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Abstract. In this work, we present leader election protocols for single-
hop, single-channel noisy radio networks that do not have collision detec-
tion (CD) capabilities. In most leader election protocols presented so far,
it is assumed that every station has the ability to transmit and monitor
the channel at the same time, it requires every station to be equipped
with two transceivers. This assumption, however, is unrealistic for most
mobile stations due to constraints in cost, size, and energy dissipation.
Our main contribution is to show that it is possible to elect a leader in an
anonymous radio network where each station is equipped with a single
transceiver. We first present a leader election protocol for the case the
number n of stations is known beforehand. The protocol runs in O(log f)
time slots with probability at least 1− 1

f
for any f > 1. We then present

a leader election protocol for the case where n is not known beforehand
but an upper bound u of n is known. This protocol runs in O(log f log u)
time slots with probability at least 1 − 1

f
for any f > 1. We also prove

that these protocols are optimal. More precisely, we show that any leader
election protocol elect a leader with probability at least 1 − 1

f
must run

in Ω(log f) time slots if n is known. Also, we proved that any leader
election protocol elect a leader with probability at least 1 − 1

f
must run

in Ω(log f log u) time slots if an upper bound u of n is known.

1 Introduction

In recent years, wireless and mobile communications have seen an explosive
growth both in terms of the number of services provided and the types of tech-
nologies that have become available. Indeed, cellular telephony, radio paging,
cellular data, and even rudimentary cellular multimedia services have become
commonplace and the demand for enhanced capabilities will continue to grow
into the foreseeable future [1,4,5,11,13,24]. It is anticipated that in the not-so-
distant future, mobile users will be able to access their data and other services
such as electronic mail, video telephony, stock market news, map services, elec-
tronic banking, while on the move [5,13,15]. In a time slot, a station can trans-
mit or listen to the channel using a transceiver. Note that, a transceiver can
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perform one of the transmitting and listening operations in a time slot. Should a
station need to do both operations at the same time, two transceivers are neces-
sary. However, this assumption is unrealistic as most mobile devices are usually
equipped with a single transceiver due to stringent constraints in size and power
consumption.

Unlike the well-studied cellular systems that assume the existence of a robust
infrastructure, radio networks must be rapidly deployable, possibly multihop,
self-organizing, and capable of multimedia service support. Radio networks suit
well the needs specific to disaster-relief, search-and-rescue, law-enforcement, col-
laborative computing, and other special-purpose applications [9,10,14,17,18].

A radio network is a distributed system with no central arbiter, consisting
of n radio transceivers, henceforth referred to as stations. We assume that the
stations are identical and cannot be distinguished by serial or manufacturing
number. As customary, time is assumed to be slotted and all the stations have
a local clock that keeps synchronous time, perhaps by interfacing with a GPS
system. The stations are assumed to have the computing power of a usual laptop
computer; in particular, they all run the same protocol and can generate random
bits that provide local data on which the stations may perform computations.

We employ the commonly-accepted assumption that when two or more sta-
tions are transmitting on a channel in the same time slot, the corresponding
packets collide and are lost. In terms of their collision detection capabilities,
the radio networks come in three flavors. In the radio network with collision
detection (CD) the status of the channel is:

NULL: if no station transmitted on the channel in the current time slot,
SINGLE: if one station transmitted on the channel in the current time slot,
COLLISION: if two or more stations transmitted in the current time slot.

In the radio network with no collision detection (no-CD) the status of a radio
channel is:

NOISE: if either no station transmitted or two or more stations transmitted
in the current time slot, and

SINGLE: if one station transmitted in the current time slot.

In other words, the radio network with no-CD cannot distinguish between no
transmissions on the channel and the result of two or more stations transmitting
at the same time. Several workers have argued that from a practical standpoint
the no CD assumption makes a lot of sense since in many situations, especially
in the presence of noisy channels, the stations cannot distinguish between the
no transmit case and the collision of several packets that arises when several
stations attempt to broadcast at once [2,3].

Note that, if a station has two transceivers, it can send a packet and can
detect the status of the channel in the same time slot. However, if a station with
a single transceiver sends a packet, it cannot detect the status of the channel.

The leader election problem asks to designate one of the stations as leader. In
other words, after performing the leader election protocol, exactly one station
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learns that it was elected leader, while the remaining stations learn the identity
of the leader elected. The leader election problem is fundamental, for many
protocols rely directly or indirectly, on the presence of a leader in a network
[21,25]. Further, once a leader is available, the radio network with CD can be
simulated by the radio network with no-CD with a constant factor slowdown
[16].

It is customary to address the leader election problem on the radio network
in three different scenarios:

known n (Scenario 1): Every station knows in advance the number n of
stations;

known upper bound of n (Scenario 2): The upper bound u of n is known
in advance. More specifically, there exists a positive integer u such that u ≤ n
is guaranteed, and every station knows u.

unknown n (Scenario 3): The number n of stations is not known before-
hand.

It is intuitively clear that the task of leader election for Scenario 1 is the easier
and the hardest in Scenario 3, with Scenario 2 being in-between the two.

Several randomized protocols for single-channel radio networks have been pre-
sented in the literature. Metcalfe and Boggs [19] presented a simple leader elec-
tion protocol for the radio network with no-CD for known n that is guaran-
teed to terminate in O(1) expected rounds. For unknown n, several protocols
have been proposed for the radio network with CD and no-CD. Willard [25]
showed that the leader election on the radio network with CD can be solved
in log log n + o(log log n) expected time slots. Later, Nakano and Olariu [21]
presented two leader election protocols for the radio network with CD that ter-
minate in O(log n) time slots with probability at least 1− 1

n and in O(log log n)
time slots with probability at least 1 − 1

log n . Recently, Nakano and Olariu [22]
improved the protocol of [21] showing that the leader election on the radio net-
work with CD can be performed in log log n + 2.78 log f + o(log log n + log f)
time slots with probability at least 1 − 1

f for every f > 1. Hayashi et al. [16]
proposed a leader election protocol for the radio network with no-CD that ter-
minates in O((log n)2) time slots with probability at least 1 − 1

n . Nakano and
Olariu [23] have presented that a leader can be elected in O(log f) time slots
with probability at least 1− 1

f for every f > 1 if every station knows the number
of stations.

All of the above protocols assumes that every station is equipped with two
transceivers, and transmit and monitor the channel at the same time. This as-
sumption, however, is unrealistic for most mobile stations due to constraints in
cost, size, and energy dissipation. Quite recently, we have shown that, even if
every station is equipped with a single transceiver, a leader can be elected in
log log n + o(log log n) + O(log f) time slots with probability at least 1 − 1

f for
every f > 1 in the radio network with collision detection capabilities (CD) [6] .

Our main contribution is to show that it is possible to elect a leader in an
anonymous radio network with no collision detection capabilities (no-CD) where
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each station is equipped with a single transceiver. We first present a leader
election protocol for the case the number n of stations is known beforehand.
The protocol runs in O(log f) time slots with probability at least 1 − 1

f for any
f > 1. We then present a leader election protocol for the case where n is not
known beforehand but an upper bound u of n is known. This protocol runs in
O(log f log u) time slots with probability at least 1− 1

f for any f > 1. We prove
that these protocol are optimal. More precisely, we show that any leader election
protocol elect a leader with probability at least 1− 1

f must run in Ω(log f) time
slots if n is known. Also, we have proved that any leader election protocol elect
a leader with probability at least 1 − 1

f must run in Ω(log f log u) time slots if
an upper bound u of n is known.

2 A Refresher of Basic Probability Theory

This section offers a quick review of basic probability theory results that are
useful for analyzing the performance of our randomized leader election protocols.
For a more detailed discussion of background material we refer the reader to [20].

Throughout, Pr[A] will denote the probability of event A. For a random vari-
able X , E[X ] denotes the expected value of X . Let X be a random variable
denoting the number of successes in n independent Bernoulli trials with param-
eters p and 1 − p. It is well known that X has a binomial distribution and that
for every r, (0 ≤ r ≤ n),

Pr[X = r] =
(

n
r

)
pr(1 − p)n−r.

Further, the expected value of X is given by

E[X ] =
n∑

r=0

r · Pr[X = r] = np.

For all n ≥ 2, we have the inequality

1
4
≤ (1 − 1

n
)n <

1
e

< (1 − 1
n

)n−1 ≤ 1
2
,

where e = 2.71828 · · · is the base of the natural logarithm. For later reference,
we state the following result.

Lemma 1. Let X be a random variable taking on a value smaller than or equal
to x(f) with probability at most f , (0 ≤ f ≤ 1), where x is a non-decreasing
function. Then, E[X ] ≤ ∫ 1

0 x(f)df .

3 Randomized Leader Election for Known n (Scenario 1)

The main goal of this section is to provide leader election protocols for radio
networks where the number n of stations in known beforehand.
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Let U be a set of all stations. We assume that U has at least two stations,
that is, |U | = n ≥ 2. If U has a single station, the unique station can be elected
as a leader immediately without any broadcast and computation.

Let A and B be disjoint subsets of U , that is, A ⊆ U , B ⊆ U , A ∩ B = ∅,
and |U | = n holds. Also, let C = U − A − B be the complement of A ∪ B. The
following protocol Leader Election(A,B) finds a leader in three time slots if
|A| = |B| = 1 and a single station station in A is declared as a leader.

Protocol Leader Election(A,B)
Time Slot 1: Every station in A broadcasts on the channel. Stations in B and

C monitor the channel.
Time Slot 2: Every station in B broadcasts on the channel if the status of the

channel at time slot 1 is SINGLE. Stations in A and C monitor the channel.
Time Slot 3: Every station in A broadcasts on the channel if the status of the

channel at time slot 2 is SINGLE. Stations in B and C monitor the channel.

Clearly, if |A| = 1 and |B| = 1 then the status of the channel in both time
slots 2 and 3 is SINGLE. Otherwise, that is, |A| �= 1 or |B| �= 1 then the status
of the channel in these time slots is NOISE. Thus, if the status of the channel
in time slot 2 is SINGLE, a single station in A declared as a leader and stations
in C learn that a leader is elected and they are not leader. If the status of the
channel in time slot 3 is SINGLE the unique station in B learns that a leader
has been elected.

The readers may think that the first time slots are sufficient to elect a leader
and time slot 3 is not necessary. Note that all stations in U need to know if the
leader has been elected. Thus, we need time slot 3 to let stations in B learn the
identity of the leader elected.

The following protocol Election(n) elects a leader.

Protocol Election(n)
Step 1 Every station flips a fair coin and belongs to A with probability 1

n .
Step 2 Every station in U−A flips a fair coin and belongs to B with probability

1
n−1 .

Step 3 Execute Leader Election(A,B).

Steps 1 and 2 need no broadcast time slots, and Step 3 uses three time slots.
Thus, Randomized Election(n) runs in three time slots. Also, we can prove
that |A| = |B| = 1 with probability at least 1

e2 as follows. Since |A| follows the
n independent Bernoulli trials with parameter 1

n , from (1) the probability that
|A| = 1 is

Pr[|A| = 1] =
(

n
1

)
1
n

(1 − 1
n

)n−1 = (1 − 1
n

)n−1 >
1
e
.

Suppose that |A| = 1. Similarly, the probability that |B| = 1 is

Pr[|A| = 1 | |B| = 1] =
(

n − 1
1

)
1

n − 1
(1 − 1

n − 1
)n−2 = (1 − 1

n − 1
)n−2 >

1
e
.
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Thus, the probability that |A| = |B| = 1 is

Pr[|A| = |B| = 1] = Pr[|A| = 1] · Pr[|A| = 1 | |B| = 1] >
1
e2

.

Therefore, a single trial of Election(n) elects a leader with probability at least
1
e2 .

Suppose that Election(n) is repeated until |A| = |B| = 1 and a leader is
elected. We will evaluate the number of time slots spent to elect a leader. Suppose
that Election(n) are repeated t times. All of the t executions of Election(n)
fail to elect a leader leader is at most (1 − 1

e2 )t. It follows that with probability
exceeding 1 − (1 − 1

e2 )t the protocol elects a leader in at most t time slots. Note
that 1− 1

e2 = 0.86466 · · ·. Let f be a real number satisfying 1
f = (1− 1

e2 )t. Then,
t = O(log f) holds. Hence, the protocol terminates, with probability exceeding
1 − 1

f , in O(ln f) time slots. Thus, we have the following result.

Theorem 1. Election(n) succeeds in electing a leader with probability at least
1
e2 . Also, by repeating Election(n) a leader can be elected in O(log f) time slots,
with probability at least 1 − 1

f for any f > 1.

From Lemma 1, the expected running time slots of Election(n) is
∫ 1

0
log fdf =

O(1).
We also prove the optimality of Election(n). To complete the leader elec-

tion, the status of the channel must be SINGLE in at least one time slot. Let U
(|U | = n ≥ 2) be a set of all stations. Suppose that every station broadcast with
probability p in the first time slot. Let X be the random variable denoting the
number of stations that broadcast to the channel. Then, the status of the channel
is SINGLE with probability

Pr[X = 1] =
(

n
1

)
p(1 − p)n−1 = np(1 − p)n−1.

The derivative of Pr[X = 1] for p is

d Pr[X = 1]
dp

= n(1 − p)n−1 − np(1 − p)n−2 = n(1 − np)(1 − p)n−2

We have d Pr[X=1]
dp = 0 when np = 1. Thus, Pr[X = 1] is the maximum when np =

1 and Pr[X = 1] ≤ 1
2 for every n (≥ 2) and p (0 ≤ p ≤ 1). The equality holds when

n = 2 and p = 1
2 . Therefore, the status of the channel is SINGLE with probability

no more than 1
2 . We will show that, for any leader election protocol in the radio

network with no CD, the status of the channel is SINGLE with probability at most
1
2 in every time slot.

In the leader election protocol, every station can have a history which is repre-
sented by a sequence of bits, it can have no other information. At the beginning of
the k-th time slot, every station has a history of k − 1 bits such that, if it broad-
cast in j-th (1 ≤ j ≤ k− 1) time slot, the j-th bit is 1, and if it did not broadcast,
the j-th bit is 0. Then, the leader election protocol can be simply represented by
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a function p : {0, 1}∗ → [0, 1], where {0, 1}∗ denotes the set of all bits of length
at least 0 and [0, 1] denotes a set of all real numbers from 0 to 1. For example, if a
station has broadcast at time slot 1 and has not broadcast at time slots 2 and 3,
then it broadcasts at time slot 4 with probability p(100). Let q : {0, 1}∗ → [0, 1]
be the function such that a station has a history h with probability q(h). Clearly,
q(ε) = 1, q(0) = p(0), q(1) = p(1), q(00) = q(0) · (1 − p(0)), q(01) = q(0) · p(0),
where ε denotes a sequence of bits with length 0. In general, for every h ∈ {0, 1}∗
and x ∈ {0, 1},

q(h0) = q(h) · (1 − p(h))
q(h1) = q(h) · p(h)

holds. The probability s(k) that a particular station broadcasts at time slot k is

s(k) =
∑

h∈{0,1}k−1

q(h) · p(h).

Clearly, for all k ≥ 1, 0 ≤ s(k) ≤ 1 holds. Let Xk be the random variable denoting
the number of stations that broadcast at time slot k. Then, the probability that
the status of the channel at time slot k is SINGLE is

Pr[Xk = 1] =
(

n
1

)
s(k)(1 − s(k))n−1 ≤ 1

2
.

Therefore, the status of the channel is SINGLE with probability at most 1
2 for

every time slot until the leader is elected. Thus, the leader election protocol rep-
resented by p runs in t time slots with probability at least 1

2t . Thus, we have,

Theorem 2. Any leader election protocol that elects a leader with probability at
least 1 − 1

f need to run in Ω(log f) time slots.

From Theorem 2, the leader election protocol for Theorem 1 is optimal.

4 Randomized Leader Election for Known Upper Bound u
(Scenario 2)

The main purpose of this section is to develop a randomized leader election pro-
tocol for an n-station radio network under the assumption that an upper bound
u of the number n of stations is known beforehand. However, the actual value of
n is not known. We assume that n ≥ 2, because if n = 1, the leader election is not
possible.

Let n1, n2, . . . , nk be a sequence of positive numbers. The following protocol
Election(n1, n2, . . . , nk) is a generalization of Election(n).

Protocol Election(n1, n2, . . . , nk)
for i = 1 to k do

begin
Execute Steps 1 to 3 of Election(ni);
Terminate the protocol if the leader is elected;

end
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For simplicity, we assume that the upper bound u is a power of two. If u is not
a power of two, we can choose a minimum u′ such that u′ > u and u′ is a power
of two. Clearly, such u′ is an upper bound of n. Our randomized leader election
protocol for Scenario 2 simply executes Election(21, 22, . . . , 2log u).

Let us evaluate the probability that Election(21, 22, . . . , 2log u) succeeds in
electing a leader. Let i be an integer such that 2i−1 < n ≤ 2i. Suppose that
Leader Election(2i) is executed. The probability that |A| = 1 is

Pr[|A| = 1] =
(

n
1

)
1
2i

(1 − 1
2i

)n−1

=
n

2i
((1 − 1

2i
)2

i−1)
n−1
2i−1

>
1
2e

(from 2i−1 < n and n − 1 ≤ 2i − 1).

Similarly, we can prove

Pr[|A| = 1 | |B| = 1] >
1
2e

.

in the same manner. Thus, the probability that |A| = |B| = 1 is

Pr[|A| = |B| = 1] = Pr[|A| = 1] Pr[|A| = 1 | |B| = 1] >
1

4e2
.

Therefore, a single trial of Election(2i) elects a leader with probability at least
1

4e2 provided that 2i−1 < n ≤ 2i. For every n such that 2 ≤ n ≤ u, there exists an
integer i (1 ≤ i ≤ log u) such that 2i−1 < n ≤ 2i. Therefore, we have,

Lemma 2. For every n such that 2 ≤ n ≤ u, protocol Election(21, 22, . . . , 2log u)
succeeds in electing a leader in O(log u) time slots with probability at least 1

4e2 .

We further generalize Election for infinite sequences. Let n1, n2, . . . be an infinite
sequence. Protocol Election(n1, n2, . . .) is defined as follows:

Protocol Election(n1, n2, . . .)
for i = 1 to ∞ do

begin
Execute Steps 1 to 3 of Election(ni);
Terminate the protocol if the leader is elected;

end

Let D1
log u be a sequence 21, 22,. . . ,2log u, andDk+1

log u =Dk
log u·D1

log u for all k≥1,
where “·” denotes the operator of concatenation of two sequences. Clearly, Dk

log u

has k log u integers. Also, let D∞
log u be the infinite sequence D1

log u · D1
log u · · ·. We

have proved that in Lemma 2, Election(D1
logu) elects a leader in three time slots

with probability 1
4e2 . Thus, Election(Dk

logu) fails to elect a leader in no more
than 3k log u time slots with probability at most (1 − 1

4e2 )k. Let 1
f = (1 − 1

4e2 )k.
Then, 3k log u = O(log f log u). Therefore, we have,
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Theorem 3. Protocol Election(D∞
logu) elects a leader in O(log f log u) time

slots with probability at least 1 − 1
f for any f > 1.

From Lemma 1, the expected running time slots of Election(n) is
∫ 1

0 log f log udf
= O(log u).

We will show that, any leader election protocol for Scenario 2 need to run in
Ω(log u) time slots to elect a leader with probability at least 1

2 .
Let X(n, p) denote the random variable denoting the number of stations that

have broadcast if each of the n stations broadcast with probability p. The proba-
bility that the status of the channel is SINGLE with probability

Pr[X(n, p) = 1] =
(

n
1

)
p1(1 − p)n−1 = np(1 − p)n−1.

Let us evaluate the upper bounds of Pr[X(21, p) = 1] ,Pr[X(22, p) = 1], . . .,
Pr[X(2log u, p) = 1] and then compute Pr[X(21, p) = 1]+Pr[X(22, p) = 1]+ · · ·+
Pr[X(2log u, p) = 1]. Let m = 1

p . For simplicity, we assume m is an integer and a
power of two. It is easy to show the upper bounds when this is not the case. Since
Pr[X(n, p) = 1] = np(1 − p)n−1 ≤ np, we have

Pr[X(21, p) = 1] + Pr[X(22, p) = 1] + · · · + Pr[X(2log m−1, p) = 1]
= 21p + 22p + · · · + 2log m−1p = 21/m + 22/m + · · · + 2log m−1/m < 1.

If n = m then,

Pr[X(2log m, p) = 1] = mp(1 − p)m−1 = (1 − 1
m

)m−1 <
1
2
.

Also, for every n > m, we have

Pr[X(2log m+1, p) = 1] + Pr[X(2log m+2, p) = 1] + Pr[X(2log m+3, p) = 1] + · · ·
= Pr[X(21m, p) = 1] + Pr[X(22m, p) = 1] + Pr[X(23m, p) = 1] + · · ·
= 21mp(1 − p)2

1m−1 + 22mp(1 − p)2
2m−1 + +23mp(1 − p)2

3m−1 + · · ·
= mp(1 − p)m−1(21(1 − p)2

1m−m + 22(1 − p)2
2m−m + 23(1 − p)2

3m−m + · · ·)
<

1
2
(21(

1
e
)2

1−1 + 22(
1
e
)2

2−1 + 23(
1
e
)2

3−1 + · · ·) < 1.

Therefore, Pr[X(21, p) = 1] + Pr[X(22, p) = 1] + · · · + Pr[X(2log u, p) = 1] < 5
2 .

Let s(k) be the probability that a particular station broadcast at time slot k. To
elect a leader with probability at least 1

2 in t time slots for all n = 21, 22, . . . , 2log u,

t∑
k=1

Pr[X(21, s(k)) = 1]+Pr[X(22, s(k)) = 1]+· · ·+Pr[X(2log u, s(k)) = 1]≥ log u

2

must hold. However, the left hand side of the inequality is at most 5
2 t. Therefore,

since 5
2 t ≥ log u

2 , we have t = Ω(log u). Hence, to elect a leader with probability
1 − 1

f for all n = 21, 22, . . . , 2log u, any leader election protocol need to run in
Ω(log f log u) time slots.
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Theorem 4. Any leader election protocol runs that elects a leader with probability
at least 1 − 1

f need to run in Ω(log f log u) time slots.

Therefore, protocol for Theorem 3 is optimal.

5 Conclusions

In this work, we have presented leader election protocols for single-hop,
single-channel noisy radio networks that do not have collision detection (CD) ca-
pabilities. Also, we have assumed that every station is equipped with a single
transceiver. We presented a leader election protocol for the case the number n
of stations is known beforehand. that runs in O(log f) time slots with probability
at least 1 − 1

f for any f > 1. We then presented a leader election protocol for the
case where n is not known beforehand but an upper bound u of n is known. This
protocol runs in O(log f log u) time slots with probability at least 1 − 1

f for any
f > 1. We also proved that these leader elections are optimal.
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