-oriented applications are managed and evolved.

In this paper we have focused on UML profile offering a common notation and
semantics for software service modeling, and the use of this profile for generating
service implementations in WSDL. This technology is part of a much broader set of
best practices for creating service-oriented solutions, captured as process guidance in
the Rational Unified Process (RUP), and supported though automated tools in the
IBM Rational Software Development Platform. As we gain experience in the design
and realization of service-oriented solutions, we are continually documenting them for
external validation (e.g., [8, 9]), adding new modeling support for service design in
IBM products, and describing new techniques that help organizations repeatably
deliver high quality solutions.

References

1. Daryl Plummer, “Six Missteps That Can Result in SOA Strategy Failure”, Gartner Research
Report, June 2005.

2. John Dodd, “Practical Service Specification and Design”, CBDi Series,
www.cbdiforum.com, May 2005.

3. OMG, “MDA Guide v1.0.1”, Available at http://www.omg.org/docs/omg/03-06-01.pdf 12th
June 2003.

4. A.W. Brown, J. Conallen, D. Tropeano, "Models. Modeling, and Model Driven
Development", in Model-Driven Software Development, pages 1-17, S. Beydeda, M. Book,
V. Gruhn (Eds.), Springer Verlag, 2005.

5. A.W. Brown, J. Conallen, D. Tropeano, "Practical Insights into MDA: Lessons from the
Design and Use of an MDA Toolkit", in Model-Driven Software Development, pages 403-
432, S. Beydeda, M. Book, V. Gruhn (Eds.), Springer Verlag, 2005.

6. Jim Rumbaugh, Grady Booch, Ivar Jacobsen, “The UML 2.0 Reference Manual”, Second
Edition, Addison-Wesley, 2005.

7. S. Johnston, “Modeling Service-oriented Solutions”, IBM Developerworks,
http://www.ibm.com/developerworks/rational/library/jul05/johnston/, July 2005.

8. A.W. Brown, S. Iyengar, S.K. Johnson, "A Rational Approach to Model-Driven
Development", IBM Systems Journal, pages 463-480, Vol. 44, #4, July 2006.

9. A.W. Brown, M. Delbaere, P. Eeles, S. Johnston, R. Weaver, "Realizing Service oriented
Solutions with the IBM Software Development Platform", IBM Systems Journal, pages
727-752, Vol. 44, #4, October 2005,

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 637 – 649, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards Adaptive Management of QoS-Aware Service
Compositions – Functional Architecture*

Mariusz Momotko1, Michał Gajewski1, André Ludwig2,
Ryszard Kowalczyk3, Marek Kowalkiewicz4, and Jian Ying Zhang3

1 Rodan Systems S.A., ul. Puławska 465, 02-844 Warsaw, Poland
{Michal.Gajewski, Mariusz.Momotko}@rodan.pl

2 University of Leipzig, Marschnerstr. 31, 04109 Leipzig, Germany
ludwig@wifa.uni-leipzig.de

3 Swinburne University of Technology, PO Box 218 Hawthorn, Victoria 3122, Australia
{jyzhang, rkowalczyk}@it.swin.edu.au

4 Poznan University of Economics, Al. Niepodleglosci 10, 60-967 Poznan, Poland
M.Kowalkiewicz@kie.ae.poznan.pl

Abstract. Service compositions enable users to realize their complex needs as a
single request. Despite intensive research, especially in the area of business
processes, web services and grids, an open and valid question is still how to
manage service compositions in order to satisfy both functional and
non-functional requirements as well as adapt to dynamic changes. In this paper
we propose an (functional) architecture for adaptive management of QoS-aware
service compositions. Comparing to the other existing architectures this one
offers two major advantages. Firstly, this architecture supports various
execution strategies based on dynamic selection and negotiation of services
included in a service composition, contracting based on service level
agreements, service enactment with flexible support for exception handling,
monitoring of service level objectives, and profiling of execution data.
Secondly, the architecture is built on the basis of well know existing standards
to communicate and exchange data, which significantly reduces effort to
integrate existing solutions and tools from different vendors. A first prototype
of this architecture has been implemented within an EU-funded Adaptive
Service Grid project.

1 Introduction

Users want to realize their needs as simply as possible and, therefore, look for
sophisticated services that would handle compound needs related to their life events
or business activities as a single request. One of the most promising approaches for
such sophisticated services is to implement them as compositions of other, simpler
services (referred further to as atomic services).

* This work is partially supported by the European Union FP6 Integrated Project on Adaptive

Services Grid (EU-IST-004617) and the International Science Linkages programme under the
Australian Government’s innovation statement, Backing Australia’s Ability on Adaptive
Service Agreement and Process Management project (AU-DEST-CG060081).

638 M. Momotko et al.

In the last decade, a huge effort has been put into developing solutions targeting
management of service composition, especially in the area of web services and grids.
As its result, a number of new standards on various aspects of service composition
management have been defined. In Web Service Business Process Execution
Language (WS-BPEL) OASIS standardised a language to define service
compositions. In Web Service Quality Model (WSQM) OASIS also proposed a
quality model and a set of quality factors for web services. One of the recent OASIS
standards is Web Service Distributed Management (WSDM) which enables
management applications to be built using web services, allowing resources to be
controlled (and monitored) by many managers through a single interface. Currently,
OASIS is working on Web Service Quality Description Language (WS-QDL) which
will describe WSQM in a standardised type of XML representation. At the same time,
IBM Corporation has defined Web Service Level Agreement (WSLA) – a language to
represent service level agreement (SLA) for web services. Recently, GRAAP working
group of the Global Grid Forum has prepared a draft version of a WS-Agreement
specification which describes domain-independent elements of a simple contracting
process, extensible by domain specific elements.

Focusing on adaptive management of service compositions, several intensive
research works have been carried out recently. The eFlow project at HP labs [3]
proposes an adaptive and dynamic approach to manage service compositions focusing
on their functional aspects such as dynamic service discovery and ad-hoc changes.
The QUEST framework ([6]) extends the work done on eFlow introducing quality of
service (QoS) provisioning. In that framework, contracting of service compositions
and atomic services is done by SLA documents. The MAIS project ([5]) focused on
negotiation of web service QoS parameters with the ability to use different
negotiation strategies. In the area of SLA-based contracting and monitoring, there are
several advanced approaches and frameworks such as those presented in [2] and [9].

Recently, the Adaptive Services Grid (ASG) project proposed a comprehensive
approach towards adaptive management of QoS-aware service compositions. This
approach integrates well known concepts and techniques and proposes various
execution strategies (see [8] for further details) based on dynamic selection and
negotiation of services included in a service composition, contracting based on
service level agreements, service enactment with flexible support for exception
handling, monitoring of service level objectives, and profiling of execution data. Due
to the various execution strategies, the approach is able to cope with dynamic changes
related to the contracted atomic services, re-negotiate a contract in case of QoS
constraint violation, and re-select dynamically another atomic service that satisfies
QoS constraints. In addition, the approach also considers service profiling and
historical execution data and therefore is able to optimise its way of working.

In this paper we define an (functional) architecture that can support various
execution strategies for service compositions. This architecture includes specification
of software components, definition of their public interfaces and detailed description
of interaction among them according to the basic tasks common for all execution
strategies. Most of the data exchange formats and interaction protocols between
components are based on standards as WS-BPEL , WS-Agreement, and WSQM. This
approach gives the architecture appropriate flexibility and makes it open for
implementations of different components from various software vendors.

 Towards Adaptive Management of QoS-Aware Service Compositions 639

The paper is organised as follows. Section 2 introduces the concept of execution
strategies for adaptive service compositions management identifying a set of basic
tasks common for all execution strategies and presenting briefly the main strategies.
Section 3 provides an overview of an (functional) architecture that may support the
described execution strategies. This architecture is described in terms of software
components and their public interfaces. The next three sections focus on basic tasks
organised in various ways within the individual execution strategies. Section 4
describes selection and contracting of atomic services. Section 5 presents enactment
and monitoring of an atomic service. Section 6 provides detailed information on
exception handling. The paper closes with a conclusion and an outlook of future
work.

2 Execution Strategies for Service Compositions

There are many possible strategies for executing a service composition. However,
there is a common feature of all possible strategies - they are built on the top of basic
tasks. These tasks1 concern a single atomic service and are specified in Table 1.

Table 1. Basic tasks used in all execution strategies

Basic task Main responsibility
Service Selection
and Contracting
(SC)

Select and contract a concrete atomic service based on its functional
(service type) and non-functional (QoS constraints) requirements.
In some execution strategies, SC task is done for the whole
composition (all atomic services included) before enactment and
monitoring. In the other strategies, SC task is intertwined with
enactment and monitoring of the individual atomic services according
to the service composition specification.

Service
Enactment and
Monitoring (EM)

Enact (invoke) a concrete atomic service and monitor its execution
(w.r.t QoS constraints). Enactment is done according to the service
composition specification given as a WS-BPEL process.

Exception
handling (Ex)

Three steps to handle exceptions have been identified: 1) renegotiate
the contract with the current atomic service provider (and possibly with
other service providers affected by the exception); if not possible then
2) re-select a replacement from other atomic service providers that
match the service specification and new requirements; otherwise 3)
re-plan the whole service composition.

The number of basic tasks used in a strategy depends on the strategy itself, and on

the number of atomic services included in a given service composition. As usual,
there is no one optimal strategy. Every strategy focuses on different aspects of service
executions and has both advantages and disadvantages. Two basic (quite opposite)
execution strategies (see also [11] for more details) and three intermediate execution
strategies are described in the consecutive sections.

1 The tasks which are not directly related to execution of a service composition have been omitted

(e.g. registration or un-registration of an atomic service).

640 M. Momotko et al.

Step 2Step 1SC

O O O O

EM
Ex

Step 1

O O

EM
Ex

SC
Step 2 Step 3

Fig. 1. The concept of the basic strategies: first-contract-all-then-enact (left) and step-by-step-
negotiate-and-enact (right)

2.1 First-Contract-All-Then-Enact Strategy

This strategy assumes (see figure 1, left hand side) that selection and contracting of all
atomic services included in the service composition (actual execution) is done before
its execution (step 1). Execution and monitoring of the individual atomic services is
done step by step according to the control flow defined for the service composition.
(step 2) Any failure reported during service execution is handled by exception
handling mechanism described in the previous section.

This strategy makes it possible to guarantee non-functional requirements for the
whole service composition (global level). Since contracting is done before execution,
concurrent selection and negotiation is allowed. As a result, it is possible to consider
aggregated concessions and preferences (e.g., if the same provider provides services
for several atomic services, then some discount may be regarded), so that the service
composition QoS parameters can be optimised.

On the contrary, in this strategy all the activities on conditional branches need to be
selected and contracted although some of them may never be enacted. A reservation
mechanism is needed. Also service implementations registered during service
execution cannot be selected. Finally, the strategy requires coordinated negotiation
mechanisms with a coordination agent and a set of negotiation agents.

2.2 Step-by-Step-Contract-and-Enact Strategy

This strategy assumes (see figure 1, right hand side) that selection and contracting is
done just before atomic service execution. The order of the executed services is
determined by definition of the composition. That means that the first atomic service
in the service composition can be executed and monitored when its SLA document is
established (see figure 1, step 1, first SC then EM). After completion of this atomic
service, the selection and contracting is carried out for each subsequent atomic service
and followed by its execution (steps 2 and 3). Any failure occurred during service
execution is handled by exception mechanism described in the previous sections.

This strategy allows for ‘on-the-fly’ selection and contracting based on actual QoS
values of services that have been executed. This will lead to more accurate and
efficient contracting (esp. negotiation) since it is based on what it had been done for
the executed services. Only the invoked atomic services are contracted. Services
included in the composition but not executed (i.e. included in conditional branches
that have not been chosen) are not considered. In addition, selection is able to use
atomic services registered after starting execution of the service composition.

 Towards Adaptive Management of QoS-Aware Service Compositions 641

On the contrary, the strategy mainly optimises QoS for atomic services which are
about to be invoked (local level). Optimisation of the global QoS parameters is hard.
Instantiation and execution of the whole service composition can not be guaranteed
(i.e. a service implementation is executed but it may be impossible to select and
contract a subsequent service implementation) thus failing the whole service
composition and wasting already executed services (a need for un-doing the services).

2.3 Other Strategies

The late-contracting-then-enact strategy assumes that the selection and contracting
of atomic services is done before their execution, as soon as it is sure that they will be
executed within a given composition. If, for example, there are two alternative
branches, as soon as it is known which of them will be taken, all atomic services on
the satisfied branch are selected and contracted. Execution of the atomic services is
carried out according to the control flow definition. This strategy is similar to the
first-contract-all-then-enact strategy but minimises the risk in contracting services
which will never be executed. The risk to not satisfy the global QoS requirements is
less than for the mentioned strategy but still exists.

The first-contract-plausible-then-enact strategy tries to select and contract first
(before service composition execution) all atomic services that belong to the
composition path which is the most likely to be executed. The path is predicted on the
basis of historical data from previous executions of the service composition. The
services that belong to other paths are not selected and contracted. Execution of the
atomic services is carried out according to the control flow definition. This strategy
minimises the risk of a) contracting services that with high probability of not being
executed, b) satisfying the global QoS requirements. However, it will work properly
only for that cases in which execution concerns the most probable path in the
composition. For the other paths it will have similar problems as the
step-by-step-contract-and-enact strategy.

The first-contract-critical-then-enact strategy selects and contracts before
execution only those atomic services which are hard to be contracted dynamically.
‘Hard’ in this context means that the number of service candidates for those service
specifications is significantly lower than the number of candidates for the other
services included. This strategy is similar to the step-by-step-contract-and-enact
strategy but reduces the risk of not satisfying the global QoS requirements. On the
other hand, it has similar problems with branches which will never be executed.

2.4 Representations for Service Compositions

Specification of a service composition is provided at the design phase of adaptive
management of service compositions. This specification describes the composition in
terms of control flow (i.e. the order of the invoked atomic services) and data flow
(mapping between input and output parameters of atomic services). This specification
operates on classes of atomic services, instead of concrete services. Basically, such a
specification provides a solution to satisfy all (static) functional requirements (classes
of atomic services that together satisfy them) and leaves flexibility during processing
a request (i.e. execution of the composed service) to select and contract concrete

642 M. Momotko et al.

atomic services of given service classes that also satisfy its (dynamic) non-functional
requirements.

Making the service composition specification generic is very useful, but on the
other hand it prevents from using standard execution engines that process WS-BPEL
processes. In order to cope with this problem we propose an intermediate solution
based on the concept of generic workflows proposed in [1]. We represent the
specification as a WS-BPEL process and, instead of invoking concrete atomic
services, we invoke concrete brokers (services) for atomic service classes. Every
atomic service class has its own broker. Such a broker has input and output
parameters as every concrete service of this class. In addition, it receives as an input
parameter a set of non-functional requirements that makes it possible to choose an
appropriate atomic service of a given class.

The way of using service composition specification at the execution phase depends
on the applied execution strategy. For the execution strategies which carry out
contracting of more than one atomic service before their enactment (e.g. first-
contract-then-enact), the specification will be analysed by service selection and
contracting component (based on WS-BPEL) in order to contract appropriate atomic
services. After that, the input parameter representing non-functional requirements will
be replaced with information of the selected atomic service and a reference to the
agreed contract (SLA document). For the other execution strategies, which intertwine
contracting and enactment, the specification will be interpreted by service enactment
component (again based on WS-BPEL) which will invoke appropriate service class
brokers. These brokers will be responsible for organising selection and contracting by
themselves and then assure appropriate invocation and monitoring.

History from execution of a service composition is represented as a service
composition execution. This includes basic information about service composition
and invoked atomic services (transformed information from invocation of service
class brokers) in the form of a workflow log. This log is used for service profiling.

3 Architecture Overview

On the basis of the execution strategies briefly presented in the previous sections we
present a functional architecture of an adaptive service composition management
subsystem (i.e. part of a larger system to manage service compositions, for example
Adaptive Service Grid platform [7]). In general, this architecture aims at
implementation of all previously described strategies.

The subsystem provides two public interfaces (see figure 2): scEnactment and
service scMonitoring. The first interface includes just one method enact which is
responsible for execution of a service composition. As the input this method requires
specification of a service composition (given as a WS-BPEL process), input data and
non-functional constraints (e.g. maximal duration). In the first step, the subsystem
determines the best strategy to execute the composition. This strategy is determined
on the basis of composition specification (static) as well as profiling data (dynamic,
given for concrete service but also for service type). The next steps are specific for
individual execution strategies and are related to basic tasks described earlier.

 Towards Adaptive Management of QoS-Aware Service Compositions 643

In the first-contract-all-then-enact strategy, all abstract atomic services (i.e. service
type brokers) included in the composition are used to select concrete atomic services
and to contract one of their composition that is able to satisfy all QoS constraints.
Within service specification all abstract services are replaced by concrete already
contracted atomic services. In the next stage such composition defined as a WS-BPEL
process is executed. In the step-by-step-contracting-and-enactment strategy the
composition is executed step by step. The composition is represented as a WS-BPEL
process which instead of concrete services includes calls to service type brokers.
When a broker is executed it first triggers selection and contracting for a given
abstract service and then, having concrete atomic service, executes it.

The second subsystem interface, namely scMonitoring is responsible for
monitoring and administration of the executed service compositions. It provides
methods to get information about execution history of a given composition (in a form
of execution log), to visualise its execution or to do some administration tasks such as
suspending or resuming.

The subsystem requires three interfaces from atomic service providers: one
(optional) for negotiation of the contract between the service composition provider
and a given atomic service provider, one for invocation of the atomic service
(obligatory), and one for (also optional) gathering the values of QoS parameters
agreed to be monitored by the service provider.

The subsystem consists of six software components: Execution Coordinator,
Service Selection & Negotiation Manager, Service Level Agreement Manager,
Service Enactment Engine, Service Monitor, and Dynamic Service Profiler.

Adaptive Service Composition Management

Dynamic Service
Profiler

Service Monitor

Service Selection
& Negotiation

Manager

Execution
Coordinator

Service Enactment
Engine

Service Level
Agreement
Manager

Atomic Service
Provider(s)

`
Monitoring

scEnactment

scMonitoring

Negotiation

Invocation

BPEL
process

execution
log

validation
QoS constraints

enactment

profiling
selection &
contracting

selection &
contracting
/
re-planning

contracting

monitoring

event
handling

Fig. 2. The functional architecture for adaptive service composition management

Execution Coordinator is responsible for selection of the best execution strategy
for a given service composition. To do that it analyses specification of service
composition and uses profiling data. It also validates strategy selection rules checking
what strategy satisfies the greatest number of the rules.

Service Selection & Negotiation Manager is responsible for selection and
contracting atomic service implementations that may be invoked within a given
service composition. This selection is done for individual service specifications and is

644 M. Momotko et al.

based on both functional as well as non-functional requirements. On the basis of a
generic process (i.e. WS-BPEL process which invokes service type brokers, extended
of information required to select service implementations), it makes a concrete
process replacing atomic service type brokers with the most appropriate atomic
service implementations. The component also provides negotiation features that
support the service composition provider with possibility to negotiate some/all
non-functional requirements that were not satisfied initially by the selected services.
The contracts used during negotiation and contracting are taken from SLA Manager.
To negotiate with atomic services it uses Negotiation interface provided by their
providers and FIPA Iterative Contract Net Protocol. Profiling data are extracted from
Dynamic Service Profiler.

Service Level Agreement Manager (SLA Manager) is responsible for
management of SLA documents compliant with WS-Agreement (XML format). The
SLA Manager creates SLA templates that are used during negotiation and contracting,
and stores the agreed SLA documents. In addition, it verifies SLA documents (i.e.
QoS constraints) during invocation of respective atomic services. Meaning of QoS
parameters is defined in WSQM standard.

Service Enactment Engine is responsible for enactment of a service composition
represented as a WS-BPEL process. According to the process definition, the
component invokes either individual atomic services (first contract then enact
strategies) or service type brokers (step by step strategies) passing appropriate input
data and gathering the invocation results. For atomic services (described in WSDL)
such invocation is done by calling Invocation interface provided by the service
provider (or any additional invocation layer). When a service invocation begins, the
component starts monitoring. The component is also responsible for generating
service execution events that may be handled by the other components. These events
are related to behaviour of service execution entities (positive) or
functional/non-functional runtime exceptions (negative). Dynamic Service Profiler
uses this information to gather service execution history and update service profiles
(i.e. service composition and atomic services profiles). Finally, in case of failures
(functional), or violation of QoS constraints (non-functional), the component asks
Service Selection & Negotiation Manager to either update the existing contract or to
re-select and contract another service implementation.

Service Monitor component is responsible for monitoring of QoS constraints at
two levels: the whole service composition as well as the individual atomic services.
Monitoring at the service composition level starts/stops when the Service Enactment
Engine starts/stops its enactment. Monitoring at the atomic service level is carried out
for every invoked service. By analogy, it starts/stops atomic service monitoring when
the atomic service starts/stops its invocation. For every atomic service there is one
monitoring rule, which is triggered periodically (the resolution for this activity is
determined on the basis of previous executions as well as required QoS parameters
related to its duration). When it is triggered, Service Monitor asks the atomic service
provider via Monitoring interface to provide the values for the QoS parameters
defined as ‘monitored by the provider’ in respective SLA document. These QoS
parameters are completed with other QoS parameters monitored by the subsystem
itself and included in the SLA document. This document is then verified against QoS

 Towards Adaptive Management of QoS-Aware Service Compositions 645

constraints by Validation interface provided by SLA Manager. If there is any
violation of QoS constraint, it is reported to Service Enactment Engine.

Dynamic Service Profiler is responsible for gathering data describing basic QoS
parameters and, on their basis, calculating more advanced QoS parameters. To collect
all basic QoS parameters it listens to service execution events.

4 Selection and Contracting

The detailed scenario for selection and contracting of an atomic activity is presented
in figure 3. Service Selection & Negotiation Manager finds all atomic services of a
given type (steps 1, 2). In addition, for all returned services the component asks
Dynamic Service Profiler for profiling data that may be used in further validation of
QoS constraints (steps 3, 4).

Fig. 3. Selection and contracting services by iterative negotiation

Then an iterative process of service selection starts (steps from 5 to 12). This
process is organised by a Coordination agent and usually based on negotiation
techniques [3]. This agent starts and then coordinates all negotiation agents which are
responsible for negotiation QoS parameters with individual service providers (steps
from 6 to 9). Negotiation may be iterative. In general, there are some configuration
parameters which describe how many iterations is possible, and what is the weighted
value of the negotiated QoS parameters. If this value is acceptable (i.e. between
minimum and maximum required values) then the selection process is completed and
the selected atomic service is contracted. To contract it, Service Selection &
Negotiation Manager asks SLA Manager to create a contract with the agreed QoS
parameters. This contract is represented as a SLA document and managed by SLA
Manager. Reference to the SLA document is added to service composition

646 M. Momotko et al.

specification. This gives an opportunity to verify actual QoS values against expected
QoS ones for every invoked atomic service.

5 Enactment and Monitoring

The detailed scenario for (positive) enactment and monitoring of an atomic activity is
presented in figure 4. Based on the atomic service implementation reference Service
Enactment Engine calls Invocation interface (of Atomic Service Provider) to retrieve
a service instance.

Fig. 4. The positive scenario of an atomic service execution

After that it uses Service Monitor to run monitoring for this particular service
instance. Then again Service Enactment Engine calls Invocation interface to invoke
the service instance passing its input data. Service invocation and monitoring are
conducted in parallel. With the assumed resolution (i.e. how often the monitor verifies
a QoS constraint) Service Monitor gathers current values of monitored parameters
through Monitoring interface and verifies them against QoS constraint (for the
service) using SLA Manager. The resolution can be expressed via different strategies
– once the whole service execution, as often as possible or service profile value,
which is the default choice that is equal to the half of the minimal service execution

 Towards Adaptive Management of QoS-Aware Service Compositions 647

time (assigned a priori and adjusted periodically after real executions). When the
service instance finishes its execution, Service Enactment Engine stops monitoring
and the post-execution QoS validation is conducted. Additionally Service Monitor
performs composed level QoS validation i.e. it checks whether (even positive) result
of the currently finishing atomic service does not harm the overall (at composed level)
QoS constraints. At the end Service Enactment Engine calls Invocation interface to
destroy the service instance.

6 Exception Handling

During execution Service Monitor must be prepared to deal with different exceptional
situations, which are caused either by QoS violations or any other runtime exceptions.
Figure 5 presents a (negative) atomic service execution scenario where Service
Monitor is informed by SLA Manager about QoS constraint violation. In such case the
first step is to suspend execution of the whole composition. Then Service Enactment
Engine calls Service Selection and Negotiation Manager (SS&NM) to re-plan the
composed service passing a composed service execution log (i.e. history of execution
together with the current state).

Fig. 5. Exception handling in case of QoS violation

The latter component tries to resume service execution using the following
approaches. First it tries to re-renegotiate the contract with the existing service (i.e.
increase its cost using spare money and decrease its duration). If it is not possible, the
in the second step the component checks if a given atomic service may be replaced by
another atomic service of the same type. Such verification is carried out as a standard
selection & contracting procedure. The only difference is the set of atomic service
candidates which excludes service(s) that already failed. If it is also impossible then

648 M. Momotko et al.

final possibility is to re-plan the whole service composition that will meet the overall
request requirements. This process involves a service re-composer and is described
more in detail in [10].

If all of the mentioned steps fail, SS&NM throws an exception. In the aftermath of
it Service Enactment Engine is not able to continue service execution and reports it to
the service composition provider. Otherwise SS&NM delivers a modified composed
service so that Service Enactment Engine could continue the execution.

7 Conclusions

Adaptive management of service compositions is an area of web services research
that has recently been attracting more and more attention. The most important
questions stimulating research in this area include proper management of service
compositions in order to satisfy not only functional requirements, but also non
functional ones. Another important issue is adaptation to dynamic changes in the
service environment, which so far has not been researched to a satisfactory extent, and
there is still a clear need for improvement of current methods and tools.

The work described in this paper aims at defining an (functional) architecture
towards adaptive management of QoS aware service compositions. This architecture
is able to support various execution strategies. In addition, because of the use of the
standard data exchange formats and communication protocols, the architecture is
flexible and can be implemented by various vendors. A first positive validation of the
architecture has been done for the Dynamic Supply Chain of Internet Services (DSC)
scenario [7] implemented in the ASG project using the first-contract-then-enact
strategy.

In the future steps, the architecture needs to be validated for other strategies and yet
more advanced real cases. We also plan to investigate usefulness of other relevant
standards especially related to Web Service Enhancement 2.0. Finally, efficiency of
the architecture will be evaluated for further improvements.

References

1. Aalst, W.M.P. Van der: Generic Workflow Models: How to Handle Dynamic Change and
Capture Management Information? Computer Systems, Science and Engineering, 15,
2001.

2. Boström, G., Giambiagi, P., Olsson, T.: Quality of Service Evaluation in Virtual
Organizations Using SLAs. submitted to 1st Workshop on Interoperability Solutions to
Trust, Security, Policies and QoS for Enhanced Enterprise Systems, 2006.

3. Braun, P., J. Brzostowski, J., Kersten, G., Kim, J., Kowalczyk, R., Strecker, S., Vahidov,
R.: E-Negotiation Systems and Software Agents Methods, Models, and Applications. In i-
DMSS: Foundations, Applications and Challenges. UK, 2005.

4. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Ming-Chien Shan, M., Ch.: Adaptive
and Dynamic Service Composition in eFlow. HP technical Report HPL-2000-39, March.

5. Comuzzi, M., Penrici, B., An Architecture for Flexible Web Service QoS Negotiation,
EDOC, 2005.

 Towards Adaptive Management of QoS-Aware Service Compositions 649

6. Gu, X., Nahrstedt, K., Chang, R., Ward, and C.: QoS-assured service composition in
managed service overlay networks. Proc. of Distributed Computing Systems, 2003.

7. Integrated Project “Adaptive Services Grid”, http://asg-platform.org
8. Momotko, M., Gajewski, M., Ludwig, A., Kowalczyk, R., Kowalkiewicz, M., Zhang, J.

Y.: Towards Adaptive Management of QoS-aware Service Compositions, International
Journal on Multiagent and Grid Systems, volume 2:2, Sept 2006 (to appear).

9. Salle, A., Bartolini, C.: Management by Contract, HPL-2003-186, HP labs, 2004.
10. Weske, M., Gajewski, M., Momotko, M., Mayer, H., Schuschel, H.: Dynamic Failure

Recovery of Generated Workflows. DEXA’2005, BPMPM Workshop, 2005.
11. Zeng, L., Benatallah, B., Lei, H., Ngu, A., H., H., Flaxer, D., and Chang, H.: Flexible

composition of enterprise web services. Electronic Markets - Web Services, 2003.

Author Index

Abdelaziz, Sameh 252
Adamus, Radoslaw 557
Afandi, Raja 165
Agarwal, Vikas 52
Aldana, José F. 509
Athanasopoulos, George 104

Bakshi, Amol 227
Baldoni, Matteo 339
Baresi, Luciano 240
Baroglio, Cristina 339
Basu, Samik 314
Beisiegel, Michael 613
Benatallah, Boualem 15, 490
Bhuvaneswaran, R.S. 66
Brogi, Antonio 27, 509
Brown, Alan W. 624
Bugajski, Joseph M. 591
Busi, Nadia 327

Canfora, Gerardo 141
Casati, Fabio 15
Charif-Djebbar, Yasmine 515
Chung, Hyen-Vui 277
Clarke, Siobhán 90
Colombo, Massimiliano 191
Corfini, Sara 509

D’Andrea, Vincenzo 365, 522
Dasgupta, Gargi 52
Dasgupta, Koustuv 52
De Paoli, F. 153
Di Nitto, Elisabetta 191
Di Penta, Massimiliano 141
Doshi, Prashant 116, 179

Edwards, Mike 529
Esposito, Raffaele 141

Ferrari, Gianluigi 453
Fiddian, Nick J. 378, 447
Foster, I. 40
Franklin, Paul 581
Freeman, T. 40
Fugini, Mariagrazia 427

Gajewski, Micha�l 637
Gangadharan, G.R. 365
Gannod, Gerald C. 203
Gary, Kevin A. 203
Gill, Christopher 503
Gmach, D. 215
Godart, Claude 440
Gorrieri, Roberto 327
Gray, W. Alex 378, 447
Grefen, Paul 434
Grossman, Robert L. 591
Guanciale, Roberto 453
Guidi, Claudio 327
Gümüşkaya, Halûk 545
Gunter, Carl A. 165

Hackmann, Gregory 503
Haitjema, Mart 503
Han, Jun 129
Harney, John 179
Haselwanter, Thomas 477
Hernández, Juan 471
Honavar, Vasant 314

Ishihara, Tatsuya 289

Johnson, Simon K. 624
Julien, Christine 78

Kaczmarski, Krzysztof 557
Karmarkar, Anish 529
Katayama, Yoshiaki 66
Kavantzas, Nickolas 613
Keahey, K. 40
Kemper, A. 215
Kerrigan, Mick 390
Kim, Ji Hyun 601
Kokash, Natallia 522
Kongdenfha, Woralak 15
Kotinurmi, Paavo 477
Kowalczyk, Ryszard 129, 637
Kowalkiewicz, Marek 637
Kowalski, Tomasz 557
Kratz, Benedikt 352
Krompass, S. 215

652 Author Index

Kruithof, Gert 484
Kuliberda, Kamil 557

Lee, Won Il 601
Lei, Hui 490
Li, Zhong Jie 415
Liu, Ying 569
Lucchi, Roberto 327
Ludwig, André 637
Lulli, G. 153

Makino, Satoshi 264, 277
Malhotra, Ashok 613
Mansour, Mohamed S. 252
Marconi, Annapaola 459
Martelli, Alberto 339
Mauri, Marco 191
Maurino, A. 153
Meijler, Theo Dirk 484
Meyer, Harald 465
Mikhaiel, Rimon 496
Miraz, Matteo 240
Miyashita, Hisashi 289
Momotko, Mariusz 637
Moran, Matthew 477
Mulholland, Andy 540
Munson, Jonathan 601

Naccache, Henri 203
Navas, Ismael 509
Nedos, Andronikos 90
Nguyen, Xuan Thang 129
Nichols, Deborah 581

Obrst, Leo 581
Ortiz, Guadalupe 471

Pantazoglou, Michael 104
Papazoglou, Mike P. 352
Pathak, Jyotishman 314
Patti, Viviana 339
Pavlik, Greg 613
Perfetto, Francesco 141
Pistore, Marco 459
Plebani, Pierluigi 427
Pokraev, Stanislav 1
Popescu, Razvan 27
Prasanna, V.K. 227
Puhlmann, Frank 302
Purohit, Amit 52

Quartel, Dick 1

Ramoni, Filippo 427
Rana, A. 40
Reichert, Manfred 1
Roman, Gruia-Catalin 503
Rouached, Mohsen 440

Sabouret, Nicolas 515
Saint-Paul, Régis 15
Samuel, Ken 581
Scholz, A. 215
Schwan, Karsten 252
Seltzsam, S. 215
Shao, Jianhua 378, 447
Sharp, Chris 613
Shercliff, Gareth 378
Sie, Will Da 227
Singh, Kulpreet 90
Soma, Ramakrishna 227
Sotomoayor, B. 40
Spanoudakis, George 402
Steen, Maarten W.A. 1
Stockreisser, Patrick J. 447
Stoutenburg, Suzette 581
Strollo, Daniele 453
Stroulia, Eleni 496
Su, Hui 569
Subieta, Kazimierz 557
Sun, Wei 415
Suzumura, Toyotaro 264

Tak, Young Ju 601
Takahashi, Naohisa 66
Teraguchi, Masayoshi 277
Toma, Ioan 390
Traverso, Paolo 459
Tsalgatidou, Aphrodite 104

Ueno, Ken 277
Uramoto, Naohiko 264

van Beest, Nick 484
van den Heuvel, Willem-Jan 522
Vejcik, Steve 591
Villani, Maria Luisa 141
Viswanathan, Balaji 52
Vitvar, Tomas 390, 477
Vonk, Jochem 434

Wang, Ting 434
Wang, Xia 390
Weske, Mathias 302, 465

Author Index 653

Wislicki, Jacek 557
Wuerthwein, F. 40

Xie, Guo Tong 490

Yurday, Bora 545

Zaremba, Maciej 477
Zavattaro, Gianluigi 327

Zeng, Liangzhao 490
Zhang, Jianqing 165
Zhang, Jian Ying 637
Zhao, Haibo 116
Zhao, Wei 569
Zhu, Jun 569
Zisman, Andrea 402

	Frontmatter
	Part 1: Research Track Full Papers
	Service Mediation
	Requirements and Method for Assessment of Service Interoperability
	An Aspect-Oriented Framework for Service Adaptation
	Automated Generation of BPEL Adapters

	Grid Services and Scheduling
	Division of Labor: Tools for Growing and Scaling Grids
	DECO: Data Replication and Execution CO-scheduling for Utility Grids
	Coordinated Co-allocator Model for Data Grid in Multi-sender Environment

	Mobile and P2P Services
	Adaptive Preference Specifications for Application Sessions
	Mobile Ad Hoc Services: Semantic Service Discovery in Mobile Ad Hoc Networks
	Discovering Web Services and JXTA Peer-to-Peer Services in a Unified Manner

	Service Composition
	A Hierarchical Framework for Composing Nested Web Processes
	Using Dynamic Asynchronous Aggregate Search for Quality Guarantees of Multiple Web Services Compositions
	Service Composition (re)Binding Driven by Application--Specific QoS
	Design of Quality-Based Composite Web Services

	Adaptive Services
	AMPol-Q: Adaptive Middleware Policy to Support QoS
	Adaptive Web Processes Using Value of Changed Information
	SCENE: A Service Composition Execution Environment Supporting Dynamic Changes Disciplined Through Rules
	A Self-healing Web Server Using Differentiated Services

	Data Intensive Services
	Quality of Service Enabled Database Applications
	A Model-Based Framework for Developing and Deploying Data Aggregation Services

	Service Management: Registry, Reliability
	A Distributed Approach for the Federation of Heterogeneous Registries
	I-Queue: Smart Queues for Service Management

	XML Processing
	Optimizing Differential XML Processing by Leveraging Schema and Statistics
	Optimized Web Services Security Performance with Differential Parsing
	Web Browsers as Service-Oriented Clients Integrated with Web Services

	Service Modeling
	Interaction Soundness for Service Orchestrations
	Modeling Web Services by Iterative Reformulation of Functional and Non-functional Requirements
	{\sf SOCK}: A Calculus for Service Oriented Computing
	A Priori Conformance Verification for Guaranteeing Interoperability in Open Environments

	Business Services: Transaction, Licensing and SLA Assessment
	A Business-Aware Web Services Transaction Model
	Licensing Services: Formal Analysis and Implementation
	QoS Assessment of Providers with Complex Behaviours: An Expectation-Based Approach with Confidence

	Service Discovery and Selection
	A QoS-Aware Selection Model for Semantic Web Services
	UML-Based Service Discovery Framework
	BPEL-Unit: JUnit for BPEL Processes

	Part 2: Research Track Short Papers
	Quality of Service (Policy, Transaction and Monitoring)
	A User Driven Policy Selection Model
	Abstract Transaction Construct: Building a Transaction Framework for Contract-Driven, Service-Oriented Business Processes
	Securing Web Service Compositions: Formalizing Authorization Policies Using Event Calculus
	Supporting QoS Monitoring in Virtual Organisations

	Business Service Modeling
	Event Based Service Coordination over Dynamic and Heterogeneous Networks
	Implicit vs. Explicit Data-Flow Requirements in Web Service Composition Goals
	Light-Weight Semantic Service Annotations Through Tagging
	Service-Oriented Model-Driven Development: Filling the Extra-Functional Property Gap
	WSMX: A Semantic Service Oriented Middleware for B2B Integration
	Top Down Versus Bottom Up in Service-Oriented Integration: An MDA-Based Solution for Minimizing Technology Coupling

	Service Assembly
	Semantic Service Mediation
	Examining Usage Protocols for Service Discovery
	Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices
	Automated Discovery of Compositions of Services Described with Separate Ontologies
	Dynamic Web Service Selection and Composition: An Approach Based on Agent Dialogues
	Leveraging Web Services Discovery with Customizable Hybrid Matching

	Part 3: Industrial Track Vision and Full Papers
	Vision Papers
	Assembly of Business Systems Using Service Component Architecture
	The End of Business as Usual: Service-Oriented Business Transformation

	Experience with Deployed SOA
	A Service Oriented Reflective Wireless Middleware
	Procedures of Integration of Fragmented Data in a P2P Data Grid Virtual Repository,
	Towards Facilitating Development of SOA Application with Design Metrics

	SOA Architectures
	Dynamic Service Oriented Architectures Through Semantic Technology
	A Service Oriented Architecture Supporting Data Interoperability for Payments Card Processing Systems
	Services-Oriented Computing in a Ubiquitous Computing Platform

	Early Adoption of SOA Technology
	SCA Policy Association Framework
	A Model-Driven Development Approach to Creating Service-Oriented Solutions
	Towards Adaptive Management of QoS-Aware Service Compositions -- Functional Architecture

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

