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Preface

Welcome to the proceedings of the 4th International Symposium on Parallel
and Distributed Processing and Applications (ISPA 2006), which was held in
Sorrento, Italy, December, 4–6 2006.

Parallel computing has become a mainstream research area in computer sci-
ence and the ISPA conference has become one of the premier forums for the pre-
sentation of new and exciting research on all aspects of parallel and distributed
computing. We are pleased to present the proceedings for ISPA 2006, which
comprises a collection of excellent technical papers and keynote speeches. The
accepted papers cover a wide range of exciting topics including architectures,
languages, algorithms, software, networking and applications.

The conference continues to grow and this year a record total of 277 manu-
scripts were submitted for consideration by the Program Committee. From these
submissions the Program Committee selected only 79 regular papers in the pro-
gram, which reflects the acceptance rate as 28%. An additional 10 workshops
complemented the outstanding paper sessions.

The submission and review process worked as follows. Each submission was
assigned to at least three Program Committee members for review. Each Pro-
gram Committee member prepared a single review for each assigned paper or
assigned a paper to an outside reviewer for review. In addition, the Program
Chairs and Program Vice-Chairs read the papers when a conflicting review re-
sult occurred. Finally, after much discussion among the Program Chairs and
Program Vice-Chairs, based on the review scores, the Program Chairs made the
final decision. Given the large number of submissions, each Program Committee
member was assigned roughly 7–12 papers.

The excellent program required a lot of effort from many people. First, we
would like to thank all the authors for their hard work in preparing submis-
sions to the conference. We deeply appreciate the effort and contributions of
the Program Committee members who worked very hard to select the very
best submissions and to put together an exciting program. We are also very
grateful to the keynote speakers for accepting our invitation to present keynote
talks. Thanks go to the Workshop Chairs for organizing ten excellent workshops
on several important topics related to parallel and distributed computing and
applications.

We deeply appreciate the tremendous efforts of the Program Vice-Chairs,
Daniel S. Katz, Koji Nakano, Omer F. Rana, and Barbara Chapman. We would
like to thank the conference Workshop Chairs, Geyong Min and Gudula Rünger,
for their continued organization and support for all workshops.
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We hope that attendees enjoyed this conference, found the technical program
to be exciting, and had a wonderful time in Sorrento and its peninsula, together
with the social activities of the conference.

Minyi Guo, Hans Zima
ISPA 2006 Program Co-chairs

Beniamino Di Martino, Jack Dongarra, and Laurence T. Yang
ISPA 2006 General Co-chairs
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Exploiting Multidomain Non Routable Networks . . . . . . . . . . . . . . . . . . . . . 696
Franco Frattolillo, Salvatore D’Onofrio

Recovery Strategies for Linear Replication . . . . . . . . . . . . . . . . . . . . . . . . . . 710
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Video Shot Extraction on Parallel Architectures . . . . . . . . . . . . . . . . . . . . . 869
Pablo Toharia, Oscar D. Robles, José L. Bosque, Angel Rodŕıguez
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Most of the work of the computer architect today has to do with bridging the
well-known gigantic gap between processor speed and memory access time. How-
ever, other significant challenges are looming on the horizon. For one thing,
higher device density and smaller design rules are increasing the sensitivity of
circuits to outside radiation events. Also, power issues are creating significant
challenges, not only in terms of power consumption for embedded devices, but
also in terms of cooling and power dissipation. Hence, while Moore’s law will
continue to hold for the foreseeable future, processor speeds are not expected to
follow suit, thereby requiring new architectural concepts.

In this lecture, we will describe the issues surrounding modern computer ar-
chitecture and design. We will discuss the advent of newer architectures such as
multi-core chips and examine the associated synchronization problems, imple-
mentation issues, and performance evaluation considerations. We will also study
the implications of power considerations and demonstrate scheduling approaches
to control consumption and heat dissipation. Redundant thread execution will
be demonstrated as a simple synchronization method which offers low cost pro-
tection against the Single Event Upsets (SEUs) plaguing modern systems with
increasing frequency.
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Exploiting Single Precision Computing to
Obtain Double Precision Results

Jack Dongarra

Computer Science Department
University of Tennessee and Oak Ridge National Laboratory

dongarra@cs.utk.edu

http://www.cs.utk.edu/ dongarra/

Recent versions of microprocessors exhibit performance characteristics for 32 bit
floating point arithmetic (single precision) that is substantially higher than 64 bit
floating point arithmetic (double precision). Examples include the Intel Pentium
IV and M processors, AMD Opteron architectures, the IBM Cell processor and
various GPUs. When working in single precision, floating point operations can
be performed up to two times faster on the Pentium and up to ten times faster
on the Cell over double precision. The motivation for this work is to exploit
single precision operations whenever possible and resort to double precision at
critical stages while attempting to provide the full double precision results. The
results described here are fairly general and can be applied to various problems
in linear algebra such as solving large sparse systems, using direct or iterative
methods and some eigenvalue problems. There are limitations to the success of
this process, such as when the conditioning of the problem exceeds the reciprocal
of the accuracy of the single precision computations. In that case the double
precision algorithm should be used.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, p. 2, 2006.
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Rudolf Eigenmann
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Compilers are the critical translators that convert a human-readable program
into the code understood by the machine. While this transformation is already
sophisticated today, tomorrow’s compilers face a tremendous challenge. There
is a demand to provide languages that are much higher level than today’s C,
Fortran, or Java. On the other hand, tomorrow’s machines are more complex
than today; they involve multiple cores and may span the planet via compute
Grids. How can we expect compilers to provide efficient implementations? I will
describe a number of related research efforts that try to tackle this problem. Com-
position builds a way towards higher-level programming languages. Automatic
translation of shared-address-space models to distributed-memory architectures
may lead to higher productivity than current message passing paradigms. Ad-
vanced symbolic analysis techniques equips compilers with capabilities to rea-
son about programs in abstract terms. Last but not least, through auto-tuning,
compilers make effective decisions, even through there may be insufficient infor-
mation at compile time.
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Frank Baetke
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Today trends in High Performance Computing can be separated into two basic
categories: one covers the directions towards smaller, faster and hopefully cooler
components, the other includes more innovative directions, which might lead to
real paradigm shifts.

Of course, it became obvious in the past years that the HPC scene is and will
be dominated by all kinds of clusters. The talk will address the various aspects
we are seeing today in terms of processors, node architectures and operating
systems. The concept of heterogeneous clusters as well as the challenge of cluster
file-systems and integrated visualization will be covered shortly.

The talk will shortly cover new trends in cluster management and specific as-
pect in industrial and research environments. One strategic approach comprises
a triangle with computation, data management and visualization representing
the sides of the triangle. The successes of a standard-based strategy will be
contrasted with more dedicated and specialized approaches.

Since last year, certain changes became obvious specifically in the area of com-
ponents, which make up the computational parts. Those changes provide vast
opportunities in terms of system efficiency but will also lead to new challenges
due to the vastly increased densities of advanced architectures.

For all the topics mentioned above characteristic architectures and sites will
be shown as examples. A few hints concerning roadmaps and future issues will
be added.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, p. 4, 2006.
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Recently developments in microprocessor technology, high performance intercon-
nection, storage subsystem, and grid infrastructure, address pflops and pbytes
capabilities for large scale architectures which will categorize large HPC facilities
in the near future.

IBM will attack such new challenges with a broad range of collaborations in
open technologies with major technological partners and integrating and clus-
tering more and more efficiently and reliably most of innovative solutions. The
basic idea is to combine innovation and outstanding performances at competitive
costs.

In such scenario talk will cover an overview of IBM solutions and future
trends for HPC with an insight on integrated solutions as Blue Gene and Cell
Broadband Engine (CBE) processor, this latter a product recently announced
based on Power Architecture and originally developed in collaboration with IBM,
Sony Corporation, Sony Computer Entertainment Inc, and Toshiba Corporation.

Some considerations on high performance storage solutions as those based on
GPFS and SFS/SVC will conclude as an example of designing I/O infrastruc-
tures locally or geographically distributed and able to provide a balance from
high density computing power and large I/O capabilities.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, p. 5, 2006.
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Abstract. This paper presents an architecture of the dynamic offload-
ing mechanism, called Maestro Dynamic Offloading Mechanism(MDO),
for the intelligent cluster network Maestro2. By using MDO, program-
mers can offload software modules to the network interface and the switch
dynamically. MDO provides programmers functional APIs with which
programmers can develop offload modules efficiently. MDO also includes
wrapper library that enables the offload modules to be executed on the
host processors as well as on the network devices. The results of per-
formance evaluation showed that the performance of the collective com-
munications can be improved by offloading communication procedures
to the network devices using MDO. The overhead of the MDO and the
traffic on PCI bus are also discussed.

1 Introduction

With the advent of high performance networks for clusters, such as Myrinet[1],
QsNet[2], and InfiniBand[3], many works have been done on developing low la-
tency and high throughput communication software. GM[4] and PM[5] are the
examples of those communication libraries, which improve the delivered com-
munication performance by introducing zero-copy communication. On the other
hand, such communication libraries consume a sizable amount of computing
power of the host processor to process communication protocol and to control
network hardware[6][7]. This disturbs the host processor to perform calculation
of an application and results in the performance degradation of a cluster. Of-
floading communication process to network devices is a promising technique to
remedy this issue, since it can make the host processor concentrate on its main
computation and improve the overall efficiency of clusters.

We can find several researches or products for offloading communication pro-
tocol to network devices such as TOE[8] or offloaded-MPI[9]. Although they have
succeeded in increasing communication performance, the host processor still has
to control network hardware to handle communication frequently because the
unit of offloading is small. By offloading whole communication library or a part
of the application, the host processor can be released from the burden of commu-
nication procedure. This increases an opportunity of overlapping computation
with communication.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 6–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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To offload large software modules that are used to be processed on a host
processor to network devices, network devices are required to introduce a high
performance processor instead of special purpose processor such as a network
processor, and high-capacity memory. We have developed a high performance
cluster network called Maestro2[10]. Maestro2 is composed of network inter-
faces(NI) and switch boxes(SB). Both an NI and an SB include a general purpose
processor and a high-capacity memory so that user-defined software modules can
be performed.

We have also developed a message passing library that can extract maximal per-
formance of the network, named MMP[11]. In MMP, the firmware of MMP that
resides on NI controls network hardware and handles protocol processing such as
an addition of message header. The interface functions of MMP are designed as
non-blocking to overlap computation in application programs and communication
processing. In MMP, communication is done by issuing a send/receive request to
NI with few parameters. Then, the NI performs communication independently
from the host processor. Thus, the offloading in MMP is more aggressive than
protocol offloading. We confirmed that this design freed host processor and host
bus from communication processing and increased throughput of communication.
Through the development of MMP, we have found that communication perfor-
mance has been effectively increased by offloading communication processing to
network devices.

In this paper, a dynamic offloading mechanism for Maestro2 cluster network,
which can offload user-defined software modules dynamically to the network
devices, is proposed. This mechanism includes a wrapper library that enables
the offload modules to be executed on the host processors as well as on the
network devices.

2 Maestro2 Cluster Network

As described in the previous section, we have developed Maestro2 cluster network
which has the capability of executing user-defined software. In this section, we
will describe briefly the architecture and implementation of Maestro2 cluster
network.

Maestro2 cluster network is comprised of network interfaces and switch box
as shown in Fig. 1. Network interfaces are connected to each host processor via
the PCI bus and exchange message with host processor. A message is a com-
munication unit composed of one or more packets. The switch box is connected
to up to eight network interfaces via LVDS (Low Voltage Differential Signaling)
physical layer[12] and is responsible for switching messages.

(1) Network interface
The network interface (NI) is composed of a LVDS transmitter/receiver, 8K-
bytes network buffer, MLC-X link layer protocol, PCI interface,
PowerPC603e[13] 300MHz, 64M-bytes SDRAM, MLC-X, PCI interface, and
networkbuffer are implemented inXilinxVirtexIIFPGAchip[14].MLC-Xcon-
trols LVDS transmitter/receiver bidirectionally. LVDS transmitter/receiver is
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Fig. 1. Architecture of Maestro2

connected to the switch box and transfers data at 6.4Gbps (3.2Gbps + 3.2Gbps
full-duplex). The PCI interface maps the address space of the SDRAM into
the host processor’s address space and host processor’s memory space into the
PowerPC’s address space.

(2) Switch box
The switch box (SB) currently includes eight LVDS transmitter/receiver,
four SB interfaces, a crossbar switch, PowerPC603e 300MHz, 32M-bytes
SDRAM, and switch controller. SB interfaces are composed of a message
analyzer, two MLC-X link layer protocol, and 16K-bytes network buffer. It
communicates with network interfaces via LVDS connections. MLC-Xs and
network buffers in the switch box are similar to the ones in the network
interface. Each message analyzer is connected to two MLC-Xs. It picks up
headers from messages and passes them to the PowerPC processor. PowerPC
analyses headers received from the message analyzer and controls the switch
controller.

As described above, both of the network interface and the switch box of Mae-
stro2 cluster network has powerful processor and large-capacity RAM on boards.
By using this processor, Maestro2 cluster network can control hardware and han-
dle protocol or other communication processing independently of host processors.
Thus the computation of the application program on the host processor and the
communication can be overlapped significantly.

3 Maestro Dynamic Offloading Mechanism

3.1 Architecture of MDO

Maestro dynamic offloading mechanism (MDO) is the software environment to
offload user-defined modules to Maestro2 cluster network. MDO is composed
of one or more user-defined modules, the MDO library, the module wrapper
library, and the firmware for the network interface and the switch box. Figure 2
summarizes the architecture of MDO.

The firmware is currently implemented as part of the MMP firmware for the
network interface and the switch box. It loads the modules transferred from the
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Fig. 2. Architecture of MDO

MDO library. Additionally it calls the modules when it receives a request for
the module from the MDO library or receives the message for the module from
network.

The MDO library is the library for application programs on a host processor.
It includes dynamic linker/loader to load user-defined modules dynamically into
network devices and requester to handle requests for modules from application
programs. User’s application program can load necessary modules to network
devices and issue requests to the module by using MDO library.

User-defined modules include native executable binary for the network inter-
face or the switch box and the information for relocation. When they are called
from the firmware, they handle requests from the application program via the
MDO library and control peripheral network hardware. Besides, by being re-
compiled, the user-defined modules for the network interface can be executed
on the host processor without any changes in its source codes. This is useful for
debugging and examining adequate load partitioning between the host and the
network interface. When they are compiled as modules for host processors, the
MDO library calls them via the module wrapper library. The MDO library also
hooks function calls from user-defined modules for controlling network hardware
by translating hardware dependent value, such as physical address, to make the
module to work correctly on a host processor.

3.2 Interface Functions of MDO

The MDO library provides interfaces to application programs for loading mod-
ules and issuing requests to them. We will detail about these interfaces below.

(1) MMP_Regist_mod_NI(...)
This function relocates the specified module and loads it to unused memory
region on the network interface. To relocate modules, this function inves-
tigates address informations of loaded firmware and builds the relocation
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table. Then it resolves symbols’ addresses in the module with referring the
relocation table. Finally, it transfers the relocated module and registers the
information of module such as functions’ entry addresses to the firmware on
the network interface.

(2) MMP_Regist_mod_SB(...)
This function registers the module to the switch box. It relocates the mod-
ule in the same method as MMP_Regist_mod_NI(). Then it transmits the
relocated module to the switch box through the network interface.

(3) MMP_Mod_req(...)
When the application program needs to request the module on the network
interface to process something, this function is able to pass the request and
the arguments to the module on network interface. The arguments passed
from the application program are stored to request queue on the network
interface.

(4) MMP_Mod_recv_post(...)
If the module has possibilities to transfer messages from network to the
memory on host processor, the module must be able to set the destination
address of the host processor to DMA hardware. The application program
could pass the address information through this function beforehand. Be-
cause the module is able to calculate address, the passed address might be
only the base address or the offset.

(5) MMP_Get_mod_req_stat(...)
This function enables an application program to receive calculation results
from the module or wait for completion of communication processing in the
module.

Meanwhile, the MDO module has to contain callback functions to handle
requests from the application program and messages from other modules. Details
of these functions are as follows:

(1) NI_mod_hostreq_handler(...)
Corresponding to the requests issued from an application program by
MMP_Mod_req(), this function in the module loaded on network interface is
called.

(2) NI_mod_recvmsg_handler(...)
When the firmware on network interface receives a message, it calls this func-
tion in the module. Generic information such as the size of the message and
the source address of the message is passed as arguments. Pre-post informa-
tion for reception from application program by using MMP_Mod_recv_post()
is also passed if it exists.

(3) SB_mod_recvheader_handler(...)
The firmware on switch box calls this function whenever it receives the mes-
sage to the module on switch box from network interfaces. The module con-
trols the hardware on switch box to transfer the message to other network
interface(s) or to the memory on the switch box to process data included in
the message.
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Fig. 3. Inter-process communication in MDO

3.3 Inter-process Communication in MDO

In MDO, inter-process communication can be categorized by two types: a) re-
quest exchange between the application program on host processor and the mod-
ule on network interface. b)message exchange between modules on network in-
terfaces or switch boxes. Figure 3 depicts communication details when a module
is loaded on network interfaces and the switch box.

The application program on host processor can issue requests with arguments
through MDO library to the module on network interface(Fig.3 (a),(b)). When
the application program issues the requests to the module, the firmware on
network interface calls the function with specific symbol name in the module with
arguments from the application program(Fig.3 (c)). The module may transmit
several messages per single request if necessary, or it may transmit nothing and
do only computation. If the module needs to return the result to the application
program, the result can be returned via the MDO library(Fig.3 (d),(e)).

Modules on network interfaces and on switch boxes can exchange messages
each other without requests from host processors. Modules on network interface
can exchange messages each other through the switch box (Fig.3 (f)). Thus,
with MDO, host processor can be freed from communication burden such as
relaying messages performed in collective communication. This reduces latency in
host processor’s bus or overheads in frequent interaction between communication
library and an application program, and increases communication performance.

The module on the network interface and the one on the switch box can also
exchange messages in MDO. When the firmware on switch box receives messages
from the module on network interface, it calls the module on switch box(Fig.3
(g)(h)). The callee module can transmit messages to one or more modules on the
network interface after executing designated procedures(Fig.3 (i)). This feature
is effective to reduce the number of messages in network and the number of
phases of communication when a module or an application program needs to
broadcast, or sum up the calculation results in multiple hosts.



12 K. Aoki et al.

Fig. 4. Collective communication with MDO

3.4 Offloading Collective Communication

We have implemented three collective communications by using MDO in this
research: synchronization, broadcast, and allreduce.

When a host processor transmits messages to several other hosts in these
communications, the module on switch box communicates with host processors.
Figure 4 shows communication flow in the collective communication with MDO.
When the application program needs reduction operation during calculation,
host processors send their own data to the module on switch box. Upon re-
ceiving the data, the module performs reduction operation. Finally the module
transmits results to all the hosts simultaneously. Therefore, the number for mes-
sage needed in the collective communication is decreased compared with the
peer-to-peer communication between host processors. Moreover, the number of
steps in communication becomes constant even if the number of host processors
increases.

Computations that are necessary for allreduce could be overlapped with com-
putations of the application program on a host processor, because modules on
network devices could compute independently of host processors. As a result,
the total time for application program can be reduced.

4 Evaluation

4.1 Experimental Environment

We prepared the environment as shown in Table 1 for experiments. We performed
three experiments on this environment. We use gettimeofday() function to
measure the time on the host processor in all experiments.

4.2 Overheads and Advantages of MDO

The first experiment is performed to evaluate the overheads of MDO. Three
programs are executed that synchronize all processes on multiple hosts. The
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Table 1. Experimental environment

CPU Intel Xeon 2.8GHz

Memory 1G-Bytes

Network Maestro2 cluster network

OS Debian GNU/Linux 3.1

Fig. 5. Time of synchronization using MMP built-in function, MDO, and MMP peer-
to-peer function

first one uses MMP’s built-in function to synchronize processes. The second
one uses the module for synchronization and MDO. The third one uses MMP’s
send/receive functions and the tree-based synchronization algorithm with peer-
to-peer communication used in MPICH[15].

The results are shown in Fig. 5. The MMP’s built-in function used in the
first program is implemented in monolithic firmware and library of MMP. On
the other hand, synchronization requests in the second program are processed
by dynamically loaded module of MDO. Therefore, the difference between the
results of the first and the second programs shows the overhead of calling module
in MDO. This result shows that the overhead is about 30% of whole synchro-
nization time.

Then, we compared the result of MDO with the result of peer-to-peer com-
munication. The results show that the synchronization program using MDO is
up to three times faster than the one using peer-to-peer communication.

4.3 Performance of Broadcast

In this section, we measured the time to complete broadcasting with varying data
size and the number of hosts. Broadcast has been performed by MMP peer-to-
peer communication and MDO. Figure 6 shows the time using eight processors
with varying data size. Figure 7 shows the time for broadcasting 64K-bytes
message with varying the number of hosts.

Both results show that the broadcast using MDO is always faster than the
one using peer-to-peer communication between host processor. In Fig. 6, we
found MDO requires only 38% of the time of peer-to-peer at the minimum. In
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Fig. 6. Time of broadcast using MDO and MMP peer-to-peer function with varying
data size

Fig. 7. Time of broadcast using MDO and MMP peer-to-peer function with varying
the number of hosts

Fig. 7, the time of MDO is almost constant even when the number of hosts
increases. And the time of MDO is up to 63% smaller than the one of peer-to-
peer communication. From these results, we confirmed that MDO can effectively
reduce time for broadcast.

4.4 Performance of Allreduce

Finally, we measured the performance of allreduce with varying the number of
host processors. In this experiment, we developed the module which calculates
the product of values received from host processors and returns the result to all
processors. We also developed equivalent function by using MMP’s peer-to-peer
communication as is the case in the experiment of broadcast, and we compared
the result of MDO with the result of peer-to-peer communication.

Figure 8 shows the results of this experiment. As this figure shows, MDO was
able to reduce the time for communication up to 39%.

4.5 Comparison of Traffic over PCI Bus

We compared the amounts of data transferred via host processors’ PCI bus
when they perform broadcast and allreduce with MDO and MMP peer-to-peer
communication. In Fig. 9, we can see the traffic over PCI bus when four and
eight hosts perform broadcast and allreduce. The traffic consists of data and
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Fig. 8. Time of allreduce using MDO and MMP peer-to-peer function

Fig. 9. Comparison of traffic over PCI

control commands for the network interface. All the traffic occurred on PCI bus
of all hosts are accumulated and shown in Fig. 9.

Broadcast based on the peer-to-peer communication requires intermediate
hosts, which re-send the message soon after they receive, for relaying. This re-
laying yields traffic on PCI bus. The intermediate 1 and 2 in Fig. 9 (a) indicate
the first and the second intermediate hosts. In broadcast with four hosts, one
host works as intermediate 1. In broadcast with eight hosts, three hosts work as
intermediate 1 and one host works as intermediate 2. On the other hand, broad-
cast by MDO requires no intermediate hosts because the switch box generates
and sends the copies of the message for broadcast. As a result, traffic on PCI
bus is reduced by 18% and 42% of peer-to-peer communication in the case of
four and eight hosts, respectively.

Meanwhile, all hosts must send and receive data several times in allreduce by
peer-to-peer communication. The number of send and receive operations is in
the order of log n, where n is the number of hosts. By contrast, all reduce by
MDO requires only one send and receive operations in each host as described
in the Sect. 3.4. Figure 9 (b) shows that the reduction ratios of the traffic on
PCI are 9% and 39% for four hosts and eight hosts, respectively. It has been
confirmed that MDO reduces more traffic on PCI when the number of hosts
involved in allreduce increases.

From the results shown in Fig. 9, MDO can reduce the traffic on PCI bus for
both broadcast and allreduce operations. The reduction of the traffic improves
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efficiency of PCI bus and contributes to reduce execution time of collective com-
munication.

5 Conclusion

In this paper, we presented the software environment that allows the appli-
cation program to offload user-defined modules to Maestro2 cluster network,
named Maestro dynamic offloading mechanism (MDO). MDO includes user-
defined modules, MDO library to offload user-defined modules to the network
interface and/or switch box dynamically, and the firmware to invoke the loaded
modules. Moreover, we described the implementation of broadcast and allreduce
by using MDO and showed results of evaluation.

In the evaluation to see the performance impacts of MDO, we performed
three experiments: synchronization, broadcast, and allreduce. The evaluation
results showed that MDO is effective in reducing time of those collective com-
munication, even though MDO requires extra time for offloading and invoking
modules. Additionally, we measured the traffic over PCI bus when the hosts
perform broadcast and allreduce with and without MDO. From the results, we
have confirmed that MDO can reduce the traffic on PCI bus by approximately
40% compared to peer-to-peer communication.

For the future works, we will evaluate the performance of MDO by offloading
a part of an application. We are also planning to develop distributed shared
memory system using MDO mechanism. Furthermore, we are currently devel-
oping next generation of Maestro2 cluster network which has more powerful
processor and higher-capacity memory on board. We will evaluate the perfor-
mance impacts of offloading user-defined module by using this next-generation
network.
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Abstract. Due to an increasing number of portable devices, supports
for quality of service (QoS) and security problems become significant
issues in wireless networks. For this reason, Authentication, Authoriza-
tion, and Accounting (AAA) architecture has been proposed. However
AAA architecture has inefficient authentication procedures when a mo-
bile node (MN) roams to a foreign network because AAA architecture
assume that the only reliable source of authentication is an AAA server
in the home network. In this paper, we propose session key forwarding
scheme that can reduce an authentication time and an authentication
failure rate while maintaining a security level. The performance results
show that the proposed scheme reduces the authentication latency up to
6.16% and the authentication failure rate up to 23.9% compared to the
standard AAA architecture.

1 Introduction

The tremendous advance of wireless communication technologies has facilitated
the ubiquitous Internet service and also lots of popular applications including
e-business require transmission of highly sensitive information often over wire-
less networks, while inducing more challenges to security due to open medium
transmission [1]. In order to provide security services in wireless networks, au-
thentication is used as an initial process to authorize a MN for communication
through secret credentials such as AAA architecture [2,3]. Currently, AAA archi-
tecture for the MNs rely on frequently consulting an AAA home-server (AAAH)
to authenticate the MNs when the MNs roams to a foreign network because an
AAA local-server (AAAL) has no information about them. Although the AAAL
may have a indirect trust relationship with the AAAH that stores the creden-
tials for the MNs, the credentials of the MNs are encrypted and transmitted for
remote verification hop-by-hop between the AAAL and AAAH. According to
this reason, each time the MN visits a new foreign network, the AAAL has to
send back an authentication request to the AAAH to be verified [4,5].

This problem becomes more significant when the MN is far away from the
home network. The MN will be spoofed by attackers who send fake registration
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requests to MN’s home agent (HA) to redirect the messages to themselves or deny
the service for the MN unless the messages be encrypted. Moveover, the foreign
agent (FA) and AAAL do not generally have the information to authenticate
the MN when the MN come to the foreign network for the first time. Also,
the messages between the FA and HA should be encrypted and protected from
attackers.

In order to resolve these problems, this paper proposes session key forwarding
scheme between foreign networks. When a MN moves from a foreign network to
another foreign network, the new AAAL (nAAAL) in new foreign network relies
on the previous AAAL (pAAAL) to authenticate the MN. Therefore the MN is
authenticated from the nAAAL without request to the AAAH. Consequently,
this scheme reduces the authentication latency up to 6.16% and the authentica-
tion failure rate up to 23.9% compared to the standard AAA architecture.

This paper is organized as follows. In section 2, we introduce the concepts of
AAA architecture and security association. Our proposed scheme is discussed
in section 3. In section 4, we evaluate the performance of the proposed scheme.
Finally we conclude the paper in section 5.

2 Preliminaries

The IETF AAA Working Group has been working for several years to establish a
general architecture for Authentication, Authorization, and Accounting (AAA).
It is shown in Fig. 1. When a MN is crossing the boundaries of different foreign
network with an on-going service, an inter-domain handoff authentication occurs.
Since the security association (SA) attached with the on-going communication
session is between the MN and FA, no SA exists between the MN and FA, so it
is necessary to contact the AAAH of the MN for authentication [6].

Fig. 1. AAA Architecture

In Fig. 1, when the AAAL receives the AAA-MN Request forwarded from
the FA, the AAAL must forward the AAA-MN Request to the AAAH of the
MN for verification because the AAAL does not have enough information to
authenticate the visiting MN. After authentication at the AAAH, the AAAH
sends the HA-MIP Request to the home agent (HA) and then the HA registers
the MN. The HA creates the HA-MIP Answer including HA-MN and FA-MN
keys, which are sent by the AAAH and then the AAAH sends AAA-MN Answer
to the AAAL. Upon receiving the message, the AAAL forwards it to the FA.
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The FA sends the Registration Reply created by the HA to the MN. Finally, the
MN checks the Registration Reply and obtains the required keys (FA-MN key,
HA-MN) to protect the communication.

As you see in Fig. 2(a), current AAA architecture causes long authentication
delay because the AAAL must request the MN’s authentication to the AAAH
of the MN for verification. Each time the MN visits a new foreign network from
a previous foreign network, a nAAAL has to request the MN’s authentication to
the AAAH even though a pAAAL has the session keys for HA-MN and pFA-MN.
However, as you can see in Fig. 2(b), if the nAAAL reposes trust in the pAAAL,
the MN just visited and then the authentication can be done without contacting
the AAAH.

Fig. 2. Security Association in AAA Architecture

3 The Proposed Session Key Forwarding Scheme

In this section, we describe our session key forwarding scheme based on AAA
architecture. The proposed scheme provides a possible solution for AAA based
keying problems. As mentioned in [13], the inter-domain handoff scenario would
require that session keys for FAs-MN would be different from the top level keys
generated as parts of AAAs-FAs. The session keys calculation time and key
delivery time are increased when the MN is far away from the MN’s AAAH. In
consequence, the authentication time is increased and then the handoff delay is
increased.

In the proposed scheme, we need to make assumptions and describe the sce-
nario. we assume as follows: (1) Secure channels are assumed to connect AAA
servers (AAAH, AAALs) and clients (HA, FAs). (2) AAA servers and clients



Session Key Forwarding Scheme Based on AAA Architecture 21

have the function to generate and deliver the AAA messages. (3) AAA servers
have a list of their neighbor to forward session keys with them. (4) AAALs keep
the session key for its FA-MN. The session keys forwarding scenario is as follows:
When a MN comes to a new foreign network from a previous foreign network,
the MN needs session keys (HA-MN, nFA-MN) to make a new SA. The session
key for HA-MN has been generated during the MN started up on a home net-
work if the pAAAL provides the key, so it is no need to generate a new one each
time the MN visits to the new foreign network. Therefore, the MN only needs
the session key for nFA-MN. It minimizes an additional round trip through the
internet when the MN moves into new foreign domains, and enables smooth
handoff.

3.1 Messages Flow

In Fig. 3, we describe how to obtain the session key for nFA-MN. (1) The MN
visits the new foreign network and sends the Registration Request to the nFA.
The authentication data (HMAC-MD5 hash) is encrypted with the session key
shared between the pFA and MN. Along the Registration Request, the previous
foreign network address should be attached. The address should be kept by the
MN while it is communicating. (2) The nFA sends the AAA-MN Request to
the nAAAL. (3) The nAAAL receives the AAA-MN Request and obtains the
pAAAL address and then forwards the message to the pAAAL. (4) The pAAAL
authenticates the message by verifying the hash value, and generates the nonce
for the MN and nFA. (5) The AAA-MN Answer is generated in the pAAAL.
The message includes a plain nonce and an encrypted nonce using the key shard
between the pFA and MN and then the message is encrypted and signed using
the key shared between the pAAAL and nAAAL. (6) Upon receiving the AAA-
MN Answer from the pAAAL, the nAAAL decrypts it and forwards it to the
nFA. (7) The nFA receives the plain nonce and generates the key. it also brings
together the encrypted nonce with Registration Reply and then sends it to the
MN. (8) Upon receipt of the message the MN decrypts and stores the contained
session key for nFA-MN. The MN can now start using the services in the new
foreign network.

3.2 Security Considerations

AAA architecture must ensure a number of security threats. In this section, We
have analyzed three cases, which are namely non-repudiation, impersonation
attack, and replay attack, in the proposed scheme. (1) Non-repudiation: A repu-
diation attack can occur whereby the sender of a message denies having send the
information. In this paper, when a MN wants to obtain the connecting request to
a new foreign network, the MN must use the session key for HA-MN. An AAAH
validates the signature signed with the session key. If the verification holds, the
MN cannot deny when the dispute occurs. (2) Impersonation attack: If an at-
tacker tries to impersonate a legal user in a new foreign network, the attacker
will not be successful because the attacker does not possess the session key for
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Fig. 3. Flow of total messages to obtain the session key for nFA-MN

pFA-MN. The effective key strength should be stated as a number of bits. If
the key strength is N bits, the best currently known methods to recover the key
require, on average, an effort comparable to 2N−1 operations of a typical block
cipher. (3) Replay attack: If an attacker tries to replay the previous message sent
by a legal MN, it will not be successful because of the invalid time-stamp. The
expiration will be effectively verified in AAA servers.

4 Performance Evaluation

In this section, we do the performance evaluation to obtain the total authenti-
cation time according to the message flows (Figure 3) including the processing
time needed in authentication operations, the transmission time on which the
message is sent for wired and wireless links, and the processing time to authenti-
cate a MN. The obtained total authentication time is used to calculate the MN’s
authentication failure rate.

4.1 Total Authentication Time

In order to evaluate the performance of our proposed scheme, we define the
following notations:

– TMN−nFA /TnFA−nAAAL /TnAAAL−pAAAL /TpAAAL−nAAAL /TnAAAL−nFA

/ TnFA−MN : The transmission time between the MN and nFA / the nFA
and nAAAL / the nAAAL and pAAAL / the pAAAL and nAAAL / the
nAAAL and nFA / the nFA and MN, respectively.

– PMN / PnFA / PnAAAL / PpAAAL: The processing time at the MN / nFA /
nAAAL / pAAAL, respectively.

– ATpAAAL: The authentication time at the pAAAL.
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Table 1. System parameters

Bit rate Processing time
Wire/Wireless link 100 Mbps / 2 Mbps pAAAL/nAAAL/AAAH 0.5 msec

Propagation time pFA/nFA/MN 0.5 msec

Wire/Wireless link 500 μsec / 2 msec 3DES 0.5 msec

Data size MAC 0.5 msec

Message size 256 bytes AT (Authentication Time) 6.0 msec

We calculate times required for the performance evaluation using the following
equations as above notations and the performance parameters used to analyze
the scheme are listed in Table 1. Each value is defined based on [7,8,9,10,11].

First of all, the message transmission on wired links is in steps 2, 3, 5, and
6. Thus, T wired

total = TnFA−nAAAL + (TnAAAL−pAAAL) + (TpAAAL−nAAAL) +
TnAAAL−nFA and the message transmission on wireless links is in steps 1 and 7.
Thus, T wireless

total = TMN−nFA + TnFA−MN . The processing time is represented as
Ptotal = PMN + PnAAAL + PpAAAL + PnFA + PMN . The authentication time
AT is required in step 4. Hence the total authentication time ATtotal is ATpAAAL.
Therefore, we obtain the total required time for the authentication completion.
The total authentication time (Treq) is T wired

total + T wireless
total + Ptotal + ATtotal.

4.2 Authentication Failure Rate

The T is a random variable of the time for a MN staying in the overlapped
area and the Treq is the time required for the authentication completion. Hence,
the probability (P̃ ) which the MN leaves the overlapped area before the re-
quired time (Treq) is represented as P̃ = Prob(T < Treq), where we assume
that T is exponentially distributed and we restrict this probability to a certain
threshold (Pf ). Thus, the authentication failure rate P̃ = Prob(T < Treq) =
1 − exp(−λTreq) < Pf . Here is λ the arrival rate of MN into the boundary cell
and its movement direction is uniformly distributed on the interval [0, 2π). Thus
λ is calculated by the equation λ = V L

πS [12]. Here V is the expected velocity for
MN that varies in the given environment and L is the length of the boundary at
the overlapped area assuming a circle with radius l, i.e. L = (1

6 ×2πl)×2 = 2
3πl.

The area of the overlapped space S is 2 × (1
6πl2 −

√
3

4 l2). Hence we obtain the
authentication failure rate by Treq and λ.

l >
4V Treq

(2π − 3
√

3)log(1/(1− Pf ))
(1)

4.3 Numerical Results

Using above equations and the system parameters in Table 1, we compute the
cumulative authentication latency and the authentication failure rate by the
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increment of V. As you can see, Fig. 4 shows the result of the cumulative au-
thentication latency. Our proposed scheme always shows the better performance
than the standard AAA scheme due to decrease of the authentication message
forwarding distance to the AAAH. The authentication latency is improved up
to about 6.16%. Fig. 5 compares results for the probability of authentication
failure between the standard AAA scheme and the proposed one. The proba-
bility of authentication failure is influenced by few factors that are the velocity
of MN and the radius of a cell(l). The increase of MN velocity (V ) means the
handoff should be completed within relatively short period of time. If the MN
moves faster than the regular speed, the handoff time may not be sufficient and
consequently the authentication is failed.

The graph in Fig. 5 shows the authentication failure rate as a function of
the radius of the cell. As the radius of the cell increases, the overlapped area
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becomes larger, so that it is easy to complete the handoff. As a result, the
authentication failure rate decreases. When an authentication occurs with a MN
which has a high velocity, it is difficult to complete the authentication, because
the MN moves out of the overlapped area quickly. We calculate the cell size
when the probability of authentication failure is 10% and the velocity of MN is
20km/h. By the equation (1), the minimum cell radius of the existing scheme is
52.7m, meanwhile the proposed one is 40.1m. Therefore, the proposed scheme is
more efficient than the existing one in terms of cell radius and the efficiency is
improved up to about 23.9%. As a result, the proposed scheme is overall superior
to the existing one and even it supports more stable environments.

5 Conclusions

In this paper, we propose session key forwarding scheme based on AAA archi-
tecture. Currently, the standard AAA architecture causes long authentication
delay because the AAAL must request the MN’s authentication to its AAAH for
verification. To solve this problem, the proposed scheme performs the session key
forwarding to reduce the authentication delay with MN’s AAAH. According to
the analytical model and the comprehensive numerical results, our scheme shows
the better performance in the cumulative authentication latency. Moreover, the
proposed scheme is more efficient than the previous one in terms of cell radius
up to about 23.9% with almost negligible signaling overhead. In the future, we
will describe the requirements for the efficient session key management and the
access control by policy based.
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Abstract. In this paper, we introduce a dynamic anchor based mobility man-
agement scheme for mobile networks, in which different hierarchies are dy-
namically set up for different users and the multiple tunnels are converged into 
a single tunnel when lifetime refreshes without excessive packet loss. To justify 
the effectiveness of our proposed scheme, we made an analytic model to evalu-
ate the signaling cost and handoff delay compared with legacy schemes. Our 
performance result shows that the proposed dynamic anchor based mobility 
management scheme can reduce the system signaling cost and has shorter 
handoff delay under various scenarios.  

1   Introduction 

The tremendous growth of wireless communications and the technological advance of 
mobile terminals, for example, laptop and PDAs, encourage a growing demand for 
mobile and nomadic computing. Mobile IP [1][2] is one of the dominating protocols 
that provide the mobility support in the Internet. Mobile IP uses two addresses and 
two support agents to support host mobility. One address and an agent are used for it 
identification, and the other address and the agent are used for its routing. We say 
such addresses and agents as home address, home agents, care-of address and foreign 
agent respectively. Even though mobile IP keeps its network and upper layer connec-
tion† when moves between networks, it has small period of time that cannot transfer 
any data during handover. Such duration of time delay, so called ‘handover signal 
delay’, is in proportion to the distance between mobile host and its home agent and 
the frequency of the movement of mobile host. Since we cannot shorten geographical 
distance between mobile nodes and home agents, many other approaches to overcome 
the handover signal delay were devised [3-19].  

The local registration scheme using FA hierarchy is the typical approach to over-
come the handover delay. In the local registration using FA hierarchy, mobile host 
selects the foreign agent for registration target closer than its home agent to reduce 
round trip time from mobile node to home agent. Regional Registration [20], HMIPv4 
(HUT)[21], TeleMIP [22] schemes are based on local registration method.  
                                                           
 * This research was supported by the Brain Korea 21 Project. 
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However, Local registration scheme using FA hierarchy is not always superior to 
basic mobile IP. The GFA (Gateway Foreign Agent) that is a domain gateway in FA 
hierarchy, acts as a crossover node to all the downward links. Within a domain, the 
GFA must handle all the signals and traffics for mobile nodes. If packets and signals 
are concentrated on the GFA, overall system performance could be decreased or 
failed by the GFA crash. Also, we cannot overemphasize the multiple tunnel problem 
of FA hierarchy. In most cases, local registration schemes have two or more tunnels 
for packet delivery. IP-in-IP tunneling requires a series of process such as encapsula-
tion and de-capsulation. Especially, FAs in a FA hierarchy must process encapsula-
tion and de-capsulation steps all the time for multiple tunnels. So, the depth of multi-
ple tunnels is important factor for system performance.    

In this paper, we introduce a dynamic anchor based mobility management scheme. 
Although the anchor could be a local HA like GFA in regional registration, the anchor 
is set dynamically based on system threshold value using the distance and timing 
value. Therefore, our system has no fixed or pre-defined hierarchy information or any 
restriction of geographical location for network configuration. These dynamic anchor 
allocation characteristics enable network to balance the load and to make a robust 
system in comparing with geographically fixed FA hierarchy system. 

The proposed scheme uses lifetime reflection scheme to synchronize the lifetime 
values among mobility agents. In many cases, local registration scheme needs addi-
tional registration messages to synchronize lifetime value in all the mobility agents 
from the MN to HA.  In our system, we minimized the number of signal messages for 
synchronization among mobility agents using lifetime reflection scheme.  

2   Dynamic Anchor Based Mobility Management Scheme 

In this section, we describe an architecture and process of the proposed system. The 
proposed system updates location information locally based on the anchor. The an-
chor, a kind of mobility agent has function of HA and FA in MIP, acts as local HA for 
mobile node. The anchor in the proposed scheme is selected among FAs that MN has 
traveled. Therefore, the anchor is not fixed geographically and created or disappeared 
by time and location. MN can decide whether to do a local registration or home regis-
tration based on the ‘threshold’ value, where the threshold is a critical value used for 
re-creating an anchor. In our evaluation model, we set the threshold value based on 
the distance between the anchor and the FA. Network administrator can set the suit-
able threshold value to MN for better performance  

Dynamic anchor based mobility management is shown in Fig. 1. In order to under-
stand the mobility management scheme, we can assume that MN moves from FA1 to 
FA7 with threshold value of 3, where the threshold values means the distance from 
the anchor to FA to which MN is attached. When the MN attaches to the network for 
the first time, it performs the home registration through FA1 to HA. MN sets the cur-
rent FA (FA1) as its anchor node for a future location update. After this, MN can do 
local registration when it enters a new network until the distance between the anchor 
and new network is equal to the threshold value. As shown in Fig. 1., MN performs a 
local registration with the anchor(FA1) when moves from FA1 to FA2 and FA3, 
where the FA1 becomes the local HA reference point to other FAs. When MN moves 
into FA4 coverage area, it sets current FA4 as its anchor by threshold value.  
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Fig. 1. Dynamic Anchor based mobility management operations 

Movement into FA4 of the MN makes threshold value as ‘0’. So, the MN can per-
form a local registration until it reaches FA6 because the distance between the anchor 
and the FA does not exceed the threshold value. We can guess easily that the cost of 
registration would be bigger if the threshold is very small by frequent signals. On the 
other hand, Big threshold value would create a longer location update delay because 
of the long distance between the anchor and the FA. Therefore, we need a proper 
threshold value for optimal performance for mobile network.  

Packet transmission after registration is as following. HA always knows MN's CoA 
as an Anchor's CoA. Therefore, all the packets destined to MN from CN are arrived at 
the anchor via the HA. The anchor that receives tunneled data from CN prepares an-
other tunnel from the address of the anchor to CoA of FA in its binding list entry for 
MN after performing decapsulation.  Therefore, there is one tunnel between HA-MN, 
when MN co-exists within a same area with the Anchor and there are two tunnels 
between HA-MN, when MN is out of the Anchor area.  

MIP's location information is kept by a soft-state based timer. The proposed 
scheme use this timer except lifetime synchronization method among HA, FA and 
MN. When MN moves into FA2, it performs a local registration to FA1 as its anchor 
node.  After that, FA1 handles a local registration signal from MN via FA2. Every 
local registration performed without HA produces lifetime inconsistency problem 
between HA and other nodes. We can assume that MN plies FA2 and FA3 when 
threshold value is 3. This time, because local registration is processed by FA1 that is 
an Anchor of MN, The registration message does not reach to HA. Therefore, lifetime 
has been synchronized among the anchor, FA, and MN, but the lifetime value in HA 
does not consistent with the one in anchor or FA. Lifetime expiration means the dele-
tion of the relevant MN's entry in HA's binding list and the data that CN has sent to 
MN are discarded at the home network of MN. 
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In order to prevent such data loss, we can consider HA-Anchor-nFA-MN registra-
tion per network movement. In this case, longer processing time in many mobility 
agents and long round trip distance from MN to HA makes always worse result than 
MIP's registration. Therefore, we need to consider a suitable scheme satisfying the 
lifetime synchronization from HA to MN and minimal registration delay when MN 
performs local registration.  

Our scheme uses lifetime reflection scheme to solve the above problems. The ‘re-
flection’ in lifetime reflection scheme means that the anchor node reflects the re-
mained lifetime value to the source node that invoked local registration to synchro-
nize the lifetime with HA. For example, we can assume network environment with 
300 seconds of lifetime value in HA, Anchor, nFA, and MN, where MN moves into 
another network per 120 seconds. When MN without lifetime reflection scheme per-
forms local registration, the lifetime value of the anchor, FA, and MN would be reset 
by 300 seconds. But in case of lifetime reflection scheme, the Anchor sends registra-
tion reply using the current MN's remained lifetime in its binding list. Therefore, after 
all the lifetime values in FA, MN, and the anchor would be synchronized to 180 sec-
onds. If MN moves once more, all the lifetime value in the anchor, nFA, and MN are 
set to 60 seconds by lifetime reflection scheme mentioned above. At that time, MN 
must perform a home registration from MN to HA via FA and the anchor to prevent 
lifetime expiration. 

3   Performance Modeling 

In this section, we developed a performance model to evaluate the proposed scheme.  
On our performance model, We made average registration cost function per move-
ment and average handoff delay function per movement of basic MIP and the pro-
posed system respectively using ‘Random Walk Model’ as a mobility simulation 
model. And we derived various results from those function using different parameters 
that can influence in the performance.  

We use the 2-dimensional grid area made of cells for mobility area. HA, FA, MN 
can move freely and send/receive packets to and from in the basic unit cell shown as 
Fig. 2. Basis unit area on the grid means a cell and it means a sub-network of a real 
world. Cells do not overlap and just one mobile agent is existed on each cell. In this 
cell based grid area, the distance between cells means the distance between mobility 
nodes, for example, MN, FA, HA…etc. In case of FA and MN, we assume that they 
always exist in the same cell because they share direct link in our model. We use a 
cell movement count to present the distance between cells. For example, the distance 
between two cells with coordinates (x1, y1) and (x2, y2) is | x2 - x1 |  | y2 - y1 |. 
We apply Random Walk Model to calculate the mobility pattern. Random walk model 
has an equal probability of movement for all 4 sides of the cell in 2 dimensional 
plane, where the walk model is widely used for modeling in many other pa-
pers.[23][24][25]  

3.1   System Modeling 

Circled ‘A’ in Fig. 2. Means Mobility Nodes. We set the anchor node in the proposed 
system on the center of the grid area, so it has distance of ‘0’.  The MN moves from  
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Fig. 2. Grid area for system modeling with Random Walk Model 

the center to anywhere in the grid area freely but cannot move out of the grid area. 
The grid area size is restricted to a limited value. It is the value of the threshold num-
ber. So the grid area size is decided by the distance between FA and anchor, where 
the distance means the threshold value. It is reasonable because MN and FA always 
co-exist within a same cell.  

Table 1. Shows parameters used in our modeling. In order to derive a reasonable 
performance, we made link property; KCm  and ,,, ΑΤδ as input parameters. And the 
other parameters are computed by probability in Random Walk Model using random 
variables.  

Table 1. Parameters used on modeling 

Parameter Explanation 

ΑC  Signal Processing Cost of Mobility Agent 

Τδ  Proportionality constant between the transmission cost of the wired 
link 

haC  Transmission cost between HA-Anchor 

afC  Transmission cost between Anchor-FA 

fmC  Transmission cost between FA-MN 

hfC  Transmission cost between HA-FA 

k  Distance from HA to Anchor 
j  Distance from Anchor to FA 

m  Proportionality constant between the transmission cost of the wireless 
link 

d  Threshold value for dynamic anchor 
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3.2   Cost Function for Our Scheme Under Random Walk Model 

First, we find out two cases of local registration of the proposed system to get regis-
tration cost. Local registration is classed into two cases by registration cost as shown 
in Fig. 3.by registration cost. Fig. 3. depicts the case of local registration (Handoff) 
with an anchor and case of returning to the anchor  

 

Fig. 3. Local handoff case for Dynamic Anchor scheme 

So, we can express local registration cost as follows using parameters in Table 2. 
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In order to formulate RAP , we transform the movement probability pattern of Random 
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We can obtain rule (5) by expanding Random Walk Model movement pattern. (5) 
shows the element value given i, j conditions, where ‘i’ is the starting cell and ‘j’ is 
the destination.  
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This transition matrix base on Random Walk Model has rules of Markov Chain.[26] 
So, we can get n-th result by (6)  
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So, we can rewite local registration using dynamic anchor as follows 
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Besides, MN performs home registration when the distance from the anchor to FA 
reaches the threshold value.  Home registration cost wound be (8)  
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We can rewrite (8) as follows with the same method from (2) to (3) 
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Because there is exacly one local registration per movement of the MN and one home 
registration every d movement, so the average registration cost per movement after d 
movement is expressed as 
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3.3   Cost Function for Mobile IP Under Random Walk Model 

Similarly with 3.2, MIP registration is classfied into two cases.  
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We can define formula (12) as follows with probability case. enCost hom−  denotes aver-

age registration cost after n-th movement. In (13), n

ePhom denotes the probability of MN 

moving to home network. 
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In order to present n
ePhom as a numerical fomula, we reuse transition matrix P in 3.2. 

nP 3,0  in matrix n
jiP ,  means that MN is far from center by distance of ‘3’. When k=3 

and 03,0 ≠nP , MN has the probability of returing home. To calculate the average prob-

ability of returning home, we used grid calculation on the grid area in Fig. 2.  We can 
see the counts of cell that has distance of ‘d’ from center are d×4 .  HA could be 

exactly in one of these cells, so the average HA existence probability is 
d4

1
. By these 

rules, (13) could be rewrited as follows. 
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Finally, we can derive per movement average MIP location update cost using the 
following function. 
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4   Performance Evaluation 

In this section, we evaluate the model in different environments using the modelling 
functions we have derived in section 3. We set the following network parameters to 
apply different kind of network environment on the functions.  

Table 2. Parameters used in modeling 

Parameter value 

ΑC  0.05,  0.5(ms) 

Τδ  0.1, 1(ms) 
k  1,4,7,10,13,17,20(hops) 
m   Τδ *5(ms) 
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Table 2. shows parameters used for our evaluation, where parameter with 

05.0=ΑC , 1.0=Τδ represents fast network environment and parameter with 

1,5.0 =Τ=Α δC  represents for relatively slow network environment.  

 
Fig. 4. Ratio of registration cost in random walk model ( 5.0,05.0,1.0 ==Α=Τ mCδ ) 

Fig. 4. depicts average signal cost ratio per movement of the proposed scheme to 
legacy mobile IP under condition of relatively fast network environment 

)5,1.0,05.0( ×Τ==Τ=Α δδ mC . Since the values of Y axis mean the ratio of our 

signal cost to legacy mobile IP, We can evaluate relative performance on the basis of 
‘1’.  As shown in Fig. 4. , The signal cost of the proposed scheme is always superior 
to legacy mobile IP when k>=4  and d>1 . Our scheme is inferior to legacy scheme 
only when the MN is near HA due to additional signals such as local registration per 
movement. But, When MN moves far from HA with threshold=d>2, registrations to 
far HA with high cost are substitute as local registration with low cost. Therefore, 
When MN is far from HA in some degree(k>=4) and threshold value is suitable(d>1), 
we can expect signal cost reduction effect using the proposed scheme.  

Fig. 5. depicts handoff delay ratio of the proposed scheme to legacy scheme. The 
handoff delay functions can be derived from registration cost functions. We can sub-
stitute transmisstion delay for transmission cost and processing delay for processing 
cost to derive delay measure. Home registration in our scheme does not invoke packet 
loss when its handoff because MN can always receive buffered data from its anchor. 
Therefore, the handoff delay of the proposed schme is as follows. 
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In case of mobile IP, all the registratins invoke packet loss.  For that reason, hand-
off delay of the mobile IP is the same with (16). Similarly with cost results as shown 
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in Fig. 4., Our scheme shows dorminat result over legacy mobile IP scheme ex-
cept 1≠k . Even though the ratio value would excess ‘1’ when k goes infinite value 
by gradient of curves in Fig. 5, k values would not excess ‘20’ when we assume that 
hop counts of common network session between two nodes in real world is less than 
‘20’. 

 

Fig. 5. Ratio of HO delay in random walk model ( 5.0,05.0,1.0 ==Α=Τ mCδ ) 

Fig. 6. and Fig. 7. shows performance result with relatively slow network environ-
ment. When we increase input parameter considerably such as tranmission cost con-
stant or processing cost constant, the signal cost shows that our scheme does not have 
overwhelming result over legacy mobile IP scheme at a glance. But, Fig. 7. shows 
 

 

Fig. 6. Ratio of registraton cost in random walk model ( 5,5.0,1 ==Α=Τ mCδ ) 
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Fig. 7. Ratio of HO dealy in random walk model ( 5,5.0,1 ==Α=Τ mCδ ) 

that our scheme has still very sound handoff delay result over legacy mobile IP 
scheme. It is reasnoable when we consider that local registration in our scheme is 
performed per movement. MN can utilize the various threshold values depend on the 
system performance aims. If MN wants low delay, small value of ‘d’ would satisfy 
the system aims. If MN wants low signal loads, more than ‘3’ values would satisfy the 
system aims. In our performance evaluation, Threshold value of 73 ≤≤ d produces 
sound results when we consider average signal loads and delay synthetically.  

5   Conclusions 

In this paper, we proposed dynamic anchor based mobility management for improv-
ing Mobile IP performance. The scheme has following characteristics: reduced signal 
cost, reduced handoff delay, balanced-load on anchor nodes, compared with basic 
MIP. Our modeling results show that the proposed scheme has much better perform-
ance over basic MIP when the distance between the MN and the HA is far away.  
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Abstract. Scale-free networks naturally model wide area networks like
the WWW. We consider the problem of fast exploration of huge scale-
free networks using small memory space. Although there are many search
algorithms for exploring an unknown graph, they require much space or
time. For example, the depth first search requires some memory for all the
nodes in the worst case, and the average number of steps in the random
walk is O(n3), where n is the size of the graph. Under assumptions reflect-
ing WWW applications, we propose a new exploration paradigm called
forest search particularly designed for scale-free networks, and theoreti-
cally evaluate its space complexity. We also demonstrate its superiority
over random walk based search algorithms by conducting simulations.

1 Introduction

Given an unknown graph, we in this paper consider the problems of (1) finding
a path connecting two given nodes, and (2) traversing all the nodes. There
are of course many search paradigms such as the depth first search (DFS) and
the random walk, which are designed for general and abstract graphs, defined
independently of concrete applications. Although these paradigms are widely
applicable because of their abstract nature, they may not behave very well in
real applications. For example, DFS requires some space for all the nodes in the
worst case and the random walk requires O(n3)-time on average, where these
space and time are no longer moderate. We however may be able to come up
with a better search paradigm by shifting and restricting our attention to a more
concrete model.

The aim of this paper is to propose a new algorithm paradigm called the
forest search for constructing search algorithms that guarantee good behaviors
particularly on scale-free networks such as the WWW. The model we have in
mind is the following:

1. A graph models the communication network of a distributed system, where
nodes and edges represent sites and communication links, respectively. A
crucial assumption is that the communication network is a logical one.
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2. Each node has a unique identifier (ID), but the ID is unknown until the node
is visited.

3. Each node identifies the communication links incident to it, but does not
know who is adjacent to at the other end of a link.

4. An agent can memorize some node ID’s, and jump directly to the node with
an ID stored in the memory (imagine bookmarks of web browsers).

5. Our criterion is the number of steps of the agent to achieve the goal, and we
do not consider the complexity to examine the neighbor nodes.

The agent is initially placed at an initial node. In the search algorithm, the
agent moves on the graph nodes according to the link information. By Assump-
tion (4) above, the agent may jump to a non-adjacent node, as there may be a
virtual link. Note that this assumption can be removed at the cost of increasing
the number of steps.

As touched in above, a paradigm for solving the problems is DFS on the graph.
To keep the search path away from loops, we however need to memorize some
information such as the visited node ID’s or spanning trees [15,11,12]. Another
paradigm is a random walk on the graph. Although a random motion of the
agent requires less space, the worst case time complexity, i.e., the maximum
number of steps necessary to achieve the goal, cannot be bounded from above.
This fact and that the average time complexity is O(n3) are big disadvantages
of the random walk paradigm.

This paper proposes the forest search paradigm, which requires less space
than DFS and less time than the random walk. It is a deterministic paradigm,
and the termination of search is explicit. The forest search is applicable to any
graph, but it effectively works especially on scale-free networks [4]. It is known
that many real wide area networks such as the WWW are scale-free.

The forest search defines a spanning forest of the graph by using local topo-
logical information and traverses each of the trees in the forest using a constant
memory. Since the forest is implicitly maintained, we do not need to memorize
it. To traverse all the trees in the forest, we make use of DFS paradigm. As the
space complexity is in proportion to the number of the trees, we prove that it
is small for scale-free graphs. We also show by simulation that all the nodes of
a scale-free graph with one million nodes can be partitioned into less than four
trees on average. We also conduct simulations to demonstrate its superiority over
random walk based search algorithms. The results show that the forest search
is better than the random walk with respect to the average time complexity to
visit all the nodes.

2 Preliminaries

2.1 Scale-Free, Small-World and Random Graphs

The degree distribution follows the power-law in many real-world networks [1,2,8];
i.e., the probability P (d) that a node has degree d satisfies

P (d) ∝ d−γ .
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A network whose degree distribution follows the power-law is sometimes called
a scale-free network. In many real-world scale-free networks, 2 < γ < 3.

Barabási and Albert proposed a model, which we name BA model, to generate
scale-free networks [4]. In BA model, a scale-free network is generated by the
following two rules:

(Growth) We first prepare the complete graph with m0 nodes. At every time
step, we add a new node v and connect it to m(≤ m0) distinct nodes u
randomly chosen from the existing nodes with the probability defined below.
(That is, m edges are added.)

(Preferential Attachment) The probability that a node u is chosen is
deg(u)/

∑
v∈V ′ deg(v), where V ′ is the set of the current nodes. After t steps,

the numbers of the nodes and the edges are thus m0 + t and m0(m0−1)/2+
mt, respectively.

BA model generates scale-free networks with degree distribution P (d) ∝ d−3 [5].
We denote by Gn

m a graph randomly generated by BA model.
WS model is proposed by Watts and Strogatz to generate small-world net-

works [16]. To generate a small-world network, we prepare a regular lattice graph
which is constructed from a ring by adding edges to connect each node to its
kw neighbors. We then re-wire each edge with a given probability pw, where
“re-wiring an edge” means disconnecting one end of the edge and connecting it
to a node uniformly chosen at random so as not to create self-loops nor multiple
edges. The number of the edges is nkw/2 and for 0.01 < pw < 1 the generated
graphs show the small-worldness [4].

ER model is a model to generate random graphs proposed by Erdős and
Rényi [9]. In this model, random graphs are generated as follows: We first prepare
n isolated nodes, and then, for each pair of nodes, independently, we connect
them with a given probability pe. The expected number of the edges is thus
pen(n− 1)/2 and the distribution of degree d is

P (d) =
(

n− 1
d

)
pd

e(1− pe)n−1−d,

which is binomial with the mean degree d̄
def= pe(n−1). If n → +∞, this converges

to the Poisson distribution

P (d) → e−d̄d̄d

d!
.

2.2 Random Walks on Graphs

A random walk on a finite graph is the process that repeats moving an agent on
a certain node to one of its neighbor nodes with some probability. The random
walk often means the standard random walk in which the agent moves to one of
the neighbor nodes with the same probability [7]. That is, the transition matrix
P = (pu,v) is given by

pu,v =
{

1/deg(v) (v ∈ N(u))
0 (otherwise).
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The standard random walk hence uses only the degree information of the node
on which the agent exists. The hitting time HG(u, v) is the expected number of
steps necessary for the agent in u to reach v. The hitting time of graph G is
defined by HG = maxu,v∈V HG(u, v). For the standard random walk, the hitting
time (indeed the cover time) of any graph G is bounded by (1 + o(1)) 4

27n3 [10],
and the hitting time of a lollipop (a complete graph of �n

2 	 nodes with a path
graph of 
n

2 � nodes) is (1 − o(1)) 4
27n3 [7].

Ikeda et al. recently generalized the standard random walk to propose the
β-simple random walk [13]. The transition matrix of the β-simple random walk
is given as follows:

p(β)
u,v =

{
deg−β(v)

w∈N(u) deg−β(w)
(v ∈ N(u))

0 (otherwise)

where β ∈ R. Note first that it uses not only deg(u) but also deg(v) of v ∈ N(u).
Note next that the β-simple random walk is the standard random walk when
β = 0. When β < 0 (resp. β > 0), the agent tends to move to a large (resp.
small) degree node. For β = 0.5, the hitting time of any graph is bounded by
O(n2), which is optimal, since there exists a graph whose hitting time is Ω(n2)
for any transition matrix [13].

The β-simple random walk has further been extended to (k, l, β)-random walk,
where k is the size of tabu list, by which a move to k previously-visited nodes
is avoided, and l is the look ahead distance, by which the agent can view the
nodes within distance l from the current node and can jump to the target node
(if there is) [14].

3 Forest Search

We now present the forest search paradigm. The basic idea is as follows. Scale-
free networks G have the following properties: there are many nodes with small
degrees, while there are a quite small number of nodes (hubs) having large degrees
compared with the number of nodes with small degrees, and the average distance
LG (LG =

∑
u∈V

∑
v �=u dist(u, v)/n(n− 1), where dist(u, v) is the length of the

shortest path from u to v) is also small. Because of the preferential attachment,
it is likely that a node is connected to a node with larger degree. Therefore we
expect that by continuously moving to an adjacent node with larger degree we
can arrive at a kind of a root of the network.

For each node u of the network, let Nk(u) denote the set of all nodes whose
distance from u is at most k. The node u itself belongs to Nk(u) for any k ≥ 0.
We define the parent node π(u) of each node u as follows. The parent of u is
the node whose degree is the maximum among all the nodes in N1(u). A tie is
broken by taking the node with the smallest ID.

Let F be the ordered forest for G which consists of all the nodes of G and
whose edges are (u, π(u)) for all nodes u of G. We say that F is defined from G by
the simple rule. As the maximum out-degree of F is 1 and obviously there are no
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Step0: Set the root list and the cross stack empty, then move to start node.
Step1: Walk up to the root from the current node. Check if that root exists in

the root list. If yes, pop one cross-edge from the cross stack and jump to
its source node, then goto Step3.

Step2: Add the current node (root) to the root list and search the tree by DFS.
Step3: Seek the next cross-edge while walking in the tree in the same way as DFS.

If it is found, push it to the cross stack and go across, then goto Step1. If
not, pop one cross-edge from the cross stack and jump to its source node,
then goto Step3. (If the cross stack is empty when pop, it indicates that
all the nodes in the connected component are visited.)

Fig. 1. The algorithm of the forest search

cycles with length more than one, F is the spanning forest, and the root of each
tree in F has a maximal degree. We observe that F has the following properties
by the properties of scale-free networks: As the number of large degree nodes is
very small, the number of trees in F would be small, and as LG is small, the
depth of each tree in F would be small. In the following, we present the forest
search to take advantage of the above observations.

The forest search walks on a given network with local topological information
as if it were a forest. The idea of searching as if the search space were a forest
is proposed by Avis and Fukuda as reverse search for hard enumeration prob-
lems [3]. An outline of searching a forest is to repeat seeking a new tree and
searching it by using DFS until the target node is found. Due to the definition of
the parent, it is unnecessary for DFS in a tree to memorize any tracks. We call
each tree virtual tree because it is implicitly defined, and a graph created from
the original graph by shrinking each virtual tree into a new node the shrunken
graph.

Figure 1 presents the forest search algorithm. During this algorithm, check if
the current node is the target node, and if yes, output and halt. To identify and
go across trees, a root list to memorize the roots of the trees found so far and a
cross stack to memorize the non-tree edges (cross-edge) are required. An element
of the cross stack is a directed edge to go across trees, which is an ordered pair
of source and destination nodes.

In effect, on a larger scale, this algorithm performs DFS also in the multi-
graph assuming that each tree in a forest is a node, but should visit every tree
“adjacent” to the current tree because it is impossible to check whether a tree
is previously found unless going to its root.

Now we present a theorem regarding as the steps in the worst case.

Theorem 1. Let G be a finite undirected connected graph with |V | nodes and
|E| edges, then forest search searches G in O(|V | + |E| · h) steps in the worst
case using O(t) memory, where h is the largest depth of virtual trees in G and t
is the number of virtual trees.

Proof. Traversing each tree by DFS requires Θ(ni) steps, where ni is the number
of nodes in the tree and

∑
i ni = |V |. Thus, traversing once for every tree requires



44 Y. Kurumida et al.

Θ(|V |) steps in total. As for the underlying forest in G, there are at most |V |
trees in the worst case and at most |E| cross-edges, so “larger scale” DFS on
multi-graph requires O(|V |+ |E| ·h) steps: The first term is the number of trees.
The second term is the number of cross-edges multiplied by the largest depth
h, which stems from the difference from the ordinary DFS as mentioned. As for
the required space, it is obvious that only O(t) space is enough for DFS on the
shrunken graph. Putting these factors together, we obtain the theorem. �

We then introduce the additional rule to define a spanning forest. For each root
node u in the spanning forest by the simple rule, we change the definition of the
parent of u such that the parent is the node with maximum degree in N2(u). A
tie is broken analogously. We can show the following:

Theorem 2. The graph F defined by the additional rule has the following prop-
erties.

1. If a root node u by the simple rule has adjacent node which belongs to a
different virtual tree, u is not a root by the additional rule.

2. F does not have a cycle with length more than one.

Note that a cycle with length one exists for each root node.

Proof. (1) If a root node u by the simple rule is adjacent to a node v which
belongs to a different virtual tree, the parent of v is not u. Therefore by the
additional rule π(u) = π(v) and therefore π(u) �= u, that is, u is not a root
by the additional rule. (2) From the definition of the parent, by traversing an
edge from a node to its parent, either the degree increases or the ID decreases,
implying that there is no cycle. �
In Section 5 we show that the number of virtual trees is dramatically reduced
by the additional rule.

Note that all the walk-based local strategies mentioned in the previous sections
have randomness in choosing next node, but this strategy works deterministi-
cally. We also note that, contrary to the random walk, the forest search algorithm
described above assumes that the given network is static, which does not hold for
real-world networks. The modification of the algorithm for adjusting to dynamic
networks is easy, though we cannot guarantee the worst case complexity.

4 Theoretical Analysis

In this section we give theoretical analysis on the number of virtual trees in a
scale-free network defined by the forest search. Namely, we show the following
theorem:

Theorem 3. For a scale-free network Gn
m created by the preferential attach-

ment, the expected number of virtual trees by the simple rule is at most cmn for
some constant 0 < c < 1.
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Fig. 2. The number of virtual trees in scale-free networks

Recall that Gn
m be a graph with n nodes created randomly by the preferential

attachment where m0 = m′ = m. Then Gn
m has the same distribution as a graph

generated by n-pairing [6]. Consider a partition of the set {1, 2, . . . , 2mn} into
pairs. Sort all pairs (li, ri) (1 ≤ i ≤ mn, li < ri) in ascending order of ri’s. Then
the interval (rm(i−1), rmi] represents the node i, and each pair (lj , rj) represents
an edge between nodes u and v where lj ∈ (rm(u−1), rmu] and rj ∈ (rm(v−1), rmv].
We use this representation of Gn

m for the analysis.
We map the pairs (li, ri) into the interval [0, 1]. Then ri is a random variable

and Pr[ri = x] has a density function 2x (0 < x < 1), and li is uniformly
distributed on [0, ri]. Let R1, . . . , Rmn be the result of sorting r1, . . . , rmn, Wi =
Rmi, and wi = Wi−Wi−1. The node i is represented by the interval (Wi−1, Wi].
It is shown that the expected value of Wi is

√
i/n, and |Wi −

√
i/n| ≤ 1

10

√
i/n

for all i with high probability [6].
We regard each edge (i, j) of the graph as being directed from j to i (i < j).

Then each node i has exactly m outgoing edges to node j’s (j < i), and di

incoming edges from node k’s (k > i).

Lemma 1. The expected value of di is μi = 2m(n − i) · wi

1+Wi
, and Pr[di ≥

11
10μi] ≤ exp(− μi

207 ) and Pr[di ≤ 9
10μi] ≤ exp(− μi

200 ).

Proof. There are m(n− i) nodes with index greater than i. Consider such a node
x. Then the probability that x has an outgoing edge to node i is∫ 1

Wi

2x

1−W 2
i

· wi

x
dx =

2wi

1 + Wi
.

Therefore the expected value of di is 2m(n− i) · wi

1+Wi
. By the Chernoff’s bound,

the inequalities hold. �
Now we show the main theorem:

Proof (of Theorem 3). The number of virtual trees defined by the forest search
is the same as the number of nodes whose adjacent nodes have smaller degrees
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than themselves. To estimate it, we consider the probability that an adjacent
node j of a node i has larger degree (j < i).

Pr[dj > di] > Pr
[
dj >

9
10

μj

]
· Pr

[
di <

11
10

μi

]
>
(
1− exp

(
− μj

200

))
·
(
1− exp

(
− μi

207

))
This probability is lower bounded by a constant for μi greater than some constant
c′. That is, if the expected degree is greater than c′, there is a constant probability
1 − c that the node i has an outgoing edge to a node with degree greater than
that of i. If μi is smaller than c′, the probability that dj > c′ is also a constant.
Therefore the expected number of root nodes of virtual trees is at most cn.
Furthermore, because the node i has m outgoing edges, the probability that all
adjacent nodes have smaller degrees than i is cm. Therefore the expected number
of root nodes is at most cmn. �
Figure 2 shows the relation between the number of nodes and the number of
virtual trees in scale-free networks for m = 2, 3, . . . , 6. We can see that the
number of virtual trees decreases exponentially in m.

5 Experimental Results

5.1 Number of Trees and the Size of the Largest Tree

We first see the statistics of underlying forests because the efficiency of the forest
search depends on the structure of the forest which it search. We first consider
the case of the simple rule. Figure 3 shows the empirical results by applying rule
of choosing parent to networks of each model. There are many trees in a resulted
forest in WS model (because its nodes have almost the same degree and are easy
to be root nodes) and relatively much fewer in BA models, but the number of
trees seems to increase linearly with the number of nodes in every model. As for
the size of the largest tree in a forest, the size in BA model increases linearly, but
that of other two models increases more slowly. These results suggest that in BA
model, there are one giant tree and several other small trees. On the contrary in
WS model, there are only small trees.

Next we show the results on the additional rule. Figure 4 shows the number
of virtual trees and the size of the largest virtual tree by the additional rule for
m = 2. We can see that the number of virtual trees is extremely small (for a
network with one million nodes, the size is less than four on average), and more
than 90% of nodes belong to the same tree.

5.2 Results on Finding a Path Between Two Nodes

Now we see the results of forest search. Figures 5 (without look-ahead prop-
erty) and 6 (with 1-look-ahead property) show the steps by forest search plotted
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The figures show the results for ER, WS and BA model by the simple rule averaged
over 20 distinct networks for each model
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Fig. 5. Results of forest search without look-ahead property

against the number of nodes. For comparison, the result of (0, l, 0.5)-random
walk on the same networks is also plotted with fine line in each figure. As with
the random walk, the steps increase with the number of nodes.
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On the average, for random walk without k-tabu property, the number of
the candidates to one of which the agent move is 4 (average degree of the net-
work) in a given network G, while for forest search, 1 (average number of chil-
dren) in forest in G. In addition, the degrees of the adjacent nodes have little
variance.

Compared with (0, l, 0.5)-random walk, forest search has better performance
for l = 0 except for the max steps in WS model, but loses the precedence for
l = 1 except for the mean steps in WS model.

As for the memory for going across trees in forest search, the size of the
memory is bounded by the number of trees. Figure 7 shows the size of the
memory used. These figures show the size of the root list (left side) and cross
stack (right side) averaged 20 distinct networks for each model during forest
search by the simple rule. Here “mean” and “max” in the legends represent the
mean and max of the largest size of the list or stack in searching over all 1

2n(n−1)
start-target pairs for a network, respectively. In each figure, the mean, max size
for l ∈ {0, 1} and the number of trees in a forest are plotted against the number
of nodes.
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Fig. 8. Mean (left) and max (right) steps in visiting all the nodes

In every model, forest search requires almost the same space as the number of
trees in the worst case. In BA model, the mean size of the memory stay almost
constant against the number of nodes while those in ER and WS model linearly
increase: The size of the root list is around 1 and that of the cross stack is rather
larger than 0. This is also due to the giant tree in BA model.

If the additional rule is used, the size of the root list and cross stack is almost
one in BA model.

In summary, forest search has the advantage for searching each tree, which is
a cluster in a network in some senses and thus for searching networks in which
there exists giant trees such as BA model.

5.3 Results on Traversing All the Nodes

Thus far, we take up the steps in searching the specified target node, but we
consider forest search has an advantage over random walk in covering nodes
of networks and we investigate the steps in visiting all the nodes of networks
at least once. Figure 8 shows the result for BA model. We perform (k, 0, 0.5)-
random walk with k = 0 or kn (the doubled number of trees in underlying
forest) and forest search on networks of BA model. The mean and max steps
here represent the mean and max number of steps in visiting all the nodes over
all n start nodes for one network, respectively. We apply each strategy to 20
distinct networks with n and calculate the average.

As for the max steps, for any graph G, forest search requires O(|V |+|E|·h) steps
which is derived from the same analysis as in Theorem 1 while (0, 0, 0.5)-random
walk does O(n2 log n) [13]. Compared with both (0, 0, 0.5)- and (kn, 0, 0.5)- ran-
dom walk, forest search has better performance.

6 Concluding Remarks

We have proposed forest search: a deterministic graph exploration algorithm
using local topological information of graphs. It can traverse all the nodes of
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scale-free networks quickly using small memory. It is faster than a random walk
strategy using the same amount of memory. We have theoretically analyzed the
required memory for the algorithm. It is much smaller than the size of the graph,
and exponentially decreases in the parameter m of the scale-free networks.

As future work, we give much detailed theoretical analysis on scale-free net-
works such as the distribution of the size of trees, the depth of the largest tree,
etc. We will also consider more space efficient algorithm for exploration.
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Abstract. Digital Libraries (DLs) provide an important application area for de-
ploying mobile agents, and with the increase in content being made available 
within such libraries, performance concerns are becoming significant. Current 
DLs often involve content servers which are geographically distributed, often 
necessitating information from these servers to be aggregated to answer a single 
query. Encoding a query as a mobile agent provides a useful means to imple-
ment such queries. However, a significant concern when this approach is 
adopted is the need to load balance multiple sets of such agents across the 
available servers. This paper focuses on an attempt to answer which load bal-
ancing scheme should be applied to an agent-based DL. A demonstration of a 
load balancing scheme based on the guidelines proposed in this paper with ref-
erence to Synthetic Aperture Radar Atlas (SARA) DL, consisting of multi-
spectral images of the Earth, is presented. This particular DL involves process-
ing image content, but also involves aggregation of data acquired from the im-
ages with text-based content available elsewhere. 

1   Introduction 

Digital Libraries (DLs) provide a useful way to group a collection of services and 
digital objects that may be used in a particular context. DL research has often focused 
on providing static content that may be subsequently accessed in a variety of ways. 
Recent focus on active DLs, whereby content from a collection of different reposito-
ries may be aggregated, provides useful parallels with work in Service-Oriented com-
puting. Such repositories can be implemented using specialised hardware, and often 
support domain-specific interfaces. Accessing the content available within such a DL 
through the use of intelligent agents provides an important step in re-purposing such 
DL content. 

The introduction of agent-technology in Digital Libraries implies the provision of 
agent management support within the architecture of the DL. Load balancing (LB) is 
one of the most important techniques that can be applied to support the management 
of mobile agents within an agent-based system, because apart from the even distribu-
tion of agent load among the servers, the management agents’ information on LB may 
also be reused by other techniques that can extend the scalability of an agent-based 
Digital Library (ABDL). 
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The following section provides a brief description of different load balancing ap-
proaches, whereas the remainder of this paper focuses on an attempt to answer which 
load balancing scheme should be applied to an ABDL. Finally a LB scheme for an 
ABDL based on the guidelines proposed in this paper is demonstrated with reference 
to the SARA active DL. 

2   Load Balancing Approaches 

Generally, load balancing aims to improve the average utilisation and performance of 
tasks on the available servers, whilst observing particular constraints on task 
execution order. Assuming agents have a set of tasks to execute, it is necessary to 
identify how these tasks may be distributed across the available servers. Hence, 
workload distribution must consider both the number of agents on a server and the 
number of tasks being executed by each agent. Load balancing can be either static or 
dynamic [13] according to the multi-agent system in which it is being considered. In 
static load balancing tasks cannot be migrated elsewhere once they have been 
launched on a specified server. In dynamic load balancing a task may migrate to 
another server, utilising the agent’s mobility.  

There are two basic approaches to distribute tasks among servers: the state-based 
and the model-based approach. In the state-based approach, information about the 
system state is used to determine where to start a task. The quality of this decision 
depends on the amount of the state data available, and the frequency with which this 
state data is recorded. Gathering the data is expensive, but leads to a more accurate 
decision. In the model-based approach, load balancing depends on a model which 
predicts the system state and which may be inaccurate. Model-based approaches are 
more difficult to implement as they involve the derivation of an initial model, and the 
need to adapt the model over time.  

In state-based load balancing, a common approach for managing system state and 
load is the market mechanism to value resources and achieve an efficient match of 
supply and demand for resources. Examples include Spawn [5] (based on a negotiated 
auction protocol), Dynast [14] and OCEAN [15] based on non-negotiable pricing 
mechanisms. System state may be accumulated in different ways, via specialised 
monitoring agents, such as Mats [15] and Traveler [9]. In the FLASH [20] framework 
a system agent maintains information about the whole system state and passes it to 
node agents on each server in the network. Node agents monitor locally residing 
mobile agents. User agents (which are mobile) are responsible for the load balancing 
of the parallel application, and migrate through a cluster searching for free resources. 
Their migration decisions are based on internal states as well as internal and external 
events. 

Almost all the systems that explore the model-based approach use distribution of 
CPU load and expected process/task lifetime to decide if and when to migrate.  
Malone’s Enterprise [18] system uses a market mechanism, and the Challenger [1] 
system uses a learning-based approach. Eager et al. [10] utilise concurrent execution 
to improve resource usage. Most of these approaches however cannot easily adapt to 
changing system workloads.   
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Finally, SARA [6] utilises a LB scheme based on a combination of the state-based 
and model-based approach of LB. The state-based part of LB is similar to FLASH, 
apart from the fact that decisions on load balancing are supported though the 
stationary management agents and not the mobile agents (see section 3.3); whereas 
the model-based part of LB is described in [7]. Note that SARA was also the first 
system to employ the FIPA-compliant gateways [8] to enable FIPA interoperability 
with external FIPA-compliant agent-based systems. The proposed approach is 
therefore also suitable for other systems that utilise the FIPA architecture (based on 
the Agent Management System (AMS), the Directory Facilitator (DF) and a limited 
set of FIPA performatives). 

3   Choosing the Appropriate Load Balancing Scheme for an ABDL 

Research experiments [4] prove that dynamic LB outperforms the static placement 
scheme by 30-40%, consequently the focus on choosing an efficient load balance 
technique an ABDL is based around dynamic LB. 

The objective of market-based approaches on LB is to value resources and achieve 
an efficient match of supply and demand for resources. This may be achieved by 
using only a price, match offers and bids, or by employing more sophisticated auction 
protocols. Therefore LB in this case is directly related and influenced by the amount 
of currency the agents have. The higher is the currency possessed by an agent, the 
more advantageous it becomes in utilising server resources. Even in the Vickrey auc-
tion (in where the price paid by the winner agent of the auction equals the second-
highest bid placed), agents with less currency have limited chances of winning an 
auction i.e. utilising resources for the execution of their tasks. Consequently, market-
based approaches tend to be priority-based. The aim of LB in an ABDL is to evenly 
distribute agents among the servers, as well as to equitably serve them. The agents’ 
tasks are carried out simultaneously and there are no priorities between the agents; 
agent task completion times therefore do not necessary imply a higher priority. Since, 
the objective in an ABDL is to serve equitably the agents without any priority levels, 
market-based approaches are impractical for such architectures. 

As it has been mentioned in section 2, the state-based approach of LB is based on 
the information about the system state, which is used to decide the server where a task 
must be started. Consequently, the nature of information acquired impacts the effec-
tiveness of the LB technique. In addition, in distributed systems where network and 
server conditions change dynamically, for LB to be effective, it should adapt quickly 
to those changes. LB approaches which use mobile agents to roam through the net-
work searching for free available resources, lack this kind of adaptiveness. In such 
approaches agents have to migrate from server to server until they find the needed 
resources, which is likely to result in network load and in the increase of servers’ 
utilisation. This is because multiple agents simultaneously migrate thought the net-
work and since they are active they consume resources e.g. memory. These agents 
only have information regarding the servers they have visited, but during their itiner-
ary a lot of changes might take place on the previously visited servers of which the 
agents will be unaware of. For instance, during an agent’s itinerary, resources on a 



54 C. Georgousopoulos and O.F. Rana 

server that has already been visited might become available, but the agent will keep 
on migrating because it is impossible for it to be informed about this change. 

3.1   Gathering, Distributing and Updating System State Information  

The ability of an agent to have knowledge of the overall system state can be achieved 
with the introduction of special agents on every server which monitor the local server 
resources, and exchange their information between themselves. This overcomes the 
adaptiveness problem, optimises the load balance decisions based on the overall sys-
tem state information and decreases the network load by eliminating unnecessary 
agent migrations. A message is faster to transmit in contrast with the time an agent 
needs to be serialised and migrated. Therefore, where there is a sole roaming agent to 
gather the overall system state in a network of N servers, such an agent has to be seri-
alised and do N-1 migrations, while the special agents have to exchange )1(* −NN  
messages between themselves to achieve the same result. However, the roaming 
agent, after it has finished its itinerary, has to either migrate back to all the previously 
visited servers (i.e. do additional N-1 migrations) or send each of them a message (i.e. 
total of N-1 messages have to be transmitted) containing information on the local 
system states that have been collected so that every server is aware of the overall 
system state. 

An experiment on a 100Mbit/s Fast Ethernet network of five servers was con-
ducted to compare the approach of using a roaming agent in contrast with the exis-
tence of special agents on each server for gathering and distributing the overall system 
state information between the servers. The servers used were Intel Pentium 4 of simi-
lar CPU processing powers ranging from 1.8 to 2.1 GHz running Microsoft Windows 
XP utilising the Voyager [19] agent platform. The experiment was conducted on 
unloaded servers with virtual local system state information ranging from 150 to 200 
bytes each, consisted of information about the server’s utilisation, number of virtually 
active agents, and availability of resources. The initial size of the roaming agent was 
2.8Kbytes with the functionality of migration and storing local system state informa-
tion within. Note that the size of the roaming agent was increasing on each migration 
due to update in state information that had to be kept. The time needed for a single 
message (containing local system state information of a server) to be transmitted was 
21-36ms, the time of agent serialisation was 31-47ms, whereas the time required by 
the agent to migrate itself and store the local server system state information was 564-
678ms. The time needed to create a reference to a proxy (i.e. special agent) was 93-
125ms, but it has not been considered in the evaluation since it is only needed once 
during the lifetime of the special agents. 

The number of servers in the chart of Figure 1 starts from 2, since a remote agent 
migration requires the existence of at least two servers. The 1st and 2nd bar of each 
graph in Figure 1 represents the time needed from both approaches to gather the ini-
tial overall system state, where the 3rd and 4th bar includes the additional time (of the 
roaming agent approach) to distribute information to all the servers. As can be seen 
the special agents approach outperforms the roaming agent one.  However, in order to 
observe the behavior of both approaches in a network of tens of servers, because it 
was quite difficult to run the same experiment for more than five servers (due to lack 
of availability in computing facilities), based on the information provided in the table 
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of Figure 1 it has been calculated that for N equals to 44, the time required in the 
special agents approach to exchange )1(* −NN  messages is greater than N–1 migra-
tions and N–1 message exchange (performed in the roaming agent approach). 

 
 
 

Parameter Value 
Local system state 
information 

150-200 
bytes 

Size of roaming agent 2.8 Kbytes 
Message transmission 21-36 ms 
Agent serialisation 31-47 ms 
Agent migration 564-678 ms 
Creation of reference 
to a proxy 

93-125 ms 

 
 
 

Fig. 1. Comparison of roaming versus special agent 

This is due to the fact that every message exchanged between the special agents 
containing local system state information of a server is approximately the same in 
size, whereas in the roaming agent approach each message sent to a server differs in 
size. Although the time required in the special agents approach to transmit )1(* −NN  
messages corresponds to the same number of local system state information that have 
to be exchanged, in the roaming agent approach the time required to send N–1 mes-
sages corresponds to the transmission of 2)1( −⋅ NN  local system state information. 
This is because during the roaming agent’s migration, every visiting server is in-
formed by the agent concerning the local system state of previously visited ones, but 
already visited servers do not have information on those that have not been visited 
yet. In this instance, the message sent from the roaming agent to the first server of its 
itinerary contains information on the local system state of every visited server, 
whereas the message sent to the server before the last one (in the agent’s itinerary) 
contains information only for the last visited server. Therefore, in a network of more 
than 43 servers roaming agent approach turns out to be more efficient. 

Nevertheless, in dynamic environments where changes frequently take place the 
special agents approach is preferable in spite of the number of servers. This is because 
in the event of a server system status changing the rest of the servers can be informed 
with the cost of exchanging N-1 messages, while in the alternative approach, the 
roaming agent has to perform its task from the beginning i.e. in the best case, do N-1 
migrations and exchange N-1 messages (of greater size in comparison with those 
exchanged in the special agents approach). Of course, the ideal approach in a network 
comprised of more than 43 servers, would be to initially gather the system state in-
formation using a roaming agent but keeping it updated with the use of special agents 
placed on each server. 
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3.2   Special Agents in the State-Based Load Balance 

Although the approach of using stationary monitoring agents in contrast to roaming 
agents for gathering and disseminating overall system information is preferable, dif-
ferent policies exist in relation to the stationary agents’ perspective of the system. 
Policies range from Direct-Neighbor policy (i.e. every special agent communicates 
only with its direct-neighbor stationary agent and exchanges local system state infor-
mation only with them; and load balancing actions are limited to two direct-neighbor 
servers) to All-Neighbor policy, where all stationary agents exchange local system 
state information between themselves.  

Research experiments show that policies where the special agents’ perspective of 
the system is limited suit well highly dynamic applications. In “slowly dynamic”1 
applications[2], the wider the special agents’ perspective is, the better load balance 
quality can be achieved; where the total number of migrations is also diminished. 
Zambonelli[11] introduced a new scheme of information exchange in neighboring 
load balance policies, in which the system state (load) information transmitted is dis-
torted to enable special agents take into account a wider perspective of the system and 
overcome the limit of the local view. This is achieved by weighting the load of a 
server with the average load of its neighbour servers. Though, his experiments show 
that the transmission of distorted load information provides high efficiency unless the 
dynamicity of the load becomes too high i.e. near to 70%, in which case it is prefer-
able to exploit non-distorted load information.  

A different approach of achieving efficient load balancing in neighboring load bal-
ancing policies with respect to the global view of a system was followed by Keren 
and Barak [4], with the ability of the stationary monitoring agent to dynamically 
change their neighbors i.e. their perspective of the system. In their framework for 
parallel computing, each server’s utilisation (load index), which is the only system 
state information shared between the stationary agents, is exchanged using two simul-
taneous dissemination schemes. First, each server - represented by a stationary agent - 
sends its load index by attaching it to messages sent by its local agents to other serv-
ers. Load indices are also sent to randomly chosen servers using a probabilistic load 
exchange algorithm. The net result is that for each time unit, every stationary agent 
has information about a subset of other agents. The load balance migration decisions 
are conducted by the stationary agents based on an algorithm which is executed peri-
odically in an asynchronous manner. The algorithm determines the performance gain 
in migrating some of its agents to other servers, which is a function of the resulting 
change in the load and the inter-server communication, and if a substantial gain is 
obtained the migration follows. The migration decision algorithm is also executed by 
every stationary agent of the same subset.  

Despite the fact that in dynamic environments the narrower the perspective of sta-
tionary agents (i.e. information only about neighboring servers), the better the load 
balancing that can be achieved, in an ABDL architecture the stationary agents must 
have a global view of the system. This is because an active Digital Library may be 
composed of a collection of different information and computation resource servers 
(though some might be replicated). Since the agents’ tasks are resource-depended and 

                                                           
1 According to [2] these are systems that do not change frequently. 
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the resources needed by each task are unknown before its initiation, efficient load 
balancing can only be achieved with a global view of the system, provided by station-
ary agents. 

3.3   Providing Load Balancing Decisions Via Stationary Agents 

The architecture of the FLASH framework utilises stationary agents with a global 
view of the system for gathering, disseminating and updating the system state infor-
mation. The SARA system uses a similar concept. While in FLASH load balancing 
decisions are supported by the mobile agents based on their intelligence and the 
global system state information supplied to them by the stationary agents, in SARA 
the control over LB decisions is on the stationary management agents. Therefore, in 
SARA the management agents record system state and optimise the load of the avail-
able servers. Although the mobile agents may be programmed with the intelligence to 
give priority to the overall system optimisation and not to their own tasks, giving 
management agents the control over the load balancing decisions leads to the follow-
ing benefits:  

i) minimisation of information transmitted: The management agents balance the 
load of mobile agents among the servers by defining their itinerary. Once a mobile 
agent is created, it communicates with its local management agent, gives its require-
ments i.e. specifies its task, and waits for a response. The management agent in re-
turn, based on the agent’s requirements and the current system state information 
constructs the mobile agent’s itinerary and sends it back to that management agent. 
Consequently, only two messages are exchanged between a mobile agent and a man-
agement agent: the agent’s requirements and the agent’s itinerary. In the case where 
the mobile agent would be in control of the load balancing decision, every mobile 
agent would have to retrieve from a management agent the overall system state in-
formation in order to make a reliable decision; which results in unnecessary duplica-
tion of information.  

 
 
 
 
 
 
 

Parameter Value 
Agent itinerary 15 bytes/server 
Agent request 60-80 bytes 
System state 
information of 
a server 

700-750 bytes 

 
 
 

Fig. 2. Interaction between the special/management agent and the mobile agents 
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Figure 2 shows the time spent (in milliseconds) on the interaction of a management 
agent with a number of mobile agents on a single server, according to the amount of 
data that has to be exchanged. The experiment was conducted on an Intel Pentium 4 
1.8Ghz server running the Java-based Voyager agent platform on Microsoft Windows 
XP, where an agent’s itinerary needed 15 bytes per server, its request was approxi-
mately 60-80 bytes and the system state information of a server encoded in XML at 
700-750 bytes. Although the difference in time between the two approaches is mini-
mal i.e. a few seconds, as the number of servers on the network is increased consider-
ing the total time of the agents’ interaction from each server, this difference becomes 
important. Finally, from the above chart it can be observed that in SARA the agents’ 
interaction time, irrespectively of the variable introduction of participants is almost 
uninfluenced by the number of servers (from 5 to 20) employed in the network. 

ii) minimisation of the mobile agent’s size: Decisions on load balancing are based 
on an algorithm (a model) that accepts as input an agent’s requirements and the sys-
tem state information, and gives as output an itinerary of servers where the particular 
agent should migrate to. In SARA, the management agents provide this functionality. 
Alternatively, every mobile agent must have this decision support algorithm within 
itself. One of the most important characteristics of a mobile agent is its size; the 
smaller the mobile agent is in size, the faster it can move through the network. Hence, 
by giving the management agents the control over LB decisions, the size of the mo-
bile agents is preserved to its original size.    

 

Fig. 3. Migration times of variable number of migrating agents 

Figure 3 shows the influence of the mobile agent’s size on its migration. The ex-
periment was conducted on a 100Mbit/s Ethernet network with two Sun Ultra 5 
Workstation of a 270 MHz UltraSPARC-IIi 64-bit processor running on Solaris 8, 
utilising the Voyager agent platform. In the experiment two types of mobile agents 
with different sizes were used. One was the mobile User Request Agent used in 
SARA of 21483 bytes, and the second was the same agent extended with the load 
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balancing decision algorithm, resulting in an agent of 28114 bytes. The total migra-
tion time increases with the number of concurrently migrating agents, and the larger a 
mobile agent is in size the more time is required for its migration when the number of 
concurrent migrating agents is increased.  

iii) system optimization: Management agents may also maintain a record about 
mobile agents that are active on their host platform. This information may include the 
task of the agent, the resources that have been used, the time taken to complete the 
task and the site where the results of the task have been stored. This information is 
used to support load balancing, and for undertaking similarity analysis between agent 
requests. Hence, if an agent’s task (request) is identical to a task already performed, 
the task does not have to be repeated and previous results can be retrieved. If an 
agent’s task is similar but not exactly the same as an already accomplished task, the 
model applied could be able to determine if it is worthwhile for the agent to process 
the results of the existing task or to re-execute the task.  

Management agents therefore contribute to a mobile agent’s migration optimisation 
by defining the itinerary for an agent according to its task and the current system state 
information. For instance, an agent with a task of acquiring a collection of images and 
filtering them on a compute server against a user’s custom analysis algorithm will be 
guided by a management agent. How the agent migrates (i.e. just the agent itself, the 
agent containing the custom algorithm etc.) and when it should load any classes neces-
sary for the accomplishment of its task is its own choice based on its rules and the 
status of its task. Even in the event of a server failure, the mobile agent is capable of 
moving autonomously to the next available server of its itinerary, communicating with 
the local stationary agents without being controlled by the management agents. 

4   SARA Active DL 

SARA is an active DL of multi-spectral remote sensing images of the Earth from the 
SIR-C Shuttle mission. Web-based online access is provided to a library of data objects 
at Caltech and the San Diego Supercomputer Center in the US, and the University of 
Lecce in Italy. A prototype multi-agent system, which comprises both intelligent and 
mobile agents, has been developed to manage and analyse data in the SARA DL [12].  

The SARA architecture is composed of a collection of information and Web serv-
ers, each of them supporting a group of agents. Information servers support Local 
Interface Agents (LIA), whereas Web-servers support User Interface Agents (UIA). 
The information-servers manage the computational resources and data repositories to 
support the SARA active DL – where the data repositories generally contain pre-
processed images or geospatial data about a given region. Figure 4 represents the 
SARA architecture and the multi-agent interaction.  

The architecture’s approach is based on localizing the most complex functionality 
in non-mobile LIAs, which remain at one location, provide resources and facilities to 
lightweight mobile agents that require less processor time to be serialised, and are 
therefore quicker to transmit. LIAs are stationary agents that provide a set of  
pre-defined services. The primary motivation for using mobile agents are: (a) the 
avoidance of large data transfers – of the order of Terabytes, consisting of sometimes 
proprietary data,  (b) the ability to transfer user developed analysis algorithms, and (c) 
the ability to utilise specialised parallel libraries.  
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Fig. 4. The SARA agent-based architecture 

The front-end interface allows a user to query a collection of SAR images, and 
provides the ability to further fuse the results with data available locally to the user. 
Such a request is received from UAA – trace the numbers in figure 4 – that creates a 
mobile agent i.e. URA on behalf of the user and forwards the request. After dispatch, 
the mobile agent is responsible of migrating to the information-servers and interacting 
with the local stationary agents to fulfill the user’s request. The stationary agent LAA 
is responsible for supplying the URA with information about accessing the data re-
pository at the local server, whereas the LRA’s objective is to execute a query on the 
data source on behalf of the URA. 

4.1   The SARA LB Scheme 

The SARA load balancing scheme is a combination of the state-based and model-
based approach of LB. In SARA architecture a management agent is assigned to 
every server (see Figure 4) in order to monitor the local resources. On initialisation 
every management agent gathers local system state information and exchanges it with 
other management agents using multicast messaging. Subsequently, only updated 
information is exchanged between themselves.  In this instance, the local system state 
of each server forms the overall system state information (a global view of the 
system) that every management agent maintains. Load balancing of the URA mobile 
agents that encapsulate users’ queries is supported by the management agents based 
on a model - which accepts as input an agent’s requirements and the system state 
information, and gives as output the appropriate server(s) where the particular agent 
should migrate to in order to fulfill its task.  

The model is a function of the: (1) agents’ tasks, (2) servers’ utilisation (workload), 
(3) availability of resources at the server, (4) network efficiency, and adapts over time 
due to the information gathered from the management agents on system state. The 
utilisation of a server is expressed by Malone’s [18] formula ( ) LU μα ⋅= ; where, α 

corresponds to the number of agents on that server (assuming that there is a one task 
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per agent),  to the average task time of the α agents, and L to the total processing 
power of the hosting server. A server’s utilisation in relation to its processing power L 
can be estimated. Such a comparison on utilisation values helps identify a server that 
will complete first. Accuracy of estimating a server’s utilisation is based on a perfect 
estimation of the agent task lifetimes. The more accurate the average task time  of 
agents , the more reliable the corresponding server’s utilisation.  

The actual utilisation of a server can be measured by using specialised rou-
tines/utilities (like xload or ps, available on the Unix operating system) that provide 
the CPU usage. The difference between these routines and Malone’s approach is that 
while the former provides the current utilisation (CPU usage) of a server the latter 
also denotes a value of when a server will be unloaded, and may be used as a predic-
tive tool. As a server’s CPU usage changes frequently, decisions on load balancing 
should not only rely on the current utilisation of each server, but rather on which 
server will be unloaded first in the future. The advantage of using Malone’s formula is 
that apart from estimating utilisation, it is also possible to predict it before the as-
signment of a new task to that server, given that the lifetime of the corresponding task 
is known.  

The SARA model may be easily amended to be employed by other systems utilis-
ing active archives. In fact apart from the predictive nature of the model, in systems 
where the lifetime of tasks cannot be estimated or tend to be erroneous, system devel-
opers can take advantage of the adaptability of the model to cater for variable system 
workloads. The adaptability of the model provides a means of self-adapting to such 
error estimations by monitoring the utilisation of every server and amends it when it 
is miscalculated. Further details on SARA LB scheme can be found in [12]. 

5   Conclusion 

An approach that compares the management of state-based information to facilitate 
load balancing decisions in a mobile-agent system is presented. The comparison re-
lates the distribution of load information using mobile agents vs. messaging between 
stationary management agents. The approach is particular suited to Digital Libraries, 
where content integration may be necessary across a number of servers (such as in the 
SARA Digital Library). It is found that stationary agent based approaches are useful 
when utilising large mobile agent sizes (due to serialisation overheads). 
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Abstract. In this paper, we propose a temperature-aware DFS (Dynamic Fre-
quency Scaling) technique using the performance counters that is already em-
bedded in the commercial microprocessors. By using performance counters and 
simple regression analysis, we can predict the localized temperature and effi-
ciently schedule the tasks considering the temperature. The proposed technique 
is especially beneficial to potential localized thermal problems that are inevita-
ble due to limited number of costly CMOS thermal sensors. When localized 
thermal problems that were not detected by thermal sensors are found after fab-
rication, the thermal problems can be avoided by the proposed software solution 
without re-fabrication costs. The evaluation results show that the proposed 
technique is comparable to the DFS technique using CMOS thermal sensors. 

1   Introduction 

Reducing energy consumption has been one of the most interesting research topics in 
the computer architecture field. As technology trends leads to packing transistors ever 
more tightly, power densities are increasing rapidly. The higher heat flux leads to 
higher cooling costs-otherwise high temperature might cause the unexpected func-
tional errors or permanent damage of microprocessors, especially in high-
performance microprocessors. Thus, it is important to control the temperature as well 
as the energy consumption. To control the temperature, a couple of techniques have 
been proposed. One is to use the cooling fan to lower the temperature of a chip and 
the other is to make a heat spreader more efficiently. For example, Intel’s Pentium 4 
already has a cooling fan and an efficient heat spreader [20][24] and PowerMac G5 
has huge cooling pumps [18]. To solve the thermal problems, on the computer  
architectural level, pipeline throttling, DVS (Dynamic Voltage Scaling), and DFS 
(Dynamic Frequency Scaling) have been proposed [2][14][16]. 

To control the temperature, we need to know the actual temperature of the func-
tional block that needs to be controlled. In the Pentium 4, there are two independent 
thermal sensors [19]. By using on-die temperature sensing circuit and a fast acting 
temperature control circuit, the processor can rapidly initiate thermal management 
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control. The Pentium 4, however, only uses one of its sensors for thermal manage-
ment; the other is for external use and is not located near any anticipated hotspots. In 
fact, hotspots may move over time, depending on which on-chip functional blocks 
(register fie, integer arithmetic, floating-point arithmetic, etc.) are most heavily used 
[8]. As technology scales down, power density increases which might lead to more 
localized hotspots. Temperature differences become exponentially larger with dis-
tance, so a single thermal sensor does not cover a large chip like the Pentium 4. In 
future high-performance microprocessors, more than ten thermal sensors are expected 
to be embedded in a microprocessor. However, the number of thermal sensors is lim-
ited, because they are too expensive to be placed in all the potential hotspots. When 
potential hotspots that do not have thermal sensors are found serious after fabrication, 
it is impossible to resolve the localized thermal problems without re-fabrication, using 
previous techniques. 

We chose DFS instead of DVS for the scheduling policy. There are three reasons. 
1) The frequency transition at the high Vcc is done within few microseconds, which 
takes much less, compared to the voltage transition [11]. 2) We found a linear propor-
tional relation between the frequency and the temperature by using simple regression 
analysis. On the other hand, the voltage is not linearly proportional to the temperature, 
which makes it difficult to find a relation between them. 3) In terms of reliability, the 
supply voltage scaling reaches a plateau, since the difference between supply voltage 
and threshold voltage should be kept large enough [6]. Thus, this paper proposes a 
DFS technique using performance counters that efficiently controls the temperature 
of the localized hotspots. The localized thermal problems that were found after fabri-
cation can be resolved by using the proposed technique. 

The rest of this paper is organized as follows. Section 2 presents related works. 
Section 3 explains the temperature-aware DFS scheduling using performance count-
ers. Section 4 describes the experiment methodology and Section 5 shows the effi-
ciency of the proposed technique. Section 6 concludes the paper and describes some 
avenues for future works. 

2   Related Works 

Huang et al. [4] proposed a DVS-based technique for thermal control. Though they 
investigated the memory hierarchy, they did not examine other hot functional blocks 
such as register files. Brooks et al. [2] set a constant threshold power and they applied 
five thermal control techniques (clock frequency scaling, voltage and frequency scal-
ing, decode throttling, speculation control, and I-cache toggling), when the threshold 
power was exceeded. They found DFS and DVS to be inefficient because of the invo-
cation overhead. However, the inefficiency may be due to the short sampling period 
(10K cycles) and large invocation overhead (more than 10 ms). Skadron et al. [12] 
proposed formal control theory for dynamic thermal management. The previous stud-
ies used constant trigger temperature (or power) and fixed response. In contrast, they 
allow the fetch-toggling rate to be changed according to the thermal history that may 
need additional storage. There are some previous works [8][10] on thermal manage-
ment in SMP systems, which schedules the tasks making use of the idle SMP nodes. 
Srinivasan et al. proposed the predictive dynamic thermal management by profiling 



 A Novel Software Solution for Localized Thermal Problems 65 

 

multimedia applications [16]. Most of these researches are based on the thermal sen-
sors to measure the temperature.  

Though the number of thermal sensors is limited by design budget, localized hot-
spots are too serious to be ignored [8]. Alternative to the thermal sensor is the  
performance counter that was already embedded in microprocessors to evaluate the 
performance. There have been several studies on using performance counters. Brooks 
et al. proposed using performance counters to find activity factors [2], where details 
were not proposed. Bellosa et al. proposed formulas that correlate the activity factor 
to energy that is eventually correlated to temperature [1]. They tried to manage the 
temperature by controlling power consumption [1][16] . They only concentrated on 
the overall temperature (not on the localized hotspots). Lee et al. [6] also proposed 
runtime temperature sensing using performance counters, which is accurate but incurs 
some computational complexity, because they use full HotSpot [13][14].  

In this paper, we present a software technique using performance counters that can 
investigate the localized hotspots. To estimate the temperature of functional blocks, 
we only have to calculate a simple linear formula with inputs from the activity factor 
(the number of accesses) of the functional block. The linear formula is established by 
simple regression analysis. The data (activity factor(X) and temperature(Y)) for re-
gression analysis can be obtained from real measurement in laboratories or from accu-
rate simulations. In this paper, the parameters for regression analysis are obtained 
from simulation using HotSpot [13][14]. Though the performance counters are read 
every 10 ms, the estimated temperature was shown to be accurate enough [3]. In addi-
tion, the frequency transition overhead that is done every 10 ms is negligible [11]. 

3   Temperature-Aware DFS Technique Using Performance 
Counters 

We examine two methods to measure the temperature: One is using CMOS thermal 
sensors and the other is using performance counters. The former is more accurate but 
needs CMOS thermal sensors. In other words, the thermal sensors should be placed in 
the localized hotspots before fabrication. The latter is less accurate but does not need 
additional hardware, since performance counters are already embedded in commercial 
microprocessors. On-chip sensors are now widely used to measure the temperature 
but are believed by many designers to be too expensive to be placed in all the poten-
tial localized hotspots. To alleviate the cost of the thermal sensors, only very probable 
localized hotspots have the thermal sensors. After fabrication, there is a possibility 
that severe localized hotspots that were not detected at the time of validation, are 
found. For this case, we propose a temperature-aware DFS technique using perform-
ance counters for sensing the temperature of the possible localized hotspots. Origi-
nally, the performance counters are used to count specific micro-architectural events 
for debugging and performance measurements. However, we can examine lots of 
localized hotspots by utilizing performance counters. For example, in the Intel Pen-
tium 4, there are 45 configurable events and 18 physical performance counters, which 
implies that we can estimate temperatures of the 45 functional blocks in the micro-
processors [15][27] .  
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For the temperature-aware scheduling, simple offline regression analysis [3] is used 
to find a simple relation between selected values of activity factor and observed val-
ues of temperature. Please recall that the most probable value of Y can be predicted 
for any value of X by simple regression analysis. Temperature can be estimated using 
a simple formula (T=ax + b, where T is temperature, X is activity factor, and a and b 
are coefficients). We only have to consider only the activity factor of the functional 
unit that is investigated. The key observation is that the regression captures second-
order contributions from other functional units. We did try multiple regression analy-
sis with the current activity factor and the previous activity factor. Results were at 
best minimally improved compared to results from simple regression analysis, and in 
fact the accuracy with multiple regression analysis was sometimes worse. 

At runtime, multiplying the activity factor by the regression coefficient is required 
for temperature measurement. Although it is feasible to re-compute temperature every 
cycle, this is wasteful, since even at the fine granularity of architectural units, it takes 
at least 100K cycles until the temperature rise by 0.1C [14]. We chose a sample pe-
riod 10 ms, which is the scheduling granularity of commercial operating systems and 
creates a natural opportunity for software to read the performance counts. For our 
CPU clock rate of 2.6 GHz, this works out to be sampling period of 26 M cycles. This 
is in any case the minimum granularity at which software techniques could perform 
any kinds of thermal management. For example, to compute the temperatures of the 
integer register file, we only utilized the IIPC (Integer Instructions Per Cycle) statis-
tic. Although the peak temperature estimation error was small, there were times when 
our technique under- or over-estimated temperatures by as much as 10 degree. These 
large differences only occurred when the performance counter technique responded 
faster than the actual temperature. The reason is that the proposed technique is line-
arly proportional to the IIPC so that the estimated temperature changes quickly, 
whereas the actual temperature changes gradually. We did not mediate these spikes 
and dips, since we may be able to schedule tasks more efficiently if we know the 
temperature tendency (increase/decrease) in advance.  

In this paper, we compare the scheduling efficiency using the thermal sensors to 
that using the performance counters. In the conventional technique using thermal 
sensors, the frequency is lowered when the temperature is more than (or same as) 
the threshold temperature and the actual temperature is measured from the thermal 
sensors. On the contrary, in case of the proposed technique using performance 
counters, the temperature is estimated from the activity factor so that the frequency 
is lowered when the activity factor (instead of the actual temperature) is more than a 
threshold.   

4   Experiment Methodology 

The processor used for the experiments is a 2.6 GHz Pentium 4, 130 nm Northwood 
core. The typical power dissipation is 69.0 W, and the operating voltage is 1.6 V [23]. 
The processor supports hyper-threading technology, which allows the processor to run 
two threads simultaneously. This means that the task that regularly reads the perform-
ance counters and calculates the temperature interferes minimally with user tasks: not 
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only does it consist of only a few instructions, but hyper-threading fits these few in-
structions into empty execution slots as instructions are issued within the processor. 

The performance counters are used to count specific micro-architectural events for 
debugging and performance measurements [21]. Each counter is associated with one 
counter configurable control register (CCCR), which determines the specific count-
ing scheme. The event selection control registers (ESCRs) determine which event is 
to be counted. A simplified device driver, adapted from the abyss device driver [27], 
is used to configure all the control registers and read the performance counters. 

The temperature model requires the geometric specifications and the floorplan 
layout of the processor. We derived the configurations of Pentium 4 to configure 
HotSpot [13][14]. These parameters are based on design schematics found in [23]. 
We also use the floorplan layout that was adapted from the Northwood core die 
photo [22].  

Though we are able to investigate the temperature of 45 functional blocks through 
performance counters, we concentrate on the register file which is known as one of 
the hottest functional blocks. In the simple regression analysis, IIPC is X (selected 
value) and the temperature is Y (observed value). The actual temperature is obtained 
from the HotSpot [13][14] that was proven to be accurate. To use the performance 
counters, the Hotspot was modified to be based on a model by Isci and Martonosi [5] 
for the Pentium 4. 

We selected four benchmarks (bzip2, gap, gcc and parser) from the SPEC 
CPU2000 benchmark suite [26], since these benchmarks show more temperature 
differences than other benchmarks during the execution. Since running single 
benchmark of these four benchmarks does not increase the temperature so much, we 
would like to run two benchmarks at the same time. However, running two bench-
marks on two threads sometimes defers reading the performance counters severely 
and incurs thermal throttling by the Pentium 4 processor, resulting in inefficient 
evaluation of scheduling techniques. To prevent the inefficiency, we schedule the 
tasks off-line instead of on-line. We ran two applications separately and obtained 
the trace of the activity factor of all functional blocks. After then, we utilize off-line 
task scheduling, by using activity factor of all functional blocks. When the proposed 
technique using performance counters is adopted in the real world, the access to the 
performance counter can be set to have a higher priority than the other tasks in 
order to allow periodic accesses to the performance counter. 

By running applications, we can have the coefficients for the formula. For more 
accurate estimation, we only use the samples whose IIPC is more than 2.0. We set 
the confidence interval is 99% in order to cover as many cases as possible. The 
formula that we obtained from the simple regression analysis is Y = 14.1*X + 58.4, 
where the IIPC (X) corresponding to 95 Celsius (Y) is 2.59. 

The DFS using thermal sensors lowers the frequency by 20% when the tempera-
ture is same as (or more than) 95 Celsius. It increases the frequency by 5% every 10 
ms up to the 2.6 GHz when the temperature is lower than 95 Celsius. The DFS 
using performance counters lowers the frequency to (2.6 GHz * (2.59/previous 
IIPC)), when the IIPC is more than 2.59. When the IIPC is lower than 2.59, the fre-
quency is 2.6 GHz. 
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5   Evaluations 

We evaluate the proposed DFS scheduling technique in six cases: bzip2 + gap, bzip2 
+ gcc, bzip2 + parser, gap + gcc, gap + parser, and gcc + parser. According to [25], 
maximum temperatures are between 65~100 Celsius in commercial microprocessors, 
depending on the model. We set the threshold temperature to 95 Celsius. We also 
assume that the frequency can be freely set not to distort the experiment results by 
discrete frequency.  

5.1   Scheduling Efficiency 

Figure 1 shows the temperature changes when there is no consideration for tempera-
ture. In Figure 1, the temperature varies fast in (a), (b) and (c) due to the characteristic 
of bzip2, whereas the temperature does not vary so much and it is under 100 Celsius 
in (d), (e) and (f).  

 

Fig. 1. Temperature changes (w/o DFS) 
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Figure 2 shows the temperature changes when DFS using CMOS thermal sensors 
is applied. As shown in the Figure 2, the temperature is varied significantly when the 
temperature is around 95 Celsius. The reason is that the frequency increases/decreases 
by a constant rate (20% for increase and 5% for decrease). If the frequency is de-
creased only by 10% or less, the temperature remains over 95 Celsius for longer time. 
When the frequency is increased more gradually, the performance loss will be severe. 
If the frequency is increased more than 5%, there are more temperature violations. 
Please note that there is no run-time information on how much the frequency should 
be changed. In fact, we tried to make use of the temperature history to find patterns of 
temperature variation in order to utilize the run-time information, which turned out 
not so helpful.  

Figure 3 describes the temperature changes when the DFS is applied using per-
formance counters. Different from Figure 2 where CMOS thermal sensors are used, 
Figure 3 does not show the spikes and dips of the temperature around 95 Celsius. In 
the proposed technique, the frequency is determined by referencing to the previous 
IIPC. When the previous IIPC is more than 2.59, the clock frequency is 2.6 GHz *  
 

 

 

 

Fig. 2. Temperature changes (w/ DFS using thermal sensors) 



70 S.-W. Chung and K. Skadron 

 

(2.59/(previous IIPC)). Otherwise, the frequency is 2.6 GHz (full speed). Thus, the 
fluctuation around 95 Celsius is less severe, compared to the DFS using thermal 
sensors. 

As explained in the Section 3, using performance counters can make it possible to 
foresee the temperature tendency in advance. Accordingly, the proposed technique 
decreases the frequency early when the temperature goes up, which reduces the spikes 
around 95 Celsius. 

5.2   More Details of Temperature Changes 

Figure 4 presents the ratio of times when the actual temperature is over the threshold 
temperature. Both DFS techniques dramatically reduce the thermal violations. Some-
times the DFS using the performance counters performs better and sometimes does 
not. At least, we can say that the DFS using the performance counters is comparable 
to the DFS using the thermal sensors. 

 

 

Fig. 3. Temperature changes (w/DFS using performance counters) 
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Fig. 4. Ratio of times when the actual temperature is over the threshold value (95 Celsius) 

Figure 5 shows the average temperature difference between the actual temperature 
and the threshold value, when the actual temperature is over the threshold value. 
Though the temperature violation ratios in Figure 4 are not negligible, the average 
temperature excesses are significantly reduced. The average values of the temperature 
excesses in Figure 5 are 0.37 and 0.40 degree, on average, for the DFS using thermal 
sensors and the DFS using performance counters, respectively.  

 

Fig. 5. Average temperature difference between the actual temperature and the threshold value 
(95 Celsius) 

Figure 6 shows the maximum temperature when the actual temperature is over the 
threshold value. We can notice that the DFS using performance counters always out-
performs the DFS using thermal sensors. The DFS using performance counters more 
accurately forecasts the temperature by referencing to the IIPC, which prevents the 
spikes. However, the DFS using thermal sensors can not predict future temperature. 
Thus, the temperature continues to go up even with the DFS, because the power  

5.3   Performance 

The tasks in this experiment are not periodic, in other words, which is not predictable. 
Thus, we should sacrifice the performance to sustain the temperature under the 
threshold value. If more aggressive DFS technique were adopted, the number  
of thermal violations would be decreased. As the number of thermal violations  
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decreases, the performance is naturally degraded. For example, suppose that one tech-
nique sets the threshold value to 90 Celsius and the other sets it to 100 Celsius. The 
former has less thermal violation and more performance degradation. For a fair com-
parison, we should check that the both techniques are similarly aggressive. If the 
proposed DFS using performance counters performed much worse than the DFS using 
thermal sensors, the experiment would not be fair. 

 

Fig. 6. Maximum temperature for each technique consumed in the past should be dissipated, 
resulting in higher maximum temperature 

 

Fig. 7. Execution time normalized to the no DFS 

Figure 7 shows the execution time normalized to the no DFS. The relative execu-
tion time, compared to the no DFS, only depends on the benchmarks’ characteristics, 
themselves. The importance lies in the relative execution time between the DFS using 
thermal sensors and the DFS using performance counters. As shown in Figure 7, it is 
hard to say which technique is better in terms of performance, which implies two 
techniques are similarly aggressive, in the perspective of thermal control.  

6   Conclusions and Future Works 

Uneven activity from one functional block to another, results in localized hotspots 
that may move over time. Thus, accurate thermal monitoring therefore requires lots of 
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thermal sensors. This may be too costly, because precise CMOS thermal sensors are 
expensive in terms of area and power. As an alternative, we can use performance 
counters and regression analysis.  

In this paper, we show that the DFS using performance counters is comparable to 
(sometimes better than) the DFS using thermal sensors. The DFS using performance 
counters only have to utilize the performance counters that are already embedded in 
most commercial microprocessors. Especially, after fabrication, when a microproces-
sor or an SOC (System On Chip) turns out to have localized hotspots that are not cov-
ered by CMOS thermal sensors, the proposed technique using performance counters 
can be a cost-effective solution. Though we used the temperature from the Hotspot 
[13][14] for regression analysis, the temperature from more accurate circuit-level ther-
mal simulations can be used for regression analysis, which leads to more efficiency.  

We only concentrated on the integer register file. However multiple functional 
blocks can be monitored and controlled using performance counters, since different 
clock frequencies might be assigned to different functional blocks. In this paper, we 
freely change the frequency but experiments with discrete frequencies would be inter-
esting. We only examined the scheduling efficiency only with the DFS, since the 
DVS is not so reliable due to technology scaling [6] and it has more timing overhead 
[11]. The alternative to the DFS is clock gating to cool down the localized hotspots. 
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Abstract. On Chip Network (OCN) has been proposed as a new
methodology for addressing the design challenges of future massly inte-
grated system in nanoscale. In this paper, three differently heterogenous
Tree-based network topologies are proposed as the OCN architectures
for Video Object Plane Decoder (VOPD). The topologies are designed
in order to maximize the system throughput. This paper also evaluates
the proposed topologies by comparing them to other conventional topolo-
gies such as 2-D Mesh and Fat-Tree with respects to throughput, power
consumption and size. We use the power modelling tool, known as Orion
model to calculate the static powers, areas, and dynamic energies of three
topologies. The experiment results show that our Tree-based topologies
offer similar throughputs as Fat-Tree does and much higher throughputs
compared to 2-D Mesh while use less chip areas and power consumptions.

1 Introduction

According to [1], the Ultra Large Scale Integration (ULSI) will be the future
of chip design. The idea of using Network on Chip (NoC) as the new design
methodology to massly integrate the System on Chip (SoC) IPs such as proces-
sors, DSPs, as well as memory array, which was proposed in [2,3]. The packet
switching core and the communication protocols are used to replace the complex
system of wires, the main factor that leads to the propagation delay exceeding
the system’s clock period and non-scalable global wire.

The tile-based NoC with various applications and regular topologies 2D Mesh,
Fat-Tree, and Torus were proposed in [4, 5, 14, 15, 16]. The authors in [6, 7, 8]
had different approaches for the NoC design. They proposed the algorithms to
automatically map IPs onto the target NoC architecture so as to optimize the
power consumption. However, the performance of system can not be optimized
(the trade-off in performance and power is still an open problem). Wang et al.
[9] proposed a power-model simulator for interconnection network called Orion.
This simulator can be used to estimate the dynamic power of one information
bit due to the switched capacitances. It also can be used to estimate the router
area and static power with different CMOS technologies.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 75–85, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Recently, the VOPD was designed and evaluated based on 2-D Mesh and
Fat-Tree topologies [8, 10]. In [10], Nguyen et al. reported the system-level per-
formance evaluations of two architectures by using NS-2 simulator. The optimal
mappings that maximize the system throughput also were presented. Accord-
ing to that paper, with different routing and queuing protocols, the Fat-Tree
topologies offers better performance. However, because of its irregularity and
intensive interconnection wires, the Fat-Tree topology becomes impractical to
be implemented on a chip. Moreover, design of NoC for particular application
copes with several challenges [11], one of the critical issues is to choose the best
suited architecture.

Therefore, in this paper we propose three different Tree-based architectures
for the VOPD design and then compare them to 2-D Mesh and Fat-Tree ar-
chitecture. Fig. 1 presents the VOPD’s sub-modules and the pair-to-pair data
transactions (in Mbps).

Fig. 1. Data transaction between modules of VOPD
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Fig. 2. VOPD on the first topology

We use NS-2 [12] to simulate the system throughputs of five architectures.
By using these simulated throughputs and Orion model of utilized routers, the
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system dynamic power consumptions of three architectures can be exactly cal-
culated. The designs of three architectures also are evaluated and compared
with each others and the two mentioned conventional architectures in terms of
area and dissipated energy. Our results indicate that the proposed topologies
are superior in terms of hardware consumption and energy consumption while
offer similar system performances. The rest of this article is organized as follows:
Proposed topologies construction is presented in Section 2. Router and power
estimation are discussed in Section 3. Simulation model and analysis are intro-
duced in Section 4. Finally, we conclude our contribution and mention about our
future work in Section 5.

2 Proposed Topologies Construction

In this section, we present the construction of three Tree-based topologies and
design the VOPD decoder by allocating its functional sub-modules onto the ap-
propriate routers. Firstly, we briefly reintroduce two regular NoC architectures
known as SPIN and CLICHE.

The SPIN architecture has been proposed by Guerrier and Greiner [4]. It uses
Fat-Tree architecture to interconnect IP blocks. In this Fat-Tree, every node has
four nodes as its children nodes and this rule is replicated four times at every
level of the tree. Let assume N is the number of IPs in the architecture, the size
of the network grows as (NlogN)/8 and the number of switches is 3N/4. The
switches, except for the root switches, are modelled by 4 × 4 wormhole router.
The number of routers depends on the depth of the tree.

The CLICHE architecture has been proposed by Kumar et al. [5]. This ar-
chitecture consists of an m×n 2-D mesh of switches that interconnects m×n IPs
allocated along with the switches. Each switch connects with its for neighboring
switches and one IP. Hence, a switch can be modelled by 5× 5 wormhole router.
The number of routers is also m× n.

In [10], the authors pointed out that even with the optimal design the 2-D
Mesh still offers lower performance in comparison with the Fat-Tree architecture.
In that paper, the VOPD was designed with the 4× 4 Mesh and the Fat-Tree of
16 IPs size. As shown in Fig.1, the number of IPs of the VOPD decoder is 12.
Hence, there are several unused switches for both architectures. In other words,
if we design this particular application on the generic architectures such as 2-D
Mesh and Fat-Tree, we have to pay a big penalty on unused hardware. Due to
the redundancy of unused switches in designing the VOPD of the two mentioned
architectures, in this paper, we propose three Tree-based architectures in which
the optimal allocation schemes of IPs are implemented. These topologies prob-
ably are the best suited architectures for the VOPD.

First topology: As shown in the Fig. 2, the 12 functional blocks (IPs) of the
decoder are mounted onto three wormhole routers, two are 5×5 and one is 6×6.
For this architecture as well as the remaining two architectures, we use similar
Branch and Bound technique presented in [10, 14] to achieve the optimal map-
ping (it was applied for 4× 4 Mesh architecture). This work is done by knowing
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the required data transactions between IPs and the routing table. In this article,
we also apply the shortest path routing algorithm for the simplicity and prac-
tice. This optimal mapping makes the network satisfy the condition of obtaining
the highest network throughput. As the result shown in Fig. 2, the UPSAM,
VMEM, VRecst, and PAD are interconnected with the first router. The second
router interconnects IQua, Invers, and IDCT. These IPs, as depicted in the Fig.
1, are the functional blocks that have the highest data transactions from one to
the others. This also means that we can reduce the packet’s drop rate as well
as the huge amount of data transaction between two routers. Straightforwardly,
if we apply the power model as introduced in [9], then the power dissipation of
the network (in both router and wire) can be significantly reduced. The remain-
ing low data rate IPs, such as ARM, Run lenght, Str MEM and VarLen, are
mounted onto the third router. This fact is going to discuss in the next section.

Second topology: Fig. 3 shows that 12 IPs of the VOPD are optimally mounted
on four different wormhole routers. The highest data transaction IPs such as UP-
SAM, VMEM, VRecst, PAD, IDCT, IQua and Invers, are still
mounted on two neighboring routers to obtain highest network throughput as
well as smallest power dissipation.
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Fig. 3. VOPD on the second topology

Third topology: This topology looks most likely Tree topology. As shown in
Fig. 4, there are totally five routers including one 6×6, one 5×5 and three 3×3
wormhole routers. In this topology, a similar technique as applied in above two
topologies is used. Hence, the optimal mapping of IPs onto OCN architecture
can be seen as Fig. 4b.

3 Router and Power Estimation

This section introduces the model of wormhole routers which were mentioned in
previous sections and their power models to obtain the network power consump-
tion and areas of the three proposed topologies.
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As we can see in Fig. 5a, the wormhole router includes p input ports and p
output ports. One or some of them can be used for the interconnections with
the neighboring routers, the remaining ports are used for interconnection with
IPs. The wormhole handles the dataflow on a flit level where flit is the smallest
data unit. The data packet is divided to a number of flits where the head flit
carrying the destination address and the tail flit are important for traversing
whole packet through the router. For instant, when the source injects the head
flit into input port i and this flit contains the destination address of output port
j, firstly the buffer i writes the flit into the tail of it. Secondly, after the request
of destination port is read and granted by the arbiter, the arbiter sends the
signal to the crossbar switch to emit the data to the output port j by reading
flits out of the buffer i. Hence, the energy dissipation of the flit on this router is
given by

Eflit = Earb + Exbar + Ebufrd + Ebufwrt, (1)
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where Earb is the arbitration energy, Exbar is the crossbar switch energy, Ebufrd

and Ebufwrt are the read and write to/from buffer energies, respectively. Since
the dynamic power of CMOS circuit is calculated as

P = E × fclk, (2)

where fclk is the clock frequency and E = α
2 CV 2

dd with α the switching activity,
C the circuit capacitance, and Vdd the supply voltage. Therefore, if fclk is defined
as the router’s operational frequency then the power dissipation of a flit on this
router is formulated as

Pflit =
1
2
αfclkV 2

dd (Cxbar + Carb + Cbufrd + Cbufwrt) . (3)

To calculate this power dissipation we apply Orion model presented in [9]. For the
homogenous architecture, the power dissipation on the router of whole network
is generally given by

P = fclkE = fclkHavg (Earb + Exbar + Ebufrd + Ebufwrt) , (4)

where Havg stands for the average hop count of the network and it is very much
related to the traffic pattern. For instant, the power dissipation on routers of
N ×N 2-D Mesh is presented as

P = fclk
2N

3
(Earb + Exbar + Ebufrd + Ebufwrt) . (5)

In this paper, as we mentioned above, the five topologies are heterogenous in
terms of configuration and operational frequency. The operational frequency of
each router is decided by the highest data transaction IPs mounted onto it.
Without loosing generality, the power dissipation of a particular flit is given by

P i
flit =

∑
Ri

f j
clk

(
Ej

arb + Ej
xbar + Ej

bufrd + Ej
bufwrt

)
× δij (6)

where Ri is the known route that the flit i goes through, and

δij =
{

1, ifjthrouter ∈ Ri,
0, otherwise.

(7)

Finally, based on the simulated network throughput and the routing table, the
power dissipation of the network with respect to routers is presented as

PNet =
∑
∀i

P i
flit. (8)

In this paper, the wire energy dissipation, Ewire = α
2 CwireV

2
dd, is calculated by

using the wire model worked out [13]. More particular, we use 0.1μm technology
and supplied voltage of 1.2V for the repeated wire model.
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To calculate the powers and energies for 2D Mesh, Fat-Tree and three pro-
posed architectures, we use Orion power model for each individual router in each
architecture. We apply 0.1μm technology, supply voltage of 1.2V and flit size
of 128 bits for all routers. The operational frequency of each router depends on
the IP which has the highest data transaction. Additionally, after calculate the
power consumption we can also obtain the router’s area of each architecture.
Table. 1 presents the power consumption, dynamic bit energy and corresponding
used area of three wormhole routers of the first topology.

Table 1. Power, bit energy and area of Routers in First Topology

First 5 × 5 Router 6 × 6 Router Second 5 × 5 Router

Area (μm2) 993280 1.41e6 993280
Flit power (W ) 0.153758 0.172508 130564
Bit energy (J) 2.40e-12 3.70e-12 2.81e-12

Table 2. Power, bit energy and area of Routers in Second Topology

6 × 6 Router 7 × 7 Router 3 × 3 Router 2 × 2 Router

Area (μm2) 1.41e6 1.91e6 374784 176128
Flit power (W ) 0.204922 0.219783 0.042822 0.025032
Bit energy (J) 3.20e-12 4.70e-12 4.80e-12 7.20e-12

Table. 2 presents the power consumption, dynamic bit energy and correspond-
ing used area of four wormhole routers of the second topology. The power
consumption, dynamic bit energy and corresponding used area of five wormhole
routers of the third topology are presented in Table. 3.

Table 3. Power, bit energy and area of Routers in Third Topology

6 × 6 Router 5 × 5 Router 1st 3 × 3 Router

Area (μm2) 1.41e6 993280 374784
Flit power (W ) 0.204922 0.130564 0.059266
Bit energy (J) 3.20e-12 2.805e-12 1.48e-12

2rd 3 × 3 Router 3rd 3 × 3 Router

Area (μm2) 374784 374784
Flit power (W ) 0.062245 0.042822
Bit energy (J) 1.36e-12 4.80e-12
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4 Simulation and Analysis

In this article, the behavioral performance of the designs of VOPD on five archi-
tectures including three proposed Tree-based topologies, 2-D Mesh and Fat-Tree
are simulated by NS-2. The simulations are done based on the data transaction
between IPs depicted in Fig. 1. The transmission protocol is defined as UDP. The
exponential traffic generator model is applied. The routing strategy is shortest
path. To tolerate with the Orion model, we set the packet size of 64 bytes or
four flits of 128 bits. The buffer scheme of DropTail is utilized. As the simulation
shows in the Fig. 5b, our three newly Tree-based architectures offer not much
less system throughputs in comparison with Fat-Tree and 800Mbps higher than
4× 4 Mesh. Among three new architecture, the first topology is the best one
in terms of system throughput.

Based on the area calculation in previous section, the total router sizes of five
architectures are sketched in Fig. 6a.
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Fig. 6. Sizes and Energies of five Topologies

As shown in Fig. 6a, the Fat-Tree topology utilizes biggest chip area, size of
19.8mm2 with the 0.10μm CMOS technology. The second biggest one is 4 ×
4 Mesh, size of 15.9mm2. While the biggest one among our three proposed
topologies is the second topology, size of 3.87mm2. This figure also depicts
that the router area of three proposed architectures are almost similar. From
Fig. 5b and Fig. 6a, we can conclude that our three proposed topologies offer
higher system throughputs than the optimal 2-D mesh while little smaller than
the optimal Fat-Tree. The first topology offers the highest throughput because
it has simplest connectivity or it can avoid more efficiently the drop packet at
the intermediate nodes. The remaining two proposed topologies still offer higher
throughputs compared to 2D Mesh while have significantly smaller sizes. This
again indicates that two conventional architectures introduce big overhead of
hardware consumption.

The simulated energy consumptions of five topologies are obtained basically
on equations (6, 7, 8). Since we have the system throughput simulation results
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of five topologies. We also know the in detail about the route of every individ-
ual flit. This means that we can point out which routers and wires the given
flit goes through. Using the bit energy calculated in Table. 1, Table. 2 and Ta-
ble.3, finally we can have the simulated energy consumptions of our proposed
topologies as depicted in Fig. 6b. As shown in Fig. 6b, it is interesting that the
first topology consumes smallest energy, of 0.0084J , compared to two other
proposed ones. Due to the complicated flows of flits and big number of switches
of Fat-Tree and 2-D Mesh, it is obvious that if we use similar parameters for
simulation, the energy dissipations on these two architectures are much bigger
than our three proposed architectures. Additionally, the throughputs of three
proposed architectures depicted in Fig. 5b indicate that the dropped flits at
the intermediate routers of the second and the third topologies consume quite
big amount of energy. Finally, we can indicate that the first topology con-
sumes less power while offers higher system throughput compared to the re-
maining two proposed topologies. The portions of the energy dissipations in-
sulted from wires of five topologies are depicted respectively in Fig. 7.The first
topology causes smallest consumption because of its simplest connectivity. Like-
wise, the Fat-Tree induces highest consumption since it has most complicated
connectivity.
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To show the overperformance of the optimal mappings of our proposed topolo-
gies, we also carry out the experiments of three cases of random mappings. The
random mappings of our three topologies are set up by randomly interchanging
the high data rate IPs with low data rate IPs in different routers. The through-
puts of these three cases are depicted and compared with three cases of optimal
mappings in Fig. 8. The corresponding consumed energies of random and opti-
mal mappings of three architectures are shown in Fig. 9. It is interesting that
the random mappings not only offer less throughputs but consume more power.
The main reason for this contradiction is that the random mapping cases create
more complicated routes and dropped flits. The more complicated route is, the
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more energy is consumed. Moreover, the total energy dissipation is calculated
by accumulating flits’s energy until they reaches the destination or drops out of
the network.

5 Conclusion

In this paper, we designed the VOPD with three differently Tree-based architec-
tures. These architectures were designed to not only obtain the highest system-
level performance but also reduce the hardware consumption and the intensive
interconnections. We also evaluated these architectures in terms of throughput,
dynamic and static power consumptions. Then, we compared our proposed ar-
chitectures to 2-D Mesh and Fat-Tree architectures. The results showed that the
newly proposed architectures used less hardware and consumed less power while
offered almost similar throughputs as the Fat-Tree did. The results also showed
that our architectures overperformed the 2-D Mesh in both aspects of hardware
complexity, power consumption and system performance.
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Abstract. In this paper we present the architecture and implementation of a 
hardware NIC scheduler to guarantee QoS on servers for high speed LAN/SAN. 
Our proposal employs a programmable logic device based on an FPGA in order 
to store and update connection states, and to decide what data stream is to be 
sent next. The network architecture is connection-oriented and reliable, based 
on credit flow control. The architecture scales from 4 to 32 streams using a 
Xilinx Virtex 2000E. It supports links with speeds in the order of Gbps while, 
maintaining the delay and jitter constrains for the QoS streams. 

1   Introduction 

Nowadays, QoS requirements on high performance system/local area networks 
(SAN/LAN) make necessary the use of complex routers to offer QoS hardware 
support between all their components. The MultiMedia Router (MMR) architecture 
[1] is an example of this sort of routers, designed as an interconnection compact 
component to be used in cluster and LAN/SAN environments. However, this router 
requires a high number of virtual channels (VC) per port (128) and a complex 
scheduler associated with every link, which maintains and updates connection states, 
and selects packets to be sent. 

A way to reduce router complexity and to optimize its design, while meeting QoS 
constraints, consists in improving traffic scheduling in servers [10]. The main idea is 
to reduce the number of buffers and VCs, taking advantage of QoS traffic sorting 
carried out by servers. Thus, both scheduling of routers and servers could work to 
wire speeds. To do that, it is necessary to use a hardware implementation to accelerate 
the scheduling process. However, the complexity of stream selection and priority 
updating poses an important implementation problem for scheduling a large number 
of streams using Gigabit links.  

In order to achieve these goals we propose a NIC (Network Interface Controller) 
scheduler architecture for servers with QoS support. Previous efforts [11,13,9] have 
proposed priority queuing architectures for switches and NICs. Our architecture is 
inspired on link schedulers designed for the MMR router. A simplified form of this 
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router has been completely implemented on an FPGA, denoted as Simple MMR 
(SMMR) [4]. The SMMR has been conceived as a prototyping platform, adapting 
MMR design ideas to a more realistic chip area and clock rate constraints. 
Furthermore, SMMR allows design alternatives for the evaluation and optimization of 
the initial MMR architecture [6]. A first prototype based on this architecture is 
proposed for a hardware traffic generator to test the SMMR. 

Our NIC scheduler is inspired on a previous work [9], which formulates a 
hardware solution for DWCS scheduling [14], using an in chip network processor and 
an FPGA on a board. On the other hand, our NIC architecture is a structured design 
which allows posterior improvements and optimizations. Also, the network 
architecture used in our case study allows implementing more components of the NIC 
scheduler in an FPGA. Only few tasks are coordinated by the server host processor in 
our implementation. These tasks will be performed by an FPGA embedded network 
processor in a future version.  

The remainder of this paper is structured as follows. In the following section the 
network architecture is presented. In section 3 we review the architecture of the QoS 
hardware scheduled server. The hardware architecture and implementation of the NIC 
scheduler is described in section 4. In section 5 we report details on the experimental 
prototype and the performance evaluation. Finally, section 6 summarizes the results of 
this work and overview future lines of research. 

2   Network Architecture 

Our server NIC scheduler is designed for high performance SAN/LAN and server 
clusters. These environments produce heterogeneous traffic streams, best effort (BE) 
and QoS (constant bit rate, CBR, and variable bit rate, VBR), which have different 
bandwidth and latency requirements. We consider a network architecture in which 
data packets are partitioned into flits (flow control units) of 1024 bits. Every flit is 
composed by 64 phits, where a phit (16 bits) is the minimum information unit 
transferred through a network link. The transmission bitwidth used internally in the 
NIC scheduler will be 32 bits, which is the same bitwidth that the external memory 
words. 

The establishment of QoS connections is carried out using an adaptive seeking 
algorithm of minimum path based on backtracking and denoted as Exhaustive 
Profitable Back tracking (EBP) [8]. For this purpose, two control packets, connection 
and disconnection, are used. Flow control used in this sort of traffic is PCS (Pipelined 
Circuit Switching). Best effort traffic uses a connectionless-oriented scheme, and a 
Virtual Cut Through (VCT) switching control. A Credit-based flow control, as in 
Infiniband [12], is used to avoid channel saturation and data loss. This technique 
consumes link bandwidth, which can be reduced by increasing flit size, and requires 
much smaller buffers.  

Link communications are serial and data are synchronized in blocks of 1040 bits 
((64+1) phits or 1flit + 1phit) that we denote as “flit frame”. Thus, a flit frame is 
divided in two parts, one corresponding to data, network control or synchronization 
flits, and another in which a credit may be sent. 



88 J.M. Claver et al. 

3   Scheduler Architecture 

A NIC scheduler for a server with QoS support must maximize link throughput, at the 
same time that guarantees real time requirements and avoids starvation of BE traffic. 
In the design of our NIC scheduler, we take into account the following strategies in 
order to achieve these goals: an admission control and bandwidth distribution to 
maximize the link throughput, an adaptive priority system to obtain QoS guarantees, 
and an inhibition mechanism on QoS streams, which avoids starvation of best effort 
traffic and controls link bandwidth usage.  

In order to parameterize bandwidth required by all sorts of traffic (VBR, CBR and 
BE), time space is divided in multiples of a flit frame that we denote as “flit round” or 
just “round”. The number K of flit frames per round determines the minimum 
bandwidth assigned to a traffic flow (1/K). In our experiments we set K=2048. 

Admission and bandwidth assignment policies vary in function of traffic 
characteristics. For CBR traffic, only the bandwidth used is needed, which cab be 
expressed as the maximum number of flits that can be sent in a round. As VBR traffic 
bandwidth can vary from one round to the next, a statistic model is used to obtain 
medium and peak bandwidths, and to determine an adequate bandwidth reservation. 
Finally, remaining bandwidth is assigned to best effort traffic.  

In this first scheduler model, VBR connexions are considered as CBR. Thus, to 
avoid packet loss and overtake delay requirements that will appear with statistics 
models, its peak bandwidth (PBR) is used to reserve bandwidth in scheduler. An 
adaptive priority system that guarantees QoS requirements is based either in delay or 
jitter. In this case, a priority algorithm based on bandwidth and delay has been 
selected, the SIABP (Simple-IABP) algorithm [2]. The algorithm has good behavior 
under high traffic loads and it is the core of the link scheduling algorithm in the MMR 
router [3]. The algorithm also increases the priority of packets proportionally to its 
waiting time in the buffer input queue. This design needs a regulating mechanism to 
control the correct use of bandwidth reserved for every stream, avoiding starvation of 
BE traffic. Therefore, for CBR traffic, the deadline to send a flit (T_Delay) is 
determined as a function of its transmitting pace (BWlink/BWi , where BWlink is the link 
bandwidth and BWi is the bandwidth reserved for the VCi) in a round and its 
accumulated delay. 

Taking into account the previous parameters, the order in which streams (Si) are 
served follows Algorithm 1. Among all QoS streams ready to be sent – those with 
remaining bandwidth in the current round (BWR > 0), buffer space in the receiver VC 
(credits), and satisfying its bandwidth constrains (T_Delay  0) – the highest priority 
stream is select to be sent. When there is more than one stream with the highest 
priority, any one of these streams is selected. The implementation of this algorithm is 
widely detailed in section 4. 

A QoS server needs a high speed I/O interface to connect the storage system with 
the NIC scheduler board, providing the required bandwidth for every stream. New 
standards as the PCX commuted interface could provide the necessary bandwidth for 
current link bandwidths. Figure 1 shows the system architecture proposed for our QoS 
hardware scheduled server.  
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The system architecture is organized in two levels. The first level is carried out by 
server host processor, which provides first stage of admission control, initiate 
connection setup, stream identification and scheduling of stream buffers. 

Algorithm 1. Scheduler stream selection  
  for all streams S

i
∈{CBR}, i=1,2,…,n /*In parallel 

  /*Builds the priority vector V 
     if {S

i
.T_Delay 0 & S

i
.Credits>0 & S

i
.BW

R
>0} 

        V
i
= S

i
.priority; /*Si participates in scheduling 

     else 
        V

i
= 0; /*Si does not must send data 

     Endif 
  end for 
  /*Selects the highest priority stream in log2n steps 
  {V

H
}= {highest(V

k
)}, ∀V

k
∈V; /*V

k
 with the high priority 

  if {card({V
H
}) == 1} Out= H;/*There is only one V

H
 

  else Out= Any({H});/*Selects any one of the highest V
H
 

  endif 
 
The second level of this architecture is completely implemented on an FPGA, 

coordinating admission control with the host processor, managing stream scheduling, 
formatting and transmitting flits from stream buffers. So, the FPGA not only performs 
scheduling tasks, but also provides real time functions that were previously assigned 
to a network processor. 

 

Fig. 1. System architecture of a QoS hardware scheduled server 
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This distribution of tasks is due to timing strong requirements. Management of 
scheduling needs acceleration due to the temporal bounds and the fact that the 
communication with the network interface demands strict synchronization. 
Alternatively, this could be implemented using an ASIC. However, to keep pace with 
the constantly changing algorithms, standards and protocols, it is preferable to use 
reconfigurable logic. 

4   Hardware Architecture and Implementation  

The hardware architecture and implementation of our NIC scheduler combine the use 
of an FPGA board, a network interface, and a system of disks. The components 
implemented in the FPGA perform several tasks: communication with the server host 
processor, stream scheduling, and data input/output (see Figure 2).  

N
etw

ork Interface

 

Fig. 2. Internal hardware and interfaces of an FPGA Server NIC scheduling prototype 

Connection setup is carried out by the host processor, loading parameters such as 
stream type (CBR, VBR), reserved bandwidth, transmitting pace (T_Delay), and VCs 
involved on a stream. As data packets are transmitted, a bidirectional communication 
host-FPGA controls VC buffers, interchanging data and control information. A flit 
arrival through the network interface is immediately communicated to the host. The 
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host processor also indicates to the FPGA the end of a communication and updates its 
state. This is followed by the FPGA sending a disconnection flit. As it is described in 
section 2, communications are synchronized using a “flit frame”, composed by 64+1 
phits. 

The input module (PQT_IN) controls the input link, identifying received packets: 
control flits, synchronization flits, and flow control credits. When a control flit 
arrives, the PQT_IN resends this to the host. When a synchronization flit is received, 
PQT_IN does nothing. In the last cycle of a flit frame a credit can be received from 
the router connected to the server. Then, the PQT_IN module informs of the credit 
arrival to the host through the PCI interface and to the SCEDULER module as well, 
increasing the corresponding credit counter of this stream. 

The output module (PQT_OUT) builds the head of a flit and sends it, followed by 
data from the corresponding VC buffer. PQT_OUT obtains data directly addressing 
VCs stored on the SRAM memory of the FPGA board. For each flit that is sent, 
PQT_OUT informs the host processor to manage its associated VC buffer. 

The scheduling algorithm is divided in two steps. First, all the sub-schedulers work 
in parallel to generate a global priority vector to be sent, where every sub-scheduler 
contributes with its VC identification and current priority. Second, the high priority VC 
is selected from the priority vector by a MAX bitonic network module (see Figure 3). 

 

Fig. 3. Scheduler architecture composed of a sub-scheduler for every QoS data stream and of a 
MAX bitonic network 

This proposal employs an implementation of a local scheduler (sub-scheduler) for 
every VC, which is composed of two modules, working synchronously in parallel 
(Figure 4). The SIABP priority module [2, 6] stores the priority of a VC, which is 
directly related to its bandwidth reservation as the number of flits that can be sent per 
round. After a scheduling process, all the priorities are updated. If a VC is selected to 
send its flit into the next flit frame, its priority is reset. Otherwise, its priority is 
increased as a function of its waiting time (for further details, see [1]). 



92 J.M. Claver et al. 

The candidate selection is performed by a bitonic network (MAX) that selects the 
high priority VC from the priority vector generated by the sub-schedulers. The MAX 
module takes log2 n cycles and has a building cost in LUTs area of O(n), where n is 
the maximum number of VCs per output link. It is possible to reduce the area of this 
module to either O( 2n ) or O(log2n), building a recirculating shuffle-exchange 

network as in [9]. Nevertheless, the resulting critical data path and complexity is then 
increased due to the presence of new multiplexers. This complexity is critical for the 
architecture of an FPGA, the building area is not significantly reduced, as the 
resulting delay clock is increased. 

 

Fig. 4. Sub-scheduler architecture composed of a control module (CONTROL MASK) and of a 
SIABP priority module 

The CONTROL MASK module (see Figure 5) controls the remaining bandwidth 
of a stream, the bank of credits, and the transmitting pace using the parameter 
T_DELAY. Using this information, this module decides if a VC must appear in the 
priority vector. If a VC has its CBR RATE counter set to a value less than 1, its BW 
REMAINDER counter greater than 0, and its CREDIT BANK counter greater than 0, 
the signal ENABLE TO TRANSMIT is set. At the same time the module adds its 
current priority to the priority vector. The priority added is zero only when one of the 
previous conditions is not satisfied. 

The control module (CTRL) is the last step in the scheduling process. It 
synchronizes the scheduler and PQT_OUT modules, and actives signals to update 
internal registers and scheduler counters. Thus, the total router cycles required for 
scheduling are 10 + log2n, where the 5 cycles are devoted to local stream scheduling, 
log2n cycles are spent on stream selection and 5 cycles more are consumed updating 
stream priorities. 
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5   Evaluation 

This section presents the performance evaluation of our NIC scheduler architecture 
and its hardware implementation using a Celoxica RC1000 board [7]. This board has 
an FPGA Xilinx Virtex 2000E (38,400 LUTs and 640 Kb BRAM), 8 MB SRAM 
memory distributed in four independent banks, and two PCI Mezzanine (PCM) I/O 
cards. 
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Fig. 5. Control module architecture (CONTROL MASK) 

The components implemented into the FPGA carry out several tasks: 
communications with the host processor, scheduling of streams and data input/output. 
Communications between the FPGA and the host processor use DMA transferences 
between the host/PCI peer and the 32bit/33 MHz PLX controller of the RC1000 
board.  

In order to simplify the design process, the FPGA Virtex has been programmed 
using HandelC [5] and the Celoxica DK4 environment, and the ISE 6.1 Xilinx 
backend tools from Xilinx. This eases prototyping our design, and the updating 
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process. HandelC is a behavioral C based hardware description system developed by 
Celoxica that allows co-simulation. Parallelism of process and synchronization are 
taken from the CSP model, in particular, from the Occam language. HandelC uses 
standard data types with user defined bitwidths. Thus, HandelC provides an efficient 
use of hardware resources.  

5.1   Area and Delay Results 

For this evaluation we have scaled our design from 4 to 32 virtual channels. Thus, we 
can evaluate its behaviour and performances with a different number of streams. 
Figure 6 reports the area size and clock rate for 4, 8, 16, and 32 data streams. SRAM 
memory used for interface and VC buffers are not included in this table. As the 
number of streams handled by the NIC scheduler increase from 4 to 32, the number of 
LUTs utilized by the implementation grows linearly. 

 

Fig. 6. Area and clock rate characteristics for different QoS server configurations 

The maximum clock rate for a 4 streams configuration is 52 MHz, which decrease 
down to 25 MHz for the configuration with 32 streams. A detailed time analysis 
shows that maximum clock rate is limited by the sub-scheduler module and not by the 
selection module MAX. However, the maximum clock rate decreases logarithmically, 
showing that our NIC scheduler implementation can meet packet-time requirements 
on Gigabit links. 

5.2   Traffic Analysis 

In order to highlight performance results of our QoS NIC scheduler, we have 
compared it with another scheduler without QoS characteristics, based on a Round-
Robin scheduling algorithm, and implemented in an FPGA too. We perform two 
experiments to illustrate bandwidth distribution among data streams. In experiment 1, 
four streams with equal bandwidth division ratios (1:1:1:1) were scheduled. In the 
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results the X-axis reports scheduled output time expressed in flit cycles (each flit 
cycle is equivalent to 65 router cycles), and the Y-axis reports the bandwidth as the 
number of flits scheduled per unit of time. We only report the first 100 flit cycles of 
simulation (65,000 router cycles). Figures 7 and 8 show the same bandwidth division 
for the two schedulers. The bandwidth of each stream settles after 70 time units and 
maintains the same value until the execution is terminated. So, bandwidth for every 
stream is guaranteed and output link throughput is 100%. 

 

Fig. 7. Bandwidth distribution results for four 
streams with equal ratios (1:1:1:1) using the 
QoS scheduler 

 

Fig. 8. Bandwidth distribution results for 
four streams with equal ratios (1:1:1:1) 
using a Round-Robin scheduler without QoS 

A second experiment with bandwidth division ratios (4:2:1:1) was also recorded. 
Figures 9 and 10 report a different bandwidth distribution for the two schedulers. 
When the QoS scheduler is used, the bandwidth of each stream settles after 70 time 
units and maintains the same value until the execution is finished. So, bandwidth for 
every stream is guaranteed and output link throughput is 100%. 

 

Fig. 9. Bandwidth distribution results for four 
streams with ratios (4:2:1:1) using the QoS 
scheduler 

 

Fig. 10. Bandwidth distribution results for 
four streams with ratios (4:2:1:1) using a 
Round-Robin scheduler without QoS 

However, as is reported in Figure 10, bandwidth for every stream is not guaranteed 
when the Round-Robin scheduler is used, and output link maximum throughput is 
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below 86%. Although bandwidth for streams with low requirements is guaranteed, 
bandwidth for the stream with high requirements is not. 

6   Conclusions 

In this paper we have presented the architecture and hardware implementation of a 
hardware NIC scheduler with QoS guarantees for servers on high speed LAN/SAN 
and high performance clusters. The proposed architecture is scalable because the 
occupation area grows linearly as the number of data streams is increased, and the 
NIC scheduler clock rate decreases logarithmically and tends to be stabilized around 
the 20 MHz. The QoS server behaviour guarantees bandwidth and delay 
requirements, attaining network link throughput close to 100%. NIC scheduler has 
been implemented in an FPGA and using a high level specification language like 
Handel-C.  

Currently, we work in the design of a QoS server that handles combined CBR and 
VBR traffic with better efficacy and takes higher profit of maximum link throughput. 
Finally, we also work on increasing the clock rate of the NIC scheduler to adapt it to 
multi-gigabit data links. 
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Abstract. Advanced Switching (AS) is a new fabric-interconnect tech-
nology that further enhances the capabilities of PCI Express. On the
other hand, the provision of Quality of Service (QoS) in computing and
communication environments is currently the focus of much discussion
and research in industry and academia.

A key component for networks with QoS support is the egress link
scheduling algorithm. AS defines a table-based scheduler that is simple
to implement and can offer good latency bounds with a fixed packet size.
However, it does not work properly with variable packet sizes and faces
the problem of bounding the bandwidth and latency assignments.

In this paper we propose several possible modifications to the original
AS table scheduler in order to implement the Deficit Table (DTable)
scheduler. This scheduler works properly with variable packet sizes and
allows to partially decouple the bandwidth and latency assignments.

1 Introduction

Advanced Switching (AS) [1] is a new high performance interconnection tech-
nology based on PCI Express [10],which is the next generation of the PCI
bus.Whereas PCI Express has already begun to reshape a new generation of PCs
and traditional servers, AS is intended to proliferate in multiprocessor, peer to
peer systems in the communications, storage, networking, servers and embed-
ded platform environments. Together, PCI Express and AS have the potential
for building the next generation interconnects [8].

The provision of Quality of Service (QoS) in the environment where AS is
foreseen to be used will be very important. A key component for networks with
QoS support is the egress link scheduling algorithm.AS defines two egress link
schedulers: The virtual channel arbitration table scheduler and the Minimum
Bandwidth egress link scheduler (MinBW). The table-based scheduler is simple
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to implement and can offer good latency bounds with a fixed packet size. How-
ever, it does not work properly with variable packet sizes and faces the problem
of bounding the bandwidth and latency assignments [7].

In [4] we proposed a new table-based scheduler, which we called Deficit Table
(DTable), which works properly with variable packet sizes. We also proposed
a methodology to configure this scheduler that allows us to decouple, at least
partially, the bandwidth and latency assignments.

In [7] we examined the AS mechanisms intended for providing QoS and showed
how to provide QoS based on bandwidth and latency requirements. Specifically,
in [7] we showed how to use a limited version of the DTable scheduler to im-
plement the AS table scheduler in order to support variable packet sizes. The
original DTable scheduler considers a different weight per table entry, however,
in this version we used the same weight in all the table entries. The resulting
scheduling mechanism does not require to modify the interface provided in the
AS specification for configuring the table scheduler and only requires simple
hardware modifications of the original AS table scheduler. However, if we want
to take advantage of the decoupling configuration methodology, we need to be
able to assign different weights to the table entries.

In this paper we propose three different ways of implementing a full version
of the DTable scheduler to substitute the original AS table scheduler, but modi-
fying as little as possible the AS specification. Moreover, we review the methods
we have proposed to provide QoS over AS, now employing a full version of the
DTable scheduler. Finally, we evaluate the performance of our proposals by simu-
lation. comparing the performance of the DTable scheduler with the performance
of the MinBW scheduler.

The structure of the paper is as follows: Section 2 presents a summary of the
general aspects in the AS specification including the most important mechanisms
that AS provides to support QoS. Section 3, reviews the DTable scheduler and
our methodology to decouple the bandwidth and latency assignments. In Section
4, we propose how to fully implement the DTable scheduler in AS. In Section 5 we
propose how to provide QoS requirements over AS using a full implementation of
the DTable scheduler. Details on the experimental platform and the performance
evaluation are presented in Section 6. Finally, some conclusions are given.

2 Advanced Switching Revision

Advanced Switching (AS) is built on the same physical and link layers as PCI
Express. Moreover, it includes an optimized transaction layer, providing a rich
set of features and capabilities. A credit-based flow control protocol ensures that
packets are only transmitted when there is enough buffer space at the other
end to store them, making sure that no packets are dropped when congestion
appears. The flow control credit unit is 64 bytes.

An AS fabric permits us to employ Virtual Channels (VCs), egress link
scheduling, and an admission control mechanism to differentiate between traffic
flows. AS uses VCs to aggregate flows with similar characteristics. AS supports
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up to 20 VCs of three different types: Up to 8 bypassable unicast VCs, up to 8
ordered-only unicast VCs, and up to 4 multicast VCs. The bypassable VC with
the highest identifier in each network element is called the Fabric Management
Channel (FMC). Note that each VC has its own credit count for the credit-based
flow control. Moreover, each VC type has its own MTU. The allowed MTU val-
ues for the bypassable VC type are 192, 320, 576, 1088, and 2176 bytes. The
allowed MTU values for the ordered VC type are 64, 96, 128, 192, 320, 576,
1088, and 2176 bytes.

In AS, the arbitration is made at VC level. AS defines two schedulers to resolve
between the up to twenty VCs competing for bandwidth onto the egress link:
The table scheduler and the MinBW scheduler.

The table scheduler employs an arbitration table that consists in a register
array with fixed-size entries of 8 bits. Each entry contains a field of 5 bits with
a VC identifier value and a reserved field of 3 bits. When arbitration is needed,
the table is cycled through sequentially and a packet is transmitted from the VC
indicated in the current table entry regardless of the packet size. If the current
entry points to an empty VC, that entry is skipped. The number of entries may
be 32, 64, 128, 256, 512, or 1024.

The MinBW scheduler is intended for a more precise allocation of bandwidth
regardless of the packet size. This scheduler consists of two parts: The first is a
mechanism to provide the FMC with absolute priority, ahead of the other VCs,
but with its bandwidth limited by a token bucket. The second is a mechanism
to distribute bandwidth amongst the rest of the VCs according to a configurable
set of weights. In [5] we proposed several implementations for this scheduler that
accomplish all the properties that the AS specification indicates [1], including
the interaction with the AS flow control.

3 The Deficit Table Scheduler

The Deficit Table (DTable) scheduler [4], defines an arbitration table in which
each table entry has associated a flow1 identifier and an entry weight, which is
usually expressed in flow control credits in networks with a credit-based link-
level flow control. Moreover, each flow has assigned a deficit counter that is set
to 0 at the beginning. When scheduling is needed, the table is cycled through
sequentially until an entry assigned to an active flow is found. A flow is considered
active when it stores at least one packet and the flow control allows that flow
to transmit packets. When a table entry is selected, the accumulated weight is
computed. The accumulated weight is equal to the sum of the deficit counter for
the selected flow and the current entry weight. The scheduler transmits as many
packets from the active flow as the accumulated weight allows. When a packet
is transmitted, the accumulated weight is reduced by the packet size.

The next active table entry is selected if the flow becomes inactive or the
accumulated weight becomes smaller than the size of the packet at the head of
1 In this paper we will use the term flow to refer both to a single flow or to an

aggregated of several flows with similar characteristics.
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the queue. In the first case, the remaining accumulated weight is discarded and
the deficit counter is set to zero. In the second case, the unused accumulated
weight is saved in the deficit counter, representing the amount of weight that
the scheduler owes the queue.

In [4] we also proposed a methodology to configure the DTable scheduler to
decouple, at least partially, the bounding between the bandwidth and latency
assignments. With this methodology we set the maximum distance between any
consecutive pair of entries assigned to a flow depending on its latency require-
ment. Moreover, we can assign the flows with a bandwidth that depends on
the total weight assigned to the flow entries. The proportion of the egress link
bandwidth that can be actually assigned to a flow depends not only on the pro-
portion of table entries assigned, but also on two table configuration parameters.
We have called these parameters w and k.

The w parameter determines the maximum weight M that can be assigned to
a single table entry in function of the General MTU of the network (GMTU):
M = GMTU × w. The k parameter determines the total weight that can be
distributed between all the table entries. We call this value the bandwidth pool :
pool = N ×GMTU × k.

The minimum weight that a table entry can have associated should ensure that
there will never be necessary to cycle through the entire table several times in
order to gather enough weight for the transmission of a single packet. Therefore,
in [4] we set this minimum value to the GMTU. However, in [6] we proposed
to use different MTUs for the different flows. This means that each flow has
a specific MTU equal to or lower than the GMTU. Therefore, we can assign
a table entry with a minimum weight equal to its flow’s specific MTU instead
of the GMTU. Using different MTUs for the different flows allows us to assign
a smaller amount of bandwidth to those flows with a smaller MTU than the
general MTU. Moreover, the value of the k parameter can be smaller, and thus
the flexibility to assign the bandwidth increases. However, the specific flow MTU
must be assigned taking into account the characteristics of the traffic flow. A
too small specific MTU may decrease the latency performance of the flow [6].

Therefore, supposing an arbitration table with N entries, the minimum band-
width minφi and the maximum bandwidth maxφi that can be assigned to the
ith flow are:

minφi =
ni ×MTUi

pool
=

ni ×MTUi

N ×GMTU × k
=

ni

N
× MTUi

GMTU
× 1

k
(1)

maxφi =
ni ×M

pool
=

ni ×GMTU × w

N ×GMTU × k
=

ni

N
× w

k
(2)

Note that varying the w and k parameters affects the minimum and maximum
bandwidth that can be assigned to all the flows. However, assigning a specific
MTU to a flow only affects the minimum bandwidth of that flow.
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4 Implementing the DTable in AS

As stated before, the AS arbitration table consists in a list of VC identifiers with-
out any weight assigned to each entry as it is the case in the DTable scheduler.
In [7] we proposed to convert the AS table scheduler into the DTable scheduler
assigning each table entry with the same weight, the MTU. Moreover, we inter-
nally assign each VC with a deficit counter. These little changes require simple
hardware modifications of the original AS table scheduler but they do not re-
quire to modify the interface provided in the AS specification for configuring the
table scheduler. Note that these counters are set to zero at the beginning and
are modified dinamically by the scheduler itself during the scheduling process,
and thus they do not require any user configuration.

These simple modifications solve the problem of the AS table scheduler with
variable packet sizes but it does not allow to decouple the bandwidth and the
latency assignments using our configuration methodology because this method-
ology relies on using different weights for the table entries.

In this paper we propose several possibilities to fully implement the DTable
scheduler in AS. Our objective is to be able to assign the table entries with
different weights but modifying as little as possible the AS specification. We
propose three possibilities to assign each table entry with a weight: to use the
3-bit reserved field of each table entry, to modify the arbitration table structure,
and to use the same weight for all the entries of a VC.

4.1 Using the 3-bit Reserved Field

The easiest possibility to implement the DTable scheduler in AS is to employ
the 3-bit reserved field to assign a weight to each entry. The problem of this
implementation is that this field only allows us to specify a weight between 0 and
7, and thus, several considerations must be made. First of all, as stated before,
the entry weight must represent at least the value of the GMTU. Therefore, a
weight of 0 is not going to be used, and thus, we propose to consider the weight
0 as 1, the weight 1 as 2, etc. This allows us to specify a weight between 1 and
8 with the 3-bit field.

Moreover, in AS, the GMTU can be up to 34 flow control credits (2176 bytes).
Obviously, it is not possible to represent directly a value of at least 34 with just
3 bits. Therefore, when using the 3-bit reserved field to assign a weight to each
entry, each weight unit will represent a weight equivalent to a certain number
of flow control credits. The maximum weight per entry, the bandwidth pool,
and the actual value assigned to each table entry are expressed in weight units.
Moreover, in order to calculate the minimum and maximum bandwidth that
can be assigned to a VC, we must have a value in weight units for the GMTU
and the specific MTUs, if applicable. However, the scheduler is still going to
consider flow control units to arbitrate. This means that the deficit counter and
the accumulated weight are still going to be expressed in flow control credits.
Therefore, when an entry is selected its weight must be translated into its value in
flow control credits. accumulated weight = deficit counter + ((entry weight +
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1)× credits per weight unit). When configuring the DTable scheduler we must
specify, apart from the VC identifier and weight of each table entry, the number
of flow control credits that represents each weight unit.

This implementation posibility limits the maximum weight per entry to 8,
and thus the maximum value for the w parameter is also limited to 8 (with the
minimum possible value of the GMTU: 1). The values of the GMTU and the
specific MTUs are also very limited (1-8). The bandwidth assignation granularity
depends on the bandwidth pool. The maximum bandwidth pool is the maximum
weight per table entry multiplied by the number of table entries, and thus, the
maximum granularity is 1/(8×N).

Summing up, this possibility limits the possible values for the w parameter
and the specific MTUs. This limits the flexibility of the table configuration.
However, the implementation of this option is quite simple.

4.2 Modifying the Arbitration Table Format

Other possibility is to modify the structure of the arbitration table in order to
dedicate a higher number of bits to the entry weight. Specifically, we propose to
use two bytes per table entry, and use 5 bits for the VC identifier and up to 11
for the entry weight. With 11 bits, the entry weight can take a value between
1 and 2048, and thus, with a MTU of 34 flow control crdits, the maximum w
parameter is around 60 (M = GMTU × w, w = 2048/34) and the maximum
granularity is 1/(N×2048)

This possibility allows a higher flexibility in the assignation of the w parameter
and the specific MTUs values. However, it requires the double of memory to store
the arbitration table than the previous option for the same number of entries.
Moreover, it requires processing two bytes per entry instead of only one.

4.3 Using Only One Weight Per VC

The third possibility that we propose is to associate the same weight to all the
entries assigned to a VC. Therefore, we only need to specify a table weight per
VC instead of per table entry. In order to change as little as possible the AS
specification a possibility is to specify the weight assigned to the entries of each
VC employing the MinBW configuration structure, which provides 12 bits to
specify a weight per each VC. This allows us to specify a weight between 1
and 4096, and thus, the maximum w value is around 120 (M = GMTU × w,
w = 4096/34). When a new table entry is selected, the accumulated weight is
computed as: accumulated weight = deficit counter + V C weight.

This possibility also allows us a higher flexibility in the assignation of the w
parameter and the specific MTU values than the 3-bit option. The disadvantage
of this possibility is that we cannot assign the weight units from the bandwidth
pool in a totally free way between the table entries. We have to assign the weights
in exact fractions of the number of entries of each VC. Therefore, the bandwidth
assignation granularity is different for each VC and depends on the number of
entries assigned to that VC: ni/(N×4096).
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5 Providing QoS over AS with the DTable Scheduler

In [7] we examined the AS mechanisms and showed how to provide QoS to the
applications. First of all, a set of Service Classes (SCs) with different require-
ments must be specified. The egress link scheduler must be properly configured
to provide the different SCs with their requirements. Moreover, an admission
control protocol must be used to provide QoS guarantees.

In order to define this set of SCs, we propose a traffic classification based on
two network parameters: Bandwidth and latency. We distinguish three broad
categories of traffic: Network control traffic, QoS traffic, and best-effort traffic.
The network control traffic is high-priority traffic used to maintain and support
the network infrastructure. The QoS traffic has explicit minimum bandwidth
and/or maximum latency requirements. The best-effort traffic is largely insen-
sitive to both bandwidth and latency and is only characterized by the differing
priority among each other.

When various flows obtain access to the AS fabric, they will be aggregated
into the SCs depending on their characteristics. If there are sufficient VCs, we
will devote a separate VC to each SC. The control SC will be assigned to the
FMC. Note, however, that this VC does not have maximum priority when using
the table scheduler, so we will consider it as any other VC with traffic of high
latency requirements.

In order to provide QoS guarantees, an Admission Control (AC) mechanism
must be used for the QoS SCs. Note that this is not necesary for the control and
best-effort SCs. The AC mechanism would allow a new QoS connection to be
established if there is enough bandwidth all along its path.

As stated before, when using the DTable scheduler, in order to provide max-
imum latency requirements to the traffic of a VC, the maximum separation be-
tween two consecutive table entries devoted to that VC must be fixed. In order to
provide traffic of a given VC with a minimum bandwidth, the amount of weight
units from the bandwidth pool assigned to those VC table entries must accom-
plish with the proportion of desired egress link bandwidth. Therefore, when we
know the maximum distance between two consecutive table entries, and thus,
the number of entries, and the amount of bandwidth that we want to assign
to each VC, we must choose the w and k parameters that make possible this
distribution.

Moreover, we can limit the MTU of some VCs in order to have a smaller
minimum bandwidth for those VCs and for being able to use smaller k values.
We can assign each VC a different MTU at a communication library level, but
this would entail to add complexity to the AS communication protocols. On
the other hand, we can take advantage of the AS characteristics to simplify
the process. As stated before, AS allows us to establish two different MTUs for
the two unicast VC types. Therefore, we can have two sets of VCs with two
different MTUs and we can assign the SCs to the VCs taking into account this.
Note that those SCs that have high latency requirements, and thus require more
table entries, usually have small bandwidth requirements and use small packets.
Therefore, we can assign these SCs to the VCs with the smallest MTU.
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6 Performance Evaluation

In this section, we evaluate the performance of our proposals to provide latency
and bandwidth requirements over AS with a full implementation of the DTable
scheduler by simulation. We consider a realistic multimedia scenario with differ-
ent types of traffic. This allows us to apply our proposals of using different MTUs
taking into account the traffic characteristics. Note, however, that our proposals
are equally valid for other environments. We also compare the flexibility in the
bandwidth assignation of the three possibilities that we propose to implement
the DTable scheduler.

Moreover, we compare the performance of the DTable scheduler with the per-
formance of the MinBW scheduler implemented with the Deficit Round Robin
(DRR) [11] and the Self-Clocked Weighted Fair Queuing (SCFQ) [2] algorithms.
We have employed the credit aware versions of this schedulers that we pro-
posed to be used for the implementation of the MinBW [5]. We have chosen
the SCFQ-CA algorithm as an example of “sorted-priority” algorithm with a
good latency performance and the DRR-CA algorithm because of its very low
computational complexity. In order to simplify the comparison among the three
schedulers, we have not reflected the different complexity into different schedul-
ing time.

6.1 Simulated Architecture

We have used a perfect-shuffle Bidirectional Multistage Interconnection Network
(BMIN) with 64 end-points connected using 48 8-port switches (3 stages of 16
switches). In AS any topology is possible, but we have used a MIN because it
is a common solution for interconnection in current high-performance environ-
ments. The switch model uses a combined input-output buffer architecture with
a crossbar to connect the buffers. Virtual output queuing has been implemented
to solve the head-of-line blocking problem at switch level.

In our tests, the link bandwidth is 2.5 Gb/s but, with the AS 8b/10b encoding
scheme, the maximum effective bandwidth for data traffic is only 2 Gb/s. We
are assuming some internal speed-up (x1.5) for the crossbar, as is usually the
case in most commercial switches. AS gives us the freedom to use any algorithm
to schedule the crossbar, so we have implemented a round-robin scheduler. The
time that a packet header takes to cross the switch without any load is 145 ns,
which is based on the unloaded cut-through latency of the AS StarGen’s Merlin
switch [12]. We are going to use the maximum MTU allowed in AS: 2176 bytes
(34 flow control credits). The buffer capacity is 17408 bytes (8×MTU) per VC
both at the input and at the output ports of the switches.

6.2 Simulated Scenario

The IEEE standard 802.1D-2004 [3] defines 7 traffic types at the Annex G, which
are appropriate for this study. We will consider each traffic type as a SC. Table
1 shows each SC and its requirements. In this way, the workload is composed of
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Table 1. SCs suggested by the standard IEEE 802.1D-2004

Type SC Description

Control Network control (NC) Traffic to support the network infrastructure.

QoS Voice (VO) Traffic with a limit of 10 ms for latency and jitter.

QoS Video (VI) Traffic with a limit of 100 ms for latency and jitter.

QoS Controlled load (CL) Traffic with explicit bandwidth requirements.

Best-effort Excellent-effort (EE) Preferential best-effort traffic.

Best-effort Best-effort (BE) LAN traffic as we know it today.

Best-effort Background (BK) Traffic that should not impact other flows.

7 SCs and each one of them will be assigned to a different VC. As stated before,
the NC SC is assigned to the FMC.

We suppose a scenario in which the goal is to dedicate around 20-25% of the
egress link bandwidth to best-effort traffic, around 5-10% bandwidth to voice
traffic (a lot but low-bandwidth requiring connections), around 5-10% of band-
width to controlled load, and 40-50% of bandwidth to video traffic (a lot and
high-bandwidth requiring connections). This percentages are intended to repre-
sent a multimedia scenario with a realistic combination of traffic from applica-
tions with very different requirements. Moreover, we expect that the maximum
network throughput to be around 85-95%. We also consider that control and
voice traffic uses small packet sizes, as it is usually the case. In [13] several pay-
load values for voice codec algorithms are shown. These values range from 20
bytes to 160 bytes. We have selected a payload of 160 bytes for voice traffic.

6.3 Scheduler Configuration

The table scheduler must be properly configured to provide the SCs with their
bandwidth and latency requirements. A table of 128 entries has been used. Ta-
ble 2 shows the distribution of the table entries among the SCs. It shows the
maximum distance between any consecutive pair of entries, the number of table
entries, and the percentage of entries that this entails for each SC. We have as-
signed a distance of 2, 4, and 8 to the NC, VO, and VI SCs respectively, attending
to their latency requirements. Note that this entails assigning 112 entries. We
have distributed 8 entries among the best-effort SCs attending to the different
priority among them. Finally, we have assigned the remaining 8 entries to the
CL SC. For the CL SC and the best-effort SCs we could have assigned the entries
sequentially in the free gaps of the table, but to achieve better latency results
for these SCs we have assigned their entries minimizing the distance between
any pair of consecutive entries.

Table 2 also shows the weight configuration that we have chosen to fit the band-
width requirements stated in the previous section using the 3-bit implementation
option of the DTable scheduler. As stated before, we must choose a value between
1 and 8 to represent the GMTU (in this case 34 flow control credits). We have
chosen to represent the GMTU using 3 weight units. Therefore, each weight unit
represents 12 flow control credits and the w value is 2.67. Moreover, we are going
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Table 2. Table entries distribution and weight configuration with the 3-bit option.
w = 2.67, M = 8, k = 0.76, pool=292.

Table entries distribution Weight configuration (3-bit option)
VC Max. distance #entries %entries MTU minφi maxφi φi Total weight

NC 2 64 50 1 21.92 175.34 28.08 82

VO 4 32 25 1 10.96 87.67 10.96 32

VI 8 16 12.5 3 16.44 43.84 43.84 128

CL 16 8 6.25 3 8.22 21.92 8.91 26

EE 32 5 3.91 3 5.14 13.70 5.14 15

BE 64 2 1.56 3 2.05 5.48 2.05 6

BK 128 1 0.78 3 1.03 2.74 1.02 3

Total 128 100 - 65.76 350.69 100 292

to use a smaller MTU for the NC and VO SCs. Specifically, we set a specific MTU
of 1 weight unit, which actually entails a specific MTU of 576 bytes. Note that
assigning a smaller MTU to these SCs is not going to decrease their performance
because the control and voice traffic already use small packets.

Table 2 shows the minimum and maximum bandwidth that this configuration
entails (according to expressions 1 and 2) and the bandwidth φi that has been
finally assigned to each SC. Moreover, it shows the total number of weight units
from the bandwidth pool that each SC has been assigned to their entries. In
order to choose these parameters we have considered mainly how to provide the
VO SC with a small amount of bandwidth at the same time that we assign the
VI SC a high amount of bandwidth.

Table 3 shows the weight configuration of the other two options that we
propose as possible implementations of the DTable scheduler: to modify the
structure of the arbitration table to use more bits for the weight and to use only
one weight per VC. In order to compare these two cases with the 3-bit option,
we have used the same values for the w and k parameters. Note, however, that
the value of w is 2.68 instead of 2.67 because the value of M must be an integer

Table 3. Weight configuration with the modification of the table structure and the
weight per VC options. w = 2.68, M = 91, k = 0.76, pool=3308.

Modifying the table One weight per VC
VC MTU minφi maxφi φi Total weight φi Total weight

NC 9/5 17.41/9.67 176.06 28.08 928 27.09/29.02 896/960

VO 9/5 8.71/4.84 88.03 10.96 363 10.64/11.61 352/384

VI 34 16.45 44.01 43.84 1450 43.53/44.01 1440/1456

CL 34 8.22 22.01 8.91 295 8.71/8.95 288/296

EE 34 5.14 13.75 5.14 170 5.14 170

BE 34 2.05 5.50 2.05 68 2.05 68

BK 34 1.03 2.75 1.03 34 1.03 34

Total 59.01/47.4 352.11 100 3308 98.19-101.81 3248-3368
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Table 4. Injected traffic and scheduler configuration

SC Injection rate Traffic pattern Packet size (bytes)

NC 0.01 Bursts60 up to 576

VO 0.119 64 Kb/s CBR 168

VI 0.438 750 Kb/s MPEG-4 traces up to 2176

CL 0.089 750 Kb/s CBR 2176

EE 0 → 0.115 Bursts60 up to 2176

BE 0 → 0.115 Bursts60 up to 2176

BK 0 → 0.115 Bursts60 up to 2176

Total 0.656 → 1.001

(M = GMTU ×w, 91 = 34× 2.68). These two options have the same minimum
and maximum bandwidth per VC. Note that the values are slightly different
from the 3-bit option because in these two cases the MTUs are expressed in
flow control credits and not in weight units, which is an approximation of the
real value. Note also that contrary to the 3-bit case, in these cases we could
have assigned a smaller specific MTU to have smaller minimum bandwidths for
the NC and VO SCs. Table 3 shows an example with a MTU of 320 bytes (5
flow control credits). The main difference between the options of modifying the
table structure and using one weight per VC is the granularity in the bandwidth
assignment. Table 3 shows that with one weight per VC the same minimum
bandwidth values that in the 3-bit case cannot be assigned for all the VCs. This
table shows the two nearest values that could be assigned instead. Note that the
granularity depends on the number of table entries.

Note that the main difference of the three DTable implementations is the way
of specifying the weight of a given table entry. This is going to affect the flexibility
to assign the bandwdith to the VCs, but not the performance that they provide.
Moreover, the three implementations probably differ also in their computational
complexity. However, for the sake of simplicity we have considered the same
computaion time for all of them. Therefore, we only show the performance results
obtained with the 3-bit implementation. In order to compare the performance
of the DTable and MinBW schedulers, both proposed implementations of the
MinBW scheduler (DRR-CA and SCFQ-CA) have been configured to provide a
minimum bandwidth equal to the stated for the DTable case in Table 2.

6.4 Traffic Pattern

The packets are generated according to different distributions, as can be seen in
Table 4. VO, VI, and CL SCs are composed of point-to-point connections of the
given bandwidth. VO and CL SCs are generated following a Constant Bit Rate
(CBR) distribution. In the case of the VI SC, a video trace is used to generate
the size of each frame. Each frame is injected into the network interfaces every
40 ms. If the frame size is bigger than the MTU, the frame is split into several
packets. The traffic of the NC, EE, BE, and BK SCs is generated according to
a Bursts60 distribution [9], which models worst-case real traffic scenarios.
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Our intention is to show that with an AC mechanisms for controlling the QoS
traffic and a relatively small amount of control traffic (as it is usually the case),
the QoS requirements of the different SCs are met, whatever the load of best-
effort traffic. For that purpose, we inject a fixed amount of traffic of each QoS
SC (VO, VI, and CL) equal to the minimum bandwidth that they have been
assigned, representing the maximum injection allowed by the AC mechanism.
Moreover, we inject a fixed amount of control traffic (NC), and gradually increase
the amount of best-effort traffic (EE, BE, and BK). Table 4 shows the proportion
of traffic of each SC that each node injects regarding the link bandwidth. The
destination pattern is uniform in order to fully load the network.

6.5 Simulation Results

Figure 1 shows throughput and latency performance per SC of the DTable sched-
ulers. The bandwidth performance for the MinBW schedulers is the same and
the average and maximum latency performance follow the same trends. Regard-
ing the throughput performance, Figure 1 shows that the NC and the QoS SCs
obtain all the bandwidth that they inject. However, when the network load is
high (around 85%-90%), the best-effort SCs do not yield a corresponding result.
From that input load, these SCs obtain a bandwidth proportional to their pri-
ority. Regarding the latency performance, Figure 1 shows that the average and
maximum latency of the NC SC and the QoS SCs grow with the load until they
reach a certain value. Once this value is reached the latency remains more or less
constant. On the other hand, the average and maximum latency of best-effort
SCs grow with the load. Furthermore, it can be seen that best-effort SCs obtain
a different average and maximum latency according to their priority.

As stated before the three schedulers offer the same throughput performance
but differ on the latency performance. Figure 2 compares the latency perfor-
mance of the NC and QoS SCs of the three schedulers. Specifically, it shows
the percentage of improvement on average and maximum latency of the DTable
scheduler over the MinBW scheduler implemented with the SCFQ-CA algorithm
and the MinBW scheduler implemented with the DRR-CA algorithm.

Figure 2 shows that both implementations for the MinBW scheduler obtain a
better latency performance for the NC SC. This is because this SC is assigned to
the FMC VC, which has maximum priority over the rest of VCs with the MinBW
scheduler. However, we can say that the DTable scheduler obtains a very good
performance if we consider that with this scheduler the FMC is treated like
any other VC. Note that with this scheduler the average latency is only around
20% worse and the maximum latency around 10% worse than with the MinBW
scheduler. This is because we have assigned a maximum distance between any
consecutive pair of entries of 2.

Regarding the QoS SCs Figure 2 shows that the DTable scheduler provides
a quite better latency performance than the DRR-CA scheduler for the VO SC
and a slightly worse latency than the SCFQ-CA scheduler. Again this difference
is smaller for the maximum latency statistic. Moreover, this figure shows that the
improvement of the DTable scheduler over the DRR-CA scheduler for the VI SC
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Fig. 1. Throughput and latency performance per SC of the DTable schedulers
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Fig. 2. Average and maximum latency improvement of the DTable scheduler over the
MinBW scheduler

depends in high degree on the network load. When the load is low, the average
latency performance provided by the DTable scheduler is slightly worse than
the latency provided by the DRR-CA. However, the DTable scheduler provides
a better latency when the load is high. The SCFQ-CA scheduler provides in
any case a slightly better average latency for this SC. The maximum latency
performance of the VI SC presents a similar behaviour, however, the variability of
the maximum latencies is higher and the differences among the three schedulers
are not so clear. Regarding the CL SC, the DTable scheduler provides a better
average and maximum latency performance than both MinBW implementations.

7 Conclusions

AS provides a table-based scheduler that does not work properly with variable
packet sizes and faces the problem of bounding the bandwidth and latency as-
signments. In this paper we propose three possible modifications to the original
AS table scheduler in order to fully implement the DTable scheduler. The objec-
tive of these modifications has been to be able to assign each table entry with a
weight, but modifying as little as possible the AS specification.

Using the 3-bit reserved field is probably the simplest possibility. However,
it limits the possible values for the w parameter and the specific MTUs. The
possibility of using the same weight for all the entries of a VC allows us to use
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higher values for the w parameter and to choose freely the values for the specific
MTUs. However, the bandwidth assignation granularity is different for each VC
and depends on the number of entries assigned to that VC. The possibility
of modifying the arbitration table structure does not present these problems,
however, it requires a higher amount of memory to store the arbitration table
and needs to process two bytes, instead of one, per table entry.

We have evaluated our proposals in a multimedia scenario and have compared
the performance of the DTable scheduler with two different implementations for
the MinBW scheduler: the SCFQ-CA and the DRR-CA algorithms. The simu-
lation results show that all the schedulers provide the same bandwidth perfor-
mance, but a different latency performance. The DTable scheduler provides a
better latency performance than the DRR-CA scheduler and only slightly worse
than the SCFQ-CA scheduler, which has a complexity that makes it difficult
to be implemented in a high performance network, with only a slightly higher
complexity than in the DRR-CA case.

Summing up, we have shown that modifying slightly the AS specification it is
possible to solve in a high degree the problems of the original AS table scheduler.
The resulting scheduler would allow us to provide a good latency performance
with a small computational complexity.
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Abstract. Asymmetric SSL Tunnel (AST) based Virtual Private Network is 
presented as a cheap solution for large scale SSL VPNs. In this solution, portion 
of SSL/TLS computational load is transferred to disengaged internal application 
servers, so that VPN server is no more the bottleneck of VPN system. This pa-
per analyzes the performance advantage of asymmetric SSL tunnel over tradi-
tional SSL tunnel, and discusses the secret management scheme for AST, which 
can meet enhanced security requirement and synchronize cipher specs of multi-
point. Finally, a kernel optimization algorithm was introduced. AST is imple-
mented in OpenVPN, which is originally a stable traditional SSL VPN solution. 
Experiment shows that the overall throughput of OpenVPN can be greatly im-
proved after AST adopted. 

1   Introduction 

SSL VPN is a promising secure remote access solution [1]. It is based on SSL/TLS 
[2,3] protocol, and thus has the following outstanding advantages: low cost, easy-to-
deploy, fine-grained access control, and etc. But its performance and scalability are 
also hampered by the computation overhead of SSL/TLS protocol [4,5,6]. 

SSL tunnel is overlay network facility for creating a SSL VPN on top of existing 
Internet or IP based network. In SSL tunnel, the payload of an IP packet carries an-
other full IP packet including its header information. That IP packet to be carried is 
compressed and encrypted in advance according to SSL/TLS protocol, see figure 1. 

 

Fig. 1. An IP Packet is SSL encapsulated, and carried by another IP packet of SSL tunnel 

                                                           
∗ This work was supported by NSFC (No. 60373088). 
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The computation overhead introduced by SSL/TLS protocol can be divided into 
two parts. When creating a SSL tunnel, the SSL Handshake Protocol was used by 
communication peers to authenticate each other, and to negotiate encryption and mes-
sage authentication coding (MAC) algorithms, coupled with cryptographic keys. 
Those algorithms and keys are used to protect data in subsequent communication, and 
called as cipher spec. The computational load of negotiating a new cipher spec is 
called handshake overhead. Handshake overhead only occurs once when VPN client 
logon, when VPN client connects specific internal server, cipher spec can be reused. 

After that, application data can be transferred. Both peers use the cipher spec to do 
SSL encapsulation or decapsulation, according to SSL Record Protocol. As figure 1 
shows, for each outgoing packet, the sender peer needs to do compressing, computing 
MAC, and encrypting. The reversed processes are needed in the receiver peer: de-
crypting, verify MAC and decompressing. The computational loads of both peers are 
approximately the same, and are called as transfer overheads.  

In traditional VPN solutions, VPN server is the common end of all SSL tunnels. As 
figure 2 shows, VPN server was always deployed in front of a LAN, and acts as a por-
tal. SSL tunnels are created connecting VPN clients and VPN server. The VPN server 
relays data between VPN clients and internal application servers. Inside the LAN, 
communication between VPN server and application servers can also be protected us-
ing additional internal SSL tunnels, when high security required. 

Print Server

Link/Rx LPT 1 LPT2 COMPower /TX

Laptop

Email Server

PC

File Server

Back-Office
Application Servers

SSL VPN
Server

SSL tunnel RDP,te
lnet,S

SH
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Internet
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MAC
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Fig. 2. VPN server is the common end of all SSL tunnels 

All data flows of the VPN should be sent to VPN server, in which they are encap-
sulated or unwrapped server according to SSL protocol, and forwarded out. VPN 
server is computing intensive, and communication quality of the whole VPN is de-
termined by computing power of VPN server. Research shows that the bandwidth 
utilizations of all open-source Linux-based SSL VPN solutions are less then 50 per-
cent bandwidth of the 100Mb/s fast Ethernet, even using Pentium IV 2.0G platform 
[4,5]. Vendors usually have to install an expensive hardware SSL accelerator in VPN 
server to meet the demand of high-end applications or larger scale VPN cases. 

For the purpose of removing the performance bottleneck of SSL VPN, an asym-
metric SSL tunnel (AST) based VPN solution is proposed. In this solution, portion of 
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transfer overhead was distributed to disengaged internal application servers, and the 
overall VPN throughput can be improved greatly. 

2   Asymmetric SSL Tunnel 

Conventional SSL tunnel is symmetric: (1) both ends should encrypt outgoing date 
and decrypt incoming date; (2) data transferred in both directions is encapsulated us-
ing the same cipher spec. Figure 3(a) illustrates VPN server’s work with symmetric 
SSL tunnels. VPN server authenticates client and creates SSL tunnel with it, and then 
relays the request from client to internal application server (See , ).After receiving 
response from application server, VPN server relays it to the client via SSL tunnel 
(See , ). If required, a SSL tunnel can be created between VPN server and appli-
cation server to protect internal communication (See , ).  

 

Fig. 3. VPN server works with symmetric SSL tunnels and asymmetric SSL tunnels 

Because VPN server is the common end of all those symmetric tunnels, all data 
flows of VPN must pass through VPN server, and a lot of computational load is 
concentrated in VPN server. VPN server becomes the bottleneck, but CPU utiliza-
tions of internal application servers are always low. The more application servers 
exist, the worse. If some computation load can be transferred to those I/O intensive 
but CPU disengaged application servers, the overall performance of VPN should be 
improved. 

VPN server must decrypt the request packets from clients, because it needs the 
plain request to do access controlling, virus scanning and finally forwarding it to ap-
plication server. In contrast, the plaintext responses from application servers are not 
necessary for VPN server. According to that, a novel asymmetric SSL tunnel (AST) is 
proposed: If the cipher spec has been transfer to application server via secure tunnel, 
the application server can do SSL encapsulation immediately after the response IP 
packet generated (See ,  of Figure 3(b)), and VPN server just forwards the encap-
sulated packet to client. 
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From Figure 3(b), we can see that those asymmetric SSL tunnels have following 
features: (1) their ends can just only do data encryption or decryption; (2) data trans-
ferred in different directions can be encapsulated using different cipher spec. 

Suppose SSL tunnels connecting VPN server and clients can be denoted by {T1, T2, 
…, Tn }. Ti = (Ifi Ofi), where Ifi is input date flux of tunnel Ti (from client to applica-
tion servers), Ofi is output data flux. The overall data flux transferred via internal 
 SSL tunnels between VPN server and application servers is                       , (0 1, 
0 1). If no internal SSL tunnel used, = =0; and if all data has to pass through in-
ternal tunnels, = =1. Assuming that                           . 

In traditional SSL VPN solutions, overall computational load of VPN server is  
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Here  is SSL encapsulation/decapsulation coefficient, and  is relay coefficient. The 
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So the theoretic maximum throughput of SSL VPN should be 
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When using asymmetric SSL tunnel, output data is SSL-encapsulated by internal 
application servers, and computation load of VPN server can be reduced as  
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Assumed all application servers have enough free CPU resource to do SSL encapsula-
tion, the overall throughput of VPN is still up to the power of VPN server, but it now 
increases to 
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and we have 
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For most of application servers, response data is usually much more than corre-
sponding request (Ifi << Ofi), that means k >> 1. We also has  << , as mentioned 
above, so that computation load of VPN server will be reduced more then a half, and 
the overall throughput will be considerably improved. 
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3   Secret Management for AST Based VPN 

In AST based VPN, internal application servers are connected to VPN server by 
symmetric SSL tunnel to receive secret messages. At VPN client logon, a master se-
cret was negotiated, and VPN server assigned a new session ID for the connection. 
The secret and ID are cached in client and VPN server. When client connects internal 
application server, that session can be reused to avoid negotiation load.  

The creation of new asymmetric SSL tunnel for client to access an internal server 
was illustrated in Figure 4 as phase 1. According to handshake protocol, VPN client 
simply specifies session ID of the session it wishes to reuse when sending the Hello 
message. VPN server checks in its cache to determine if it has state associated with 
this session. If the session state still exists in the cache, it uses the stored master secret 
and new random data of client and server to create a set of keys for new SSL channel. 
The client repeats the same process and generates an identical set of keys.  

In SSL protocol, change cipher spec message causes the receiver to use new ci-
pher spec to decrypt following data of the connection. Different from original proto-
col, that message was firstly generated by application server just after it receives new 
cipher spec from VPN server. VPN server relays that message to client. App server 
also generates the finish message using the new cipher spec. Upon client received 
those messages, it continues to act as SSL protocol described. After the finish mes-
sage from client arrived at VPN server, the new AST was created. 
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Fig. 4. Phase 1 is the process of creating a new asymmetric SSL tunnel, and phase 0 + phase 1 
is the process of updating the parameters of a asymmetric SSL tunnel 

In VPN application, ASTs always have long lifetime. For the purpose of enhance 
their security, it’s suggested to update the symmetric keys periodically. There is a 
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hello request message from server defined by SSL protocol to initiate a renew proc-
ess. It’s profitable for VPN server to initiate a round robin renew process. In practice, 
SSL tunnels usually adopt cipher block chain (CBC) mode encryption algorithms, 
which are context depended, so that VPN server can’t send that message directly. A 
simple renew scheme proposed for AST was depicted by the phase 0 of figure 4. 
When the time comes and VPN server is not busy, application server receives a renew 
cipher spec message from VPN server. Application server respond a hello request 
message, and that message was relayed to VPN client, and initiates a renew process, 
which is the same as session reusing process. After the renew process finished, cipher 
specs of all those three points are synchronized. 

4   Kernel Optimization: IP Packet Engrafting and Fake TCP Header 

SSL/TLS standards are defined over TCP protocol, so that SSL tunnel can also be re-
garded as secure TCP tunnel. In AST based VPN, upon receiving the SSL-
encapsulated packet from application server, VPN server only needs to relay that 
packet to correct client via existing TCP tunnel. That’s simple one-way relaying, and 
can be accelerated by IP packet engrafting algorithm. 

 

Fig. 5. IP packet Engrafting truncates the path of the SSL-encapsulated packet in VPN server 

As figure 5  has shown, when a packet from application server arrived at the net-
work interface card (NIC) of VPN server, it will be delivered up, passing through 
TCP/IP stack and socket layer one by one, and finally the VPN service process will 
receive it, which runs at user level. VPN service process chooses an outgoing tunnel 
according to the destination address of this packet, and then passes it down to NIC, 
layer by layer. Here exist at least two times of data copying between kernel space and 
user space, and also other processing of each layer, including generating new check-
sum in TCP protocol layer. 

IP packet engrafting can cut down those load by shorten the processing path (see  
of figure 5). The SSL-encapsulated IP packet is directly insert to appropriate input 
buffer of TCP/IP stack upon receiving it, therefore the SSL-encapsulated packet turns 
to be a legal outgoing packet of TCP tunnel and will be sent out immediately. During 
that process, data copying between kernel space and user space is avoided [7,8]. 
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In application server, a fake TCP header can be added into the outgoing packet, 
which carrying the SSL-encapsulated response packet to VPN server. That fake TCP 
header is filled with checksum of payload and other information to help IP packet en-
grafting in VPN server. Fake TCP header can help the IP layer of VPN server identify 
those encapsulated packets and simplify the processing in TCP layer, for example, 
eliminating memory allocation for TCP header and simplifying checksum computing. 

IP packet engrafting reduces the relay coefficient from  to for outgoing packets, 
where < . The throughput will increase as: 
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5   Implementation 

OpenVPN[9] is a mature and full-featured open-source SSL VPN solution. In this so-
lution, SSL tunnels are created to transfer IP packets over the Internet. Its program 
runs on almost all operation systems, such as Linux, Windows, FreeBSD, Mac OS X, 
and Solaris. Asymmetric SSL tunnel was implemented on the base of OpenVPN. 

Originally, OpenVPN programs have two modes: VPN client mode and VPN 
server mode. Here we append an App server mode. Programs of the new mode will 
run on internal application servers. In our AST implementation, VPN server mode 
program runs on Linux platform, and a Linux kernel loadable module is written to do 
IP packet engrafting. The program uses a new system call to control this IP packet 
engrafting module, and its original SSL encapsulation capability has been reserved to 
relay those packets from application servers that haven’t been encapsulated. Both cli-
ent mode and app server mode programs run on any OS platform that original 
OpenVPN program does, so that a wide range of clients and application servers can 
be supported. 

5.1   IP Packet Intercepting, Processing and Routing 

Program of all those three modes uses TUN, a virtual device, to intercept IP packets, 
see figure 6. It is a system tunnel connecting TCP/IP stack and user processes. For 
user processes, it’s a character device (for example /dev/tun0), and for the network 
stacks of operation system, it’s a virtual network interface (for example tun0).  

Every node of VPN, say VPN server, VPN client or application server, has a vir-
tual IP address that is valid within VPN, so call it VIP. In VPN client, outgoing IP 
packets, whose destination addresses are VIPs of application servers, are automati-
cally routed to virtual network interface of TUN. Client mode OpenVPN daemon re-
ceives those packets from the character device, then encapsulates and sends them to 
VPN server via the SSL tunnels. Incoming packets from the SSL tunnels go through 
the contrary path, and their payloads, the unwrapped packets, are finally accepted by 
the TCP/IP stack as if they came from the real physical NIC.  
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Fig. 6. TUN device is system tunnel between processes and TCP/IP stacks 

VPN server unwraps the request packets from client, and relays them to application 
servers. Application server generates response packets using VIP of the client as their 
destination addresses. In original OpenVPN solution, VPN server works as an ARP 
proxy or a gateway with the IP forwarding capability enabled, so that those response 
packets are routed to VPN server by data-link protocol, and then forwarded to the 
TUN device of VPN server. OpenVPN daemon encapsulates them and sends them to 
client via conventional symmetric SSL tunnels.  

When AST was used, application server and VPN server work at a different way. 
OpenVPN program of app server mode runs on application server as a daemon. In ini-
tialization phase, it automatically searches VPN server, and then creates a SSL tunnel 
with the VPN server to receive cipher spec and other information for local SSL en-
capsulation use, as has mentioned in chapter 3. That information is stored in an 
asymmetric SSL tunnel information table (ASTIT) indexed by the client VIPs, see ta-
ble 1. The SSL tunnel is also used to transfer client requests to application server if in-
ternal security required. App server mode daemon intercepts response packets via 
TUN device and encrypts them using corresponding cipher specs according to SSL 
Record protocol. After that, the daemon wraps those SSL-encapsulated packets into 
TCP packets and sends them to VPN server. VPN server engrafts them into appropri-
ate AST connections and relays them to VPN clients. 

Table 1. Record format of AST Information Table and Engrafting Infromation Table 

Table Name Record Format 
ASTIT Client VIP : AST Port : Session ID : Cipher Suit : Symmetric Keys 

EIT Client VIP : App Server VIP : Local Port : Remote Port : Client Public IP 

5.2   IP Packet Engrafting 

If outgoing packets of application server are to be engrafted into ASTs, they are writ-
ten to raw socket and sent to VPN server. App server mode daemon prepares the IP 
headers and fake TCP headers of those packets by itself. 
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The destination address of those TCP packets should not be VIPs of clients, other-
wise they would be intercepted by the TUN device of application server and encapsu-
lated again and again, never have the chance to be sent to VPN server. But VPN 
server needs destination information to choose correct tunnels for those packets. So 
that the header of those outgoing packets can be set as: 

Output.DstIP = RIPLG;  Output.DstPort = EngraftPort.  
Output.SrcIP = VIPC;   Output.SrcPort = ASTPort. 

Where RIPLG is the real IP address of VPN server in LAN, and EngraftPort is the 
port listened by IP packet engrafting module in VPN server. VIPC is the VIP of des-
tined client, and ASTPort is VPN server end port of the AST to be engrafted on. 

OpenVPN daemon of VPN server mode maintains a engraft information table 
(EIT) in the IP packet engrafting module. That table records necessary information for 
engrafting input packets into correct AST, see table 1. In that table, local port and re-
mote port are the port numbers used by the tunnel.  

Once IP packet engrafting module received a input packet from the Engrafting-
Port, the tunnel information table is queried to find a asymmetric SSL tunnel, whose 
local port = Input.SrcPort. The packet is inserted to the input buffer of TCP protocol 
layer after following modifications: 

Output.DstIP = Client Public IP ;  
Output.SrcIP = Public IP shared by LAN ;  
Output.DstPort = Remote Port ;  
Output.SrcPort = Local Port ;  
Output.Checksum = Input.Checksum + ChecksumPatch ;  
Output.SeqNum = TCPConn[Local Port].SeqNum ;  
Output.Ack = TCPConn[Local Port].Ack ;  
Output.Win = TCPConn[Local Port].Win . 

Here ChecksumPatch revises the TCP checksum. Because only the header has been 
modified, the ChecksumPatch reflects the difference between new header and the old 
one. The TCPConn[Local Port] is a kernel structure (TCP control block), it represents 
the TCP connection of the AST, whose local port is Local Port. That structure con-
tains some parameters of the connection: next sequence number (SeqNum), acknowl-
edge number (Ack), window size (win) and so on. Packet engrafting will results in an 
increment of the sequence number: 

TCPConn[Local Port].SeqNum =  
 (TCPConn[Local Port].SeqNum + Input.Length) mod 232. 

6   Performance Evaluation 

Performance evaluation is focused on testing the improvement of SSL VPN throughput 
and latency brought by asymmetric SSL tunnel. We only evaluate the performance of 
VPN after clients have already logon, and SSL tunnels have been created for clients to 
access internal application servers. The cipher specs of those SSL tunnels never 
changed after creation. To evaluate the most common case, all SSL tunnels use lzo as 
the compressing method, and DES-CBC-SHA as the cipher and MAC algorithm. 
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In our experiments, a LAN and 4 VPN clients are used to construct a SSL VPN. 
There are a VPN server, a gateway and 4 ftp servers in the LAN, connected via a 
100Mbps switch. The gateway and 4 VPN clients are also connected via another 
100Mbps switch. Table 2 lists the hardware and software configurations. 

Table 2. Hardware and software configuration  

Name Qty. CPU Mem OS Software 
VPN server 1 Intel PIII 800 256MB Linux 2.4 openvpn(server),mod_IPengraft 
LAN gateway 1 AMD 1.7G 256MB FreeBSD 5.0 netd,ipfirewall 
FTP servers 4 Intel PIII 800 256MB Linux 2.4 openvpn(app srv),vsftpd 
VPN clients 4 AMD 1.7G 256MB Linux 2.4 Openvpn(client),dkftpbench 

6.1   Throughput Evaluation 

FTP service is the common application of VPN, and FTP protocol has a simple com-
mend set, so that we choose FTP application to test the throughput of SSL VPN. 
Dkftpbench[10] is an open-source FTP benchmark program inspired by SPECweb99. 
It simulates many simultaneous ftp clients, which repeatedly downloads the same file  

 

 

Fig. 7. Throughput test results of two security levels: (1) normal, (2) internal security required 
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from the evaluated ftp server. At the end of each cycle, the client’s average download-
ing speed in that cycle is reported. In our tests, dkftpbench is modified to report the 
overall downloading speed periodically. In each VPN client, the dkftpbench simulates 
50 FTP clients to download a 5M bytes file from a corresponding ftp server, and all 
ftp clients download files with their best effort. 

To eliminate influence from file system and hard disk, all the ftp servers have been 
warmed up, and the requested files have been loaded into the memory before test. 
During the test, make sure that the throughput of VPN is drained off, and CPU utiliza-
tions of all VPN clients are lower than 100%.  

In the beginning of test, no AST enabled, and conventional symmetrical SSL tun-
nels are used to transfer responses of ftp servers to VPN clients. When all these pa-
rameters turn to be stable, VPN throughput, CPU utilizations of VPN server and ftp 
servers, we record their values. After that, app server mode OpenVPN daemons start 
work one by one in ftp servers, and stable value of above parameters also be recorded 
for comparison.  

Graph (1) of figure 7 illustrates test results in the case that internal security of LAN 
was not required. When there is no AST used, CPU utilization of VPN server is 
100%, but CPU utilizations of internal ftp servers are very low, and the overall VPN 
throughput is just 3.64MB/s. After one ftp server has OpenVPN daemon started, its 
CPU utilization increased, and because its response packets ware relayed directly at 
the TCP/IP stack of VPN server by IP engrafting module, throughput of that ftp server 
also increased considerably. The CPU resource saved by asymmetric tunnel also con-
tributed to higher throughput of other ftp servers. From the graph, we can see that the 
throughput and CPU utilization of other ftp servers also increased a little.  

When more internal ftp servers use ASTs to transfer response data, overall 
throughput of VPN increased. After 3 internal servers start using ASTs, the overall 
VPN throughput achieves 9.64MB/s, which is almost the limitation for SSL tunnel 
over 100M network, and VPN server started to have surplus CPU resource. When all 
the 4 internal servers used asymmetric SSL tunnels, VPN server had more surplus 
CPU resource, and CPU utilization of other internal servers also decreased a little, but 
the overall VPN throughput not varied. 

The throughput improvement brought by AST is more remarkable in the case that 
internal security of LAN is required.  Graph (2) of figure 7 depicts test results in that 
case. Because asymmetric SSL tunnel solution virtually eliminated one times of SSL 
encapsulation and decapsulation for every response packet. The overall throughput of 
SSL VPN increased from 1.76MB/s to the limit of 100M networks. 

6.2   Latency Evaluation 

We use ping program at a VPN client to measure response time of internal server. In-
ternal server was pinged 50 times for each test. The mean value of round trip time was 
taken. Difference between the mean and median is less than one standard deviation.  

If no internal security required, latencies of both conventional tunnel and asymmet-
ric tunnel are the same: 5.1ms. When internal security required, latencies of both tun-
nels increased. AST’s latency is 7.7ms, and symmetric tunnel’s latency is 11.2ms. In 
this case, AST solution reduced the latency by about 31%. Using asymmetric SSL 
tunnel, one times of SSL encapsulation and decapsulation processing are eliminated 
for every response packet, and that caused the latency reduction. 



124 J. Zhou et al. 

7   Conclusion 

Asymmetric SSL tunnel based VPN has a significantly higher overall throughput than 
traditional SSL VPN. If no internal security required, the improvement comes from 
shifting portion of transfer loads from VPN server to internal servers. If internal secu-
rity required, portion of computation load of VPN server can be eliminated by using 
appropriate cipher spec for outgoing packets in internal server. In both cases, transfer 
overheads of outgoing data are removed from VPN server. The more proportion the 
outgoing data has, the more improvement achieves. 

The security of AST based VPN doesn’t degenerated. Its secrete management 
scheme can synchronize cipher specs of multipoint, and higher security requirement is 
supported. In addition, if no internal security required, asymmetric SSL tunnel solu-
tion causes the outgoing packets of application servers to be encrypted, and the secu-
rity in LAN was improved. 

AST based VPN solution doesn’t need any modification on internal server pro-
grams. In our implementation, the app server mode OpenVPN daemon runs on inter-
nal server and automatically searches VPN server. No additional configuration is re-
quired. Both client mode and app server mode programs can run on many OS 
platforms, such as Linux, Windows, FreeBSD, Mac OS X, and etc., so that a wide 
range of clients and application servers can be supported.  
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Abstract. Most existing overlay multicast approaches assume a sin-
glehomed model, where each overlay node has a unique access link in
the physical network. This assumption is usually not applicable to the
routing problem in multicast service overlay network, which may com-
prise multihomed multicast service nodes(MSN). We address this issue
by proposing not only a multihomed proxy model but also a two-phase
solution to the routing problem under this model. First we choose a
proper physical path for each overlay link based on the current network
status and the routing policy. Then the routing process calculates the
multicast tree according to the previous selection. Through simulations,
we prove that our approach makes the overlay multicast routing more
efficient in a multihomed environment.

1 Introduction

Overlay multicast means that the multicast is carried out in an overlay network,
which is composed of a subset of underlying physical nodes. Each link in an over-
lay network amounts to a unicast path between the connected two nodes. Be-
cause each pair of nodes have a unicast path between them, the overlay network
is in a full-meshed form. Each node in an overlay network is able to forward-
ing packets at the application layer so that it can enable multicasting without
changing the underlying network. The data for multicasting is only replicated at
branching points in an overlay multicast tree and sent from one node to another
through an ordinary unicast transmission. In this paper we assume that all these
multicast service nodes (MSNs) are stationary nodes deployed in a multicast
service overlay network. In contrast with an end-host based overlay, a service
overlay network provides a robust multicast service while still keeping a high
flexibility in routing.

Since the number of MSNs is much smaller than that of ordinary routers, all
MSNs should be located at critical points in the physical network so that they
can form a cost-effective overlay network. Therefore it’s most likely that a lot of
MSNs will be multihomed nodes. In other words, these MSNs will have multiple
access links to the Internet. The overlay service provider has good reasons for
such a deployment. First of all, multiple access links reduce the average distance
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from one MSN to all other peers. This is inferred from the observation that the
shortest paths from a multihomed node to others usually go through different
access links in the network. The second reason is that if two MSNs belong to two
adjacent domains respectively, their communication can be seriously affected by
the inter-domain link bottleneck. Based on this consideration, the overlay service
provider is encouraged to locate the MSNs in between different domains so that
they can have multiple access links to each of them. Such a deployment can
guarantee a high capacity over the overlay links. In addition to above benefits,
multiple access links also promise a high availability for the MSNs. Since all
multicast traffic depends on these MSNs, any breakdown may cause serious
performance degradation. The installation of multiple access links is a better
choice for keeping an MSN always online.

In spite of these facts, the overlay multicast routing problem is usually con-
sidered under a singlehomed proxy model in most literatures[1][6][5]. Unlike IP
multicast[4], overlay multicast usually has a link stress[2] larger than one. In
this model, an MSN’s capacity in data forwarding is rendered as its node degree
bound. Two MSNs can be connected in a multicast tree by an overlay link as
long as both of them have residual degrees, while the overlay link equals to the
shortest unicast path between them. This model is good if each MSN only has
a unique access link to the Internet. In this case one MSN can speak to another
only if its unique access link has enough capacity. When an MSN has multiple
access links, this model is no longer suitable. We illustrate an example below in
Fig. 1 for demonstration.

B
5

A

10

No residual capacity

Internet

Fig. 1. Multiple access links to the Internet

In this figure, MSN A has two access links to the Internet. One link, which
stands in the shortest path from MSN A to MSN B, has exhausted its access
bandwidth. The other link, however, has plenty of residual capacity. We assume
that MSN B also has enough access bandwidth for connection. Then these two
MSNs can be connected in the tree but not by the shortest path. Since the
routing algorithms[1][6] assume a fixed distance for the each overlay link, they
are not applicable to such an instance.

The objective of our work is to propose not only a multihomed proxy model to
describe the overlay multicast routing problem accurately but also a systematic
approach to solve this problem under our model. Briefly speaking, we break the
whole solution into two coupled processes. First we choose a proper physical
path for each overlay link based on the current network status and the routing
policy. Then the routing process calculates the multicast tree according to the
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output of the first process. In our model the capacity of each MSN is translated
to the access link’s capacity rather than the node’s degree bound so that our
routing algorithm can achieve a high utilization among the multiple access links.

The rest of this paper is organized as follows. Section 2 proposes the multi-
homed proxy model and draws a comparison between our model and the original
one. In Sect.3 we enumerate three different path selection algorithms and analyze
their performance from different perspectives. We illustrate the combination of
path selection and multicast routing by a modified CT(compact tree) algorithm
in Sect.4. Section 5 shows our simulation results, while the conclusions are drawn
in Sect.6.

2 Overlay Network Model

2.1 Singlehomed Proxy Model

The overlay network is usually considered as a complete graph, where each edge
stands for the shortest unicast path between the corresponding two nodes. Thus
the resource limitation for the access bandwidth could be directly transformed
to the degree constraint for each node in the generated multicast tree. This
model is perfect under some environment, where each overlay node has only one
unique access link to the Internet, such as end-host overlay multicast. However
this model is not suitable when any of the MSNs has multiple access links to the
Internet. The notion could be illustrated in the following figures.
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Fig. 2. Topologies for overlay and physical network

In Fig. 2(a) nodes A to D are four MSNs in the physical network, each of which
has two access links to the Internet. Each unlabelled link has a uniform cost of
one. According to the fully meshed model, the overlay network among nodes A
to D should be depicted as Fig. 2(b). Note that in this figure only one access link
of each MSN is used to construct all overlay links in the overlay network. The
longer access links of cost 3 are totally neglected from the full-meshed overlay
network model. Suppose in each session the upper bound of the link stress for
each access link is 2. In other words, we assume that no access link could carry
more than 2 duplicate data copies in one multicast session. Based on the model
in Fig. 2(b) one possible solution for the overlay multicast tree is shown in Fig.
2(c), which spans all MSNs and has a diameter of 9. If we take the longer access
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link into consideration, the result will change. In Fig. 2(d) we adopt the longer
link in our tree construction and obtain a multicast tree with a smaller diameter
of 7 while not violating the link stress limitation. In this case we can see that the
singlehomed model cannot help us to get the best result in the overlay multicast
routing problem.

2.2 Multihomed Proxy Model

While multiple access links enhance the availability and utilization of the MSNs,
they introduce several new problems. As we have seen in the above example,
since the access bandwidth for each MSN in each multicast session is allocated
on the specific access links, the degree constraint model for the access resource
limitation in [3] is not applicable any more. The access bandwidth consumption
is not represented by the degree of the node in the multicast tree but by the
actual link load. Therefore the resource allocation balancing is performed on
a link basis which makes a big difference in the generated tree topology. In
addition, since two MSNs can be connected through different pairs of access
links, the network distance between the two nodes could vary due to different
choices. In order to make a tradeoff between the network latency and the resource
allocation balancing, it is important to choose the proper unicast path as the
overlay link for multicast tree construction. This effort also adds to the overhead
of the routing process.

In order to solve all above problems, we first need another model for the
overlay network. Suppose the overlay network in our research is defined as a
ternary structure OG = (V, A, E). V represents the set of MSNs while A stands
for the set of access links attached to the MSNs. Let ve denote the function that
maps a certain access link to its attached MSN such that for every l ∈ A there is
one and only one MSN v ∈ V and ve(l) = v. We also use le(v) to denote the set of
access links of MSN v ∈ V . E is a set of overlay links, each of which corresponds
to a shortest unicast path between two MSNs through a pair of access links
(l1, l2). Note that in our model there may exist multiple overlay links between
two nodes due to different choices of the access links. Function c(l1, l2) calculates
the cumulative cost along the shortest unicast path through access links of l1 and
l2 between the nodes ve(l1) and ve(l2). For each access link l, we use smax(l) and
sT (l) to represent the maximal available bandwidth resource and the consumed
bandwidth for tree T over link l respectively. To simplify our model, when two
nodes is connected by one link directly, this shared access link is counted twice in
A. Based on these definitions, we will introduce a revised version of the MDDL
and LDRB1[1] problems as formulations of our specific overlay multicast routing
problem.

Definition 1. Minimum diameter, link stress limited spanning tree (MDLSL):
Given an overlay network model OG = (V, A, E), a link capacity bound smax(l) ∈
1 These two problems are minimum diameter, degree-limited spanning tree problem

and limited diameter, residual-balanced spanning tree problem respectively.
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N for each access link l ∈ A and a cost c(l1, l2) for each overlay link (l1, l2) ∈ E,
find a spanning tree T of OG of minimum diameter, subject to the constraint
that sT (l) ≤ smax(l) for all l ∈ A

Suppose that each node in V only has one attached access link in A. Then the
MDLSL problem will amount to the MDDL problem which has been proven to
be NP-complete[3] for a fixed degree bound. Consequently our MDLSL problem
is also NP-complete under an assumption of a fixed link stress bound.

The second formulation of the problem aims to find the most balanced allo-
cation of the link stress over all related access links. Similar to the definition of
residual degree in [1], we define the residual capacity at access link l with respect
to a tree T to be rest(l) = smax(l) − sT (l). Then the most balanced allocation
indicates a maximal smallest residual capacity among all access links. Such an
allocation promises a least likelihood of the session block.

Definition 2. Limited Diameter, residual capacity balanced spanning tree prob-
lem (LDRCB):
Given an overlay network model OG = (V, A, E), a link capacity bound smax(l) ∈
N for each access link l ∈ A , a cost c(l1, l2) for each overlay link (l1, l2) ∈ E
and a diameter bound of B, finding a spanning tree T of OG with diameter ≤ B
that maximizes minl∈Arest(l), subject to the constraint that sT (l) ≤ smax(l) for
all l ∈ A

LDRCB is also an NP-complete problem because its special case is the LDRB
problem, which has been proven NP-complete [1].

We try to imitate the description of MDDL and LDRB when defining our
problems in order to show the differences and association between the two ver-
sions of problem definitions. One thing they have in common is that they all try
to find a tree spanning all overlay nodes. However our version performs the cost
calculation and resource allocation in respect of access links rather than overlay
nodes.

3 Path Selection Algorithm

In a lot of overlay network architectures, the overlay link between two nodes
corresponds to the shortest path between them. This assumption works well
when the network latency is considered as the primary parameter. However this
is inadequate when several other factors are taken into consideration, such as
balanced bandwidth consumption and bandwidth demands for each session. As
the bandwidth requirement may vary in different multicast session, the shortest
path may not be the best choice. Even though it has enough capacity, it should
be avoided if the shortest one has been overused while other paths of a similar
length are left unused. Therefore a proper path selection algorithm is important
before the routing algorithm could do anything. We will introduce three path
selection algorithms as follows for the MDLSL and LDRCB problems.
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3.1 Shortest Path First

We assume that the partial network between any two access links has sufficient
capacity for any session request so that the main bottleneck remains on all access
links. This assumption is usually true when the MSNs are located near the
backbone. Thus an overlay link (l1, l2) ∈ E amounts to the shortest underlying
path between ve(l1) and ve(l2) through l1 and l2. Let cap(l1, l2) denote the
minimum of smax(l1) and smax(l2) so that it represents the maximum bandwidth
requirement the overlay link (l1, l2) can satisfy. Given a session request with a
bandwidth requirement of b, we call an overlay link (l1, l2) an eligible one for
this session if and only if cap(l1, l2) is greater than b.

Intuitively the shortest possible path algorithm is to select the shortest eligible
path as the overlay link for the concerned two nodes without considering whether
the residual capacity for each access link is balanced. One straightforward way
is to remove all ineligible access links from the underlying network, which has
no enough bandwidth for the request, and calculate the shortest path between
these two nodes. The corresponding pair of access links for this path will stand
for the overlay link for the two nodes in our model. This approach will surely
try to assign a minimum cost for each overlay link. It is intended as a greedy
heuristic for the MDLSL problem, which tries to find the minimum diameter
tree as long as there is enough resource.

3.2 Broadest Path in k-Shortest Ones

In most cases, a longer tree diameter doesn’t matter too much as long as it is
within a specific bound. Based on this notion we give a heuristic here for the
LDRCB problem, which tries to optimize the workload allocation as well as the
tree diameter. Suppose nodes v1 and v2 have n1 and n2 eligible access links for a
session request respectively. Then there are potentially n1 ∗ n2 candidate paths
for the overlay link between these two nodes. Sort all these eligible paths in
ascending order according to their distance. The path with the largest capacity
in the first k paths then will be our choice for the overlay link.

The value of k determines the preference of this algorithm between workload
balancing and diameter minimization. If k equals to one, then it amounts to the
shortest path first algorithm. If we assign n1 ∗ n2 to k, then this approach is
to find the path with the largest capacity. According to our empirical results, a
value of four or five will suffice in respect of both requirements.

3.3 Alternative Path Algorithm

Both of the above two algorithms select only one underlying path as the overlay
link. This could be insufficient in some cases. For example, one overlay link may
run out of bandwidth before it is used for tree construction because it shares the
same access link with some other overlay link, which has already consumed the
access bandwidth in the tree. Our solution to this issue is to have two underlying
paths prepared for each overlay link. The primary path has a larger capacity
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while the secondary one has a shorter distance. Therefore the upper layer overlay
routing algorithm may have an alternative when some parameter of a certain
overlay link is unsatisfactory. Although this approach cannot avoid all those
situations stated above completely, it can drastically reduce their occurrence
according to our simulation results.

The detailed algorithm is as follows. We choose the broadest path in the
k shortest ones to be the primary path. Unless the primary path is also the
shortest path, another shorter one will be selected as the secondary path. Then
in most cases the primary path has an advantage in terms of capacity, while the
secondary path has a shorter distance. If the primary path is also the shortest
one, the secondary path should be the shortest one among those, each of which
shares no access links with the primary path. This is because if the primary path
is already the shortest one, we need the secondary path only if the primary one is
running out of resource. Therefore our algorithm makes it much more likely that
the secondary path still has enough capacity when the primary one is already
congested.

3.4 Comparisons

The first aspect we want to compare between the above algorithms is their
time complexity. For convenience we refer to the above three algorithms as S
algorithm, B algorithm and A algorithm respectively. We assume that all MSNs
are stationary nodes in the physical network and each link has a fixed value of
network delay. Since the overall distance for each unicast path between a given
pair of MSNs can be calculated prior to the execution of the path selection
algorithm, the only operation for these algorithms is to find the proper paths for
all overlay links. Suppose each MSN has at most m access links to the Internet.
Then the number of underlying paths between two MSNs is at most m2. For the
S algorithm, it is only necessary to check all m2 paths and pick the shortest one
from them. So its time complexity is O(m2). In order to find the broadest path in
k shortest ones, we not only have to sort all m2 paths by their delay but also need
to go through the k shortest ones to pick out the broadest path. Its total time
complexity should be O(2m2logm + k). Because the A algorithm tries to find
a secondary path, it will need additional O(klogk) steps to previous operations
to sort the k shortest paths by their distance. Thus its time complexity will be
O(2m2logm + klogk + k). In practice the values of m and k are very small even
in large networks so that the most complicated algorithm is about three times
as complex as the simplest one.

In addition to the time complexity, we also need to know how close the selected
path is to the shortest possible path in different algorithms. For simplicity we
assume here that the capacity of a path has nothing to do with its distance in
the latter two algorithms. It is obvious that the S algorithm will always give
the shortest possible path. As for the B algorithm, if we sort the k shortest
paths in an ascending order by their distances, a random variable X can be
used to represent the order of the broadest path in this list. According to our
assumption, P (X = i) = 1/k(1 ≤ i ≤ k). Therefore the expected value, E(X),
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will be (1+k)/2. It means that on average the output path will be the (1+k)/2 th
shortest path among all k paths. If we define a similar random variable Y for the
secondary path in the A algorithm, its expected value, E(Y ), is approximately
k/4, which is closer to the shortest path.

The third criterion for a path selection algorithm is how much it could help
the overlay multicast routing algorithm to reduce its rejection rate. Because a
session request could be rejected either by a stringent diameter constraint or
due to the resource exhaustion over some overlay links, a reasonable selection of
the underlying paths should make the overlay network satisfy as many requests
as possible. Although this criterion is even more important than the previous
two, it is hard to measure without regard to the upper routing algorithm. We
will combine all three algorithms with a certain routing algorithm introduced
in section IV and compare their simulation results in section V. Intuitive the S
is suitable for a strict diameter limitation while the B algorithm accepts more
session requests under a loose diameter constraint. Since the A algorithm offers
a secondary choice when the primary one is not satisfactory, we expect that its
performance is better than the other two in most cases.

4 Routing Algorithm

4.1 Integrated Routing Algorithm

The path selection algorithm and the multicast routing algorithm work in two
different layers. The former selects one path among multiple paths between two
MSNs to be the overlay link. The latter selects a collection of overlay links from
the full-meshed overlay network to build the tree. While our research here fo-
cuses on path selection algorithms, their performance can’t be evaluated without
regard to the upper layer routing algorithm. A good path selection algorithm
should help the routing algorithm to reduce the session rejection rate while keep-
ing a balanced utilization among different paths. A bad one may lead to network
congestion at some points but a low resource utilization somewhere else. We can’t
conduct such measurements unless we bind the path selection algorithms to a
certain multicast routing algorithm. For simplicity we choose the CT(compact
tree) heuristic introduced in[1] for this purpose.

The CT algorithm is similar to Prim’s minimum spanning tree. It first chooses
a node as the root and proceeds to add a node to the tree, which leads to a
minimum diameter. In detail, it uses d(v) to denote the distance of the longest
overlay path from node v /∈ T to any other node u ∈ T . The node v with the
minimum value of d(v) is chosen each time to be connected to the tree T through
node n(v) if the degree constraint is not violated. This process goes on until all
nodes are connected to the tree.

Because the original CT only considers the degree constraint, we need to trans-
form it to recognize link level bandwidth limitation. We order that the path selec-
tion algorithm supplies an m-element capacity vector Cap for an n-node overlay
network (m = |A|). This vector corresponds to the capacity of all access links
used in an overlay network. Link(v, u) denotes the index of the access link from
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node v to u on the overlay link (v, u). Then each time an overlay link (v, u) is used
to build the tree, the value of Cap[Link(v, u)] and Cap[Link(u, v)] is updated to
Cap[Link(v, u)] − req and Cap[Link(u, v)] − req respectively where req stands
for the bandwidth requirement of the session. By this way an overlay link (v, u)
could be used if and only if its related two access links have enough capacity.

Therefore a basic path selection algorithm should at least supplies the value of
dist(v, u) and Link(v, u) (also Link(u, v)) for each overlay link (v, u) as well as
a capacity vector Cap for all involved access links. All these information informs
the overlay network layer of the distance of each overlay link, the access links of
each overlay link and the capacity of each access link. According to these knowl-
edge a routing algorithm can build a multicast tree without knowing the details
of the underlying network. Since the alternative path algorithm calculates a sec-
ondary path for each overlay link, it needs another two functions of dist′(v, u)
and Link′(v, u) to denote the distance and access links of the secondary path.
We will illustrate a modified CT algorithm in Fig. 3 to show how a secondary
path can be used in tree building.

In the above algorithm, some secondary paths are used to substitute their pri-
mary paths for a shorter tree diameter when the diameter limitation is violated
during the tree building process. We call it a shrinking process. In the shrinking
process, the value of d(u) for some u ∈ W may be changed. In order to reduce
the time complexity, we can record a list of nodes on each overlay link such that
only those nodes need to update their longest path distance when this overlay
link is shrunk. In addition each step in above algorithm is executed only if the
overlay link has enough capacity in vector Cap.

The routing algorithms combined with our first and second path selection
algorithm are very similar to this one except that they don’t have a shrink-
ing process. Therefore we have shown a general example for integrating a path
selection algorithm with an overlay multicast routing algorithm.

5 Simulations

In this section we will evaluate the performance of different path selection al-
gorithms through several simulations. As we mentioned above, their practical
performance can’t be tested without a certain routing algorithm. Thus we will
use the CT routing algorithm introduced in Sect.4 for this purpose.

5.1 Performance on Rejection Rate

A session is rejected if we can’t find a multicast tree in the overlay network to
satisfy the tree diameter limitation. This could happen for two reasons. One is
that the tree diameter limitation is too strict for the session members. Another
reason is that the existing sessions have exhausted the bandwidth of most band-
width of these MSNs so that it is hard to build a tree with short paths. A low
rejection rate is significant because it proves that the algorithm is viable in prac-
tice. According to above considerations we design two experiments to evaluate
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Input:

An overlay graph OG=(V,A,E)

Values of dist,dist’,Link,Link’

Capacity Vector Cap[1..m] m=|A|

Diameter Limitation B

Bandwidth Requirement req

Output:

Tree with the minimum diameter

{No element in vector Cap should be negative

after an overlay link is inserted in the tree}

Program Tree_Building (root u)

Let Dist(v1,v2) = dist(v1,v2) for all node pairs in V

Let d(v) = Dist(v,u) for all nodes v in V

Let n(v) = u all nodes v in V

Let T = {W = {u}, L = {}}

While W != V do

Let v be the node with smallest d(v) in V - W

If d(v) > B Then

Shrink the longest overlay path from v to any node in W

Recalculate the value of Dist, Cap and d(v) involved in the

shrinking process

Include v in W and include (v, n(v)) in L

If use primary path Then

Cap[Link(v,n(v))] -= req

Cap[Link(n(v),v)] -= req

Else

Cap[Link’(v,n(v))] -= req

Cap[Link’(n(v),v)] -= req

Upadate d(v’) for all other v’ in V - {v}

Fig. 3. CT algorithm modified for alternative paths

the performance of different path selection algorithms on rejection rate from dif-
ferent perspectives. In the first experiment, we define the diameter bound to be
the proportion between the length of the longest overlay link among the session
members and the tree diameter. Each session has 10 members. The k value for
the B algorithm is 4 in all our experiments. Based on these simulation settings,
the rejection rate of the first 100 session requests is shown in Fig. 4(a).

From this figure we can see that the S algorithm always has a least rejection
rate. This is because 100 sessions is not a big burden for our designed overlay
network. When there is enough capacity, the S algorithm is surely the first choice
especially for a strict diameter bound. We also find that the curve for the A
algorithm is very close to that of the S algorithm. One more thing to mention is
that the curves drop sharply when the diameter bound is above 5. This indicates
that the relative delay penalty is less than 3 in our overlay multicast.

The second experiment draws the curves as the session number increases. The
diameter bound we use here is 6. The result is shown in Fig. 4(b). According
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Fig. 4. (a)Rejection VS diameter bound (b)Rejection VS session requests

to this result the performance of the S algorithm is no longer so satisfactory as
it is in the previous simulation. When an increasing number of sessions coexist
in the overlay network, it is much more important to balance the traffic among
different links. As we can see in Fig. 4(b) the curves for the B algorithm and the
A algorithm grows slowly. It means these two algorithms are good at accepting
a lot of sessions at the same time.

5.2 Performance on Traffic Balancing

Another performance criterion for these path selection algorithms is how much
they can balance their traffic load among their access links. This is important for
keeping a low possibility of traffic congestion. In order to measure it accurately,
we invent a parameter named balance degree. It equals to the difference of the
residual capacity between the least loaded access link and the most loaded access
link of a single MSN. The balance degree for an overlay network is obtained
by averaging the value among all MSNs. When this value becomes bigger, the
overlay network has a less balanced traffic over all its access links. We measure
this value as the session number grows gradually. The simulation result is shown
in Fig. 5. According to this figure we can infer that the S algorithm is less efficient
in traffic balancing.

Fig. 5. Balance degree VS session requests

6 Conclusion

In this paper we proposed a multihomed proxy model to analyze the overlay
multicast routing problem in a fine granularity so that we can perform the traffic
balancing on a link basis rather than on a node basis. We also compared three
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path selection algorithms, which do the necessary preparation before the routing
process can start. Through simulation results and numeral analysis, we can see
that although the alternative path algorithm needs a little more computation
than the other two algorithms, it results in a good performance in both tree
diameter and traffic balancing.
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Abstract. Mobile Ad hoc Network (MANET) is a network that mobile nodes 
can freely and dynamically communicate with each others without the support 
of any infrastructure. Due to the node’s movement, the network topology can be 
changed randomly and unpredictably. Previously, address as identifier is used 
for establishing a delivery route. But it is not easy that each mobile node has a 
unique address due to the lack of centralized address protocol like DHCP. In 
this paper, we propose region-based dynamic address allocation scheme that 
can simplify the route establishment and maintenance. Routing is done by a 
short distance vector algorithm based on the proactive and the flat topology 
routing protocol. Basic idea of our address allocation scheme is to separate node 
identity and node address. Node address indicates node’s current location and is 
allotted by its parent node with a cascading address scheme. In evaluation, we 
examined our proposed scheme in a point of the view of the number of control 
packets to establish delivery trees and the connecting probability. From 
simulation results, we confirm that the proposed scheme offers substantially 
better performance.  

Keyword: Ad-hoc, routing, wireless networks, address allocation, multicast. 

1   Introduction 

A fundamental characteristic of mobile wireless networks is the time variation of the 
link status between a sender node and a receiver node. Such variation can be due to 
the node mobility and/or the lack of channel capacity. Thus a scheme to keeps up-to-
date routing information is required. In aspect of a route construction mechanism, 
wireless mobile networks can be categorized as controlled networks and distributed 
networks. In controlled networks such as wireless LAN and mobile cellular networks, 
because route establishment sequence is handled by central coordinators, mobile 
nodes (MNs) can communicate with each other without any route information toward 
destination node. In distributed networks, since there is no central coordinator, MNs 
should organize network topology by themselves. 

This paper presents a new data delivery technique with a dynamic address 
allocation scheme that can simplify the route establishment and maintenance by 
minimizing control packets. In this paper, we use short distance vector algorithm 



138 B. Kim and I. Kim 

 

based on the proactive and the flat topology routing protocol in MANET. Delivery 
tree construction sequence is started by a MN which wants to receive the data from a 
source node or another MN. The transmission sphere of MN can be divided into six 
regions similar to hexagonal plane of mobile cellular network. Basic idea of our 
address allocation scheme is to separate node identity and node address. Node address 
indicates node’s current location and is allotted by its parent node with a cascading 
address scheme.  

Under the proposed scheme, one of MNs is elected as address allocator (AA). We 
assume that AA is access point (AP) in IMANET. The coverage area of AA can be 
divided into six regions. MNs in each region have same address assigned by AA and 
one of them becomes a root node for each delivery tree. Thus six root nodes can make 
six different delivery trees. The addresses for MNs 2-hops away from AA are 
assigned by their root nodes and become their current location identifiers followed by 
their root nodes’ addresses. Therefore, the address for MN n hops away from AA is 
generated by MN n-1 hops away from AA on delivery route tree. MNs in the same 
region are classified by node identifications as IP address, MAC address, etc. With 
proposed address scheme, as the address of destination node indicates the entire 
multi-hop path from AA to destination, each MN maintains routing information of 
only neighboring nodes to keep up-to-date route. Neighboring nodes can 
communicate directly as they are within transmission range of each other. 

After finishing tree construction sequence, every MN over its delivery tree 
becomes either forwarding MN (FwMN) or request MN (ReqMN). FwMN is the node 
that is not interest in the data being transmitted but should relay the data to the request 
MN. When receiving data, FwMNs and/or ReqMNs operate in multi-hop fashion with 
store and forward manner until the data reach the final ReqMN. 

The remainder of the paper is organized as follows: The next section we 
summarize previous work. Proposed multicast scheme is introduced in section 3. In 
section 4, we present the simulations and analysis of the results. Finally, we give out 
conclusion in section 5. 

2   Previous Work 

Multicast allows clients to share data streams being transmitted through one channel, 
where channel is the unit of network bandwidth needed to transmit one stream [1]-[3]. 
In multicast, the requests for the same content are delayed for a certain amount of 
time Im to serve as many requests as possible with one multicast channel. It is 
regularly generated at every Im when there are the requests for the same content 
within Im. So, some of clients should wait until a new multicast is generated. 

The routing protocols for MANET are split into two categories based on the 
routing information update mechanism. They are proactive and reactive routing 
protocols. In proactive method [4]-[6] called table-driven routing protocol, every node 
maintains the network topology in the form of routing tables by periodically 
exchanging routing information that are flooded in the whole network. Though this 
method can achieve up-to-date route information, it consumes much more network 
bandwidth caused by generating unnecessary traffics. Reactive [7],[8] is called on-
demand routing because it executes path finding only when MNs want to 
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communicate with another one. So in reactive, every node does not need to maintain 
the whole network topology while proactive routing protocols do. This method can 
reduce traffics not sending route information periodically and thus increase network 
throughput. But since it should set up the route before sending the data, service will 
be delayed until the route setup sequence will be finished. Route construction can be 
done in either a flat topology or in a hierarchical topology. In flat topology, address 
for MN is globally unique and route information for updating and maintaining 
network topology is flooded over whole network. Hierarchical mechanisms split an 
entire flat topology into a logically hierarchical structure called zone limited within a 
particular geographical region.  

Dynamic address allocation can simplify routing procedure. Thoppian et al. [9] 
propose dynamic address assignment that allots a unique IP address to a new node 
joining in MANET. In this scheme, each MN has some IP address block. When a new 
node (requester) join a MANET, one of the existing MANET nodes (allocator) within 
communication range of the requester allots the second half of the addresses from its 
free_ip set to the requester. Though this method guarantees unique IP address 
assignment under a variety of network conditions, it cannot reduce routing overhead as 
each node has the same length of address, i.e. 4 bytes in IPv4. Eriksson et al. [10] 
propose a variable length of dynamic addressing scheme based on a hierarchical binary 
tree structure of proactive distance vector routing. This scheme separates node identity 
from node address that indicates the node’s current location in the network. If there are 
n nodes, address length is log2n and average routing table sizes are less than 2log2n. 
Node lookup information is distributed in the network as node lookup to find the 
current address of a node is done by hash function. As address length is proportional to 
the number of nodes in the network, it produces routing overhead in a dense network 
and data will be taken along a longer path instead of the shortest route. Chen and 
Nahrstedt [11] propose address compression scheme to reduce routing overhead with 
overlay multicast in MANET. This method also separates node identifier from node 
address called index. A node’s index is determined by the application server when it 
joins the multicast group. Node lookup is done by the application server and then this 
information is recorded in each node’s address lookup table. As this scheme assigns 
unique index to each node, it is not a proper scheme in dense network. 

3   Proposed Scheme 

3.1   Operation 

Mobile network is generally described in hexagonal cellular structure due to the same 
distance between any adjacent cells. Proposed mobile wireless networks are operated 
in the same plane structure for mobile networks but not existing the central 
coordinators at every cell. Because the cells have been configured by MNs, the cell 
structure is not fixed as mobile cellular networks. For supporting seamless service 
using multicast, the wireless networks are consisted of a base node (BN) and a 
number of mobile nodes (MNs). The BN may be a MN or fixed node as AP in 
IMANET, and the number of BN can be either one per a basic tree or only one in ad-
hoc network. MNs on multicast delivery tree have the role of either forwarding node 
(FwMN) or request node (ReqMN).  
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Fig. 1 shows the proposed multicast delivery scheme in flat topology. Route 
construction is done whenever MNs want to join a multicast. But to keep up-to-date 
routing information, MNs periodically broadcast connection information about only 
their neighboring nodes that are 1-hop away. Minimum distance algorithm based on 
hop counts is used for route selection. From Fig. 2, multicast group member is {1, 2, 
3, a, b, d, e, u, v, w, x, y, z} in initial stage. MNs 1-hop away from BN are called root 
node and there are three root nodes {1, 2, 3}. Each root node has child nodes {a, b, d, 
e}, {w, x, y, z} and {u, v}, respectively.  
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Fig. 1. Example of multicast deliver tree 

The multicast delivery tree generated from a specific root node is called basic tree. 
Creating a basic tree is initiated by broadcasting a packet (request packet; REQ) of 
ReqMN in mobile wireless network. Since some of them receive directly reply packet 
(REP) from BN, they are the group of the 1- hop MNs, i.e. root nodes. The MNs 
which receive it directly from 1-hop MNs become 2-hop MNs. Therefore MNs 
received REP from n-1 hop MNs become n-hop MNs.  

In conventional multicast techniques, to join a multicast group, MNs forward REQ 
until they meet multicast delivery tree. If MN is n-hops away from multicast tree, 2n 
control packets are generated because there are n REQ packets and n REP packets. 
For example, if MN c wants to join a multicast, it broadcasts REQ to its neighboring 
nodes (arrow 1 in Fig. 1). When MN b receives REQ, it replies to MN c with REP as 
it is already a member of multicast (arrow 2). MN is able to know what MNs are in its 
transmission range. We call them neighboring mobile node (NMN). NMNs of n-hop 
MN are consisted of the upper MNs (n-1 hop), lower MNs (n+1 hop) and peer MNs 
(n-hop). NMNs of MN c are {b, j}. Under the proposed scheme, since all MNs 
broadcast route information periodically, MN c has already known that MN b is a 
member of multicast. Hence MN c just receives the data generated by MN b, i.e. need 
not perform step 1 and 2. This can reduce 2n control packets compared to 
conventional schemes mentioned above. 

MN y and MN w have NMNs {j, w, x, z} and {u, x, y, z}, respectively. The NMNs 
of MN y in multicast delivery tree has the same root node MN 2. But MN u of NMNs 
of MN w is originated from the different root node MN 3. We call this foreign NMN. 
Let L(x, y) be the communication link between MN x and MN y. When MN b move 
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to b’, the link L(b, c) is broken due to out of transmission range (arrow 3). To 
reconstruct multicast tree, MN c performs the same sequence mentioned above (arrow 
4, 5, 6, 7). In consequence, MN c finds a new route along MN j, y, z, and 2. MN j has 
joined the multicast as FwMN and two communication links L(j, c) and L(y, j) are 
established. When MN j receives REQ from MN c, because MN j already knows the 
existence of the requested multicast, it just receives multicast streams from MN y and 
forwards them to MN c. Thus under the proposed scheme, tree reconstruction flow is 
done through step 4 and 7. Because MN c should broadcast REQ to make 
communication link between MN c and MN y, it may generate numerous control 
packets. Under the proposed scheme, MN manages connection information about 
NMNs. Basically MN knows the existence of MNs within its coverage area. This 
connection information is sent to its NMNs. MN can know the existence of MNs 2-
hops away from itself. In above case, MN c sends REQ only to MN j and then MN j 
forwards the request multicast from MN y to MN c. To establish a link between MN c 
and MN y, it needs only two control packets that are generated between MN c and 
MN j. Thus the proposed scheme can reduce the number of control packets in order to 
establish multicast delivery tree and the traffic can be localized. 

3.2   Address Allocation 

We proposed an address allocation scheme to identify MNs based on the hexagonal 
plane structure depicted in Fig. 2. The proposed address allocation scheme is 
consisted of two part; logical address(LA) and physical address(PA). LA indicates the 
route from BN to its current locating cell. As the number of MNs in a cell may be 
more than one, the mechanism to identify among them is needed. For this, we use 
physical address using link-layer address(MAC address). Fig. 2 shows the location 
estimation in hexagonal plane where multicast delivery tree is the same Fig. 1. MN 
has one parent MN and several child MNs. Because one cell is surrounded by 6 cells, 
3 bits address is sufficient to identify them. But the 2 adjacent cells next to parent cell 
become peer cells because they have the same number of hop counts. Thus it is 
needed only 2 bits to identify cells except root cells in which root cells locate. The 
MN that becomes the first child MN gets 01 as its address. The second connected MN 
obtains its address either 01 or 10. If the position of the first connected MN is within 
the transmission range of the second connected MN, its address is 01. If not, its 
address is 10.  

w
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Fig. 2. Hexagonal structure for multicast delivery tree 
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From Fig. 1 and 2, MN z has two child MNs {y, w}. Initially they have the same 
address 01. But since MN w know the existence of MN u, the address of MN w is 
changed to 11 as MN u is a foreign NMN. Thus MN y can know the existence of 
MNs out of its transmission range. MN y has only one child node MN x. When the 
link between MN b and MN c is broken due to the movement of MN b, MN j joins 
the multicast and then becomes child node of MN y. As MN j cannot communicate 
with MN x, the address of MN j becomes 10. Let the address of root node 2 be 010. 
The address of MN z becomes 010-01 because root node 2 has only one child node. 
The addresses of MN w and MN y are 010-01-11 and 010-01-01, respectively. The 
addresses of MN j and MN x that are 4 hops away from BN are 010-01-01-10 and 
010-01-01-01, respectively. The logical address of a MN locating at i hop away from 
BN can be represent a cascade addressing algorithm which makes new address based 
on received address; the address till i-1 hop followed by i’th logically connected 
information. 

This paper adopts mapping table to convert logical address into physical IP 
address. All MNs on the same basic tree have the same root-field to classify basic 
trees and mapping table. Although logical address needs theoretically only k-bit (log2 
n: n is number of MNs) in order to assign all MNs, this paper needs more bits for 
managing NMNs and indicating whether MNs join multicast group or not. The 
structure of mapping table to manage multicast delivery trees is composed of 4-fields; 
Multicast-field, Tag bit, logical and physical addresses (see Fig. 3(a)). And logical 
address indicates the information of basic tree, and it is divided into root and peer-
classifying field of MNs. These address allocation is self-configured [6, 11, 12]. The 
values of root and peer-classifying field for MNs are generated sequentially by BN 
and the upper MNs, respectively [10]. 

 

Multicast (M) Tag (T) Peer Classifying Field (PCF)Root (R)

m bits 1 bit 2n bit3bits

 
(a) Address structure 

 
M T R PCF MAC 

10 0 001 MN a : 01 32120abcd 
10 1 001 MN b : 01-01 3847ac13 
00 1 010 MN j : 00 95031243 
10 0 010 MN y : 01-01 12095833 

(b) Mapping table of MN c before MN b moves to b’ 
 

M T R PCF MAC 
10 1 010 MN j : 01-01-10 95031243 
10 0 010 MN y : 01-01 12095833 

(c) Mapping table of MN c after MN b moves to b’ 

Fig. 3. A mapping table of MN c according to a movement of MN b 

Fig. 3(b) shows mapping table for MN c before MN b moves to b’. Its NMNs are 
{a, b, j, y}. The m-bits multicast-bit indicates whether the MNs have already joined 
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the specific multicast or not. In Fig. 3, we assume that the number of m bits is 2. If a 
NMN has not joined any multicast groups, M bits are represented with the value of 
00. Tag indicates whether a NMN or not. Root field represents the address of root 
node of MNs. If R fields of MNs are same, they are on the same basic tree. Peer 
classifying field (PCF) represents the connection status and the number of hops 
counted from base node. From mapping table, PCF of MN 2 is 00. It means that MN 
2 is root node addressed 010. In Fig. 3(c), the number of hops for MN j is 4 as PCF of 
MN c is 6 bits. The address of MNc is changed from 001-01-01-01 to 010-01-01-10-
01 due to changing of its root node. 

4   Simulation and Analysis 

In this section, we show simulation results to demonstrate the benefit of proposed 
mobile ad hoc network to support robust streaming service, and analyzes on the 
results of performance using it. We assume that simulation network is created in 
rectangular planer space with 10 to 50 MNs that are homogeneous and energy-
constrained. In the simulation plane based on hexagonal cellular architecture shown in 
Fig. 2, BN locates at the center of plane. It can stream the contents with directional 
propagation manner to distinct root nodes. BN can partitions the space into multiple 
cone areas and selects NMNs in each cone area as root node of each multicast 
delivery tree. MNs in each cone area forward a copy of the packet to their child MNs. 
This heuristic ensures that the groups of the subtrees are along approximately the 
same direction from the BN. The fan-out angles of BN are equal to 60° because the 
proposed plane is based on hexagonal cellular architecture. 
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         (a) N = 10                  (b) N = 15                    (c) N = 30                 (d) N = 50 

Fig. 4. The ratio of forwarding nodes as the function of request rate from 10% to 50% 
according to the various numbers of nodes in wireless networks 

Fig. 4 shows the ratio of forwarding nodes over multicast delivery trees. The X-axis 
shows the transmission range R while the left Y-axis shows the ratio of forwarding 
MNs and the right Y-axis shows the connection probability of MTE scheme with fixed 
transmission range shown in Fig. 2. The simulations are done with transmission range 
R and the request rate in N = 10, 15, 30 and 50, where N is the number of MNs. The 
request rate is the percentage of the number of ReqMNs over the total number of MNs. 
The simulation results indicate that the more the request rate increases, the more the 
number of forwarding MNs is. The convergences of the number of FwMNs occur in 
shorter transmission range when the number of MNs is larger. 
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(a) N = 10                    (b) N = 15                    (c) N = 30                    (d) N = 50 

Fig. 5. The ratio of foreign nodes as the function of request rate from 10% to 50% according to 
the various numbers of nodes in wireless networks 
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a) Request = 10% (b) Request = 20% (c) Request = 30% (d) Request = 40% (e) Request = 50% 

Fig. 6. The ratio of foreign nodes as the function of the number of nodes 10, 15, 30 and 50, 
according to the various numbers of request rates from 10% to 50% 
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             (a) N = 10               (b) N = 15                   (c) N = 30                (d) N = 50 

Fig. 7. The packet ratio compared with MTE as the function of the number of nodes 10, 15, 30 
and 50, according to the various numbers of request rates from 10% to 50% 
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Fig. 8. The packet ratio compared with MTE as the function of the request rates from 10% to 
50%, according to the various numbers of nodes in wireless networks 

If multicast delivery tree has been broken, MNs on trees should find another one to 
achieve seamless multimedia service. Paths broken occur in between root node and its 
child nodes. Thus there is need to find a path generated by another root node, i.e. find 
foreign MNs. Fig. 5 shows the ratio of foreign MN as the function of the requests 
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rates where the number of MNs is 10, 15, 30 and 50. The X-axis shows the 
transmission range R while the left Y-axis shows the ratio of foreign MNs. Simulation 
results represent that there are less difference of ratio if the number of MNs is much 
larger. Because the high request rate needs much more forwarding MNs, the ratio of 
foreign nodes is increased if the number of forwarding nodes is increased. Fig. 6 
shows the ratio of foreign MNs over the total number of multicast member MNs 
where the range of the request rate is 10% to 50%. The X-axis shows the transmission 
range R while the left Y-axis shows the ratio of foreign MNs. 

Fig. 7 shows the comparison between conventional scheme and proposed scheme. 
The X-axis shows the transmission range R while the left Y-axis shows the ratio of 
the number of control packets for proposed scheme over the number of control 
packets for conventional multicast scheme with MTE. From the result, proposed 
scheme saves the total network bandwidth consumption compared to the conventional 
scheme all the time. Fig. 8 shows the ratio in a point of view of the total number of 
MNs in wireless networks based on the various request rate 10% to 50%. From the 
simulation results, the proposed scheme can reduce the required control packet to 
establish multicast delivery tree. 

5   Conclusion 

In MANET, the mobility of nodes results in frequent path breaks, packet collisions, 
transient loops, stale routing information, and difficulty in resource reservation. Thus 
streaming multimedia is not easy to implement due to the frequent path broken. In this 
paper, we proposed a content delivery scheme to achieve the robust streaming of 
multimedia contents. Under the proposed scheme, MN broadcasts information about 
its neighboring MNs periodically. MN makes a routing table with received 
information. MN can know the existence of MNs 2-hops away from itself because the 
broadcasting packet includes information only about MNs 1-hop away. Thus it can 
reduce the number of control packets to establish multicast delivery tree. To maintain 
multicast route, we proposed new address allocation scheme with cascading method 
based on hexagonal plane. The address of MN is based on the relation between itself 
and other MNs. MN can split their outer area into multiple cells and establish 
alternative route by selecting another MN having the different root node when the 
route is broken. Cascading address make MNs calculate the distance from BN and 
estimate the existence possibility of the alternative route toward BN. In evaluation, 
we examined our proposed scheme in a point of the view of the total number of 
control packets and the connecting probability as well as the impact of the number of 
MNs in mobile wireless networks. The simulation results indicate that the number of 
MN and the request rate are the critical performance factor in order to minimize the 
network bandwidth consumption. 
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Abstract. Most existing overlay multicast approaches avoid to consider
any network layer support no matter whether it is available or not. This
design principle greatly increases the complexity of the routing algo-
rithms and makes the overlay topologies incompatible with the underly-
ing network. To address these issues, we propose TOMIMN as a novel
overlay multicast approach, which exploits the cooperation between end-
hosts and IP multicast routers to construct a topology-aware overlay tree.
Through a little modification to PIM-SM, a multicast router is able to
receive registration from nearby group members and redirect passing-by
join requests to them. Due to the multicast router’s support, TOMIMN
organizes its group members into an overlay multicast tree efficiently,
which matches the physical network topology well.

1 Introduction

Most of the current overlay multicast solutions (e.g. Narada[3], Nice[2]) share
some common drawbacks. First, they can’t adapt the overlay to the physical net-
work very well. Thus it is hard to guarantee the cost-efficiency of data transmis-
sion in all cases. Second, they force end-hosts to assume too much responsibility
in overlay construction, which makes the protocol too complicated to serve as
a general platform for other applications. Last, since the recovery from overlay
partition can be very slow, it is hard to maintain a stable performance in case
of node failures. All these issues result from a common design principle. That
is to remain the network layer as simple as possible and refuse to consider any
support from the network no matter whether it is available or not.

While advocates of overlay multicast try to assume a simplest network layer, IP
multicast has won a position among most enterprise-level networks due to its ef-
ficiency and effectiveness in enabling small-area group communications. Through
almost 20 years’ development, most of the IP multicast techniques have been stan-
dardized as protocols (e.g., PIM-SM[8]) and been supported as mandatory func-
tions by most network equipment vendors. Corporations are willing to deploy
multicast-capable routers in their internal networks since IP multicast provides
a better solution to a lot of valuable applications such as network conference and
content distribution. As an increasing number of multicast-enabled networks are
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emerging on the Internet, the lack of hardware support from network layer is no
longer a persuasive argument against the IP multicast mechanism.

The true weakness of IP multicast is its inadequacy in dealing with large-scale
group communications in the Internet environment. This is due to the following
design flaws. First, since class D addresses can’t be aggregated by their prefixes,
a multicast router in a network core can be overwhelmed when dealing with
thousands of groups simultaneously. Second, address collision is hard to avoid
when a large number of groups coexist in the Internet. Last, there is no viable
commercial model for IP multicast. This fatal factor makes the Internet service
providers (ISPs) reluctant to open IP multicast as a public service.

Our contribution in this paper is to address all above issues of different mul-
ticast techniques by proposing a topology-aware overlay multicast approach,
which is supported by IP multicast networks. The key point of our approach is
to adopt the overlay network for actual data transmission while exploiting IP
multicast routers to optimize the overlay construction. This method has sev-
eral advantages over traditional overlay multicast schemes. With support of the
multicast-enabled network layer, the task of overlay topology optimization can be
drastically simplified. The complexity of the dynamic membership management
is also reduced to a large extent. Meanwhile, end-host based multicast eliminates
most of the problems related to IP multicast. Since the multicast routers may be
deployed incrementally in our approach, the overlay can easily scale up to sup-
port large-sized group communications among heterogenous networks, where not
all routers are multicast-capable. Besides the scalability issue and the address
collision, overlay multicast also provides a viable solution to the commercial is-
sue, which is difficult in IP multicast. Therefore the two multicast techniques,
which seem to contradict at a first glance, are merged to produce an efficient
multicast framework in this paper. Hereinafter, we name it by TOMIMN, which
stands for Topology-aware Overlay Multicast over IP Multicast Network.

The rest of the paper is organized as follows: Section 2 reviews some basic
ideas that previous works adopt in dealing with the overlay topology issue. In
Sect.3, we define the network model for TOMIMN and clarify the objectives we
want to achieve. We also analyze the mechanism of IP multicast in this section.
The detailed protocol is explained in Sect.4, which describes our modification to
the PIM-SM protocol and the tree construction algorithm. The performance of
TOMIMN is evaluated through simulations in Sect.5. Finally we draw conclu-
sions in Sect.6.

2 Related Works

While a variety of overlay multicast approaches have emerged in the past few
years, most of them adopt a similar mechanism to adapt their overlay topol-
ogy to the underlying network. As a typical instance, Narada[3] estimates the
latency and availabe bandwidth of each overlay link by means of ping and pas-
sive monitoring respectively. Then it runs a distance vector protocol on each
node to construct an overlay network according to its end-to-end measurement.
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While other overlay multicast protocols may differ in their specific application-
layer routing algorithms or measurement approaches, they share a common point
with Narada. That is to regard the physical network as a black box and base
their overlay construction solely on the end-to-end network measurement. As it
is hard to derive the underlying network topology from the measured data, the
result overlay topology can be very inefficient.

TAG[7] is a famous topology-aware overlay multicast approach, which has a
similar objective as TOMIMN has. It is different from traditional overlay schemes
in that it exploits underlying network topology data to construct its distribution
tree. More specifically, it uses traceroute to discover the route from the source
to each member and then depends on these information to select parents for
new joiners. Since traceroute reads the route information through ICMP echoes,
TAG is effectively supported by the network layer in its tree construction, which
is similar to our approach. However, TAG doesn’t perform as well as TOMIMN
in the tree optimization as the simulation results indicate. In addition, the low
efficiency of traceroute in obtaining the route information imposes a big control
overhead on TAG’s execution.

A more imaginative idea is to assume special primitives on routers to make
the overlay more adaptive to the physical network. The network layer support
proposed in [6] just belongs to this kind. The author devises two novel primitives
to construct the overlay multicast tree efficiently. Packet reflection allows end-
hosts to benefit from advantageous position of routers for moving and duplicating
packets. Path painting allows end-hosts to use routers to learn enough about
the network to build efficient overlay topologies. While such primitives seem
reasonable at a first glance, they make the network layer even more complex
than before, which contradicts the original intention of overlay multicast. In
contrast, TOMIMN only exploits available network support from IP multicast
routers so that it is more practical in the current Internet context.

3 Network Models

3.1 Physical Network Model

Without loss of generality, we model the underlying network in question by a
directed graph G(V, E) with the vertices representing routers or hosts and the
edges standing for links. A host is attached to only one router while a router’s
node degree is more than one. Each edge is assigned a weight to indicate the
link’s cost or latency. We assume that each node here belongs to an autonomous
system (AS) that is either a multicast domain or a unicast domain. All routers
of a multicast domain support intra-domain IP multicast. To make the following
description easier, we now define some concepts, which will be used throughout
the paper.

Definition 1. A path from node A to node B, denoted by P (A, B), is a sequence
of routers comprising a shortest path from A to B according to the underlying
unicast routing protocol. P (A, S) is also called a request path of node A if node
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S is a data source. Since a unique data source is usually presumed, the request
path of A is also denoted by RPath(A).

Definition 2. Node B is close to the request path of node A if at least one node
of RPath(A) is within a certain distance from node B and they are located in
the same multicast domain. This distance is also called a capture range, which
is determined by the physical network settings around node B.

An outline of the physical network model is shown in Fig. 1. In this figure, all
router nodes are marked with capital letters while the gray nodes represent end
hosts. Suppose that node s is the unique source and all other hosts are receivers
of the same group. We use the dotted lines to indicate the request paths of
RPath(a) and RPath(b), which originate from a and b respectively and point to
node s. If the capture range is just one hop, only c and g are close to RPath(b).
Since e1 and e2 are located in a unicast domain, they are not close to RPath(b)
even if they are just one hop away from the router E.
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e2

e1

s

Multicast Domain

Unicast Domain

Fig. 1. Physical network model

3.2 Overlay Network Model

Overlay multicasting is to send one copy of the data from a source node to
several receivers and then retransmit it from those nodes to other receivers. The
process goes on and on until all receiver nodes get the multicast data. In tree-
based overlay multicast, the protocol will construct a tree, which is rooted at
the source and covers all receivers. Note that this tree only consists of end-hosts,
which are members of the multicast session. So we call such a tree an overlay tree,
in contrast with any other multicast tree, which may contain router nodes. An
edge of the overlay tree is called an overlay link, which amounts to the shortest
unicast path between two overlay nodes. Our task is to choose the right set of
overlay links to connect the members into a tree.

From the perspective of a protocol designer, we have to take the following
objectives into account.
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1. TOMIMN should be capable to deal with dynamic membership. This is a
big obstacle for most overlay routing protocols because without multicast-
enabled routers, the arrival or departure of a single member may make the
topology of the whole overlay tree change drastically.

2. TOMIMN must be efficient in the construction of the overlay tree. Since
the algorithm builds the tree incrementally, it has to be executed in a short
time. Otherwise, the continuous join or leave requests will bring about a big
burden of computation.

3. The overlay tree should be topology-aware. To avoid unnecessary detour
paths among the overlay nodes, the protocol needs to make the overlay tree
mimic the IP multicast tree as much as possible so that the data transmission
can be done in a cost-efficient way.

3.3 Introduction to PIM-SM

We choose the famous PIM-SM as our prototype of the multicast protocol. For
a better understanding of the role a multicast router plays in the TOMIMN, we
shall first analyze the key elements that make a PIM-SM router different from
a generic unicast router.

Multicast Forwarding Entry. From a multicast router’s perspective, the task
of any routing protocol is to build a routing table with forwarding entries for
all groups. A forwarding entry for the PIM-SM multicasting is denoted by a
quaternary tuple of (S,G,iif,oif ), which applies to all packets originated from
source S and destined for group G. The other two fields, namely iif and oif, refer
to input interface list and output interface list respectively. The construction of
such a forwarding entry and its usage is explained as follows.

Control Path. For simplicity, we only consider the source specific multicast in
PIM-SM. Here PIM-SM routers have to deal with two protocols in order to create
the forwarding entries for a (S,G) pair. First, the designated router of the receiver
will receive an IGMPv3[1] source specific membership report from the host, which
carries the (S,G) information. Then it turns this membership report into a PIM-
SM join request and unicasts it towards the source S. All routers receiving this re-
quest should build an entry like (S,G,iif,oif ). The input interface for receiving the
IGMP membership report or the PIM-SM join request is added to oif while the
output interface for sending the join request is added to iif. By this way, the mul-
ticast forwarding entry is installed on all PIM-SM routers involved in the group
session, which form a shortest path tree from the sender to all receivers.

Data Path. Once the shortest path tree is established, the forwarding entry
comes into play for packet multicasting. Whenever a router on the distribution
tree receives a multicast packet sent from source S to group G, it will first check
whether the input interface of this packet is exactly the one in iif. If the packet
does come in through the correct interface, a copy of it is sent out through each
interface listed in oif. The forwarding process is done in a top-down manner from
the source’s designated router to all leaf routers on the tree.
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In summary, the speciality of a PIM-SM router is twofold. From the control
path’s perspective, it is responsible to accept membership registration originated
from the receivers. On the other hand, the router has to multicast packets as its
key function on the data path. These two features lend them perfectly to the
construction of our topology-aware overlay distribution tree. In the following
section, we will describe how these functions can be exploited by TOMIMN
after a slight modification.

4 Details of TOMIMN

4.1 Multicasting Join Requests

Multicast-capable routers play an important role in our overlay tree construction.
Briefly speaking, TOMIMN depends on those routers on the new joiner’s request
path to multicast the join request towards their respective neighbor members
so that the new member can find a suitable parent from the tree quickly. While
a PIM-SM router is totally qualified to assume such a task from a functional
perspective, no existing protocol is designed for this purpose. Therefore we need
to introduce some modifications to PIM-SM so that the routers will behave as
we expect them to.

Multicast Forwarding Entry. One basic function of the multicast forwarding
entry is to determine whether a packet belongs to a specific group so that it can
be multicasted accordingly. Unlike the situation in source specific IP multicast,
where all data packets of the same group have a common source-destination pair
like (S,G), the join requests for the same group session originate from different
joiners and thus have different source addresses. Since TOMIMN is designed for
single source multicast, we will aggregate the join requests of the same session
by their destination address/port pair like (S,P). S is in fact the address of
the overlay tree’s root. The inclusion of the port number P allows for multiple
overlay trees rooted at the same node. Therefore the multicast forwarding entry
for multicasting the join requests is a ternary tuple like (S, P, oif ). The field oif
has a similar meaning as we described previously. Now we are going to explain
the installation and application of these entries on routers.

Membership Registration. In order to capture the wanted messages on
nearby routers, an in-tree member M sends a membership report toward the
tree root with a limited value of TTL. Due to the small TTL, only those routers
close to M will receive it. Once a router R has received such a report, which
indicates a (S, P) pair, it will initiate a forwarding entry building process, which
is described in detail by the pseudo-code routine in Fig. 2.

ForwardingJoinRequest. The process ofmulticasting join requests is straight-
forward once the forwarding entry is calculated as mentioned above. When a join
request destined for the session (S, P) arrives at a router where a corresponding
forwarding entry is installed, a copy of it is sent through each of the interfaces
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Procedure ReceiveReportFor (Address M, Address S, Port P)

//M-Address of the sender of the report

//S-Address of the tree root

//P-Port number identifying the group session

Var

Entry e;

//e-Multicast forwarding entry;

Begin

If RoutingTable.includeEntryOf(S, P) Then

e = RoutingTable.fetchEntry(S, P);

e.addToOif(InterfaceTo(M));

ElseIf InterfaceTo(M)!=InterfaceTo(S) Then

e = new Entry (S, P);

e.addToOif(InterfaceTo(M));

e.addToOif(InterfaceTo(S));

RoutingTable.addEntry(e);

EndIf

End.

Fig. 2. Algorithm for building forwarding entries

in oif except the input interface of the request. If the oif field only has two
interfaces and the request is received from one of them, then the transmission
will reduce to a unicast forwarding. This stipulation ensures that all members
registered at the routers will receive exactly one copy of the request during the
multicasting. A whole process from the membership registration to the join re-
quest multicasting is illustrated in Fig. 3.
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(a) Membership Registration
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(b) Join Request Multicasting

Request(S,P)

Request(S,P)

Fig. 3. How to multicast join requests

4.2 Tree Construction and Maintaining

While the modified multicast protocol only focuses on redirecting the join re-
quests of new group members, it has a significant influence on the whole process
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of tree construction and maintaining. The support from multicast routers not
only simplifies the member join operation but also facilitates the optimization
of the tree topology under a dynamic membership. Furthermore, our approach
helps to smooth the fluctuation caused by sudden departures of intermediate
overlay nodes, which is a tough job for end-hosts alone. Among all these tasks,
we should first introduce how these multicast routers help a new member to find
a suitable parent in the overlay tree.

Member Joins. Suppose that each new member J knows the address/port
pair (S,P) of the data source before its participation. Then a request packet
is generated with (S, P) as its destination address/port pair. As we mentioned
above, if the join request traverses the capture ranges of other in-tree members,
the data source S along with those members close to the request path will be
informed of this new joiner. Each of them will respond to J as long as they have
sufficient residual fan-out degrees to accept a new child in the overlay tree. Each
response indicates a candidate parent. The next step is to choose a best one from
them as J’s formal parent in the tree.

The specific criteria for choosing a best parent node could vary from one
application to another. For simplicity, we order that the candidate closest to
the joiner become its parent. If multiple candidates are qualified, the one closest
to the data source is selected. This can be done by using tools like ping or
traceroute. Meanwhile, a list of the candidate parents is kept for later use.

Topology Adjustment. As far as tree-based multicasting is concerned, a key
reason for topology adjustment is that some in-tree members would like to be
connected to newcomers rather than their current parents. This idea is explained
in Fig. 4. In this figure, node d is close to the request path of node a. How-
ever, node a joins the tree before node d, which leads to a tree structure like
Fig. 4(b). While the tree in Fig. 4(d) is more cost-efficient in terms of bandwidth
consumption, the join process of d doesn’t provides a mechanism to inform the
downstream members of the upstream newcomers.
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Our solution is to have downstream in-tree members send a fake join request
towards the data source periodically. The fake request has the same destination
address/port pair as a true one has. Since the newcomer d is close to the request
path of node a, it can capture this fake request as shown in Fig. 4(c). Except
the newcomer, other members will not respond to a fake request of a familiar
sender. Then the tree could be transformed like Fig. 4(d) for a better shape.

Graceful Departure. If a parent node notifies its direct children before it
quits the group, each child will follow a query-and-rejoin policy to find a new
parent. First, it sends a fake join request as we described previously to discover
any new emerging upstream members. If there are replies, the child updates its
candidate parent list and pick up a best one from it to contact. The leaving
parent doesn’t break its transmission until all children have switched to their
new parents successfully. When no child listens to it any more, the leaving parent
quits the group gracefully.

Partition Recovery. If a failure has occurred, the abandoned children follow a
join-and-adjust strategy. In other words, the child first tries to make a connection
with the best candidate parent in its current list to join the group. Once the
overlay link is established, an adjustment process goes on to optimize the overlay
topology after the node failure. Due to the candidate parent list, an abandoned
child node can find the new parent immediately while still maintaining a good
performance of the overlay transmission. Therefore the impact of node failures
is reduced to the minimum.

4.3 Commercial Model

In addition to the efficiency in data transmission, TOMIMN also provides a
viable commercial model that facilitates its development in today’s Internet.
Suppose that ESPN is going to broadcast an NBA game live to the whole world
on the Internet using TOMIMN. To provide a satisfactory QoS level to the world-
wide audience, ESPN can just rent local hosts as its relay stations to connect
with its local subscribers. Since the image signal is transmitted in the name of
ESPN, it can provide a worldwide service at a very low cost. On the other hand,
the ISPs are encouraged to deploy more multicast routers in their ASes so that
they can attract more subscribers for their Internet content providers(ICPs) like
ESPN. Due to the potential commercial benefit, both the ICPs and the ISPs
are willing to develop TOMIMN as a platform to capture new users for their
value-added services.

5 Evaluation

In this section, we evaluate the TOMIMN protocol using simulations. As the mul-
ticast routers help us to achieve the first two objectives mentioned in Sect.3.2,
the main purpose of the simulations here is to investigate how much a TOMIMN
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tree matches the topology of the underlying network. For this purpose, we mea-
sure the tree cost in our simulations for a quantified result.

Two benchmark protocols we adopt for comparison with TOMIMN are PIM-
SM and TAG. As we introduced in Sect.3.3, we consider the former as a lower-
bound benchmark. We also choose TAG for comparison because it is similar to
TOMIMN in its design intention.

5.1 Simulation Setup

In order to generate a topology to mimic the Internet for our experiments, we
adopt a modified version of the Waxman approach[9]: First, we place a certain
amount of nodes randomly on a rectangular area and divide it into several equal-
sized regions. All nodes falling into the same region stand for routers belonging
to the same domain. Then we build intra-domain links with a probability that
is given by the function P (u, v) = β exp (−d(u, v)/αL), where d(u, v) is the
distance from u to v, L is the maximum distance between any two nodes of the
same domain, and 0 < β ≤ 1, 0 < α ≤ 1. Larger values of β result in graphs
with higher link densities, while small values of α increase the density of short
links relative to longer ones. The first link building process continues until all
nodes within the same domain are included into a single connected graph. Next
we pick out some gateway nodes from each domain and connect them with inter-
domain links in a similar way. The second link building process is finished when
no domain is isolated from others. The fan-out degree of each node in the final
graph has an upper bound of 6. The cost and delay of each link is set to the
same value, which varies from 1 to 5 for intra-domain links and from 6 to 10 for
inter-domain links.

To evaluate the performance of our protocol in different network environ-
ments, we repeat our simulations in two different scenarios:

1. Physical links have symmetric cost.
2. Physical links have asymmetric cost.

5.2 Simulation Results and Discussions

In the first experiment, we assume that all domains support IP multicast. When-
ever a node joins the group in TOMIMN, it will broadcast its membership report
throughout its domain to capture other join requests passing by. We change the
group size from 20 to 100. Fig. 5 shows the tree cost for two scenarios.

From this figure, we can infer that the performance of TOMIMN is better
than TAG and approaches that of PIM as the membership increases. We give
the reasons for this result from two aspects. First, as an increasing number of
nodes join the group in TOMIMN, it is much easier for a new member to find a
parent in its close neighborhood. In other words, the extra cost for accepting a
new member into the group decreases when the membership increases. Second,
the overlay of TAG is not adapted to the underlying network topology in all
situations. Although the parent and its new child share a longest segment on the
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routes from the source to each of them in TAG, it is still possible that the overlay
link between these two nodes is longer than other alternatives. Thus TAG is less
aggressive than TOMIMN in saving the tree cost. By comparing the output of
two scenarios, we find out that TOMIMN is less sensitive to asymmetric links
than the other two protocols. Since the cost measurement is always done from
upstream nodes to downstream nodes, the asymmetric links don’t affect our
protocol greatly.

In the second experiment, we assume that only a part of domains support
IP multicast. In other words, a member node can’t broadcast its membership
report around to capture join requests unless it is located in a multicast do-
main. It is much closer to the situation of the real Internet. We select two fixed
group sizes and adjust the percentage of multicast domains from 20% to 100% to
study TOMIMN’s performance in different environments. The growing percent-
age of multicast domains is transparent to other two protocols in their simula-
tions. From Fig. 6, we find that the output of TOMIMN is still acceptable even
when the multicast domains account for a small percentage in the underlying
network.

6 Conclusion

In this paper, we propose TOMIMN as a novel overlay multicast approach, which
exploits the support from IP multicast routers to construct a topology-aware
overlay tree. Compared with IP multicast and other overlay multicast schemes,
our approach has the following notable advantages :

1. A TOMIMN tree is compatible with the physical network. With the help of
multicast routers, inefficient branches in a multicast tree are eliminated



158 X. Chen, H. Shao, and W. Wang

2. TOMIMN makes the membership management much easier in overlay mul-
ticast. In other words, TOMIMN can deal with member joins and leaves
efficiently.

3. TOMIMN encourages ISPs to provide better network layer support. Since
the multicast routers can capture consumers’ requests of various network ser-
vices, ISPs are willing to build multicast domains for expectable commercial
benefits.
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Abstract. Traditional reliable link layer protocols set their fixed re-
transmission timers under the assumption that they operate in isolation
over the link. Emerging wireless networks however allow multiple link
layer sessions to dynamically share the link. To assess the impact of this
development, we examine the performance of Web Browsing over a Selec-
tive Repeat protocol with fixed retransmission timers, showing that the
optimal retransmission timer values depend on the level of contention.
We therefore propose an adaptive Selective Repeat protocol that modifies
its retransmission timers based on prevailing conditions. Our measure-
ments show that this adaptive scheme provides excellent Web Browsing
performance regardless of the level of contention, under two very different
wireless error models.

1 Introduction

Wireless networks are increasingly becoming an integral part of the Internet,
especially in the role of access networks providing untethered connectivity to
users. It is well known however that the error prone nature of wireless links
degrades the performance of applications such as Web Browsing [1]. Reliable
link layer protocols have been proposed as a way to hide the deficiencies of
wireless links, thus improving the performance of the higher layer protocols and
applications used on the Internet; the results reported in the literature show that
reliable link layers do indeed offer dramatic performance improvements [2].

While traditional link layer protocols assume that they operate in isolation
over the underlying link when setting their operating parameters, such as re-
transmission timers, emerging wireless networks allow multiple users and/or ap-
plications to dynamically share the link. This is most evident in the Universal
Mobile Telecommunications System (UMTS) where a single physical channel is
shared among independent link layer sessions employed by different users and/or
applications. Since different applications have different requirements in terms of
reliability and delay, when many applications share the same wireless link, differ-
ent link layer protocols should expect to co-exist over it. While the sharing of a
wireless link by independent link layer sessions also introduces fairness issues [2],
in this paper we are only concerned with the interplay between link sharing and
retransmission timer values and its effect on application performance.
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The outline of this paper is as follows. In Sect. 2 we provide background on
Internet protocol and application performance over wireless links and discuss
related work. Section 3 describes our simulation setup for the performance eval-
uation that follows. In Sect. 4 we describe the fixed Selective Repeat protocol
used in this paper and discuss its performance with Web Browsing. Motivated
by these results, in Sect. 5 we present an adaptive Selective Repeat protocol and
evaluate its performance with Web Browsing against its fixed counterpart.

2 Background and Related Work

The heart of the Internet, the Internet Protocol (IP), offers an unreliable packet
delivery service: packets may be lost, reordered or duplicated. Many real-time
applications use the User Datagram Protocol (UDP) for direct access to this
service, handling error, flow and congestion control themselves. Most other ap-
plications prefer delegating these tasks to the Transport Control Protocol (TCP)
which offers a reliable byte stream service. TCP segments the application data
stream into IP packets at the sender and reassembles it at the receiver. The
receiver generates acknowledgments (ACKs) for segments received in sequence,
returning duplicate ACKs for out of sequence segments. The sender retransmits
the next unacknowledged segment either on receiving 3 duplicate ACKs or when
a retransmission timer expires before an ACK is received.

Due to the high reliability of wired links, TCP assumes that all losses are due
to congestion, thus after a loss it abruptly reduces its transmission rate to relieve
congestion and then gradually increases it to probe the network. Unfortunately,
losses due to wireless errors are also interpreted as congestion, causing TCP to
dramatically reduce its transmission rate [1]. Many researchers have proposed
TCP modifications to improve its performance over wireless links, but they all
have two drawbacks: they require modifications to end hosts throughout the
Internet and they can only retransmit lost data on an end-to-end basis.

Another approach is to employ a reliable link layer protocol over the wireless
link so as to hide wireless errors from TCP. An early proposal customized to TCP
snoops inside the packets of each TCP stream at the access point bridging the
wired and wireless parts of the path and retransmits lost segments when dupli-
cate ACKs arrive, hiding them from the sender to avoid end-to-end recovery [3].
Later work shows that the performance of TCP applications can be enhanced
with standard reliable link layer protocols, without making the link layer TCP
aware [2]. Avoiding TCP awareness has many advantages, such as compatibility
with encrypted IP payloads which hide TCP headers from the link layer [4].

An important issue with reliable link layer protocols is that not all Internet
applications require their services. While TCP applications are well suited to
them, delay sensitive UDP applications often prefer faster, albeit limited, error
recovery. Reliable link layer sessions should therefore expect to co-exist with
other link layers over the same wireless link. This causes the bandwidth avail-
able to the reliable link layer protocol, and therefore its effective Round Trip
Time (RTT), to vary, leading to a problem when setting retransmission timers:
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they should be higher than the RTT, to prevent premature retransmissions, but
not too high, to prevent the protocol from stalling until a timeout occurs. A
TCP aware link layer sets its retransmission timers dynamically by mimicking
TCP retransmissions [3], so as to retransmit lost packets before TCP, but this
approach is inherently tied to TCP and not guaranteed to be the best one.

3 Simulation Setup

The performance results reported below are based on simulations with ns-2 [5],
extended with additional error models, link layers and applications [6]. Each
test was repeated 30 times with different random seeds. The results shown re-
flect average metric values from these 30 runs, as well as their 95% confidence
intervals. The simulated topology is shown in Fig. 1: a Wired Server communi-
cates with a Wireless Client via an Access Point. In all applications tested, the
server was located at the wired end of the network and the client at the wire-
less end, hence the naming convention used. The wired link has a bandwidth of
10 Mbps and a propagation delay of 1 ms. Simulations using a 2 Mbps wired
link with a propagation delay of 50 ms also support the conclusions reached in
this paper.

Wired Server Access Point Wireless Client

TCP/UDP
IP

PHY
LL

TCP/UDP
IP IP

PHY
LL

Fig. 1. Simulated network topology

The wireless link has a bandwidth of 64 Kbps, a propagation delay of 50 ms
and uses a frame size of 250 bytes plus a header; these are typical characteris-
tics for cellular links where bit interleaving inflates propagation delay. To avoid
packet fragmentation, each application also uses 250 byte packets. Two error
models were used for the wireless link. In the Uniform error model each frame
may be independently lost with a probability of 1.5%, 2.5%, 5.4% or 9.8%. In
the Two State error model the link can be either in a good state, with a bit
error rate of 10−6, or in a bad state, with a bit error rate of 10−2. Both states
have exponential durations, with the average duration of the good state being
10 s and the average duration of the bad state being 100 ms, 200 ms, 500 ms or
1000 ms. We have experimentally found that with these parameters the average
Frame Loss Rate (FLR) of the Two State model is 1.5%, 2.5%, 5.4% or 9.8%,
matching the FLRs used for the Uniform model. Note that the error processes in
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each link direction were identical but independent. To establish a performance
baseline, we also show results with no errors.

To evaluate the Selective Repeat variants presented below, we used Web
Browsing, the most popular application on the Internet [7], over TCP Reno
with 10 ms granularity timers. In Web Browsing a client accesses pages con-
taining text, links to other pages and embedded objects, stored on a server.
The client-server interaction consists of transactions : the client requests a page
from a server, the server returns the page which contains pointers to embed-
ded objects, the client requests each embedded object, and the server returns
them, completing the transaction. The next transaction begins when the client
requests another page. The ns-2 HTTP module provides empirical distributions
for request, page and embedded object sizes, as well as for the number of ob-
jects per page [7]. Only one transaction was in progress at any time with no
pauses between transactions. The performance metric used was Web Browsing
throughput, defined as the amount of all application data transferred from the
server to the client divided by time taken. Client requests only influence through-
put indirectly, by introducing delays. All results shown reflect the state at the
end of the last completed transaction during the simulated period, which was
2000 s.

Contention is provided by a UDP real-time Media Distribution application.
This application approximates a lecture where a speaker sends audio, and pos-
sibly video, to an audience including a wireless client. The speaker alternates
between talking and silent states with exponential durations, averaging 1 s and
1.35 s, respectively [8], transmitting media only in the talking state. Packets are
transmitted isochronously at a rate of 56 Kbps, consuming 87.5% of the avail-
able bandwidth in the talking state, but only 37.5% of the available bandwidth
on average. As a result, the bandwidth available for Web Browsing is abruptly
modified whenever Media Distribution changes state. It should be noted that
no retransmissions are performed for the, delay sensitive, Media Distribution
application. To be more exact, the Media Distribution data stream bypasses the
reliable link layer protocol used by the Web Browsing data stream.

4 Fixed Selective Repeat

In past research we have found the Selective Repeat protocol to offer excellent
performance for TCP applications such as Web Browsing [2], without requir-
ing TCP awareness. We have therefore decided to use it to study the inter-
play between link sharing and retransmission timers. In Selective Repeat, the
sender transmits link layer frames in sequence within a transmission window
of N frames, buffering them for possible retransmission. The receiver accepts
frames within a reception window of N frames; if a frame is received in sequence
it is delivered to the higher layer, the window slides upwards and an ACK is re-
turned to the sender, confirming reception of all frames up to the one delivered.
When the sender receives an ACK, it drops the buffered frames covered by it
and also slides its window upwards.
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When a frame arrives out of sequence at the receiver, it is buffered but not
delivered, since the gap in the sequence indicates that some frames were lost;
a negative acknowledgment (NACK) is returned for each missing frame to the
sender, and the sender retransmits each NACKed frame. When missing frames
arrive, the receiver delivers to the higher layer all frames that are now in se-
quence, slides its window upwards and returns an ACK covering all delivered
frames. To reduce protocol overhead, in our implementation we delay returning
an ACK for a short interval, trying to piggyback it into a data frame travel-
ing in the reverse direction. If the interval expires, the ACK is sent as a sepa-
rate frame. NACKs on the other hand are always sent immediately as separate
frames.

If some ACKs and/or NACKs are lost, the sender may exhaust its transmission
window, thus becoming unable to proceed. To prevent this, the sender starts a
retransmission timer after sending each frame. If the timer expires before an
ACK arrives for that frame, the frame is assumed lost and retransmitted. Many
Selective Repeat variants exist, mostly differing on how NACKs are handled [9].
The variant used here allows each missing frame to be NACKed multiple times,
a feature called multireject ; we have also tested two simpler protocol variants,
both of which support the conclusions reached in this paper.

We will now examine the performance of Web Browsing over Selective Repeat
with fixed timers, in order to assess the effects of contention. Figure 2 shows the
Web Browsing throughput achieved under the Uniform error model with a range
of fixed timeout values from 0.9 s to 1.3 s, in 0.1 s increments. Throughput is
maximized with the lowest timeout value, and it is progressively decreased as the
timeouts are increased. The 9.8% performance gap, i.e. the difference between
the best and worst options at a FER of 9.8%, is 13.4%. When contention is
introduced however, the situation is completely reversed, as Fig. 3 shows: in
this case lower timeout values perform worst, while higher timeouts lead to
progressive improvement. In this case the 9.8% performance gap is 21.7%, but
in the opposite direction than when no contention exists.

In the Two State error model, the situation without contention is not that
clear. As Fig. 4 shows, it is hard to even distinguish between the various fixed
timeout options, since the 9.8% performance gap is only 1.4%. However, when
contention is introduced, Fig. 5 shows that throughput degrades as the timeouts
are decreased, exactly as with the Uniform error model. Indeed, in this case the
9.8% performance gap is 40.9%, higher than with the Uniform error model.

These results indicate that under both wireless models, it is not possible to
select a fixed retransmission timer value that will optimize overall Web Browsing
performance: contention generally increases the optimal timeout value, due to the
corresponding increase in the effective RTT. The results with contention show
that a timeout value that provided excellent performance without contention,
may exhibit terrible performance when contention is introduced. Therefore, with
fixed timers the best we can do is to choose a timer that will provide a good
compromise, rather than optimal performance.
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5 Adaptive Selective Repeat

As shown in Sect. 4, contention for the link has a dramatic effect on performance:
when competing sessions start and stop, the available bandwidth changes, influ-
encing the effective RTT. It is thus desirable for a reliable link layer protocol to
appropriately adapt its retransmission timers. To this end, we modified Selec-
tive Repeat to track the RTT in a manner similar to TCP [10]. For every packet
transmitted or retransmitted, the sender notes its transmission time. When an
ACK arrives for the packet, the difference between the current time and the
transmission time provides an RTT sample. We use these samples to update
smoothed estimates for the RTT, srtt, and its variance, srttvar, as follows:

srtt = 0.875 ∗ srtt + 0.125 ∗ sample . (1)

srttvar = 0.75 ∗ srttvar + 0.25 ∗ (sample− srtt) . (2)

As the effective RTT fluctuates, the estimators (1) and (2) follow its progress in a
smoothed manner: they react to changes with a time lag and are not dramatically
affected by sporadic extreme values. Note that the smoothing factors used are
the same as those used by TCP, therefore these calculations can be performed
very efficiently using integer arithmetic [10]. After updating the estimators, we
calculate the new value to be used for the retransmission timers, rtxto, as follows:

Uniform error model : rtxto = 3 ∗ srtt + 2 ∗ srttvar . (3)

Two State error model : rtxto = 4 ∗ srtt + 0 ∗ srttvar . (4)

Note that both (3) and (4) differ from the formula used by TCP, which is rtxto =
1 ∗ srtt+4∗ srttvar. We have experimentally found that these formulas perform
very well for the corresponding wireless error models [11], in contrast to the plain
TCP formula, whose performance will be discussed below.

Our adaptive timeout scheme calculates samples from every packet acknowl-
edged, with three exceptions, meant to avoid inaccurate samples. First, NACKs
do not provide samples, since they do not reflect reception of the NACKed frame.
Second, when an ACK covers multiple frames, only the last frame acknowledged
provides a sample, since the previous ones may have been received long ago.
Third, when duplicate ACKs arrive, only the first ACK provides a sample; the
following ones are ignored, since they do not offer additional information.

We will now we examine the performance of Web Browsing over Selective
Repeat with both adaptive and fixed timeouts. Figure 6 shows the Web Browsing
throughput achieved under the Uniform error model with our Adaptive scheme,
as well as with fixed timeout values of 0.9 s, 1.1 s and 1.3 s. We also show
performance over the Raw Link, that is, without any link layer error recovery,
and over Plain TCP, that is, when the standard TCP formula is used for timeout
adaptation. Our adaptive scheme performs better than all fixed options: the 9.8%
performance gap of our scheme over the fixed 1.1 s option, previously found to
be a good compromise, is 17%, while plain TCP is worse than all fixed options.
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When contention is introduced, Fig. 7 shows that our adaptive scheme again
performs best; in this case the 9.8% performance gap over the fixed 1.1 s op-
tion is 12.1%. Interestingly, with the lowest fixed timeout, i.e. 0.9 s, which was
the best option without contention, performance with contention can be worse
than without any error control, indicating that timers expire early, leading to
redundant retransmissions. The plain TCP formula also suffers from the same
problem, therefore it only manages to beat the worst fixed timeout option.

The results with the Two State error model are very similar. Figure 8 shows
that without contention our adaptive scheme outperforms all fixed schemes, with
a 9.8% performance gap over the fixed 1.1 s option of 2.6%. When contention is
introduced, Fig. 9 shows that our adaptive scheme again performs best, with a
9.8% performance gap over the fixed 1.1 s option of 9.5%. In this case, the use
of a fixed timeout of 0.9 s, which was quite acceptable without contention, is
always worse than no error control at all. Furthermore, it is clear that the plain
TCP formula is completely inappropriate for the Two State error model, as it
nearly always leads to lower performance than without any error recovery.

These results indicate that with Web Browsing our adaptive timeout scheme
performs much better than the fixed scheme with the compromise timeout of
1.1 s, and, indeed, better than any of the fixed timeout options tested. More
importantly, our adaptive scheme performs excellent without manual tuning re-
gardless of the level of contention, in contrast to the fixed schemes where the
choice of an optimal timeout value requires awareness of the, generally unknown,
level of congestion over the link. Furthermore, our results show that the equation
used by TCP is far from optimal, and may even be worse than performing no
error control at all. Therefore, simply using the TCP policy is not enough.

We conclude this section with a brief sensitivity analysis of the parameters
used for the adaptive scheme under each wireless error model. In previous work
we have explored the parameter space for the coefficients of srtt and srttvar,
concluding that formulas (3) and (4) work best for the Uniform and Two State
error models, respectively [11]. We have also compared our basic scheme, re-
ferred to as adaptive standard, against two variations: in the adaptive fast case,
equations (1) and (2) are modified to srtt = 0.75 ∗ srtt + 0.25 ∗ sample and
srttvar = 0.5 ∗ srttvar + 0.5 ∗ (sample − srtt), respectively, i.e. the estima-
tors adapt faster to prevailing conditions; conversely, in the adaptive slow case,
equations (1) and (2) are modified to srtt = 0.9375 ∗ srtt + 0.0625 ∗ sample and
srttvar = 0.875 ∗ srttvar + 0.125 ∗ (sample− srtt), respectively, i.e. the estima-
tors adapt slower. We omit these results for brevity, as all three variants of our
adaptive scheme have only marginal performance differences, indicating that the
scheme is relatively insensitive to the exact choice of the filter coefficients used.

6 Conclusions and Future Work

We have discussed the problems faced by reliable link layer protocols when shar-
ing a wireless link with competing link layer sessions, using Selective Repeat as
an example. Our measurements of Web Browsing performance indicate that the
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optimal fixed retransmission timer values strongly depend on the level of con-
tention for the link. We therefore proposed an adaptive Selective Repeat variant
that dynamically sets its retransmission timers based on prevailing conditions,
using a scheme similar to TCP. Our measurements indicate that this adaptive
scheme outperforms its fixed counterparts regardless of the level of contention
and frame loss rate, under two very different wireless error models. We have also
found that, while our adaptive scheme is relatively insensitive to the filter coef-
ficients used to smooth the average RTT and RTT variance estimators involved
in the adaptive calculation of the timeout values, the actual coefficients used by
TCP for this calculation are suboptimal for our link layer environment.

Our adaptive Selective Repeat approach is not the only way to overcome the
issues introduced by contention at the link layer. The Radio Link Control (RLC)
protocol used in UMTS networks in its Acknowledged Mode [12] does not use
retransmission timeouts at the sender, relying solely on status information from
the receiver to trigger retransmissions. Since both ACKs and NACKs may be lost
however, either the RLC sender or the RLC receiver must periodically probe for
or return status reports, respectively. We are currently implementing the UMTS
RLC protocol in our simulator with the aim of comparing its performance against
our adaptive Selective Repeat approach.
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Abstract. IEEE 802.11e Medium Access Control (MAC) mechanism has been 
recently proposed for supporting differentiated Quality-of-Services (QoS) in 
Wireless Local Area Networks (WLANs). Heterogeneous traffic generated by 
wireless multimedia applications and hidden stations arisen from the wireless 
transmission power constraints have significant impact on the performance of 
MAC protocols. This study performs extensive simulation experiments and 
conducts comprehensive performance evaluation of the IEEE 802.11e 
Enhanced Distributed Channel Access (EDCA) protocol in WLANs with 
hidden stations and heterogeneous traffic. For this purpose, non-bursty Poisson, 
bursty ON/OFF, and fractal-like self-similar processes with high variability are 
used to model and generate heterogeneous network traffic. The performance 
results have shown that the protocol is able to achieve differentiated throughput, 
access delay and medium utilization. However, the hidden stations can degrade 
the throughput and medium utilization and also increase the medium access 
delay greatly in the presence of heterogeneous traffic. 

1   Introduction  

Wireless Local Area Networks (WLANs) are being deployed in enterprises all over 
the world and are becoming the fastest growing segment of the communication 
market due to its simplicity, flexibility and accessibility independent of location as 
well as its ability for wireless stations to roam throughout the business organizations. 
Current research and market analysis have shown that the worldwide shipments of 
WLAN units will keep growing at an annual rate of 42% through 2007 [23]. In order 
for WLANs to be widely accepted and to support ever-growing wireless and mobile 
applications, the Institute of Electrical and Electronics Engineers (IEEE) have ratified 
802.11 standards to ensure the compatibility and reliability among the network 
devises. IEEE 802.11 standards specify a common Medium Access Control (MAC) 
protocol which is responsible for managing and maintaining communication between 
wireless network devices and coordinating access to a shared channel.  

The dominating mechanism of the IEEE 802.11 MAC is called the Distributed 
Coordination Function (DCF), which relies on Carrier Sense Multiple Access with 
Collision Avoidance (CSMA/CA) algorithm to access the shared medium. The main 
objective of CSMA/CA is to avoid stations transmitting packets at the same time, 
which can lead to collisions and corresponding retransmissions [4, 10, 12, 21]. 
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However, hidden stations in WLANs often cause serious problems and performance 
degradation. A pair of stations are said to be hidden from each other if the 
transmission from one station cannot be heard by the other. As a result, two or more 
hidden stations may transmit data at the same time, causing a collision and a MAC 
failure. Thus, additional collision avoidance protocol becomes necessary to combat 
the hidden station problem. Apart from the common CSMA/CA techniques, the DCF 
further reduces the possibility of collisions using the popular collision avoidance 
scheme that consists of channel reservation frames (i.e., Request-To-Send and Clear-
To-Send).  

Due to its contention-based mechanism, the legacy IEEE 802.11 DCF cannot 
support differentiated Quality-of-Service (QoS) requirements of multimedia 
applications. As a result, the IEEE 802.11 working group has recently standardized an 
extended version (IEEE 802.11e) that defines two mechanisms for the support of QoS 
differentiation: Enhanced Distributed Channel Access (EDCA) and Hybrid 
Coordination Function (HCF) Controlled Channel Access (HCCA) [22]. EDCA 
delivers traffic based on differentiated Access Categories (ACs), which can be 
achieved by varying the amount of time for which a station senses the channel to be 
idle before back-off, or the length of the contention window, or the duration in which 
a station may transmit after occupying the channel [22]. The stations with lower-
priority traffic must wait longer than those with high-priority before accessing the 
medium [22]. 

Many recent studies [8, 12, 13, 19] have conducted performance analysis and 
evaluation of IEEE 802.11e MAC protocols using simulation experiments. For 
instance, [12] has investigated and compared different MAC mechanisms for 
supporting QoS in WLANs including Point Coordination Function (PCF), Distributed 
Fair Scheduling (DFS), Blackburst and EDCA. Their results have showed that the 
best performance is achieved by Blackburst and have demonstrated that PCF and 
EDCA are able to support good service differentiation. [8] has carried out 
performance evaluation of IEEE 802.11e under different types of traffic (such as 
VoIP, video) with the limitation that each station generates only one single class of 
traffic. [13] has evaluated the performance of IEEE 802.11e in the single and 
overlapping Access Point (AP) environments using traffic models with negative-
exponentially distributed inter-arrival times. This study has focused on the analysis of 
the effectiveness and limitations of IEEE 802.11e in such environments. [19] has 
evaluated the effectiveness of various IEEE 802.11e QoS mechanisms for supporting 
voice, video and data applications separately in individual scenarios.  

Many measurement studies [3, 6] have shown that traffic generated by multimedia 
applications exhibits heterogeneous properties. For example, [6] has adopted the well-
known bursty On-Off model to capture voice traffic where the talkspurt is modeled by 
ON stage and the silence period is modeled by OFF stage with exponential ON and 
OFF periods. More recently, [3] based on high-quality measurement traces has 
indicated that the compressed Variable-Bit-Rate (VBR) video exhibits fractal-like 
self-similar and Long Range Dependent (LRD) properties (i.e., traffic burstiness and 
correlations appearing over many time scales). Moreover, such self-similar traffic 
behaviors have been found in WLANs [18]. The study [2] has recently reported 
performance results of EDCA in the presence of heterogeneous multimedia traffic. 
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However, [2] did not take hidden stations into account, which have great effects on 
the performance of MAC protocols and communication networks. To fill this gap, this 
study performs extensive simulation experiments and investigates the throughput, 
access delay and medium utilization of the IEEE 802.11e EDCA protocol in WLANs 
with hidden stations and heterogeneous non-bursty Poisson, bursty ON/OFF, and 
fractal-like self-similar traffic. The performance results have demonstrated that the 
protocol is able to achieve satisfying QoS differentiation for heterogeneous 
multimedia applications. However, this protocol suffers from the low medium 
utilization due to the overhead generated by transmission collisions and back-off 
processes. Furthermore, this study has shown that the hidden stations can degrade the 
throughput and medium utilization and also increase the medium access delay greatly 
in the presence of heterogeneous traffic. 

The rest of the paper is organized as follows: Section 2 starts with the introduction 
to MAC mechanism and then reviews the problem of hidden stations. Section 3 
describes the simulation scenarios and the setting of simulation parameters. Section 4 
presents how to generate heterogeneous traffic. Section 5 presents and analyses the 
performance results obtained from our simulation experiments. Finally, Section 6 
concludes this study. 

2   Wireless Local Area Networks (WLANs) 

Recently IEEE 802.11 WLANs have gained a prevailing position in the business 
enterprises. The IEEE 802.11 Medium Access Control (MAC) layer specifies the 
functions and protocols required for control and access the wireless medium.  

2.1   Medium Access Control (MAC)  

The IEEE 802.11 MAC protocol offers two different forms to support shared access 
to wireless channels: a DCF and an optional PCF [10]. The former, dominating MAC 
mechanism implemented in the IEEE 802.11-compliant products, is a contention-
based MAC protocol where each station decides the time to start transmission using 
the CSMA/CA mechanism [10, 21]. Moreover, an additional random binary 
exponential time called back-off time is adopted to reduce the probability of 
collisions. The back-off time is chosen randomly from the interval [0, cw ], where cw  
represents the contention window [21]. The stations start down-counting its back-off 
counter by one as long as the medium has been detected idle for at least the minimum 
duration called DCF Inter-Frame Space (DIFS). If the medium gets busy due to other 
transmissions, the back-off counter pauses down-counting and resumes when the 
medium has been sensed idle for DIFS again [10, 21]. Transmission may proceed 
when back-off counter has reached zero. Upon detection of a collision, i.e., when the 
back-off counter of two or more stations reaches zero at the same time, the contention 
window is doubled [12]. When the destination station receives frame successfully, it 
sends an acknowledgment (ACK) frame back to the source station after a Short Inter-
Frame Space (SIFS) duration. Additionally, to alleviate the hidden station problem, 
DCF uses optional Request-to-Send/Clear-to-Send (RTS/CTS) frames before packet 
transmission [21]. A station initiates the transmission process by sending an RTS 
frame. The destination station replies to the RTS frame with a CTS frame to confirm 
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the reservation of the shared medium. After that, the source station transmits a data 
packet to the destination station.  

With the ever increasing popularity of WLANs, the support of QoS has become a 
critical issue on the success of IEEE 802.11 MAC protocols for future wireless 
communication. It is important to develop new medium access schemes that can 
support real-time multimedia applications with differentiated QoS requirements over 
WLANs. To overcome the drawback of the traditional DCF, EDCA has been 
proposed to provide differentiated and distributed channel accesses for four different 
Access Categories (ACs). Each AC has its own transmission queue and is labeled 
according to its application, i.e. AC_VO (voice), AC_VI (video), AC_BE (best- 
effort), and AC_BK (background). As illustrated in Figure 1, individual AC contends 
to access the medium and is differentiated by different Inter-Frame Space (AIFS) 
values, Transmission Opportunity (TXOP) limits and minimal/maximal contention 
windows ( mincw , maxcw ) [13, 14]. Choosing a small contention window causes the 

station to gain priority over others with the larger contention window. After any 
unsuccessful transmission, the contention window increases by multiplying the old 
contention window with the persistence factor. The persistence factor determines the 
degree of increase in the contention window in the event of collision. Higher priority 
AC has smaller persistence factor.    

 

Fig. 1. RTS/CTS of IEEE 802.11e EDCA 

2.2   Hidden Stations 

Due to the constraints of wireless transmission power, hidden stations often appear in 
WLANs where a receiver node lies within the transmission range of two other nodes 
which are mutually hidden, i.e., which cannot sense the transmission of each other. As 
illustrated in Figure 2, two wireless stations can sense the Access Point (AP) but 
cannot sense each other. Unfortunately, the phenomenon of hidden stations can 
degrade network performance substantially. The major effect of hidden stations is to 
cause collision at any stage of the transmission-receive process. As a result, both 
stations need to retransmit their data packets and start an extra back-off time which 
leads to the increase of delay. The retransmission overhead also affects the channel 
utilization and throughput of WLANs. To overcome this problem, IEEE 802.11 MAC  
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adopts RTS/CTS acknowledgment and hand-shaking mechanism. All stations 
receiving either RTS and/or CTS frames will defer down-counting its back-off 
counter for the specific duration. Therefore, collision may be avoided even though 
some stations are hidden from others. It is worth noting that the gain of network 
performance using RTS/CTS introduces the additional overhead of exchanging 
RTS/CTS frames. Thus, it is necessary and critical to investigate the performance of 
this scheme in the presence of hidden stations. 

 

Fig. 2. Hidden station problem 

3   Simulation Scenarios  

The simulation scenarios studied by this research have been designed to investigate 
the performance of EDCA in hot spot areas of WLANs using well-known network 
simulator NS-2 and its wireless extensions developed by TKN [20]. 

 

Fig. 3. AP with single set of mobile stations 

 

 

Fig. 4. AP with two sets of mobile stations 

In order to carry out a comprehensive performance study of EDCA, two different 
scenarios are considered. As shown in Figure 3, the first scenario is composed of up 
to 20 mobile stations and an access point serving as a traffic sink. All stations are 
located within an Independent Basic Service Set (IBSS) such that every station is able 
to detect a transmission from others. Figure 4 illustrates the second scenario where 
there are two sets of mobile stations with up to 10 stations in each set. All stations of 
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the same set are able to detect transmission from other set members but cannot detect 
the transmission from the stations belonging to the other set, i.e., the stations in one 
set are hidden from all stations belonging to the other set. Each wireless station in 
both scenarios operates at a data rate of 24Mbps [21]. Table 1 lists the setting of 
physical (PHY) layer parameters which have been widely used by other performance 
studies on WLANs [13, 14, 20]. 

Table 1. PHY parameters for simulation scenarios 

SlotTime 9 s  

CCATime 3 s  

RxTxTurnaroundTime 2 s  

SIFSTime 16 s  

PreambleLength 96 bits 

PLCPHeaderLength 40 bits 

PLCPDataRate 6 Mbps 

4   Heterogeneous Traffic Models  

Appropriate models that can accurately capture the properties of real-world network 
traffic are required for effective and reliable performance evaluation of the EDCA 
protocol. Due to the different types of WLAN services, heterogeneous traffic models 
should be used to capture the characteristics of various wireless applications. In our 
study, the lowest priority traffic (AC_BK) is modeled by the conventional Poisson 
arrival process with which the inter-arrival times of packets are exponentially 
distributed. Each station generates background traffic by sending packets with rate of 
160 Kbit/s and size of 200 bytes; these parameters have been widely used in the 
previous network performance studies [13, 14].  

However, the Poisson model cannot capture the bursty nature of network traffic. The 
highest priority traffic (AC_VO) generated by voice sources is captured by the well-
known bursty ON/OFF model where the talkspurt is modeled by ON stage and silence 
period by OFF stage. In general, the talkspurt and silence durations of voice ON/OFF 
process are assumed to follow an exponential distribution with mean length of 1s and 
1.35s [6], respectively. During the talkspurts period each source generates packets with 
size of 80 bytes, corresponding to a constant sending rate of 64 kbit/s. As there might be 
multiple voice sources, we assume there are five voice sources at each station. 

Extensive measurement studies on high-speed video traffic have reached to the 
conclusions that such traffic possesses the self-similar property [3, 5]. Self-similar 
traffic is characterized by the phenomenon that the pattern of packet arrivals appears 
similar to itself when viewed over a wide range of time scales. Traffic generated by 
streaming applications such as real-time video (AC_VI) and best-effort video 
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(AC_BE) are modelled by self-similar processes in this study. According to the 
measurement results of Star Wars video trace [3, 5], each station generates real-time 
and best-effort video traffic with rate of 360 Kbit/s and Hurst parameter of 0.7. Hurst 
parameter is used to characterize the degree of traffic self-similarity. Such traffic can 
be generated by the superposition of many ON/OFF sources in which the ON and 
OFF periods follow Pareto distributions (i.e., with high variability or infinite 
variance) [15]. The lengths of the ON and OFF periods are determined by 

)1( 1 −− axK  where x  is a uniformally distributed random number between 0 and 1, 
Ha 23−= , )1( −= amK  and m  is the mean length of ON and OFF period, 

respectively [11]. In the simulation experiments, we used the superposition of five 
Pareto-distributed ON/OFF flows with the mean ON period of 10ms and OFF period 
of 100ms to generate video traffic. 

To support differentiated QoS, EDCA protocol parameters for the four different 
traffic ACs including mincw , maxcw , AIFS  are selected following the IEEE 802.11e 
standard and are listed in Table 2. 

Table 2. EDCA protocol parameters for different traffic categories 

       Parameters 
 

      AC 
mincw  maxcw  AIFS 

AC_VO 314/)1( min =−+cw  712/)1( min =−+cw  2 

AC_VI 712/)1( min =−+cw  15min =cw  2 

AC_BE 15min =cw  1023max =cw  3 

AC_BK 15min =cw  1023max =cw  7 

5   Analysis and Evaluation of Various Performance Metrics 

In this section we report the impact of hidden stations on the prioritisation capability 
and performance of IEEE 802.11e EDCA MAC protocol in terms of medium 
utilization, access delay and throughput in the presence of heterogeneous traffic.  

5.1   Throughput   

The average throughput is calculated as the mean volume of data that is actually 
delivered to the destination within each time unit. As an effort to show the effects of 
the hidden station on the performance of EDCA, Figure 5 compares the throughput of 
four traffic categories versus the number of active stations under two different 
scenarios: (1) single set scenario without hidden stations (illustrated in Figure 3) and 
(2) double set scenario with hidden stations (Figure 4). We can see from Figure 5 that 
the throughput in both scenarios increases as the traffic loads rise until there are 6 
active stations. Beyond this point, the background traffic begins to decrease 
significantly in both scenarios due to its lowest priority. It is clear that the degradation 
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of throughput with hidden stations is faster. Moreover, when there are 8 active stations, 
the throughput of background traffic in the single set scenario is 0.64 Mbit/s and in the 
hidden stations scenario is 0.28 Mbit/s. This difference is due to the increasing 
probability of collisions caused by the hidden stations. Furthermore, the best-effort 
video traffic cannot carry on its load where the number of active stations is more than 6 
in the hidden stations scenario and more than 8 in the single set scenario. Figure 5 also 
shows that the throughput of the real-time video streams starts to decrease when there 
are more than 8 stations in both scenarios. However, the highest priority voice traffic at 
the single set scenario keeps increasing until there are 12 active stations while at the 
hidden stations scenario the throughput starts to decrease immediately after there are 
10 active stations. The figure shows clearly the deteriorated effect of hidden stations on 
the throughput of voice and real-time video traffic. For example, when there are 20 
active stations the throughput of voice traffic is around 1.10 Mbit/s (for single set 
scenario) and 0.94 Mbit/s (for hidden stations scenario) and the throughput of real-time 
video traffic is around 0.86 Mbit/s and 0.53 Mbit/s, respectively.  

Fig. 5. Throughput of four traffic categories under two different scenarios 

5.2   Access Delay  

We measure the access delay to find out how well the EDCA accommodates real-time 
traffic, especially the voice and real-time video traffic. The access delay is defined as 
the time elapsed between the packet arrival from the higher layer to the MAC layer 
and the successful transmission on wireless medium. Figure 6 presents a comparison 
of the mean access delay with and without the existence of hidden stations, 
respictively. The figure reveals that both background traffic and best-effort video 
traffic suffer from the high access delay in both scenarios because of their lower 
priorities. When the number of active stations is beyond 6, background traffic and 
best-effort video traffic have the rare opportunity to capture the wireless medium. As 
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a result, the delay is going to become infinite when the number of active stations is 
more than 8. However, a close-up check can find that the mean access delay of the 
background and best-effort video traffic at the single set scenario is smaller than that 
at the hidden stations scenario. More specifically, when there are 8 active stations, the 
mean access delay for the best-effort video traffic is around 0.09 second (for the 
single set scenario) and 0.31 second (for the hidden stations scenario), respectively. In 
addition, the mean access delay of the real-time video and voice streams start to 
increase significantly when the network supports more than 8 active stations in both 
scenarios. The mean access delay of the real-time video traffic when there are 8 active 
stations is around 0.02 second (for the single set scenario) and 0.04 second (for the 
hidden stations scenario). Additionally, the mean delay of real-time video traffic 
reaches to 0.23 second (for the single set scenario) and 0.46 second (for the hidden 
stations scenario), respectively, and keeps increasing in a dramatic way when the 
number of active stations is 10 in both scenarios. Furthermore, the mean access delay 
of the real-time video traffic at the single set scenario is always less than that at the 
hidden stations scenario for all cases. It is also interesting to see that the delay 
experienced by the voice and real-time video traffic is much different because the 
latter has to wait for longer than the former until taking the opportunity to utilize the 
wireless medium. Moreover, Figure 6 shows that voice traffic has nearly the same 
mean access delay in both the single set scenario and hidden stations scenario.  
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Fig. 6. Mean access delay of four traffic categories under two different scenarios 

5.3   Medium Utilization  

Medium utilization is referred to as the percentage of time that is used for successful 
transmission. Figure 7 depicts the medium utilization of four traffic categories under 
two different scenarios (with and without hidden stations, respectively). We can 
 

observe that all types of traffic categories have higher medium utilization at the single 
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set scenario than the hidden stations scenario. Furthermore it can be seen that the 
medium utilization of background and best-effort video traffic keep increasing as the 
load increases until there are 6 active stations in single set scenario and 8 stations in 
the hidden station scenario. After these points they cannot obtain increasing medium 
utilization because of giving the chance for the higher traffic categories to occupy the 
medium. Additionally, Figure 7 shows that the hidden stations have a deteriorated 
impact on the background and best-effort video traffic. It is also clear that real-time 
video traffic obtains higher medium utilization than background and best-effort video 
traffic and its medium utilization keeps growing up until there are 8 active stations. 
Beyond this point it starts to lose some medium utilization in both scenarios. Figure 7 
also reveals that the voice traffic obtains the highest medium utilization in the both 
scenarios due to its highest priority. In addition, the figure shows clearly the effect of 
the hidden stations on the voice and real-time video traffic. Specifically, when there 
are 18 active stations the medium utilization for real-time video is around 6.5% (for 
the single set scenario) and 3.9% (for the hidden stations scenario). It is worth noting 
that the maximum total medium utilization of the WLAN is very low (around 36% 
(for the single set scenario) and 27% (for the hidden stations scenario)). This is 
because much capacity is wasted during the process of packet collisions and back-off. 
The increasing probability of packet collisions under heavy traffic and hidden stations 
can significantly degrade the medium utilization of the system.       

Fig. 7. Medium utilization of four traffic categories under two different scenarios 

6   Conclusions  

Wireless Local Area Networks (WLANs) offer flexible data communication systems 
to provide location independent network access between computation and 
communication devices using waves rather than a cable infrastructure. Many MAC 
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protocols have been proposed to mange and control the shared wireless medium. 
Among such protocols, the IEEE 802.11e EDCA mechanism aims to enhance the 
traditional 802.11 DCF protocols with differentiated QoS provisioning. Performance 
studies on the EDCA protocol have been widely conducted and reported in the 
literature. Different from most existing work, this study has used the well-known 
network simulator NS-2 to evaluate the performance of IEEE 802.11e MAC protocol 
in WLANs with hidden stations and in the presence of heterogeneous non-bursty 
Poisson, bursty ON/OFF, and self-similar traffic generated by wireless multimedia 
applications traffic. Performance results have shown that this protocol can support 
differentiated throughput, access delay and medium utilization among various access 
categories with or without the existence of hidden stations. However, the results have 
also demonstrated that IEEE 802.11e EDCA performs better without hidden stations. 
On the other hand, the simulation experiments have showed that IEEE 802.11e EDCA 
suffers from the low medium utilization due to the overhead generated by 
transmission collisions and back-off processes.  
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Abstract. Transition to IPv6 has been recognized as the trend of future Internet. 
Since a huge amount of resources have been invested on current IPv4-based 
Internet, how to smoothly transit the Internet from IPv4 to IPv6 is a very 
important research topic. This paper surveys the state of the art in IPv6 
transition, summarizes and compares different IPv6 transition mechanisms and 
scenarios, discusses the security issues in IPv6 transition, and presents the 
possible directions for future research.  

1   Introduction 

The Internet based on IPv4 has made great success in the past 20 years. But mainly 
due to the scarcity of unallocated IPv4 address, the IPv4 protocol cannot satisfy the 
requirements of ever expanding Internet. It is reported that the unallocated IPv4 
addresses will be used up within 5~6 years [1]. The deployment of NAT can alleviate 
this problem to some extend, but it breaks the end-to-end characteristic of the Internet, 
and it can not ultimately resolve such problem as lack of IPv4 addresses. IPv6 
protocol suite has been presented in IETF (Internet Engineer Task Force) which uses 
128-bit address instead of 32-bit IPv4 address. Transition to IPv6 has been recognized 
as the most promising direction. This paper presents a comprehensive explanation 
about the status of current research on IPv6 transition, and indicates the prospect of 
the future research.  

The paper is organized as follows: Section 2 studies on transition mechanisms; 
Section 3 analyzes typical transition scenario; in Section 4 the security problems in 
IPv6 transitions are discussed; Section 5 discusses directions of future research; and 
Section 6 summarizes this paper.  

2   Transition Mechanisms 

IPv6 transition is a process of gradually replacing IPv4 with IPv6 in the Internet. 
During the IPv6 transition, network infrastructures and hosts should be upgraded to 
support IPv6, and network applications should also be migrated to be running in IPv6. 

The process of transition to IPv6 will last for a long period. On one hand, the IPv4-
based Internet is so diffused that it’s impossible to change the whole Internet over one 
night; On the other hand, the deployment of NAT technology mitigates the urgent 
need of global IPv4 addresses, and thus delays the deployment of IPv6. 
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The focus in the study of IPv6 transition is changing over the time, from providing 
network connectivity in which many basic transition mechanisms (NAT-PT, 6to4  
etc.) to providing transition schemes for different scenarios during the long transition 
period. At the same time, the security issues during IPv6 transition also become a hot 
topic for research. 

The research on IPv6 transition can be classified as follows: 

(1) Research on basic IPv6 transition mechanisms. A number of different transition 
mechanisms (e.g., NAT-PT, 6to4, Tunnel Broker, etc.) have been proposed for varied 
transition requirements. These mechanisms provide tools for the whole transition 
process. The ngtrans WG in IETF has made great efforts on this topic. 

(2) Research on analyzing the typical transition scenarios and how to provide 
relevant transition schemes. As there are a variety of different scenarios during IPv6 
transition, the typical scenarios need to be emphasized about IPv6 deployment and 
applying suitable transition mechanisms. IETF v6ops WG and softwire WG is now 
working on this topic. 

(3) Research on security issues during IPv6 transition. Security issues during IPv6 
transition are always drawing attention. Some security problems are mechanism 
specific, and some are coming from the coexistence of IPv4/IPv6 [2]. 

An IPv6 transition mechanism is a method to connect the hosts/networks using the 
same or different IP protocols under some specific IPv6 transition environment. It’s 
the basis of IPv6 transition. The commonly used transition mechanisms can be 
divided into three categories: Dual stack, Translation and Tunneling. 

With Dual stack method, both IPv4 and IPv6 protocol stacks are deployed on the 
same node to support both IPv4 and IPv6 protocol. 

With Translation method, information and message format are translated between 
different IP protocols. The pro is that two applications using different IP protocols can 
communicate with each other. The con is that it breaks the end-to-end characteristic 
of the Internet, furthermore, it is not scalable in supporting various network 
applications. There also raises the security problem with Translation method: end-to-
end IPSEC encryption can not be exploited with most of Translation methods, 
consequently exposing to DoS attack on translation gateways. In this way it is not 
recommended to use translation method in IPv6 transition. NAT-PT, a very popular 
translation-based technology, has been asked for reconsideration and put into the 
experimental standard [3]. 

In IPv6 transition, Tunneling is commonly used for IPv6 hosts/networks to 
communicate with each other over IPv4 network (i.e., IPv6 over IPv4), and for IPv4 
hosts/networks to communicate over IPv6 network (i.e. IPv4 over IPv6). With 
tunneling methods, the tunnels provide virtual links over the physical network, thus 
positively having no impact to the upper layer, while leaving the question of dealing 
with the case that two nodes are with different IP protocols unsolved. 

When an IPv6 hosts wants to communicate with countless IPv4 hosts, translation 
mechanisms should be used. 

The dominant translation mechanisms include NAT-PT, BIS, TRT, Socks64 and 
BIA, which included in three categories: Network Layer Translation, Transport Layer 
Translation, and Application Layer Translation. 
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The idea of BIA (Bump-In-the-API) is similar to BIS. In BIA, the difference is that 
the translation is made between IPv4 APIs and IPv6 APIs. An API translator is 
inserted between Socket API and TCP/IP modules on the dual stack hosts. The API 
translator includes three parts: Name Resolver, Address Mapper and Function 
Mapper. The first two parts are similar to those in BIS. The Function Mapper is in 
charge of the translation on Socket APIs between IPv4 and IPv6. Unlike other 
translation mechanisms, BIA achieves the translation without IP header translation. 
Thus, it will not break the end-to-end security schemes like IPSec. 

The commonly used tunneling mechanisms include IPv4/IPv6 configured tunnel, 
6to4, ISATAP, Silkroad/Teredo, Tunnel Broker/TSP, DSTM, etc. They can be 
divided into four categories: IPv6 over IPv4 Tunnel, IPv4 over IPv6 Tunnel, Tunnel 
traversing NATs and Other Tunnels. 

There are still some other scenarios in which the above tunnel mechanisms can not 
support. Some special tunnel mechanisms are utilized to encapsulate IPv6 packets in 
some other low layer protocols. These mechanisms include [4]: L2TP, PPTP and 
PPPoE tunnels at layer 2; PPP-IPv4, IPSec, IPv4-IPv4 tunnels at layer3; TLS/SSL, 
HTTP and SSH at layer 4; and IPv4 MPLS tunnels, such as 6PE [5]. 

3   Transition Scenarios 

3.1   Typical Transition Scenarios 

As there are various scenarios during IPv6 transition, the typical scenarios should be 
analyzed for more consideration of IPv6 deployment. Four scenarios have been 
analyzed within IETF v6ops WG: ISP Networks, Enterprise Networks, Unmanaged 
Networks and 3GPP Networks. 

ISP Network is a network controlled by some Internet Service Provider. It’s 
composed by two parts: Backbone and Customer Connections. The ISPs need to 
support IPv4 until the end of IPv6 transition, so they generally use dual stack 
technology to support IPv6. The troubles in IPv6 transition for ISP Networks mainly 
come from the fact that Backbone and Customer Connections may be not updated at 
the same time. One possible requirement is how to connect isolated IPv6 Customer 
Connections while the Backbone can still only support IPv4. Another possible 
requirement is how to connect the isolated IPv6 parts of Backbone during the upgrade 
process of Backbone itself. 

Enterprise Network is a network that has multiple internal links, and has one or 
more router connections to one or more Providers. Normally an enterprise network is 
managed by a network operations entity. How an enterprise network make IP 
transition absolutely depends on the requirement of enterprise itself. Possible 
strategies are: keep existing IPv4 infrastructures unchanged, or widely deploy dual 
stack equipments, or replace all IPv4 infrastructures with IPv6. One possible problem 
is how to connect isolated IPv6 hosts and networks while the infrastructures keep 
using IPv4. Another possible problem is how to provide IPv4 connectivity between 
internal dual stack hosts while the infrastructure is updated to IPv6. 

Unmanaged Network is composed of a single subnet, connected to the Internet 
through a single Internet Service Provider (ISP) connection via a gateway, which may 
or may not perform NAT and firewall functions. A characteristic of Unmanaged 
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Networks is that the gateway is typically not "managed", like the simple Home/Office 
Networks. The internal hosts generally need not only upgrade to support IPv6 but also 
keep using IPv4, so Unmanaged Networks would not directly transit to pure IPv6. 
The transition scenarios are closely related to the IPv6 support of the gateway or the 
ISP. One major requirement is how to get an IPv6 external connectivity for the 
gateway through the IPv4 ISP while the local network is upgraded to support IPv6. 
Another requirement is how to support a dual stack host to communicate with the 
external IPv6 network while the local gateway is still IPv4 only. 

The IPv6 transition in 3GPP (the 3rd Generation Partnership Project) packet data 
networks can be divided into two parts: transition for GPRS (General Packet Radio 
Service) network and transition for IMS (IP Multimedia Subsystem). The major 
requirement is how to connect node/UE (User Equipment) with the same or different 
IP protocols. As it is decided that IPv6 is the protocol used in IMS, the requirement of 
IMS transition is how to connect isolated IPv6 networks over IPv4 network. 

More efforts should be put on the analysis of possible scenarios. Besides, the 
current research on transition scenarios is mostly focused on the network 
connectivity. There should be more attention paid to the support of multicast, anycast, 
multihoming and mobility in the IPv6 transition.  

3.2   Transition Guidelines 

The purpose of discussion about different transition scenarios is to design or choose 
relevant transition schemes [6]. The feasible transition mechanisms should meet the 
following guidelines:  

(1) Scalability. Perhaps the most important consideration is how a given 
mechanism will scale. 

(2) Security. The mechanism should not introduce new security issues, and should 
not impact the adoption and deployment of IPv6. 

(3) Performance. The mechanism should not greatly decrease the performance of 
existing equipments. 

(4) Functionality. In certain transition mechanisms, some of IPv6’s “new features” 
cannot be exploited, and whether to use them need to be decided by the specific of the 
scenarios 

(5) Requirement. The worked mechanisms should be chosen by the requirements of 
configure method, IP addresses, applications and etc. 

(6) Ease of Use. Transition tool configuration should be hidden from the 
application’s end user; if IPv6 is successfully deployed, end users are unlikely to 
notice the change. 

(7) Ease of Management. To introduce a transition mechanism should not bring too 
much burden of management, and the network during IPv6 transition should be 
manageable. 

3.3   Comparison 

Since translation-based methods are commonly not recommended to be used during 
IPv6 transition, the mostly used transition mechanisms are tunneling-based. The 
comparison between different tunneling methods is shown in Table 1. 
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Table 1. Comparison between tunneling methods 

 Name Applicability Drawbacks 

IPv6 
configured 

tunnel 

IPv6 hosts/islands to communicate with 
each other or with the native IPv6 
network through IPv4 networks. 

1.Manual configure 

Tunnel 
Broker 

IPv6 hosts/islands to communicate with 
each other or with the native IPv6 
network through IPv4 networks. 

1.Single point of 
failure 
2.Communication 
bottleneck 

6to4 

Isolated IPv6 sites (domains/hosts) 
attached to an IPv4 network to 
communicate with each other or with 
the native IPv6 network. 

1.Special 6to4 prefix 
2.Difficult to control 
and management 
3.Security threats 

IPv6 
over 
IPv4 

ISATAP 
IPv6 hosts inside the IPv4 site to 
communicate with each other or with 
the native IPv6 network. 

1.Difficult to control 
and management 
2.Security threats 

IPv4 
configured 

tunnel 

IPv4 hosts/networks to connect with 
each other through IPv6 networks 

1.Manual configure 
IPv4 
over 
IPv6 

DSTM 

Hosts in native IPv6 network which 
need to maintain connectivity with 
hosts/ applications that can only be 
reached through IPv4 

1.Single point of 
failure 
2.Communication 
bottle- neck 

Teredo 
Hosts located behind one or more IPv4 
NATs to obtain IPv6 connectivity by 
tunneling packets over UDP 

1.No support for 
Symmetric NAT 

Silkroad 
Hosts located behind one or more IPv4 
NATs to obtain IPv6 connectivity by 
tunneling packets over UDP 

1.Single point of 
failure 
2.Communication 
bottleneck 

IPv4 
over 
UDP 
over 
IPv6 

TSP 

Establish tunnels of various inner 
protocols (e.g., IPv6, IPv4), inside 
various outer protocols packets (e.g., 
IPv4, IPv6, UDP) 

1.Single point of 
failure 
2.Communication 
bottle- neck 

 
From the discussion above, the feasible mechanisms of different transition 

scenarios can be classified as follows: 

(1) Connect isolated large IPv6 networks over IPv4 network, such as the isolated 
Customer Connections upgraded before Backbone in ISP Networks. The commonly 
used mechanism is IPv6 configured tunnel. 

(2) Connect IPv6/dual stack Islands in IPv4 network to native IPv6 network, such 
as the Enterprise and Unmanaged Networks with an IPv4-only ISP. In this case IPv6 
configured tunnel, Tunnel Broker and 6to4 can be used. 

(3) Connect dual stack hosts in IPv4 network to the IPv6 native network, such as 
dual stack hosts in the Unmanaged Networks with an IPv4-only gateway. The suitable 
mechanisms are IPv6 configured tunnel, Tunnel Broker and ISATAP. Teredo, 
Silkroad and TSP can be used if the host is behind one or more IPv4 NATs. 
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(4) Connect dual stack hosts in pure IPv6 network to IPv4 native network, such as 
dual stack hosts in Enterprise Networks with pure IPv6 infrastructures. The feasible 
mechanisms are IPv4 configured tunnel and DSTM. 

According to the discussion above, there is no single transition mechanism feasible 
for all kinds of scenarios. Also there may be several feasible mechanisms for the same 
scenario. The topic to find available methods providing IPv6 Access Service and 
ascertain the place of tunnel end point should be paid more attention to. There already 
has some research on finding the tunnel end point with the help of anycast, DNS, 
DHCP, PPP and SLP, such as TEP technology.  

On another hand, the suitable mechanism for the specific scenario should be 
decided according to its security and performance characteristics and policies. It is 
proposed in auto-transition [4] to provide a method to automatically choose the 
suitable transition mechanism according to the access performance. 

Furthermore, the different initialization protocols of different transition 
mechanisms make the chosen and setup of suitable mechanisms difficult and 
complex. The IETF softwire WG is just set up to define a standard way to discover 
and setup the soft-wires for connecting the IPv6 networks across IPv4-only network 
and vice versa. This topic has been divided into two problems: Hub & Spoke and 
Mesh. 

(1) Hub & Spoke. In the situation of Hub & Spoke, the only requirement is to get 
the external IPv4/IPv6 connection across the IPv6/IPv4-only networks. It’s suggested 
to use L2TPv2 to propagate the softwire information and setup the soft-wires. 

(2) Mesh. In the situation of Mesh, not only the connection requirement, but also 
the routing problem should be considered. It’s suggested to use MP-BGP to resolve 
these problems. However, research on this topic is not enough, more efforts should be 
made on the interoperation of IPv4 and IPv6. 

4   Security Issues in IPv6 Transition 

4.1   Translation Based Methods 

In translation based methods, the security issues are described as follows: 

(1) Impact on the security schemes in IPv6.  
Firstly, the translation based methods generally could not support the end-to-end 

security schemes that depend on the source and destination addresses (e.g., IPSec), 
because most of them must modify the IP addresses of the packet in the translation 
except some upper layer mechanisms (e.g., BIA). 

Secondly, the encryption schemes of DNS SEC are easily broken by DNS-ALG in 
the translation of DNS request and reply messages. Therefore the deployment of DNS 
SEC is also interrupted by the translation based methods.  

(2) Potential DoS attacks.  
Firstly, since a lot of state information is required to be maintained, it is possible to 

launch DoS attacks on the translation gateway by sending plenty of small data 
fragments without any end signal. 
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Secondly, the attacker can send the translation gateway some packets spoofed the 
source address as a multicast address to form a reflect-DoS attack. 

Thirdly, the characteristic of dynamic binding of translator can also be used to 
cause the DoS attacks. The buffer and CPU resources of translator may be used out by 
great deal of messages spoofed as different source addresses in a flash [3]. 

Generally, the security issues of translation can be mitigated by checking the 
validness of the addresses, adding authentication schemes and binding statically, but 
these schemes will greatly consume the system resources, and increase the complexity 
of these mechanisms. Moreover, the impact on security schemes can not be well 
settled nowadays. 

4.2   Tunneling Based Methods 

 

Fig. 1. Security issues of tunneling mechanisms 

In tunneling based methods, when a tunnel end point receives an encapsulated data 
packet, it decapsulates the packet and sends it to the other local forwarding scheme. 
The security threats in tunneling mechanisms, take IPv6 over IPv4 tunnel for 
example, are mostly caused by the spoofed encapsulated packet sent by the attackers 
in IPv4 networks. As shown in Figure 1, the target of attacks can be either a normal 
IPv6 node or the tunnel end point. These security issues include: 

(1) Hard to trace back. The hackers in IPv4 networks can make an attack on the 
IPv6 nodes through the tunnel end point by sending the spoofed encapsulated packets. 
It’s difficult to trace back in this situation. 

(2) Potential reflect-DoS attack. The attackers in IPv4 networks can make a reflect-
DoS attack to a normal IPv6 node through the tunnel end point by sending the 
encapsulated packets with the spoofed IPv6 source address as the specific IPv6 node. 

(3) Cheat by IPv6 ND message. Since IPv4 network is treated as the link layer in 
tunneling technology, the attackers in IPv4 networks can cheat and DoS attack the 
tunnel end point by sending encapsulated IPv6 ND messages with a spoofed IPv6 link 
local address [2]. 

Furthermore, the automatic tunneling mechanisms, such as 6to4 and Teredo, get 
the information of remote tunnel end point from the certain IPv6 packets. Therefore 
they would meet some additional security issues: 
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(1) Attack with IPv4 broadcast address. Take 6to4 [7] mechanism for example, some 
packets, with destination addresses spoofed and mapped to the broadcast addresses of 
the 6to4 or relay routers, are sent to the target routers by the attackers in the IPv6 
network. In this case, 6to4 or relay routers may be attacked by the broadcast DoS.  

(2) Theft of Service. The 6to4 relay administrators would often want to use some 
policy to limit the use of the relay to specific 6to4 sites and/or specific IPv6 sites. 
However, some users may be able to use the service regardless of these controls, by 
configuring the address of the relay using its IPv4 address instead of 192.88.99.1, or 
using the routing header to route IPv6 packets to reach specific 6to4 relays. (Other 
routing tricks, such as using static routes, may also be used.). In this way, the 6to4 
relay services are thieved and the policies are traversed. 

The security issues in tunneling mechanisms can generally be limited by checking 
the validness of the source/destination addresses at each tunnel end point. But it’s 
hard to deal with the attacks with legal IP addresses now. Since the tunnel end points 
of configured tunnels are fixed, IPSec can be used to avoid the spoofed attacks [8]. 
However, there is no effective way to prevent the automatic tunneling mechanisms 
from DoS/reflect-DoS attacks by the attackers in IPv4 networks. 

4.3   IPv4/IPv6 Coexistence 

 

Fig. 2. Traversing IPv4 firewall 

The security problems during IPv4/IPv6 coexistence period are mostly related to the 
break of original IPv4 security schemes [2]. 

As shown in Figure 2, the attacker can easily traverse the IPv4 filter by an IPv6-in-
IPv4 tunnel. In current Internet based on IPv4, firewalls are usually used to protect the 
information of internal network or limit the internal users. However, during the 
coexistence period of IPv4 and IPv6, the internal users can traverse the IPv4 firewall 
to access the external network with no limit by an IPv6-in-IPv4 tunnel. Fortunately, 
this problem can be resolved by filtering out the packet with protocol 41. 

Nevertheless, the IPv6-in-UDP-in-IPv4 tunneling mechanisms (like Teredo, 
Silkroad, etc.) can also be used to traverse the IPv4 filters. Since the UDP packet, 
especially with some common used ports, generally can’t be discarded, there is no 
effective way to resolve the UDP traversing problem now. The most probably method 
is to set the tunnel end point inside local network, and add IPv4 and IPv6 filters at 
each side of this point. Therefore, with the deployment of IPv6, the IPv6 firewalls 
should be deployed in time. The technology of IPv6 firewall should be considered as 
a probably direction of future research. 
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5   Prospect of IPv6 Transition 

5.1   Topology Prospect 

 

Fig. 3. Three steps of IPv6 transition 

The existing transition mechanisms and scenarios are mostly focus on different 
network topology. The potential generic rules from the research and discussions are: 

(1) Make the existing IPv4 network equipments to IPv4/IPv6 dual stack, and keep 
IPv4 support until the end of IPv6 transition; 

(2) Use tunneling technology to connect IPv6 networks isolated by IPv4 network; 
(3) Prevent different nodes in the network from talking with each other with 

different IP protocols, if necessary, upgrade the applications or use the proxy at 
application layer. It’s not recommended to use translation mechanisms. 

With the deployment of IPv6, there will be two separated networks: IPv4 Native 
Network and IPv6 Native Network. The IPv4 Native Network is the legacy of the 
current Internet where the routers can only forward IPv4 packets, while the hosts may 
be dual stack by updating the software; The IPv6 Native Network is the combination 
of new IPv6 networks where the routers can only forward IPv6 packets while the 
hosts are using dual stack, or only supporting IPv6, and even if the routers are dual 
stack, there is no global IPv4 address allocated for the network. There are also some 
dual stack networks. Both routers and hosts have dual stack support, and both global 
IPv6 and IPv4 address are allocated for the network. Such network can be viewed as 
the overlapped part of IPv4 Native Network and IPv6 Native Network. 

The three-step IPv6 transition with the topology above is analyzed as follows: 

(1) Step 1: IPv4 domination, as shown in Figure 3-(1). At the beginning of IPv6 
transition, most of existing networks are based on IPv4, and the most important 
research topic is how to provide IPv6 access service for isolated IPv6 islands. The 
commonly used mechanism is IPv6 over IPv4 tunnel (like Tunnel Broker, 6to4, 
ISATAP, etc.). But the current research on basic transition mechanisms mostly 
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focuses on the connectivity in topology. How to provide scalable, secure and high 
performance IPv6 access service will be the direction of future research.  

(2) Step 2: IPv6 domination, as shown in Figure 3-(2). Along with the deployment 
of IPv6, IPv6 becomes the domination of Internet. At this time, the dual stack hosts in 
IPv6 Native Network may need to communicate with the hosts in IPv4 Native 
Network with the IPv4 applications. The IPv4 over IPv6 transition will be used and 
this area is still an open research topic.  

(3) Step 3: pure IPv6, as shown in Figure 3-(3). Finally, the ISPs gradually stop the 
support of IPv4, and the network infrastructures have been transited to IPv6 already. 
There are no global IPv4 networks. However, some legacy IPv4 applications could 
not be upgraded to support IPv6 because of the lack of source code, or some other 
reasons. How to make IPv4 legacy applications supported on pure IPv6 
infrastructures should also be considered in future. 

5.2   Protocol Stack Prospect 

 

Fig. 4. Univer6 Architecture 

In the coexistence of both IPv4 and IPv6 Native Networks, to promote the 
deployment of IPv6, some important requirements should be addressed: 

(1) Protect the legacy investment on IPv4 Native Network. 
The routers and switches that can only support IPv4 will not be taken place by 

IPv6-enabled network devices, due to high cost of new devices and the estimation of 
no extra income from IPv6 in the near future. End users should have the ability to 
access IPv6 even with no changes to the IPv4 routers and switches. 

(2) Provide a way for universal access. 
IPv4 and IPv6 are two different "language" that can not directly talk to each other. 

There has been a large amount of users in the IPv4 Native Network. With the using up 
of IPv4 address, it is expected that there will also be a large amount of users in the 
IPv6 Native Network. The users in IPv4 Native Network and in IPv6 Native Network 
should have the ability to access each other in an end-to-end way. 

(3) Provide support for legacy IPv4 applications. 
Even some IPv4 applications can be modified to support IPv6, some will never be 

modified to have IPv6 support. There should have support for such IPv4 applications 
to run over IPv6-only networks.  
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Here we describe architecture Univer6 to meet the requirements analyzed above. 
The Univer6 architecture is composed of three-layers. In the "Network Infrastructure" 
layer, there may be IPv4, IPv6 or dual stack. Over the Infrastructure Layer, a 
"Protocol Layer" takes a place as an overlay network. Because of the lack of IPv4 
addresses, IPv4 cannot provide global access ability. The Protocol Layer should use 
IPv6 to provide universal access for all the end users either in the IPv4 Native 
Network or in the IPv6 Native Network. Furthermore, the Protocol Layer should 
support both IPv4 application and IPv6 application in the Application Layer over the 
IPv6 protocol. There are two key topics on IPv6 transition under the Univer6 
Architecture: 

(1) How to support both IPv4 and IPv6 applications by IPv6 protocol. 
The most different problem with this topic is how to support the legacy IPv4 

applications by IPv6 protocol. This has already discussed in Section 6.1. Moreover, 
some legacy IPv4 applications may need to communicate with the node with IPv6-
only applications (i.e., an IPv4-only web browser wants to access the IPv6-only http 
server). In this situation, it’s recommended not to use a translation-based mechanism 
but a proxy at application layer. 

During the IPv6 transition period, dual applications working with both IPv4 and 
IPv6 are recommended. However, if IP dependencies are required, one of the better 
solutions would be to build a communication library that provides an IP version - 
independent API to applications and that hides all dependencies. It could be a possible 
direction for future research. 

(2) How to build overlay IPv6 network on top of different network infrastructures. 
This case is similar to how to provide IPv6 access service in different environment. 

The mechanisms and future research directions are discussed in Section 6.1. 

With the use of Univer6 Architecture, the end users can communicate with the 
people in the IPv6 Native Network and use the service in the IPv6 Native Network no 
matter which kind of network infrastructure is. The ISPs of IPv4 Native Network are 
not necessary to replace the IPv4 switches and routers in the near future. Their 
investments on the IPv4 devices are protected, while their customers can still access 
IPv6. The ISPs of IPv6 Native Network will increase as more and more people to 
access the IPv6 Native Network. Therefore, the Univer6 Architecture can satisfy the 
requirements during IPv6 transition, protect the legacy IPv4 equipments and 
investments, and accelerate the deployment of IPv6. 

6   Conclusion 

Due to the prevalence of current Internet, the transition from IPv4 to IPv6 couldn’t be 
accomplished in a short time. How to preserve heavy investments already made, 
smooth the transition process, and reduce the negative influence to the users and ISPs 
are the most important tasks of current research on Internet: 

(1) Scenario analysis. Typical scenarios analysis is still in progress. Some of them 
are now in draft mode, such as the Enterprise Network analysis. Other possible 
scenarios should also be analyzed. Some wireless consideration should also be 
introduced into the discussion. 
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(2) Support of multicast, anycast, multihoming and mobility. Both the research on 
basic transition mechanisms and analysis of typical transition scenarios normally 
focus on the network connectivity. For the long process of IPv6 transition, the 
transition mechanisms may not be used only for a while. More efforts should be made 
on the extension of methods to support multicast, anycast, multihoming and mobility. 

(3) Softwire discovery and setup. The different initialization protocols of different 
transition mechanisms make the chosen and setup of suitable mechanisms difficult 
and complex. A standard way to discover and setup the soft-wires for connecting the 
IPv6 networks across IPv4-only network and vice versa is needed for the 
interoperation of IPv4 and IPv6. 

(4) Security consideration. Both the transition mechanisms and the coexistence of 
IPv4 and IPv6 will introduce more security issues. These problems can not be settled 
well nowadays. Besides, the IPv6 firewall technology is also a good topic for future 
research. 

(5) Application aspects. Both the network infrastructures and the applications need 
to support IPv6. The IP version-dependent applications (IPv4-only, IPv4/IPv6 and 
IPv6-only) make the transition to IPv6 more complex. The IP version-independent 
application API would be a future research topic. However, how to support the IPv4 
legacy applications in IPv6-only networks is still a problem. 
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Abstract. It is known that wireless ad hoc networks employing om-
nidirectional communications suffer from poor network throughput due
to inefficient spatial reuse. Although the use of directional communica-
tions is expected to provide significant improvements, the lack of efficient
mechanisms to deal with deafness and hidden terminal problems makes it
difficult to fully explore its benefits. The main contribution of this work
is to propose a Medium Access Control (MAC) scheme which aims to
lessen the effects of deafness and hidden terminal problems in directional
communications without precluding spatial reuse. Unlike other propos-
als that focus on exploring the characteristics of the physical layer, the
proposed MAC protocol relies on simple mechanisms that can be easily
coupled with a directional antenna without requiring major modifica-
tions to the current MAC standard.

1 Introduction

The nodes in an ad hoc network are usually assumed to share a common chan-
nel and to operate with omnidirectional antennas. Since nodes sufficiently apart
from each other can communicate simultaneously, one could expect the through-
put to improve with the area they cover. However, the relay load imposed by
distant nodes and the inefficient spatial reuse provided by omnidirectional an-
tennas results in poor network throughput [2]. Aiming to provide better spatial
reuse to increase network capacity, the research community has begun consider-
ing ad hoc networks where the nodes are empowered with directional antennas
[4,5,6,7,9,10,11,8]. The key benefits provided by directional antennas include re-
duced co-channel interference, transmission range extension, better spatial reuse
and signal quality as compared to their omnidirectional counterparts [3]. Despite
of its advantages, developing efficient directional Medium Access Control (MAC)
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protocols in the context of ad hoc networks is a challenging task, not only due
to the difficulty in coping with mobility and the absence of a centralized control,
but also due to the lack of efficient means to deal with deafness and hidden
terminal problems.

The major contribution of this work is to propose a MAC scheme that at-
tempts to minimize deafness and hidden terminal problems in the context of ad
hoc networks. Unlike other proposals that focus in exploring the characteristics
of the physical layer, the proposed MAC protocol relies on simple mechanisms
that can be easily coupled with a directional antenna without requiring major
modifications to the current MAC standard.

2 Background and Motivation

Despite the efforts to leverage the capacity of ad hoc networks trough the use
of directional communications, a number of problems still remain or need op-
timized solutions. Indeed, hidden terminals and the wastage of transmission to
nodes which are locked away from the transmitter – because the destination is
busy sending/receiving to/from other sectors – can have a major impact in the
network performance [7]. In what follows, we briefly discuss each of these prob-
lems. For this purpose, let us consider the topology shown in Figure 1. To simplify
the discussion, we assume that all the packets are sent and received directionally.
Suppose that node A is currently communicating directionally with node B. As
the directional beam of nodes A and B does not capture nodes C and D, these
nodes are free to communicate. Note that, nodes C and D are not aware of the
communication between A and B. When using directional communications, the
following problems may arise:

1. Suppose that node C wishes to communicate with node A. As node C is un-
aware of A’s activity, it might attempt to reach node A through a directional
RTS. Since node A is currently busy, no reply will be received causing node C
to increase its backoff window. Eventually, when node A becomes free, node
C might have increased its contention window multiple times and, therefore,
will have to wait until it expires. This problem is termed as deafness, as node
A was unable to hear node C’s transmission.

2. Let us consider the case in which node C starts talking to node D, while
the communication between nodes A and B proceeds. When nodes A and
B finish their business, node A might attempt to communicate with node
C. In such case, the directional transmission of node A might disrupt the
communication between nodes C and D. This problem can be viewed as a
special kind of the hidden terminal problem.

Although efforts to minimize the above problems have been proposed in
the past, the proposed solutions resulted in schemes that are not suitable for
ad hoc networks. For example, the protocol proposed in [9] assumes that the
mobile devices are able to send and receive messages concurrently. As simul-
taneous transmission and reception require multiple transceivers – even when
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Fig. 1. Example scenario where deafness and hidden terminals problems might occur

sending/receiving through different channels – such approach increases system
complexity, cost, antenna size, and power consumption. In the protocol proposed
in [10], whenever source and destination nodes complete a communication dialog,
they utilize multiple out-of-band tones to inform this event to their neighboring
nodes. As pointed out by the authors, there are a number cases in which deaf-
ness might still occur. To the best of our knowledge, no efficient MAC protocol
capable of coping with both deafness and hidden terminals problems has been
proposed in the literature. Obviously, it would be desirable to avoid, or at least
minimize, the effects of the aforementioned problems with little overhead and
without precluding spatial reuse. Furthermore, it would be interesting to design a
MAC protocol with the following properties: (a) single transceiver, i.e., no simul-
taneous transmission and reception; (b) simple scheme to associate neighboring
nodes to each sector; (c) no cross-layer interfaces; and (d) litte modifications to
the current standard.

In this work we propose a MAC scheme that attempts to minimize deaf-
ness and hidden terminal problems in the context of ad hoc networks with the
properties mentioned above. In what follows, unless otherwise stated, assume
that each mobile terminal is equipped with a switched beam antenna, like the
ESPAR (Electronically Steerable Passive Array Radiator) antenna developed at
ATR(ACR) [12], and to have similar characteristics as those assumed in [5,6,7,8].

3 Proposed MAC Scheme

In what follows, we begin discussing methods to associate neighboring nodes to
a particular sector. Following that, we present a simple MAC scheme which is
latter enhanced to limit the effects of deafness and hidden terminal problems.

3.1 Detecting the Direction of Incoming Signals

A number of protocols assume a directional antenna capable of detecting the di-
rection of the incoming signals using Angle of Arrival (AoA) techniques [5,9,14].
Other researchers, however, have taken a more conservative approach and de-
signed mechanisms to associate each neighboring node to a particular beam [6,8].
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In the former case, the direction of the incoming signals are assumed to be de-
tected during the RTS/CTS dialog. It is worth mentioning that not all directional
antennas have such capabilities. In the latter case, nodes are requested to send
a special packet while neighboring nodes will rotate its directional beam in or-
der to identify the best sector to collect that signal. This special packet could
be a tone which would trigger the rotational-sensing and would be long enough
to allow neighboring nodes to check all sectors. Once neighboring nodes have
identified the best sector for that signal, the source node then sends another
packet identifying itself. Neighboring nodes will cache this information and use
it whenever needed. In this work we assume that the neighboring-sector associ-
ation is obtained using either of the above schemes. For further details, we refer
the reader to the pertinent references shown above.

3.2 Dual-Channel MAC

Our MAC protocol uses two separated channels namely: a Control channel and a
Data channel. The Control channel is used for exchanging RTS and CTS packets
while the Data Channel is reserved for transferring Data and Ack packets. The
use of control and Data channels is similar to the channel scheme proposed
in [9]. Our protocol, however, does not rely on concurrent transmission and
reception. Channel reservation is performed through omnidirectional RTS/CTS
exchange between the sender and the receiver. Whenever idle, nodes will be
sensing the medium in omnidirectional sensing mode. Suppose that a node S
wishes to communicate with node D. Initially, node S senses the Control channel,
if sensed busy, then S postpones its RTS transmission. Otherwise, S waits for
DIFS period and then enters the backoff phase as in the IEEE802.11 standard [1].
Upon receiving the RTS, node D precedes by carrier sensing and waits for SIFS
time before sending the CTS back to S. If node S does not receive a CTS within
a timeout period, a new RTS is issued. Again, node S has to go through all the
steps of carrier sensing and backoff time before re-transmission.

By employing the mechanisms discussed in Section 3.1, source and destina-
tion nodes are able to identify the beam that maximizes the signal strength
towards each other during the RTS/CTS exchange. After a successful RTS/CTS
exchange, source and destination nodes will leave the Control channel and switch
to the Data channel. At this point, sender and receiver will beamform towards
each other in order to send/receive Data and Ack packets directionally.

Neighboring nodes, on overhearing the RTS and/or the CTS packets, will set
their Directional Network Allocation Vector (DNAV) – which is a directional
version of the NAV – towards the direction of the detected signals. Such nodes
will defer their own transmissions towards sectors that have set DNAV for the
proposed duration of the transfer. However, nodes that have set DNAV are
allowed to engage in communication through other sectors, as long as the desired
direction of communication does not interfere with any ongoing transfer. In what
follows, we refer to the above protocol as a Basic Dual-Channel MAC protocol
(or BDC-MAC, for short).
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3.3 Limiting the Effects of Deafness and Hidden Terminals

As the above MAC scheme relies on omnidirectional RTS and CTS exchanges,
neighboring nodes will be able to learn about the proposed duration of commu-
nication thus reducing the effects of deafness. Also, whenever a node sends an
RTS to a destination node which is currently receiving a Data packet no collision
will occur as two separated channels are used. Furthermore, the implementation
of the above protocol is straightforward. However, BDC-MAC cannot prevent
collisions from happening at the Data channel as hidden terminal problems are
likely to arise. We begin by depicting the occurrence of collision at the Data
channel and latter we show how to limit its occurrence.

Figure 2 exhibits a scenario in which collisions at the Data channel are likely to
occur. The figure shows an ad hoc network consisting of five nodes where the thin
lines represent a link between any two nodes and the numbered arrows represent
the communication sequence. The left side of the figure shows a scenario in which
two communications have been initiated: the first communication is between
nodes C and D and the latter is between nodes A and B. While nodes C and
D exchange RTS/CTS packets, neighboring nodes set their DNAV (shown in
dark gray) to the direction from which the control packets have been received.
As the DNAV of node B does not capture node A, these nodes are allowed to
communicate. Note that the RTS/CTS exchange between A and B is performed
through the Control channel and will not interfere with the communication of
nodes C and D.

While the Data transfer is being carried out between nodes A and B, nodes C
and D start a new communication (shown in the right side of the figure). Suppose
that node B misses the RTS/CTS exchange between nodes C and D. When the
communication of nodes A and B finishes, the previously blocked sectors of node
B, which was set towards C and D would have expired. Now, suppose that node
B attempts to communicate with node E. As the sector that captures B is not
blocked, node E is able to accept the request. When node B starts sending Data
over the Data Channel, the directional transfer of node B might interfere with
the directional transfer of node C, causing node D to drop the packet.

As described in the example above, even though node E was idle for a long
period and its DNAV was accurate, collisions can still occur. Clearly, the tradi-
tional DNAV scheme is not enough to prevent collisions at the Data channel. A
possible way to limit the occurrence of collisions at the Data channel is to block
additional sectors. However, such mechanisms will reduce spatial division which,
in turn, might have a negative impact in throughput. The challenge is to devise a
mechanism that limits the occurrence of collisions at the Data channel while still
being able to provide spatial division. In order to prevent collisions at the Con-
trol channel, here we impose some constraints to nodes located within the lens
area (i.e., the area in which the omnidirectional communications intersect). We
assume that each node has two timers: an idle timer Ti and a lens timer Tl. The
Ti timer indicates the amount of time slots a node has been listening to the Con-
trol channel, starting from zero up to Tmax, where Tmax is maximum duration of a
communication. The Ti timer is set to zero whenever a node returns to the Control
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Fig. 2. An example scenario

channel (that is, after a Data transfer). A node will start the Tl timer whenever it
finds itself within the lens area, and will reset it at the end of the communication.
Let T S

l , T S
i , T R

l and T R
i denote the sender (S) and receiver (R) timers, respec-

tively. The RTS packet is modified to accommodate the T S
i and T S

l timers. Upon
receiving an RTS, the destination node performs the following verification when
the source node is not in a blocked (DNAV) sector:

Rule 1. The destination is within a lens area. The destination node will check
whether the source is aware of the communication that created the lens. If
T S

i ≥ T R
l holds, then a CTS can be granted. Clearly, no collision with the

communication that created the lens will occur.

Rule 2. The destination is outside lens area of the source. If T S
l �= 0 then check

if T R
i ≥ T S

l . If true, then the destination is aware of the communication that
created the lens around the sender. The destination can safely reply with a
CTS.

Rule 3. The lens timer of both source and destination is non-zero. The case
where T S

l = T R
l is already covered above since T S

i ≥ T R
l should hold as

source and destination must be within the same lens area. If T S
l �= T R

l , then
the destination has to make sure that the above two conditions are satisfied.

In the previous example, whenever node E finds itself within the lens (created
by nodes C and D), it will check whether T B

i ≥ T E
l holds, before replying to

an RTS issued by node B, as required by Rule 1. That is, node E will check
whether the node B is aware of the communication that created the lens, so as
to prevent collisions at node D. By applying the above rules, whenever a node
is within the lens (source, destination, or both), the destination node will be
able to decide whether it is safe to accept the request or not. It should be noted
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that we allow nodes to communicate when the lens timer of both source and
destination is zero. As a result, collisions at the Data channel might eventually
occur. To further limit the occurrence of collisions at the Data channel, before
transmitting a control packet (RTS and/or CTS), the transmitting node could
carrier sense the Data channel towards the direction of the intended receiver.
Should a Data packet disruption occur, the node at which the collision occurred
will not accept to resume the previous communication until the Data channel has
become free once again. This scheme aims to give enough time for those nodes
that caused the collision to finish their communication and return to the Control
channel. At this point, those nodes which had their communication disrupted, as
well as those which caused the disruption, will have to compete for the channel
once again, thus limiting further collisions at the Data channel.

It is easy to show that the expected area in which nodes will be setting the
lens is ≈ 58% of the area enclosed by the omnidirectional RTS/CTS. Note that
these nodes may still be able to communicate when the above rules are satisfied.
Therefore, BDC-MAC protocol should be able to provide significant improve-
ments in terms of spatial reuse as compared to a traditional omnidirectional
protocol. As we will show in the next section, the above enhancements makes
the BDC-MAC resilient to the effects of hidden terminal problems on the Data
channel. In addition, our protocol employs simple schemes which can be easily
coupled with a directional antenna without the need of major modifications on
the current IEEE802.11 standards. Hereafter, the Basic Dual-Channel MAC, in-
cluding the optimizations proposed above, is denoted simply as Dual-Channel
MAC (DC-MAC, for short).

4 Performance Evaluation

The simulations are conduced in QualNet Version 3.6 [13]. QualNet supports
the IEEE802.11 DCF MAC as well as directional communications (hereafter,
denoted as Omni and Directional MAC protocols, respectively). These protocols
will be used as benchmark in comparing the results. To avoid any interferences
that might distort the outcome (e.g., with the choice of a particular routing
strategy), in this work we use static routes. The directional beam patterns used
in the simulations have been obtained from the hardware measurements of the
ESPAR antenna [12].

The transmission power used in the simulations is 10dBm and a 2Mbps com-
munication channel is assumed. For DC-MAC we assume that both control and
Data channels have similar characteristics. Node mobility is not consider in this
work and a training period is included in the simulations with enough time for
nodes running the Directional protocol to cache the direction of the incoming sig-
nals. The averaged results are drawn from twenty runs using different seeds with
each run lasting for five minutes. In this work we do not focus on range extension
capabilities of the directional antennas. Like the works proposed in [4,5,6], the
transmitting node is requested to reduce its transmission power so as to have
the same transmission range of an omnidirectional communication.
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4.1 Reducing Collisions at the Data Channel

We begin by showing that the mechanisms proposed in Section 3.3 can effectively
reduce collisions at the Data Channel. For this purpose, we define the Data Packet
Disruption Rate (DPDR) as the ratio of Ack packets received over the number of
Data packets sent by the source node. Additionally, we define the Control Packet
Loss Ratio (CPLR) as the ratio of Data packets sent over the number of RTS pack-
ets issued for a particular source node. In other words, the CPLR accounts for the
unsuccessful RTS/CTS exchange while the DPDR shows the percentage of Data
packet disruption after a successful RTS/CTS exchange.

In what follows, we utilize the example scenario shown in Figure 2, where
nodes A and C are selected as the source nodes for nodes E and D, respectively,
with node B serving as relay for node A. The application layer at nodes A and C
are set to generate CBR traffic at the rate of 340Kbps and 680Kbps, respectively.
To simplify the analysis, we utilize an ideal antenna in this set of simulations
(i.e., a pattern without side and back lobes). Figure 3 shows the results in terms
of DPDR and CPLR, for nodes C and D with DC-MAC and BDC-MAC. Recall
that BDC-MAC does not include the optimizations discussed in Section 3.3,
which have been incorporated to reduce the occurrence of collisions at the Data
channel. For comparison purposes, the results for Omni and Directional protocols
are also shown. The figure shows that nearly 14% of the Data packets sent by
node C are dropped with BDC-MAC. This is consistent with the DPDR of the
Directional protocol in which more than 12% of the Data packets issued by node
C are lost. That is, even after a successful RTS/CTS exchange between nodes
C and D, the Directional and BDC-MAC protocols cannot guarantee that the
Data packets will be safely delivered. By implementing the mechanisms proposed
in Section 3.3, DC-MAC can significantly reduce collisions at the Data channel.
Although collisions still arise, the DPDR for DC-MAC is comparable to that of
the Omni protocol.

As the lens and idle timers are managed at the MAC layer, it is possible that
the physical layer hands an RTS packet to the MAC layer just after the lens timer
has expired. To see this, suppose that node D is sending an Ack packet back to
node C. At the same time, node B, unaware of the communication between nodes
C and D, might start sending an RTS to node E. In case the physical layer at
node E hands the RTS to the MAC layer when the lens timer has expired, node
E would be in a position to reply. Note that if nodes C and D miss to receive
the RTS packet, their lens timers would not be set. In such case, collisions at the
Data channel might arise at a later stage with DC-MAC. A simple solution to
this problem would be to extend the lens timer by a certain threshold. Another
possibility is to include the Source and Destination MAC addresses in the CTS
packet such that nodes would be able to set the lens timers even if only the
CTS packet is received. These solutions, however, increase the amount of time
spend on the Control channel. We note that collisions at the Data channel due
to the above occurrences are infrequent, less than 0.2% of the Data packets in
this scenario. Thus, in this work we have chosen not to extend the lens timers
or to include additional information to the CTS.
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Fig. 3. Average packet disruption for DC-MAC and BDC-MAC

In view of the fact that both DC-MAC and BDC-MAC rely on omnidirectional
RTS/CTS exchange, their CPRL values are comparable with the Omni protocol
(≈ 5%). Due to hidden terminal problems, the CPDR for the Directional protocol
surpasses 35%, which is more than 7 times higher than the Omni protocol. The
overall packet disruption, that is, the ratio of the Data packets received at node
D over the number of RTS packets issued by node C is also shown. The figure
shows that more than 43% of the packets issued by node C are lost when using
the Directional protocol and ≈ 17% for BDC-MAC. For Omni and DC-MAC,
this value is less than 5% with the majority (≈ 99.8%) of the packet loss occurring
during the RTS/CTS exchange.

4.2 Deafness and Hidden Terminal Problems in Grid Network
Topology

It is known that directional communications do not perform well in string topolo-
gies due to deafness and hidden terminal problems [7]. As the proposed protocol
aims to reduce their effects, our goal in this subsection is to verify the per-
formance, in terms of throughput and end-to-end delay, of the proposed MAC
protocol in such topologies.

Here we consider a grid of size 3× 9. Node separation is fixed at 260 meters.
Nodes n1,1, n2,1, and n3,1 are selected as the source nodes and the average
throughput and delay performance is verified at every two hops. The Data packet
sizes used are: 512, 1024 and 1536 Bytes of CBR traffic, generated at a rate of
2, 4, and 6ms, respectively.
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Fig. 4. Transmission and carrier sense range for omnidirectional and directional com-
munication with an ideal antenna

Figure 5(a) shows the average throughput results for three parallel lines with
Omni, Directional, and DC-MAC protocols (in the figure, DC-MAC(E) and DC-
MAC(I) stands for DC-MAC with ESPAR and Ideal antenna, respectively). The
reduced carrier sensing area provided by directional communications facilitates
the Directional protocol to deliver a better performance than the Omni protocol.
As the number of hops increases, the effects of neighboring activity make the
performance of the Directional protocol to deteriorate. As shown in Figure 4,
when nodes n1,3 and n1,4 are talking with the Directional protocol, node n2,5

would not be able to communicate with node n2,4. That is, the directional beam
of node n1,3 captures the directional beam that node n2,5 would use to reach
node n2,4. When using the Directional protocol with an ideal beam, node n2,4

would find the channel towards n2,5 idle. Should node n2,4 try to reach node
n2,5, the directional packet issued by n2,4 would probably be dropped. With a
broader beam, such as that of the ESPAR antenna, node n2,4 might be able
to carrier sense neighboring activity and hence reduce the effects of deafness.
For this reason, the Directional protocol utilizing the ESPAR antenna performs
better than with the ideal antenna.

Although carrier sensing also has a negative impact on the performance of
DC-MAC, this impact is not as severe as in the Omni and Directional protocols.
We also note that DC-MAC is able to take advantage of the sharper beams of the
ideal antenna to deliver a better throughput. This is clear in the case of 2 hops.
With an increase in the number of hops traversed, the throughput difference
reduces significantly between DC-MAC(E) and DC-MAC(I) due to the reasons
explained above. Nevertheless, the throughput performance of DC-MAC is ≈ 3
times the throughput of the Omni protocol and Directional protocols.

The average end-to-end delay is shown in Figure 5(b). As can be observed,
DC-MAC has a much lower average end-to-end delay as compared to the Omni
and Directional protocols – less than 50% at 6 − 8 hops with ESPAR and less
than 30% with an ideal antenna.
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Fig. 5. (a) Average throughput for three parallel lines at different hop count and Data
packet size. (b) Average end-to-end delay for three parallel lines at different hop count
and Data packet size.
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Abstract. In the case of simple tile-based architecture, such as small reconfig-
urable processor arrays, a virtual-channel mechanism, which requires additional
logic and pipeline stages, will be one of the crucial factors for a low cost im-
plementation of their on-chip routers. To guarantee deadlock-free packet trans-
fer with no virtual channels on tori, we propose a non-minimal strategy consis-
tent with the rule of dimension-order routing (DOR) algorithm. Since embedded
streaming applications usually generate predictable data traffic, the path set can
be customized to the traffic from alternative DOR paths. Although the proposed
strategy does not use any virtual channels, it achieves almost the same perfor-
mance as virtual-channel routers on tori in eleven of 18 application traces.

1 Introduction

Networks-on-Chips (NoCs) have been studied to connect a number of modules in a chip
by introducing a network structure similar to that in parallel computers[1,2]. They are
utilized not only for high-performance computing but also for small embedded stream-
ing applications, such as JPEG or Viterbi coders, mostly used in consumer equipments.

Two-dimensional mesh[3,4,5] and torus[2] have been employed as a typical on-
chip interconnect, because their regular arrangement is intuitively matched to the two-
dimensional VLSI layout. A simple and popular deterministic routing on such networks
is dimension-order routing (DOR), which simply routes packets in y-dimension after
completing in x-dimension. Although a torus network has twice bisection bandwidth of
a same-sized mesh, DOR originally requires two virtual channels to avoid deadlocks in
the case of 2-D tori. Whereas in meshes, DOR is deadlock-free without virtual channels.
A virtual-channel mechanism strongly affects the router architecture, and as reported in
[6], it is possible to drastically reduce the hardware amount of on-chip routers by re-
moving a virtual-channel mechanism from them.

In recent design methodologies, embedded systems and their applications are de-
signed with system level description languages like System-C, and simulated in the
early stage of design. The task distribution is statically decided in this stage, and the
amount of traffic between nodes can be analyzed. Routing techniques according to
the analysis of traffic patterns have been researched. In this paper, we propose a non-
minimal strategy for DOR to guarantee deadlock-freedom without virtual channels in

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 207–218, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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tori, according to records of traffic analysis in the design stage of SoCs. Addition-
ally, when application traffic patterns are partially unknown, or incompletely analyzed,
which hardly occur, we use a simple mechanism to eject and reinject some packets at a
few intermediate nodes, so as to break their cyclic dependencies[7].

Notice that virtual channels play a key role to avoid not only deadlocks, but also
head-of-line blocking. However, average hop count is small in the cases of stream pro-
cessing, so the advantage of throughput is not fully extracted in our target NoCs.

This paper is organized as follows. Existing deadlock-free solutions without virtual-
channels to route packets are surveyed in Section 2. The virtual-channel free routing
strategy is proposed in Section 3 and 4. In Section 5, for the evaluations, our routing
strategy was applied to 18 real application traces and the results are compared with a
virtual-channel router on tori. Finally, We conclude in Section 6.

2 Related Work

To remove virtual channels from DOR routers on tori, the bubble flow control[8] has
been developed mainly for parallel computers. This is an injection limitation mecha-
nism that guarantees continuous message movement in the network by preserving at
least one empty packet in routers’ channel buffer. Thus, the bubble flow control is used
with virtual-cut through (VCT) switching that requires enough buffers to always store
the largest packet. However, since the buffer size is a crucial factor for implementing
lightweight routers, NoCs usually employ wormhole switching, not VCT switching.

Another technique to remove cyclic dependencies is the packet reinjection at a few
intermediate nodes[7]. That is, packets that could introduce cyclic dependencies are
once ejected from network and reinjected so as to cut the cyclic dependencies. This tech-
nique enables minimal routing algorithms to be implemented on system area networks
(SANs) with no virtual channels, such as Myrinet. Although this technique requires in-
finite buffers for deadlock-freedom in theory, it is not a problem on SANs because of
the large main memory available in each host PC. However, the size of buffer memory
is strongly limited in NoCs, so this method would not be directly applied into NoCs.

3 Virtual-Channel Free Routing Strategy

3.1 Dimension-Order Non-minimal Routing

In 1-dimensional tori, DOR provides two alternative paths to reach a destination: a path
using a wrap-around channel and the other one not using the wrap-around channel.
Thus, there are up to 2n alternative paths when DOR is used in n-dimensional tori.
Figure 1 shows four alternative paths from node N(0,2) to N(2,1) in a 4 × 4 torus. In
Figure 1(a), packets are routed by using x+ channels followed by y− channels. In the
same way, (b) uses x− followed by y− channels, (c) uses x+ followed by y+ channels,
and (d) uses x− followed by y+ channels. In this example, (a) and (b) take minimal
paths, but (c) and (d) introduce non-minimal paths. Because non-minimal paths waste
the network bandwidth and increase latency, DOR implementation commonly uses only
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(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

2 1 x+ y-
dst x dst y dir x dir y

header format

...

(a) x+ �→ y−

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

2 1 x- y-
dst x dst y dir x dir y

header format

...

(b) x− �→ y−

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

2 1 x+ y+
dst x dst y dir x dir y

header format

...

(c) x+ �→ y+

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

2 1 x- y+
dst x dst y dir x dir y

header format

...

(d) x− �→ y+

Fig. 1. Routing paths provided by DONR on a 4× 4 torus. In each header format, the coordinate
of destination and the traveling directions are represented as “dst” and “dir”.

minimal paths. When minimal alternative paths are available like (a) and (b), only a
single path is randomly selected[9].

In tori, cyclic dependencies can be formed inside a dimension, and a virtual-channel
mechanism has been originally used to remove them. In this paper, we remove a virtual-
channel mechanism from conventional torus routers in order to reduce the amount of
hardware for routers. In order to make deadlock-free path sets for tori without virtual
channels, we use a small amount of non-minimal paths with DOR by analyzing the
communication pattern of the target application (the path selection strategy is described
in Section 3.2). To distinguish the path sets from path hops on DOR strategy, we call
such a routing “dimension-order non-minimal routing (DONR)”.

3.2 Path Selection

A path selection strategy is designed to satisfy the following policies:

1. Deadlock-freedom is satisfied on tori without virtual channels.
2. The number of non-minimal paths is minimized.
3. Computations of the path set are completed within a few seconds.

The proposed strategy searches the best set of routing paths that achieves deadlock-
freedom on tori without virtual channels and minimizes the use of inefficient non-
minimal paths from all the possible combinations of alternative paths provided by
DONR. Additionally, to obtain the solution within a realistic time frame, the path search
algorithm employs efficient pruning techniques.

Terminology. Each node in a k-ary n-cube is denoted as Ni, where i = {0, ..., kn−1}.
Figure 2 is an example of a 4 × 4 torus. The set of unidirectional links along a given
direction forms a unidirectional cycle. The unidirectional cycle that includes node Ni

for x+ direction is denoted as ring Rx+
i . The other unidirectional cycles for the x−,

y+, and y− directions are denoted as ring Rx−
i , Ry+

i , and Ry−
i , respectively. In Figure

2, ring Rx+
0 is a unidirectional cycle N0 −N1 −N2 −N3 −N0.

Path Search Algorithm. For a given communication pattern, this algorithm searches a
deadlock-free routing path-set under DONR on tori without virtual channels. When all
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N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N11

N13 N14

N10

N15N12

Fig. 2. An example of 2-D torus

x+y+

x+ x-
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C = 7
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step 5
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step 11

C = 5

Path for N1-->N2

x+ x-
step 8

C = 7

step 9

C = 9

C = 8

C = 9

Path for N1-->N6

Path for N4-->N10

Path for N9-->N10

Fig. 3. A search tree for DONR paths

source-destination pairs select the paths that do not use wrap-around channels, the rout-
ing path-set becomes the same as that in mesh, which does not require virtual channels.
Thus, at least one virtual-channel free solution always exists. However, since such a
mesh-like path set will drastically reduce its performance, the proposed algorithm care-
fully assigns non-minimal paths to a few source-destination pairs in order to minimize
the impact of inefficient non-minimal paths. Actually, assigning a non-minimal path to
the source-destination pair that transfers a large amount of data will waste interconnec-
tion’s bandwidth and cause serious performance degradation. On the other hand, the
negative impact of a non-minimal path on a source-destination pair with a small data
transfer is considered to be slight. In the proposed algorithm, non-minimal paths are
preferentially assigned to the pairs that transfers smaller data amount.

Each set of routing paths is evaluated by the following cost function.

Cost =
n−1∑
s=0

n−1∑
d=0

H(s,d) ×D(s,d) (1)

where n is the number of nodes, D(s,d) is the total amount of communication data from
node Ns to Nd, and H(s,d) is the path hop count from node Ns to Nd on a target torus.
Based on this cost function, source-destination pairs that transfer a large amount of
total data can take minimal paths in most cases. On the other hand, non-minimal paths
are sometimes assigned to pairs with a small amount of data transfer so as to remove
cyclic dependencies and mitigate the performance degradation involved by unavoidable
inconvenient paths. The set of deadlock-free routing paths whose cost is minimum is the
best solution. The algorithm that confirms deadlock-freedom on a given set of routing
paths is presented below.

Since a search tree of all the possible routing path-sets is huge, it is difficult to find
the best set of routing paths in a realistic time frame (a few seconds). Actually, there
are up to 2nkn(kn−1) sets of routing paths in a k-ary n-cube when all-to-all communi-
cations are used1. In this paper, we employ the branch-and-bound method as a pruning
technique of the search tree.

1 This is true only when all source-destination pairs take 2n alternative paths. When both source
and destination nodes’ coordinates on one dimension are same, the number of alternative paths
is decreased to 2(n−1) . Thus, the actual number of possible path-sets is less than 2nkn(kn−1).
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Now we illustrate the path search algorithm. Figure 3 shows an example of a search
tree for a 2-D torus. In this example, a path is assigned for each source-destination pair
N1 �→ N2, N1 �→ N6, N4 �→ N10, and N9 �→ N10. There are up to four alternative
paths (x+y+, x+y−, x−y+, and x−y−) for each source-destination pair. Notice that
there are only two alternative paths in the cases of N1 �→ N2 and N9 �→ N10, because
packets can be sent by using only x-dimensional channels. The cost of each branch
(denoted as C in the figure) is evaluated by Equation 1. For the sake of simplicity,
the amount of data transfer D is set to one in all source-destination pairs equally. The
path search starts from step 1 in this figure. In step 4, path x+ is allocated for pair
N1 �→ N2, path x + y+ is for N1 �→ N6, path x + y+ is for N4 �→ N10, and path
x+ is for N9 �→ N10. Since the minimum cost of the solutions is updated to seven, all
the branches whose cost is greater than seven are trimmed away after step 4. Thus, the
branch in step 6 is pruned. In the same way, the branches that could form deadlocks are
pruned away. By cutting branches, computational efforts to find the minimum solution
can be drastically reduced.

Cycle Detection Algorithm. This function confirms that a given path-set P is deadlock-
free on a torus.

1. (Initialize bitmaps.) A bitmap of all nodes is allocated for each direction (x+, x−,
y+, y−) as shown in Figure 4.

2. (Mark nodes.) For all pairs of source Ns and destination node Nd in path set P :
(a) When data amount D(s,d) is equal to zero, return to step 2.
(b) A path from node Ns to Nd on the torus is denoted as P(s,d). For example,

P(4,14) = {N4, N5, N6, N10, N14}.
(c) From path P(s,d), a source node, a destination node, and turning nodes that

change the traveling direction are removed. For path P(4,14), source node N4,
destination node N14, and turning node N6 are removed. Thus, P ′

(4,14) =
{N5, N10}.

(d) For all nodes in P ′
(s,d), the corresponding node on the bitmap of its traveling

direction is marked. In the case of P ′
(4,14), node N5 is marked on the x+ bitmap

and N6 is marked on the y+ bitmap (Figure 4).
3. (Detect cycles.) When all nodes on a ring are not marked, no cycle is formed on the

ring. We confirmed this with the following Theorem and Proof. In Figure 4, cycles
are formed at ring Rx−

15 and Ry−
13 .

4. (Judge.) When no cycle is formed on all rings in the torus, deadlock-freedom is
guaranteed on the path set P without virtual channels.

Theorem . When all nodes on a ring are not marked, no cycle is formed on the ring.

Proof. The Theorem noted above is proved with ring Rx+
i . It can be proved with other

rings in the same way. A source node, a destination node, and turning nodes are not
marked in the bitmaps. Thus, when node Ni is marked on the x+ bitmap, there is at least
one packet that occupies the x− channel of Ni until the x+ channel of Ni is released.
When all nodes on the ring are not marked, there is at least one channel in which no
packet is waiting for its release. A cycle on the ring is broken by such channels. Thus,
when all nodes on a ring are not marked, no cycle is formed on the ring. �
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N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11
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N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

N0 N1 N2 N3

N4 N5 N6 N7

N8 N9 N10 N11

N12 N13 N14 N15

X+

X-

Y+

Y-

R x-
15

Ry-
13

Fig. 4. Bitmap x+, x−, y+, and y− for the cycle detection

Fast Computation Techniques for Path Selection. Following two techniques are ap-
plied to achieve the fast path selection strategy.

– In the search tree (e.g., Figure 3), source-destination pairs that transfer a large
amount of data are placed just below the root of the tree, in order to prune the
fruitless branches in the earlier phases of the search.

– To shrink the search tree, assigning non-minimal paths for source-destination pairs
with a large data transfer is gradually limited according to the acceptable time-
frame for the path selection. Thus, a part of them can always take minimal when
the time limitation is strict.

4 An Extension for Dynamic Traffic

We extend the virtual-channel free routing strategy to avoid deadlocks in the case of in-
cluding the dynamic traffic as follows: an intermediate node temporarily stores packets
to a certain destination node on its local memory, and reinjects them to their destination,
as briefly introduced in Section 2[7]. Since the packet is once ejected from the network
by being stored in the intermediate node’s local memory, cyclic dependencies across
the intermediate node can be removed.

Here, we introduce a method for identifying ejection-and-reinjection packets re-
quired by deadlock-free operation at each intermediate node from all of dynamic pack-
ets. The method takes the following steps:

1. The routing strategy shown in the previous section is applied only for the static traf-
fic, which can be completely pre-analyzed. Cyclic channel dependencies on such
static traffic can be cut by making at least one channel used by no packets (non-
static-traffic channel) on every ring.

2. Step (1) indicates that only dynamic traffic passes through the non-static-traffic
channels. In order to break the cyclic channel dependency on a ring caused by dy-
namic traffic, a node connected to the non-static-traffic channel performs ejection-
and-reinjection only for the dynamic traffic that will pass through the neighboring
non-static-traffic channel.
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As discussed in Section 2, applying this method into NoCs originally may introduce
the following problems: 1) a packet reinjection operation newly introduces relatively
large delay at an intermediate node, and 2) an infinite buffer is needed for temporarily
storing packets at intermediate nodes, because starting a reinjection of a packet before
finishing its ejection cannot cut the cyclic dependency around the intermediate node[7].

To resolve the former problem, we use a cut-through based switching, that allows
a header flit to be sent if the sender has enough buffer to store its receiving remain
flits. Even if the header flit is blocked at the next router, all body flits will be able
to be stored at the host. Thus, this cut-through based switching, which drastically im-
proves the latency at intermediate host especially at long packets, does not disturb the
ejection-and-reinjection operation. Since a host usually has larger buffers than those of
wormhole routers, it is feasible for NoCs.

Regarding the latter problem, all nodes are potentially expected to provide a buffer
enough for packetization and de-packetization at their network interface, and this buffer
can be used to temporarily store the dynamic traffic. However, an infinite buffer is
needed at each intermediate node so that a whole packet is always stored. Since infi-
nite memory cannot be provided in NoCs, some dynamic packets cannot be temporarily
stored in an intermediate node’s local memory when its buffer is filled with dynamic
packets waiting for their reinjection. In this case, such overflowed packet is discarded
at the intermediate node, and a NACK packet must be sent to its original source node
so as to request a retransmission of the discarded packet.

This method simply extends end-to-end flow control mechanism on the higher-level
protocol on NoCs; the NACK packet is possibly to be issued at intermediate nodes. Such
higher-level protocols on NoCs have been widely investigated for various purposes[1,2],
and enabling “sophisticated network protocol stacks on a simple hardware” is one of
key features of NoCs. The proposed method can be fit with such NoCs.

5 Performance Evaluation

5.1 Simulation Environments

A flit-level simulator written in C++ was used for measuring throughput on DOR+v1,
DOR+v2, and DONR+v1 routers. A simple model consisting of input buffers, a cross-
bar, and arbiters of the crossbar is used for the switching fabric in the router. A header
flit requires at least three clock cycles to be transferred to the next router or core; one
cycle for the routing decision, one cycle for transferring a flit from an input channel to
an output channel through a crossbar, and the remaining cycle for transferring the flit
to the next router or core. Wormhole switching is used as a switching technique on the
router. A node injects a packet independently of each other, and we set packet length
for 16 flits including one header flit.

In the proposed routing strategy, since traffic pattern is an important performance
factor, we used real application traces. As a typical stream application, we use the com-
munication pattern on a Soft-Input Soft-Output (SISO) Viterbi decoder. The target sys-
tems are consisting of 16 tiles, each of which can process a task assigned to the tile. Its
task flow graph and mapping result are shown in Figure 5.
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(a) Task flow graph (b) Tile mapping
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Fig. 5. Mapping result for a Viterbi decoder

In addition, we used application traces captured from NAS Parallel Benchmark
(NPB) programs, because they would enable us to evaluate with various sizes / pat-
terns of real application traffic. We selected BT, SP, CG, MG, and IS programs from
NPB. The class of problem is set to “W”, and the numbers of nodes for solving the
problems are 9, 16, 32, 36, and 64.

For DONR+v1, a deadlock-free path set is generated by using the proposed routing
strategy. The calculation time for finding a feasible path set on each application trace is
shown in Table 1. The required time is less than a few seconds in most cases, except for
IS traces including all-to-all communications that significantly widen the search space.

Table 1. Calculation time for DONR’s paths. (@ Intel Pentium4 2.6GHz)

Application Time (sec) Application Time (sec) Application Time (sec)
Viterbi (16 node) 0.005 BT (9 node) 0.014 BT (16 node) 0.030
BT (36 node) 4.798 BT (64 node) 1.018 SP (9 node) 0.015
SP (16 node) 0.011 SP (36 node) 5.404 SP (64 node) 0.130
CG (16 node) 0.011 CG (32 node) 0.196 CG (64 node) 0.298
MG (16 node) 0.011 MG (32 node) 5.354 MG (64 node) 0.427
IS (16 node) 0.865 IS (32 node) 19.901 IS (64 node) 3600.000

5.2 Simulation Results on Static Traffic

DONR+v1 is compared with DOR+v1 and DOR+v2 with the 18 application traces in
terms of throughput and latency. We firstly simulate them assuming that whole traffic
patterns can be known. Simulation results on mixing the static and dynamic traffic are
shown in Section 5.3.

Figure 6 shows the throughput (accepted traffic) versus the latency with the Viterbi
trace on the three router-types. The average hop counts on each router are also shown
in the parenthesis. As shown in the graph, the DOR+v2 router, which can exploit
wrap-around channels, achieves higher throughput than that of the DOR+v1. Although
DONR+v1 does not have virtual channels, it can fully exploit wrap-around channels
without introducing non-minimal paths. In this Viterbi trace, each task is manually
mapped onto nodes so as to shorten the average hop count. Most communications
are limited between neighboring nodes in the stream processing, and such one-hop
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communications do not form a cycle. Hence, the simple DONR+v1 router can achieve
deadlock-freedom without non-minimal paths, and thus its performance is the same as
a virtual-channel router.

We shift to the evaluation results on NPB traces. Figure 7-10 show the results with
BT program on 9-, 16-, 36-, and 64-node networks, respectively. In these BT traces, the
average hop counts are relatively small, regardless of the network size. Therefore, the
DONR+v1 router can fully exploit wrap-around channels and achieve almost the same
throughput as the DOR+v2 router.

Figure 21-23 show the results with IS program on 16-, 32-, and 64-node networks,
respectively. Since the IS program is dominated by all-to-all communications, it is dif-
ficult for the DONR+v1 to remove virtual channels without introducing a number of
non-minimal paths. Actually, in the 32- and 64-node traces, the average hop counts of
the DONR+v1 are as long as those of DOR+v1, and their performance is not so differ-
ent from a conventional mesh router. On the other hand, the 16-node program on the
DONR+v1 router can be routed without non-minimal paths, though its performance
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is slightly inferior to the DOR+v2. This is because wrap-around channels are used
by only one-hop-per-dimension packets, which introduce no deadlocks, in the case of
16-node.

5.3 Simulation Results on Static and Dynamic Traffic

To confirm that the proposed strategy can be used with unpredictable dynamic traffic,
the extension for dynamic traffic is evaluated assuming that certain degrees (0%, 25%,
50%, and 100%) of the total traffic cannot be analyzed. Since the size of intermediate
nodes’ buffer for reinjection affects the performance, we simulate them with different
buffer sizes: buffers with capacities for 2 packets (b2) and 16 packets (b16).

Figure 24 shows results of the 16-node BT program in which different degrees (0%,
25%, 50%, and 100%) of the total traffic are not statically analyzed. As shown in the
graph, there is no difference between each degree of unpredictable packets. Addition-
ally, the results of Viterbi and SP traces have similar characteristics (not shown in the
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figures). Since these traces contain a lot of neighboring communications that do not
cause deadlocks, the packet reinjections are infrequent.

Figure 25 shows the results of the 32-node MG program. We can see that the perfor-
mance is reduced down corresponding to the number of reinjections, and thus Dyna.0%
is the best among them. Figure 28 shows the results with eject-and-reinjection buffers
of 16 packets (b16). As shown in the graph, the performances of Dyna.25%, 50%, and
100% are improved compared with those with smaller buffer b2. This relatively large
buffer can process more eject-and-reinjecting packets, resulting in smaller number of
packet discards and retransmissions.

It is rarely possible that communication patterns cannot be known in stream pro-
cessing. By using the extension for dynamic traffic, the proposed virtual-channel free
strategy can be used for the case of mixing the static and dynamic traffic. However, in
such cases (it is rare), the performance is reduced down corresponding to the number of
eject-and-reinjections and retransmissions in a part of applications as shown above.

6 Conclusions

A scheme for removing a virtual-channel mechanism from DOR routers on tori is ac-
complished by the following steps: 1) introducing non-minimal DOR (DONR), and 2)
a path selection strategy to analyze a communication pattern and to find a deadlock-free
path set without virtual channels.

Since embedded streaming applications usually generate predictable data traffic, the
path set is customized to the traffic from alternative paths with the DOR rule. When
application traffic patterns are incompletely pre-analyzed, only a part of unpredictable
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packets are ejected and reinjected at some intermediate nodes in order to avoid dead-
locks. In the case, we extend end-to-end flow control so as to implement this mechanism
with a limited size of node buffers. Simulation results show that the generated virtual-
channel free path-set can achieve almost the same performance as that on a virtual-
channel router in eleven of the 18 application traces. For the other traces, the perfor-
mance is reduced corresponding to the number of non-minimal paths introduced for
virtual-channel freedom. Additionally, we confirmed that the proposed strategy could
be used with unpredictable dynamic traffic by applying a simple mechanism to reinject
some packets at a few intermediate nodes. The calculation time for generating a virtual-
channel free path-set is negligible in most of traces, and thus we can easily apply the
proposed strategy for application-specific on-chip torus networks.
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Abstract. Construction of a backbone architecture is an important is-
sue in mobile ad hoc networks(MANET)s to ease routing and resource
management. We propose a new fully distributed algorithm for backbone
formation in MANETs that constructs a directed ring architecture. We
show the operation of the algorithm, analyze its message complexity and
provide results in the simulation environment of ns2. Our results conform
that the algorithm is scalable in terms of its running time and round-
trip delay against mobility, surface area, number of nodes and number
of clusterheads.

1 Introduction

MANETs do not have any fixed infrastructure and consist of wireless mobile
nodes that perform various data communication tasks. MANETs have potential
applications in rescue operations, mobile conferences, battlefield communica-
tions etc. Clustering has become an important approach to manage MANETs.
In large, dynamic ad hoc networks, it is very hard to construct an efficient net-
work topology. By clustering the entire network, one can decrease the size of
the problem into small sized clusters. Clustering schemes can be classified as
Dominating Set(DS)-based, low-maintanence, mobility-aware, energy-efficient,
load-balancing and combined-metrics-based clustering [1]. DS-based clustering
algorithms [2,3,4,5,6] like Wu’s CDS(Connected Dominating Set) algorithm [2],
Chen’s WCDS(Weakly Connected Dominating Set) algorithm [3], Dominating
Set Based Clustering Algorithm [4] try to find a DS for a MANET so that
the number of mobile nodes that participate in route search can be reduced.
Low-maintenance clustering [7,8,9,10] schemes aim at providing stable cluster
architectures for upper-layer protocols with little cluster maintenance costs.
Mobility-aware clustering [11,12,13] takes the mobility behavior of mobile nodes
into consideration. Energy-efficient clustering [14,15,16] manages to use the bat-
tery energy of mobile nodes wisely in a MANET. Load-balancing clustering
schemes [14,17,18] attempt to limit the number of mobile nodes in each cluster
to a specified range so that clusters are of similar size. Combined-metrics-based
clustering [19] usually considers multiple metrics, such as node degree, cluster
size, mobility speed and battery energy in cluster configuration, especially in
clusterhead decision [1].

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 219–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Load-balancing clustering schemes like Merging Clustering Algorithm(MCA)
[17], Adaptive Multi-hop Clustering [18] (AMC) and Degree-Load-Balancing
Clustering (DBLC) [14] distribute the workload of a network more evenly into
clusters by limiting the number of mobile nodes in each cluster in a defined range.
But the weakness of these algorithms is the lack of virtual backbone formation to
serve the lower layer protocols like routing, or the upper layer operating system
services like distributed mutual exclusion protocol [20]. In this study, we propose
a backbone formation algorithm for load-balancing clustering algorithms where
backbone is constructed as a ring architecture by directing clusterheads in a
minimum spanning tree to each other. Related work in this area is reviewed in
Section 2, we define, illustrate and analyze our algorithm in Section 3, provide
implementation results in Section 4 and the final section provides the conclusions
drawn.

2 Background

MCA finds clusters in a MANET by merging the clusters to form higher level
clusters as mentioned in Gallagher, Humblet, Spira’s algorithm [21]. The cluster-
ing operation we apply, however, operates by discarding the minimum spanning
tree. This reduces the message complexity from O(nlogn) to O(n). Upper and
lower bound heuristics for clustering operation are used which result in a bal-
anced number of nodes in the cluster formed. AMC maintains multihop cluster
structure as similar to MCA. For cluster maintenance, each mobile node periodi-
cally broadcasts its information, its id, cluster id and status to others within the
same cluster. Clusters are obtained by merging, and upper and lower bounds
are used for controlling the cluster size. DLBC periodically runs the cluster-
ing scheme in order to keep the number of nodes in each cluster approximately
equal to a system parameter, ED, which indicates the optimum number of mo-
bile nodes that a clusterhead can handle. A clusterhead degrades to an ordinary
member node if the difference between ED and the number of mobile nodes
that if currently serves exceeds some value, Max Delta [1]. As mentioned, load-
balancing algorithms partition the network into a balanced number of clusters
but a backbone is not constructed.

Wu et al.’s CDS Algorithm is a step wise operational distributed algorithm,
in which every node has to wait for others in a lock state. In this algorithm,
nodes exchange neighbor list messages to decide marking process. Algorithm
has two phases of marking operation to find a connected dominating set. A CDS
with small size reduces the number of nodes involved in routing-related tasks.
Further heuristics and degree checking functionalities are added in Dominating
Set based Clustering Algorithm to find the minimal CDS. The number of clusters
produced by the CDS clustering is rather large and the cluster structure is highly
overlapping [1]. Chen proposed a WCDS scheme by relaxing the requirement of
direct connection between neighboring dominating nodes. Backbone formation
is supported by the construction of CDS or WCDS in these algorithms, but
adjusting the cluster size is not mentioned.
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3 Our Algorithm

3.1 General Idea of the Algorithm

The algorithm we propose constructs a backbone architecture on a clustered
MANET. Different than other algorithms, the backbone is constructed as a di-
rected ring architecture to gain the advantage of this topology and to give better
services to other middleware protocols such as distributed mutual exclusion [20]
and total order multicast. The second contribution is to connect the clusterheads
of a balanced clustering scheme which completes two essential needs of cluster-
ing by having balanced clusters and minimized routing delay. Besides these, the
backbone formation algorithm is fault tolerant as the third contribution.

3.2 Description of the Algorithm

We assume that the MANET is partitioned by a load-balanced clustering algo-
rithm like MCA, AMC or DLBC. Each node has distinct node id, knows its clus-
terhead id are the basic assumptions of our algorithm as well as these clustering
algorithms.

Our main idea is to maintain a directed ring architecture by constructing a
minimum spanning tree between clusterheads and classifying clusterheads into
BACKBONE or LEAF nodes, periodically. To maintain these structures, each
clusterhead broadcasts a Leader Info message by flooding. In this phase, cluster-
member nodes act as routers to transmit Leader Info messages. Algorithm has
two modes of operation; hop-based backbone formation scheme and position-
based backbone formation scheme. In hop-based backbone formation scheme,
minimum number of hops between clusterheads are taken into consideration in
a minimum spanning tree construction. Minimum hop counts can be obtained
during flooding scheme. For highly mobile scenarios, an agreement between clus-
terheads must be maintained to guarantee the consistent hop information. In
position-based backbone formation scheme, positions of clusterheads are used to
construct the minimum spanning tree. If each node knows its velocity and the
direction of the velocity, these information can be appended with a timestamp
to the Leader Info message to construct a better minimum spanning tree. But in
this mode, nodes must be equipped with a position tracker like a GPS receiver.

Every node in the network performs the same local algorithm. The finite state
machine of the algorithm is shown in Fig. 1. Each node can be either in IDLE,
BACKBONE or LEAF states described below.

– IDLE: Initially all clusterheads are in IDLE state. If Period TOUT occurs,
each clusterhead broadcasts a Leader Info message to the destination node
and will make a state transition to WT INFO state. If Leader Info message
is received, the clusterhead makes a state transition to LEAF state and
reconstructs the ring by reorganizing the minimum spanning tree.

– WT INFO: A clusterhead in WT INFO state waits for Leader Info mes-
sage. If a Leader Info message is received, the clusterhead makes a state
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Fig. 1. Finite State Machine

transition to LEAF state and reconstructs the ring. If TOUT occurs, clus-
terhead makes a transition to LEAF state which indicates that the network
has only two active partitions.

– LEAF : A clusterhead in LEAF state has a degree of 1 in its local minimum
spanning tree. If a Leader Info message is received, the clusterhead recon-
structs the ring and makes a state transition to BACKBONE state if the
degree exceeds 1. If Period TOUT occurs, clusterhead makes a transition to
IDLE state to restart the backbone formation.

– BACKBONE: A clusterhead in BACKBONE state has a degree greater
than 1. For each Leader Info message received, the ring is reconstructed. If
Period TOUT occurs, the backbone formation is restarted.

Cluster 1

Cluster 2

Cluster 5

Cluster 4

Cluster 3 Cluster 9

Cluster 8

Cluster 6
Cluster 7

Fig. 2. MANET with its minimum spanning tree
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1.Procedure ring_construct

2.begin

3. construct minimum spanning tree by total received leader information

4. if my degree is equal to 1

execute ordinary_leaf

9. else

10. set my state to BACKBONE

if I am a BACKBONE leader or a LEAF leader which can’t find next leader

execute backbone_proc

15.end

Fig. 3. Procedure executed by all leaders to construct a Ring Architecture

A balanced clustered MANET with its clusterheads and minimum spanning
tree is shown in Fig. 2. BACKBONE clusterheads are shown as black and LEAF
clusterheads are shown as white nodes. The main part of the algorithm is the
construction of a ring architecture by orienting clusterheads in the minimum
spanning tree. General idea is to divide the ring into two parts. A directed path
of BACKBONE clusterheads and a directed path of LEAF nodes. Finally, these
two directed paths are connected to each other to maintain the ring architecture.
Each clusterhead aims to find the next clusterhead(leader) to construct the ring
architecture by the procedure in Fig. 3.

Our first aim is to form the vital part of the backbone. The BACKBONE
clusterheads are directed to each other from starting BACKBONE clusterhead
to the end. Starting BACKBONE clusterhead is the one with the smallest con-
nectivity to other BACKBONE nodes. This selection policy of BACKBONE
clusterhead results in smaller hops and reduced routing delay. Ending BACK-
BONE clusterhead is directed to its LEAF with the smallest node id.

LEAF leaders firstly execute the procedure in Fig. 5 to find the next leader
on the ring. The aim of directing LEAF leaders with the same BACKBONE
leaders to each other is to make the routing process over the same BACKBONE
leader to reduce delay. LEAF leaders which can’t find the next leader execute
the procedure in Fig. 4 and search for a LEAF leader from the previous BACK-
BONE leaders of their parent to find a LEAF leader. Our last aim is to connect
the LEAF leaders of different BACKBONE parents to maintain the routing
operation by using the BACKBONE leaders.

Third contribution of our algorithm is the fault tolerance of clusterheads. Each
clusterhead can maintain the list of cluster member nodes in load-balancing al-
gorithms like MCA, AMC or DLBC. In our backbone formation algorithm, this
list can be appended to Leader Info message by each clusterhead. After the
formation of the ring is completed, if a clusterhead detects the crash of the
next clusterhead, it can multicast a Leader dead message to all cluster mem-
bers which initiates clustering operation. To support this functionality, clus-
tering layer must be updated. If this crash occurs during a real time operation,
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1.Procedure backbone_proc

2.begin

3. find the starting BACKBONE leader such that its connectivity to

other BACKBONE nodes is smallest between all other BACKBONE

leaders.

4. find the next leader of starting BACKBONE.

5. If next leader found

6. set the temporary BACKBONE leader to next leader of starting

BACKBONE.

7. If not found

8. find LEAF leader with smallest node_id of starting BACKBONE leader.

9. mark the starting BACKBONE leader.

10. if I am starting BACKBONE leader set my next leader to found

value

11. else

12. while all BACKBONE nodes are not marked

13. find the next BACKBONE leader of temporary BACKBONE leader

with smallest distance which is not marked.

14. if found

15. set the next leader of temporary BACKBONE leader to found

value

16. mark the temporary BACKBONE leader

17. set the temporary BACKBONE leader to next leader

18. else

19. set the next leader of temporary BACKBONE leader

to LEAF with smallest node_id.

20. mark this LEAF leader

21. if I am a LEAF leader which can’t find next leader

21. find a child with smallest node_id from a previous BACKBONE

leaders of my parent BACKBONE leader.

23. if found set the next leader

24. else set the next leader to starting BACKBONE leader

25.end

Fig. 4. Procedure executed by BACKBONE leaders and LEAF leaders which can’t
find next leader

1.Procedure ordinary_leaf_proc

2.begin

3. set my state to LEAF

4. Find a LEAF leader with same parent and nearest greater node_id.

5. If found

6. set my next leader to this LEAF leader’s node_id and mark

this LEAF.

7.end

Fig. 5. Procedure executed by LEAF leaders

clusterhead updates its next leader to next-next leader and continues its opera-
tion since it knows the global information of all clusterheads.
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3.3 An Example Operation

Assume the MANET with clusterheads(leaders) in Fig. 6.a. Clusters are ob-
tained using MCA. Nodes 65, 15, 98, 30, 40, 13, 28, 80, 74, 19, 51 and 99 are the
leaders of clusters 1 to 12, respectively. Each clusterhead floods the Leader Info
message to the network. After each clusterhead receives the Leader Info message
of the others, minimum spaning tree in Fig. 6.a is constructed by all clusterheads.
Nodes 65, 98, 40, 13, 80, 19 and 99 identify themselves as LEAF leaders since
their degrees are all 1. Nodes 15, 30, 28, 74 and 51 identify themselves as BACK-
BONE leaders since their degrees are greater than 1. BACKBONE leaders are
filled with black and LEAF leaders are filled with white as shown in Fig. 6.a.

To connect the BACKBONE nodes, a starting BACKBONE leader must be
chosen. The criteria is to select the BACKBONE node which has the smallest
connection to other BACKBONE leaders. Node 15 is connected to 30, 30 is
connected to 15 and 28, 28 is connected to node 30 and node 74, node 74 is
connected to node 28 and 51, 51 is connected to 74. Node 15 and 51 can be
the choice for starting BACKBONE leader. 15 is selected because its node id is
smaller than 51. 15 selects the next leader as 30, 30 selects the next leader 28,
operation continues in this way. The ending BACKBONE leader directs to its
LEAF with the smallest node id. These directions can be seen in Fig. 6.b with
bold directed lines.

LEAF leaders of a BACKBONE leader are directed to each other from small-
est to greatest. Node 19 is directed to 99, 13 is directed to 80, 65 is directed 98
as seen in Fig. 6.c with dotted directed lines.
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Cluster 6 Cluster 8
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Fig. 6. An Example Operation
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Lastly, LEAF leaders of different BACKBONE leaders are connected as in
Fig. 6.d. Each LEAF leader which can not find the next leader, searches for a
LEAF leader from the children of the previous BACKBONE leader of its parent
BACKBONE leader. 99 is connected to 13, 80 is connected to 40, 40 is connected
65, 98 is connected to 15 shown with dashed lines in Fig. 6.d.

3.4 Analysis

Theorem 1. Message complexity of the backbone formation algorithm is O(Kn).

Proof. Assume that we have n nodes in our network. K leaders flood the message
to the network. Total number of messages in this case is Kn which means that
message complexity has an upper bound of O(n).

Theorem 2. Time complexity of the backbone formation algorithm is O(Kn).

Proof. Assume that we have n nodes in our network. Flooding of K messages
to the network takes Kn time.

4 Results

We implemented the distributed backbone formation algorithm with the ns2
simulator. Clustering is obtained using the MCA algorithm. Cluster size can
be adjusted by the K heuristic of MCA. Position-based backbone formation
algorithm is implemented.

Fig. 7. Runtime Performance

Different size of flat surfaces are chosen for each simulation to create medium,
small and very small distances between nodes. Medium, small and very small sur-
faces vary between 310m * 310m to 400m* 400m, 410m * 410m to 500m* 500m,
515m * 515m to 650m * 650m respectively. Random movements are generated
for each simulation. Low, medium and high mobility scenarios are generated and
node speeds are limited between 1.0m/s to 5.0m/s, 5.0m/s to 10.0m/s, 10.0m/s
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to 20.0m/s respectively. K heuristic of merging clustering algorithm is changed
to obtain different number of clusterheads. Round-trip delay as measured against
the number of clusterheads, total number of nodes, mobility and surface area
are recorded. As depicted in Fig. 7, the time complexity increases linearly and at
worst, the backbone formation scheme is completed in 1.5s for a MANET with
100 nodes.

For a MANET with 50 nodes, number of clusterheads are selected from 3 to 8
to measure the round-trip delay in Fig. 8. A linear increase can be seen in Fig. 8
which starts from 35ms and ends in 65ms approximately.

Fig. 8. Round-trip delay against number of clusterheads

Fig. 9. Round-trip delay against number of nodes

Round-trip delay against total number of nodes is measured with constant 4
clusters and the total number of nodes are varied between 10 to 100 in Fig. 9.
Round-trip delay times increase linearly from 20ms to 60ms approximately as
shown in Fig. 9.

In small surface scenarios, the connectivity between nodes is higher because
of small distances between the nodes and the connectivity between nodes causes
a decrease in the routing delay. Fig. 10 shows the effects of distance between
nodes to round-trip delay of the ring.
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Fig. 10. Round-trip delay against surface area

Lastly, mobility parameter is changed to obtain the behavior of the algorithm
with respect to mobility. Our algorithm results in approximate round-trip delay
values for high mobile scenarios as shown in Fig. 11.

Fig. 11. Round-trip delay against Mobility

5 Conclusions

We proposed a new fully algorithm for backbone formation in MANETs and
illustrated its operation. Our original idea is the construction of backbone archi-
tecture as a directed ring. The second contribution is to connect the clusterheads
of a balanced clustering scheme which completes two essential needs of cluster-
ing by having balanced clusters and minimized routing delay. Besides these, the
backbone formation algorithm is fault tolerant as the third contribution. The
implementation results show that the algorithm is scalable in terms of its run-
ning time and round-trip delay against mobility, surface area, number of nodes
and number of clusterheads. We are planning to experiment various total order
multicast and mutual exclusion algorithms in such an environment where mes-
sage ordering and mutual exclusion are provided by the clusterheads on behalf
of the ordinary nodes of the MANET.
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Abstract. In the sensor networks, each device generates data of different sizes 
in the home networking and the industrial application according to their roles in 
the networks. In this paper, we propose a mechanism that provides 
differentiated services for the IEEE 802.15.4 sensor networks to improve the 
total throughput and the fairness of the channel. To provide differentiated 
services for each and every device, our mechanism adds different sizes of 
backoff period according to the size of packet that is generated by the device. 
The mathematical model based on the discrete-time Markov chain is presented 
and is analyzed to measure the performances of the proposed mechanism. 
Simulation results are also given to verify the accuracy of the analytical model. 
Finally, the analytical results show the improvement in the throughput and the 
fairness of the network which applies our mechanism. 

1   Introduction 

For the last few years, the researches on wireless sensor networks have been increased 
significantly. Terms such as pervasive computing and smart spaces are being used for 
describing future computing and communications. These concepts are adapted to our 
personal and business domains being densely populated with miniature sensors, which 
are constantly monitoring the environment and reporting the data to each other or to 
some central base stations. Sensor networks cover from small applications such as 
health monitoring to large applications like environment surveillance. In other words, 
it can be used widely in practical applications from home networking to industrial 
applications. The recent IEEE 802.15.4 standard for the low rate wireless personal 
area networks is considered as one of the technology candidates for wireless sensor 
networks, since it supports small, cheap, energy-efficient devices operating on battery 
power that require little infrastructure to operate, or none at all [1, 2].  

Applications of Sensor networks are mainly used for measurement of industries 
and have been grown with industrial development. In this reason, requirements of 
                                                           
* This research was supported by the MIC (Ministry of Information and Communication), 

Korea, under the ITRC (Information Technology Research Center) support program 
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sensor networks are increased continuously. Moreover, demands for large scale 
sensor networks which can interact with not a few of devices are also increased 
because of development of instruments and machines. But there are a few problems 
with IEEE 802.15.4 sensor network even though many suitable aspects for sensor 
networks with IEEE 802.15.4 are mentioned before. IEEE 802.15.4 sensor network 
did not have enough channel resource or bandwidth to adapt to large scale sensor 
networks. And a few problems may occur due to low channel data-rate of the standard 
in the network which supports many devices. It is easy to exceed channel data-rate 
when a few number of devices that have long size packets or those with short inter-
arrival rate increase in the network. For instance, in case of IEEE802.15.4 sensor 
network using 868-868.6MHz band, if there are equal to or more than only 5 devices 
that generates 512bits of data per two super-frames, total data rate of them exceeds 
data rate of a channel which is 20kbps. So there can be lots of collisions and 
performance of the network may be decreased easily.  

Like previously mentioned, IEEE 802.15.4 sensor network can be used in various 
areas. Therefore, each device in the IEEE 802.15.4 sensor network generates different 
data of different sizes according to their roles in the network. In this point of view, we 
propose a mechanism that provides differentiated services for IEEE 802.15.4 sensor 
networks to improve the performance of the network by using the aspect that each 
device generates different size of data respectively.  

We present the mathematical model for the proposed mechanisms based on IEEE 
802.15.4 sensor networks, which is based on the previous works of analyzing IEEE 
802.15.4 [2, 3] and IEEE 802.11[4]. We consider the beacon-enabled mode with 
slotted CSMA-CA algorithm in our model and assume the saturation conditions, i.e. 
each and every device always has packets waiting to be transmitted, for the 
performance analysis. The mathematical model is based on the discrete-time Markov 
chain in which each component of an element in state space is representing the 
situation of the head packet in the queue of a device. By analyzing the Markov chain, 
we obtain the access probability for the device and the probability that the medium is 
idle. Moreover, we obtain the saturation throughput and the drop probability.  

2   A Survey of Legacy 802.15.4 

In the beacon enabled networks, the PAN coordinator set superframes as a cycle of its 
channel time. Each superframe begins with the transmission of a network beacon in 
an active portion and an optional inactive portion. In the active portion of superframe, 
the coordinator interacts with its PAN and may enter a power saving mode during the 
inactive portion. The superframe duration, SD, is equal to the duration of the active 
portion of the superframe, which cannot exceed the beacon interval, BI. In the active 
portion, each superframe is divided into sixteen uniformly sized slots. The beacon 
frame is transmitted at the beginning of slot 0 which is followed by the contention 
access period (CAP) of the active portion. In each slot in CAP, the channel access 
mechanism is contention based using CSMA-CA access mechanism.  

In legacy IEEE 802.15.4, the basic time unit of MAC protocol is the duration of so-
called backoff period. In slotted CSMA-CA, there are channel access opportunities at 
the boundary of each backoff period. The actual duration of backoff period depends 
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on the frequency band in which 802.15.4 WPAN is operating. The standard allows the 
PAN to use either one of three frequency bands: 868-868.6, 902-928 and 2400-2483.5 
MHz. As in the case of other contention based access control schemes, the 
transmission will be attempted only when the medium is idle, but withheld if the 
channel is busy due to packet transmission or collision. 

Now we define three parameters to describe CSMA-CA protocol. NB denotes the 
number of times that the algorithm is required to backoff due to the unavailability of 
medium during channel assessment. Let CW be the contention window, i.e. the 
number of backoff periods that need to be clear of channel activity before the packet 
transmission can begin. Finally, BE denotes the backoff exponent which is related to 
the number of backoff periods that a device should wait before attempting to assess 
the channel.  

When packet arrives in the queue of device, MAC sublayer of the device sets the 
two parameters NB and CW by zero and 2, respectively. If the device operates on 
battery power, BE is set to 2 or to the constant macMinBE, whichever is less. 
Otherwise, it is set to macMinBE (the default value of which is 3). Then the algorithm 
locates the boundary of next backoff period. In next step, the algorithm attempts to 
avoid collisions by generating random waiting time in the range of [0,2 1]BE − . When 

the waiting period is over, MAC sublayer needs to perform CW clear channel 
assessment (CCA) procedures, transmit the frame, and optionally wait for the 
acknowledgment. If the remaining time within the CAP area of the current superframe 
is suitably long to accommodate all of these, MAC sublayer will perform the first 
CCA to see whether the medium is idle. If the remaining time is not sufficient, MAC 
sublayer will pause until the next superframe. If the channel is busy, the values of NB 
and BE are increased by one (but BE cannot exceed macMaxBE, the default value of 
which is 5), while CW is reset to 2. If the number of retries is below or equal to 
macMaxCSMABackoffs (the default value of which is 5), the algorithm generates 
random waiting time according to current values of NB and BE, otherwise the 
algorithm terminates with a channel access failure status. The failure will be reported 
to the higher protocol layers, which can then decide whether to attempt the 
transmission as a new packet again or not. If the channel is idle during CCA 
procedures, the value of CW is decreased by one, and the channel is reviewed once 
more. When the value of CW becomes zero, the packet transmission may begin, 
provided the remaining number of backoff periods in the current superframe suffices 
to handle both the packet and the subsequent acknowledgment. If this is not the case, 
the packet transmission is postponed until the beginning of the next superframe. 

3   Service Differentiation Mechanism 

Every sensor node has different role in the network and generates different data 
according to their roles respectively. In other words, every device in the network can 
generate different sizes of packet. We are proposing a mechanism that divides every 
device into multiple groups according to their packet sizes and gives different services 
to every group to enhance performance of the network. Before describing the 
mechanism in detail, we first state several assumptions and a definition of service.  
We are considering the IEEE 802.15.4 sensor network model that operates in the 
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beacon-enable mode with slotted CSMA-CA algorithm. In this paper we only consider 
contention access period (CAP) and analyze the proposed mechanism in the saturation 
mode. When the transmitted packet collides, the packet is dropped and the device tries 
to transmit a new packet in the head of the queue. Packet size of each device will not be 
changed because the roles of devices will not change from early stage of network 
forming phase commonly in sensor network. We define the service differentiation as 
giving different amounts of channel resources to devices in the network with 
probability. In the following we describe the proposed mechanism in detail. 

3.1   Service Differentiation Mechanism Based on Packet Size 

There are plenty of collision occurrences in networks like the IEEE 802.15.4 Sensor 
network which have low data-rate or channel resource. So it is effective to reduce 
collision occurrences for enhancing performance of the networks. There are two 
methods which reduce collision occurrences in the networks. First method is giving 
differentiated services to the devices in the networks. Second method is reducing 
wasted time made by collisions of large packet. To satisfy both methods we make a 
new mechanism which is a new operation role of all devices in IEEE 802.15.4 sensor 
network.  

All devices within the network are divided into multiple groups according to size 
of packet generated by them initially. Namely, devices that generate packets of 
similar size are gathered into a group. In the next, every group is given additional 
backoff periods for service differentiation based on their average packet size. The 
longer an average packet size is generated by the group, more number of the 
additional backoff period they must take. In this paper, we express the additional 
backoff period of the ‘g’ group as [ ]T g  for mathematical analysis, and all devices 
which are included in the same group get equal number of additional backoff period. 

[ ]T g can be obtained from the average number of slots that is taken to transmit packet 
of the device in the ‘g’ group. So the size of [ ]T g is in proportion to the average 
packet size of the ‘g’ group.  

A device in ‘g’ group will perform the first clear channel assessment (CCA) 
procedure, and if a channel is sensed busy, it adds the additional backoff period as 
many as [ ]T g . More specifically, the device in ‘g’ group will initially choose a 

random waiting period according to backoff exponent (BE) before the CCA procedure 
in every backoff stage. The device performs the first CCA procedure when the 
waiting period is over. If the channel is sensed idle as a result of the first CCA 
procedure, the device performs a second CCA procedure like legacy IEEE 802.15.4 
standard. However, if the channel is sensed busy after the first CCA procedure, the 
device adds backoff period as long as [ ]T g  unlike legacy mechanism which makes 

the device enter the second CCA procedure directly. When the additional waiting 
period becomes zero, the device enters second CCA procedure and it will transmit 
packet if channel is idle. However, if the channel is sensed busy during the second 
CCA procedure, the device will enter the next backoff stage and will generate a new 
random waiting time to delay the transmission of packets. The mechanism will work 
again equally in every backoff stage. So this mechanism enables every device to 
receive differentiated service accordingly as the average packet size of their groups 
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because more number of additional backoff period a device take, it have to wait more 
time in stochastically before transmit packets than others.  

From our mechanism, it is possible to give different contention rate to each group 
through service differentiation. It can reduce the total collision rate of the sensor 
network, because the devices which receive better services will compete with the 
smaller number of devices than legacy mechanism that have the same contention 
level. Also, devices that receive worse services will yield channel access to better 
serviced devices and support them to access channel without a hitch. And it is also 
possible by using our mechanism to give lower service to the device which would like 
to transmit the longer sized packet. There will be fewer collisions generated during 
transmissions of longer size packets, which can reduce the wasted time generated by 
collisions. In other words, there would be more opportunities to transmit packets if the 
occupied time of the channel generated by collisions is reduced, which can enhance 
the performance of IEEE 802.15.4 sensor network. 

Total throughput of the network can be enhanced by two methods we mentioned. 
In addition, when we defined that fairness of network is generally examined by 
throughput of each device, proposed mechanism also can enhance the fairness of the 
network. Because proposed mechanism gives more channel resource to groups which 
are generate packets of short size, their performance will be improved more than other 
groups which are generate packets of long size. In this reason, the differences between 
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Fig. 1. Markov Chain Model 
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total throughputs of groups can be decreased. More detailed explanations about the 
proposed mechanism are presented in following sessions with the flowchart and the 
Markov chain model of the mechanism. 

4   Analytical Model 

To analyze the proposed scheme, we introduce the following three random variables 
for a given device in the priority ‘g’ group. Let ( , )n g t , ( , )c g t , and ( , )b g t be the 

stochastic processes representing the value of NB, CW, and the value of the backoff 
period, respectively, at time t. Note that NB represents the backoff stage within the 
range of [0, 1]m + , m macMaxCSMABackoffs=  whose default value is 4 in IEEE 

802.15.4 standard.  Furthermore, throughout this paper, ‘g’ means gth group, and 
gives the different priorities taking integer values in [0, ]G , where ( 1)G +  is the 

number of groups with different packet size in the network. The process 
{( ( , ), ( , ), ( , ))}n g t c g t b g t  forms a multi-dimensional Markov process defining the 

state of the packet at the backoff unit boundaries. Since we are assuming that each 
device has its own priority according to their group which is not changeable, each of 
the processes ( , )n g t , ( , )c g t , ( , )b g t can be simplified as ( )n t , ( )c t , ( )b t . ( )n t  

belongs to the range of [0, 1]m +  in integer value. ( )c t may be 0, 1, or 2. Value of 

( )b t are differed according to the value of ( )c t . 

0 ~ 1, [0 , ] , ( ) 1
( )

[ ] , [0 , ] , ( ) 2
iW i m if c t

b t
T g g G if c t

− ∈ =
=

∈ =
  (1) 

where 0 2BEW =  , 02i
iW W= . 

Like previously mentioned, [ ]T g  means size of additional backoff period of group 

‘g’. Note that [ ]T g  is drawn by 

[ ] ( ) ( /1 )
gH L ACK ACKT g T T T t Unit backoff periods sγ= + + + + ×        (2) 

where HT , 
gLT , γ , ACKT and ACKt  denote the time to transmit the header (including 

MAC header, PHY header), the average time to transmit the packet of devices in 
group ‘g’, propagation delay, the time to transmit the ACK, the time to receive first 
bit of ACK. 

The state transition diagram of these states is illustrated in Fig. 1. For the simplicity 
of the notations, we use the transition probabilities ( , , 1| , , )P i j k i j k−  instead 

of ( ( 1) , ( 1) , ( 1) 1 | ( ) , ( ) , ( ) )P n t i c t j b t k n t i c t j b t k+ = + = + = − = = = . 

We assume that there is a total number of devices, n , which is composed of ln , 

[0, ]l G∈  devices in group l  with their l st priority. Furthermore, we assume that 

each of them always has a packet ready to be transmitted. Then the one-step transition 
probabilities are given as follows: 
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Note that all of the states are positive recurrence and the system is stable. 
Therefore, there exist the stationary probabilities , ,{ }i j kb of the discrete-time Markov 

chain which can be defined as  
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Due to the chain regularities, the following relationships hold: 
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Sum of all the stationary probabilities in the Markov chain will become 1. So the 
value of 0,0,0b can be obtained through the following normalization: 

1 [ ]

,0,0 ,2, ,1, ,1,0 1,0,0
0 0 0 0 1 0

1
iW T gm m m m

i i k i k i m
i i k i k i

b b b b b
−

+
= = = = = =

+ + + + =  (6) 

and subsequently we can obtain 0,0,0b  by substituting Eq. (5) into Eq. (6). 

0,0,0 0
0 0

1

2 /{ ( 2 1)(1 ) 2( [ ](1 ) 1 ) (1 )

2(1 ) }

m m
i i i

g g g g g
i i

m
g

b W T gβ β α β β

β
= =

+

= + − + − + + −

+ −
7
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By substituting Eq. (7) into each equation in Eq. (5), we obtain the stationary 
probabilities , ,{ }i j kb . 

With these stationary probabilities, we find the probability that the device transmits 
a packet at the boundary of a backoff period which will be denoted by τ . Let gτ  be 

the probability that a device in the group ‘g’ start transmission during a generic slot 
time. Then we have 

,0,0
0

m

g i
i

bτ
=

= . 8

Since all groups have different priority, elements like [ ]T g , gα and gβ  are 

different according to group.  gα and gβ  means the probabilities that the device 

senses channel is idle in the first and second CCA procedure respectively. And also 
these probabilities mean that the channel is idle at the end of backoff counting or 

other 
0,

( 1)
G

g i
i i g

n n
= ≠

− +  devices are not transmitting during CCA procedures of the 

device in the group ‘g’. Assuming the average slot times that are used by devices in 
the network to transmit packets isT , gα can be described by 

1

00,

1 (1 (1 ) (1 ) ) , [0, ],g i

G G
n n

g g i l
li i g

T g G n nα τ τ−

== ≠

= − − − − ∈ =∏ . 9

Because of gβ is depend on gα , gβ  can be obtained from Eq. (9). So gβ  can be 

described as 

1

0,

1

00,

(1 ) (1 )

1 (1 (1 ) (1 ) ) , [0, ],

g i

g i

G
n n

g g i
i i g

G G
n n

g i l
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T g G n n

β τ τ

τ τ

−

= ≠

−

== ≠

= − −

+ − − − − ∈ =

∏

∏
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5   Performance Analysis 

5.1   Throughput 

Let IP  be the probability that the channel is idle because of all devices in network 

don’t start transmission. So this probability can be calculated as followed: 

00

(1 ) , .l

G G
n

I l l
ll

P n nτ
==

= − =∏ . 11

Let sP  and ,s gP  be the probabilities that a successful transmission occurs by a 

device in any priority group and a successful transmission occurs by device in the 
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priority ‘g’ group in a time slot, respectively. Then these probabilities are calculated 
as followed: 

0 0 00

(1 ) ,
1 1

h
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s h I j
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n n
P P n n and

τ ττ
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Let BP  be the probability that there is at least one transmission in the considered 

slot time. Then it is given by  

00

1 1 (1 ) , .l

G G
n

B I l l
ll

P P n nτ
==

= − = − − =∏ 14

Then B sP P− is the probability that the channel is sensed busy because of the collision 

generated from any priority groups. 
Using these equations from Eq. (11) to Eq. (14), we can calculate the normalized 

saturation throughput for the ‘g’ group, gS . 

,

( )

( )

( )

g

s g g

I s s B s c

E payload transmitted in a slot time
S

E length of a slot time

P L

P PT P P Tδ

=

=
+ + −

15

Here sT is the average time when the channel is busy because of a successful 

transmission, and cT is the average time when the channel is busy by each station 

during a collision. δ is the duration of an empty slot time. gL means average payload 

sizes of devices in ‘g’ group. sT and cT can be expressed by 

( )s H E L ACK ACKT T T T tγ= + + + + 16

( )
,c H E L

T T T γ∗= + + 17

where *
( ) ( *), , , , , ,H E L ACK ACK E LT T T t L L and Tγ denote the time to transmit the 

header (including MAC header, PHY header), time to transmit average payload size 
of all devices in the network, propagation delay, the time to transmit the ACK, the 
time to receive first bit of ACK from the receiver device, payload size of each device 
in the network, payload size of each device in the network during a collision, the 
average time to transmit payload during a collision and the symbol E  stands for 
expectations. 

5.2   Packet Drop Probability 

In this paper we are assuming that if a collision occurs, the packet is dropped and next 
packet of boundary of queue will be prepared for transmission. We are assuming this 
for the simplicity of analysis. Therefore, for the group ‘g’, the probability to be 
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dropped in a time slot equals to the probability that there are at least two devices 
which occur collision, which can be expressed as followed: 

1

, ,
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2 0
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g l
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τ τ τ
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= =
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+ − ∈ =
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6   Analytical and Simulation Results 

In this section we compare the analytic and simulation results to verify the accuracy 
of the analytical model of the proposed mechanism and present the performance 
analysis of that mechanism. The analytic results show the effect of the proposed 
mechanism. Simulations are performed using a Matlab-version6.5 simulator. The the 
analytic results without losing the comprehensive analysis of the model. The 
following assumptions are applied with the saturation mode which is considered in 
this paper. We assume that the packet sizes of devices in each group are constant. In 
addition, we assume that packets for ACK are not collided.  
 

Table 1. The parameter sets used in the analytical analysis and simulation 

Group 1 26 bytes 
Group 2 52 bytes Packet 

payload 
Group 3 104 bytes 

Channel bit rate 20 kbits/sec 
ACK 40 bits 

MAC header 200 bits 
macMaxCSMABackoffs 4 

PHY header 48 bits 
Unit backoff period 20 symbols 
Modulation symbol 1 Data bit in 860MHz band 

Table 2. Comparison of throughputs on the legacy 802.15.4 with varying number of devices 
(unit: bits/sec) 

The number of devices 
for each group 

Analysis Simulation 

Groups Groups Groups 
G1 G2 G3 G1 G2  G3  G1 G2  G3 
5 5 5 667.3 1,334.6 2,669.3 660.1 1,342.3 2,753.7 

10 10 10 509.5 1,019.1 2,038.3 523.7 986.0 2,015.9 
15 15 15 423.5 847.1 1,694.3 407.0 848.7 1,632.2 
20 20 20 367.1 734.4 1,468.8 370.2 710.2 1,430.9 
25 25 25 326.9 653.9 1,307.7 339.5 669.1 1,257.0 
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Table 3. Comparison of throughputs on the proposed mechanism with varying number of 
devices (unit: bits/sec) 

The number of devices 
for each group 

Analysis Simulation 

Groups Groups Groups 
G1 G2 G3 G1 G2  G3  G1 G2  G3 
5 5 5 667.3 1,334.6 2,669.3 660.1 1,342.3 2,753.7 

10 10 10 509.5 1,019.1 2,038.3 523.7 986.0 2,015.9 
15 15 15 423.5 847.1 1,694.3 407.0 848.7 1,632.2 
20 20 20 367.1 734.4 1,468.8 370.2 710.2 1,430.9 
25 25 25 326.9 653.9 1,307.7 339.5 669.1 1,257.0 

In order to compare the network’s performance of using the proposed mechanism 
and that of using the legacy mechanism, we made two analytic models for the both 
mechanisms. Analytic model of the legacy mechanism is made from the previous 
work of analyzing IEEE 802.15.4 [2] with a little modifying. All devices in the 
network are divided into multiple groups based on packet size of each device. But 
there is no priority for each group and all groups have the same opportunities for 
accessing to the channel. Analytic model for the proposed mechanism are presented in 
previous session. For verifying the accuracy of the analytic models, the comparisons 
of throughputs with a varying number of devices within each group are presented in 
Table 2 and Table 3. The packet size of each group is set by Table 1. As shown in the 
Table 2 and Table 3, the results of simulation are almost the same as those of analytic 
results. All simulation results in Table 2 and Table 3 are obtained with 97.89% and 
98.24% Confidential Rates respectively. In the table the Confidential Rate (CR) 
between analytical and simulation results are given, which are calculated using the 
following equation:  

[
1 100%

[ ]
anal sim

anal

E S S
CR

E S

−
= − × . 

Since the differences between the analytical and simulation results are negligible, 
in the remained figures we present the analytical results only. In each figure from Fig. 
2 to Fig. 5, x axis denote the number of devices at each group. We assume the number 
of devices in each group is all the same in the figures of analytical results. For 
example, if x is 5, there is the total number of 15 devices because we there are three 
groups in each figure with characteristics listed in Table 1. And we named the 
proposed mechanism as SDiPS(Service Differentiation by Packet Size). 
τ  in Fig. 2 represents the probabilities of trying transmission for each group 

characterized by the packet sizes. In the figure, y axis denote τ at each group. The 
value of τ  is drawn by many elements of the network such as the number of devices 
in each group, the priority of the group, the size of backoff period of each device and 
so on. In brief, τ for each group in the SDiPS is different each other as we can see 
from Fig. 2 because the device of every group in the SDiPS has different opportunity 
to transmit packet by different number of additional backoff periods. We analyzed 
that the lowered τ  values are drawn from lowered probability of sensing idle channel 
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during CCA procedure of the device which is one of the effects of service 
differentiation. And we expect that there will be more lowered τ  values if there is 
more degree of service differentiations. SDiPS’s lowered τ value means there are 
lower competitions for obtaining an access to the channel than the legacy mechanism 
and it can relief tension of the channel. Especially, the devices of groups with long 
packet size try a transmission with low probabilities. We think it is important factor to 
use channel resources efficiently.  

 

 

Fig. 2. τ  (Probability of trying transmission) 

With previous τ  values, we already know that the channel access attempts are 
alleviated due to the service differentiation in the SDiPS. As a result of that, the 
collision probabilities of each group in the SDiPS shown in Fig. 3 are decreased in 
compared with the legacy mechanism. And the low access attempts of the group with 
long packet size result in fewer occurrences of collision during the transmissions of long 
size packets in the SDiPS. Therefore, using the SDiPS can reduce an average collision 
time. And it enables the devices in the network to make better use of channel resources. 

 

 

Fig. 3. Collision probability 

The throughputs of each group in the legacy mechanism are different because the 
packet sizes are different while successful transmission probabilities of each device 
are the same, in Fig. 4. The total throughput of the SDiPS that sum up throughputs of 
each group is improved because the decrease of total collision probability presented in 
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Fig. 3. And the reducing collision occurrences during transmit large size packet can 
generate spare time to transmit more data during the same time. The throughput of the 
group with short packet size is improved since the group is given more opportunities 
by the service differentiation in the SDiPS.  

Fig. 4. Throughput 

The throughput difference shows that the fairness property is improved after 
applying the SDiPS in Fig. 5. The throughput difference subtracts the throughput of 
group 3 from that of group 1. The decrease of throughput difference means that all 
devices share the channel resource well. And it decreases as the number of device 
increase, which means that using the SDiPS is more useful for the fairness when there 
are more devices in the channel. 

 

Fig. 5. Throughput Difference 

Table 4. Gain between the total throughputs of the legacy mechanism and the SDiPS 

The number of devices for each group Analysis 

Group1 Group2 Group3 Proposed Legacy Gain 
5 5 5 5,347.7 4,671.3 1.1447     

10 10 10 4,123.0 3,567.0 1.1558 
15 15 15 3,447.2 2,965.0 1.1626 
20 20 20 3,001.7 2,570.4 1.1678 
25 25 25 2,680.5 2,288.5 1.1713 
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Finally gain between the total throughputs of the legacy mechanism and the SDiPS 
are showed in Table 4. Gain is obtained from dividing SDiPS total throughput by total 
throughput of legacy network. As number of each device increase, the gain is also 
increased nearly from 14% to 17%. This means SDiPS is helpful to sensor network 
which interact with many devices in it. And we think that the results of this paper 
deserve to be considered with industrial development. 

7   Conclusion 

In this paper, we propose a mechanism for the IEEE 802.15.4 sensor networks which 
provides differentiated services to each and every device by adding different size of 
backoff period on each device according to the size of packet generated by the device. 
The mathematical model based on the discrete-time Markov chain is provided for 
analyzing the performance of the proposed mechanism. The comparison of analytical 
and simulation results are given to verify the accuracy of the numerical model. The 
analytical results of several performance measurements are given to analyze the effect 
of the proposed mechanism on the IEEE 802.15.4 sensor networks. 

We could summarize the following benefits on IEEE 802.15.4 sensor network 
when proposed mechanism is applied to the network. First, the throughput of IEEE 
802.15.4 sensor network can be improved. The collision probability can be reduced 
by providing contention rate differently to each device. Moreover, the wasted time 
generated by collision can be reduced by reducing the occurrences of collision during 
the transmissions of long size packets. Also, these profits of proposed mechanism are 
more effective as the number of devices increase. Second, the fairness property is 
improved because there are remarkable increases of opportunities to transmit short 
packets, while there are not marked increases of those to transmit long packets. 
Therefore the mechanism can decrease throughput differences between group of short 
packet and group of long packet. This means that all devices share the channel 
resource more equally. 

However, there is a short cut of using our mechanism when all devices in network 
generate similar or the same sizes of packets. In that situation, our mechanism can not 
provide service differentiation quite well to devices in the network and there may be 
not much improvement. As for further work, the delay characteristics should be 
analyzed for each group in order to estimate how much time is taken for the devices 
to use the proposed mechanism to transmit packets.
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Abstract. In this work, we present leader election protocols for single-
hop, single-channel noisy radio networks that do not have collision detec-
tion (CD) capabilities. In most leader election protocols presented so far,
it is assumed that every station has the ability to transmit and monitor
the channel at the same time, it requires every station to be equipped
with two transceivers. This assumption, however, is unrealistic for most
mobile stations due to constraints in cost, size, and energy dissipation.
Our main contribution is to show that it is possible to elect a leader in an
anonymous radio network where each station is equipped with a single
transceiver. We first present a leader election protocol for the case the
number n of stations is known beforehand. The protocol runs in O(log f)
time slots with probability at least 1− 1

f
for any f > 1. We then present

a leader election protocol for the case where n is not known beforehand
but an upper bound u of n is known. This protocol runs in O(log f log u)
time slots with probability at least 1 − 1

f
for any f > 1. We also prove

that these protocols are optimal. More precisely, we show that any leader
election protocol elect a leader with probability at least 1 − 1

f
must run

in Ω(log f) time slots if n is known. Also, we proved that any leader
election protocol elect a leader with probability at least 1 − 1

f
must run

in Ω(log f log u) time slots if an upper bound u of n is known.

1 Introduction

In recent years, wireless and mobile communications have seen an explosive
growth both in terms of the number of services provided and the types of tech-
nologies that have become available. Indeed, cellular telephony, radio paging,
cellular data, and even rudimentary cellular multimedia services have become
commonplace and the demand for enhanced capabilities will continue to grow
into the foreseeable future [1,4,5,11,13,24]. It is anticipated that in the not-so-
distant future, mobile users will be able to access their data and other services
such as electronic mail, video telephony, stock market news, map services, elec-
tronic banking, while on the move [5,13,15]. In a time slot, a station can trans-
mit or listen to the channel using a transceiver. Note that, a transceiver can
� Work supported in part by JSPS Grant-in-Aid for Scientific Research.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 246–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Randomized Leader Election Protocols in Noisy Radio Networks 247

perform one of the transmitting and listening operations in a time slot. Should a
station need to do both operations at the same time, two transceivers are neces-
sary. However, this assumption is unrealistic as most mobile devices are usually
equipped with a single transceiver due to stringent constraints in size and power
consumption.

Unlike the well-studied cellular systems that assume the existence of a robust
infrastructure, radio networks must be rapidly deployable, possibly multihop,
self-organizing, and capable of multimedia service support. Radio networks suit
well the needs specific to disaster-relief, search-and-rescue, law-enforcement, col-
laborative computing, and other special-purpose applications [9,10,14,17,18].

A radio network is a distributed system with no central arbiter, consisting
of n radio transceivers, henceforth referred to as stations. We assume that the
stations are identical and cannot be distinguished by serial or manufacturing
number. As customary, time is assumed to be slotted and all the stations have
a local clock that keeps synchronous time, perhaps by interfacing with a GPS
system. The stations are assumed to have the computing power of a usual laptop
computer; in particular, they all run the same protocol and can generate random
bits that provide local data on which the stations may perform computations.

We employ the commonly-accepted assumption that when two or more sta-
tions are transmitting on a channel in the same time slot, the corresponding
packets collide and are lost. In terms of their collision detection capabilities,
the radio networks come in three flavors. In the radio network with collision
detection (CD) the status of the channel is:

NULL: if no station transmitted on the channel in the current time slot,
SINGLE: if one station transmitted on the channel in the current time slot,
COLLISION: if two or more stations transmitted in the current time slot.

In the radio network with no collision detection (no-CD) the status of a radio
channel is:

NOISE: if either no station transmitted or two or more stations transmitted
in the current time slot, and

SINGLE: if one station transmitted in the current time slot.

In other words, the radio network with no-CD cannot distinguish between no
transmissions on the channel and the result of two or more stations transmitting
at the same time. Several workers have argued that from a practical standpoint
the no CD assumption makes a lot of sense since in many situations, especially
in the presence of noisy channels, the stations cannot distinguish between the
no transmit case and the collision of several packets that arises when several
stations attempt to broadcast at once [2,3].

Note that, if a station has two transceivers, it can send a packet and can
detect the status of the channel in the same time slot. However, if a station with
a single transceiver sends a packet, it cannot detect the status of the channel.

The leader election problem asks to designate one of the stations as leader. In
other words, after performing the leader election protocol, exactly one station
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learns that it was elected leader, while the remaining stations learn the identity
of the leader elected. The leader election problem is fundamental, for many
protocols rely directly or indirectly, on the presence of a leader in a network
[21,25]. Further, once a leader is available, the radio network with CD can be
simulated by the radio network with no-CD with a constant factor slowdown
[16].

It is customary to address the leader election problem on the radio network
in three different scenarios:

known n (Scenario 1): Every station knows in advance the number n of
stations;

known upper bound of n (Scenario 2): The upper bound u of n is known
in advance. More specifically, there exists a positive integer u such that u ≤ n
is guaranteed, and every station knows u.

unknown n (Scenario 3): The number n of stations is not known before-
hand.

It is intuitively clear that the task of leader election for Scenario 1 is the easier
and the hardest in Scenario 3, with Scenario 2 being in-between the two.

Several randomized protocols for single-channel radio networks have been pre-
sented in the literature. Metcalfe and Boggs [19] presented a simple leader elec-
tion protocol for the radio network with no-CD for known n that is guaran-
teed to terminate in O(1) expected rounds. For unknown n, several protocols
have been proposed for the radio network with CD and no-CD. Willard [25]
showed that the leader election on the radio network with CD can be solved
in log log n + o(log log n) expected time slots. Later, Nakano and Olariu [21]
presented two leader election protocols for the radio network with CD that ter-
minate in O(log n) time slots with probability at least 1− 1

n and in O(log log n)
time slots with probability at least 1 − 1

log n . Recently, Nakano and Olariu [22]
improved the protocol of [21] showing that the leader election on the radio net-
work with CD can be performed in log log n + 2.78 log f + o(log log n + log f)
time slots with probability at least 1 − 1

f for every f > 1. Hayashi et al. [16]
proposed a leader election protocol for the radio network with no-CD that ter-
minates in O((log n)2) time slots with probability at least 1 − 1

n . Nakano and
Olariu [23] have presented that a leader can be elected in O(log f) time slots
with probability at least 1− 1

f for every f > 1 if every station knows the number
of stations.

All of the above protocols assumes that every station is equipped with two
transceivers, and transmit and monitor the channel at the same time. This as-
sumption, however, is unrealistic for most mobile stations due to constraints in
cost, size, and energy dissipation. Quite recently, we have shown that, even if
every station is equipped with a single transceiver, a leader can be elected in
log log n + o(log log n) + O(log f) time slots with probability at least 1 − 1

f for
every f > 1 in the radio network with collision detection capabilities (CD) [6] .

Our main contribution is to show that it is possible to elect a leader in an
anonymous radio network with no collision detection capabilities (no-CD) where
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each station is equipped with a single transceiver. We first present a leader
election protocol for the case the number n of stations is known beforehand.
The protocol runs in O(log f) time slots with probability at least 1− 1

f for any
f > 1. We then present a leader election protocol for the case where n is not
known beforehand but an upper bound u of n is known. This protocol runs in
O(log f log u) time slots with probability at least 1− 1

f for any f > 1. We prove
that these protocol are optimal. More precisely, we show that any leader election
protocol elect a leader with probability at least 1− 1

f must run in Ω(log f) time
slots if n is known. Also, we have proved that any leader election protocol elect
a leader with probability at least 1− 1

f must run in Ω(log f log u) time slots if
an upper bound u of n is known.

2 A Refresher of Basic Probability Theory

This section offers a quick review of basic probability theory results that are
useful for analyzing the performance of our randomized leader election protocols.
For a more detailed discussion of background material we refer the reader to [20].

Throughout, Pr[A] will denote the probability of event A. For a random vari-
able X , E[X ] denotes the expected value of X . Let X be a random variable
denoting the number of successes in n independent Bernoulli trials with param-
eters p and 1− p. It is well known that X has a binomial distribution and that
for every r, (0 ≤ r ≤ n),

Pr[X = r] =
(

n
r

)
pr(1− p)n−r.

Further, the expected value of X is given by

E[X ] =
n∑

r=0

r · Pr[X = r] = np.

For all n ≥ 2, we have the inequality

1
4
≤ (1− 1

n
)n <

1
e

< (1− 1
n

)n−1 ≤ 1
2
,

where e = 2.71828 · · · is the base of the natural logarithm. For later reference,
we state the following result.

Lemma 1. Let X be a random variable taking on a value smaller than or equal
to x(f) with probability at most f , (0 ≤ f ≤ 1), where x is a non-decreasing
function. Then, E[X ] ≤ ∫ 1

0 x(f)df .

3 Randomized Leader Election for Known n (Scenario 1)

The main goal of this section is to provide leader election protocols for radio
networks where the number n of stations in known beforehand.
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Let U be a set of all stations. We assume that U has at least two stations,
that is, |U | = n ≥ 2. If U has a single station, the unique station can be elected
as a leader immediately without any broadcast and computation.

Let A and B be disjoint subsets of U , that is, A ⊆ U , B ⊆ U , A ∩ B = ∅,
and |U | = n holds. Also, let C = U −A −B be the complement of A ∪B. The
following protocol Leader Election(A,B) finds a leader in three time slots if
|A| = |B| = 1 and a single station station in A is declared as a leader.

Protocol Leader Election(A,B)
Time Slot 1: Every station in A broadcasts on the channel. Stations in B and

C monitor the channel.
Time Slot 2: Every station in B broadcasts on the channel if the status of the

channel at time slot 1 is SINGLE. Stations in A and C monitor the channel.
Time Slot 3: Every station in A broadcasts on the channel if the status of the

channel at time slot 2 is SINGLE. Stations in B and C monitor the channel.

Clearly, if |A| = 1 and |B| = 1 then the status of the channel in both time
slots 2 and 3 is SINGLE. Otherwise, that is, |A| �= 1 or |B| �= 1 then the status
of the channel in these time slots is NOISE. Thus, if the status of the channel
in time slot 2 is SINGLE, a single station in A declared as a leader and stations
in C learn that a leader is elected and they are not leader. If the status of the
channel in time slot 3 is SINGLE the unique station in B learns that a leader
has been elected.

The readers may think that the first time slots are sufficient to elect a leader
and time slot 3 is not necessary. Note that all stations in U need to know if the
leader has been elected. Thus, we need time slot 3 to let stations in B learn the
identity of the leader elected.

The following protocol Election(n) elects a leader.

Protocol Election(n)
Step 1 Every station flips a fair coin and belongs to A with probability 1

n .
Step 2 Every station in U−A flips a fair coin and belongs to B with probability

1
n−1 .

Step 3 Execute Leader Election(A,B).

Steps 1 and 2 need no broadcast time slots, and Step 3 uses three time slots.
Thus, Randomized Election(n) runs in three time slots. Also, we can prove
that |A| = |B| = 1 with probability at least 1

e2 as follows. Since |A| follows the
n independent Bernoulli trials with parameter 1

n , from (1) the probability that
|A| = 1 is

Pr[|A| = 1] =
(

n
1

)
1
n

(1− 1
n

)n−1 = (1 − 1
n

)n−1 >
1
e
.

Suppose that |A| = 1. Similarly, the probability that |B| = 1 is

Pr[|A| = 1 | |B| = 1] =
(

n− 1
1

)
1

n− 1
(1− 1

n− 1
)n−2 = (1− 1

n− 1
)n−2 >

1
e
.
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Thus, the probability that |A| = |B| = 1 is

Pr[|A| = |B| = 1] = Pr[|A| = 1] · Pr[|A| = 1 | |B| = 1] >
1
e2

.

Therefore, a single trial of Election(n) elects a leader with probability at least
1
e2 .

Suppose that Election(n) is repeated until |A| = |B| = 1 and a leader is
elected. We will evaluate the number of time slots spent to elect a leader. Suppose
that Election(n) are repeated t times. All of the t executions of Election(n)
fail to elect a leader leader is at most (1 − 1

e2 )t. It follows that with probability
exceeding 1 − (1 − 1

e2 )t the protocol elects a leader in at most t time slots. Note
that 1− 1

e2 = 0.86466 · · ·. Let f be a real number satisfying 1
f = (1− 1

e2 )t. Then,
t = O(log f) holds. Hence, the protocol terminates, with probability exceeding
1− 1

f , in O(ln f) time slots. Thus, we have the following result.

Theorem 1. Election(n) succeeds in electing a leader with probability at least
1
e2 . Also, by repeating Election(n) a leader can be elected in O(log f) time slots,
with probability at least 1− 1

f for any f > 1.

From Lemma 1, the expected running time slots of Election(n) is
∫ 1

0
log fdf =

O(1).
We also prove the optimality of Election(n). To complete the leader elec-

tion, the status of the channel must be SINGLE in at least one time slot. Let U
(|U | = n ≥ 2) be a set of all stations. Suppose that every station broadcast with
probability p in the first time slot. Let X be the random variable denoting the
number of stations that broadcast to the channel. Then, the status of the channel
is SINGLE with probability

Pr[X = 1] =
(

n
1

)
p(1− p)n−1 = np(1− p)n−1.

The derivative of Pr[X = 1] for p is

d Pr[X = 1]
dp

= n(1− p)n−1 − np(1− p)n−2 = n(1− np)(1− p)n−2

We have d Pr[X=1]
dp = 0 when np = 1. Thus, Pr[X = 1] is the maximum when np =

1 and Pr[X = 1] ≤ 1
2 for every n (≥ 2) and p (0 ≤ p ≤ 1). The equality holds when

n = 2 and p = 1
2 . Therefore, the status of the channel is SINGLE with probability

no more than 1
2 . We will show that, for any leader election protocol in the radio

network with no CD, the status of the channel is SINGLE with probability at most
1
2 in every time slot.

In the leader election protocol, every station can have a history which is repre-
sented by a sequence of bits, it can have no other information. At the beginning of
the k-th time slot, every station has a history of k − 1 bits such that, if it broad-
cast in j-th (1 ≤ j ≤ k− 1) time slot, the j-th bit is 1, and if it did not broadcast,
the j-th bit is 0. Then, the leader election protocol can be simply represented by
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a function p : {0, 1}∗ → [0, 1], where {0, 1}∗ denotes the set of all bits of length
at least 0 and [0, 1] denotes a set of all real numbers from 0 to 1. For example, if a
station has broadcast at time slot 1 and has not broadcast at time slots 2 and 3,
then it broadcasts at time slot 4 with probability p(100). Let q : {0, 1}∗ → [0, 1]
be the function such that a station has a history h with probability q(h). Clearly,
q(ε) = 1, q(0) = p(0), q(1) = p(1), q(00) = q(0) · (1 − p(0)), q(01) = q(0) · p(0),
where ε denotes a sequence of bits with length 0. In general, for every h ∈ {0, 1}∗
and x ∈ {0, 1},

q(h0) = q(h) · (1− p(h))
q(h1) = q(h) · p(h)

holds. The probability s(k) that a particular station broadcasts at time slot k is

s(k) =
∑

h∈{0,1}k−1

q(h) · p(h).

Clearly, for all k ≥ 1, 0 ≤ s(k) ≤ 1 holds. Let Xk be the random variable denoting
the number of stations that broadcast at time slot k. Then, the probability that
the status of the channel at time slot k is SINGLE is

Pr[Xk = 1] =
(

n
1

)
s(k)(1− s(k))n−1 ≤ 1

2
.

Therefore, the status of the channel is SINGLE with probability at most 1
2 for

every time slot until the leader is elected. Thus, the leader election protocol rep-
resented by p runs in t time slots with probability at least 1

2t . Thus, we have,

Theorem 2. Any leader election protocol that elects a leader with probability at
least 1− 1

f need to run in Ω(log f) time slots.

From Theorem 2, the leader election protocol for Theorem 1 is optimal.

4 Randomized Leader Election for Known Upper Bound u
(Scenario 2)

The main purpose of this section is to develop a randomized leader election pro-
tocol for an n-station radio network under the assumption that an upper bound
u of the number n of stations is known beforehand. However, the actual value of
n is not known. We assume that n ≥ 2, because if n = 1, the leader election is not
possible.

Let n1, n2, . . . , nk be a sequence of positive numbers. The following protocol
Election(n1, n2, . . . , nk) is a generalization of Election(n).

Protocol Election(n1, n2, . . . , nk)
for i = 1 to k do

begin
Execute Steps 1 to 3 of Election(ni);
Terminate the protocol if the leader is elected;

end
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For simplicity, we assume that the upper bound u is a power of two. If u is not
a power of two, we can choose a minimum u′ such that u′ > u and u′ is a power
of two. Clearly, such u′ is an upper bound of n. Our randomized leader election
protocol for Scenario 2 simply executes Election(21, 22, . . . , 2log u).

Let us evaluate the probability that Election(21, 22, . . . , 2log u) succeeds in
electing a leader. Let i be an integer such that 2i−1 < n ≤ 2i. Suppose that
Leader Election(2i) is executed. The probability that |A| = 1 is

Pr[|A| = 1] =
(

n
1

)
1
2i

(1− 1
2i

)n−1

=
n

2i
((1− 1

2i
)2

i−1)
n−1
2i−1

>
1
2e

(from 2i−1 < n and n− 1 ≤ 2i − 1).

Similarly, we can prove

Pr[|A| = 1 | |B| = 1] >
1
2e

.

in the same manner. Thus, the probability that |A| = |B| = 1 is

Pr[|A| = |B| = 1] = Pr[|A| = 1] Pr[|A| = 1 | |B| = 1] >
1

4e2
.

Therefore, a single trial of Election(2i) elects a leader with probability at least
1

4e2 provided that 2i−1 < n ≤ 2i. For every n such that 2 ≤ n ≤ u, there exists an
integer i (1 ≤ i ≤ log u) such that 2i−1 < n ≤ 2i. Therefore, we have,

Lemma 2. For every n such that 2 ≤ n ≤ u, protocol Election(21, 22, . . . , 2log u)
succeeds in electing a leader in O(log u) time slots with probability at least 1

4e2 .

We further generalize Election for infinite sequences. Let n1, n2, . . . be an infinite
sequence. Protocol Election(n1, n2, . . .) is defined as follows:

Protocol Election(n1, n2, . . .)
for i = 1 to ∞ do

begin
Execute Steps 1 to 3 of Election(ni);
Terminate the protocol if the leader is elected;

end

Let D1
log u be a sequence 21, 22,. . . ,2log u, andDk+1

log u =Dk
log u·D1

log u for all k≥1,
where “·” denotes the operator of concatenation of two sequences. Clearly, Dk

log u

has k log u integers. Also, let D∞
log u be the infinite sequence D1

log u ·D1
log u · · ·. We

have proved that in Lemma 2, Election(D1
logu) elects a leader in three time slots

with probability 1
4e2 . Thus, Election(Dk

logu) fails to elect a leader in no more
than 3k log u time slots with probability at most (1− 1

4e2 )k. Let 1
f = (1 − 1

4e2 )k.
Then, 3k log u = O(log f log u). Therefore, we have,
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Theorem 3. Protocol Election(D∞
logu) elects a leader in O(log f log u) time

slots with probability at least 1− 1
f for any f > 1.

From Lemma 1, the expected running time slots of Election(n) is
∫ 1

0 log f log udf
= O(log u).

We will show that, any leader election protocol for Scenario 2 need to run in
Ω(log u) time slots to elect a leader with probability at least 1

2 .
Let X(n, p) denote the random variable denoting the number of stations that

have broadcast if each of the n stations broadcast with probability p. The proba-
bility that the status of the channel is SINGLE with probability

Pr[X(n, p) = 1] =
(

n
1

)
p1(1− p)n−1 = np(1− p)n−1.

Let us evaluate the upper bounds of Pr[X(21, p) = 1] ,Pr[X(22, p) = 1], . . .,
Pr[X(2log u, p) = 1] and then compute Pr[X(21, p) = 1]+Pr[X(22, p) = 1]+ · · ·+
Pr[X(2log u, p) = 1]. Let m = 1

p . For simplicity, we assume m is an integer and a
power of two. It is easy to show the upper bounds when this is not the case. Since
Pr[X(n, p) = 1] = np(1− p)n−1 ≤ np, we have

Pr[X(21, p) = 1] + Pr[X(22, p) = 1] + · · ·+ Pr[X(2log m−1, p) = 1]
= 21p + 22p + · · ·+ 2log m−1p = 21/m + 22/m + · · ·+ 2log m−1/m < 1.

If n = m then,

Pr[X(2log m, p) = 1] = mp(1− p)m−1 = (1− 1
m

)m−1 <
1
2
.

Also, for every n > m, we have

Pr[X(2log m+1, p) = 1] + Pr[X(2log m+2, p) = 1] + Pr[X(2log m+3, p) = 1] + · · ·
= Pr[X(21m, p) = 1] + Pr[X(22m, p) = 1] + Pr[X(23m, p) = 1] + · · ·
= 21mp(1− p)2

1m−1 + 22mp(1− p)2
2m−1 + +23mp(1− p)2

3m−1 + · · ·
= mp(1− p)m−1(21(1 − p)2

1m−m + 22(1− p)2
2m−m + 23(1− p)2

3m−m + · · ·)
<

1
2
(21(

1
e
)2

1−1 + 22(
1
e
)2

2−1 + 23(
1
e
)2

3−1 + · · ·) < 1.

Therefore, Pr[X(21, p) = 1] + Pr[X(22, p) = 1] + · · ·+ Pr[X(2log u, p) = 1] < 5
2 .

Let s(k) be the probability that a particular station broadcast at time slot k. To
elect a leader with probability at least 1

2 in t time slots for all n = 21, 22, . . . , 2log u,

t∑
k=1

Pr[X(21, s(k)) = 1]+Pr[X(22, s(k)) = 1]+· · ·+Pr[X(2log u, s(k)) = 1]≥ log u

2

must hold. However, the left hand side of the inequality is at most 5
2 t. Therefore,

since 5
2 t ≥ log u

2 , we have t = Ω(log u). Hence, to elect a leader with probability
1 − 1

f for all n = 21, 22, . . . , 2log u, any leader election protocol need to run in
Ω(log f log u) time slots.
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Theorem 4. Any leader election protocol runs that elects a leader with probability
at least 1− 1

f need to run in Ω(log f log u) time slots.

Therefore, protocol for Theorem 3 is optimal.

5 Conclusions

In this work, we have presented leader election protocols for single-hop,
single-channel noisy radio networks that do not have collision detection (CD) ca-
pabilities. Also, we have assumed that every station is equipped with a single
transceiver. We presented a leader election protocol for the case the number n
of stations is known beforehand. that runs in O(log f) time slots with probability
at least 1− 1

f for any f > 1. We then presented a leader election protocol for the
case where n is not known beforehand but an upper bound u of n is known. This
protocol runs in O(log f log u) time slots with probability at least 1 − 1

f for any
f > 1. We also proved that these leader elections are optimal.
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Abstract. IP over DWDM (Dense Wavelength Division Multiplexing)
optical Internet is one of the mainstream networking techniques for NGI
(Next Generation Internet) backbone, and how to improve its fault-
tolerance capability and QoS provision becomes critical. Fault-tolerant
QoS routing is one of the effective solutions. In this paper, a preven-
tive fault-tolerant QoS unicast routing scheme is proposed based on a
hybrid intelligent algorithm, taking advantage of both ant-colony algo-
rithm and genetic algorithm. Simulation results have shown that the
proposed scheme is both feasible and effective with better performance.

1 Introductions

IP over DWDM (Dense Wavelength Division Multiplexing) optical Internet is
one of the mainstream networking techniques for NGI (Next Generation Inter-
net) [1-2]. How to avoid service interruption and thus make its corresponding
loss lowest becomes critical. Fault-tolerance has already become one of the es-
sential capabilities of the IP over DWDM optical Internet [3-4]. Meanwhile, the
popularity of the networked multimedia applications requires the NGI to sup-
port QoS (Quality of Service). Thus, it is necessary to provide fault-tolerant QoS
routing support in IP over DWDM optical Internet [3-4].

According to whether the necessary resource is reserved before failure occurred
or it is allocated dynamically after failure happened, the corresponding fault-
tolerant QoS routing can be classified into preventive one and reactive one [4-5].
In the former, the primary route is established at the same time the backup
one is assigned with the necessary amount of resource reserved, so that the
network could recover from failure in time. However, it is inefficient in terms
of resource utilization, although its restoration time is relatively short. In the
latter, the backup route is not assigned and thus no corresponding resource is
reserved while the primary one is established. In case of the primary route failed,
� This work is supported by the National Natural Science Foundation of China under
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the necessary resource is looked for at that time to reestablish it dynamically.
It has high bandwidth utilization with long restoration time. In addition, it
cannot guarantee recovering from failure in time successfully due to no resource
reservation in advance.

It has been proven that the problem of finding a path subject to constraints
on two or more additive or multiplicative metrics in any possible combination
is NP-complete [6]. Thus, it should adopt heuristic algorithm or intelligent opti-
mization algorithm for such kind of QoS routing problem. In this paper, based on
preventive fault-tolerant strategy and primary-backup multiplexing mechanism
[7], a preventive fault-tolerant QoS unicast routing scheme is proposed based on
a hybrid intelligent algorithm, taking advantage of both ant-colony algorithm
and genetic algorithm [8-10]. Simulation results have shown that the proposed
scheme is both feasible and effective with better performance when solving the
fault-tolerant QoS unicast routing problem in IP over DWDM optical Internet.

2 Model Description

2.1 Problem Description

First of all, some used terms in this paper are introduced as follows.

Link: it refers to a segment of directed optical fiber which connects two nodes
in the network.

Channel: it refers to a wavelength along a link.
Path: it is composed of a set of links from the source node to the destination

node.
Light-path: it is composed of a set of channels from the source node to the

destination node.
Connection: it refers to the specific primary light-path and its backup one

setup for one QoS light-path establishment request.
Orphan Connection: it is caused by the primary-backup multiplexing mecha-

nism adopted in the proposed scheme in this paper. If any channel of one backup
light-path in a connection is shared by another primary light-path in other con-
nection, call it orphan connection.

In this paper, the problem to be solved is as follows: establish the primary
and backup QoS-constrained light-path pair simultaneously for the specific QoS
light-path establishment request with the objective of minimizing the number of
orphan connections in the network.

2.2 Network Model

IP over DWDM optical Internet can be modeled by a graph G(V, E), where V
is the set of nodes (wavelength router or OXC) and E is the set of edges (optical
fiber). Each edge is composed of two reversed optical fibers. Each directed op-
tical fiber is called as a link. Assume the number of wavelengths that each link
can support is W , and only some nodes are equipped with full-range wavelength
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converter [11]. When the nodes have wavelength conversion capabilities and the
wavelength conversion is necessary, the corresponding wavelength conversion op-
erations can be done on their received or split signals. Suppose the conversion
between any two wavelengths has the same conversion delay.

For each link eij = (vi, vj) ∈ E, i, j = 1, 2, ..., |V |, the following parameters are
considered: set about wavelength usage description, Λ(eij) = {Q1, Q2, ..., Qw},
Qx is the set of light-paths which occupy the xth wavelength channel through
the link eij , x = 1, 2, ..., W ; delay d(eij), d(eij) = d(eji); link failure rate l(eij).

For each node vi ∈ V , i = 1, 2, ..., |V |, the following parameters are considered:
wavelength conversion indicator, s(vi), and when the node vi has wavelength
conversion capability, s(vi) ≡ 1, otherwise s(vi) ≡ 0; wavelength conversion
delay, t(vi), and when the node vi has wavelength conversion capability and
does conversion, t(vi) ≡ t, otherwise t(vi) ≡ 0; delay jitter dj(vi).

2.3 Mathematical Model

First of all, some symbols are defined as follows:
R={Rsd|Rsd is the QoS light-path establishment request from vs to vd, ∀vs,

vd ∈ V }: set of the QoS light-path establishment requests, where vs is the source
node of the Rsd and vd is the destination node of the Rsd;

Op :number of the orphan connections in the network.
laijλ: if the wavelength λ is free along the link eij , laijλ = 1, otherwise

laijλ = 0, ∀eij ∈ E.
lbRsd

ijλ : if the wavelength λ along the link eij has already been allocated as the
backup channel for Rsd, lbRsd

ijλ = 1, otherwise lbRsd

ijλ = 0, ∀eij ∈ E, ∀Rsd ∈ R.
lpRsd

ijλ : if the wavelength λ along the link eij has already been allocated as the
primary channel for Rsd, lpRsd

ijλ = 1, otherwise lpRsd

ijλ = 0, ∀eij ∈ E, ∀Rsd ∈ R.
ldijλ: if lbRsd

ijλ = 1 and lpRsd

ijλ = 1, ldijλ = 1, otherwise ldijλ = 0.
P Rsd: primary light-path vector of the Rsd.
B Rsd: backup light-path vector of the Rsd.
nija: number of the free wavelengths along the link eij , ∀eij ∈ E.
nijc: number of wavelengths supported by the link eij , here, nijc = W .
nijb: number of wavelengths used as the backup channels along the link eij ,

∀eij ∈ E.
nijp: number of wavelengths used as the primary channels along the link eij ,

∀eij ∈ E.
dlRsd

: delay constraint of the Rsd, ∀Rsd ∈ R.
jtRsd

: delay jitter constraint of the Rsd, ∀Rsd ∈ R.
lsRsd

: failure rate constraint of the Rsd, ∀Rsd ∈ R.
The corresponding mathematical model of the proposed fault-tolerant QoS

unicast routing scheme in this paper is described as follows:
Objective:

minimize(Op) (1)
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s.t. ∑
eij∈P Rsd

d(eij) +
∑

vi∈P Rsd

t(vi) ≤ dlRsd
(2)

∑
eij∈B Rsd

d(eij) +
∑

vi∈B Rsd

t(vi) ≤ dlRsd
(3)

∑
vi∈P Rsd

dj(vi) ≤ jtRsd
(4)

∑
vi∈B Rsd

dj(vi) ≤ jtRsd
(5)

1−
∏

eij∈P Rsd

(1− l(eij)) ≤ lsRsd
(6)

1−
∏

eij∈B Rsd

(1− l(eij)) ≤ lsRsd
(7)

here,
Op =

∑
eij∈E

∑
λ∈W

∑
Rsd∈R

ldijλ · lbRsd

ijλ (8)

3 Design of the Proposed Scheme

In this paper, a hybrid intelligent algorithm taking advantage of both ant-colony
algorithm and genetic algorithm is adopted; the crossover operation of the ge-
netic algorithm is introduced into the ant-colony algorithm. Due to its capability
of reassembling the existing solutions, the crossover operation can help the ant
colony algorithm to alleviate being trapped into local optima, and thus the ca-
pability of searching the optimum solution globally of the ant colony algorithm
is improved.

With the preventive fault-tolerance strategy adopted, the ants are classified
into two types accordingly: ant for primary light-path and ant for backup light-
path.

3.1 QoS Light-Path Establishment Request Description

For each QoS light-path establishment request Rsd, it is denoted as follows:
< vs, vd, dlRsd

, jtRsd
, lsRsd

>

3.2 Ant Description

For each Rsd, generate n pairs of the ant and n is a positive integer. Each ant
pair is composed of two ants: one for primary light-path and the other for backup
light-path, used to establish the primary and backup QoS-constrained light-path
respectively.
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An ant has certain memory capability, denoted as follows:< at.ID, at.tp, at.dl,
at.jt, at.ls, at.And, at.Acl, at.dt >, with its elements corresponding to identifier
of the ant, type of the ant, delay of its traversed path by the ant, delay jitter of
its traversed path by the ant, failure rate of its traversed path by the ant, set of
nodes of its traversed path by the ant, set of channels of its traversed path by
the ant, destination node of the ant.

3.3 Expression and Update of the Pheromone

There are two types of pheromone in this paper. One type of pheromone is
excreted by the primary light-path ant and the other by the backup light-path
ant, which are denoted as ψp and ψb respectively.

Suppose that the range of pheromone thickness for ψp and ψb is [ψmin, ψmax],
and the initial value of pheromone thickness on each channel is set to be ψmax.
When the value of the pheromone thickness is out of the above range, it is set
to be ψminor ψmax. Use ψp

eλ
ij

(t) and ψb
eλ

ij
(t) to denote the pheromone thickness

of ψp and ψb on the channel λ of the link eij at time t respectively, and use
Δψp

eλ
ij

(t, t + 1) and Δψb
eλ

ij
(t, t + 1) to denote the variation of the pheromone

thickness of ψp and ψb on the channel λ of the link eij during [t, t + 1].
The update of pheromone is divided into two types: local and global. When

the primary light-path ant k and the backup light-path ant k
′
walk through the

channel λ of the link eij , the pheromone thickness is updated locally, and the
update rule is defined as follows:

ψp

eλ
ij

(t + 1) = (1− ρ)ψp

eλ
ij

(t) + φ ·Δψp

eλ
ij

(t, t + 1) (9)

ψb
eλ

ij
(t + 1) = (1− ρ)ψb

eλ
ij

(t) + φ ·Δψb
eλ

ij
(t, t + 1) (10)

Δψp

eλ
ij

(t, t + 1) =
{

nija + σ · nijb s(vi) = 1
σ · (1− lbRsd

ijλ ) s(vi) = 0 (11)

Δψb
eλ

ij
(t, t + 1) =

{
nija + σ · (nijb + nijp) s(vi) = 1
σ · (2 − lbRsd

ijλ − lpRsd

ijλ ) s(vi) = 0 (12)

where k, k
′
= 1, 2, ..., n, ρ is the volatile factor of pheromone, 0 < ρ < 1; φ is the

update coefficient; σ is the sharing factor, 0 < σ < 1. Obviously, the variation of
the pheromone thickness of λ relies on Δψp

eλ
ij

(t, t+1) when the primary light-path

ant k walks through the channel λ on the link eij . The value of Δψp

eλ
ij

(t, t + 1)

relies on whether the node vi has the wavelength conversion capability and the
usage of the wavelengths of the link eij starting from vi. If its thickness value is
less than the specified threshold, the pheromone on the channel λ is on the state
of volatilization; otherwise, it is on the state of enhancement. When the backup
light-path ant k

′
walks through the channel λ on the link eij , its situation is

similar to that of the primary light-path ant k.
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When the primary light-path ant k and the back up light-path ant k
′
arrive at

the destination node after n times (assume the primary light-path ant k arrives
at the destination node after n1 times and the back up light-path ant k

′
arrives

at the destination node after n2 times, then n = max{n1, n2}), whether the
chosen primary and backup light-path pair is good or bad should be judged
(see section 3.6): if it is good, the pheromone is updated globally; otherwise, do
nothing. The global update rule is defined as follows:

ψp

eλ
ij

(t + n) = (1− ρ) · ψp

eλ
ij

(t) + φ ·Δψeλ
ij

(t, t + n) (13)

ψb
eλ

ij
(t + n) = (1− ρ) · ψb

eλ
ij

(t) + φ ·Δψeλ
ij

(t, t + n) (14)

Δψeλ
ij

(t, t + n) =
{ Q

Opk+1 eλ
ij walked through by the kth ant pair

0 otherwise
(15)

where Q is a constant and Opk denotes the number of orphan connections gen-
erated by the kth ant pair.

3.4 Transfer Probability of the Ant

When one ant needs to transfer to the next hop channel, it is attracted by the
pheromone left on the channel by those congenerous ants at the same time it is
excluded by the pheromone left on the channel by the egregious ants and the
congenerous ants.

Use αpk

eλ
ij

(t) to denote the attraction strength to the primary light-path ant

k by the channel eλ
ij at time t, αbk

′

eλ
ij

(t) the attraction strength to the backup

light-path ant k
′
, βeλ

ij
(t) the exclusion strength to the primary light-path ant

k and also to the backup light-path ant k
′
respectively. Their definitions are as

follows:
αpk

eλ
ij

(t) = ψp

eλ
ij

(t) (16)

αbk
′

eλ
ij

(t) = ψb
eλ

ij
(t) (17)

βeλ
ij

(t) = ψp

eλ
ij

(t) + ψb
eλ

ij
(t) (18)

According to formula (16-18), the attraction strength to one ant by one channel
relies on the thickness of the pheromone left by its congenerous ants, however,
the exclusion strength to one ant by one channel relies on the thickness of the
pheromone left by its egregious ants and its congenerous ants simultaneously. In
fact, the exclusion to one ant by one channel mainly comes from its egregious
ants when the pheromone thickness of the congenerous ants is weak, while the
exclusion from its congenerous ants gets enhanced gradually with the enlarge-
ment of their corresponding pheromone thickness (this means that the channel
becomes crowded gradually with its load increased).
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The probability of the primary light-path ant k and the backup light-path
ant k

′
selecting the link eij as the next hop at time t, called as its transfer

probability, is defined as follows:

P pk

eλ
ij

(t) =

⎧⎪⎨
⎪⎩

0 lpRsd

ijλ = 0
αpk

eλ
ij

(t)/[β
eλ

ij
(t)]ε

Σ
eλ

ij
∈A

[αpk

eλ
ij

(t)/[β
eλ

ij
(t)]ε]

otherwise
(19)

P bk
′

eλ
ij

(t) =
αbk

′

eλ
ij

(t)/[βeλ
ij

(t)]ε

Σeλ
ij∈A′ [αbk′

eλ
ij

(t)/[βeλ
ij

(t)]ε]
(20)

where A and A
′

are the set of channels from which the primary light-path ant
k and the backup light-path ant k

′
can select as the next hop respectively, and

ε is a constant.

3.5 Expression of the Solution

Use the array to denote the solution. Number the links in the graph G(V, E).
The ith element of the array corresponds to the ith link; if the light-path passes
through a wavelength channel on the link, the corresponding element value to
the link is set to be the number of the wavelength used on the link; otherwise,
its value is set to be -1.

3.6 Judgment of the Generated Primary and Backup Light-Path
Pair

Whether one generated primary and backup light-path pair is good or bad should
be judged after one ant pair has finished the routing procedure. There are three
conditions to be considered: for the same light-path establishment request, its
primary and backup light-path must be link-disjoint; for different light-path
establishment requests, their primary light-paths can not share the same channel;
for different light-path establishment requests, their backup light-path can share
the same channel only when their primary light-paths are link-disjoint.

If one primary and backup light-path pair generated for one light-path estab-
lishment request satisfies the above three conditions simultaneously, it is consid-
ered good.

3.7 Fitness Function

Select the best one from all good primary and backup light-path pairs as the
up-to-now best solution after the ant colony completed one routing cycle. The
selection criterion is that the current number of the orphan connections in the
network is smallest. Thus, the fitness function is defined as follows:

f(Vs, Vd) =
∑

eij∈E

∑
λ∈W

∑
Rsd∈R

ldijλ · lbRsd

ijλ (21)
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Obviously, the smaller the value of the fitness function, the better the primary
and backup light-path pair.

3.8 Crossover Operation

After the ant colony completed one cycle, select two pairs from all good primary
and backup light-path pairs randomly to do single-point crossover operation.
The specific crossover point is chosen by the specified crossover probability. If
the newly generated primary and backup light-path pair after crossover is better
than the up-to-now best solution, update it.

3.9 Procedure of the Proposed Algorithm

The procedure of the proposed hybrid intelligent preventive fault-tolerant QoS
unicast routing algorithm is described as follows:

STEP1: Set the parameter values for each node and link in graph G(V, E), in-
cluding range of the pheromone thickness and its initial value. Set the maximum
cycling times to be NCMax, the initial value of the cycling counter NC to be
0, and the initial fitness value FV of the up-to-now best solution to be +∞.

STEP2: Generate n pairs of the ants for the QoS light-path establishment
request Rsd. For each ant, set at.dl = 0, at.jt = 0, at.ls = 0, at.And = {vs},
at.Acl = Φ, at.dt = vd, assign at.ID, set at.tp, and put it at vs; set the timer
t = 0.

STEP3: if NC < NCMax, go to STEP4; otherwise, output the up-to-now
best solution, the algorithm ends.

STEP4: Select one ant pair, the primary and backup light-path ant choose the
channel eλ

ij with the maximum transfer probability as the next hop according to
the formula (19) and (20) respectively (if there are more than one such channels,
choose one from them randomly), then transferring from vi to vj . Let t = t + 1,
update each domain value of the ant as follows:

at.dl = at.dl + d(eij) + t(vi);
at.jt = at.jt + dj(vi);
at.ls = 1− (1 − at.ls) · (1− l(eij));
at.And = at.And

⋃{vj};
at.Acl = at.Acl

⋃{eλ
ij};

If at.dl > dlRsd
or at.jt > jtRsd

or at.ls > lsRsd
, kill the ant pair; otherwise,

update the pheromone thickness locally according to the formula (9) and (10).
STEP5: If all n ant pairs arrived at vd or were killed, go to STEP6; otherwise,

go to STEP4.
STEP6: Judge whether the generated primary and backup light-path pairs are

good or bad according to section 3.6. If no good primary and backup light-path
pair exists, go to STEP8; otherwise, update the pheromone thickness globally ac-
cording to the formula (13) and (14) for all good primary and backup light-path
pairs, calculate their fitness values, if their minimum is smaller than FV , update
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FV and the up-to-now best solution with this minimum and the corresponding
primary and backup light-path pair.

STEP7: According to section 3.8, select two pairs randomly from all good
primary and backup light-path pairs to do crossover operation. If the newly
generated pair is good and it is better than the up-to-now best solution, update
the latter and its FV with the former and its fitness value.

STEP8: Kill all ants, let NC = NC + 1, then go to STEP3.

4 Simulation

Simulated implementation of the above-proposed scheme has been done based on
NS2 platform [12] and its performance evaluation has been done over some actual
and virtual network topologies (such as CERNET, CERNET2 and NSFNET) [8].

Comparison on the number of the generated orphan connections in the net-
work between the fault-tolerant routing scheme based on the classical ant colony
algorithm [13] and the proposed scheme in this paper is shown in Fig.1. The im-
proved performance of the proposed scheme comes from the introduction of the
crossover operation of genetic algorithm into ant colony algorithm.

Fig. 1. Comparison on the orphan connection number

Comparison on the blocked rate of QoS light-path establishment requests
among the fault-tolerant routing schemes based on backup multiplexing and no
multiplexing respectively [13] and the proposed scheme based on primary-backup
multiplexing is shown in Fig.2. The proposed scheme has the lowest blocked rate
due to its highest resource utilization.

Fig. 2. Comparison on the blocked rate
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5 Conclusion

IP over DWDM optical Internet is one of the main networking techniques for NGI
backbone. In this paper, with preventive fault-tolerance strategy and primary-
backup multiplexing mechanism adopted, a fault-tolerant QoS unicast rout-
ing scheme based on a hybrid intelligent algorithm is proposed by introducing
crossover operation of genetic algorithm into ant colony algorithm. The proposed
scheme establishes the primary and backup QoS-constrained light-path pair for
the QoS light-path establishment request with the objective of minimizing the
number of the generated orphan connections in the IP over DWDM optical In-
ternet. Simulation results have shown that the proposed scheme is both feasible
and effective with better performance.
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Abstract. Skeleton-based libraries are considered as one of the alterna-
tives for reducing the distance between end users and parallel architec-
tures. We propose a general development methodology that allows for
the automatic derivation of parallel programs assuming the existence of
general structures as the skeletons. We propose the introduction of a
new, high level abstraction layer that allows the user to extract problem
specifications from particular skeleton languages or libraries. The result
is a tool that allows for the generation of parallel codes from successive
transformations to this high level specification without any loss of effi-
ciency. We apply the technique to the automatic generation of parallel
programs for Dynamic Programming Problems.

1 Introduction

A widespread research methodology among scientists is based on developing a
mathematical formulation that conceptually provides a solution to a problem.
However, it is also common for the problem to remain partially unsolved if
the scientist is not able to transform this conceptual solution into a computer
program. Researchers usually bridge this gap by using software tools like mathe-
matical solvers, or even by writing their own code. This gap is even more evident
in the case of parallel computers, where much more effort is required by the user.

A substantial effort has been made in recent decades to reduce the distance be-
tween parallel architectures and end users. As stated in [2], skeletal programming
has emerged as an alternative and has helped simplify programming, enhance
portability and improve performance. Such systems conceal the parallelism from
the programmer and are characterized by being embedded entirely into a func-
tional programming language, or for integrating imperative code within a skeletal
framework in a language or library. Some of these approaches can be seen in [4],
[8], [3], [1], [6], [11], [5], [2]. The underlying idea of separating the specification
of a problem, or an algorithm, from implementation details that are hidden to
the user is present in all the proposals.

As also stated in [2], skeletal programming has yet to make a substantial
impact on mainstream methods in parallel applications programming. It is safe
to say that in many cases, the end user of many algorithmic skeletons, like those
� Supported by MCyT projects TIN2005-09037-C02-01.
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derived from algorithmic techniques (Divide and Conquer, Simulated Annealing,
etc.), is not a programmer but a scientist, say a biologist or a physicist, or a
mathematician. The potential use of this kind of tool is strongly conditioned
by its ease of use. Those who lack expertise in object or functional oriented
programming, or who have no programming knowledge at all, should be able to
apply them.

Based on XML specifications, we propose to introduce a new abstraction level
that contributes to a higher separation between the specification of a problem
and the implementation details. Skeletons act as an intermediate level between
the specification made by the user and the parallel implementation, so that the
user describes the problem through a general model and successive transfor-
mations convert the model into the instance code for a skeleton. The distance
between the scientific knowledge and the specification is bridged by the scien-
tist (not a programmer), while the distance between the specification and the
executable code is bridged by the machine. Since the code generated is based
on skeleton tools, the approach still maintains the advantages of the skeletal
development methodology while providing significant benefits for the scientist:

– No need for codification. The user specifies the problem and does not codify
the algorithm.

– Independence from specific programming languages or skeleton libraries.
Once the problem has been specified, it can be transformed into several
implementation proposals.

– Delivery of new applications due to the rapid development time.
– Improved application quality.
– Increased use of parallel architectures by non-expert users.
– Rapid inclusion of emerging technology into their systems. New transformers

can be delivered when needed.

This paper makes two primary contributions: a general development method-
ology for deriving parallel programs automatically, starting from a very high
level problem specification, and an application example in generating parallel
programs for Dynamic Programming (DP from now on) problems.

Although we focus on a specific scientific domain, the parallelization of DP
Problems, from a general point of view the technique presented here can be
considered as a particular instance of the MDA (Model Driven Architecture)
[9] general software engineering development methodology, and can be applied
to many other scientific domains. We will show how this methodology can be
applied, without any loss of efficiency, to parallel architectures. We also require
the project to adhere to general standards as much as possible; for that reason,
we follow the W3C [20] recommendations along every transformation step.

This paper is structured as follows: in Section 2 we introduce the software
architecture of the proposed methodology and show how the technique is applied
for the particular case of Dynamic Programming problems, and in Section 3 an
XML specification for Dynamic Programming is presented. The paper finalizes
with some concluding remarks and future lines of work.
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Fig. 1. Software Architecture for the Methodological Approach

2 Software Architecture

We propose the introduction of a new abstraction layer between the user and the
skeletons so as to separate the fundamental logic behind a problem specification
from the specifics of the particular middleware that implements it (the skeleton
instance). The advantages of this approach were listed in Section 1. This new
layer should be closer to the scientific notation and should also be simple enough
to generate the appropriate code. In general, the use of XML as the specification
language is not mandatory; however, technologies based on XML specifications
have proven to be interesting standard alternatives for transformation into dif-
ferent formats. Although we use this specification to generate C++ code, it could
be used to generate WSDL [19] and web services applications.

The software architecture of our transformation methodology is presented in
Figure 1. The layer between the end user and the skeletal libraries and languages
tries to span the significant gap for those scientists who are not directly involved
with programming. In order to provide access to data coming from an XML
document, an analysis of the document and its decomposition into nodes and
recognizable pieces through a standardized API is needed. The proper linking
of this analysis with the later processing can be achieved by following the DOM
(Document Object Model) [15] recommendation of the W3C. DOM is a set of
specifications for developing standards that allow programming languages to
interact with documents. DOM manipulates the whole document as a tree and
XML data are provided as nodes.

The elements needed to apply the methodology can be summarized as:

– A skeleton that can be architecture dependent.
– A specification language describing the domain of the application, indepen-

dent of the architecture.
– A transformer of data documents expressed in that language as instances for

the skeleton.
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The transformation from XML documents into parallel programs could be
done directly without using the skeleton layer; however, we consider the skeleton
layer necessary as a way of separating the parallel implementation, from the
specification of a solution to a problem using a sequential programming language.
The skeleton introduces several advantages, such as modularity, ease of use,
portability, etc... The sequential skeleton can be ported to any parallel machine
and the appropriate parallel code can be generated if necessary.

Fig. 2. Software Architecture for the Dynamic Programming Implementation

Figure 2 shows how we have implemented this methodology for the particu-
lar case of Dynamic Programming problems. The automatic parallelization of DP
problems is achieved by making explicit transformations on the DPSPEC data file
(our specification language, described in Section 3) containing the XML descrip-
tion of a Dynamic Programming equation. The XML description of the formula
is converted into a specific instantiation of the DPSKEL C++ skeleton (actual
release of the Dynamic Programming Mallba skeleton [10]) to solve the problem
in question. The C++ code generated for the Dynamic Programming skeleton
is the same as would be generated by an experienced C++ programmer, so no
loss of efficiency is introduced during the process. This transformation step in-
volves an analysis of the Dynamic Programming functional equation. We have de-
veloped a DPSPEC to DPSKEL transformer. Our transformer performs a DOM
parsing of the XML functional equation to produce the proper DPSKEL C++
required classes. We have not developed a general parser for mathematical equa-
tions; instead, the DOM tree is parsed so that the nodes are matched with ex-
pected values on Dynamic Programming recurrences (operators, variables, con-
stants, etc,...). Once a value is found, the proper C++ code is generated for it.
The parser has been developed using the Xerces-C++ library [7]. Figure 3 shows a
section of the parser that generates the C++ code of the Evalua DPSKEL method
for a <cond> DPSPEC element. Typically, a Dynamic Programming equation is
expressed as a piecewise equation, where a condition must be tested before the
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function is evaluated. We use the label <cond> to express such a condition. Note
in Figure 3 the use of Xerces-C++ library functions, such as getFirstChild()
and getNextSibling(), to traverse the DOM tree. We have developed the
X2C Exp.Exp() method to evaluate expressions recursively.

.... omitted code
// Generate header for the method Evalua of class State
Buffer.write("void State::Evalua(int stage, int index)\n");
Buffer.write("{\n");
Buffer.write("\tint v0, v1;\n");
Buffer.write("\tState st0(pbm, sol, table);\n\n");

// Parse a condition
// <cond>
// #Exp0
// #Exp1
// </cond>
// The former element is translated as
// if (#Exp0) {
// v0 = #Exp1;
// }
if (!strcmp(name, "cond")) {

do {
strcpy(name, (const char *)XMLString::transcode(p->getNodeName()));
if (!strcmp(name, "cond")) {

Buffer.write("\tif "); // Generate if code
X2C_Exp.Exp(p->getFirstChild());
Buffer.write(" {\n");
Buffer.write("\t\tv0 = ");
X2C_Exp.Exp(p->getFirstChild()->getNextSibling());
Buffer.write(";\n\t}\n");

} else
break;

p = p->getNextSibling();
} while(p != 0);

} else
X2C_Exp.Exp(p);

// Generate the assignment of the evaluated state and the subsequent insertion in table
Buffer.write("\tst0.setvalue(v0);\n");
Buffer.write("\ttable.PUT_STATE(st0, stage, index);\n");
Buffer.write("}\n\n");
// Write the generated code to the required DPSKEL C++ data file
if ((fevalua = fopen("dp.req.cc","w")) == NULL)

return (-1);
fprintf(fevalua, "%s", Buffer.buf());
fclose(fevalua);
return (0);

Fig. 3. DOM parser for an DPSPEC XML data file (element <problem>)

The Evalua (void State::Evalua(int stage, int index)) method, required for users
of DPSKEL, includes a C++ specification of the recurrence equation. The code
in Figure 4 shows the method for the optimal matrix parenthesization (Table 1
and Equation 1). Note that the DOM parser shown in Figure 3 generates C++
code since we are interested in the specific DPSKEL C++ implementation. A
different parser can be developed that generates code for any other programming
language if needed.
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void State::Evalua(int stage, int index)

{

int v0, v1;

State st0(pbm, sol, table);

if (stage == index) {

v0 = 0;

}

if (stage != index) {

v0 = INT_MAX;

for( int k = stage; k <= (index - 1); k++) {

v1 = (table.GET_STATE(stage, k).get_value() +

table.GET_STATE((k + 1), index).get_value() +

(r[(stage - 1)] * r[k] * r[index]));

if (v1 < v0)

v0 = v1;

};

}

st0.setvalue(v0);

table.PUT_STATE(st0, stage, index);

}

Fig. 4. Evalua method generated for the Optimal Matrix Parenthesization (see
Table 1 and Equation 1)

However, scientists typically represent the functional equations as mathemat-
ical expressions, like those shown in Table 1, by using their favorite equation
editor (Latex, OpenOffice, etc.). Therefore, a new transformation is implicitly
involved in the process: the conversion of the mathematical equation to the
XML specification. Currently, the transformation between a mathematical for-
mula and an XML specification is provided automatically for many popular
MathML (the W3C recommendation for describing mathematics as a basis for
machine to machine communication) [17], [16], software editors, for example, Edi-
Tex, OpenOffice, Scientific Word, sMArTH, etc. (see [18] for a detailed MathML
software list). All of them generate a MathML document for a given equation.
DPSPEC is compatible with MathML and the conversion between a MathML
document into a DPSPEC document can be achieved through a preprocessing
step.

3 DPSPEC: An XML Specification for Dynamic
Programming Problems

In this section we show the XML specification that we have developed for DP prob-
lems. Several XML specifications have been proposed to describe the semantics of



From XML Specifications to Parallel Programs 273

Table 1. Examples of Dynamic Programming recurrences

Problem Recurrence DP Category

0/1 Knapsack fkc = max{fk−1c, fk−1c−wk
+ pk} Serial Monadic

Longest Common fij = fi−1j−1 + 1 if xi = yj ; or
Subsequence fij = max{fij−1, fi−1j} if xi �= yj Nonserial Monadic

Floyd’s All-Pairs

Shortest-Paths dk
ij = min{dk−1

ij , dk−1
ik + dk−1

kj } Serial Polyadic

Optimal Matrix
Parenthesization cij = min{cik + ck+1j + ri−1rkrj} Nonserial Polyadic

mathematical expressions: MathML [17], OpenMath [13], OMDoc [12], XDF [14].
Any of them could be used to specify the DP functional equation; however, we
decided to develop our own specification adapted to DP problems. The reason
behind our decision was two-fold: to reduce the elements to a minimum, and
to introduce some changes in the structure for specific elements appearing in
classical specifications. These design issues make the subsequent parsing easier
and allow for a better semantic analysis to detect data dependencies, all while
adhering as closely as possible to the user defined equation. The semantic anal-
ysis determines the traversing mode of the DP table. DPSPEC brings together
the elements to describe piecewise defined functions, simple variables and vec-
tors, arithmetic, logical, relational and max-min operators, and iterators. Table
2 summarizes the elements available in the DPSPEC language. The proper syn-
taxis and semantics of DPSPEC have been defined as an XSD schema (omitted
in the paper due to space constraints).

Table 2. Current elements available in DPSPEC

Element Operation

Main element <problem>

Logical functions <and>, <or>, <not>

Conditional <cond>

Relational operators <lt>, <le>, <gt>, <ge>, <eq>, <ne>

Binary mathematical operators <minus>, <divide>, <power>

N-ary mathematical operators <plus>, <times>, <max>, <min>

N-ary iterative operators <imax>, <imin>

States <state>

Variables <ci>

Constants <cn>

User defined functions <functiondef>, <function>

User defined vectors <vectordef>, <vector>

DPSPEC has been used to specify DP problems appearing in Table 1. As
an example to illustrate the use of DPSPEC, we will consider the functional
equation for the multiplication parenthesization problem (Equation 1). This is
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a paradigmatic problem and its recurrence equation represents a wide range of
Dynamic Programming applications. Note that the equation appears represented
as a piecewise function. The variables i and j will be mapped as the variables
stage and index of the method Evalua of the class State in DPSKEL. Figure 6
shows the XML specification using DPSPEC for Equation 1. The <cond> ele-
ment allows us to describe each one of the conditions of the equation. Thanks
to the availability of assistant XML editors, non-expert programmers can gen-
erate DPSPEC XML specifications more readily than sequential C programs
can. Moreover, as stated in Section 2, the DPSPEC code can also be directly
generated from equation editors.

c(i, j) =
{

0 if j = i, 0 < i ≤ n
mini≤k<j{c(i, k) + c(k + 1, j) + ri−1 · rk · rj} if 1 ≤ i < j ≤ n

(1)

The generation of the parallel code is quite straightforward and could be
detailed in these steps:

The user defines the equation in a math editor and executes a transformation
(several transformations from standard Mathematical specifications into DP-
SPEC will be provided). In this step the user has his problem as a DPSPEC
document generated by the transformation.

Fig. 5. Speedups obtained for Knapsack Problem (KP), Longest Common Subsequence
(LCS), Floyd All-Pairs Shortest-Paths algorithm (FSP) and Optimal Matrix Parenthe-
sization Problem (MPP)
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<?xml version = ’1.0’ encoding = ’utf-8’?>
<problem>

....

<!-- Declare a vector -->
<vectordef load="xmlfile" type="int" name="r" vars="1" />
<!-- c(stage, index) = {

0 if (stage = index),
min{c(stage, k) + c(k + 1, index) + r(stage-1) * r(k) * r(index)}

if (stage <> index)
} -->

<cond> <!-- 0 if (stage = index) -->
<eq>
<ci>stage</ci>
<ci>index</ci>

</eq>
<cn>0</cn>

</cond>

<!-- Evalua c(stage, index) -->
<cond> <!-- min{c(stage, k) + c(k + 1, index) + r(stage-1) * r(k) * r(index)} if (stage <> index)} -->

<ne> <-- if (stage <> index)} -->
<ci>stage</ci>
<ci>index</ci>

</ne>
<imin> <-- iterative min from k = stage to index - 1 -->
<var>k</var>
<startinterval>

<ci>stage</ci>
</startinterval>
<endinterval>

<minus>
<ci>index</ci>
<cn>1</cn>

</minus>
</endinterval>
<plus> <-- c(stage, k) + c(k + 1, index) + ... -->

<state>
<ci>stage</ci>
<ci>k</ci>

</state>
<state>

<plus>
<ci>k</ci>
<cn>1</cn>

</plus>
<ci>index</ci>

</state>
<times> <-- ... + r(stage - 1) * r(k) * r(index) -->

<vector name="r" >
<minus>
<ci>stage</ci>
<cn>1</cn>

</minus>
</vector>
<vector name="r" >

<ci>k</ci>
</vector>
<vector name="r" >

<ci>index</ci>
</vector>

</times>
</plus>

</imin>
</cond>

</problem>

Fig. 6. XML description of the Multiplication Parenthesization problem using
DPSPEC
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In the next step the user will execute the parser (Figure 3) to transform
the DPSPEC document into code for the library used (in this case for library
DPSKEL in C++). In this step the user has the needed code for the skeleton
used.

Note that until now the steps are independent from the final architecture, so
this steps could be provided in a general way for any problem, for example using
web services in a remote computer.

Finally in the last step the user compiles the code generated for the library us-
ing the needed compiler and libraries for the target architecture. In this step the
user has a parallel program for an specific architecture that solves his problem.

Since the time invested by the parser to generate the DPSKEL code is negli-
gible, the time invested in generating a parallel code from the XML specification
is comparable to the time invested in compiling any other parallel program. No
extra overhead is introduced.

In terms of the efficiency of the generated code, Figure 5 shows the perfor-
mance obtained with the DPSKEL-generated parallel code. Series of instances
for the problems in Table 1 were randomly generated for each problem. The
instances of the skeleton generated use the OpenMP library [10] on an RS-6000
SP IBM platform. The tool’s performance was satisfactory in all the cases. We
observed increasing speedups in all the cases when the number of processors
was increased. Superlinear speedup was observed in some cases, likely due to
improved cache use on the parallel versions.

4 Conclusions and Future Work

In summary, we proposed a general methodology that allows for the automatic
generation of parallel programs. The methodology is based on the existence of
general parallel programs, like skeletons, that can be generated from higher level
specification languages such as, for example, XML-based specifications. The code
generated is efficient since no overhead is introduced during the transformation
steps. The technique was validated by applying it to the generation of parallel
Dynamic Programming algorithms. Once an XML specification has been stated,
transformations from/to many other languages can be developed at a reasonable
cost. We are also interested in the development of new transformation tools from
other languages to DPSPEC, as is the case with OpenMath, for example, and
from DPSPEC to other languages such as WSDL to provide the interface for a
web service application.
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For the most part, the development of grid applications currently requires
that issues of dynamicity are addressed at a low level by the applications pro-
grammer, through calls to grid middleware such as the Globus Toolkit. As a
result few grid applications exploit in full the dynamic resource usage envisaged
in fully fledged computational grids. There are, however, ongoing attempts to
build environments which support the dynamic adaptivity required for the man-
agement of grid resources [1,2,11]. The goal of user-friendly grid environments
requires the development of grid applications with autonomic (in the sense of [7])
capability to allow for adaptation to changing grid conditions without program-
mer intervention. Such capability is still a long way off, although the extension
to ASSIST described in [1] represents a significant early step.

In essence, the challenge for researchers in grid computing is first to devise
environments to support hands-on user management of grid applications, and
then to provide autonomous management of such applications so that the ap-
plications programmer can focus entirely on the functional behaviour required
without the additional burden of managing the resources employed. In both cases
a clear separation of grid management and functionality provision is desirable.
To this end, it is the contention of the authors that there are clear benefits to
be had from the development of an abstract model of grid computation which
separates the grid management issues from functionality concerns. This paper
proposes such an abstract model.

The approach taken defines a component to be the underlying unit of compu-
tation. A grid application is modelled as a network of cooperating components.
Management of this network is described using the ORC notation of Misra and
Cook [10]. ORC is a notation for describing the orchestration of distributed ser-
vices. It has, as a primitive, the notion of a site call. It provides constructs to
orchestrate site calls and thereby a means to describe distributed features such as
priorities, time-outs, and failure of sites or communications. It thus supplies the
essential ingredients to describe in a precise and concise fashion the operations
for the management of grid applications, as distinct from their functionality. In
addition, ORC has a well defined semantics [9] which makes possible reasoning
about ORC specifications.

The goal of the model proposed here is to bring to grid computation the
benefits that formal specification notations such as Z, VDM-SL and LOTOS [6]
have brought to sequential and concurrent systems: the facility to describe the
essential features of a system devoid of implementation detail; the ability to rea-
son about systems so described using the underlying semantics of the notation;
and the possibility of correctness-preserving refinement to implementation. The
work described here focuses on the first of these. It is shown that ORC, through
its small but powerful set of site combinators, provides the means to describe,
in an elegant way, essential features of grid application management including
resource discovery, contract negotiation, job placement, progress monitoring and
dynamic re-placement.

In §2 some grid-related aspects of a software component are defined. A compo-
nent may have associated constraints to specify the kinds of hardware required
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to execute the component. In order to develop useful, grid-based orchestration
expressions a definition of a generic web site is given in §3. In §4 a brief overview
of ORC is given. In §5 a basic component manager is specified using ORC.

2 Software Components

In this section an outline of a software component is given. In particular, those
aspects of a component that are grid oriented are modelled. Traditionally, a soft-
ware component may comprise functionality, input data, an interface (defining
software dependencies) and an output file (hereafter called an output compo-
nent). In a grid setting it is additionally necessary to supply constraints (which
restrict the kinds of hardware that can be used to execute a component). In this
paper two different kinds of constraints are defined: minimum constraints, which
can be used to determine if a grid site offers appropriate resources; and value
constraints, which can be used to rank grid sites according to their suitability for
executing a given component. A component is defined to be a sextuple compris-
ing an external interface (a set of component names, E), an output component
name (o), functionality (f), data (d), a minimum constraint (a predicate MC)
and a value constraint (an expression V C).

component � (E , o , f , d , MC , V C)

The exernal interface of a component c defines its dependencies such as input
data sources and utilised service components. Functionality may be supplied as
a combination of program code and service invocations.

Example 1. Consider a user who wishes to execute a FORTRAN program, F ,
on the grid using local data, d, and a data file, I, supplied by a third party, to
produce an output component, R. The user may construct a data component,
indata, and a program component, FP :

indata == ( , , , I, , )
FP == ({Fortran90Compiler, indata}, R, F, d, MC, V C)

where MC and V C are constraints (see below). The components FP and indata
may be sent to, and executed on, any site offering the service Fortran90Compiler
and satisfying the hardware constraint MC. �

2.1 Constraints

Constraints are statements that can be used to specify hardware, performance,
cost and network requirements. These have two forms: minimum constraints and
value constraints. A minimum constraint is a set of requirements that must be
satisfied by any site which is delegated to execute the associated component. A
minimum constraint can be modelled abstractly as a predicate.
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Example 2. The constraint that a grid machine should have at least 10 processors
and a communication link with bandwidth of at least 109 bytes/sec may be
expressed as a predicate with free variables p and b:

MC � p ≥ 10 ∧ b ≥ 109

For a particular site the parameters p and b may be instantiated, allowing the
predicate to be evaluated. In order to evaluate a constraint MC on a site s it is
necessary to acquire the values of all free variables by means of a dialogue. For
example, p might be instantiated for a site, s, by means of a call s.processors.
The advantage of modelling constraints as predicates is that (uninteresting)
underlying dialogue can be excluded. Let s1 be a site with p = 4 and b = 106

and s2 be a site with p = 16 and b = 109. Let MC(s) be the value found
by instantiating the free variables of MC with the site parameters of s. Then
MC(s2) but ¬MC(s1). However, consider the weaker constraint MC′:

MC′ � p ≥ 4 ∧ b ≥ 106

Now MC′(s1) holds (that is, a component with constraint MC′ can be executed
on s1 as well as s2). Note that ∀g.MC(g) ⇒ MC′(g) – that is, use of a weaker
constraint extends the set of possible sites for placing a component. �

A minimum constraint provides a means of deciding whether or not a site can
execute a component. However, it is useful also to be able to determine the“best”
site on which to execute a component. A value constraint is an expression with
free variables. The expression can be instantiated via a dialogue as above. In-
stantiation allows a set of potential sites to be ranked according to their ability
to meet the value constraint.

Example 3. Consider a component, c, with an associated constraint

V C � 1010/ct + b

Here ct is a unit computational cost and b is the available bandwidth. Suppose
that the unit costs for s1 and s2 are 1 and 1000 respectively. Then V C(s1) >
V C(s2) – in this case a cheap but less powerful site is preferred. �

3 A Model of a Generic Grid Site

A grid is modelled as a collection of interconnected sites. A user may wish to
submit a software component(s) to a grid for execution. To do this a means of
navigating the grid (in order to find a suitable site for component placement) is
required. In this section a generic definition of grid site is proposed.

A site is defined to be a sextuple comprising a unique name (N), a set of
components, or jobs, awaiting execution (C), a collection of services (S) that can
be utilised by users, a directory (ID) providing information about grid sites, an
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engine (E) which has the potential to execute components to produce results,
and a local manager (M) which co-ordinates workflow.

gridsite == (N , C , S , ID , E , M)

In a particular site only some of these fields may be instantiated. For example,
a “yellow pages” information site may contain only a site name, an information
directory and a manager:

yellow pages = (yp, , , id, , m1)

Here id provides information about other sites (for example, the set of sites which
offer the capability to execute FORTRAN 90 programs). This information may
become obsolete or unreliable after a period of time. The manager m1 may
interact with other sites and update id as appropriate.

A supercomputer centre offering services, S, (compilers, operating systems,
standard libraries such as SCALAPACK etc.) will typically contain a set of jobs
awaiting execution, J , a supercomputer, super1, for generating results, and a
manager. This may be expressed as:

super computer centre = (scc, J, S, , super1, m2)

Here the manager m2 interacts with users, accepts jobs for execution, manages
the“queue” of jobs and returns results to users.

Users wishing to submit software artifacts for execution on the grid can them-
selves be regarded as sites with components and managers.

user = (u, C, , , , m3)

Here the manager m3 is software for placing a set of components C on the grid
for execution. An example of such a manager is developed in §5.

3.1 Services

A component that is made available, by a grid site, for general use is called a
service. Activation of a service, sv, by a user results in the future execution of sv.
Typically, execution will be performed on the local site. However, a grid site may
offer services without having a local engine with which to perform computation.
In such a situation a site may acquire an appropriate service from a third party.
This action is invisible to a user.

The set of services offered by a site may vary with time. User defined compo-
nents (i.e. software developed by applications programmers) may utilise services
through invocation.

Example 4. Consider the following user-defined component:

es == ({eigensolver}, o, eigensolver, d, MC, V C)

Here, functionality is provided by invocation of the service eigensolver. A site
that accepts component es for execution implicitly agrees to the use of its eigen-
solver service. �
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3.2 Information Directories

An information directory provides information about services and hardware of-
fered by grid sites. The information provided by directories allows users to nav-
igate the grid and to extract information which allows components to be placed
appropriately. Local site information is considered reliable whereas information
about external sites may be obsolete. Directories may provide:

1. local site information: for example, the set of local services offered by site s
is given by s.services

s.services :→ Set(Component)

and the position of component c in the execution queue of s is given by
s.queuepos(c).

s.queuepos : Component → Z

A particularly useful function is s.can execute,

s.can execute : Component → SiteName× Z

which takes a component, c, as argument and, if s can execute the component
(that is, it can supply the required software interface and meet the hardware
constraints), returns a pair comprising the site name s and the result of
evaluating the value constraint of c; otherwise it remains silent.

2. grid wide information:
for example a yellow pages site s may be asked to provide the set of all grid
sites which can execute a component c (s.all can execute(c)) 1.

s.all can execute : Component → Set(SiteName)

3.3 Engines and Execution of Components

A set of components C, comprising a program and input data, can be executed
on a single site s if the site offers an appropriate range of services and also
meets all of the component constraints. A set of components that is accepted for
execution (a job) is placed on a queue. An engine is a function which transforms
such a set of components into an output component:

engine : Set(Component) → Component

Example 5. Placement of the component set {FP, indata} (see example 1),
by a user u, on an appropriate site s creates a job awaiting execution by the
site engine. Execution of the job generates an output component R. R may be
returned to u or it may be stored, awaiting collection. �

1 Note that the information supplied by one site s about another may be out of date.
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3.4 Managers

In the definition of grid site above, sets of jobs, sets of available services and
information directories are passive. A site manager interacts with the grid (and
with applications programmers) and controls dynamic behaviour 2. In this pa-
per a simple user site manager (for placing and monitoring the execution of a
component) is identified with an ORC expression. More generally, a grid-site
manager controls:

– acceptance of new jobs for execution;
– the range of services currently offered;
– the updating of information directories through searches; and
– the job queue (which may involve placing jobs elsewhere).

A user interacts with a site by means of calls to specific functions (such as
s.all can execute (to navigate) or s.execute (to utilise services). In simple situa-
tions the manager can decide how to respond using the local site state; however,
in general, a manager may also generate calls to third-party sites (with possible
side-effects). A user is oblivious to all such secondary communication. This kind
of interaction is exactly that supported by the orchestration language ORC.

4 ORC: A Language for Site Orchestration

A brief summary of the language ORC is given here – see [9,10] for a complete
description. ORC is based on the idea of a site call. In ORC all operations must
be realised as site calls (e.g. there are no in-built arithmetic operations - addition
of x and y may be simulated by the site call add(x, y)). In general a site call M
may update the recipient site which, in turn, may call other sites and reply. A
fundamental concept of ORC is that a site call may fail (i.e. the sender may not
receive a reply). This may be due to a faulty network (either the outgoing or
incoming message may fail) or even to the recipient site being down. There are
some special sites:

– 0 never responds (0 can be used to terminate execution of threads);
– if b returns a signal if b is true and remains silent otherwise;
– RTimer(t), always responds after t time units;
– let always returns (publishes) its argument.

In addition, calls made to the generic grid site defined in §3 are considered.
ORC site calls may be orchestrated by means of expressions. The simplest

expression is a site call, possibly with parameters. More complex expressions
can be defined as follows, where E1 and E2 are expressions:

2 In this paper a single manager is specified for an entire grid site. In practice, a site
may devolve responsibility to the service level – thus, it may be the case that each
service, the information directory and the engine incorporate their own managers.
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1. operator > (sequential composition)
E1 > x > E2(x) evaluates E1, receives a result x, calls E2 with parameter
x. If E1 produces two results, say x and y, then E2 is evaluated twice, once
with argument x and once with argument y. The abreviation E1 � E2 is
used for E1 > x > E2 when evaluation of E2 is independent of x.

2. operator (parallel composition)
(E1 E2) evaluates E1 and E2 in parallel. Both evaluations may produce
replies. Evaluation of the expression returns the merged output streams of
E1 and E2.

3. where (asymmetric parallel composition)
E1 where x :∈ E2 begins evaluation of both E1 and x :∈ E2 in parallel.
Expression E1 may name x in some of its site calls. Evaluation of E1 may
proceed until a dependency on x is encountered; evaluation is then delayed.
The first value delivered by E2 is returned in x; evaluation of E1 can proceed
and the thread E2 is halted.

4.1 Site Failure

In the case of site failure (observed as silence) a user may remain waiting for a
response (non-termination). Silence may be temporary – due to a delay in re-
sponse from the target site – or permanent. Evaluation of some ORC expressions
must succeed. For example, given a grid site g the expression

Terminate � let(g) where g :∈ {N Rtimer(100)� let(stop)}

has one thread Rtimer(100) � let(stop) comprising local site calls only. These
calls must succeed and so evaluation of the expression must terminate. However,
this is not the case for an arbitrary site call. Grid programs should react when
a response, which they are awaiting, is not forthcoming. Typically, if there is
no response to a site call within a specified period then an exception handling
routine will be invoked. One way of dealing with site calls that do not respond is
to repoll the site. Thus, instead of conducting a single poll at once, polls may be
carried out at regularly or irregularly spaced intervals. Two such polls, Poll∗ and
TPoll, which repeatedly instantiate an ORC expression, E, are defined below:

Poll∗(E) � let(r) where r :∈ { t∈N Rtimer(t)� E}

Here E is instantiated (infinitely often) at regularly spaced intervals. Each thread
in Poll∗ waits indefinitely for a reply.

In many situations a user may wish to poll repeatedly until a response is
received. With the time poll, TPoll, multiple threads are generated. However,
threads which do not respond after t time units are ignored. In effect, old threads
are “cancelled” before new threads are invoked. The arguments f and t may be
used in the definition below to vary the interval between polls:
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TPoll(E, t, f) �
if flag � let(s) if ¬flag � TPoll(E, f(t), f)
where (flag, s) :∈ {E > s > let(true, s) Rtimer(t)� let(false, failure)}

Note that only one of the component expressions in the parallel statement
( if flag . . .) ( if ¬flag . . .)

can become active – in this case either TPoll(E, f(t), f) or let(s). Evaluation of
TPoll(E, 1, λx.x) generates a sequence of polls separated by 1 time unit while
evaluation of TPoll(E, t, λx.x + x) generates a sequence of polls at times 0, t,
2t, 4t, etc. A new thread is activated at time f(t) if the earlier thread fails to
respond in the interval t, . . . , f(t).

5 The Behaviour of a Component Manager

In this section we consider a number of ways by which a component manager on
a user site can select, utilise and monitor grid resources.

5.1 Site Selection

Suppose that a user (or manager) knows the constituent sites in a grid G:

G = {g1, . . . , gn}

Consider the selection of an appropriate site on which to place a component, c,
for execution.

Arbitrary selection. Grid site selection can be made by choosing the first suitable
site to respond:

Select F irst(c,G) � {let(g) where (g, v) :∈ ( gi∈G gi.can execute(c))}

This selection generates a call to each of the sites in G to determine which are
suitable for the placement of c; the first site to respond returns its grid site name,
g, and the value, V C(g). Evaluation of Select F irst publishes g. Note that if
none of the sites can execute c then the evaluation will not terminate.

Selection using a site ranking operation. The first site to respond may not be
the best location for placing c. The set of best sites on which to place c, as
determined by the value constraint V C, is:

{b ∈ G | ∀g ∈ G.V C(b) ≥ V C(g)}

Here all sites which maximise the constraint V C are included in the set. The
ranking of a particular site, s, may be found using the operation call
s.can execute(c). The result of such a call is a pair comprising the site name
and its constraint value; these results are passed to a local variable z by means
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of the operation pass. The expression Rank, below, constructs multiple threads
which send a stream of site information to variable z; after calling pass each
thread is terminated.

Rank(c,G) � z.null�
( gi∈G gi.can execute(c) > (g, v) > z.pass(g, v)� 0)

Here z is initialised by means of the site call null. The best site available after
t time units may be selected as follows:

Top Rank(c,G, t) � let(g) where

(g, v) :∈ (Rank(c,G) Rtimer(t)� z.highest)

The pair which has the highest constraint value may be retrieved by the call
z.highest. Evaluation of Top Rank is guaranteed to terminate; however, when
none of the active sites in G can execute c, a null site name is published.

Variants of this operation may be applied to rank sites using different met-
rics. For example, suppose that yellow pages directories provide site reliability
information (the probability of a site responding, say). Then a ranking operation
could be constructed using reliability information.

Enlarged selection using a trawling operation. A user who polls the set of sites
G and does not receive in reply a valid site name may wish either to poll a larger
set of sites or alter the given constraint set. A larger set of potential sites may
be found using grid information directories.

Trawl(c,G) � x.empty �
( gi∈G gi.all can execute(c) > G′ > x.union(G′) � 0)

Here each thread in Trawl determines a set of sites having the potential to
execute c. The sets are combined by distributed union and the result is held in
a local variable, x. Distributed union is realised through a stream of local site
calls, union, each of which has the side effect of extending x with G′. The site
call empty is used to initialise x. After t time units the set currently stored by
x is extracted using the operation get:

Trawl Select(c,G, t) � Top Rank(c,G′, t)
where G′ :∈ (Trawl(c,G) Rtimer(t)� x.get)

Note that the set of sites G′ found by browsing information directories may not
be valid. Direct contact is made with each of these sites using the expression
Top Rank(c,G′) to verify that it can be used to place c.

Selection with weakened value constraints. A user may, in the event of not being
able to find a suitable site to place c, weaken the associated component value
constraint. Let c′ be a component which is the same as c except that it has a
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weakened value constraint. A selection mechanism which first tries to find where
to place c and, if unsuccessful, then tries to find where to place c′ is:

Weakened Select(c,G, t) �
(if ¬null(g) � let(g) if null(g) � Trawl Select(c′,G, t))

where (g, v) :∈ Trawl Select(c,G, t)

This strategy can be repeated to allow the constraint to be further weakened.
It may happen that a user tries to select a site to place a component when

the grid network is congested – in such circumstances responses to site calls may
not be delivered. To make site selection more robust, it may be desirable to use
a form of repeated polling (as in §4.1).

5.2 Component Placement

Assume that the evaluation of an ORC expression Select(c,G) returns a site,
in grid G, that can be used to execute the component c (if such a site exists)
and remains silent otherwise. It remains for the user to contact the designated
site (or sites in the case of a distributed job) and to establish a contract for the
execution of c. Assume that a call g.execute(c), if successful, returns the output
component generated through execution of c on g. Note that a significant delay
may occur between invocation of execute and receipt of the output component.
In the simplest case a component is scheduled for execution on a single grid site.
However, distributed placement may occur for a set of components. A variety of
techniques for the placement of components is considered below.

Single site placement. A single site job placement by user u may be made as
follows:

Place({c},G) � Select(c,G) > g > g.execute(c)

A user may execute a component and publish the output by evaluating the
expression:

Place({c},G) > f > let(f)

Place is not robust and may fail if g does not agree to the proposed placement.
It can be made more robust using techniques similar to those used in §4.1.

Multiple site placement. Two independent components c1 and c2 can be placed
and executed independently as follows:

Independent({c1, c2},G) � ( Place({c1},G) Place({c2},G))

Output can be recovered in a way similar to that described above. More inter-
esting is the situation where a distributed computation contains a dependency.
Consider two components c1 and c2 where c1 has output component name f
(i.e. an output file) and c2 has an external (input) interface {f}. One method of
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placing c1 and c2 is first to place c1, await the return of the component f , and
then place a job comprising c2 and f :

Hub({c1, c2},G) � Place({c1},G) > f > Place({c2, f},G))

Here the user’s site acts as a hub for controlling the orchestration (i.e. the data
file is returned to the user and then forwarded for subsequent placement). An
alternative placement approach, which passes the intermediate result f directly
between the two selected grid sites, is:

NoHub({c1, c2},G) � Place({c2, f},G) where f :∈ ( Place({c1},G) )

Evaluation of NoHub tries to place two jobs simultaneously. However, there is a
dependency, f , between the two limbs of the where clause. Thus, in this case,
evaluation of the asymmetric composition is realised as a sequential composition.
However, it is possible to carry out some of the orchestration in parallel by
selecting a site for c2 before introducing the dependency f :

ReserveF irst({c1, c2},G) � Select(c2,G) > g > g.execute({c2, f})
where f :∈ Place({c1},G)

Here, selection can be performed without reference to f (since, in this case, f is
simply a data file and so does not influence site selection).

5.3 Monitoring Remote Execution

Consider again a single site placement where a component c has been placed on
a grid site g by a user. A delay may ensue before computing resources become
available for executing c. A user may remotely monitor the position, on a queue,
of a job with component c; if progress is not satisfactory the component may be
moved to another site. Suppose that c is at position n in a queue (the value n
may be determined by an earlier call. g.queuepos(c)) and that the queue is to
be monitored every t time units. Then

Monitor(c, g, n, t) � g.queuepos(c) > m >

( if (m ≤ 2)� 0
if (2 < m ∧m < n) � Rtimer(t) �Monitor(c, g, m, t)
if (2 < m ∧m ≥ n) � let(false, reschedule) )

Evaluation of this expression terminates silently if c is near the head of the
execution queue. However, if c is further down the queue progress is monitored
after every t time units; if progress is not satisfactory (that is if the position of c
in the queue has not decreased) then a signal to reschedule the computation is
published. Again techniques similar to those used in §4.1 can be used to make
Monitor more robust.

A manager for controlling the placement of a component can be defined as
follows:

Manage(c,G) � Select(c,G) > g > Control(g, c)
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Evaluation of Control generates two threads: an execution thread and a monitor-
ing thread. If the behaviour of site g is satisfactory then monitoring terminates
silently; otherwise the monitor publishes a false flag and the execution thread
is terminated. A single Reschedule thread is now invoked:

Control(g, c) � if flag � let(f) if ¬flag � ReSchedule(c, g,G \ {g})
where (flag, f) :∈
{g.execute(c) > f > let(true, f) Rtimer(t)�Monitor(c, g, n, t)}

Here n and t are user-defined parameters which control the behaviour of the
monitor. ReSchedule involves the invocation of a cancel operation (on site g)
and the re-invocation of selection and placement services:

ReSchedule(c, g,H) � ( g.cancel(c)� 0 Place({c},H) )

6 Discussion

In this paper a description of a component manager which selects and utilises
grid sites for component execution is presented. In the case of excessive delay at
a grid site the manager can reschedule its computation elsewhere. However, the
behaviour of orchestrations, for certain types of applications, needs to be more
complex. For example,

– The ORC model described here assumes that site calls are independent.
The case of grid computations involving several components which must
synchronise during execution is not considered here. One way to represent
synchronisation is to extend the model by the addition of a special site syn
which accepts input from several sources and, when all inputs have been
received, returns a result to all of the sources. Work on this extended model
is in progress.

– A distributed computation might be orchestrated by booking several exe-
cution services at some common fixed time – negotiations to determine a
suitable time could be orchestrated in a way similar to that used in the
common meeting example in [10].

– The expression Manage can be used to reschedule jobs that are currently
placed on an execution queue. It may be worthwhile to monitor execution
and, in the case of slow progress, to transfer the component and its execution
environment to another site – such kinds of transfer are considered in the
ambient calculus [4].

It should be noted that ORC is suitable for describing other kinds of grid
manager. For example, the component manager Manage is an ORC expression
which is evaluated remotely in order to control the placement of a component c.
However, another possibility is to make the component autonomic by the inclu-
sion of an internal ORC expression whose evaluation will control the movement
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of c. Thus, a user manager may carry out an initial component placement. There-
after, the internal ORC expression may be evaluated to monitor progress and to
move the component if necessary.

The novel features of grid computing are dynamism and uncertainty. ORC pro-
vides the basic materials for describing operations in such a world – for example,
the ability to perform time-outs and to cancel the execution of threads. Alterna-
tive approaches for defining web-based computations include the Pi-calculus [8]
and service combinators [3]. In this paper it is demonstrated that the expressive
power of ORC is well suited to the specification of dynamic behaviour. In an ex-
tension of the work reported upon here it is intended to show how specifications
of the sort presented here may be subjected to formal reasoning.
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Abstract. The distributed computing performance is usually limited by the data
transfer rate and access latency. Techniques such as data caching and prefetching
were developed to overcome this limitation. However, such techniques require
the knowledge of application behavior in order to be effective. In this sense, we
propose new application communication behavior discovery techniques that, by
classifying and analyzing application access patterns, is able to predict future ap-
plication data accesses. The proposed techniques use stochastic methods for ap-
plication state change prediction and neural networks for access pattern discovery
based on execution history, and is evaluated using the NAS Parallel Benchmark
suite.

1 Introduction

The evolution of general purpose machines and computer networks have influenced
the developing of the distributed computing area for the past decades. However, the
distributed computing performance is usually limited by the data transfer rate and ac-
cess latency. While computational power have increased in several orders of magnitude
over last years, the slow improvements in network transfer rates have been limiting the
overall performance of distributed applications. This has motivated the development of
several techniques to overcome this limitation.

Among such techniques it is possible to mention data caching and prefetching [1].
Both techniques are addressed to reduce data access latency. The first makes this reduc-
tion by using local memory for data storage and the second anticipates data accesses,
transferring data while network is idle.

In order to apply these techniques it is necessary to know the application behavior, in
this case, represented by data access patterns. Some access patterns can be discovered
using discrete observation [1], statistical [2] or analytical [3] algorithms. Although,
complex applications require different strategies.
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In this scope, we propose a new access pattern discovery and analysis techniques
based on neural networks and statistical approaches. In order to apply these techniques,
we have to extract and classify the application communication behavior. For this, the
first phase is responsible for monitoring application execution by using an analyzing
tool based on the approach introduced in the GridBox project [4]. The obtained appli-
cation communication behavior is classified using an adaptive, unsupervised and on-line
neural network [5].

The classified application behavior is used in two different and independent data
access prediction techniques: the first creates a Markov chain by defining arcs among
the classified states, according to the application communication variation during its
execution; and the second builds a time series, following the application communication
state changes, which is submitted to a prediction neural network capable of defining
future communication behavior. By both techniques we may infer when and how much
data should be accessed, minimizing the total application execution time. The proposed
method is evaluated using NPB 3.1 [6] benchmark suite.

This paper is organized as following: section 2 overviews the related work and tech-
nologies used in this work. The proposed architecture is shown in section 3, and the ex-
periment results are discussed in section 4. Finally, section 5 summarizes the obtained
results and concludes this paper.

2 Related Work

The performance of storage devices is considerably inferior when compared with the
memory speed. This is mostly observed in distributed applications which are limited by
network throughput and data access time. In this context, techniques have been devel-
oped for caching and prefetching which provide a significant application performance
gain. An efficient prefetching strategy allows the most relevant data to be stored in
memory prior to application requests, reducing the latency accesses and increasing the
performance of I/O operations.

In order to support anticipated data requests, the file system must know a priori
which data an application will need next. In order to discover future data blocks, the
application access pattern – read and/or write operations – must be known [1]. An access
pattern is highly application and system dependent, and can vary from simple sequential
accesses to highly complex and apparently random access sequences.

Fundamental prefetching concepts are presented in [1,7], discussing the prefetch-
ing techniques and their integration with caching mechanisms. Strategies for sequential
access pattern discovery are also proposed in [8], introducing a framework for data
prefetching based on the probability of future I/O operations. The work present the
CPS prefetching algorithm which uses statistical probabilities of I/O operations. The
proposed framework supports pluggable access pattern discovery algorithms, making
possible to extend CPS with different data access pattern prediction strategies. Prefetch-
ing implementation for distributed systems are also discussed in [9,10].

Prefetching strategies for non-sequential data patterns, such as used in distributed
shared memory systems, are discussed in [11]. Complex data prefetching strategies can
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be determined using semantic structures and analytical approaches [3], data accesses
classification [12], and stochastic approaches such as hidden Markov models [2].

Several works relate that the artificial intelligence techniques such as the artificial
neural networks has the potential to improve the pattern discovery and prediction [5,13]
efficiency. This has motivated this work to evaluate such techniques for classification
and prediction of distributed applications behavior. The adopted neural networks were
the ART 2A network [14] and the TDNN network [15].

ART 2A network is a part of the Adaptive Resonance Theory (ART) neural network
architecture developed by Grossberg [14]. The basic ART system is an unsupervised
learning model and typically consists of neuron layers for comparison and recognition,
a vigilance parameter, and a reset module. The vigilance parameter, named ρ, has con-
siderable influence in the classification: the higher is the vigilance parameters, the more
accurate is the classification. Although, the accuracy implies in lost of data generaliza-
tion. This work has adopted the ART 2A network due to its ability to classify a series of
patterns into a number of different clusters in a controllable way.

Time delay networks (TDNN), introduced by Waibel [15], are a group of neural
networks that have a special topology. They are used for position independent recog-
nition of features within a larger pattern. In a traditional neural network the basic unit
computes the weighted sum of its inputs and then forwards it through a nonlinear func-
tion to other units. In TDNN, the basic unit is modified by introducing n delays to
the input, so a input layer composed of y inputs would generate z = y · (n + 1) in-
puts to the network. Introducing the delays the neural network can relate and compare
the current input to data previously observed, in this way it effectively implements a
short-term memory mechanism [15]. The output values are compared to the expected
ones and the error value is obtained and backpropagated through the network, updating
the weights and decreasing the prediction error. This procedure is repeated until the
results converge to the expected outputs. The TDNN network ability to learn the data
behavior has motivated this work to adopt it to make predictions based on historical
informations.

3 Model for Discovery and Prediction of Application Data Access
Patterns

We propose a new access pattern discovery and analysis techniques based on neural
networks and statistical approaches. The technique is based on transparent and online
application behavior extraction, which is based on the GridBox project approach [4].
The obtained application communication behavior is classified using the ART 2A neural
network in an adaptive and unsupervised manner [5] to reduce the dimensionality of
data.

The classified application behavior is used in two different and independent data
prefetching techniques: the first creates a stochastic application behavior prediction
model according to application communication variations during the execution using
Markov chains; and the second builds a time series, representing the application com-
munication state changes, which is submitted to a prediction neural network capable of
defining future communication behavior. Both techniques allow to determine when and
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how much data should be accessed, minimizing the data access latency. The proposed
method is evaluated using NPB 3.1 [6] suite.

This work is composed of the following steps:

1. On-line and continuous application communication behavior extraction
The first phase of this work consisted of automatic extraction of application com-
munication behavior during its execution. In order to do so, an automated profiling
suite was developed, based on the GridBox project [4]. This suite was specifically
tuned to monitor and register all communication operations, requiring no applica-
tion source code modification, registering the following data:

– Sequence of operations during execution, allowing to restore the application
behavior afterwards;

– CPU time, between consecutive communication operations, used to determine
the application processing cost at any given point of execution;

– Location and size of modified data for each distributed operation, which is used
to determine and predict the application access patterns;

– I/O, memory and network usage for each distributed operation, which could
be used to improve the application scheduling and load balancing for different
heterogeneous networks.

With this data it is possible to reconstruct application behavior during the whole
course of execution. This information is used to classify application communication
behavior patterns as shown next.

2. Application behavior classification
Having the application execution trace collected, the application behavior is clas-
sified using the ART-2A [5] neural network. The pattern classification is performed
analyzing the sequence of application data accesses which are grouped into clusters
of similar behavior.

During this operation, the vigilance parameter ρ varies from 0.7to0.9999999999.
This helps to find the most adequate classification accuracy, which is determined
when the inter-cluster and intra-cluster distance intercept each other, as shown
in [5].

Having the best vigilance parameter, the application communication behavior
is classified into clusters. Each cluster represents application functionalities in dif-
ferent periods of executions, for example, periods of high, medium and low data
exchanges among the tasks of the same distributed application. The transcription
data is generated, describing the sequence of application operations in a form of
cluster transitions. For example, the application is transferring a high volume of
data at the instant t0 (e.g. classified in the cluster 0), at the next instant t1, it stops
communicating (e.g. cluster 1) to perform a CPU-bound operation, and at the in-
stant t2, it responds with obtained results with a low network utilization (e.g. cluster
2). The sequence of application transitions is used in two different and independent
techniques as shown next.

3. Application behavior prediction
We propose two different prediction techniques based on the application behav-
ior extraction presented before. The first one calculates the incidence matrix to
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generate Markov Chains for a statistical approach, allowing to define the next state
based on the current one. The second transforms the classified behavior into a
time series for prediction using TDNN neural network. This method allows to pre-
dict a sequence of future application state changes based on application execution
history.

The first model uses an incidence matrix that contains all application state tran-
sitions, calculating the probability of each state transition. This allows to predict all
states that can be reached by the application at any given execution point and the
probability of accessing them. This model does not consider the application exe-
cution history and gives stochastic results which could be applied by prefetching
algorithms such as CPS [8].

Besides applying the Markov Chains method, the application behavior is also
evaluated using the TDNN [15] neural network. The classified application behav-
ior is transformed into a time series, showing how the application behavior varies
during execution. This time series is structured as a set of vectors of size n (formally
defined as lag [15]), such as v0 = e0, e1, ..., en−1 where ek is a communication pat-
tern classified by ART 2A, to predict the next point en. This organization is similar
to a sliding-window, where the next vector is v1 = e1, ..., en, used to predict en+1

and so on. These input vectors are used to train a n-lag TDNN neural network for
predicting future data accesses.

This model uses application execution history (represented as a time series of
application state changes) as basis for application behavior prediction. Differently
from the statistical model, this allows to efficiently predict a set of consecutive ap-
plication state transitions, thus allowing a larger prefetching window. In this way,
it is also possible to detect application behavior changes, adapting the prediction as
necessary.

4 Evaluation Results

The NAS Parallel Benchmark (NPB) was used as testbed for this work, as it is widely
employed for parallel and distributed application evaluations. The suite is composed
by a set of benchmarks (named ep, mg, cg, ft, is, lu, sp and bt) , which are derived
from computational fluid dynamics (CFD) applications, consist of five kernels and three
pseudo-applications. Each of these benchmarks can be compiled into different classes
(A, B, C, W and S), each offering different application loads, such as memory and
cpu usage, execution time, problem size, etc. Most of the benchmarks are written in
FORTRAN, with the exception of the IS that is programmed in C. In this work, the
NPB-MPI suite was adopted using LAM-MPI [16] MPI implementation.

While the proposed architecture allows on-the-fly application evaluation and behav-
ior prediction, for didactic reasons the NPB benchmarks were fully executed and their
results analyzed after executing. For application prediction, execution traces were split-
ted, using the first 50% of execution for training the TDNN neural network. The pre-
diction was performed using the remaining 50%, analyzing the prediction error.
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IS.A benchmark:

# MPIDEBUG: GridBox log file.
# Data format:
# <ST> <UT> <PF> <PR> <BI> <BO> <VAR> <IN> <OUT> <SIZE>

60000 1600000 383 8278 0 0 -1 -1 -1 -1
0 0 0 0 0 0 184868512 1 0 1029
0 0 0 0 0 0 184860224 0 1 1029
0 0 3 0 0 0 -1 -1 -1 -1
0 0 0 0 0 0 184872640 1 0 1
0 0 0 0 0 0 184882912 0 1 1
...

Fig. 1. Execution trace for IS.A benchmark

Due to the page limitation, this paper does not include all obtained results. Thus, only
the results for the IS.A and CG.A benchmarks are discussed here, having the results for
other benchmark freely available at the project site 1.

4.1 Application Behavior Extraction

In order to determine the application behavior, an application tracer was developed,
based on the GridBox [4] project. The application behavior was monitored, saving
application communication operations. In case of MPI applications, such points are
delimited by MPI function calls. The application tracer intercepted MPI calls, saving
application usage statistics at each interruption point.

In order to monitor the NPB, it was compiled without modifications, and executed
inside the GridBox environment. During the execution, application behavior was mon-
itored and saved into an independent file for each process (running on different ma-
chines) for posterior analysis.

The information captured is shown in figure 4.1, with ST being System time, UT –
User Time, PF – Page Faults, PR – Page Reclaims, BI – I/O Blocks In, BO – I/O Blocks
Out, VAR – Address of accessed variable, IN – Flag to indicate that the variable was
read, OUT – Flag to indicate that the variable was written and SIZE – Size of accessed
data.

As it is possible to see in figure 4.1, periods of CPU usage are followed by data
synchronization (communication) among nodes. This allows to determine data access
patterns which can be further used to predict application behavior.

The IS.A benchmark has performed 108 communication operations while CG.A has
executed 6724. Thus, in order to make a more didactical comparison of two bench-
marks, all charts related to the CG were limited to the first 100 communication opera-
tions, once when they are fully-plotted the visualization is jeopardized 2.

4.2 Application Access Pattern

The obtained application trace is used to determine access patterns. This can be per-
formed by selecting the last three fields from the captured data (shown in figure 4.1),

1 http://www.icmc.usp.br/˜mello
2 The full traces of NPB are available at http://www.icmc.usp.br/˜mello
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Fig. 2. IS.A access pattern
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Fig. 3. CG.A access pattern

that represents the amount and direction of the I/O operation. The application access
pattern can be observed in figure 2.

By using the data from figures 2 and 3, it is possible to observe the behavior of both
IS and CG 3 applications. While IS has relatively few CPU operations, synchronized at
MPI data exchange routines, CG constantly exchanges small amounts of data over the
network. From this data, it is observed that applications whose behavior is similar to
IS benchmark are CPU-bound, while the performance of applications similar to CG is
limited by network latencies due to the high number of communication operations.

The application behavior and network usage can be applied to determine the most
adequate protocol and message sizes according to the network environment, such as
LAN, MAN or WAN. As the network latency and transfer rate are highly dependent
on the environment, the data transfer approach (such as packet size, protocol, network
topology, etc) is highly important to obtain best application performance [17].

For example, it is observed that applications similar to IS are more likely to behave
better in wide area networks (such as grid) than those similar to CG. Thus, combining

3 As the CG benchmark is heavily IO-bound, the results were limited to first 100 execution
points for visualization reasons.
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the application behavior data and prefetching algorithms to the knowledge of network
environment characteristics, it is possible to optimize the I/O request in a way to provide
best overall performance.

4.3 Access Pattern Classification

Having discovered the sequence of application communication accesses, they are clas-
sified into clusters with similar characteristics. Thus, all similar operations are grouped
into the same cluster.

In order to perform the classification, the ART-2A neural network is used. The se-
quence of operations is processed by the neural network, generating clusters, and cal-
culating the inter and intra-cluster distances to determine the most adequate ART-2A
parameters [5]. The classification continues until the inter and intra-cluster distances
intercept each other, as shown in figures 4.a and 4.b. At that point, clusters describe an
efficient representation of the different application states as presented in [5].

Having discovered the number of clusters, it is determined the average volume of
transferred data of each one using the cluster centroid value. This value represents each
cluster mass center and it is influenced by the values of its patterns. In this way, the
centroid represents how much data is expected to be transferred over network at each
point of application execution. Using this data, it is possible to construct the Markov
chain to describe the statistical model of application behavior, as shown in figures 5.a
and 5.b.
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Fig. 6. The time series for NAS benchmark

As presented in figures 5.a and 5.b, the transition from each application state to any
other can occur with a given probability. This data can be further used to parameterize
statistical prefetching algorithms, such as CPS [8].

For easier data representation, cluster numbers were used instead of centroid
values here. Thus, for example, CPU-bound application state became state 0, low net-
work utilization state became state 1, high network utilization state became state 2,
and so on.

4.4 Application Behavior Prediction

Having evaluated and classified application access patterns, the TDNN neural network
is used to predict the sequence of future application operations. In this work, the SNNS
[18] implementation of the TDNN network was used.

In order to use the TDNN neural network, series of application access patterns were
created, specifying what action is expected for each set of application state changes.
This is accomplished by creating time series of application behavior, as shown in figure
4.4. By this figure, it is observed the behavior of IS.A and CG.A benchmarks, repre-
sented by state changes, where each state is an ART-2A cluster characterized by similar
communication behavior.

The input vectors, which represent the sequence of application state transitions, are
normalized to values between 0 and 1. This normalization speeds up the training phase
by providing small variations in the neural network weights. Having this values, series
of application behavior patterns are created, as shown in table 1.

In order to predict the future application behavior, the sequence of application com-
munication operations is transcribed into a set of access patterns with lag values of 5,
10, 20, 30, 40 and 50 accesses. This data were used to train the neural network. TDNN
networks were created for each lag value and validated against the expected state tran-
sitions. This validation provided the error charts presented in figures 7(a,b).

The results shown in figures 7(a,b) were calculated validating the TDNN network
trained with the first 50% of application execution patterns (training set) against the
remaining 50% (validation set). As can be observed in figures 7(a,b), the best results
for both benchmarks are obtained using lag values between 5 and 10, due to small
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Table 1. NPB access patterns, with lag = 5, predicting 1 future pattern

IS.A CG.A
Number of patterns 48 3356

Detected access pattern 0 ⇒ 0.25 ⇒ 0 ⇒ 0 ⇒ 0.5 0 ⇒ 0 ⇒ 0 ⇒ 0.25 ⇒ 0
Predicted next input 0 0

Detected access pattern 0.25 ⇒ 0 ⇒ 0 ⇒ 0.5 ⇒ 0 0 ⇒ 0 ⇒ 0.25 ⇒ 0 ⇒ 0
Predicted next input 0 0

Detected access pattern 0 ⇒ 0 ⇒ 0.5 ⇒ 0 ⇒ 0 0 ⇒ 0.25 ⇒ 0 ⇒ 0 ⇒ 0
Predicted next input 0.75 0.5

Detected access pattern 0 ⇒ 0.5 ⇒ 0 ⇒ 0 ⇒ 0.75 0.25 ⇒ 0 ⇒ 0 ⇒ 0 ⇒ 0.5
Predicted next input 0 0

Detected access pattern 0.5 ⇒ 0 ⇒ 0 ⇒ 0.75 ⇒ 0 0 ⇒ 0 ⇒ 0 ⇒ 0.5 ⇒ 0
Predicted next input 0 0
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Fig. 7. TDNN network validation

number of application execution states. As shown in table 1, the IS benchmark does not
has enough state transitions to justify the usage of large lag values, thus resulting into
few and imprecise results for lag values superior to 30, as can be seen in figure 7.a. This
is not the case for the CG benchmark which has much more state transitions.

4.5 Prefetching Functionality

After predicting application state changes, it is possible to define the prefetching mech-
anism. In this section we illustrate the prefetching algorithm for the IS.A application.

Statistical analysis-based prediction using Markov Chains. This prefetching algo-
rithm is able to predict future application requests based on current application execu-
tion state. As observed in figure 5.a, when application is at state 0, with I/O usage of 0
(defined by the centroid value of cluster 0), the following future application actions are
possible:

– 10.28% probability state transition to state 1 with I/O usage of 1029.
– 33.64% probability to remain at state 0 with I/O usage of 0.
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– 12.15% probability state transition to state 2 with I/O usage of 1.
– 10.28% probability state transition to state 3 with I/O usage of 2106432.

These values can be used as input to prefetching algorithms such as CPS which may
infer the next state based on the current one. In this way they can read-ahead data before
the state transition and offer it to the requesting application.

Pattern analysis-based prediction. In this section we consider a prefetching algorithm
for IS.A application, using TDNN with a lag of 5 states. As observed in table 1, when
application executes a set of transitions from state 0 to states 0.25, 0, 0 and 0.5, the
expected next state is 0 (All cluster numbers were normalized between 0 and 1 for the
TDNN network. In this way a state 0.25 represents a certain cluster of ART-2A neural
network.). Converting the state values back to the centroid values, obtained during the
application behavior classification, we may instruct the prefetching algorithm to expect
the following behavior4:

1. Application performs CPU-based operations (application state 0), defined by I/O
usage of 0 (the centroid value of respective cluster 0).

2. Application performs a synchronization operation (application state 0.25), defined
by I/O usage of 1 (the centroid value of respective cluster 1).

3. Application performs CPU-based operations (application state 0), defined by I/O
usage of 0 (the centroid value of respective cluster 0).

4. Application performs CPU-based operations (application state 0), defined by I/O
usage of 0 (the centroid value of respective cluster 0).

5. Application performs an I/O operations (application state 0.5), defined by I/O usage
of 1029 (the centroid value of respective cluster 2).

When such sequence of state transitions is encountered, the prefetching algorithm
can predict the next application operation with probability of 100− 11 = 89% to be:

1. Application performs a CPU-based operation (application state 0), defined by I/O
usage of 0 (the centroid value of respective cluster 0).

5 Conclusions

In this work we have evaluated the behavior of data accesses for distributed applications,
proposing two data prefetching strategies. The first strategy is based on a statistical
approach which uses Markov Chains to determine the next application request based
on current application execution state. The second one uses TDNN neural network to
predict future application accesses based on execution history. The techniques were
evaluated using the NAS Parallel Benchmark.

The evaluation results demonstrate that the usage of both statistic-based and applica-
tion history-based prefetching mechanisms provide high efficiency in discovering dis-
tributed data access patterns.

4 Notice there is a state just to represent the environment without communication in which the
application may be processing.
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André Carlos Ponce de Leon Ferreira de Carvalho1, and Laurence Tianruo Yang2

1 Universidade de São Paulo
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Abstract. The growing availability of low cost microprocessors and the evolu-
tion of computing networks have enabled the construction of sophisticated dis-
tributed systems. The computing capacity of these systems motivated the adop-
tion of clusters to build high performance solutions. The improvement of the
process scheduling over clusters originated several proposals of scheduling and
load balancing algorithms. These proposals have motivated this work, which de-
fines, evaluates and implements a new load balancing algorithm for heteroge-
neous capacity clusters. This algorithm, named Ant Scheduler, uses concepts of
ant colonies for the development of optimization solutions. Experimental results
obtained in the comparison of Ant Scheduler with other approaches investigated
in the literature show its ability to minimize process mean response times, im-
proving the performance.

1 Introduction

The growing availability of low cost microprocessors and the evolution of computing
networks have enabled the construction of sophisticated distributed systems. In such
systems, the processes executed on network computers communicate to each other
to perform a collaborative computing task. A load balancing algorithm is frequently
adopted to distribute the processes among computers.

A load balancing algorithm is responsible to equally distribute the processes load
among the computers of an distributed environment [1]. Krueger and Livny [2] demon-
strate that these algorithms can reduce the mean and standard deviation of processes’
response times. Shorter response times result in higher performance in the execution of
the processes.

The load balancing algorithms involve four policies: transference, selection, location
and information [1]. The transference policy determines whether a computer is in a suit-
able state to participate in a task transfer, either as a server or as a receiver of processes.
The selection policy defines the processes that should be transferred from the busiest
computer to the idlest one. The location policy is responsible to find a suitable transfer
partner (sender or receiver) for a computer, once the transfer policy has decided about
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its state. A serving computer distributes the processes, when it is overloaded; a receiv-
ing computer requests processes, when it is idle. The information policy defines when
and how the information regarding the computers’ availability is updated in the system.
Several works related to load balancing can be found in the literature [3,4,1,5,6].

Zhou and Ferrari [3] evaluated five server-initiated load balancing algorithms,
i.e. initiated by the most overloaded computer: Disted, Global, Central, Random and
Lowest. In Disted, when a computer suffers any modification in its load, it emits mes-
sages to the other computers to inform its current load. In Global, one computer cen-
tralizes all the computers’ load information of the environment and sends broadcast
messages in order to keep the other computers updated. In Central, as in Global, a cen-
tral computer receives all the load information related to the system; however, it does
not update the other computers with this information. This central computer decides
the resources allocation in the environment. In Random, no information about the envi-
ronment load is handled. Now, a computer is selected by random in order to receive a
process to be initiated. In Lowest, the load information is sent when demanded. When a
computer starts a process, it requests information and analyzes the loads of a small set
of computers and submit the processes to the idlest one, the computer with the shortest
process queue.

Theimer and Lantz [4] implemented algorithms similar to Central, Disted and Low-
est. They analyzed these algorithms for systems composed of a larger number of com-
puters (about 70). For the Disted and Lowest algorithms, a few process receiver and
sender groups were created. The communication within these groups was handled by
using a multicast protocol, in order to minimize the message exchange among the
computers. Computers with load lower than a inferior limit participate of the process
receiver group, whilst those with load higher than a superior limit participate of the
process sender group.

Theimer and Lantz recommend decentralized algorithms, such as Lowest and Disted,
as they do not generate single points of failure, as Central does. Central presents the
highest performance for small and medium size networks, but its performance declines
in larger environments. They concluded that algorithms like Lowest work with the prob-
ability of a computer being idle [4]. They assume system homogeneity, as they use the
size of the CPU’s waiting queue as the load index. The process behavior is not analyzed;
therefore, the actual load of each computer is not measured.

Shivaratri, Krueger and Singhal [1] analyzed the server-initiated, receiver-initiated,
symmetrically initiated, adaptive symmetrically initiated and stable symmetrically initi-
ated algorithms. In their studies, the length of the process waiting queue at the CPU was
considered as the load index. This measure was chosen because it is simple and, there-
fore, can be obtained with fewer resources. They concluded that the receiver-initiated
algorithms present a higher performance than the server-initiated ones. In their conclu-
sions, the algorithm with the highest final performance was the stable symmetrically
initiated. This algorithm preserves the history of the load information exchanged in the
system and takes actions to transfer the processes by using this information.

Mello et al. [5] proposed a load balancing algorithm for distributing processes on
heterogeneous capacity computers. This algorithm, named TLBA (Tree Load Balancing
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Algorithm), organizes computers in a virtual tree topology and starts delivering pro-
cesses from the root to the leaves. In their experiments, this algorithm presented a very
good performance, with low mean response time.

Senger et al. [6] proposed GAS, a genetic scheduling algorithm which uses infor-
mation regarding the capacity of the processing elements, applications’ communication
and processing load, in order to allocate resources on heterogeneous and distributed en-
vironments. GAS uses Genetic Algorithms to find out the most appropriate computing
resource subset to support applications.

These works, together with the development of new computing techniques based on
biology, motivated the proposal of a new load balancing algorithm, named Ant Sched-
uler, which aims to apply Ant Colony Optimization techniques [7] to schedule pro-
cesses on heterogeneous capacity computers. Experiments were carried out to evaluate
the proposed algorithm and compare it with other algorithms found in the literature.
The results confirm its applicability in heterogeneous cluster computing environments
and suggest its potential as an alternative approach for load balancing.

This paper is divided into the following sections: section 2 briefly introduces the
basic concepts of Ant Colony Optimization; section 3 describes the proposed load
balancing algorithm based on Ant Colonies, named Ant Scheduler; The simulations
performed and the results obtained are presented in section 4; section 5 describes the
implementation of the proposed algorithm; Finally, section 6 has the main conclusions
of this work.

2 Ant Colony Optimization

In the last years, there was a large growth in the research of computational techniques
inspired in nature. This area, named Bio-inspired Computing, has provided biologi-
cally motivated solutions for several real world problems. Among the Bio-inspired
Computing techniques, Artificial Neural Networks (ANN), Evolutionary Algorithms
(EA), Artificial Immune Systems (AIS) and Ant Colony Optimization (ACO) can be
mentioned.

One of the most promising of these techniques is ACO [7], a meta-heuristic technique
based on the structure and behavior of ant colonies that has been successfully applied
to several optimization problems [8,9].

Apparently simple organisms, ants can deal with complex tasks by acting collec-
tively. This collective behavior is supported by the release of a chemical substance,
named pheromone. During their movement, ants deposit pheromone in their followed
paths. The presence of pheromone in a path, on its turn, attracts other ants. Thus,
pheromone plays a key role in the information exchange between ants, allowing the
accomplishment of several important tasks. A classical example is the selection of the
shortest path between their nest and a food source.

In order to formally define ACO, assume four ants and two possible paths, P1 and
P2 , which link a nest NE to a food source FS , such that P1 > P2. Initially, all the ants
(A1, A2, A3 and A4) are in NE and must choose between the paths P1 and P2 to arrive
to FS .
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1. In NE , the ants (A1, A2, A3 and A4) do not know the localization of the food source
(FS). Thus, they randomly choose between P1 and P2, with the same probability.
Assume that ants A1 and A2 choose P1, and ants A3 and A4 choose P2.

2. While the ants pass by P1 and P2, they leave a certain amount of pheromone on the
paths, τC1 and τC2, respectively.

3. As P2 < P1, A3 and A4 arrive to FS before A1 and A2. In this moment, τC2 = 2.
Since A1 and A2 have still not arrived to FS , τC1 = 0. In order to come back to
NE , A3 and A4 must choose again between P1 and P2. As in FS , τC2 > τC1, the
probability of these ants choosing P2 is higher. Assume that A3 and A4 choose P2.

4. When A3 and A4 arrive to NE again, τC2 arrives to 4. This increase in τC2 consol-
idates the rank of P2 as the shortest path. When A1 and A2 arrive to FS , τC2 = 4
and τC1 = 2. Thus, the probability of A1 and A2 coming back to NE through P2

becomes higher.

In the previous example, at the beginning, when there is no pheromone, an ant look-
ing for food randomly chooses between P1 and P2 with a probability of 0.5 (50% of
possibility for each path). When there is pheromone on at least one of the paths, the
probability of selecting a given path is proportional to the amount of pheromone on it.
Thus, paths with a higher concentration of pheromone have a higher chance of being
selected.

It must be observed that most ACO approaches, in spite of being inspired by the
problem solving paradigms found in biological ants, do not build replicas of them.
Features of real ants may be absent and other additional techniques may be used to
complement the use of pheromone.

One of the problems that may arise with the use of pheromone is the stagnation.
Suppose, for example, that ants get addicted to a particular path. Sometimes in the
future, that path may become congested, becoming nonoptimal. Another problem arises
when a favorite path is obstructed and can no longer be used by the ants. In order to
reduce this problem, the following approaches have been employed:

Evaporation: Reduce the pheromone values τi by a ρ factor to prevent high pheromone
concentration in optimal paths, which avoids the exploration of other (new or better)
alternatives.

Heuristic: This approach combines pheromone concentration τi and a heuristic func-
tion ηi. The relative importance of each information is defined by two parameters, α
and β.

3 Ant Scheduler

The problem of process allocation in heterogeneous multi-computing environments can
be modeled by using graphs. In this case, each process request for execution has the
nodes S and T as origin and destination, respectively. S and T are connected by N
different paths, each corresponding to a computer in a cluster. This graph is employed
to improve the general performance of the system by minimizing the mean congestion
of the paths.
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The good results obtained by ACO in graph-based problems favor the use of ACO
for the optimization of process allocation on heterogeneous cluster computing environ-
ments. For such, each initiated process can be seen as an ant looking for the best path
starting in the nest in order to arrive as fast as possible to the food source. In this search,
each computer can be seen as a path and the conclusion of the program execution as the
food source.

The Ant Scheduler algorithm is based on the ant-cycle proposed by Dorigo et
al. [7]. When the computer responsible for the distribution of processes (master) in
the cluster is started, each edge in the graph has its pheromone intensity initiated with
a value τi = c. When a process is launched, it is seen as an ant able to migrate. Thus,
this process must select one of the paths (the computers of the cluster) to its desti-
nation (complete execution). The probability of an ant choosing a path i is given by
equation 1, where τi is the pheromone level on path i, ηi is a value associated to the
computer i by a heuristic function, and the parameters α and β control the relevance
of τi and ηi:

pi =
τα
i · ηβ

i∑N
j=1 τα

j · ηβ
j

, (1)

Δi = Δi +
Q

T
, (2)

τi(t + 1) = ρ · τi(t) + Δi. (3)

In this paper, this heuristic function is proportional to the load of the ith computer.
The denominator is the sum of the pheromone levels weighted by the heuristic function
and controlled by the parameters α and β. When an ant arrives to its destination (when
a process finishes), it deposits a Δ amount of pheromone in the covered path (equation
2: where Q is a constant and T is the time spent by the ant to arrive at its destination
(the process running time)).

In order to prevent an addiction to a particular computer, the paths face continu-
ous pheromone evaporation. Thus, in regular time intervals, the amount of pheromone
changes according to the rule of equation 3, where ρ is a coefficient such that (1 − ρ)
represents the pheromone evaporation between t and t + 1. Additionally, Δi is reseted
(Δi = 0) in regular time intervals.

One problem with this approach is the possibility of a poor performance due to the
different range of values for τi and ηi. In order to overcome this problem, these values
are normalized using a logarithmic scale, modifying the equation 1 and originating the
equation 4:

pi =
(log τi)α · (log ηi)β∑N

j=1(log τj)α · (log ηj)β
. (4)
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Another problem found was the frequent allocation of a low value, between 0 and 1,
to τi, making log τi < 0, leading to unrealistic values for the probability function. This
problem was solved by using log ε + τi instead of log τi, where ε = 1. This resulted to
the equation 5:

pi =
(log ε + τi)α · (log ε + ηi)β∑N

j=1(log ε + τj)α · (ε + log ηj)β
. (5)

Algorithm 1. Ant Scheduler: process started
Choose a computer with probability pi, calculated using equation 5
Schedule process on chosen computer

Algorithm 2. Ant Scheduler: process finished
Update the amount of pheromone Δi using equation 2

Algorithm 3. Ant Scheduler: pheromone evaporation
loop

for all i such that i is a cluster node do
Update the amount of pheromone τi using equation 3
Reset the amount of pheromone Δi (Δi = 0)

end for
end loop

The Ant Scheduler is composed of the Algorithms 1, 2 and 3. The first algorithm is
executed when a new process, with possibility of migration, is initiated. When a process
completes its execution, the second algorithm starts. The third algorithm is periodically
executed, in order to perform the pheromone evaporation.

4 Simulation Results

Several experiments have been carried out on environments with 32 computers for the
evaluation of the Ant Scheduler algorithm behavior. The Ant Scheduler parameters used
were α = 1, β = 1, ρ = 0.8 and Q = 0.1. Parallel applications of up to 8, 64 and 128
tasks have been evaluated. This configuration allows the evaluation of the algorithm
in situations where there are many tasks synchronized with others, that is, tasks that
communicate among themselves to solve the same computing problem.

The workload imposed by such applications follows the workload model by Feitel-
son1[10]. This model is based on the analysis of six execution traces of the following
production environments: 128-node iPSC/860 at NASA Ames; 128-node IBM SP1 at

1 http://www.cs.huji.ac.il/labs/parallel/workload/models.html
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Argonne; 400-node Paragon at SDSC; 126-node Butterfly at LLNL; 512-node IBM SP2
at CTC; 96-node Paragon at ETH.

According to this model, the arrival of processes is derived from an exponential
probability distribution function (pdf) with mean equal to 1, 500 seconds. This model
was adopted to simulate and allow a comparative evaluation of Ant Scheduler and other
algorithms found in the literature.

In order to carry out the experiments and evaluate the scheduling algorithm proposed
in this study, the authors used the model for creation of heterogeneous distributed envi-
ronments and evaluation of the parallel applications response time - UniMPP (Unified
Modeling for Predicting Performance) [11]. The adopted model is able to generate the
mean execution time of the processes submitted to the system. The mean response time
is generated after reaching the confidence interval of 95%.

In this model, every processing element (PE), PEMi, is composed of the sextuple
{pci, mmi, vmi, dri, dwi, loi}, where pci is the total computing capacity of each com-
puter measured in instructions per time unit, mmi is the main memory total capacity,
vmi is the virtual memory total capacity, dri is the hard disk reading throughput, dwi

is the hard disk writing throughput, and loi is the time between sending and receiving a
message.

In this model, every process is represented by the sextuple {mpj, smj , pdfdmj ,
pdfdrj , pdfdwj , pdfnetj}, where mpj represents the processing consumption, smj is
the amount of static memory allocated by the process, pdfdmj is the probability dis-
tribution for the memory dynamic occupation, pdfdrj is the probability distribution for
file reading, pdfdwj is the probability distribution for file writing, and pdfnetj is the
probability distribution for messages sending and receiving.

In order to evaluate the Ant Scheduler algorithm, a class was included in the object-
oriented simulator 2 [11]. This class implements the functionalities of Ant Scheduler
and has been aggregated to the UniMPP model simulator to generate the mean response
times of an application execution. These results were used to evaluate the performance
of Ant Scheduler and to allow comparisons with other algorithms.

4.1 Environment Parameterizations

Experiments were conduced in environments composed of 32 computers. In these ex-
periments, each PEMi for the UniMPP model was probabilistically defined. The pa-
rameters pci, mmi, vmi, dri, dwi were set by using an uniform probability distribution
function with the mean of 1, 500 Mips (millions of instructions per second), 1, 024
MBytes (main memory), 1, 024 MBytes (virtual memory), 40 MBytes (file reading
transference rate from hard disk) and 30 MBytes (file writing transference rate to hard
disk). These measures were based on the actual values obtained using a group of ma-
chines from our research laboratory (Distributed Systems and Concurrent Programming
Laboratory). These measures followed the benchmark proposed by Mello and Senger
[11]3. These parameter values and the use of probability distributions allow the creation
of heterogeneous environments to evaluate the Ant Scheduler algorithm.

2 SchedSim - available at website http://www.icmc.usp.br/˜mello/outr.html
3 Available at http://www.icmc.usp.br/˜mello/
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The Feitelson’s workload model was used to define the occupation parameter (in
Mips) of the processes (or tasks) that take part of the parallel application. The remain-
ing parameters required for the UniMPP to represent a process were defined as: smj ,
the amount of static memory used by the process, based on an exponential distribution
with a mean of 300 KBytes; pdfdmj , the amount of memory dynamically allocated,
defined by an exponential distribution with a mean of 1, 000 KBytes; pdfdrj , the file
reading probability, defined by an exponential distribution with a mean of one read at
each 1, 000 clock ticks, same value used to parameterize the writing in files (pdfdwj);
pdfnetj , the receiving and sending of network messages, parameterized by an expo-
nential distribution with a mean of one message at each 1, 000 clock ticks.

During the experiments, all computers were located at the same network, as a or-
dinary cluster. Within the network, the computers present a delay (RTT - Round-Trip
Time according to the model by Hockney [12]) of 0.0001 (mean value extracted by the
net benchmark by Mello and Senger [11] for a Gigabit Ethernet network).

4.2 Algorithms Simulated

The performance of Ant Scheduler is compared with 5 other scheduling and load bal-
ancing algorithms proposed in literature:DPWP [13], Random,Central,Lowest [3],
TLBA [5] and GAS [6].

The DPWP (Dynamic Policy Without Preemption) algorithm performs the parallel
applications scheduling taking into account a distributed and heterogeneous execution
scenario [13]. This algorithm allows the scheduling of the applications developed on
PVM, MPI and CORBA. The details involved in the task attributions are supervised by
the scheduling software, AMIGO [14]4.

The load index used in this algorithm is the queue size of each PE (processing ele-
ment). Through this index, the load of a PE is based on the ratio between its number of
tasks being executed and its processing capacity. The processing capacity is measured
by specific benchmarks [14,15]. The DPWP scheduling algorithm uses load indexes to
create an ordered list of PEs. The parallel application tasks are attributed to the PEs of
this list, in a circular structure.

The Lowest, Central and Random algorithms were investigated for load bal-
ancing in [3]. These algorithms are defined by two main components: LIM (Load
information manager) and LBM (Load balance manager). The first component is re-
sponsible for the information policy and for monitoring the computers’ load in order
to calculate the load indexes. The latter defines how to use the collected informa-
tion to find out the most appropriate computer to schedule processes. The approach
followed by these components to perform their tasks allows the definition of distinct
algorithms. These algorithms differ from the scheduling algorithms by being designed
to perform the load balance, thus there is no global scheduling software to which the
applications are submitted. In fact, each PE should locally manage the application
tasks that reach it, initiating them locally or defining how another PE will be selected
to execute tasks.

4 We have compared our results to this work, because it was also developed in our Laboratory.
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The Lowest algorithm aims to achieve the load balance by minimizing the number
of messages exchanged among its components. When a task is submitted to the envi-
ronment, the LIM receiving the request defines a limited set of remote LIMs. The loads
of the PEs of this set are received and the idlest PE is selected to receive the task.

The Central algorithm employs a master LBM and a master LIM. Both of them
centralize the decision making related to the load balance. The master LIM receives the
load indexes sent by the slave LIMs. The master LBM receives the requests to allocate
processes to the system and uses the information provided by the master LIM to make
these allocations.

The Random algorithm does not use information regarding the system load to make
decisions. When a task is submitted to the execution environment, the algorithm ran-
domly selects an PE. The load index used by the Lowest and Central algorithms
is calculated based on the number of processes in the execution queue. Zhou and Fer-
rari [3] have observed that the Lowest and Central algorithms present similar per-
formance and that the Random algorithms present the worst results of all. They also
suggested the Lowest algorithm for distributed scenarios, because it is not centralized.

The TLBA (Tree Load Balancing Algorithm) algorithm aims at balancing loads in
scalable heterogeneous distributed systems [5]. This algorithm creates a logical inter-
connection topology with all PEs, in a tree format, and performs the migration of tasks
in order to improve the system load balance.

The GAS (Genetic Algorithm for Scheduling) algorithm uses Genetic Algorithms to
propose optimized scheduling solutions [6]. The algorithm considers knowledge about
the execution time and applications’ behavior to define the most adequate set of comput-
ing resources to support a parallel application on a distributed environment composed
of heterogeneous capacity computers. GAS uses the crossover and mutation operators
to optimize the probabilistic search for the best solution for a problem. Based on Ge-
netics and Evolution, Genetic Algorithms are very suitable for global search and can be
efficiently implemented in parallel machines.

4.3 Comparison with Other Algorithms

For the validation of the Ant Scheduler algorithm, its performance was compared with
results obtained by the five algorithms previously described. For such, the authors car-
ried out simulations where all these algorithms were evaluated running parallel appli-
cations composed of different number of tasks. Figures 1.a and 1.b show the process
mean response times for parallel applications with up to 64 and 128 tasks, respectively.

Random had the worst results, while Ant Scheduler presented the best performance.
The poor performance obtained by GAS can be explained by the fact that its execution
time increases according to the number of computers. This occurs due to the use of
larger chromosomes (this approach is based on Genetic Algorithms), which have to be
evaluated by the fitness function. This evaluation requires a long time, which is added
to the scheduling cost, jeopardizing the process execution time. It is hard to observe
the curve for Ant Scheduler in Figure 1.a due to the small mean response times in
comparison with the other algorithms.
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Fig. 1. Simulation results

These results show that, in all the scenarios investigated, the Ant Scheduler presented
the best performance.

5 Implementation

In order to allow real experiments, Ant Scheduler was implemented using the Linux ker-
nel 2.4.24. This implementations uses the process migration service of the openMosix5

patch. openMosix is a software designed to balance the load of clusters by distributing
processes.

The implementation was performed by adding a set of traps inside the Linux kernel.
The first trap was implemented in the system call do fork. Whenever a new process
is started, do fork is called. This system call executes the first trap of Ant Scheduler,
which chooses the node where the new process will run. This phase is based on the
pheromone level and the computing capacity of each node. Similarly, when a process
finishes, the system call do exit is made. This system call executes the second trap of
Ant Scheduler, which updates the amount of pheromone in the computer (ant’s path)
where the process was running.

These traps were implemented in a kernel module by using function pointers, allow-
ing simple changes to use another process scheduling algorithm. When the module is
loaded, it registers its functions (traps). This module also starts a thread that periodically
updates the pheromone level of each computer applying the equation 3.

Experiments were carried out to evaluate the process execution time for an envi-
ronment using Ant Scheduler and openMosix on a set of five Dual Xeon 2.4 Ghz
computers. Table 1 presents the results in process mean execution time (in seconds)
for a load of 10 low-load, 10 mean-load and 10 high-load applications executing si-
multaneously. According to these results, the use of Ant Scheduler reduced the mean
response time.

5 Openmosix is a Linux kernel patch developed by Moshe Bar which allows automatic process
migration in a cluster environment – Available at http://openmosix.sourceforge.net/
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Table 1. Experimental Results

Experiment without with
Ant Scheduler Ant Scheduler

1 351.00 327.00
2 351.00 336.00
3 351.00 318.00
4 354.00 321.00
5 351.00 318.00
6 351.00 333.00
7 351.00 321.00
8 351.00 336.00
9 348.00 309.00
10 348.00 315.00

Mean 350.70 323.40
Std Dev 1.615 8.777

In order to evaluate the statistical significance of the results obtained, the authors
applied the Student’s t-test. In this analysis, the authors used the standard error sx for
small data samples [16], given by equation sx = s√

n
.s is the standard deviation and n

is the number of samples. Applying the equation, the standard errors of 0.51 and 2.775
were obtained without Ant Scheduler and with Ant Scheduler, respectively.

In the test, the authors propose the null hypothesis (from hypothesis test) H0 :
μwith = μwithout, with the alternative hypothesis HA : μwith < μwithout to eval-
uate whether the results are statistically equivalent. The hypothesis H0 considers the
results of the Ant Scheduler and the standard openMosix to be similar. If the test is re-
jected, the alternative hypothesis HA is accepted. This hypothesis considers the process
mean response time for the environment adopted. The processes are distributed using
the Ant Scheduler is lower, what confirms the superiority of Ant Scheduler.

The significance level used for one-tailed test is α = 0.0005. μwith is the process
mean response time with Ant Scheduler; μwithout is the process mean response time
with the standard openMosix. For the adopted significance level α, the data sets have to
present a difference of at least 4.781 in the t-test to reject the hypothesis. This value is
found in tables of critical values for the t-student distribution.

Applying the equation t = μwithout−μwith

sx
, the value 9.83 is found, confirming that

the results present statistic differences with p < 0.005, rejecting the hypothesis H0. In
this way the hypothesis HA is valid and the system with Ant Scheduler presents better
results than standard openMosix.

By applying statistic tools6 over the data sets, it is possible to find the most precise
α = 0.0000018 for a one-tailed test. This value shows how many times the alternative
hypothesis is true. In this case, HA can be considered true in 9, 999, 982 of 10, 000, 000
executions, showing that Ant Scheduler reduces the response time. Only in 18 of these

6 The authors applied the Gnumeric tool in this analysis – a free software tool licensed under
GNU/GPL terms.
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executions the results of Ant Scheduler and openMosix did not present significant
statistical differences.

6 Conclusions

In this work, the authors proposed a new approach for load balance in heterogeneous
computers using an algorithm based on Ant Colony Optimization. The proposed ap-
proach was motivated by the successes obtained by this technique in several real world
problems.

This algorithm, named Ant Scheduler, had its performance compared with five other
algorithms found in the literature. The simulation results, where the proposed algo-
rithm presented a performance superior to the other algorithms investigated, suggest
the potential of the Ant Scheduler algorithm for heterogeneous cluster computing en-
vironments. These results have motivated its implementation to validate the theoretical
concepts. The algorithm was implemented in a real Linux environment. This implemen-
tation was evaluated through experiments and compared with the standard scheduling
in openMosix. In these experiments, Ant Scheduler also has presented good results.
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13. Araújo, A.P.F., Santana, M.J., Santana, R.H.C., Souza, P.S.L.: DPWP: A new load balancing
algorithm. In: ISAS’99, Orlando, U.S.A. (1999)

14. Souza, P.S.L.: AMIGO: Uma Contribuição para a Convergência na Área de Escalonamento
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Abstract. Control systems are required to comply with certain safety and live-
ness correctness properties. In most cases, such systems have an intrinsic degree 
of complexity and it is not easy to formally analyze them, due to the resulting 
large state space. Also, exhaustive simulation and testing can easily miss system 
errors, whether they are life-critical or not. In this work, we introduce an inter-
locking control approach that is based on the use of the so-called Distributed 
Signal Boxes (DSBs). The proposed control design is applied to a railway-
interlocking problem and more precisely, to the Athens underground metro sys-
tem. Signal boxes correspond to the network’s interlocking points and commu-
nicate only with their neighbor signal boxes. Communication takes place by the 
use of rendezvous communication channels. This design results in a simple in-
terlocking control approach that compared to other centralized solutions pro-
duces a smaller and easier to analyze state space. Formal analysis and verifica-
tion is performed with the SPIN model checker. 

Keywords: interlocking control, safety, distributed control, model checking. 

1   Introduction 

Interlocking control aims to prevent certain operations from occurring, unless pre-
ceded by certain events. Although interlocking control may be used as a general sig-
naling technique in the design of e.g. telecom network management systems, the term 
usually refers to a range of vehicular traffic control applications. Interlocking systems 
have been mainly developed and studied in the field of railway traffic control, where 
their task is to prevent trains from colliding and derailing, while at the same time 
allowing their movements. 

Whether interlocking systems are integrated in life-critical control systems or not 
they are required to comply with certain safety and liveness correctness properties. 
This fact elevates formal modeling and model checking to the number one concern in 
the design and development of real-scale interlocking systems.  

However, in most cases, these systems have an intrinsic degree of complexity and 
it is not easy to fully analyze them, due to the resulting large state space. Usually, the 
control logic of the interlocking is not the single design concern that has to be 
checked with respect to the required safety and liveness properties. Complete system 
designs have to include also an adequate representation of the communication be-
tween the system’s components, as well as, the applied fault tolerance approach.   
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This work introduces the control logic of a new interlocking approach that is based 
on the use of the so-called Distributed Signal Boxes (DSBs). The proposed interlock-
ing control is applied to a real-scale system model and more precisely to the recently 
build Athens underground metro network. Signal boxes correspond to the network’s 
interlocking points and communicate only with their neighbors. Communication takes 
place by the use of rendezvous communication channels. The proposed interlocking 
control invests on design simplicity and avoids proprietary concept definitions and 
proprietary system requirements. It is not difficult to be generalized in networks with 
arbitrary topologies and compared to other centralized solutions produces a smaller 
and easier to analyze state space, as well as, improved scalability prospects. Formal 
analysis and verification is performed with the SPIN model checker.  

Section 2 surveys recent research in interlocking control and attempts a compari-
son with the proposed solution. Section 3 introduces our interlocking approach and 
the use of the so-called Distributed Signal Boxes. Section 4 refers to the formal verifi-
cation of the proposed interlocking control. The paper ends with a discussion on our 
work’s potential impact and comments interesting future research prospects.  

2   Related Work 

In related work, interlocking control is mainly studied in the context of railway sig-
naling systems. The work published in [1] points out the lack of precise concept defi-
nitions and the lack of overall system requirements. The author proposes an approach 
to formalize the principles and the concepts of interlocking systems in VDM (Vienna 
Development Method). However, he focuses on the Danish interlocking systems and 
underlines that interlocking systems from other countries may be different.   

In [2], the authors analyze the safety of a real computer interlocking system, for the 
control of railway stations. The system’s architecture is based on redundancy and is 
composed of a central nucleus connected to peripheral posts for the control of physical 
devices. A formal model of the system’s safety logic was developed in Verus ([3]), a 
tool that combines symbolic model checking and quantitative timing analysis. The 
model was checked with respect to a number of safety and liveness properties that 
were included in the initial system’s specifications. The safety logic of the same sys-
tem was also modeled in [4] and [5], where the authors used the SPIN model checker 
([6]) to analyze all system’s functions that may be requested by an external operator. 

SPIN was also used in [7] where the authors present a model of the same system 
and validate certain safety properties, in the presence of Byzantine system compo-
nents or of some hardware temporary faults. 

In [8], the authors introduce a model for the interlocking of a particular track layout 
that is the one used by an Australian railway operator. Interlocking control is coded in 
the so-called control tables and the described analysis aims to find erroneous or in-
complete entries in the used tables. Modeling and safety checking is performed with 
the NuSMV model checker, but in earlier works the same group used also a Commu-
nicating Sequential Processes (CSP) approach and the Failure Divergence Refinement 
(FDR) model checker. 

The work published in [9] reports the safety checking of the Line Block interlock-
ing system that also adopts a centralized design approach. The overall control strategy 
runs on a Central Control Unit that communicates with a number of Peripheral  
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Control Units (PCUs). PCUs are expected to drive particular interlocking system 
components and detect external events. 

There is only one attempt known to us, for the development and verification of a 
distributed interlocking system. In that work ([10]), the authors note that today’s cen-
tralized interlocking systems are far too expensive for small or possibly private  
networks. They propose to distribute the tasks of train control, train protection and 
interlocking over a network of cooperating components, using the standard communi-
cation facilities offered by mobile telephone providers. Their approach is based on the 
use of the so-called switch boxes, which locally control the point where they are allo-
cated. Train engines are carriers of train control computers, which collect the local 
state information from switch boxes along the track to derive the decision whether the 
train may enter the next track segment. 

In contrast to the forenamed solution, our approach is based on signal exchanges 
between the Distributed Signal Boxes (DSBs). There is no need of a mobile commu-
nication medium, which in any case requires security and reliability mechanisms that 
are unnecessary for systems transmitting signals over wires. DSBs communicate only 
with their neighbors. This design principle results in a general peer-to-peer signaling 
approach, possible to be applied in a wide range of interlocking problems, other than 
the typical railway traffic control applications (see for example [11]). 

3   Distributed Signal Boxes 

DSBs are allocated to the network’s interlocking points. Interlocking points commu-
nicate only with their corresponding DSB and DSBs communicate only with their 
neighbor DSBs. Communication takes place by the use of rendezvous communication 
channels. The proposed interlocking control has been successfully checked in network 
topologies that include two different types of communication links and more precisely 
the ones shown in Figure 1. 

 

 

Fig. 1. DSBs communication links 

In a given network that includes one or both types of communication links, inter-
locking control requires exchange of two distinct messages, which in fact are used as 
control flags of the network’s traffic. These messages control the network resources 
and distribute them among the entities that request them. For the track layout of the 
recently built Athens underground metro (Figure 2) we also call these two messages 
signals. Signals control movement and track allocation by exchanging their locations 
in a series of consecutive DSBs communications. Interlocking points (stations) cannot 
communicate with their neighbors by direct communication links, since this is possi-
ble only through their corresponding signal boxes.  
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Fig. 2. DSB communication for the track layout of the Athens underground metro system 

The system’s network topology is progressively formed through a step-by-step 
introduction of new interlocking points (stations), in a ring or a tree-based structure 
(refer to Figure 1). For every station, we assign the tracks that connect it with its 
neighbors, from now on called tunnels, as well as, the communication channel (e.g. 
Signal A) used to exchange messages with the corresponding signal box. The 
topology of the modeled network depends on a mutually consistent declaration of the 
neighboring stations, for all stations that are included in the network. 

The proposed interlocking control mechanism (Figure 3) is coded in only three 
procedures. One of them refers to the control logic of the network’s stations. Another 
one specifies the control logic of the network’s signal boxes and the last one inserts a 
request for one of the network’s tunnels. The last mentioned procedure is used to 
initialize the model with the required number of trains. 

The network perceives an initial train entrance to one of its tunnels by having re-
quired the relevant procedure to not proceed to its execution, up to the reception of 
the expected msg2 signal. This control signal will be generated by the tunnel’s en-
trance DSB process and as a result it will release the train to enter to the tunnel. The 
same train will be set again to a stop-wait state as a result of control signals ex-
changed between the network’s DSBs and the station, where the train has arrived. In 
Figure 3 we used the SPIN’s PROMELA language syntax to show a graphical repre-
sentation of the described control signal exchanges.   

4   Model Building and Model Checking Correctness Properties 

In this section, we present a model building and model checking approach for the 
described interlocking control mechanism. We aim to prove that the proposed DSBs 
based solution meets certain safety and liveness properties, which are a requisite for 
its deployment to real-scale interlocking problems. We decided to use the SPIN model 
checker ([12], [13]) for the following reasons: 
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Fig. 3. The DSBs based interlocking mechanism 

• SPIN has been successfully used in simulating, verifying and finding errors 
(counter examples) in a wide range of concurrent software systems. 

• SPIN is a versatile model checker that provides support to report all detected 
deadlocks and livelocks, potential race conditions, as well as, possibly un-
wanted situations regarding the relative speeds of the concurrent processes. It 
makes possible to express and model check the expected safety and liveness 
properties as Liner Temporal Logic (LTL) formulae. 

• SPIN model specification is expressed in PROMELA, a high-level specifica-
tion language that provides built-in support for rendezvous, as well as, buff-
ered message passing between the modeled processes. 

4.1   Model Structure and Implementation 

In order to apply the developed mechanism to the Athens underground metro, we first 
have to examine the topology of the railway network. There are three lines that inter-
sect each other in four different stations (Figure 4). Each train moves within a certain 
line, but lines operate in different levels and do not interfere with other lines. We 
focus on modeling the station topology of Line 1 as a set of bi-directional intercon-
nected tunnels. The used tunnels are shared by the trains moving in this line inde-
pendently of the train movements in Lines 2 and 3.   
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Figure 4 shows the DSBs placement and the derived signal box connectivity for the 
entire Athens underground metro network. We assume installation of separate inter-
locking points within terminal stations, where the trains change direction. These addi-
tional interlocking points are called line switching points and come together with their 
corresponding signal box. Line 1 model structure is based on the signal box topology 
of the stations shown in Line 1. DSBs communicate with their corresponding stations 
through channels of rendezvous communication that are represented as channels of 
size zero, in order to not store any signal (chan Signalx declarations of Figure 5). 
When a train arrives to a station this station’s DSB communicates with its neighbor 
DSBs by synchronized channels of communication (chan S_xy declarations of 
Figure 5), in order to check the availability of the outgoing tunnel. As we already 
noted, Line 1 (and all other lines) consists of a set of bi-directional tunnels where each 
direction route is represented by a separate communication channel of size 2 (chan 
Tunnelxy and chan Tunnelyx declarations of Figure 5).  

 

Fig. 4. The DSBs based interlocking mechanism for the Athens underground metro network  

Tunnels and signal boxes interconnection is specified by the run Setup, the 
run Station and the run Signalbox procedure calls shown in Figure 7. The 
code of the forenamed procedures is given in Figure 6. 
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For a given station, say X, a train arrival to it (proctype Station) causes the 
dispatch of msg1 to its signal box. X’s signal box forwards msg1 to the signal box of 
the previous station (proctype Signalbox). Regarding X’s interlocking control, 
on reception of msg2 the train enters into the next tunnel (proctype Station). 
However, msg2 cannot be received if the signal box is still blocked, waiting for the 
dispatch of msg1 from the next station’s signal box (proctype Signalbox). 
Accordingly, this depends on the availability of X’s outgoing tunnel, that is, it is pos-
sible only if another train has already left the next station or only upon the departure 
of that train from the next station (proctype Station). 

 
 

Fig. 5. PROMELA declarations of tunnels, DSB to station and DSB to DSB channels 

 

Fig. 6. DSBs interlocking control procedures 
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Figure 7 shows the PROMELA code for a model instance with 2 trains (two Se-
tup procedure calls). It is not difficult to verify the expected safety and liveness 
properties for an arbitrary number of trains. A detailed operational view of the pro-
posed interlocking control for a Line 1 segment is given in Figure 8.   

 

Fig. 7. Initiating the DSBs interlocking control model 

4.2   Model Checking Safety and Liveness Correctness Properties 

The basic safety correctness property refers to the possibility of collision between the 
two trains in one of the tunnels’ routes shown in Figure 8. The developed model 
makes this possible by having declared all tunnels’ routes as separate communication 
channels of size 2 (Figure 5). The proposed interlocking control aims to prevent the 
two trains from occupying both channel positions at the same time. Correctness with 
respect to the forenamed safety property is checked by the following assertion: 

ASR1: “A tunnel route can only be occupied by one train at a time” 

Assertion ASR1 is included in the code of procedure Monitor (Figure 9). Model 
checking is activated by the run Monitor() procedure call of Figure 7. In the 
performed full state space search of Figure 10 an assertion violation would be re-
ported as error, but the obtained results prove the safety correctness of the proposed 
interlocking control (errors: 0). The reported number of states refers to a real-scale 
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application of our solution to a network of 26 interlocking points, 2 directions and 2 
trains moving in both directions of the network’s interconnected tunnels.     

 

Fig. 8. Operational view of DSBs based interlocking control applied to a line segment 

 

Fig. 9. Safety assertion ASR1 

In Line 1 of the Athens underground metro network, due to its track layout we ex-
pect that each train loops through the line’s interlocking points (stations) and there are 
no unreachable stations. 

To prove this expectation we verify that in an infinite run the train eventually 
passes through declared tunnel routes (and corresponding stations). 
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Fig. 10. Full state space results for assertion ASR1 

This requirement is specified by the following liveness property: 
 

LVN1: “For any tunnel route, as soon as a train loops in its line,  
this train will eventually pass through it” 

 
We express the forenamed property by the following LTL (Linear Temporal  

Logic) formula  
 

[] (<> p) -> (<> q) -> (<> p)  
 
with the symbol definitions 
 
 #define p (len(TunnelAB)==0) 
 #define q (len(TunnelAB)==1) 
 
and the used temporal operators defined as follows: 
 
 <>x = TRUE U x  eventually 
 [] x = ¬ <> ¬x  always 
 ->    logical implication 
 

The recurrence formula [](<> p) asserts that in an infinite sequence of states p 
occurs infinitely many times. If so, the train should eventually pass through the 
checked tunnel route. SPIN generates the never claim (finite automaton shown in 
Figure 11) of the LVN1 formula and checks if the expected property holds for all 
executions. As a result we get that LVN1 is valid. 
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Fig. 11. Never claim for the LVN1 formula 

5   Conclusion 

In this paper we introduced an interlocking control that is based on a peer-to-peer 
signaling approach, between the so-called Distributed Signal Boxes and the network’s 
interlocking points. Compared to all other centralized solutions, the proposed inter-
locking control does not depend on proprietary concept definitions that refer to rail-
way interlocking systems, invests on design simplicity, provides improved scalability 
prospects and avoids the problem of the single point of failure.  

Our control design is a general signaling technique that is possible to be applied in 
a wide range of control problems. We describe its application to the topology of the 
Athens underground metro network, but we have also verified its validity in net-
works that include a second type of DSB communication link and more precisely the 
1-to-2-split communication link shown in Figure 1. DSBs correspond to the net-
work’s interlocking points and communicate only with them, as well as with their 
neighbor signal boxes. We proved that the proposed interlocking control averts the 
possibility of collision between two trains in one of the network’s tracks and that 
each train will eventually pass through all tracks (and stations) of the line, where the 
trains move. Model checking was performed based on the use of the SPIN model 
checker. We noted that when the proposed control design is applied to a real-scale 
problem, compared to the published centralized solutions results in a smaller and 
easier to analyze state space.   

As a first priority future research prospect we consider the introduction of a third 
signal exchanged between the network’s interlocking points and DSBs. This will 
allow us to cover one more case of communication link and more precisely the 2-to-1-
join communication link that is not tested so far. We also consider extending the pro-
posed interlocking control, such as to include triple-modular redundant DSBs. In this 
way, we aim to develop a complete fail-safe control design, based on the signaling 
technique that we described in this paper.          
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Abstract. Currently, integration application, such as EAI (Enterprise Applica-
tion Integration), B2BI (Business-To-Business Integration), requires reliable 
B2B integration framework that can stably process massive I/O transactions 
during overload state. This paper proposes the delay time-based peak load con-
trol for stable performance and we describe that how the suggested pattern is 
applied to B2BI as an example. The pattern uses the delay time algorithm for 
controlling the heavy peak load caused by many requests for a short period of 
time. According to our experimental result, the proposed delay time algorithm 
can stably process the heavy load after the saturation point and has an effect on 
the controlling the peak loads.  

1   Introduction 

The evolution of internet has brought a new way for enterprises to interact with their 
partners. Many infrastructures and enterprise information systems have been devel-
oped to extend business and value-added services on the Internet. Since markets are 
rapidly changing, business partners tend to be changed dynamically and system in-
stability gradually tends to increases due to service congestion for a short period of 
time [1]. 

A distributed clustering and hardware extension has been proposed for solving sys-
tem instability [2]. However, in view of cost-effective aspect, it is not good way to 
pay many expenses to the systems at which the service congestion phenomenon hap-
pens one or two a year. For solving the temporary service congestion with reasonable 
expenses, we can use the On-Demand services provided by many hardware vendors. 
The On-Demand services can be good choice in view of ratable charge of service 
usage. However, those services have the difficulty of manageability and tracking of 
                                                           
 * This work was supported by research program and the research center UICRC of Kookmin 

University in 2006. 
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the cause of many faults. Moreover, as the price charge of the On-Demand services is 
based on the number of CPU, there exists the weak point of price rise.  

A PLC (Peak Load Control) is the mechanism for preventing thrashing in transac-
tion processing system by controlling the number of concurrently running transac-
tions. The term thrashing generally describes a phenomenon where an increase of the 
load results in decrease of throughput (or another-related performance measure) [3]. 
Usually, we can distinguish a load-throughput function into three phases [3]: under-
load, saturation, and overload. The underload phase is the state of light loads with 
sufficient resources available and the throughput grows almost linearly making use of 
possible parallelism in the system. The saturation phase is the state that reaches high-
est throughput. When the finite capacity of the system becomes effective, the 
throughput function flattens out. After the saturation phase, further increasing the load 
will not lead to an asymptotic approach to the saturation bound but will cause a some-
times sudden drop in throughput. In other word, the phenomenon of thrashing hap-
pens at overload phase. 

In this paper, we propose the Worker-Linker pattern that can effectively process 
massive I/O transactions and control a heavy overload caused by request congestion 
for a short period of time. The proposed pattern adopts an I/O processing-related 
effectiveness from concurrent-related patterns (e.g. Worker pattern [4], Connector-
Acceptor pattern [5], Reactor pattern [6], and Proactor pattern [7]) and the scalability 
and flexibility of business logics from command pattern. In addition to adaptation of 
existing concurrent pattern, the proposed pattern adds the PLC mechanism to the 
existing Worker pattern for controlling the heavy overload caused by request conges-
tion [8]. This pattern uses the delay time algorithm for the PLC mechanism. This 
paper also shows the example of applying the pattern to business-business integration 
framework and the experimental result for proving the stability of performance. Ac-
cording to our experiment result, the proposed delay time algorithm can stably control 
the heavy overload after the saturation point and has an effect on the controlling peak 
load. 

The remainder of this paper is organized as follows. In section 2, we survey the ex-
isting patterns adapted by the Worker-Linker pattern and load control methods. Sec-
tion 3 describes the proposed Worker-Linker pattern. Chapter 4 presents the example 
of applying the pattern to business-business integration framework. Section 5 shows 
the experimental results for proving the stability of performance. Section 6 draws a 
conclusion. 

2   Related Works 

There are many patterns for effectively processing massive I/O transactions. The 
Acceptor-Connector design pattern [9] decouples connection establishment and ser-
vice initialization in a distributed system from the data communication performed 
after a service initialization. The Acceptor-Connector pattern enhances the reusability, 
portability, and extensibility of connection-oriented software and also efficiently 
utilizes the inherent parallelism in the network and hosts. 
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The Acceptor-Connector pattern is categorized into the Reactor and the Proactor 
pattern according to the method of event dimultiplex. In the Reactor pattern, after the 
Acceptor registers event handler for processing events, the Acceptor waits for one or 
more events on a set of handles. In other words, the Reactor pattern uses the synchro-
nous multiplexer for demultiplexing and dispatching of multiple event handlers. In 
contrast to the Reactor pattern, the Proactor pattern supports the demultiplexing and 
dispatching of multiple event handlers, which are triggered by the completion of asyn-
chronous events. This pattern simplifies asynchronous application development by 
integrating the demultiplexing of completion events and the dispatching of their cor-
responding event handlers. The Proactor pattern generally can support the higher 
throughput than the Reactor pattern due to little consumption of resources. However, 
the Proactor pattern can increase the complexity and instability of a system due to the 
synchronization of the shared resources.  

Generally, the threads for concurrent processing can be categorized into the follow-
ing two threads [10]: actor-based threads, task-based threads. The actor-based threads 
mainly focus in interaction with another actor in response to external events. In con-
trast with the actor-based threads, the task-based threads generally have the purpose 
of efficient job processing instead of interaction with another actor. The Worker 
thread pattern is the kind of the task-based thread and the Producer-Consumer pattern 
[11]. 

The Worker thread pattern is generally based on the following concept; When re-
quest events arrives, putting the received events to a queue and asynchronously proc-
essing the events by another threads is faster than directly processing the received 
events by creating new threads. The pattern can also improve the structure of some 
task-based concurrent programs by allowing you to package many smaller, logically 
asynchronous units of execution as tasks. Moreover, the pattern can prevent the re-
source exhaustion and the context switching overhead due to restriction on the num-
ber of Worker threads. The explicit queuing of the Worker pattern also permits 
greater flexibility in tuning execution semantics (e.g. priority of events). 

The maximum number of concurrent Worker threads is a system parameter that is 
tuned by the system administrator when the system is installed or started up. When 
the transaction load is constant and the value is chosen appropriately, this solution 
may work. However, traces from real systems show large variations of the load, both 
quantitative and qualitative. For solving this problem, many adaptive load control 
mechanisms [12] have been proposed. In contrast with existing load control mecha-
nisms, our approach does not control the number of concurrent Worker threads but 
the delay time of each active thread for solving thrashing phenomenon. Moreover, our 
approach adds the load control mechanism to the existing Worker pattern.  

3   The Worker-Linker Pattern 

Currently, I/O-based transaction systems, such as EAI, B2Bi, and ESB (Enterprise 
Service bus), especially require the effective and reliable processing of massive 
I/O-based transactions. System instability gradually tends to increases due to service 
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congestion for a short period of time. This chapter describes the Worker-Linker pat-
tern for solving those problems. The proposed pattern is constructed as a pair of the 
Worker and Linker like the Acceptor-Connector pattern. So, the pattern helps a soft-
ware designer to easily design complex I/O-related modules. The pattern also adds the 
PLC mechanism to the effectiveness of the existing Worker thread pattern so that it 
can not only provide effective processing of massive I/O-based transactions but also 
remove the system instability caused by request congestion for a short period of time. 
Moreover, the pattern uses the command pattern for executing extensible and flexible 
business logics. Figure 1 shows the sequence diagram of the Worker-Linker pattern.  

 

Fig. 1. A Sequence Diagram of the Worker-Linker Pattern 

The Linker is similar to the Connector of the Acceptor-Connector pattern. After the 
Acceptor receives messages from the Linker, it puts them a queue and wake up a 
waiting Worker thread. The Worker thread gets them from the queue and gets the 
delay time from the WorkerManager. After the Worker thread sleeps for the delay 
time calculated by the WorkerManager, the Worker thread executes business logics 
by using a command pattern. Finally, the Worker increments the number of transac-
tions processed by the Worker threads.  

Figure 2 is the activity diagram of the Worker threads. The Worker thread locks a 
queue and gets jobs from it. If there are no jobs in the queue, the Worker thread goes 
into the waiting queue of the WorkerManager. When an Acceptor gets request mes-
sages from a Linker, it wakes up the waiting Worker thread in the WorkerManager. If 
there are jobs to process, The Worker thread gets the delay time calculated by the 
WorkerManager and sleeps for the delay time. After sleeping, the Worker thread 
processes the jobs and finally increments the number of transactions processed by the 
Worker threads. 

Figure 3 is the pseudo code for the WorkerManager’s delay time algorithm. After 
sleeping during a check interval time, the WorkerManager gets the number of transac-
tions processed by all Worker threads and the maximum transaction process speed 



 A Delay Time-Based Peak Load Control for Stable Performance 333 

configured by a system administrator. And then, the WorkerManager calculates the 
TPMS (Transaction per Milliseconds) by dividing the number of transactions by 
the maximum transaction processing speed and calculate the over speed between the 
TPMS and the maximum transaction processing speed. If the value of the over speed 
is greater than zero, the system is considered as an overload state. Accordingly, it is 
necessary to control the overload state. On the contrary, if the value of the over speed is 
zero or less than zero, it is not necessary to control the speed of transaction processing. 

 

Fig. 2. An Activity Diagram of the Worker Thread 

For controlling the overload state, this paper proposes the delay time algorithm for 
making each Worker threads sleeping for the delay time. OS(ti+1) is the over speed 
between the transaction processing speed (TPMS(ti+1)) at the time ti+1 and the config-
ured maximum transaction processing speed (MTPS). The OS(ti+1) is calculated by 
applying the formula (1). If the over speed OS(ti+1) is greater than zero, the formula 
(2) is used for getting a new delay time D(ti+1) at the time ti+1. The N(ti+1) of the for-
mula (2) means the number of active Worker threads at the time ti+1 and D(ti) means 
the delay time at the time ti. If the D(ti) is zero, D(ti) must be set zero. 

If the OS(ti+1) of the formula (1) is zero or less than zero, a new delay time D(ti+1) 
at the time ti+1 is differently calculated according to the delay time D(ti) at the time ti. 
If the D(ti) at the time ti is greater than the criterion value , the D(ti+1) is calculated by 
applying the formula (3). On the contrary, if the D(ti) is same or less than the criterion 
value, D(ti+1) is set zero. 

The criterion value is used for preventing repetitive creation of the over speed gen-
erated by directly setting the delay time from the top to zero. When the system state is 
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continuously in state of heavy load for a short period of time, it tends to regenerate the 
over speed to increment the much delay time at the time ti and then directly set the 
delay time zero at the time ti+1. The criterion value is the previous delay time that can 
decide whether next delay time is directly set zero or not. The percent of the formula 
(3) decides the slope of a downward curve. However, if the delay time at the time ti is 
lower than the criterion value. The new delay time at the time ti+1 is set zero. Accord-
ingly, When a system state changes from the heavy overload at the time ti to the un-
derload at the time ti+1, The gradual decrement by The percent prevents the genera-
tion of repetitive over speed caused by abrupt decrement of the next delay time. In 
order to implementing the PLC, All concrete Worker threads extend the PLCWorker 
thread class for adding the PLC mechanism. 

 

Fig. 3. A Pseudo Code for the WorkeManager’s Delay Time Algorithm 

OS(ti+1) = TPMS(ti+1) – MTPS (1) 

       D(ti+1) = OS(ti+1) / N(ti+1) * D(ti) (2) 

                                          D(ti+1)  =  D(ti) ∗  (3) 

                                          D(ti+1)  =  0 (4) 

4   Applying to the Business-to-Business Integration Framework 

This chapter describes the example of applying the Worker-Linker pattern to a B2Bi 
framework. The B2Bi framework takes the responsibility for processing trustworthy 
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integration transactions between source systems and target systems. Figure 4 shows 
the software architecture of B2Bi framework for applying the pattern. 

The Gateway is comprised of the Adapter, the Message Controller, the Dispatcher, 
and the Routing Manager. The Adapter is in charge of processing communication-
related details of sources systems or target systems, such as connection, listening, and 
conversion of protocols. The Message Controller takes the responsibility for control-
ling the flow of messages. If the Message Controller receives messages from the 
source adapters or target adapters, it decides the next destination of those messages 
based on the configurations for each tasks in the Admin Console. If business logics 
(i.e., data format transformation, data validation, etc) are configured for a specific 
task, the Message Controller invokes the Dispatcher to perform the business logics 
before or after communication with the target systems. To process business logics, the 
Dispatcher gets UTL components from the UTL Processor and executes them. The 
UTL component executes I/O-related business logics with a command object. The 
UTL Processor is in charge of creating and caching UTL components. If a UTL com-
ponent does not exist in the UTL Processor, the UTL Processor gets the related in-
formation for creating UTL components from the UTL Server and then creates UTL 
components. An UTL is an xml-based language for defining data formats of header, 
request, and response block in a message.  

 

Fig. 4. Software Architecture of B2Bi Framework 

The Admin Console has a development and a management tool. In view of a devel-
opment tool, the Admin Console is in charge of managing source codes and various 
parameters according to the concerned task unit. In other word, the Admin Console 
categories tasks in a tree form, provides the related source code (i.e., UTL Code) to 
the task, edits them, compiles them, packages them, distributes them, and tests them 
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via a tool. Also the Admin Console manages setting information which is necessary 
for each task. In view of management tool, the Admin Console manages all resources 
related to the framework and monitors them. 

The System Management is comprised of the System Manager and the Resource 
Collector. The System Manager is in charge of scheduling and managing the frame-
work-related resources. For improving the qualities like performance and scalability, 
main modules (i.e., The Adapter, The Gateway, and The Dispatcher) may be de-
ployed to different distributed system. The each main module has a thread called the 
State Manager. The thread gets resources-related information (i.e., process state, 
CPU, memory, I/O, etc) and sends them to the Resource Collector. The Resource 
Collector collects all resource information from the main modules and sends to the 
System Manager. The System Manager uses them for balancing load of each main 
module. Figure 5 is the example of applying the PLC mechanism of the Worker-
Linker pattern to the B2Bi framework.  

 

Fig. 5. Applying the Worker-Linker Pattern for Effectiveness and Stability of B2Bi Framework 

Many modules (e.g. the Adapter, Message Router, Dispatcher, and UTL Server) of 
the B2Bi framework are designed with the sub modules, such as the Worker, Linker, 
and Acceptor. After the Acceptor receives the connection requests from the Linker, it 
put them into the Socket Queue. The Worker thread gets them from the Socket Queue 
and executes the business logics with a UTL-based command pattern. The Linker and 
Acceptor are responsible for controlling communication connections. The Linker and 
Worker are in charge of transmitting and receiving data. The Linker is responsible for 
connecting another module. Especially, the MRLinker in Message Router uses the 
routing table for connecting another module. The PLC mechanism of the Worker-
Linker pattern is applied to the Internal Adapter, the External Adapter, and the Mes-
sage Router and the Worker threads of those modules extend the PLCWorker object. 
Before the Worker thread executes the business logics with a command object, the 
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Worker thread gets the delay time from the WorkerManager and sleeps for the delay 
time calculated by the WorkerManager. The B2Bi framework can control the heavy 
load caused by request congestion. 

5   Performance Analyses of the Worker-Linker Pattern 

Currently, we apply the B2Bi framework of the chapter 3 to the ‘k’ bank of Korea. It 
can process 500 million transactions a day on the average. Moreover, it can support 
stable performance regardless of the heavy overload caused by request congestion. In 
this chapter, we show the performance analysis of the Worker-Linker pattern. As for 
load generation, the LoadRunner 8.0 tool [12] is employed. TPS (Transactions per 
Seconds) is used as a metric for performance analysis. As a purpose of performance 
experiment is not comparison with other integration system but the stability of the 
Worker-Linker pattern, we use one banking application like deposit ledger inquiry as a 
workload.  The maximum speed, and for delay time algorithm are configured 388, 
100ms, and 0.75 respectively. Load Generator request to a JSP page and then the JSP 
page connects to the integration system with TCP protocol. The integration system gets 
data from IBM main frame with SNA protocol [13]. The date size received from IBM 
host is 475 bytes. The number of concurrent users is 300 and the value of think time is 
0. The maximum TPS of the proposed integration system is 450 TPS (Transaction per 
Seconds) and average TPS is 381. 

The B2Bi framework is designed by an existing Worker pattern for efficiency I/O. 
However, As the Worker pattern does not use the PLC mechanism. It has the ten-
dency of instability of performance caused by heavy overload. To solve this problem, 
the B2Bi framework applies the PLC mechanism to the Worker-Linker pattern so that 
the number of Worker thread does not exceed maximum number configured by a 
system manager. Figure 6 is comparison of stability of performance between the 
Worker pattern and the Worker-Linker pattern.  

The Worker pattern does not use the PLC mechanism but the Worker-Linker pat-
tern uses the mechanism. Until concurrent user 300, the Worker-Linker pattern is 
similar to the Worker pattern in view of TPS and the maximum TPS of both patterns 
is 388. However, as the number of concurrent users is more than 300 users, both pat-
tern show different symptoms. The Worker-Linker pattern holds 386 TPS on the av-
erage due to the PLC mechanism. However, the Worker pattern goes down in TPS 
until 550 concurrent users. After more than 550 users, the Worker pattern holds 120 
TPS. Figure 7 explains the reason of different symptoms between the Worker pattern 
and the Worker-Linker pattern. 

As the number of concurrent users is more than 300 users, the Worker pattern is in 
state of so heavy overload as to reach 100 percent CPU usage. However, because the 
Worker-Linker pattern has the PLC mechanism, the pattern holds 92 percent CPU 
usage. The Worker-Linker pattern adds the PLC mechanism to an existing Worker 
pattern with I/O efficiency so that it can control the instability of performance caused 
by request congestion. 
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Fig. 6. Comparison of Performance Stability between the Worker and the Worker-Linker 
Pattern 

 

Fig. 7. Comparison of CPU Usage between the Worker Pattern and Worker-Linker Pattern 

Figure 8 show the relationship between the over speed and the delay time after the 
saturation point. This experimental result proves that the proposed delay time algo-
rithm of the WorkerManager has an effect on controlling the over speed. As the num-
ber of concurrent users is more than 300 users, the over speed frequently happens. 
Whenever the over speed happens, each Worker thread sleeps for the delay time cal-
culated by the WorkerManager. As the higher over speed happens, each Worker 
thread sleeps for the more time so that the over speed steeply goes down. Although 
the over speed steeply goes down, the delay time does not steeply goes down due to 
the criterion value . As the criterion value is set 100 ms in this experiment, the delay 
time gradually goes down until the 100 ms. As soon as the delay time passes 100 ms, 
the next delay time is set zero. Figure 8 shows that the over speed does not happen 
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from top delay time to zero delay time. As soon as the delay time passes zero, the 
over speed again happens.  

 

Fig. 8. Control of Over Speed by the Delay Time Algorithm 

6   Conclusions 

I/O-driven integration applications, such as EAI, B2Bi, home gateways, and hetero-
geneous devices integration, need a trustworthy framework to process a large volume 
of I/O-driven transactions with high performance and reliability. This paper describes 
the Worker-Linker pattern for a large volume of transactions. The Worker-Linker 
pattern adds the PLC mechanism to an existing Worker pattern with I/O efficiency so 
that it can control the instability of performance caused by request congestion. This 
paper uses the delay time algorithm for control the peak load caused by heavy request 
in a short time period. According to our experiment result, the proposed delay time 
algorithm can stably process the heavy load after the saturation point and has an effect 
on the controlling peak load. 

References 

[1] I. Ahmad and A. Ghafoor, “Semi-Distributed Load Balancing for Massively Parallel Mul-
ticomputer Systems,” IEEE Trans. Software Eng., vol. 17, no. 10, pp. 987-1004, Oct. 
1991. 

[2] O.P. Damani et al., One-IP: techniques for hosting a service on a cluster machines, J. 
Coputer Networks and ISDN Systems, Vol. 29, Elsevier Science, Amsterdam, Nether-
lands, Sept. 1997, pp. 1,019-1,027. 

[3] P. J. Denning: Thrashing: Its Causes and Prevention. Proc. AFlPS FJCC 33, 1968, pp, 
915-922 



340 Y. Lee, E. Choi, and D. Min 

[4] Robert Steinke, Micah Clark, Elihu Mcmahon, “A new pattern for flexible worker threads 
with in-place consumption message queues“, Volume 39 ,  Issue 2  (April 2005) table of 
contents Pages: 71 - 73  Year of Publication: 2005. 

[5] D. C. Schmidt, “Acceptor and Connector: Design Patterns for Initializing Communication 
Services,” in Pattern Languages of Program Design (R. Martin, F. Buschmann, and D. 
Riehle, eds.), Reading, MA: Addison-Wesley, 1997. 

[6] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Concurrent Event Demulti-
plexing and Event Handler Dispatching,” in Pattern Languages of Program Design (J. O. 
Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading, MA: Addison-Wesley, 1995 

[7] J. Hu, I. Pyarali, and D. C. Schmidt, “Applying the Proactor Pattern to High-Performance 
Web Servers,” in Proceedings of the 10th International Conference on Parallel and Dis-
tributed Computing and Systems, IASTED, Oct. 1998. 

[8] Performance Stability. http://www.performance-stability.com/ 
[9] Douglas C. Schmidt, Michael Stal, Hans Rohert, and Frank Buschmann, “Pattern-

Oriented Software Architecture: Concurrent and Networked Objects”, John Wiley and 
Sons, 2000. 

[10] Doug Lea, Concurrent Programming in Java, Second Edition, Addison-Wesley, Novem-
ber, 1999 

[11] [9] R. G. Lavender and D. C. Schmidt, “Active Object: an Object Behavioral Pattern for 
Concurrent Programming,” in Proceedings of the 2nd Annual Conference on the Pattern 
Languages of Programs, (Monticello, Illinois), pp. 1–7, September 1995. 

[12] Hans-Ulrich Heiss, Roger Wanger, “Adaptive Load Control in Transaction Processing 
Systems”, Proceedings of the 17th International Conference on Very Large Data Bases, 
September 1991 



Interference Aware Dynamic Subchannel

Allocation in a Multi-cellular OFDMA System
Based on Traffic Situation

Banani Roy1, Chanchal Kumer Roy1, and Michael Einhaus2

1 Queen’s University, Kingston, Ontario, Canada K7L3N6
{broy, croy}@cs.queensu.ca

2 RWTH Aachen University, Aachen, Germany

Abstract. This paper presents the development and evaluation of a
dynamic subchannel allocation scheme for downlink multi-cellular Or-
thogonal Frequency Division Multiple Access (OFDMA) systems. In the
considered system each Access Point (AP) and the associated Mobile
Terminals (MTs) are not operating on a frequency channel with a fixed
bandwidth, rather the channel bandwidth for each AP is dynamically
adapted according to the traffic load. The subchannels assignment pro-
cedure is based on quality estimations due to the interference measure-
ments and the current traffic load. The developed dynamic subchannel
allocation ensures Quality of Service (QoS), better traffic adaptability
and higher spectrum efficiency with less computational complexity.

1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a multiple carrier tech-
nique that has been proved to be robust for communication over fading channels.
OFDM systems divide a broadband channel into many narrowband orthogonal
subcarriers [8], [3] where a group of subcarriers forms subchannels. When multi-
ple accesses are desired OFDM can be combined with Frequency Division Mul-
tiple Access (FDMA) or Time Division Multiple Access (TDMA) or a mix of
both. The combination of OFDM and TDMA is called Orthogonal Frequency
Division Multiple Access (OFDMA). OFDMA is being considered as a modu-
lation and multiple access method for the 4th generation wireless networks. In
OFDMA systems, radio resource allocation is still a critical issue in optimizing
the performance of the system since the rapid increase in the size of the wireless
mobile community and its demand for high speed multimedia communications
stand in clear contrast to limited spectrum resources that have been allocated
in international agreements. A feasible or nearly optimal dynamic subchannel
allocation technique can be used for the resource allocation of an OFDMA sys-
tem in order to optimize the performance. The motivation of this work is to
allocate OFDMA subchannels to APs in a centrally controlled manner using
Dynamic subChannel Allocation (DCA) scheme with effective frequency reuse
by removing the inter cell interference remarkably. The newly developed DCA
scheme works better than the Fixed subChannel Allocation (FCA) scheme with
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optimal Fixed Reuse Partitioning (FRP) [6] and the complexity of the algorithm
is O(n2 ·m) + O(k · n2), n is number of cells, k is number of subchannels, m is
the number of users in the system.

The remainder of the paper is organized as follows. In Section 2 some previous
works related to DCA scheme in OFDMA systems are presented. Section 3
discusses the developed DCA scheme, whereas the algorithmic complexity of this
scheme is analyzed in Section 4. Section 5 briefly describes the deployed OFDMA
system. The simulation results obtained from this system is provided in Section
6 and finally, Section 7 concludes the paper with some potential guidelines for
further enhancement of this work.

2 Previous Work

Several DCA algorithms are developed, but their complexities are rather high
[6]. In [12], the best channel reuse pattern was selected by doing the capacity
prediction for all possible combination of the channel patterns. However, this type
of solution is in practice impossible, especially where the number of cells and
channels are many. Furukawa et al. [5], have mentioned that despite of the absence
of intra-cell interference in OFDMA systems, optimum channel allocation is still
a NP-hard problem which is basically complex. Moreover, individual user’s rate
requirements further complicate the problem. Kim et al. [7] and Pietrzyk et al. [11],
have developed a channel allocation scheme based on [2] with less computational
complexity. But in [11], a lot of iterations are needed to solve the problem and the
linearization in [7] cannot be generalized to all types of modulations. Yin et al. [14],
have investigated non-iterative algorithms to reduce computational complexity.

3 Developed DCA Scheme

In the developed subchannel allocation scheme traffic load is estimated based
on the utilization of the assigned subchannels and the interference estimation is
done based on the received signal power measurements. For this, a Hierarchical
Radio Resource Management scheme of an OFDMA system has been designed
by introducing an Access Point Controller (APC). The APC aims to handle inter
cell interference and to allocate subchannels to the APs dynamically. Its func-
tionalities are divided into two phases: reuse decision phase and allocation phase.
In the first phase, the APC gains knowledge about the interference situation by
investigating the mutual Signal to Interference Ratio (SIR) of the APs. In the
second phase, the APC allocates subchannels to the APs using the obtained
knowledge of interference. Two phases are discussed as follows:

3.1 Reuse Decision Phase

We have used the concept of Self Organizing Reuse Partitioning (SORP) [6], [5],
but in a resource optimizing and centralized manner by exploiting the received
signal power of the broadcast bursts in order to form the adaptive co-channel
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cells. This approach does not require any extra resources for calculating the
mutual SIR. In this technique, the APC triggers the APs to measure the received
signal power of the MTs periodically. After getting the invocation from the APC,
the AP triggers its associated MTs to measure the received signal power level
of the broadcast bursts. Then the associated MTs measure the received signal
power level from all the APs and send the measured values to their controller
AP. The controller APs then inform the APC about the received signal power
values and the APC then estimates the mutual SIR of the APs using the received
signal power values. Let us consider a small scenario with three APs: AP0, AP1

and AP2. Each AP has four associated MTs. In this scenario the distance of
AP0 & AP1 is 500m, AP0 & AP2 is 790m, AP1 & AP2 is 790m and each cell
radius is 200m where cells are not overlapping. As AP2 is far apart from AP0

and AP1, it can reuse resources of both AP0 and AP1. On the other hand, as
AP1 and AP2 are not far apart, they have very low chance to reuse each other
resources due to higher interference. The estimated mutual SIR values are shown
in Table 1. The APC forms co-channel cells according to the mutual SIR values
by comparing these with a predefined reuse threshold (here it is considered 15dB)
and stores the binary reuse decisions: reusable(y) and notreusable(n ) in a table
called Reuse Partitioning Table (RPT). Different Reuse Constraints (RCs) can
be used to form co-channel cells such as min mutual SIR, mean mutual SIR and
weighted mutual SIR. Both in the example and simulation results, we have used

Table 1. Mutual SIR values for three–cell scenario

MT0,i/SIR AP0/AP0 AP0/AP1 AP0/AP2

MT0,100 - - 16.54 24.07
AP0 MT0,101 - - 13.54 25.25

MT0,102 - - 12.45 21.9
MT0,103 - - 18.46 29.41

MT1,i/SIR AP1/AP0 AP1/AP1 AP1/AP2

MT1,104 16.13 - - 27.09
AP1 MT1,105 13.53 - - 25.63

MT1,106 12.39 - - 25.65
MT1,107 18.68 - - 25.64

MT2,i/SIR AP2/AP0 AP2/AP1 AP2/AP2

MT2,108 24.07 24.43 - -
AP2 MT2,109 33.03 33.41 - -

MT2,110 45.49 45.69 - -
MT2,111 33.12 33.29 - -

min RC, the minimum mutual SIR for all the MTs associated to an AP (for
details see [13]). But it is not possible to remove the interference remarkably by
considering merely this binary decision due to the indirect resource sharing. It
has been noticed that when two APs form co-channel cells, another AP could be
interfered if it can only be able to form co-channel cells with one of the two APs.
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The APC filters this type of indirect interference by finding out a conflicting set
of APs where APs interfere each other by reusing other APs’ resources. Then
it updates the RPT by introducing another reuse decision: partially reusable
(p) for those conflicting APs by replacing the reusable decision. For example
in the above mentioned scenario, AP0 & AP2 and AP1 & AP2 can form co-
channel cells, but AP0 & AP1 cannot by using min RC (see Table 1). Thereby,
if AP0 and AP1 use same resources of AP2, they will interfere with each other.
Consequently, the APC partially assigns AP2’s subchannels to AP0 and AP1

co−channel cells
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0 0 0 1 10

(b)
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AP 2 1 1 1 1 1 1
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and

and
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Fig. 1. Filtering interference

in an orthogonal manner which is shown in Fig. 1. The APC then assigns a
weighted value to each decision where the reusable decision is assigned value 1
i.e. an AP can use whole resource of the interferer AP. The notreusable decision
is assigned value 0 i.e. resources cannot be reused between two APs. The value
for the partial decision is calculated based on the number of candidate APs using
another AP’s exclusive resources in an orthogonal manner; for example, in the
scenario explained earlier, AP1 and AP2 will partially use AP0’s resources. As
there are two APs to use AP0’s orthogonal subchannels, the value of the partial
decision will be 1/2. The sum of each AP’s decision values called Reuse Decision
Values (RDVs) are shown in Fig. 2 (bottom–right part).

3.2 Allocation Phase

In this phase, the subchannel requirements of the APs are calculated by mul-
tiplying the value of the utilization function (weighted mean of the utilization
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Fig. 2. Working steps of reuse decision phase

[12], [13]) with the previously assigned subchannels of APs. The higher utiliza-
tion function value indicates higher resource requirement for an AP. Then the
priority level of an AP is calculated for the assignment of orthogonal subchan-
nels by dividing the subchannel requirements with the corresponding RDV. The
steps in the reuse decision phase are as follows:

– Calculate the required subchannels using estimated utilization and previ-
ously assigned subchannels

– Loop until all the subchannels are assigned (allocation of orthogonal sub-
channels)
• Calculate priority levels
• Select the AP with the highest priority
• Assign subchannel to the selected AP
• Reduce the priority level

– Distribute reusable subchannels based on the RPT

4 Algorithm Complexity

The complexity to calculate mutual SIR is O(n2 ·m). Here two loops involve the
n number of APs associated to the APC and one loop involves m number of MTs
associated to an AP. The complexity of generating RDV matrix is O(n2) where
two loops involve the n number of APs associated to the APC. The complexity
of the orthogonal subchannel allocation scheme is O(k · n2) as it involves three
loops. The outer most loop involves k number of subchannels and the inner
two loops involve n number of APs. The complexity of distributing reusable
subchannels is O(n2 · k) as it also involves two loops for the n number of APs
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and one loop for k subchannels. So the over all complexity of this algorithm can
be written as O(n2 ·m) + O(k · n2) which is better than previous works cited in
Section 2.

5 Deplyed OFDMA System Description

The MAC structure is based on IEEE 802.16a, whereby the Physical Layer
(PHY) differs significantly. The channel bandwidth of the system is 80MHz
which is subdivided into 1024 subcarriers with a spacing of 78.125kHz. Due
to orthogonality, the total symbol length is 13.6μs including a guard interval
of 0.8μs to mitigate inter symbol interference in multipath environment. An
OFDMA subchannel consists of 32 subcarriers, whereby 2 subcarriers per sub-
channel are reserved for the transmission of pilot signals. The subchannels are
directly mapped onto a contiguous fraction of the frequency channel. This is in
contrast to IEEE 802.16a, where the subcarriers of a subchannel are evenly dis-
tributed over the frequency channel in a pseudo random manner to apply a kind
of spreading scheme [8]. This certainly reduces the flexibility of the schedul-
ing since the diversity of the subchannel is lost. Three different combinations
of modulation schemes are used for the performance evaluation, namely QPSK
3/4, 16QAM 3/4 and 64QAM 3/4. These schemes are called PHY mode in this
work. An important feature of the OFDMA PHY is the possibility of exploiting
multi-user diversity. The general MAC structure is based on a centrally con-
trolled scheme like IEEE 802.16. The frequency channel is divided into MAC
frames. In this protocol, the frame length is calculated using the symbol length
and the number of slots per frame. Here it is considered that the symbol length
or duration is 13.6μs and symbols per slot are 8. Slots could be taken as any
number greater than 2 because one slot is reserved for the signaling overhead.
The signaling overhead includes the transmission of control data packets. These
packets comprise messages for channel estimation and resource allocation. The
remaining slots are scheduled for downlink transmissions as uplink was beyond
the scope of this work. Overall, a fixed signaling overhead of one time slot is
assumed independent of the amount of used resources.

6 Simulation Results

The simulation of this work is performed extending NS2 [9] whereby the statis-
tical evaluation is conducted following [10]. Here for the traffic source model, a
two-state Markov Modulated Poisson Process (MMPP) [4] is used. The two-state
MMPP is in either ON state or is in OFF state. In this model packets are only
generated in the ON state with fixed arrival rate α. The time spent in ON and
OFF states is exponentially distributed with mean α−1 and β−1 respectively.
It is also called Interrupted Poisson Process (IPP) with fixed inter-arrival time.
The position of the MTs is updated at each 1ms whereby the displacement of the
MTs is characterized by the Brownian motion mobility model [1]. In this model
MTs move in the adjacent segment with reflecting the mobility region and the



Interference Aware Dynamic Subchannel Allocation 347

position of the mobile user is always changed by 5m. The simulation results are
presented in the subsequent subsections.

6.1 Balancing Resource Utilization

Before going to the performance analysis of newly developed DCA scheme, the
correctness of the algorithm must be proved. In this regard, we have to show
whether the algorithm is reacting on the various traffic situation or not. Reacting
on various traffic load means that the APC will assign more subchannels in case
of high traffic load situation than the case of low traffic load situation. In order
to prove it, we have simulated a three cell circular scenario where each cell has
26 MTs and the radius of the mobility region is 300m. In the scenario, (Fig. 3)
each AP has been assigned different traffic loads per downlink connections. The
APC updates resources at the frame interval 10 while it updates the mutual SIR
value at the frame interval 20. AP0 is assigned load 3000kbps, AP1 is 500kbps
and AP2 is 10000kbps. In this scenario, for the traffic load the mean on time
is 0.1 and mean off time is 0.4, OFDMA subchannels are 32 and time slots
are 17. There is no reuse of subchannels as the spatial distances between the
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Fig. 3. Three cell scenario

APs are not sufficient for the resource reuse. The resource utilization curve is
shown in Fig. 4(a). The X-axis is for the utilization that ranges from 0− 1 and
Y-axis is for the Complementary Cumulative Distribution Function (CCDF) of
the corresponding utilization. The CCDF decreases with the increasing assigned
utilization. In the curve on average AP0 is utilizing 35% of the assigned resources,
AP1 is 18% and AP2 is 37%. These average values indicate that the APs are
utilizing resources according to the assigned traffic loads. The APC has balanced
the resource utilization of all the APs by assigning subchannels according to the
traffic load. This effect can be seen in Fig. 4(b). In the curve the subchannels
assignment to each AP with the corresponding traffic load is shown. As AP2

has highest resource requirement, it has got the highest number of subchannels
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whereas as AP1 has lowest resource requirement, it has obtained lowest number
of subchannels. In case of AP0, the number of subchannel assignment is in the
middle position. It has obtained a higher number of subchannels than that of
AP1 and a lower number of subchannels than that of AP2. So from analyzing
the number of obtained subchannels and utilization with various traffic loads,
we can say that the developed algorithm in this paper works correctly.
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Fig. 4. Resource utilization and subchannel assignment on various traffic load

6.2 Finding Optimal FRP for a Five Cell Scenario

In order to compare the newly developed DCA scheme with the fixed FCA
scheme, we have investigated the optimal FRP for the scenario shown in Fig. 5.
In this case, we have used 16 OFDMA subchannels, 10 MTs per cell and 9 time
slots per subchannel and both mean on and mean off time are 0.1 in traffic load
generation. We have obtained the optimal FRP for this scenario by investigating
three feasible FRPs that are as follows:

cosetA = {AP0, AP1, AP3, AP4};{AP2},
cosetB = {AP0, AP3};{AP2};{AP1, AP4},
cosetC = {AP0};{AP1};{AP2};{AP3};{AP4}
In cosetA, the average number of subchannels assigned to each set is 8, in cosetB
is 5.33 and in cosetC is 3.2. Here different simulations have been performed by
varying the loads of AP2 and AP4 while keeping fixed the loads of AP0, AP1 and
AP3. In the corresponding simulation result curves, cosetA will be termed as 2-
co-channel cells because it has two clusters. Similarly, cosetB will be 3-co-channel
cells sets and cosetC will be 5-co-channel cells sets. Finally, by simulating the
same scenario with these three reuse partitioning we found that cosetB is the
optimal reuse partitioning in terms of mean delay. The simulation results show
that the mean delay of cosetB is less than that of cosetA and cosetC shown in
Fig. 6(a) as in cosetA, the co-channel interference increases by allowing AP0,
AP1, AP3 and AP4 to reuse their subchannels; therefore, the Packet Error Rate
(PER) increases (Fig. 6(b)) which shows that the PER for the cosetA is greater
than the maximum allowable PER 0.01 in the considered system. For cosetC,
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the mean PER is less than 0.01 since each cell uses orthogonal subchannels, and
consequently, there is less co-channel interference.

Although in case of cosetB mean PER is higher (there is reuse of subchannels)
than cosetC, mean delay decreases on the higher traffic loads for the better
utilization of the resources than the cosetC. In case of cosetC, delay increases on
the higher traffic loads due to the higher resource requirement of AP2 and AP4.
As they do not get more subchannels on increasing load, the packets are queued,
and therefore, the mean delay increases. The mean utilization curve is shown
in Fig. 6(c). The mean utilization is around 50% because different simulations
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Fig. 6. Comparison of mean utilization, PER and delay among 3 FRPs

have been performed only increasing the load for two APs (AP2 and AP4) by
keeping others fixed. Here the utilization of the APs whose loads were fixed is
too low and thereby, the mean utilization decreases to 50%. The curve shows
that the utilization for cosetC is the highest, and with the increasing traffic load
it becomes saturated due to the limited queue length. But in case of cosetA, the
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mean utilization is upward at the high load as in this case packets retransmission
is higher for the co-channel interference.

6.3 Comparison Between Developed DCA Scheme and FCA
Scheme

In this subsection, we compare the performance of the newly developed Dynamic
subChannel Allocation (DCA) scheme with Fixed subChannel Allocation scheme
(FCA) using the same scenario (Fig. 5) discussed in the previous subsection.
Here for the FCA scheme the optimal cell FRP cosetB (discussed in the above
subsection) has been used. In this partitioning, co-channel set {AP0, AP3} gets
6 subchannels while the remaining two co-channel cells sets, {AP1, AP4} and
{AP2} get 5 subchannels at each. As DCA scheme always performs better than
FCA scheme in an uneven traffic situation, we have done different simulations
with increasing traffic load for AP2 and AP4 while keeping fixed the traffic loads
of AP0, AP1 and AP3 at 500kbps. As a result, different resource requirement
behaviors were prevailed in the APs. The mean utilization of resources for each
of the APs is shown in Fig. 7(a). In case of the FCA, in the mean utilization
curves, AP0, AP1 and AP3 have always a lower utilization as their traffic load is
fixed at 500kbps. Their average utilization is around 10%. On the other hand,
AP2 and AP4 are over loaded in case of higher traffic load. Their utilization
is greater than 80% after the load 3500kbps. Whereas in the DCA, AP0, AP1
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Fig. 7. Mean delay comparison between DCA and FCA schemes on increasing load of
AP2 and AP4 and fixed load of AP0, AP1 and AP3
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and AP3 utilize 50% of the assigned resources on average and AP2 and AP4

utilize 70% of the assigned resources on average. The mean delay for the FCA
scheme is greater than that of the DCA scheme (shown in Fig. 7(b)) as the FCA
scheme is not assigning sufficient subchannels to AP2 and AP4 on increasing
load. Another reason is that the PER increases as the FRP of cells is used by
the FCA scheme which is shown in Fig. 7(c). But in case of the DCA scheme, as
adaptive cell reuse partitioning is used, the mean PER is much lower than the
FCA. The mean number of assigned subchannels for each the AP is shown in
Fig. 7(d). As in the used scenario the APs are not sufficiently far apart to reuse
resources and the loads of AP2 and AP4 are varying, both are getting higher
number of subchannels on increasing load. On the other hand, as the loads of
the remaining three APs (AP0, AP1 & AP3) are fixed, they are getting lower
number of subchannels with increasing loads of AP2 and AP4.

7 Conclusion and Future Work

This work shows that the intelligently handled interference aware DCA scheme
has a great benefit compare to FCA schemes in case of uneven traffic situa-
tion. This is due to the fact that in the uneven resource requirements, the DCA
scheme attains more utilization of resources by assigning resources to the APs
that actually need resources. In general, there is a trade off between the QoS, the
implementation complexity of the channel allocation algorithms, and the spec-
trum utilization efficiency [6]. Therefore, the FCA scheme becomes superior at
high offered traffic load, especially in case of uniform traffic situation and DCA
scheme performs better in case of uneven traffic loads. Most of the previously
developed DCA schemes have involved PER and SINR for taking the channel al-
location decision. As a result the computational complexities of those algorithms
were either exponential or too high. Whereas by considering the utilization as
the decision factor, the computational complexity of the developed algorithm
has been reduced to O(n2 · m) + O(k · n2) and it works better than the FCA
scheme with the optimal fixed reuse partitioning.

The further improvements of this algorithm can be done by prioritizing traffic.
In this regard, the APs should provide individual information of utilization of
resources both for high and low priority traffics. After gaining the full knowledge
about the traffic priorities of the individual APs, the APC will assign subchan-
nels according to that knowledge. Another improvement can be done by using
adaptive reuse threshold for the decision concerning the reuse of resources. In
this regard, the APC can trace the modulation schemes that the APs use in
data transmission and can set the reuse threshold according to the modulation
schemes or PHY mode.
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Abstract. The data grid computing provides geographically distributed storage 
resources to solve computational problems with large-scale data. Unlike cache 
replacement policies in virtual memory or web-caching replacement, an optimal 
file replacement policy for data grids is the one of the important problems by 
the fact that file size is very large. The traditional file replacement policies such 
as LRU(Least Recently Used), LCB-K(Least Cost Beneficial based on K), 
EBR(Economic-based cache replacement), LVCT(Least Value-based on Cach-
ing Time) must predict near future  or need additional resources for file re-
placement. In this paper, the SBR-k(Sized-based replacement-k) policy for 
solving previous problems propose. The SBR-k replacement is a file size based 
replacement policy  for new file. The results of the simulation show that the 
proposed policy performs better than traditional policies.   

1   Introduction  

As an alternative to high-priced super computing, low-priced and high-efficiency grid 
computing is being proposed and used. Grid computing means environment that can 
utilize distributed high-performance computing resources through networking them 
regardless of organization and area. In general, grid computing is divided into com-
puter grid, data grid and access grid. Computer grid shares geographically distributed 
computing power as if using one high-performance computer and provides collaborat-
ing environment so that distributed researchers can execute a project jointly. In grid 
computing, data grid means a platform network, on which heterogeneous high-
performance nodes and data storage resources are geographically distributed. Data 
grid computing is applied in various areas related to generating, storing and process-
ing distributed high-capacity data like geological research, high-energy physics, aero-
physics and climate change modeling [1-4], and this thesis deals with the element 
technologies of data grid.  

In data grid, each storage node is a high-capacity storage device, a third storage 
device, high-performance storage system (HPSS), etc., enabling users to create, de-
lete, read and write data locally or remotely. In addition, critical problems in data grid 
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are long delay time in the interconnected network and access to the large volume of 
data in the storage device. To solve these problems, overhead resulting from remote 
access is avoided and remote data is cached locally to improve the reliability of re-
sources. Caching technology has been used to improve the performance and reliability 
of storage systems such as computer system, database and Web caching. In several 
aspects, however, caching technology used in data grid is different from existing 
caching technology. For example, a network used in data grid is based on wide area 
network (WAN) in which the distance between nodes is long, file size is several giga-
bytes, and cache size ranges from hundreds of gigabytes to tens of terabytes. While 
existing caching technology used in the Web has a delay time of several seconds or 
several minutes and is optional, in data grid environment delay time in data transmis-
sion is as long as several minutes or even several hours, and the use of Web technol-
ogy is also compulsory.  

In data grid environment, the number of requests to a high-capacity data storage 
device can be tens, hundreds or thousands. In general, each request is queued and it is 
decide first which file will be searched first. This decision is called file admission 
policy. Following file admission policy, file replacement policy is executed. File 
replacement policy is to select a file in the storage to secure a space in the requested 
file. In data grid environment, the optimal file replacement strategy technique is the 
existing virtual memory paging replacement strategy but, unlike Web caching strat-
egy, it involves complicated problems due to differences in file size and access pat-
tern [5.6]. Existing file replacement policies like algorithms such as LRU and LFU 
select files with too simple information to be used in data grid, and file replacement 
strategies for data grid such as LCB-K proposed in [5] and EBR in [7] have the prob-
lem that they have to forecast requests to replace files. Moreover, the LVCT policy 
proposed in [8] has to maintain and manage file stacks for file replacement.  

SRB-k (size-based replacement-k), the file replacement policy proposed in this 
study, is advantageous in that it does not need additional resources like stacks and, as 
it replaces files without forecasting future requests, it selects only a minimum number 
of files to be replaced in the future.  

The structure of this paper is as follows. Chapter 2 describes a system model in 
data grid. Chapter 3 explains existing file replacement policies and their problems in 
connection to the policy proposed in this study. Chapter 4 explains the policy pro-
posed in this study. Chapter 5 compares the performance of the proposed policy with 
that of existing ones and draws conclusions. 

2   Model of the Data Grid System 

In data grid environment, a storage resource manager is a middleware component 
essential for sharing data and storing and managing resources. A major function of a 
storage resource manager is caching high-capacity disk information. A storage re-
source manager can be specialized into a disk resource manager or a hierarchical 
resource manager (HRM) [6].  

Fig. 1 shows storage resource managers specialized in data grid environment pre-
sented in this study. Each site can have one or more storage resource managers and 
they are interlinked through WAN. In addition, resources with each site are organized 
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through local area network (LAN). In each site are files of various sizes, and a spe-
cific file can be copied to multiple sites in the data grid.  

Fig. 1. Storage Resource Manager in Data grid 

A disk resource manager maintains a metadata information table on files (e.g. file 
name, size, location) and, by a user’s request for a resource, it provides the correspond-
ing resource. First, it checks the metadata information table to see if the resource 
requested by the user exists locally, and if it is the manager provides the resource im-
mediately and if not it requests the resource from a remote place and copies it.  

In case a new file is created in a site, the resource storage manager in the site sends 
the meta information of the file (file name, size, etc.) to all the other sites and, later, 
sends the file if requested. In addition, if an original file is copied from another site, 
its information (meta information) is sent to other sites. Sites that have received meta 
information can calculate the cost of processing the corresponding file through 
<Equation 1> below. In <Equation 1>, v1 and v2 indicate sites, and it shows the cost 
of processing file F from site v1 to v2. 

Cost(f, v1, v2) = latency + file_size(fi) / bandwidth(v1, v2)   --------   <Equation  1> 

Based on <Equation 1>, the resource storage manager in each site updates informa-
tion on the file in its own file meta information table.  

The hierarchical resource manager manages high-performance storage devices.  
Different from Web proxy cache, the number of requests arriving simultaneously at 

a storage resource manager can be hundreds or thousands. Many users are connected 
to data grid and support resource requests. In response to this, the storage resource 
manager queues requested resources in the request buffer. For queued resources, the 
manager decides which file should be processed first (e.g. FIFO) and the decision is 
called “file admission policy.” In (Figure 1), the file admission policy is executed by 
the file admission module (FAM) inside the storage resource manager. To process an 
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admitted file request, it performs a local search and, if the file is not found, has to get 
the requested file from a remote site. At that time, if the local disk space is not suffi-
cient, the manger has to select victims to be replaced among the stored files to create 
space for the requested file and this is called “file replacement policy.” This task is 
performed by the file replacement module (FRM) in the storage resource manager. 
This study is about the file replacement policy within a storage resource manager in 
data grid environment. 

3   Relevant Researches 

The most well-known page replacement policies used commonly in operating systems 
are LRU (Least Recently Used) and LFU (Least Frequently Used) [9], and LRU-k 
[10] is the mixture of LRU and LFU, applying LRU based on k reference in the past. 
These policies are algorithms that select files to be cached based on the time of the 
latest reference (LRU) or the frequency of reference (LFU). 

LCB-K (Least Cost Beneficial based on K backward reference) proposed in [5] is a 
policy for file replacement in data grid. The algorithm uses a utility function to select 
files. The utility function based on LRU-k policy makes calculations, forecasting the 
rate of files to arrive in the future. To forecast the future arrival rate, it uses ‘(the 
number of recent references up to K * the cost of search) / file size.’ Each file to be 
cached is calculated using the utility function and its relative order is assigned, and 
file that has the lowest utility value is selected first and replaced. The algorithm con-
tinues to select files with low utility value and replace them in order to secure space 
for requested files. 

EBR (Economic-Based cache Replacement) policy was proposed in [7]. The policy 
optimizes file redundancy in data grid environment. It uses an economical model that 
replaces the least cost for redundant files in order to decide the optimal redundancy. If 
there is enough space, a newly arrived file is stored into the disk automatically. If the 
disk does not have enough space, EBR selects a file with the least value in the disk. 
For the selection, it uses a replica optimizer implemented in each site. To maximize 
the profit, the replica optimizer logs the value of each file in the storage to and uses it 
as an input to the future income forecast function. The forecast function calculates a 
value by estimating requests at time W in the future based on requests at window time 
W in the past considering temporal relevancy, geographical relevancy and sequential 
relevancy. 

LVCT (Least Value-based on Caching Time) policy was proposed in [8]. The pol-
icy replaces files considering how soon the files will be re-accessed (caching time). 
The file(s) with the lowest utility value are selected, and the utility function is 
(1/caching time)* cost/file size. The policy uses a caching time stack that contains 
caching time and file size. That is, caching time, which is set based on time for ac-
cessing each file, and file size are stored in the caching time stack. For example, if file 
F is accessed to be replaced, it is moved to the top of the stack and its caching time is 
reset at 0. Again, a re-accessed file is moved to the top of the stack. In this way, on 
the bottom of the stack are the files that have been least accessed and they are re-
placed. That is, files with long caching time are least accessed ones, and they are 
replaced.  
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Existing policies presented above have the following problems. LRU, LFU and 
LRU-k are well-known policies but they select files based on too little (or too simple) 
information. The major problems of LCB-K policy proposed in [5] are that the utility 
function forecasts the future arrival rate of each file and that files selected to be re-
placed have to have been accessed at least once within a certain length of time (k) in 
the past. Accordingly, the utility function is not applied to files outside the time, so 
they cannot be candidates for replacement. For this reason, the file selected by the 
policy cannot be the optimal choice for replacement. The problem of the policy pro-
posed in [7] is that, for economical modeling, it has to forecast future requests based 
on past information. LVCT policy has to maintain a stack containing caching time 
and file size. In addition, it requires an additional work of moving accessed files to the 
top of the stack. As a whole, future situation should be forecasted to secure space, and 
it is likely to replace all files smaller than the requested file to obtain space in need. 
Moreover, unnecessary resources like stack have to be maintained for replacement. 

4   Proposed Algorithm�

The algorithm proposed in this study is SRB-k (Size-Based Replacement - k). The 
proposed algorithm considers file size to reduce the number of files corresponding to 
a requested file rather than forecasting the uncertain future for replacement. 

In data grid environment, hundreds or thousands of file requests can arrive simul-
taneously at the local storage resource manager, and the storage resource manager 
queues them first. Queued request messages are sent to the file replacement module 
(FRM) in the storage resource manager after the module decides which file should be 
searched first.  

The file replacement module checks if the requested file is in the local disk. If it is, 
the file is delivered to the user who requested the file. If not, the file is requested to a 
remote disk and is cached in the local disk. At that time, if there is no space for the 
new file in the local disk, files to be replaced are selected by the file replacement 
algorithm. All files in the local storage are the candidates for replacement and they are 
called “unpinned files,” and those selected for replacement from the unpinned files 
are called “pinned files.” 

The file replacement algorithm proposed in this study is as in [Table 1]. If r is the 
size of a file requested by a user, the SRB-k algorithm first finds a file, the size of 
which is r, in the local storage. If there is a file of size r in the storage, the file is se-
lected for replacement and this is the optimal replacement in the SRB-k algorithm.  

If there is no file of that size, SRB-k executes the file replacement algorithm con-
sidering the k value, which is proportional to the size of the file requested by the user. 
For example, if the size of the requested file is 1000MB and k is 0.1 (or 10%), the size 
of k is 100MB, namely, 10% of the size of the requested file. Assume that there is no 
file of that size in the local file, k is 0.1, q is the sum of the size of the requested file 
and the k value (1100MB), and p is file(s) in the local disk, the size of which is larger 
than r and smaller than q. Then the SRB-k algorithm selects a file to be replaced 
among p file(s) considering LRU, and replaces it. If there is no p in the local disk, the 
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SRB-k algorithm looks for files, the size of which is 900MB (q’), the size of the re-
quested file with the deduction of the k value. The SRB-k algorithm finds file(S), the 
size of which is smaller than r and larger than q'. The SRB-k algorithm selects a file to 
be replaced among the p’ file(s) and replaces it. If there is no p' file in the local disk, 
the SRB-k algorithm is repeated with increasing the k value until a file to be replaced 
is found. 

Table 1. Proposed SRB-k replacement policy 

if(new_requested_file_size == unpinned_file_size)  
          then {  
               replace file;  
               exit;  
          }  
    k=0;  
    while( 1 ){  
         k += 0.1  
     k_size = new_requested_file_size * k      

i) search files with following condition 
(new_requested_file_size < files < (new_ requested_file_size + k_size)) 

                select file considering LRU algoruthm 
                replace file;  
                exit;  

 ii)  search files with following condition 
((new_requested_file_size – k_size) < files < new_ requested_file_size) 

                select file considering LRU algoruthm 
                replace files;  
                 exit;  

5   Evalution 

The efficiency of cache replacement policies is commonly evaluated by hit ratio and 
byte hit ratio [5,6]. Hit ratio indicates the ratio of the number of requests for a file 
existing in the cache to the whole number of requests and byte hit ratio is the ratio of 
the volume of cached data to the volume of requested data. Hit ratio and byte hit ratio 
are used to measure improvement in response time and the efficiency of bandwidth.  

The simulation tool used in this study is OptorSim. OptorSim [11,12] is a data grid 
simulation tool implemented in Java by the European DataGrid project (We set up 
Java 1.5.0_04 and Ant 1.6.5 to install OptorSim). Simulation environment was based 
on [5,6]. The range of file size was set between 1.0 and 2.1GB. For requests, we used 
Poisson arrival time of 10 seconds on the average. File size was distributed evenly 
between 5000,000 byte and 2,147,000,000 byte. Files were requested at certain inter-
vals, and the locality of reference with the 80-20 rule was applied for reference. The 
80-20 rule means that 80% of requests re-refer to 20% of files. A total of 1.1 terabyte 
could be stored in 20 sites (18 sites of 50 gigabyte capacity and 2 sites of 100 giga-
byte capacity). 
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Fig. 2 and Fig. 3 show the average hit ratio and byte hit ratio of the buffer of each 
site for the proposed policy, LRU and RND (Random). As a whole, if the buffer size 
is small, there is no big difference in hit ratio among the proposed policy, LRU and 
RND, but hit ratio rises with the increase of buffer size. In Fig. 2, hit ratio is similar 
until the buffer size reaches 0.5% or 5.5 gigabyte (proposed policy 0.1, LRU 0.8, 
RND 0.7), but when the buffer size is 2% or 22 gigabyte, the proposed policy shows 
higher performance in hit ratio (0.25) than LRU (0.16) and RND (0.11). This is be-
cause the proposed policy selects the file closest in size to the new file. 

 

Fig. 2. Hit ratio in data grid 

 

Fig. 3. Byte hit ratio in data grid 
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6   Conclusion 

The efficiency of cache replacement policies is commonly evaluated by hit ratio and 
byte hit ratio [5,6]. Hit ratio indicates the ratio of the number of requests for a file 
existing in the cache to the whole number of requests and byte hit ratio is the ratio of 
the volume of cached data to the volume of requested data. Hit ratio and byte hit ratio 
are used to measure. 

Research is being made continuously on data grid computing for efficient process-
ing of geographically distributed high-capacity data. Different from file replacement 
policies in existing Web caching virtual memory, file replacement strategies in data 
grid environment are complicated due to large file size and the high capacity of the 
cache. Policies proposed in previous researches such as LRU, LCB-K, ERB and 
LVCT replace files based on too simple information, require additional resources, or 
have to forecast the uncertain future. To solve these problems, this study proposed 
SRB-k that replaces files based on file size. According to the results of performance 
evaluation, hit ratio was similar when the cache size was small, but the proposed 
policy was superior to LRU and RND when the cache size was large.  

A task for future study is executing the proposed file replacement policy consider-
ing the priority of files. In addition, if files contain multimedia data, different policies 
may be applied according to the type of media in consideration of limited storage 
space. 
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Abstract. In this paper, we propose a new compiler technique for elim-
inating barrier synchronizations. In our approach, the compiler collects
access information about array accesses and analyzes data dependency.
If there was no dependency, barrier synchronizations can be eliminated.
Additionally, even if the dependency was detected, there are cases when
the barrier synchronization can be replaced with send-receive pairs of
communications. For evaluation, we executed two application programs:
Jacobi Method and Gaussian Elimination, on a PC cluster with barrier
elimination applied. For comparison, we also executed the programs be-
fore elimination of barrier synchronizations. With barrier elimination, 1)
the execution time is always reduced, and 2) as the number of processors
increases, the reduction ratio of the execution time also increases. For
16 processors, we obtained 19.00% and 50.36% of the reduction ratio for
Jacobi Method and Gaussian Elimination respectively.

1 Introduction

Recently, OpenMP [1] attracts attention as a language for shared memory en-
vironment since programmers can parallelize the existing sequential programs
by appending directives. However, large-scale machines which have physically
shared memory are not popular compared with PC clusters. Many researchers
have developed some underlying mechanism so that virtually shared memory
is realized on distributed memory environment [2,3,4]. We have developed the
compiler called Quaver [5], which enables OpenMP programs to be executed on
distributed memory environment. Quaver identifies the segments in the source
code that access the shared data and finds the producer-consumer relationship.
Then, Quaver generates communication code, in which a producer sends appro-
priate data to the consumer using message passing library.

In distributed memory environment, since the cost of communication via net-
work is very expensive, many techniques for reducing or hiding communication
overhead have been proposed so far; such as data caching, optimizing data as-
signment, relaxing memory consistency model, and overlapping communication
with computation.

In this study, we focus on the cost of barrier synchronization. A barrier syn-
chronization is inserted in a program in order to guarantee that an event above
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the barrier synchronization completes by the point of leaving barrier synchro-
nization and all processors which execute the program in parallel see the same
result of the event. Because barrier synchronization is implemented as the trans-
ferring all-to-one and one-to-all messages in distributed memory environment,
the cost of barrier synchronization grows quickly as the number of processors
increases. Additionally, even if the loads among the processors are completely
balanced, barrier synchronization yields idle time of the processors because of
the randomness caused by external network delays and scheduling algorithm
which an operating system adopts.

In this paper, we propose a new compiler algorithm which eliminates barrier
synchronizations. As mentioned above, Quaver generates send-receive pair in the
program. Our idea is based on the fact that the pair of communications guar-
antees the order of the events, i.e., the order of the accesses to virtually shared
memory. In our approach, if data dependency can be analyzed at compile time or
statically, a barrier synchronizations is replaced with several send-receive pairs.
As opposed to Tseng’s algorithm [6], which eliminates barrier synchronization if
there is no data dependency between the consecutive phases divided by the bar-
rier synchronization, our approach can be applied even if the data dependency
exists.

The rest of this paper is organized as follows. At first, we describe our OpenMP
compiler, called Quaver, in Sect. 2. An array section descriptor, which is a com-
ponent of Quaver, is also described in this section. Section 3 proposes a new
algorithm for eliminating barrier synchronizations. Section 4 presents the results
of performance evaluations. Finally, we conclude in Sect. 6.

2 Quaver : An OpenMP Compiler Based on Array
Section Descriptor

2.1 Array Section Descriptor for Parallel Computing

An array section assigned to a processor in block-cyclic manner is mainly ac-
cessed by the processor on which the array section is placed. Those accessed
sections consist of iteratively accessed subsections that include non-accessed sub-
sections, as shown in Fig. 1(a). In the case that the processor accesses the slightly
wider section than the assigned section, the shape will be similar to the above
case (Fig. 1(b), where the increased length is denoted by α). Our proposed
quad [7] can represent these access patterns concisely, which typically occur in
parallel programs.

Quad, as its name implies, is a quadruplet of integers. A quad (a, b, c, d)
consists of the following parameters:

a: first subsection’s offset from the head of the array,
b: the length of accessed subsection,
c: the length of non-accessed subsection,
d: the number of repetitions.



364 N. Yonezawa, K. Wada, and T. Aida

Fig. 1. Typical Access Patterns Observed in Parallel Programs

Fig. 2. The Flow of Compiling

We have defined the intersection operation and the union operation among
quads. The intersection operation is used to investigate data dependency and
to identify data to be transferred from a producer to consumers. The union
operation is used to merge several quads into fewer quads.

2.2 Compiling an OpenMP Program by Quaver

Quaver consists of code translator and runtime library, as shown in Fig. 2. The
code translator analyzes an OpenMP program and locates the shared data ac-
cesses, which are represented by several quads. If Quaver finds an OpenMP
directive, it inserts the appropriate library functions defined in Quaver runtime
library. The final code generated by Quaver is compiled by mpicc and can be
executed on a PC cluster. At runtime, data to be transferred will be identified by
applying the intersection operation among quads at the point of synchronization
and sent by a message passing call such as MPI Send().

In the rest of this section, we describe Quaver runtime library and how Quaver
analyzes an OpenMP code and inserts the library functions to the code.

2.3 Quaver Runtime Library

Quaver runtime library consists of the following functions.

quav append quad() registers access information including quad which rep-
resents the accessed array section, the access type (i.e., read or write), and
the processor ID to the quad table. The quad table is indexed by access type
and processor ID.
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quav divide loop and append quad() provides a facilitative method which
is equivalent to 1) computing array section accessed by a processor in a loop
which is directed to divide its iterations for parallel execution, 2) generating
quads which represent the divided section, and then 3) calling quav append
quad().

quav assign home() is called after a shared array has been declared. It divides
the array equally and assigns the divided subarray to each processor, that is
home processor of the subarray. It is guaranteed that a home processor has
latest data after barrier synchronization.

quav home() is typically called in the body of parallelized loop. It receives
processor ID and loop index value as parameters and returns true if an iter-
ation should be executed by the processor. The parallelized loop is executed
mutual-exclusively by using quav home().

quav barrier() blocks the execution of a processor until all the processors have
arrived at the barrier synchronization. Data to be read by consumers af-
ter this barrier synchronization are identified and pushed to consumers in
quav barrier().

quav fetch() dynamically fetches data from its home processor at runtime if
data to be read cannot be identified at compile time. Using this function,
any program can be executed even if it is difficult or impossible to analyze
accesses to the data because of dynamic behavior of the program. If the data
can be identified at compile time, Quaver does not generate quav fetch()
because it is guaranteed that the data arrive at consumer’s memory by the
previous quav barrier() returns.

2.4 Generating Communication Code

In analyzing an OpenMP program, Quaver locates the shared data accesses.
If the access is write, it is represented by quads and quav append quad() is
generated in the location on which the write access occurs. If the access is read,
quav append quad() is generated in the location on which the corresponding
write access occurs, which produces data read by the read access.

At the point of synchronization, the code translator inserts quav barrier().
To identify data to be transferred to the consumer, quav barrier() picks up two
quad sequences from the quad table. The first sequence represents the array
section written by the processor that is executing the quav barrier(). The sec-
ond one represents the array section read by one of other processors. Then,
quav barrier() invokes intersection operation between these two quad sequences
and consequently a new quad sequence representing data to be transferred are
obtained. If the quad sequence is not empty, the data represented by the sequence
are transferred to the consumer.

Figure 4 depicts an example of code segment which is generated as a result
of translating the original OpenMP program shown in Fig. 3. In Fig. 4, inserted
codes are emphasized in italics.
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#pragma omp parallel for

for (i = 0; i < 16; i++)

a[i] = i * i;

b = a[2] + a[3] + a[4] + a[5];

Fig. 3. An OpenMP Program

quav divide loop and append quad(a, write, mypid, a(0, 16, 0, 1));
#pragma omp parallel for

for (i = 0; i < 16; i++) {
if (! quav home(a, i, mypid)) continue;
a[i] = i * i;

}
quav append quad(p0, read, a(2, 4, 0, 1));
quav barrier();
if (mypid == p0)

b = a[2] + a[3] + a[4] + a[5];

Fig. 4. Inserting Quaver Runtime Library

3 A New Technique for Eliminating Barrier
Synchronizations

3.1 Library Functions to Replace with Barrier Synchronizations

In order for Quaver to eliminate barrier synchronizations, we append two new
functions to the runtime library.

quav append quad to recv data() is similar to quav append quad() but it
appends a quad to the different entry of the quad table. Typically, the quad
to be appended represents read data which a process calling this function
accesses at the next phase and is used to compute the amount of data to be
received in quav send recv if needed().

quav send recv if needed() calculates the amount of data to be received and
receives the data. Additionally, data to be read by consumers are identified
and pushed to consumers similarly in quav barrier(). If all of the data to be
received arrives, the function returns.

3.2 A Compiler Algorithm to Eliminate Barrier Synchronizations

Figure 5 shows our proposed algorithm for eliminating barrier synchronizations.
If read accesses which will occur at the next phase are identified at the current

phase, the data can be transferred to consumers in advance. If all read accesses
which will occur at the next phase are identified at the current phase, transferring
the data to consumers can replace with the barrier synchronization which divides
the consecutive phases.
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void eliminate barrier(void)
{

foreach (codes) {
tree node.all hosited = analyze basic block();
if (found an implicit barrier) replace it with quav barrier();

}
foreach (tree nodes) {

if (found a quav barrier() and tree node.all hosited) {
generate quav append quad to recv data();
replace quav barrier() with quav send recv if needed();

}
}

}

int analyze basic block(void)
{

int all hoisted = 1;
if (found a basic block) all hoisted &= analyze basic block();
if (failed to hoist read accesses) all hoisted = 0;
return all hoisted;

}

Fig. 5. An algorithm for eliminating barrier synchronizations

In analyzing a basic block of OpenMP program, Quaver tries to hoist read
accesses. In hoisting, if all read accesses in the block are hoisted to its up-
per basic block, Quaver sets a flag called all hoisted to true and propagates
it to the upper basic block. When Quaver reaches the barrier synchronization,
if all hoisted flag is true, it shows that all read accesses are collected. In this
case, quads which represent the read accesses are appended to the quad table by
quav append quad to recv data() and quav send recv if needed() replaces with
quav barrier().

Read accesses can be hoisted even if the block contains a call to a proce-
dure. In analyzing the procedure, if quads on all read accesses are represented
using its parameters and/or global variables and are hoisted to the beginning
point of the procedure, all hoisted flag is set. On the caller’s side, if the flag
is true, all variables which appear in the quads are replaced with the corre-
sponding arguments. The resulting quads are treated in the same way as other
quads.

3.3 An Example of Eliminating Barrier Synchronizations

Figure 6 shows an example of barrier elimination which is obtained by applying
the algorithm to the code of Fig. 4. Note that quav append quad to recv data()
is called by only Processor 0 so that it receives fresh data.
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quav divide and append quad(a, write, mypid, a(0, 16, 0, 1));

#pragma omp parallel for

for (i = 0; i <16; i++) {
if (! quav home(a, i, mypid)) continue;

a[i] = i * i;

}
quav append quad(p0, read, a(2, 4, 0, 1));

if (mypid == p0) quav append quad to recv data(p0, read, a(2, 4, 0, 1));
quav send recv if needed(mypid);
if (mypid == p0)

b = a[2] + a[3] + a[4] + a[5];

Fig. 6. Eliminating Barrier Synchronization

4 Evaluation

For evaluation, we executed two application programs: Jacobi Method and Gaus-
sian Elimination, on a PC cluster. Our PC cluster has 16-node of PCs which
are connected by a Gigabit Ethernet switching hub (Dell PowerConnect 5224)
without jumbo frame support. Each PC has Xeon 2.8GHz, 1GB memory, Intel
82545GM Gigabit Ethernet controller, and Linux 2.6.8 running. We used MPICH
1.2.6 library for interprocess communication.

4.1 Application Programs

Jacobi Method is an iterative method for solving linear equations, such as Ax=b.
When each processor updates subsection of x which is decomposed in block man-
ner, the processor uses all other subsets of x which are updated by other processors
at the previous step. For ordering the update and the use of data, a single barrier
synchronization is inserted in the loop. In this evaluation, the number of iterations
is 1,000 for any matrix size.

Gaussian Elimination also solves linear equations. In this evaluation, the matrix
is decomposed in cyclic manner because the range of matrix updated narrows
gradually with the progress of computation. At step k + 1, aij is computed
using the whole of row k, where i > k, j > k. In order to maintain this data
dependency, a barrier synchronization is needed for each step.

In this evaluation, all elements of matrices are double-precision floating point
values in both application programs.

4.2 Baseline Results

In this section, as baseline results, we show the sequential execution time and
speedups of the programs before eliminating barrier synchronizations in running
on our PC cluster. In order to measure the execution time of the main loop, Intel’s
RDTSC (Read Time Stamp Counter) instructions are inserted before and after
the loop and then the difference between their counted value are computed.
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Table 1. Sequential execution time in Jacobi Method and Gaussian Elimination

Jacobi Method Gaussian Elimination
Marix Size Matrix Size

2,048 4,096 8,192 2,048 4,096 8,192

Exec. Time (sec) 42.15 167.79 670.02 13.96 108.56 852.77

Fig. 7. Speedup of Jacobi Method and Gaussian Elimination before barrier elimination

Elapsed Time of Sequential Execution. Table 1 shows the sequential ex-
ecution time of the two programs. We varied the size of matrix, denoted as N ,
from 2,048 to 8,192 in both programs. The execution time becomes approxi-
mately four times and 7.80 times in Jacobi Method and Gaussian Elimination
respectively when the matrix size is doubled.

Speedups Before Barrier Elimination. Figure 7 shows the speedups of the
programs before eliminating barrier synchronizations. We obtained 14.19-fold
speedup for 16 processors in the case that N is 8,192 in Jacobi Method. On the
other hand, in Gaussian Elimination, the speedup for 16 processors is worse than
the one for 8 processors. The reasons for these results are as follows: 1) in Jacobi
Method, achieving balanced load among the processors causes the high speedups,
2) in Gaussian Elimination, as mentioned above, the range of matrix updated
narrows gradually with the progress of computation. This leads to imbalance of
load among the processors, and 3) the number of barrier synchronizations issued
at runtime in Gaussian Elimination (i.e., N − 1) is more than the one in Jacobi
Method (i.e., 1,000). This produces the overhead and results in less speedups.

4.3 The Effects of Barrier Elimination

For evaluation, we measured the number of barrier synchronizations eliminated
and the reduction ratio of the execution time by applying our algorithm. We
also measured idle time on a processor in detail.
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Fig. 8. Reduction ratio of execution time: Jacobi Method and Gaussian Elimination

TheNumberofBarrierSynchronizationsEliminated. Inbothprograms,all
barrier synchronizationswhich appear in the main loop are eliminated by applying
our algorithm. Therefore, no processor is globally synchronized at runtime.

The Reduction Ratio of the Execution Time. We measured the reduction
ratio of the execution time, which is computed as 100×(1−Te/Tb), where Tb and
Te are the execution time before and after eliminating barrier synchronizations
respectively.

Figure 8 shows the plots of the reduction ratio. In both programs, 1) the
reduction ratio is always positive and 2) the reduction ratio tends to increase as
the number of processors increases.

In Jacobi Method, while the reduction ratio is 19.00% for 16 processors in
the case that N is 2,048, the ratio is 2.36% when N is 8,192. Nevertheless, we
obtained 14.53-fold speedup in this case.

On the other hand, in Gaussian Elimination, the reduction ratio is 50.36%
and 40.79% for 16 processors in the case that N is 2,048 and 8,192 respectively.
Speedup for 16 processors in the case that N is 8,192 is 6.18 and is improved as
compared with the one for 8 processor, which is 6.15.

Frequency Distribution of Idle Time. If a processor must wait to the com-
pletion of the computations which are done by other processors when the pro-
cessor finished to compute at a phase of a program, the processor becomes idle.
We measured idle time, that is the elapsed time between the end of a phase and
the beginning of the next phase after our algorithm applied and compared the
idle time with the one in the case that barrier synchronizations are remained.

In Fig. 9, we show the frequency distribution of idle time for 16 processors in
the case that N is 8,192 in both programs. In this evaluation, we used idle time
which is obtained on Processor 0.

In Jacobi Method, the most of transitions between two consecutive phases
completed within 5 msec even if barrier synchronizations are remained. How-
ever, while 1.2% of 1,000 transitions completed within 3.5 msec when barrier



Barrier Elimination Based on Access Dependency Analysis for OpenMP 371

Fig. 9. Frequency distribution of idle time: Jacobi Method and Gaussian Elimination

synchronizations are remained, 99.80% of transitions completed after barrier
synchronizations eliminated.

In Gaussian Elimination, no transition completed within 1 msec before barrier
synchronization eliminated. On the other hand, after barrier synchronizations
eliminated, 2,568 transitions (31.35%) completed within 1 msec. In the case
that barrier synchronizations are remained, 5,503 transitions (67.18%) completed
within 30 msec. If the barrier synchronizations are eliminated, 7,895 transition
(96.39%) completed within 30 msec.

Discussion. In this evaluation, we found that 1) eliminating barrier synchro-
nizations reduced the execution time in all cases in both programs, 2) the re-
duction ratio increases as the number of processors increases in all cases, and
3) the effectiveness of eliminating barrier synchronizations is influenced by the
characteristics of application programs.

The reasons for the different effect between application programs are as follows:

– As mentioned above, the loads among the processors dynamically change in
Gaussian Elimination. In such programs, a processor which waits for other
processors at a phase can increase other processors’ idle time at the next
phase. If the barrier synchronizations are eliminated in the programs, the
processor which completed the computation can send data immediately with-
out waiting for other processors.

– Achieving load balance among processors in Jacobi Method tends to suppress
idle time unless there is external factors such as network delay.

Nevertheless, in Jacobi Method, the most of idle time is less than 3.5 msec
after barrier synchronizations eliminated because no communication with the
barrier master occurs.

5 Related Works

Tseng proposed an algorithm for eliminating barrier synchronizations appear
in SPMD programs [6] and evaluated it on Stanford DASH multiprocessor [8].
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He also proposed another algorithm for replacing barrier synchronizations with
lower overhead counter-based synchronizations. After replacing using this al-
gorithm, all data-consumers wait until a data-producer completes to update a
counter’s value. This algorithm assumes the existence of shared memory which
DASH provides.

Dwarkadas et al. proposed an algorithm for replacing barrier synchronizations
with push function in which data-producer sends data to data-consumers [9].
They adopted Bounded Regular Section [10] as an array section descriptor while
we adopted quad. For evaluation, they executed six application programs and
the algorithm could be applied to two programs of them. They reported that
the reductions of the execution time are limited. Additionally, they have not
evaluated with varying the number of processors.

Some papers on Software DSM systems which are implemented using compiler
analysis have been published in recent years [11,12]. However, any algorithms for
eliminating barrier synchronizations are not implemented on their DSM systems
and thus are not evaluated.

6 Conclusions

In this paper, we proposed the compiler algorithm for eliminating barrier syn-
chronizations. It takes advantage of existence of data dependency as opposed to
the conventional approach.

For evaluation, we executed two application programs on a PC cluster. For 16
processors, we obtained 19.00% and 50.36% of the reduction ratio of execution
time for Jacobi Method and Gaussian Elimination respectively. With barrier
elimination, 1) the execution time is always reduced, and 2) as the number of
processors increases, the reduction ratio of the execution time also increases.

The results shown in this paper implies that we can obtain the more reduction
ratio as the number of processor increases. We will evaluate the effectiveness of
the proposed algorithm using a various kind of application programs on larger-
scale clusters.
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Abstract. Two force decomposition algorithms are proposed for parallelizing 
three-body interactions in Molecular Dynamics (MD) simulations. The first al-
gorithm divides the entire 3D force matrix into equal sized force cubes that are 
assigned to parallel processors. In the second strategy, the force matrix is de-
composed into slices of two-dimensional force matrixes, and those slices are 
distributed among processors cyclically. The proposed decomposition algo-
rithms are implemented using MPI and tested in computational experiments. 
The performances of proposed decomposition methods are studied and com-
pared with computational load theoretical analysis. Both theoretical prediction 
and computation experiments demonstrate that the load balance is a key factor 
that impacts the parallel performance of the examined system, and the cyclic 
force decomposition algorithm produced reasonably good overall performances.  

1   Introduction 

Molecular Dynamics (MD) simulation is a widely used computational tool to study 
fluid phenomena, many properties of molecular systems, and fabrication process of 
ultra-precision devices with dimensions down to sub-micro or nano level [1, 2]. Be-
cause of femtosecond step length and the large number of interactions that need to be 
evaluated, MD simulations are typically computationally intensive, and millions of 
times steps (wall time can be hours, days, or months long depending on the problem 
size and computer capacity) are necessary to simulate phenomena, which occur within 
several picoseconds. In this context, parallel computation techniques attracted much 
attention of scientists with its significant reduction of wall time by distributing mas-
sive computation among networked processors [3, 4]. The parallelism of MD simula-
tion has been examined extensively [5-11]. A replicated-data method, also called 
atom decomposition, was proposed by W. Smith [6] and implemented in biological 
MD programs such as CHARMM and GROMOS. Force Decomposition methods 
based on strategies of decomposing force matrix were studied [7-9], and implemented 
(for execution on SIMD and MIMD machines). Spatial decomposition, also called 
geometric decomposition or domain decomposition as discussed in [10, 11], is widely 
used for very large MD system, where normally cutoff is significantly shorter than 
simulation box length. Compared to the spatial decomposition, force decomposition 
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displayed better performance in small to middle-sized problems where only short-
range Van der Waals interactions are considered [9]. However, the previous studies 
were restricted to the parallelization of two-body interactions; none of them have yet 
investigated the parallelization of three-body interactions.  

Three-body interactions play an indispensable role in reproducing many properties, 
such as phase equilibrium, second virial coefficient and etc.[12, 13]. The introduction 
of three-body interactions into MD simulations involves more complicated potential 
descriptions as well as a large amount of triplets to be evaluated, which imposes new 
challenge to the-state-of-the-art decomposition algorithms. Generally, three-body 
interactions imply significantly intensive computation even for small and middle-
sized problems. In these types of problems, a potential cutoff is usually chosen to be 
or slightly shorter than half box length, therefore both atom decomposition and do-
main decomposition algorithms lose their strength. Former force decomposition algo-
rithms proposed for pair-wise interactions encounter restriction for many-body forces 
as the force matrix is m rather than two-dimensional. Stimulated by the idea in the 
two-body force decomposition, a force decomposition for three-body interactions is 
firstly proposed, in which a three-dimensional force matrix is divided into sub force 
cubes. The second algorithm, cyclic force decomposition algorithm, is designed for 
efficiently parallelizing three-body interactions.  To the best of our knowledge, these 
algorithms have not been attempted so far. The algorithms are implemented in our 
benchmark problem using MPI, and overall performances of the algorithms are evalu-
ated in terms of load balance, speedup and parallel efficiency. Better parallelization 
performance with improved loading balance is achieved.  

2   Computational Aspects of MD and Three-Body Interactions 

In MD simulations, the system of N particulates evolves by integrating Newton’s 
motion equations for all the particles in the system step by step, given by, 

dt

d

dt

d
m

i

ii
i

i

r
vF

v
==  (1) 

where mi is the mass of atom i, ri and vi are its position and velocity vectors. The total 
force, Fi, on the particle i due to interactions with other particles can be expressed 
with equation 2, ,in which fij is the force acting on the particle i due to the pair-wise 
interaction with particle j. The force term fijk is the contributory component on particle 
i by the three-body interactions with other two particles of I and j. Obviously, the 
force term fijk and fikj are exactly the same one and only one of them needs to be 
evaluated when the motion equations are integrated. High order many-body interac-
tions may be further added for more precise evaluation. The most time-consuming 
part in MD simulation is force evaluation. The force terms in equation 2 are calcu-
lated as first derivatives of the potential energy existing among particles. 

( , ) ( , , )i ij i j ijk i j k
j j k

= + +F f r r f r r r  
(2) 

Three-body forces are resulted from dispersion, induction and exchange effects that 
are identified as non-additive, and are important in reproducing many properties of 
condensed matters. In general, the force element can be expressed as: 
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( , , , , , )ijk ijk ij jk ik i j ku r r r θ θ θ= ∇f          (3) 

where rij, rik, and rjk  are side lengths of the triplet triangle consisting of  particles i, j 
and k, and i, j, and k are the three inside angles of the triangle, respectively. The 
actual force expressions vary from types of many-body interactions, and specific 
consideration of the model. Axilrod-Teller term [15] provides an expression of three-
body dispersion potential as in equation 4, in which  is non-additive coefficient. 

3)()coscoscos31( jkikijkjiijk rrrvu ⋅⋅⋅⋅+⋅= θθθ         (4) 

For a system of N particles, the total number of unique triplets to be evaluated is 
N(N-1)(N-2)/6.  Each single particle may be involved in (N-1)(N-2)/2 triplets. A trip-
let of particles of i, j, and k (a b c) contains 6 force elements. However, the force 
elements fijk and fikj are exactly the same, suggesting only three independent force 
elements are actually required to evaluate for each triplet. The computational cost of 
three-body interactions outweighs the computational cost of two-body interactions for 
the exponentially increase of interactions and its complex force expressions. In this 
paper only three-body force decomposition is addressed to emphasize our particular 
interest.  

3   Decomposition Algorithms 

3.1   Traditional Force Decomposition for Three-Body Interactions 

Fig.1 schematically illustrates the traditional force decomposition algorithm for three-
body interactions (FD-3). All three-body interactions form the outmost three-
dimensional force matrix. When N is equally divided into m segments along three 
axes, total m3 cubes are obtained and the equivalent number of processors is needed 
for the one cube-one processor decomposition. The inside solid cube holds three seg-
ments of particles from three dimensions, the ath segment is from i dimension, the bth 
segment from j dimension, and the cth segment from k dimension. To distinguish one 
cube from another, the cubes are labeled with their contained segment indexes as 
subscripts. The sub force cube Fabc, carries out the following calculations, 

( , , )ijk ij jk ikf u r r r= ∇
        (5) 

where i  a, j   b and k  c.  Each cube has (N/m)3 elements. To compute the sub force 
matrix Fabc, the dedicated processor needs information from the (Na, Na+1), (Nb, Nb+1) 
and (Nc, Nc+1) segments.  However, the computation load and memory requirement on 
each processor may vary depending on the contained segments of particles. In case of 
a=b=c, the required memory and computation load are proportional to N/m and 
(N/m)(N/m-1)(N/m-2)/2, respectively. When a b c, the corresponding values are 
3*N/m and (N/m)3.  

For a triplet of i, j and k (i j k) only three independent force elements are actually 
required to evaluate in each step. The redundant calculation of the force elements fijk 
and fikj not only costs computation time but also causes errors in the integration of 
motion equations. A two-level ‘check board’ method is applied to keep unique calcu-
lation of each triplet. It works both at both cube and particle levels; at the cube level  
 



 Parallelization Algorithms for Three-Body Interactions in MD Simulation 377 

 

         

                     Fig. 1. FD-3 method                                               Fig. 2. CD-3 method 

cubes that have identical particle segments are removed from job list. But those with 
unique combination of cube index a, b and c will be assigned for computation. We 
classify all the force cubes into three groups. The first group contains the same cube 
index, eg. a=b=c. The total number of these cubes is m, and m processors are needed. 
The second group includes those cubes with three different cube indices, eg. a b c,. 
The total number of cubes with this kind of combination is m(m-1)(m-2). For three 
different values of a, b and c, there are 6 combinations, but only one is uniquely re-
quired for force evaluations, therefore these m(m-1)(m-2) force cubes only need to be 
assigned to m(m-1)(m-2)/6 
processors. The remaining 
m3-m-m(m-1)(m-2) cubes 
have two identical indices, 
such as a b c, and need 
(m3-m- m(m-1)(m-2))/3 
processors. A particle level 
check board technique 
works to remove any com-
putational repetition in each sub force cube. For any force element fijk in a sub force 
matrix, it will be evaluated only in the case of i j k and j < k, otherwise it will be 
assigned to zero.  

The decomposition algorithm is outlined in Fig. 3. In step 1, the overall three-body 
force matrix is decomposed to m3 sub force matrixes and unique force cubes are 
firstly identified. Proper particle segment data are copied to corresponding processors.  
In step 2, each processor carries out the assigned computation tasks (load) to obtain 
partial force matrix, Fabc. All calculated partial force matrixes are then collected from 
each processor and sum over each row along k axis (eg. sum all force elements with 
the same i and same j index values) to fold the force matrix into a 2D matrix Fab in 
step 3.  A typical force element fij

s of the matrix Fab can be expressed as: 

1

N
S

ij ijk
k

f f
=

=
 

( i =1 - N,  j = 1 - N ) (6) 

In step 4, the sum of the elements along the j axis in the matrix Fab gives a force 
vector Fa with elements expressed by equation 7. Each element in the force vector Fa 

1. Decompose three-body force matrix to cubes 
2. Compute partial force matrix, Fabc 

3. Fold partial forces along k to get Fab 
4. Fold partial forces along j to obtain Fa 
5. Update particle positions 

Fig. 3. FD-3 Algorithm 
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represents the total three-body force acting from all possible triplets of involving 
particles.  

1

N
S S

i ij
j

f f
=

=
 

( i =1 - N ) (7) 

The individual computation load can be predicted by the assigned triplets, so do the 
achieved balance status. With our theoretical prediction, maximal computation load 
appears on the cubes that have unequal segments of particles, while the least compu-
tation intensive ones are those on diagonals. And higher imbalance might happen with 
force decomposition method. 

3.2   Cyclic Force Decomposition Algorithm 

Fig.2 depicts the proposed cyclic force decomposition algorithm. This strategy di-
vides the matrix into force slices along one dimension, in our case, k direction. Each 
slice consists of a 2D force matrix. Slice m evaluates all triplets formed by m with any 
other two particles, such as l and n in the system. These force slices are then distrib-
uted among processors according to rank order in a cyclic task assignment. There are 
totally N slices, and at any given moment each processor may dedicate itself to more 
than one slice either consecutively or inconsecutively. During one job distribution 
cycle each processor is assigned one slice, whenever there are still job slices left, 
another assignment cycle initializes. All job slices are given to working machines in a 
cyclic order of rank index. In this work for the convenience of notation, this strategy 
is also called CD-3.  

The total number of triplets in one slice is (N-1)(N-2). However, in the slice m, the 
triplets of (m, l, n) and (m, n, l) are exactly one. Therefore only half of the unique 
triplets are needed to be evaluated in one slice. Another redundancy exists as one 
given triplet can appear in three slices, for example, a triplet formed by l, m and n 
particles can appear in slices l, m and n. To avoid calculation repetition, a slice-level 
checking board method is applied to assign the triplet of l, m and n to the slice with 
the minimum index of l, m and n. This method ensures one triplet only to be evaluated 
in one slice, eventually total triplets to be evaluated in the slice m becomes  
(N-m-1)(N-m-2)/2. To rule out the excessive calculation within a triplet, a triplet-level 
check board technique is applied.  In brief, for any force element fijk in a triplet, it will 
be evaluated only in the case of i j k and j<k, otherwise it will be assigned to zero. 

The proposed decomposition algorithm is outlined in Fig. 4. In the first step, the 
rank of dedicated processor for ith slice is determined by the following rule, rank = 
module(i, Np) and then followed by job slice assigning. Here Np is the number of 
processors available. 
The partial sum 
forces calculated in 
step 2 need to be 
broadcasted to all 
other processors in 
step 3, then complete 
force vector that 
contains the total 

1. Cyclically assign force slices among processors. 
2. Compute force elements and partial sum of forces. 
3. Broadcast partial force among all processors. 
4. Force summation to obtain the complete force. 
5. Update particle positions. 

Fig. 4. CD-3 algorithm 
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three-body forces for all the particles are calculated in step 4 by summing all the par-
tial sum forces. The complete forces are used in step 5 for updating particle positions. 
Updating is carried out on all the processors to avoid additional communication time 
and load imbalance. 

The communications take place in step 3, and communication overhead is esti-
mated as up to O(N) level. Memory storage requirement scales to O(N) as well, as the 
processor need to keep the entire information of the system, but this is not a big issue 
with the shared-memory systems which is often installed with gigabytes of RAM. 

4   Results and Discussions 

4.1   Benchmark 

There are 500 water molecules in the benchmark NVT ensemble, where both two-body 
and three-body interactions are evaluated. The SHAKE [16] constraint algorithm is 
employed to keep water molecules rigid in our simulations. MCY potential [12], 
together with Axillrod-Teller three-body term is chosen. Computational experiments 
are conducted on Aqua Linux cluster in Swinburne University of Technology. Ninety-
six Dell Optiplex GX280 computers with Intel Pentium 4 3.2GHz Hyperthreaded 
processors are connected, each two of them connect to the total 48 Gigabit ports, 
CISCO Catalyst 6509 Network switch is used with the fast forwarding blades. The 
networked computers have 1 GB of DDR2 RAM as its self-contained infrastructure. 
The operation system is Linux 2.6.8-24.14, on which LAM7.0.6 is running to provide 
parallel computation environment. An in house developed molecular dynamics C++ 
code was used for parallelization. The parallel decomposition algorithm is 
implemented in accordance with LAM C++ binding protocol. 

MD simulations are carried out and timed on 4, 10, 20 and 35 CPU schemes, re-
spectively. Each scheme was evaluated with the average of 4 runs on the same  
machine setup to remove unexpected impact from system operation. In each run, the 
system evolves 200 time steps, and computation loads are measured as computation 
time on each processor averaged from the 5th step to the 195th step for all machines. 
The beginning and ending of simulation are removed from time sampling for their 
involvement of I/O operation and memory administration, which delay the computa-
tion. Timing was conducted by logging computation progress on each processor in 
specially designed code segment, which can hook the system time during computation.  

4.2   Load Balance  

The load balance status is studied in term of step time variation ratio (STVR), which is 
defined as in equation 9. 
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The average step computation time, Ti, is measured on the processor i, which is 
directly related to the total triplets evaluated on it. Since the intensive three-body 
interactions are parallelizable, the execution time of serial code can be neglected. In 
our benchmark tests, the communication overheads happening at the end of each 
time step are ruled out, but only “pure three-body computation time” is measured. 
Therefore, the obtained STVR is the index of imbalance contributed by decomposi-
tion algorithms. 
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              Fig. 5. Load imbalance on 20 CPUs                  Fig. 6. Speedups on processors 

Fig. 5 presents an example of loading imbalance obtained from simulation experi-
ments on 20 processors. The maximal STVR data obtained from benchmark measure-
ments on 4, 10, 20 and 35 CPUs are listed in Table 1. The proposed decomposing 
method CD-3 shows a significantly better loading balance than the FD-3, but both of 
them with an increasing tendency of STVR, as the number of processors increases.  

Table 1. Maximum STVR for the proposed decomposition algorithms 

CPUs  4  10  20  35 
STVR* 0.6/100 1.79/178 3.58/157 6.26/144 
STVR** 0.76/50 4.5/126 6.1/90 13.9/79 

     * Experimental results, CD-3/FD-3; ** Theoretical prediction, CD-3/FD-3  

 
The computation load on each processor is roughly proportional to the assigned to-

tal number of triplets. The total triplets number NT on a processor Pi can be evaluated 
by summing the assigned triplets over all assigning cycles as expressed by equation 
10, where Ci is the number in the ith cycle. Therefore the achieved load balance can  
be theoretically predicted by equation 10. The predicted maximal computation load 
should appear on processor 0, while the least computation loads on the last processor. 
Equation 10 [14] also suggests the load difference between these two processors 
could become larger as more processors (larger Np) are used, and hence higher  
imbalance might happen. As shown in Table 1, both experimental and theoretical 
calculation results display a similar increasing trend of imbalance with increase of 
processors. However, the theoretical prediction gave much higher imbalance value  
 



 Parallelization Algorithms for Three-Body Interactions in MD Simulation 381 

 

than the experiment, especially when many processors are applied. This might result 
from the supplementary code for matrix decomposing, job slice assigning, and their 
influences are not taken into account in the prediction. 
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We conducted the theoretical analysis of force decomposition on three-body force 
matrix and found that this would result in severe load imbalance problem. In the com-
putational experiment, extreme high imbalance is observed with FD-3 algorithm, and 
the resultant STVR index is significantly higher than that with CD-3. Our proposed 
cyclic force decomposition algorithm provides considerable improvement in the load 
balance, particularly for the three-body interactions, although further improvement 
still needs to be sought.  

4.3   Parallel Performance 

The overall parallel performance of the algorithm was evaluated in terms of speedup. 
The achieved speedup results for DF-3 and CD-3 are shown in Fig. 6. Speedup of 
3.9, 8.2, 13.2 and 17.1 were achieved when 4, 10, 20 and 35 processors were used 
for CD-3 algorithm respectively, but 2.75, 4.72, 9.28, and 13.5 for FD-3 algorithm. 
Many factors impact the overall speedups, such as, serial code percentage, commu-
nication overhead, memory access, and loading imbalance. The serial code part  
limits the maximum achievable speedup [9]. However, for our system examined in 
this study, the serial code part is actually negligible, and the communication over-
heads in different schemes are also small. As discussed in 4.2, the loading imbalance  
increases with the increase of processors employed. It is evident that the loading 
imbalance is a major obstacle for achieving a high parallel efficiency although other 
factors need to be quantified in future work. The imbalance problem of force decom-
position had been discussed for two-body pair interactions by Plimton [3, 9], but its 
quantitative impact on the parallel performance of three-body interactions has not 
been analyzed until this work.  

5   Conclusions 

In this study, FD-3 and CD-3 decomposition algorithm have been proposed and im-
plemented to parallelize three-body interactions in MD simulations. The proposed 
decomposition algorithms are based on the decomposition of a three-dimensional 
force matrix. Relatively good balance status and parallelization performances are 
achieved with CD-3 algorithm through benchmark experiments on our specific MD 
systems. The theoretical analysis of the force computation load on each processor 
provided a theoretical prediction of a similar increasing trend of imbalance with in-
creasing processor number to the benchmark measurement results. Both theoretical 
analysis and computation experiments demonstrate that the load imbalance is a key 
factor that impacts the parallel efficiency of three-body interactions.  



382 J. Li, Z. Zhou, and R.J. Sadus 

 

References 

1. Bosko, J.T., Todd, B. D., Sadus, R. J.: Journal of Chemical Physics, 121 (2004) 1091-1096 
2. Rentsch, R., Brinksmeier, E., Li. J.: Nonlinear Dynamics of Production Systems, Viley-

VCH (2003) 245-263. 
3. Plimpton, S.: Journal of Computational Physics 117 (1995) 1-19 
4. Roy, S., Jin, R. Y., Chaudhary, V., Hase, W. L.: Computer Physics Communications 

128(2000) 210-218 
5. Schreiber, H., Steinhauser, O., Schuster, P.: Parallel Computing 18 (1992) 557-573 
6. Smith, W.: Computer Physics Communications 62 (1991) 229-248 
7. Boyer, L L., Pawley, G. S.: Journal of Computational Physics 78 (1988) 405-423 
8. Brunet, J. P., Edelman, A., Mesirov, J. P.: SIAM Journal of Scientific and Statistical Com-

puting 14 (1993) 5 1143-1158 
9. Plimpton, S.: Journal of Computational Chemistry 17 (1996) 3 326-337 

10. Fincham, D.: Molecular Simulation 1 (1987) 1-45  
11. Gupta, S.: Computer Physics Communications 70 (1992) 243-270  
12. Matsuoka, O., Clement, E., Yoshimine, M.: Journal of Chemical Physics 64 (1976) 4 

13511361 
13. Marcelli G., Sadus, R.J.: Journal of Chemical Physics 111 (1999) 1533-1540 
14. Li, J., Zhou, Z., Sadus, R. J.: “Modified Force Decomposition Strategies for Three-Body 

Interactions in Molecular Dynamics Simulations”, to be published on Computer Physics 
Communications (2006) 

15. Axilrod, B.M., Teller, E.: Journal of Chemical Physics 11(1943) 6 299-300. 
16. Sadus, R. J.: “Molecular Simulation of Fluids, Theory, Algorithms and Object-

Orientation”, Elsevier, Amsterdam, (2002) 



 

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 383 – 393, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

An Efficient Distributed Algorithm for Mining 
Association Rules 

Zahra Farzanyar1, Mohammadreza Kangavari2, and Sattar Hashemi2 

1 SECOMP Lab., Department of Computer & IT, Iran University of Science & Technology 
(IUST), Tehran, Iran 

nsfarzan@yahoo.com 
2 Department of Computer & IT, Iran University of Science & Technology (IUST), Tehran, Iran 

kangavari@iust.ac.ir, s_hashemi@iust.ac.ir 

Abstract. Association Rule Mining (ARM) is an active data mining research 
area. However, most ARM algorithms cater to a centralized environment where 
no external communication is required. Distributed Association Rule Mining 
(DARM) algorithms aim to generate rules from different datasets spread over 
various geographical sites; hence, they require external communications 
throughout the entire processor. A direct application of sequential algorithms to 
distributed databases is not effective, because it requires a large amount of 
communication overhead. DARM algorithms must reduce communication 
costs. In this paper, a new solution is proposed to reduce the size of message 
exchanges. Our solution also reduces the size of average transactions and 
datasets that leads to reduction of scan time, which is very effective in 
increasing the performance of the proposed algorithm. Our performance study 
shows that this solution has a better performance over the direct application of a 
typical sequential algorithm.  

Keywords: Distributed Data Mining, Association Rules, Distributed Databases. 

1   Introduction 

ARM is an important research area in the field of data mining. The goal of ARM is to 
discover associations between attribute values. Association rules can be rated by a 
number of quality measures, among which support and confidence stand out as the 
two essential ones [22, 23]. On the basis of Apriori algorithm, there are two phases 
for mining association rules [1]. The key work for finding the association rules is to 
find all the frequent itemsets. 

Because databases are increasing in terms of both dimension (number of attributes) 
and size (number of records), one of the main issues in a frequent itemset mining 
algorithm is the ability to analyze very large databases [4]. Sequential algorithms do 
not have this ability, especially in terms of run-time performance, for such very large 
databases. Therefore, we must rely on high performance parallel and distributed 
computing. 

Parallelism is expected to relieve current ARM methods from the sequential 
bottleneck, providing the ability to scale to massive datasets, and improving the 
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response time. Most existing parallel and distributed ARM algorithms are based on a 
kernel that employs the well-known Apriori algorithm [2, 3 and 6]. Directly adapting 
an Apriori algorithm won't significantly improve performance over frequent itemsets 
generation or overall DARM performance. To perform better than Apriori algorithms, 
we must focus on their problems. The main challenges include synchronization, 
communication minimization, work-load balancing, finding good data layout and data 
decomposition, and disk I/O minimization, which is especially important for DARM. 
In distributed mining, synchronization is implicit in message passing, so the goal 
becomes communication optimization. Data decomposition is very important for 
distributed memory. Therefore, the main challenge for obtaining good performance 
on distributed mining is to find a good data decomposition among the nodes for  
good load balancing, and to minimize communication. In this paper, we have  
developed a distributed algorithm for geographically distributed datasets that reduces 
communication costs by focusing on similar behaving attributes.  

This paper is organized as follows: Section 2 summarizes the related work in 
distributed ARM. Section 3 investigates the definitions and methodology of DARM 
also it introduces a formula to testing strong dependence between attributes and 
describes a new algorithm of Distributed mining association rules. Section 4 shows 
the experimental results. The last section concludes the paper. 

2   Related Work  

Several parallel and distributed versions of sequential algorithms for ARM have been 
proposed in the last years [2, 5, 7, 10, 12, 15, 16, 17, 18 and 19]. The major difference 
between parallel algorithms is in the architecture of the parallel machine. This may be 
shared memory as in the case of [8, 13], distributed shared memory as in [11], or 
shared nothing as in [2, 10, 12]. 

Parallelism in both shared-memory and distributed memory ARM algorithms can 
be categorized as data-parallelism or task parallelism [1, 14]. Data parallelism 
logically partitions the database among processors. Each processor works on its local 
partition of the database, but performs the same computation of counting support for 
the global candidate itemsets. Data-parallelism exchanges only the counts among 
processors, which minimizes the communication cost. Data-parallelism is however 
only suitable for use on homogenous databases. Count Distribution (CD) is a simple 
data-parallelism algorithm [2]. CD algorithm uses the sequential Apriori algorithm in 
a parallel environment and assumes datasets are horizontally partitioned among 
different sites. Each processor generates the local candidate itemsets independently 
based on the local partition. Then the global counts are computed by sharing (or 
broadcasting) the local counts, and the global frequent candidate itemsets are 
generated. The focus of the CD algorithm is on minimizing communication. This 
algorithm has a simple communication scheme for count exchange. However, it also 
has the similar problems of higher number of candidate sets and larger amount of 
communication overhead. It does not use the memory of the system effectively. 

In task-parallelism, each processor performs different computations independently, 
yet all have access to the entire dataset. Data Distribution (DD) is a task-parallelism-
based algorithm that partitions the candidate itemsets among the processors [2]. It 
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thus suffers from high communication overhead and performs poorly when compared 
with CD algorithm. Hybrid parallelism combining both task and data parallelism is 
also possible. Candidate Distribution algorithm [2] combining both CD and DD is 
presented. The CD algorithm performed the best among the three algorithms. It 
exhibited linear scale-up and excellent speed-up and size-up behavior. Several 
algorithms have been proposed to reduce the communication load in the CD 
algorithm. Distributed algorithms (DMA, FDM) are presented in [23, 10] which 
generate fewer candidates than CD, and use effective pruning techniques to minimize 
the messages for the support exchange step. For the communication, instead of 
broadcasting the local counts of all candidates as in CD, they send the local counts to 
polling site. FDM's message optimization techniques require some functions to 
determine the polling site, which could cause extra computational cost when each site 
has numerous local frequent itemsets. Furthermore, each polling site must send a 
request to remote sites other than the originator site to find an itemset's global support 
counts, increasing message size when numerous remote sites exist. Ashrafi, et al. [20] 
propose the Optimized Distributed Association Mining (ODAM) algorithm based on 
CD which both reduces the size of the average transaction and reduces the number of 
message exchanges in order to achieve better performance. As for the message 
exchange, instead of using broadcast as with CD or polling sites like FDM, ODAM 
just sends all local information to one site, called the receiver. The receiver then 
calculates the global frequent itemsets and sends them back. Based on our survey, In 
CD-based distributed algorithms, each local site generate support counts and 
broadcasts them to all other sites which causes a huge amount of communication. 
Algorithms such as FDM, DMA and ODAM reduce communication costs by 
assigning one site to act as a server to calculate global frequencies. Up to the point 
where the central server becomes the bottleneck. This kind of mechanism requires, 
however, that some sites rely on others (usually only one) to obtain the final ruleset. 
This dependency is avoided in our distributed algorithm. 

3   DARM and Proposed Algorithm 

Communication is one of the most important DARM objectives. DARM algorithms 
will perform better if we can reduce communication costs (for example, message 
exchange size). To reduce communication costs, we take message optimization 
techniques. We can divide the message optimization techniques into two methods 
direct and indirect support counts exchange [20]. The first method exchanges each 
candidate itemset's support count to generate globally frequent itemsets of that pass 
(CD and FDM are examples of this approach). The second method to reduce 
communication costs, doesn't consider an itemset's exact global support [12]. To 
maintain an association rule's correctness and compactness, our algorithm sticks with 
the first approach. 

In this paper we present a new algorithm for share-nothing machines where each of 
n processors has a private memory and a private disk. The processors are connected 
by a communication network and can communicate only by passing messages. Data is 
evenly distributed on the disks attached to the processors.  



386 Z. Farzanyar, M. Kangavari , and S. Hashemi  

 

3.1   Problem Definition 

Let },...,,{ 21 miiiI = be the set of items. Let DB be a database with D transactions. 

Assume that there are n sites nsss ,...,, 21 in a distributed system and the database DB is 

partitioned over the n sites into { },,..., 21 nDBDBDB respectively. Let the size of the 

partitions iDB be ,iD for ni ,...,2,1= . Let sup.X  and iX sup.  be the support counts of 

an itemset X in DB and ,iDB  respectively. sup.X is called the global support count, and 

iX sup.  the local support count of X at site .is  For a given minimum support threshold s, 

X is globally frequent if DsX ×≥sup. . The essential task of a distributed ARM 
algorithm is to find the globally frequent itemsets L. 

Our proposed idea in this algorithm in order to reduce communication overhead is 
fusing the similar behaving attributes. For this propose, we need a measure of 
dependency between two items. A widely used one has been introduced in [21], it is 
chi-square and is based on support difference. 

3.2   Chi-Square Test for Independence and Correlation 

Chi-square test statistics ( 2χ ) is a widely used method for testing independence 

and/or correlation [21]. In our proposed technique, it is used for testing strong 
dependence between attributes. Below, we give an introduction to chi-square test. 

Essentially, 2χ  test is based on the comparison of observed frequencies with the 

corresponding expected frequencies. 

Example: In a loan application domain, we have 500 people who applied for loan in a 
bank. Out of the 500 people, 300 had a job and 200 did not have a job. 280 people 
were granted loan and 220 were not. We also know that 200 people who had a job 
were granted loan, which can also be expressed as an association rule: 

Job = yes →  Loan = approved   [Sup = 200/500, conf = 200/300] 

This information gives us a 2×2 contingency table containing four cells (Table 1). 
Note that the table has only 1 degree of freedom, which is sufficient for binary 
attributes [21].  

Table 1. Contingency table for Job and Loan 

 

Our question is “Is loan approval dependent on whether one has a job or not?” In 
dealing with this problem we set up the hypothesis that the two attributes are 
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independent. We then compute the expected frequency for each cell as follows: Of the 
500 people included in the sample, 300 (60% of the total) had a job, while 200 (40% 
of the total) had no job. If the two attributes are truly independent, we would expect 
the 280 approved cases to be divided between job = yes and job = no in the same 
ratio; similarly, we would expect the 220 not-approved cases to be divided in the 
same fashion. 

2χ is used to test the significance of the deviation from the expected values. Let 
f 0  be an observed frequency, f be an expected frequency, r be each cell in the table, 
and R be the set of all cells. The 2χ  value is defined as: 

−
= ∈ f

ff
Rr

2
02 )(χ  (1) 

A 2χ  value of 0 implies the attributes are statistically independent. If it is higher 

than certain threshold value (e.g. 3.84 at the 95% significance level [21]), we reject 

the independence assumption. For our example, we obtain 2χ  = 34.63. This value is 

much larger than 3.84. The independence assumption is rejected. Thus, we say that 
the loan approval is correlated to (or dependent on) whether one has a job. 

3.3   Proposed Algorithm in Detail 

DARM algorithms must reduce communication costs so that generating global 
frequent itemsets costs less than combining the participating sites' datasets into a 
centralized site. However, most DARM algorithms don't have an efficient message 
optimization technique, so they exchange numerous messages during the mining 
process. Some of them reduce communication costs by assigning one site to act as a 
server to calculate global frequencies where the central server becomes the bottleneck. 

Our algorithm offers better performance by minimizing candidate itemset generation 
costs. In this method the similar behaving global frequent attributes are found and fused. 
Such attributes are presented together in more of the transactions. Finding two similar 
behaving attributes in one set and separate studying of each is something time-
consuming and leads to communication overhead. In our proposed algorithm, we have 
used Chi-square statistic test to study the similar behaving of attributes.  

To deal with this problem, we propose a new distributed algorithm based on CD 
algorithm [2] that fragments the dataset into different horizontal partitions. The 
algorithm first computes support counts of 1-itemsets from each site in the same 
manner as it does for the sequential Apriori. It then broadcasts those itemsets to other 
sites and discovers the global frequent 1-itemsets.  

To efficiently generate candidate support counts of later passes, the algorithm fuses 
all of the similar behaving global frequent 1-itemsets after the first pass and places 
those new transactions into the main memory. For this purpose, each site constructs 
contingency tables for each of two global frequent 1-itemsets. Then, each site obtains 
observed frequencies for all of the contingency tables at the same time by scanning 
once the local partition. They send contingency tables to a single site. We refer to this 
site as the coordinator. Then, the coordinator constructs contingency tables related to 
each of two attributes entirely. For each of these tables, the coordinator is responsible 
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for obtaining that expected frequencies in case of accepting the independence 
assumption, and finally it calculates the 2χ  value. The 2χ  value obtained from the 
chi-square test for each of the contingency tables, is compared to the chi-square table 
by the coordinator and the similar behaving global frequent 1-itemsets are 
determined. After obtaining all the similar behaving global frequent 1-itemsets, 
considering the common points between them, the coordinator deduces the final 
similar behaving global frequent 1-itemsets and broadcasts them to all of the sites. 
Then, Each processor fuses the final similar behaving global frequent 1-itemsets 
independently on the primary local partition and inserts the new transaction into 
memory. For example, A and B are similar behaving attributes, therefore in all 
transactions, A and B is fused and appears in the form of A-B. (In the phase of AR 
making, we will show the behavior of similar behaving attributes as Meta rule to 
maintain exactness of the obtained rules. Such rules are the main rules and they show 
the behavior of similar behaving attributes.). 

Nevertheless, when we fuse similar behaving attributes of each transaction, the size 
of each transaction is reduced and the chance of finding similar transactions increases. 
During the writing, a tag is placed in front of every transaction to specify how many 
times that transaction exists in a partition.  While inserting the new transaction, the 
algorithm checks whether that transaction is already in the memory. If it is, it 
increases that transaction's counter by one. Otherwise, it inserts the transaction with a 
count equal to one into the main memory. Finally, it writes all main-memory entries 
for this partition into a temp file. This process continues for all other partitions. This 
technique reduces the average transaction length and also reduces the dataset size 
significantly, so we can accumulate more transactions in the main memory. These two 
reductions in transactions size and dataset size lead to reduction of scan time, which is 
very effective in increasing the performance of the proposed algorithm.  

After fusing similar behaving attributes from each partition, the algorithm iterates 
through the new dataset (that is, the temp file) and generates the globally frequent 
itemsets of various lengths by broadcasting the support counts of candidate itemsets 
after every pass. It should be noted that the design of this step follows that of the 
Apriori data-mining algorithm. 

In our algorithm the total number of candidate itemsets, to be generated, is much 
less than the CD algorithm and it causes the considerable reduction of the size of 
message exchange and also the time spent on computing the frequency of candidate 
itemsets. Thus we reduced communication costs. In algorithms such as FDM, DMA 
and ODAM, the central server becomes the bottleneck. This kind of mechanism 
requires, however, that some sites rely on others (usually only one) to obtain the final 
ruleset. This dependency is avoided in our distributed algorithm.  The following 
shows the details of the proposed algorithm: 

 
         Procedure Distributed Mining of Association rules 

algorithm 

Input: (1) DB i : the database partition at each site; (2) 

s: the minimum support threshold; both submitted at each 

site S i , (i= 1,…,n);  
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Output: L: the set of all global frequent itemsets in DB, 
returned at every site; 
Method: iterates the following program fragment 
distributively at each site S i starting from k =1, where k 
is the iteration loop counter; the algorithm terminates 
when either L k  returned is empty or the set of candidate 

sets C k  is empty. 

 

Each site S i generates X.sup i (X 1C∈ ) by scanning D i ;  
/* 1C : candidate 1-itemsets */ 
Broadcast (X.sup i (X 1C∈ )); 
Receive (X.sup i (X 1C∈ ) from all other sites s i ; 
For all X 1C∈  do { 

 X.sup=
=

n

i
iX

1

sup. ; 

 If X.Sup≥S D×  
  Insert (X,X.sup) into L 1;} /* 1L : frequent 1-itemsets */ 
 

Each site S i , For all 2-subsets Y of 1L  generates 
contingency-table i (Y) by scanning D i ; 
Send-to-coordinator (contingency-table i (Y)); 
Sim=Receive-from-coordinator (sim m ); 
/*Receiving similar behaving global frequent 1-itemsets 

from coordinator*/ 
For all transactions t∈D i  { 
  For all sim m ∈ sim 
    t=Fuse (sim m );} 
 

For j=2 to k at each site S i do { 
 While ( )01 ≠−kL { 

C k = Apriori-Gen (L 1−k ) 
 For all transaction t iD∈  
  For all k-subsets X of t 
     If (X )kC∈  X.sup i ++;} 
Broadcast (X.sup i (X kC∈ )); 
Receive (X.sup i (X )kC∈ ) from all other sites s i ; 
For all X kC∈  do { 

 X.sup=
=

n

i
iX

1

sup. ; 

 If X.Sup≥S T×  
  Insert (X,X.sup) into L k ;} Return L k ; K++ ;} 
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4   Experimental Results 

To illustrate the effect of fusing similar behaving attributes, we compare the 
performance of our new algorithm with the CD algorithm [2] and consider the 
superiority of it with the other algorithms such as FDM, DMA and ODAM. The CD 
algorithm is an adaptation of the Apriori algorithm in the distributed case. However, it 
has the similar problems of higher number of candidate sets and larger amount of 
communication overhead. We have extensively studied our algorithm's performance 
to confirm its effectiveness. We implemented this algorithm using C++. We 
established a socket-based, client-server distributed environment to evaluate our 
algorithm's message reduction techniques. Each site has a receiving and a sending unit 
and assigns a specific port to send and receive candidate support counts. Because the 
candidate itemsets that each site generates will be based on the global frequent itemset 
for the previous pass, the candidate itemsets are identical among various sites. 

The datasets used for this performance study are the connect-4 dense dataset and 
the Cover Type dataset. Connect-4 contains many frequent itemsets also for high 
support thresholds, and the Cover Type is relatively sparse and uses low support 
thresholds to generate frequent itemsets. Both data sets are taken from the UCI 
datasets [24]. Table 2 shows the characteristics of each dataset. 

Table 2. Data set characteristics 

Name Number of items Number of records Average transaction size 
Connect-4 130 67,557 43 
Cover type 120 581,012 55 

To show how our algorithm can efficiently generate support counts, we conduct an 
experiment in a single site. Because the total number of sites is equal to one, CD will 
perform the same as the sequential Apriori algorithm. Figure 1 shows our algorithm 
and CD's total execution time for generating the frequent itemsets using the UCI 
datasets. As Figure 1 shows, our algorithm outperforms CD in all cases. However, our 
algorithm fuses a significant number of the similar behaving global frequent 1-
itemsets from every transaction, so it finds a significant number of identical 
transactions. It requires a minimal number of comparison and update operations to 
generate support because it doesn't enumerate candidate itemsets multiple times for 
any identical transaction. In contrast, CD takes longer, thus requiring numerous 
comparison and update operations to generate support counts. We can observe that the 
executing time of our new algorithm is much less than the CD algorithm. 

To compare the total communication cost (that is, the total size of messages 
exchanged of this algorithm and CD) between different sites to generate the globally 
frequent itemsets, we partition the original data set into four partitions. Each one 
contains only 25 percent of the original data set's transactions. So, the number of 
identical transactions among different partitions is very low. In the CD algorithm, 
each local site generates support counts and broadcasts them to all other sites to let 
each site calculate globally frequent itemsets for that pass. So, the total number of 
messages broadcast from each site equals ((n – 1) * |C|). We can calculate the total 
message size for that pass using 
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Fig. 1. Our algorithm versus the CD algorithm in a single node 

=
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Where n is the total number of sites and C  is number of candidate itemsets for that 
pass [2]. In our algorithm, the total message size for that pass is  

=

′−=
n

i
messages CnT

1

*)1(  (3) 

Where C ′ and n are the number of candidate itemsets and the number of sites, 
respectively, ( C ′  << C ). Advantage of our algorithm over CD is that it reduces 
the communication cost by the reducing the total number of candidate itemsets. It 
generates fewer candidate itemsets compared to CD.  

In the testing step of the similar behaving attributes, the total number of messages that 
each site sends to the coordinator and the coordinator sends to all other sites equal 2n. 

 
     610×                                                                 610×  

 
(a) (b)  

Fig. 2. Total message size that our algorithm and CD transmit to generate the globally frequent 
itemsets for (a) Connect-4 data and (b) Cover Type data 
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Therefore, this number of messages, in comparison with reducing the total number of 
candidate itemsets is trivial number. Figure 2 depicts the total size of messages (that 
is, number of bytes) that our algorithm and CD transmit to generate the globally 
frequent itemsets with different support values. 

Our algorithm doesn’t assign one site to act as a server to calculate global 
frequencies. Therefore, the scalability of our algorithm is increased. This is the 
superiority of our algorithm as compared with the other algorithms such as FDM, 
DMA and ODMA.  

5   Conclusion 

Association Rule Mining (ARM) is an important research area in the field of data 
mining. Parallelism is an ideal way to scale ARM to large databases. Distributed 
Association Rule Mining (DARM) algorithms must reduce communication costs so 
that generating global association rules costs less than combining the participating 
sites' datasets into a centralized site. We have developed an efficient algorithm for 
mining association rules in distributed databases. The developed method has the 
following impacts by recognition and fusion similar behaving global frequent 1-
itemsets: 

1- Reduces the size of message Exchanges 
2- Reduces the size of average transactions and original datasets that leads to 

reduction of scan time, which is very effective in increasing the performance 
of the proposed algorithm.   

This efficiency is approved by the experimental results. In algorithms such as FDM, 
DMA and ODAM, the central server becomes the bottleneck. This kind of mechanism 
requires, however, that some sites rely on others (usually only one) to obtain the final 
ruleset. This dependency is avoided in our distributed algorithm. Therefore, the 
scalability of our algorithm is increased.  
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Abstract. Distributed protocols that run in dynamic environments
such as the Internet are often not able to use an upper bound on the num-
ber of potentially participating processes. In these settings adaptive and
uniform algorithms are desirable where the step complexity of all opera-
tions is a function of the number of concurrently participating processes
(adaptive) and the algorithm does not need to know an upper bound on
the number of participating processes (uniform). Adaptive algorithms,
however, are generally not adaptive with respect to their memory con-
sumption - if no upper bound on the number of participating processes
is known in advance - they require unbounded MWMR registers and an
unbounded number of such registers (even if only finitely many distinct
processes appear), making them impractical for real systems. In this pa-
per we ask whether this must be the case: Can adaptive algorithms where
no upper bound on the number of participating processes is known in
advance be uniformly implemented with finite memory (if only finitely
many distinct processes keep reappearing)? We will show that in the dy-
namic setting it is impossible to implement long-lived adaptive splitters,
collect and renaming with infinitely many bounded MWMR registers,
making such adaptive algorithms impractical in dynamic settings. On the
positive side we provide algorithms that implement a long-lived uniform
adaptive splitter if unbounded registers are available and that implement
a non-uniform adaptive splitter with finitely many bounded registers if
an upper bound on the number of participating processes is known in
advance.

1 Introduction

Many well known and important distributed algorithms such as atomic snapshot
or renaming, require processes to gather information about each other. For ex-
ample, in the renaming problem, before choosing a unique new name, processes
need to know which names other processes have already chosen. To communicate
this information an array of Single-Writer Multi-Reader (SWMR) registers can
be used. Each process has a unique array entry assigned to it and only a fixed
process is allowed to write to each array location while all processes can read
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them. A process can update information about itself by writing into its entry and
it can then collect information about the other processes by reading all entries
in an arbitrary order.

Such a collect algorithm with step complexity O(N), however, where N is
the total number of processes in the system, is possibly inefficient or impractical
if only few of the N processes are actually participating or if no upper bound
on the number of participating processes is known in advance. This and other
similar issues motivated researchers to look for adaptive and uniform algorithms
whose step complexity only depends on the number of concurrently participating
processes (adaptive) and that don’t need to know an upper bound on the number
of participating processes in advance (uniform).

Adaptive algorithms have a worst case step complexity that is bounded by
a function of the number of concurrently participating, or actually active pro-
cesses [3]. Motivated by Lamport’s MX algorithm [18], many such adaptive al-
gorithms have since been designed [1,3,4,5,10,11,14,19]. The strongest forms of
adaptiveness in the read/write shared memory model have been defined and
achieved in recently presented long-lived adaptive collect [6] and renaming [1,12]
algorithms. In these algorithms, called adaptive to point contention the number
of steps taken by a process executing an operation is a function of the maxi-
mum number of processes that were active simultaneously at some point in time
during this operations execution interval. Algorithms adaptive to interval con-
tention have a slightly weaker level of adaptiveness. Here the number of steps
taken during an operation is a function of the total number of different processes
active during this operations execution interval. Finally, an algorithm is adaptive
to total contention if the number of steps taken by a process is a function of the
total number of processes active since the beginning of the execution.

In all these algorithms [1,3,4,5,6,7,11,12,13,15,16,19,20], however, the memory
consumption is a function of the upper bound N on the number of processes that
might participate in the algorithm. Moreover these algorithms usually assume
unbounded MWMR registers. They are not concerned with a distributed sys-
tem such as the Internet, where we have a potentially huge number of processes
that might participate in some protocol but it is known that with very high
probability only a small number of processes will be active at any given time or
participate. It is unrealistic and wasteful for such a system to provide a huge
number of shared memory registers for the operation of such a protocol. Also in
a real system unbounded MWMR registers are not available. Algorithms that
operate in a dynamic setting are not able to use a priori knowledge about a finite
upper bound on the number of processes in the system and are called uniform
algorithms. Aguilera, Englert and Gafni [8] showed that there are single shot
tasks such as generalized weak test and set [9] that cannot be solved uniformly
with a finite number of MWMR registers. In other words a protocol solving this
task with finitely many MWMR registers must know the number of participating
processes in advance. Since generalized weak test and set is a one-shot algorithm,
this implies that the long lived nature of test and set and the requirement that
the step complexity adapt to interval contention are not the only requirements
that preclude a solution in finite space.
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So far all known adaptive algorithms (e.g. [1,3,4,5,6,7,11,12,13,15,16,19,20])
require knowledge of an upper bound on the number of participating processes.
This upper bound must be hard coded into the algorithm, making them non-
uniform. They are not adaptive with respect to their memory consumption. To
summarize, this lack of adaptiveness and non-uniformness has two aspects.

1. Unbounded MWMR registers are needed, greatly limiting their usability in
real systems.

2. The algorithms must a priori know N , an upper bound on the number of
participating processes.

These algorithms are non-uniform since for each possible number of participating
processes a ”different” algorithm is required.

It would be desirable to have uniform algorithms that can ”on the fly” adjust
to the number of participating processes in such a way that no matter how many
are actually participating, as long as the number is finite, the algorithm - even in
an unbounded execution will use only finitely many bounded MWMR registers.
To our knowledge, no such algorithm exists.

So we ask if this apparent lack of uniformity and reliance on unbounded
memory is an inherent property of adaptive algorithms. What is the relationship
between uniform, adaptive algorithms and bounded memory? To get an answer
to this question we will investigate whether it is possible to have truly adaptive
algorithms using bounded memory in a setting where no upper bound N on the
number of participating processes is known. In an execution where only finitely
many distinct processes appear can we implement adaptive algorithms using
finitely many bounded MWMR registers?

In other words are there uniform adaptive algorithms that can use bounded
memory in infinite executions? This is an important question since its answer has
strong implications on the practicality of adaptive algorithms in dynamic settings.

Table 1. Implementability of long-lived, adaptive splitter, collect, renaming

Implementation possible

∞-many bounded reg., uniform impl. No
Fin. many bounded reg, N known, non-uniform impl. Yes

∞-many unbounded reg., uniform impl. Yes

We will first show that even if we provide infinitely many bounded MWMR
registers it is impossible to implement weak test & set in an execution where
N is unknown. By reduction this implies that the use of at least finitely many
unbounded registers is a necessary ingredient for uniform and adaptive imple-
mentations of long lived and adaptive splitter, collect and renaming. In other
words, adaptive algorithms that want to be uniform must either use unbounded
registers as a black box or have some a priori knowledge about the upper bound
of possibly participating processes. This makes them impractical in dynamic
settings. As it turns out they require a closed and controlled environment to be
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truly effective. On the positive side we present a long-lived, uniform and adaptive
to interval contention implementation of a splitter that in an unbounded exe-
cution (where only finitely many distinct processes appear) uses infinitely many
unbounded MWMR registers. We finally show how this algorithm can be modi-
fied to use bounded memory if an upper bound on the number of participating
processes is known in advance (making the resulting algorithm non-uniform).
The results are summarized in Table 1.

1.1 Adaptive Splitter

The splitter that we will implement is an essential building block of many of these
adaptive renaming, snapshot and collect algorithms(e.g. [1,3,4,5,10,11,14,19]).
Splitters were first introduced by Moir and Anderson [20]. A splitter is a variant
of mutual exclusion. If one process accesses the splitter alone it captures the
splitter and the resource (name) associated with it. When several processes access
the splitter concurrently they may all fail leaving the splitter un-captured. The
splitter wait-freely partitions the processes that fail into two groups, right and
down. At the same time the splitter ensures that not all contending processes go
down and not all go to the right. If splitters are put into a grid then processes
that begin in the top left are split into smaller and smaller groups as they traverse
the splitter until individual processes access a splitter on their own, guaranteeing
them success. Our splitter will have fewer properties than the Moir Anderson [20]
splitter but it has a long-lived and adaptive implementation.

1.2 Related Work

Englert and Goldstein [17] recently considered protocols that they called memory-
adaptive. In such protocols processes are at all times only allowed to write to
MWMR registers whose index is a function of the contention during the
previous shared memory write operation. They showed that in a system
with infinitely many MWMR registers and infinitely many SWMR registers, for
any constant d, there exists a number Nd such that if Nd processes are allowed
to participate in a memory-adaptive (to POINT contention) execution of the
protocol, then at least one does not make a single uncovered write to a shared
register in d writes. In other words they showed that under these conditions pro-
cesses cannot memory-adaptively store a value in shared memory. This implies
that any time-adaptive collect or renaming algorithm in this setting that uses
only finitely many of the infinitely many MWMR registers (if such an algorithm
exists) cannot be built from memory-adaptive building blocks alone.

Note that our model used in this paper is more general than the model in [17].
We allow processes to write to registers with any index. We only require that
in an unbounded execution - as long as only finitely many processes appear -
only finitely many such registers are actually written to. Hence the results pre-
sented in [17] do not answer the question whether there exists a long-lived, step
complexity-adaptive (not necessarily memory-adaptive) and uniform renaming
or collect protocol that uses only finitely many bounded MWMR registers.
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1.3 Contributions and Paper Organization

In Section 2 we introduce our model. Our contributions are as follows.

I. In Section 3 we show that using only bounded shared MWMR registers
there is no adaptive, uniform implementation of long-lived splitter, collect
and renaming in an unbounded execution with finitely many processes ap-
pearing.

II. In Section 4 we provide a uniform algorithm adaptive to interval contention
that implements a splitter and uses infinitely many unbounded MWMR
registers in an unbounded execution.

III. In Section 5 we illustrate that using a previously presented algorithm [7]
and given a bound on N the largest id of participating processes we can
implement a non-uniform, long-lived, adaptive splitter with finitely many
bounded MWMR registers (in an execution where only finitely many pro-
cesses participate).

We conclude with some final remarks in Section 6.

2 Model and Preliminaries

Our algorithms assume an asynchronous read/write shared memory model. This
model consists of a set of N asynchronous processes p0, p1, ..., pN−1 and a set of
registers shared by the processes. The processes communicate only through the
registers which provide two atomic operations, read and write. We assume single-
writer, multi-reader (SWMR) and multi-writer, multi-reader registers (MWMR).
A bounded register of size M is a register that can hold at most M distinct values.
An unbounded register is a register for which no such bound exists. A protocol
is called long-lived if processes are able to execute it infinitely often. Algorithms
that are not able to use a priori knowledge about a finite upper bound on the
number of processes in the system are called uniform algorithms.

Let α be an execution of a long-lived algorithm A and α′ a prefix of α. Process
pi is participating at the end of α′, if α′ includes an invocation of some operation
of A by process pi without the matching response. The active processes at the end
of α′, are denoted Cont(α′). It is the set of processes participating at the end of
α′. Given a subsequence β of α, let α′β be the shortest prefix of α that contains
β. We define the interval contention denoted IntCont(β) and point contention
denoted PntCont(β) as follows:

IntCont(β) = |
⋃

α′β′ prefix of α′β

Cont(α′β′)|

PntCont(β) = max|Cont(α′β′)|
α′β′ prefix of α′β

Intuitively the interval contention of a subsequence β is the number of different
processes that were participating during β, while the point contention is the
maximum number of processes active at any point in time during β. Clearly
PntCont(β) ≤ IntCont(β).
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We define the total contention of any execution α as the number of processes
that took steps in α.

Let op be an operation. We define the execution interval of op, denoted
β(op) as the subsequence of α starting at the invocation of op and ending at
the completion of op. The interval contention of an operation op is defined as
IntCont(β(op)). In the rest of the paper, k denotes IntCont(β(op)) for some oper-
ation op. The step complexity of an algorithm is adaptive to interval contention
if there is a bounded function S, such that the number of steps performed by
any process pi in any execution interval of an operation opi of A is at most
S(IntCont(β(opi))). Clearly the contention of an execution interval is bounded
by N , the total number of processes participating in the algorithm. We will
assume that this bound is a priori unknown, that is that our algorithms have
no knowledge of this bound in advance. Hence, in an adaptive algorithm with
bounded concurrency any operation opi (by pi) terminates with a bounded num-
ber of steps, regardless of the actions of any other processes (than pi). So any
adaptive algorithm is by definition wait-free.

Informally a splitter is a weak mutual exclusion primitive. Processes access the
splitter through an invoke operation. This operation has three possible responses:
stop, right or down. A process that receives a stop response has captured the
splitter. Such a process releases the splitter by invoking a release operation that
has only one possible response: done.

In this paper we will only consider well-formed operations where no process
has more than one pending operation at any given point in time and where a
process only invokes a release operation if and only if its last event was a stop
response.

For every process p we define the p-active intervals with respect to the splitter
execution to be: 1. From an acquire invocation of the splitter by p until the
corresponding response if the splitter was not captured by p. 2. From an acquire
invocation of the splitter by p until the done response to the corresponding
release invocation, given that the splitter was captured by p.

A process that has no acquire operations cannot be p-active and is hence called
p-idle. We will implement an adaptive splitter with the following properties:

1. At any point in time the adaptive splitter is captured by at most one process.
(Mutual exclusion)

2. If the prefix of a busy period is only an invocation of acquire and its response,
then the response must be a stop. (Processes that access a ”new” splitter by
themselves must capture it.)

3. Not all responses to the acquire invocations during a busy period are right.
4. Not all responses to the acquire invocations during a busy period are down.
5. No busy period of the adaptive splitter that contains infinitely many events

where the events are only acquire invocations and down responses (i.e. where
no process captures it or goes right).

As always with such splitters, if two or more processes access it concurrently
it is possible that none of them captures it. But not all acquire attempts return
down and not all return right.
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The key difference between our splitter and the Moir Anderson [20] splitter
are the following two properties: 1. At the point in time where a process is
guaranteed to go right there is at least another process active in the splitter
that might either stop or go down. 2. At the point in time where a process is
guaranteed to go down there is at least another process active in the splitter that
is guaranteed not to go down or is undecided (might go down, right or stop).

3 Impossibility of Uniform, Adaptive Splitter, Collect
and Renaming with Infinitely Many Bounded Registers

We now show that it is impossible to uniformly implement adaptive long-lived
splitter, collect or renaming using infinitely many bounded MWMR registers
in an unbounded execution where at most finitely many distinct processes may
appear. To do so we use a so called weak test and set object [2].

3.1 Weak Test and Set

We model the behavior of a weak test and set object with the following program
(Figure 1). Each process is in one of four possible states: thinking, WT & Set,
eating and RESET.

TS: object of type WT&S
Process p:
repeat forever

thinking sectionp

tbit:= WT&SETp(TS)
if tbit = 0 {

eating sectionp

RESETp(TS) }
end repeat forever

Fig. 1. Weak Test & Set algorithm

A WT&S object satisfies the following two properties:

– Exclusion: At most one process is eating at any system state of the execution.
– If a process becomes hungry, that is leaves the thinking state, while all other

processes are thinking and it only takes steps then it must eventually start
eating.

Clearly if we can implement a long-lived adaptive splitter, we can implement
WT&SET. The reduction is straightforward, we simply use the adaptive splitter
to implement the WT&SET object. A process that captures the splitter enters
the eating section. Processes that fail to capture the splitter do not eat. This
algorithm has the required properties, it implements WT&SET. Moreover as was
shown in [2] both a long-lived adaptive collect or a long-lived adaptive renaming
algorithm can be used to implement the WT&SET object. Hence it suffices
to show that we cannot implement an adaptive WT&SET object using only
register reads and writes in an unbounded execution where finitely many distinct
processes may appear and infinitely many bounded registers are available.
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Theorem 1. There does not exist a uniform, long-lived, adaptive implementa-
tion of a Weak-Test & Set object using only read and write operations, infinitely
many bounded MWMR registers and infinitely many bounded SWMR registers
in an execution where only finitely many distinct processes appear.

We first restate a combinatorial lemma proved in [17].

Lemma 1. Let N be the set of all integers. Assume that you are given an infinite
collection of sets Si ⊆ N such that |Si| ≤ k for some nonnegative constant k.
Then ∃X ⊆ N such that |X | = ∞ and such that ∀x, y ∈ X, y �= x ⇒ x �∈ Sy.

The proof of this lemma can be found in [17]. Processes are potentially able
to write information about themselves into their own SWMR registers. This
information could then subsequently be read by other processes ”helping” them
in their execution of the WT&SET algorithm. The sets Sy here represent the
ids of processes corresponding to the SWMR registers that process y is going to
read. Hence informally speaking the lemma says that there is an infinite set of
processes X such that no two processes in X read each others SWMR registers
when executing the WT&SET algorithm while believing they are running alone.

Using Lemma 1, the idea of the proof of Theorem 1 is to show that we can
get at least two carefully selected processes p and q to execute the algorithm
together in such a way that these two processes will not be able to distinguish
each others writes. In other words p will interpret a write of q it reads as one of
its own writes and vice versa. As a result they will both capture the WT&SET
bit (eat) at the same time, a contradiction.

We first show that we can find an infinite set of processes that will all write to
the same MWMR register. Note that we will not require that all these infinitely
many processes execute the algorithm. They will simply provide us with the
collection of processes from which we will be able to carefully select the finitely
many processes with the desired properties.

Lemma 2. There exists an infinite set S of processes that write to the same
MWMR register and that do not read any register to which only finitely many of
the processes in S wrote to.

Proof Sketch: By Lemma 1, ∃X0 ⊆ N such that |X0| = ∞ and such that
∀x, y ∈ X0, y �= x ⇒ x �∈ S

(0)
y . This implies that there exists an infinite set of

processes X0 such that no process reads the single-writer register of any other
process in the set. Assume now that the processes in X0 write to infinitely many
distinct MWMR registers in their first write. Then we can intuitively think of
these infinitely many MWMR as SWMR registers (where the last process writing
to a register is the single writer) and apply Lemma 1 one more time - we get
an infinite set of processes X1 ⊆ X0 with the same properties as X0 (no process
reads information of any other participating process). If processes continue to
write to infinitely many distinct MWMR registers we can inductively continue
this construction. Since our algorithm must be adaptive, a process that believes
to execute the algorithm alone must terminate within a constant number k of
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steps. Hence we obtain an infinite set of processes Xk that all finish the execution
of the algorithm believing they ran solo and hence capturing the WT&SET bit,
a contradiction. Hence infinitely many processes will eventually have to write
to finitely many MWMR registers. So there must exist an infinite set S of
processes that writes to the same MWMR register and where no process in S
reads information about any other process in S in any other register. �
Using induction we now finish the proof of the Theorem:

We will construct an infinite set of processes that when executing the algo-
rithm at the same time, write the same values to the same MWMR registers in
the same order and do not read each others SWMR registers.

By Lemma 2 there must be an infinite set of processes X0, where no two
processes read each others SWMR registers and that write to the same bounded
MWMR register r1. By the boundedness of r1 and the pigeonhole principle it
follows that there is an infinite set of processes X1 ⊆ X0 such that none of the
processes in X1 is able to distinguish its write to r1 from a write from one of the
other processes in X1. If the processes in X1 finish their execution after writing
to r1 we are done. Otherwise by Lemma 2 there exists an infinite subset X2 of
X1 of processes such that they all write to the same register r2, do not read
each others SWMR registers (by Lemma 2) and hence are not aware of each
other. Since each of these processes believes it executes the algorithm on its own
and since the algorithm is adaptive, there exists a k such that after k writes
each of these processes must terminate its execution. Given k we can inductively
continue this construction until we obtain Xk, an infinite set of processes that
when executing the algorithm at the same time, write the same values to the
same MWMR registers in the same order and do not read each others SWMR
registers or any other register that could provide them information about each
other. We now simply select two processes p and q from Xk and let them execute
the algorithm at the same time. Since both p and q are members of Xk, that
is, they write the same values to the same registers in the same order they will
both capture the WT&SET bit at the same time, a contradiction. �

4 Adaptive, Long-Lived and Uniform Splitter Using
Unboundedly Many Unbounded MWMR Registers

We now present an algorithm that implements an adaptive, long-lived splitter
in a system where no upper bound on the number of participating processes is
known. The algorithm assumes that at most finitely many processes will partic-
ipate in the algorithm and uses infinitely many unbounded MWMR registers. It
is based on [7].

We present the implementation of the long-lived adaptive splitter in Figure 2.
Note that in the given construction a process that comes alone captures the
adaptive splitter in O(1) steps. It also releases the splitter in one step by setting
its status to idle. However when k processes access the splitter concurrently
some process may perform k steps. For example, let process p and q execute
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acquire() for process p returns stop, down or right.
Type: pid = process id, 0, ....
Shared:

X[0...], Infinitely many unbounded atomic registers of type pid each initialized to 0.
Y [0...], Infinitely many unbounded atomic registers of type (pid each initialized to 0.
Z[0...], Infinitely many unbounded atomic registers of type pid each initialized to 0.
status[0...], Infinitely many atomic registers of type {start, active, idle} initialized to idle.
I[0...], Infinitely many unbounded atomic registers consisting of i,
where i is an integer 0 ≤ i initialized to −1.
Master, an integer in the range 0, ... initialized to 0.

Code:
1 status[p] :=start; //indicate status

2 m := Master; //Master is supposed to be last process to update index

3 c := I[m]; //find last copy of splitter used

4 current := c + 1; // try next copy of splitter

5 if ((status[(X[c])] = active or (status[Y [c]] = active or (status[(Z[c])] = active then
status[p] := idle; return right

6 status[p] := active; // set state in single-shot splitter.

7 X[current] := p; //emulate single shot splitter.

8 if Y [current] �= 0 then
status[p] := idle, return right

9 I[p] := c; //Once p writes in Y [current], another process q may read it later. If I[p] is not updated this process will loop.

10 Y [current] := p, nextDB;
11 if (X[current] �= p) then

update(current), status[p] := idle, return down
12 Z[current] := p; // make sure to be seen after capturing splitter.

13 if (X[current] �= p) then
update(current), status[p] := idle, return down

14 update(current)
15 return stop
Procedure release() for process p
16 status[p] := idle
17 return;
Procedure update(c) for process p.
18 I[p] := c;
19 Master := p;
do forever
20 if (Master �= p ) then return // another process will update pointer, p can return.

21 c := c + 1;
22 if (Y [c] = 0 then return; //fresh copy found, p can return.

23 q := Y [c];
24 if (I[q] �= (i − 1) then c := I[q], I[p] := c; // only update I[p] if it is smaller than I[q].

od;

Fig. 2. Implementation of adaptive and long-lived splitter

in lock-step until both are about to write to X . Assume that p now writes to
X and that then q immediately overwrites p in X . Let them then execute in
lock-step again until they read X . Assume that p now reads X and finds the
condition to fail and stops right before performing update(c). Process q can now
continue and either capture the splitter or leave. While p is still active but not
performing any steps k different processes can capture and release single shot
copies of the splitter. Hence to finish its execution p will now have to iterate k
times through the loop in update(), Figure 2. Since k is at most N − 1, however
the step complexity of p will still be O(N).

We say that a process captures the adaptive splitter object (Figure 2) if it
reaches line 14 of the algorithm. We first show that if a process reaches line 14, no
other process will reach this line until the first process finished its execution. I.e.
we show that our splitter has a standard mutual exclusion property. The proof
is based on the correctness proof by Afek et al. [7] of their adaptive splitter
implementation. Out of lack of space we simply quote the main result. We begin
by showing that no more than one process at a time can capture the splitter.
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Lemma 3. No two processes p and q reach line 14 of the code concurrently.

Proof. We leave the proof to the full version of the paper.

Lemma 4. Any process executing the algorithm in exclusion must reach line 15.

Proof. Same as in [7].

Theorem 2. For a system with finitely many active processes there exists a
long-lived adaptive uniform splitter implementation using infinitely many un-
bounded MWMR registers.

5 Adaptive and Long-Lived Splitter Implementation
Using Bounded Registers, Given N

Given N , an upper bound on the id’s of processes that will appear during an in-
finite execution of the long-lived adaptive splitter, the previous algorithm can be
modified so that it uses only finitely many bounded registers. Moreover, bounded
MWMR and SWMR registers can be used instead of unbounded registers by es-
timating the size of registers required based on N . The resulting algorithm is the
same as presented in [7]. Its main feature is that by assigning unique registers to
processes in advance it allows us to reuse registers that processes wrote to before.
Every time before accessing a new copy of the adaptive splitter, a process checks
whether the process assigned to this copy is currently active. If so, the process
does not write to this copy but simply ”walks away”, i.e. returns ”right”. This
prevents a process p from writing to copies of the splitter where active processes
are currently about to write to one of the registers, hence possibly erasing all
traces of this process p. We are only able to do this since we know an upper
bound on process id’s in advance, hence are able to assign three unique MWMR
registers to all possibly participating processes. Since moreover processes write
only their id’s and smaller values to all registers we are also able to bound the
size of the registers in advance.

6 Discussion

We showed that any uniform, long-lived adaptive implementation of a splitter,
collect or renaming cannot use only bounded MWMR registers if no a priori up-
per bound on the number of participating processes is known, even if only finitely
many processes participate in the algorithm. This means that any such adaptive
algorithm must use unbounded MWMR registers. Hence even if finitely many
such registers would be sufficient unbounded memory is needed, making these
step complexity adaptive algorithms impractical in dynamic settings. This shows
that adaptive algorithms that run on real systems are inherently non-uniform.
They are inherently designed for closed and controlled settings: Designers must
find a way to realistically limit the size of the system so they can hard code an
upper bound on the size of the system into the algorithm.
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Abstract. We investigate the practical merits of a parallel priority queue
through its use in the development of a fast and work-efficient parallel
shortest path algorithm, originally designed for an EREW PRAM. Our
study reveals that an efficient implementation on a real supercomputer
requires considerable effort to reduce the communication performance
(which in theory is assumed to take constant time). It turns out that the
most crucial part of the implementation is the mapping of the logical
processors to the physical processing nodes of the supercomputer. We
achieve the requested efficient mapping through a new graph-theoretic
result of independent interest: computing a Hamiltonian cycle on a di-
rected hyper-torus. No such algorithm was known before for the case of
directed hypertori. Our Hamiltonian cycle algorithm allows us to consid-
erably improve the communication cost and thus the overall performance
of our implementation.

1 Introduction

Computing shortest paths is one of the most fundamental problems in computer
science and network optimization. Given an n-vertex, m-edge directed graph G
with real edge costs, the shortest path problem asks for finding a path of minimum
total cost from a vertex s to a vertex t, where the cost of a path is the sum of
the costs of its edges. The single-source shortest path (SSSP) problem, which
seeks for shortest paths from a specific vertex (source) s to all other vertices
in G is a heavily studied problem. The most well-known algorithm for the case
of non-negative edge costs is Dijkstra’s algorithm [10] implemented with the
help of an efficient priority queue; see e.g., [1]. A priority queue is a sequential
data structure that maintains a set of elements with keys drawn from a totally
ordered universe subject to the operations of insertion, deletion, decrease key,
and find-minimum key element.
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The efficient parallelization of a priority queue would immediately lead to
the efficient parallelization of many sequential algorithms (including Dijkstra’s
algorithm for SSSP). For this reason, a significant thread of research has been
devoted on designing efficient parallel priority queues. This research had been
mainly organized along two directions. The first was to speed up the individual
queue operations that handle a single element, using a small number of proces-
sors [3,6]. The second direction was to support the simultaneous insertion of k
elements and the simultaneous deletion of the k smallest elements, k being a
constant [6,9]. None of the above data structures supported the simultaneous
deletion of k arbitrary elements.

An important step forward along the second direction was made in [4]. In that
paper, a new parallel priority queue was presented that was the first to support
the simultaneous insertion and simultaneous decrease key of an arbitrary se-
quence of elements ordered according to key, in addition to find-minimum and
single element delete operations. Moreover, these operations can all be performed
in O(1) time. This allows for an efficient parallelization of Dijkstra’s algorithm
that runs in O(n) time and O(m log n) work on an EREW PRAM. This algo-
rithm constitutes one of the currently fastest and simultaneously work-efficient,
deterministic, priority queue based, parallel algorithms for the SSSP problem.

The practicality of this data structure, however, had not been investigated be-
fore. The prime challenge for such an investigation is that the parallel algorithms
in [4] have been designed to work on an EREW PRAM (the weakest version of
the PRAM model; see [14,15]). PRAM is a shared memory model that abstracts
several details of a real parallel machine, the most important of which concerns
the (non realistic) assumption that shared memory allows a constant time direct
communication between each pair of processors. Consequently, implementing a
PRAM algorithm on a real parallel machine constitutes a great challenge, since
processor communication is a bottleneck in performance.

Our main contribution in this work is an efficient implementation of the par-
allel priority queue in [4] and its practical assessment through the implementa-
tion and experimental evaluation of the parallel shortest path algorithm in the
same paper on the APEmille supercomputer [2,17]. APEmille is a supercom-
puter whose processors are arranged as a three dimensional toroidal grid. Our
study revealed that simulating the “all-to-all” processor communication in a
straightforward manner incurs a considerable performance penalty. To alleviate
this problem and provide an efficient implementation, we had to resort to the so-
lution of a graph-theoretic problem; namely, to compute a Hamiltonian cycle in a
directed hyper-torus. Our second contribution in this work is an algorithm, used
to obtain a much better logical arrangement of processors, for computing such a
Hamiltonian cycle in a directed hyper-torus, result of independent interest, since
no such algorithm was known before for the case of directed hypertori.

Our implementation methodology provides also two results of independent
interest: (a) the logical arrangement of processors of a toroidal grid along a
Hamiltonian cycle turns out to be rather promising when the processors (of the
ideal machine) have to work in a circular pipeline; (b) the number of transfers
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required for a message from a logical (ideal) processor to reach its neighboring
logical processor is at most 3. This improves upon the best previous result [12]
that required 5 such transfers.

2 Computing a Hamiltonian Cycle on a Hyper-torus

Finding a Hamiltonian cycle in a hyper-torus (a Cartesian product of two or
more cycles) is a well studied problem. It is known that the Cartesian product
of any number of undirected cycles always contains a Hamiltonian cycle. Chen
and Quimpo [7] obtained a stronger result, which provides a characterization of
the pairs of vertices that can be joined by a Hamiltonian path, depending on
the lengths of the cycles. In the case of directed cycles, Rankin [18] implicitly
gave a necessary and sufficient condition for the existence of a Hamiltonian
cycle in the Cartesian product of two directed cycles, and Trotter and Erdös [20]
rediscovered later this characterization. Curran and Witte [8] showed that there
is a Hamiltonian cycle in the Cartesian product of three or more nontrivial
directed cycles. A sufficient condition for the existence of a Hamiltonian path in
a torus has been recently given by Leontiev [16]. However, all these results do
not provide a method to compute a Hamiltonian cycle.

Our main result in this section is an algorithm that computes a Hamiltonian
cycle in a hyper-torus (under certain conditions) that runs in O(δn) time. Proofs
are omitted due to space limitations, but can be found in the full version [11].

Notations and definitions. The cartesian product G = G1×G2 of two directed
graphs (digraphs) G1 and G2 is the digraph whose vertex set is V (G) = V (G1)×
V (G2) and has an edge from (u1, u2) to (v1, v2) if and only if either u1 = v1 and
there is an edge from u2 to v2 in G2, or u2 = v2 and there is an edge from
u1 to v1 in G1. Let Ck denote a simple directed cycle with k vertices, each
vertex numbered from 0 to k − 1, and directed edges (i, i + 1 mod k) for each
0 ≤ i < k. A δ-dimensional directed toroidal grid H is a graph obtained by the
Cartesian product of δ cycles Cdi , where di ≥ 2 for each i = 1, . . . , δ. Then, a
vertex x can be represented by a δ-tuple (x1, x2, . . . , xδ) of Zd1 ×Zd2×· · ·×Zdδ

.
By definition of the Cartesian product of directed cycles, two adjacent vertices
u = (u1, u2, . . . , uδ) and v = (v1, v2, . . . , vδ) differ only in one dimensional value,
that is, uj �= vj for some j ∈ {1, . . . , δ}, and ui = vi for each i �= j. For two
natural numbers a and b, we write a | b if a divides b. Let Di =

∏i
j=0 dj , where

d0 = 1, and let n = Dδ be the number of vertices in H .

2.1 Hamiltonian Cycle

We start by providing a bijective function f : Zn −→ Zd1 × · · · × Zdδ
, which

associates a natural number between 0 and n− 1 to a vertex of H . Given some
t ∈ Zn, the associated vertex f(t) = (f1(t), f2(t), . . . , fδ(t)) is defined by:

fi(t) =

⎧⎨
⎩

⌊
t

Di−1

⌋
i = δ(⌊

t
Di−1

⌋
−∑δ

j=i+1 fj(t)
)

mod di else
(1)
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The reverse function f−1, which associates a number in Zn to a vertex x =
(x1, x2, . . . , xδ), is given by:

f−1( (x1, x2, . . . , xδ) ) =
δ∑

i=1

⎡
⎣
⎛
⎝ δ∑

j=i

xj

⎞
⎠ mod di

⎤
⎦ ·Di−1

Lemma 1. The function f is bijective.

Theorem 1. A δ-dimensional torus H obtained by the Cartesian product of δ
directed cycles is Hamiltonian if di | di+1, for each i = 1, . . . , δ − 1.

2.2 Labeling Algorithm

For each vertex of a δ-dimensional torus, we can use the function f to compute
the correspondence between its coordinates and the ordering position in the
Hamiltonian cycle. This implies a computational cost of O(δ2n). In the following,
we present an algorithm working on a δ-dimensional torus that labels each node
according to the function f , and which takes O(δn) time. A formal description
is given in Algorithm 1.

Algorithm 1. Node Labeling
Require: A δ-dimensional directed torus, s.t. di divides di+1 , 1 ≤ i ≤ δ − 1.
Ensure: A labeling of vertices representing a Hamiltonian cycle.
1: Set (x1, x2, . . . , xδ) = (0, 0, . . . , 0)
2: Label vertex (x1, x2, . . . , xδ) with 0
3: for t = 1, 2, . . . , n − 1 do
4: Set i = 1
5: while ((x1, x2, . . . , (xi + 1) mod di, xi+1, . . . , xδ) is labeled) do
6: Set i = i + 1
7: end while
8: Set xi = (xi + 1) mod di

9: Label vertex (x1, x2, . . . , xδ) with t
10: end for

Theorem 2. Algorithm 1 finds a Hamiltonian cycle in a δ-dimensional directed
torus H obtained by the Cartesian product of δ cycles Cdi , where di | di+1, for
each i = 1, . . . , δ− 1. The algorithm takes O(δn) time, where n is the number of
vertices in H.

In the case where the vertices of the torus do not know their absolute coordinates,
Algorithm 1 can be executed to assign both labels and coordinates. It is sufficient
each vertex to order its outcoming edges following the increasing size of the
corresponding dimensions. A Hamiltonian cycle can be found in a distributed
way starting from any vertex, labeled with 0, which initializes the algorithm.
The task of the vertex is to interrogate in the correct order its neighbors, until
it finds a non-labeled neighbor. This one is then labeled and it carries on the
execution of the algorithm, following the same protocol.
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3 The Parallel Priority Queue and the Shortest Path
Algorithm

Dijkstra’s algorithm [10] is a sequential algorithm for the single-source shortest
path problem on directed graphs with non-negative real valued edge costs. Let
G = (V, E) be an n-vertex, m-edge directed graph with real-valued, non-negative
edge costs c(v, w), and let s ∈ V be a distinguished source vertex. The single-
source shortest path problem is to compute for all vertices v ∈ V the length of
a shortest path from s to v, where the length of a path is the sum of the costs
of the edges on the path. Dijkstra’s algorithm maintains for each vertex v ∈ V
a tentative distance d(v) from the source and a set of vertices S for which a
shortest path has been found. The algorithm iterates over the set of vertices of
G, in each iteration selecting a vertex of minimum tentative distance which can
be added to S. Priority queues are used in Dijkstra’s algorithm for maintaining
efficiently the tentative distances. One of the most efficient such queues is the
Fibonacci heap [13], which results in the (asymptotically) fastest implementation
of Dijkstra’s algorithm that runs in O(m + n log n) time.

In the following we give a brief description of the Parallel-Dijkstra algorithm
[4] designed to work on the EREW PRAM model of computation (see e.g., [15] for
a discussion of PRAMs). The algorithm is based on the parallel implementation
of a priority queue also presented in [4].

The priority queue maintains a set Q of elements ei with a key di (we write
ei(di) to indicate that an element ei has key di). At any given instant, a set
of successively numbered processors P1, . . . , Pi will be associated with Q. The
operations on the queue, in addition to Init(Q) which initializes Q to the empty
set and Empty(Q) which returns true if Q is empty, are:

– Update(Q, L): updates Q with a list L = e1(d1), . . . , ek(dk) of (different)
elements in non-decreasing key order, i.e., d1 ≤ . . .≤ dk . It allows (combined)
multi-insert and multi-decrease key operations, i.e., if element ei was not in
the queue before the update, then ei is inserted with key di; if ei was already
in Q with key d′i, then the key of ei is changed to di if di < d′i. The sequence
of elements must be given as a list, enabling one processor to execute in
constant time the access operations.

– DeleteMin(Q): deletes and returns the minimum key element from Q.
– Delete(Q, e): deletes element e from Q.

These operations are executed by the processors associated with the queue in
parallel. The Update operation, as an additional task, assigns a new processor
to Q.

A simple parallel implementation of the priority queue can be by obtained orga-
nizing the processors associated with Q in a linear pipeline: when an Update(Q,
L) operation is performed, the new processor associated with Q is put at the front
of the pipeline.

All operations are based on the procedure MergeStep(Q) [4]: let Pi denote
the ith processor to become associated with Q and Li the element list associated
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with Pi. The MergeStep(Q) performs, in parallel on each processor, one step
of a merge of the element list Li of Pi and the elements in the output queue
Qi−1 of the previous processor, which is a standard FIFO queue.

The elements in each output queue will be in non-decreasing order, so the
merge step of processor Pi simply consists in taking the smaller element of either
Qi−1 or Li if neither is empty; if either Qi−1 or Li is empty the element is taken
from the other sequence, and when both are empty, Pi has no more work to do.

In order to guarantee that an element is output at most once (implementing
the multi-decrease), each processor maintains a Boolean array Fi of forbidden
elements (Fi[e] = true iff e has been chosen to output and made forbidden by Pi)
and the MergeStep(Q) procedure maintains the invariants that Fi ∩Qi−1 = ∅
and Fi∩Li = ∅. To this end, each processor maintains also two arrays of pointers
Qi and Li into Qi and Li, respectively, indexed by the elements.

Let us consider, for example, the sequential pipeline shown in Figure 1: P1,
P2, and P3 select, respectively, 5(15), 2(12), and 1(10) to output and mark 5, 2,
and 1 as forbidden; 2(12) is output to Q2 by P2 and 1(19) is output to Q3 by
P3, while 5(15) is not output to Q1 by P1 because 5 ∈ F2 (to have F2 ∩Q1 = ∅);
P2 removes 2(14) from L2 too (to have F2 ∩ L2 = ∅).

Li Qi Fi

P1 5(15) 4(17) 7(19) 2(12) 1(14) 1 2 3
P2 4(13) 2(14) 5(11) 3 5
P3 1(10) 5(14) 4(18) 2(19)

P1 4(17) 7(19) 1(14) 1 2 3 5
P2 4(13) 5(11) 2(12) 2 3 5
P3 5(14) 4(18) 2(19) 1(10) 1
P4 4(13) 6(15)

Fig. 1. A sequential pipeline before and after Update(Q, 4(13) 6(15))

A formal description of the Parallel-Dijkstra algorithm that uses the parallel
priority queue is given in Algorithm 2. The notation Lv(d) means that when
vertex v is selected, the list object Lv of its adjacent edges will be initialized

Algorithm 2. Parallel-Dijkstra
Require: A graph G = (V, E) with non-negative real edge costs and a source vertex s ∈ V .
Ensure: Single source shortest path
1: /* Initialization */
2: For each v ∈ V sort the adjacency lists Lv of G after edge cost;
3: For each v ∈ V build array Iv of vertices w which v is adjacent to ( (w, v) ∈ E);
4: Init(Q);
5: d(s) ← 0; S ←{s};
6: Update(Q, Ls(0));
7: /* Main loop */
8: while ¬Empty(Q) do
9: v(d) ← DeleteMin(Q);
10: d(v) ← d; S ← S ∪ {v};
11: Update(Q, Lv(d));
12: for all w ∈ Iv par do
13: if w /∈ S then remove v from Lw;
14: end for
15: end while
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with a constant value d, representing the distance of v from the source, that will
be an offset value to be added to each key of the elements of Lv.

Lines 9 to 11 of the main loop represent the classic Dijkstra’s steps, in which
the parallel priority queue is exploited for finding the vertex of minimum distance
and decreasing the distances of its adjacent vertices. An extra work, performed
by lines 12 to 14, is required to prevent that a vertex, once selected and added to
the set S for which a shortest path has already been found, is ever selected again.
The problem is that when vertex v is selected by the find minimum operation,
some of its adjacent vertices may have been selected at a previous iteration.
Such vertices have to be removed from the adjacency list of v and this is done
by using Iv, the array of vertices w to which v is adjacent (i.e., (w, v) ∈ E).

4 Implementation on the APEmille Supercomputer

4.1 The APEmille Architecture

APEmille [2,17] is a massively parallel supercomputer in the Teraflop range
whose architecture was originally optimized for the simulation of some major
Physics problems. APEmille is an array of Processing Nodes operating in SIMD
(Single Instruction Multiple Data) mode [19]. Each node (Jmille) is based on a
pipelined floating-point arithmetic processor (500 MFlops) with its own locally
addressable data memory (32 MB). Each group of eight nodes is controlled by a
Control Processor (Tmille) with its own data memory (512 KB) and a separate
program memory (40 MB). Nodes are logically arranged as a three dimensional
toroidal grid, and connected to first neighbors by a synchronous network of
Communication Processors (Cmille), which supports homogeneous communica-
tions, i.e., all nodes access simultaneously data from a corresponding remote
node with a given relative distance. Programming in APEmille is carried out in
TAOmille [5], a high level language with a syntax very similar to Fortran, but
augmented with various language constructs to facilitate parallel programming.
For our work we used an APEmille with 128 nodes, 64Gflops and 8GB RAM.

4.2 A First Implementation

The described linear pipeline version of the Parallel-Dijkstra algorithm has been
implemented on the APEmille supercomputer. To obtain the best possible per-
formance of the implementation, a set of optimizations has been added to the
code, some of which are of a general character, while some others are pertinent
to the APEmille architecture.

Data have been logically distributed in a way that is different from the original
algorithm, maintaining its structure unaltered, but limiting the need for a remote
data transfer to only one couple element-key e(d) for each MergeStep(Q) call.

In the remainder of the exposition, we will distinguish between physical pro-
cessors (the APEmille processing nodes or PNs) and logical processors Pi used
in the algorithm. To actually parallelize the algorithm on the real machine, we
have to assign a logical processor to a physical node.
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For each Update operation, the algorithm requires a new logical processor
to be activated and linked to the processor activated in the previous step. The
activation of the physical nodes is done in an order imposed by the algorithm’s
evolution. As a consequence, it can be fairly possible that two consecutive logical
processors might not correspond to two adjacent nodes in the grid (especially if
there is no particular strategy for associating logical processors to PNs).

Homogeneous communications do not allow, in this case, a simultaneous data
transferring between pairs of nodes. In order to reduce the number of commu-
nications, in a first version of the implementation, we developed and used an
operation whose cost is proportional to the sum of the dimension sizes of the
grid. The idea is to move data along the three directions. Each node prepares
its message (e(d)) that is transferred along the x dimension performing x − 1
communications between adjacent nodes. After this phase, each node receives all
messages sent by nodes with the same x coordinate. By repeating this activity
for the y and z dimension, each message will reach every node in the grid (see
Figure 2) and then its destination.

z

y

x

[0,7,6]

[0,7,7]

[0,7,1]

[0,7,0]

PN

[1,0,0]

[0,0,0]

[0,0,1]

[0,0,2]

[0,0,7]

Fig. 2. Message transfer along z direction: after the message transfers along the x and
the y dimension have been completed, each node has all the messages sent by nodes in
the same x-y level. In z − 1 steps, each node will receive all the sent messages.

4.3 Improved Implementation

Our initial experimental findings (see Section 5) showed that simulating the
“all-to-all” processor communication as described in the previous section incurs
a considerable performance penalty. A better logical arrangement of processors
is required in order to reduce the communication cost. To this end, we used
Algorithm 1 (detailed in Section 2).

Algorithm 1 produces a Hamiltonian cycle in a hyper-torus if di divides di+1,
1 ≤ i ≤ δ − 1. Since APEmille is a toroidal grid in which each dimension has
a number of nodes which is a power of 2, the above constraints are satisfied.
Hence, Algorithm 1 can be used to find a cyclic path (i.e., a sequence of distinct
linked nodes) in the grid that visits all nodes of the architecture. Figure 3 shows
the resulting cycle for a 2× 8× 8 APEmille configuration.
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y

x

z

[0,7,1]
[0,0,1]

[1,0,0]

[0,0,0]
[0,7,0]

[0,6,2]
[0,1,6]

[0,0,7]
[0,7,7]

Fig. 3. Hamiltonian cycle for a 2 × 8 × 8 APEmille configuration

Using the ordering of the nodes along the Hamiltonian cycle, we associate
each logical processor Pi with the i-th PN in the Hamiltonian cycle ordering.
An important consequence is that now two logically consecutive processors are
associated to two adjacent PNs. In this way, the source of a message can reach its
destination is a singlehomogeneous transfer. Since suchadestinationcanbe in three
possible directions, three homogeneous transfers are sufficient to reach the next
logicalprocessor.This is an improvementupon the result in [12],whereanalgorithm
is proposed to determine a Hamiltonian cycle in the APEmille tori that requires
five transfers between adjacent nodes. The above results in the second version of
our implementation, which drastically reduces the number of communications.

5 Experimental Evaluation

All performance measurements were made on different APEmille configurations
with 8, 32 and 128 PNs. As we are interested in analyzing the behavior of the
Parallel-Dijkstra algorithm on large graphs, we implemented it in such a way
that a single PN manages �n/N	 vertices, where n is the number of vertices and
N the number of PNs.

A set of different graphs on n vertices has been randomly generated with a
number of edges proportional to O(n log n), O(n1.5), and O(n2/ logn), respec-
tively. Although due to memory restrictions and available node configurations
we were not able to run experiments for values of n larger than 1500 (with a few
exceptions), these values allow us to draw conclusions about the algorithm’s per-
formance. Edge weights are non-negative reals chosen randomly from [0, 10000].

Table 1 shows the results of the first version (Section 4.2) of our implementa-
tion of the Parallel-Dijkstra algorithm. For each experiment the following results
are reported: the number n of nodes and the number m of edges; the ratio n/N
indicating the number of vertices managed by a PN, and the execution time (in
seconds) for 8, 32, 128 PN APEmille configurations.
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Table 1. Performance of the first version

8 nodes 32 nodes 128 nodes

vertices edges n/N time (s) n/N time (s) n/N time (s)
500 3100 63 2.45 16 0.90 4 0.40
500 11130 63 2.45 16 0.90 4 0.40
500 40751 63 2.45 16 0.90 4 0.40
1000 6900 126 9.80 32 3.60 8 1.60
1000 31456 126 9.80 32 3.60 8 1.60
1000 139540 126 9.80 32 3.60 8 1.60
1500 11060 188 22.05 47 8.10 12 3.60
1500 58742 188 22.05 47 8.10 12 3.60
1500 306652 188 22.05 47 8.10 12 3.60

The main result is that the execution time of the algorithm does not depend
on the number of edges, as expected. However, the execution time does not
reduce proportionally to the number of processors. This is due to the cost of the
communication operation, which increases with the number of nodes.

Table 2 shows the results of the second (improved) version of our implemen-
tation of the Parallel-Dijkstra algorithm. The experiments are performed on the
same graphs and for each experiment the same set of results is reported.

Table 2. Performance of the second (improved) version

8 nodes 32 nodes 128 nodes

vertices edges n/N(avg) time (s) n/N(avg) time (s) n/N(avg) time (s)
500 3100 11.7 0.36 3.6 0.12 1.6 0.06
500 11130 15.2 0.49 4.5 0.17 1.7 0.10
500 40751 16.3 0.64 4.6 0.29 1.7 0.21
1000 6900 23.4 1.40 6.6 0.42 2.3 0.17
1000 31456 30.4 1.90 8.3 0.61 2.7 0.28
1000 139540 31.8 2.40 8.5 1.08 2.7 0.71
1500 11060 35.2 3.15 9.5 0.90 3.1 0.33
1500 58742 45.6 4.23 12.1 1.30 3.6 0.56
1500 306652 47.5 5.35 12.4 2.28 3.6 1.50

Compared to Table 1, the execution times reduce drastically. The improvement
is mainly due to the optimized communication step, described in Section 4.3. As in
the previous case, the execution time does not reduce proportionally to the num-
ber of nodes, even if the time needed to perform the communications is indepen-
dent from the machine configuration. This is due to the work made by the lines 12
to 14 of the Parallel-Dijkstra algorithm. Actually, in the second version the asso-
ciation of a logical processor with a graph vertex is done during the execution of
the Parallel-Dijkstra algorithm, and it is not possible to determine a priori which
vertex will be managed by a particular PN. The operations have therefore to be
executed by all the “not yet activated” PNs for each non-visited vertex w adjacent
to v, leading to a linear time cost proportional to |Iv|.

Another reason that contributes to the performance improvement is the vari-
ation of the average number of vertices managed by a single node. This value
has been computed as the sum of vertices managed by a node for every step di-
vided by the number of steps. It is not constant, because the ordered activation
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solution allows for an additional optimization in the code. In fact, during the
execution, there is a progressive emptying of the structures L and Q. When the
data structures are empty, the processor is deactivated. As consecutive blocks
of logical processors are managed in parallel, and as the emptying follows the
order of the logical processors, the number of operations can be reduced consid-
ering the progressive deactivation of such blocks, and performing the algorithm
operations only on active blocks.

Finally, we would like to compare our parallel implementation with the sequen-
tial Dijkstra’s algorithm. For that purpose, we have implemented the sequential
algorithm on APEmille and executed it on a single processor. The sequential
algorithm uses Fibonacci heaps [13] as its priority queue.

Table 3 reports the experimental results obtained on the previous set of
graphs. As expected, the execution time grows with the number of vertices and
with the connectivity of the graph.

Table 3. Performance of sequential Dijkstra with Fibonacci heaps

vertices edges time (s)

500 3100 0.16
500 11130 0.20
500 40751 0.37
1000 6900 0.34
1000 31456 0.51
1000 139540 1.06
1500 11060 0.57
1500 58742 0.85
1500 306652 2.08

Comparing the performances of both parallel and sequential versions of the
algorithm (see Tables 1, 2 and 3), we observe the following.

The first implementation of our algorithm is always worse than the sequential
one on the graph sizes we considered and on any configuration of the APEmille.
It is worth mentioning that our first implementation managed to beat the se-
quential algorithm on a synthetic graph instance with 5000 vertices and 6000000
edges on a 128-node APEmille configuration. Clearly, on larger graph instances
as well as on larger APEmille configurations, our first implementation is expected
to perform better than the sequential algorithm.

Our second (improved) implementation compares favorably with the sequen-
tial algorithm on the 32-node APEmille configuration, and it is clearly faster
than the sequential algorithm on the 128-node APEmille configuration. Conse-
quently, a better speedup is expected on larger graph instances and/or larger
APEmille configurations.
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Abstract. Wireless sensor networks are employed in many critical ap-
plications. The K-coverage configuration is usually adopted to guarantee
the quality of surveillance. A sensor node can be determined to be in-
eligible to stay active when its sensing range is K-covered. Although
many algorithms have been proposed to reduce the complexity of the
K-coverage configuration, the accuracy cannot be preserved when the
number of deployed sensor nodes increases. In this paper, we propose
an efficient K-coverage eligibility (EKE) algorithm to accurately and
cheaply determine the eligibility of each sensor node. The algorithm fo-
cuses on the regions having a lower degree of coverage for each sensor
node. Therefore, the complexity of the EKE algorithm is reduced sub-
stantially while retaining accuracy. Experimental studies indicated that
the computational cost of the EKE algorithm could be reduced by up to
89% and that the correct percentage was larger than 90%.

1 Introduction

Advances in micro-sensor and wireless communication technologies have led to
small and inexpensive sensor nodes that perform cooperative tasks for important
applications, including surveillance, target tracking, military tasks, and haz-
ardous environment exploration [1]. Because sensor nodes may exhibit faulty
behavior, related fault-tolerant technologies are investigated to guarantee the
quality of applications on sensor networks. The faulty behavior of sensor nodes
may result from many factors, such as a faulty decision from the signal processing
in a senor node because of noise [2], environmental interference, or battery deple-
tion, or through malfunctions arising from low-cost hardware. From a study of
a system comprising 70 MICA2 sensor nodes, He et al. [3] noted that faulty sen-
sor nodes increase power consumption unnecessarily and lead to unpredictable
results. Clouqueur et al. [4] attempted to reduce the number of Byzantine faults
of sensor nodes by employing value fusion and decision fusion schemes. Because
an individual sensor node may not be reliable, a higher degree of coverage is
necessary to mask the faults of sensor nodes and obtain a higher confidence in
detection. Therefore, many coverage-preserving scheduling schemes are proposed
to guarantee the required coverage degree while minimizing the number of active
sensor nodes [5,6,3,7,8,9].
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Most coverage-preserving scheduling schemes divide the operation into rounds.
Each round begins with a self-organizing phase followed by a sensing phase.
For the self-organizing phase, many K-coverage configuration algorithms have
been proposed to guarantee that each location in the monitored area will be
covered by at least K active sensor nodes [8,10,11,9]. Because the operation of
maintaining the K-coverage configuration is executed periodically or frequently,
it is important to reduce the cost of the operation for long-term monitoring on
sensor networks.

Given a required K-coverage degree, a fundamental problem is how to de-
termine that the monitored area is K-covered. Wang et al. [9] proved that this
problem could be transformed to calculate the coverage degree of each sensor
node within the monitored area. Furthermore, the coverage degree of each node
can be obtained by tracing, within the sensing range, all points that are inter-
sected by its neighbors. To reduce the power consumption, the authors proposed
the use of a K-coverage eligibility (KE) algorithm. A sensor node can be deter-
mined to be ineligible to stay active if all of the intersection points within its
sensing range are already K-covered by its neighbors. Therefore, the number of
active sensor nodes can be reduced while still guaranteeing the surveillance qual-
ity. Although the deterministic K-coverage eligibility algorithm can accurately
determine the eligibility of each sensor node, the computational cost is O(n3)
where n is the number of the neighbors within twice the sensing range of each
node.

Different from the above deterministic algorithm, Huang and Tseng [11] calcu-
lated the coverage degree of each sensor node by tracing its perimeter segments
covered by its neighbors, called K-perimeter-covered (KPC) algorithm. A sensor
node can be turned off if its perimeter is covered by at least K neighbors. This
algorithm effectively reduced the complexity to O(n log n). However, since the
algorithm only focuses on the coverage on the perimeter of a node, the coverage
within the sensing range cannot be known. According to our experimental re-
sults, the accuracy of the algorithm is averagely 82% when 100 sensor nodes area
uniformly deployed in a 50m×50m monitored area and the required K-coverage
degree is 1. When the number of deployed sensor nodes increases, the accuracy
cannot be guaranteed.

In this paper, we propose an efficient K-coverage eligibility (EKE) algorithm
that can correctly determine the eligibility of each sensor node with low cost. A
distinct feature of the EKE algorithm is that the neighbors of each sensor node
are classified into R neighbors and 2R neighbors, which are defined in Section
3. Instead of calculating the coverage degree of all intersection points within
the sensing range of a node, the EKE algorithm only requires to focus on the
candidate intersection points surrounding the lower coverage regions based on
the characteristics of the R neighbors and 2R neighbors. Therefore, the com-
putational cost of the EKE algorithm can be highly reduced. Because the al-
gorithm aims, however, to determine the regions that exhibit a lower coverage
degree and not the minimal coverage degree, its accuracy may be diminished
somewhat. Although the accuracy of the EKE algorithm cannot be guaranteed
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as 100%, according to the experimental results, the correct percentage is larger
than 90% as the number of the deployed sensor nodes increases. Furthermore,
the computational cost is only 11% of that of the deterministic algorithm pro-
posed by Wang et al. [9]. Because wireless sensor networks have scarce energy
resource, it is acceptable to have less than 10% of the locations in the moni-
tored area under K-coverage [10,12,9]. For some critical applications, fault tol-
erant technologies can be further exploited to guarantee the quality of the ap-
plications. Therefore, we argue that the proposed EKE algorithm is beneficial
to preserve the surveillance quality in a long-term monitoring task on sensor
networks.

In the next section, we briefly review the related work in the literature. Section
3 presents the design issues and inaccurate cases. Simulation results are presented
and discussed in Section 4. We present our conclusions in Section 5.

2 Related Work

Many coverage-preserving configurations and node-scheduling algorithms have
been investigated in an effort to guarantee the surveillance quality of applications
on sensor networks [5,6,11,9]. Wang et al. [9] proved that if a patch having a lower
degree of coverage is inside the sensing range of a node and is surrounded by the
node’s neighbors or the monitored edges, then the patch and the intersection
points that bind it will have the same coverage degree. Therefore, the coverage
degree of the patch can be obtained by calculating the degree of the intersection
points. If each intersection point within the sensing range is already K-covered
by its neighbors, the sensor node is ineligible to be active. The KE algorithm can
determine the eligibility of sensor nodes accurately, but the computational cost
is quite high. To reduce the energy consumption without losing the accuracy
of this operation, we adopted the idea proposed by Wang et al., but we trace
only some of the candidate intersection points, rather than all of the intersection
points within twice the sensing range of each node.

Huang and Tseng [11] have also attempted to reduce the computational cost
of the K-coverage configuration. They proposed a K-perimeter-covered (KPC)
algorithm to calculate the coverage degree of each sensor node by tracing the
perimeter segments covered by its neighbors. Because this algorithm does not
require the coverage to be considered within the sensing range of a node, the
computational cost can be effectively reduced, but at the expense of reduced
accuracy of determining the eligibility for each sensor node. Furthermore, the
KPC algorithm ignores the fact that the sensor nodes located near the monitored
edges have some invalid perimeter segments, even though the coverage degree of
invalid perimeter segments should not be calculated. Therefore, a sensor node
located near the monitored edges may be determined to be eligible to become
active, but its sensing range within the monitored edge is already K-covered in
reality. With increasingly more sensor nodes are deployed, the accuracy of the
KPC algorithm will decrease even further.
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3 Efficient K-Coverage Eligibility Algorithm

In this section, we present the efficient K-coverage Eligibility (EKE) algorithm.
Before describing the algorithm, several assumptions and definitions are pre-
sented. The design considerations and the inaccurate cases of the algorithm are
interpreted as follows.

3.1 Formal Definitions of the Algorithm

In this research, all sensor nodes with identical sensing range, R, are assumed
to be location-aware, and no other sensor node locates at the same position in
the monitored area. For calculating the coverage degree of a sensor node, we
define that an arbitrary point p is covered by a sensor node s if their Euclidian
distance is less than the sensing range s, that is, d(i, j) < R. With the physical
consideration of signal decay of a sensor node, a point which is located exactly
at the sensing range of a sensor may not be detected correctly. Therefore, it is
reasonable to assume that p is not covered by s if d(i, j) = R.

Based on the above assumptions, the coverage degree of a sensor node depends
on how the neighbors within 2R cover it. Similar to the KE algorithm [9] and the
KPC algorithm [11], each node in our algorithm needs to collect the neighbor
information within 2R. However, we do not determine the eligibility of a sensor
node by calculating the coverage degrees of all neighbor intersection points inside
the sensing range of a sensor node or by tracing the perimeter segments covered
by all neighbors on a sensor node. Here we classify the neighbor set of each node
into two groups, called R neighbors and 2R neighbors.

Definition 1. R neighbors and 2R neighbors. The R neighbors of a sensor node
i is defined as R neighbors(i) = {j | j ∈ N, j �= i, d(i, j) < R} where N is the
set of sensor nodes located in the monitored area, and d(i,j) denotes the distance
between sensor node i and sensor node j. The 2R neighbors of sensor i is defined
as 2R neighbors(i) = {j | j ∈ N, j �= i, R ≤ d(i, j) < 2R}.

3.2 Design Issues of the Algorithm

There are two reasons why we classify the neighbor set of a sensor node into two
groups and calculate their coverage degree individually. The first notion is that
while farther from the target sensor node i, 2R neighbors tend to form an area
with lower coverage degree inside the sensing range of the node, as depicted in
Figure 1(a). Even if 2R neighbors are very close to the sensor node, as shown
in Figure 1(b), the node will not be fully covered by all 2R neighbors based
on the assumption that a point is not covered when it is located exactly at
the sensing range of a node. Hence, when a sensor node has only 2R neighbors,
the coverage degree of the node can be determined immediately, that is 1. The
second notion is that the number of R neighbors is bounded by the sensing range
of a node. Moreover, in many cases even if a sensor node has R neighbors and
2R neighbors, the eligibility of the node can be determined by only tracing the
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Fig. 1. (a) The central area surrounded by m, n, o, p, q has lower coverage degree. (b)
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Fig. 2. The eligibility of node s can be determined by tracing only p and q

intersection points of R neighbors, as illustrated in Figure 2. Therefore, if we can
classify the neighbors of a sensor node into two groups, and calculate the coverage
degree of the points intersected by R neighbors first, the computational cost in
many cases can be bounded by the number of R neighbors. Although the number
of R neighbors will increases as more and more sensor nodes are deployed, the
number of R neighbors is 1/3 of 2R neighbors when the number of the deployed
sensor nodes is large enough.

The eligibilities of many sensor nodes can be determined after tracing the
intersection points of their R neighbors. As the number of the deployed sensor
node increases, the coverage within the sensing range of each node is complicated.
The methods of calculating the coverage degree of sensor nodes can be classified
into three cases. The first case is that a sensor node has only one R neighbor and
several 2R neighbors, as depicted in Figure 3(a). The second one is that a sensor
node is located near the edge of the monitored area, so that the intersection
points of R neighbors inside the sensing range of the node may fall out of the
monitored area, as p in Figure 3(b). The third case is that the intersection
points with the minimal coverage degree of R neighbors are covered by some
2R neighbors, as i is covered by a and b in Figure 4(a). The above three cases
mean that the algorithm needs to discover other lower coverage regions inside
the sensing range of the node.
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Fig. 3. (a)A sensor node has only one R neighbor. (b)The intersection points of
R neighbors fall out of the sensing range of the node and the monitored area.

For the first case, since one R neighbor cannot cover the entire sensing range of
a sensor node, and the 2R neighbors form a lower coverage region in the center of
the node, the lower coverage regions will be surrounded by the R neighbors and
other 2R neighbors. The regions can be discovered by finding out the points with
the minimal coverage degree intersected by the R neighbor and the 2R neighbors,
as m intersected by a’ and a in Figure 3(a). Even if the R neighbor does not have
any intersection with the 2R neighbors, the minimal coverage is the sensor node
itself. The eligibility of the node can still be determined. For the second case,
although the intersection points of R neighbors cannot be used to determine the
eligibility of the node, in most cases, the eligibility of the node can still be decided
by tracing the points intersected by any two R neighbors and 2R neighbors, as m
and n in Figure 3(b). During the processing, the algorithm terminates when the
coverage degree of any intersection point is less than the required K-coverage
degree. In this algorithm, we do not trace the points intersected by any two
2R neighbors. Since the operation not only incurs lots of computations, but also
cannot find out the intersection points with lower coverage degree quickly.

The third case is more complicated and requires further explanation. To
clearly explain the case, we introduce several keywords. The intersection points
of any two R neighbors covered by the fewest R neighbors are called candidate
intersection points and the two R neighbors are called candidate R neighbors.
The 2R neighbors that cover the candidate intersection points are represented
as candidate 2R neighbors. Besides, the decision points mean the points inter-
sected by the candidate R neighbors and the candidate 2R neighbors.

In this case, the candidate intersection points are covered by several candi-
date 2R neighbors. The lower coverage regions usually can be found by tracing
the decision points and the candidate intersection points. Take Figure 4(a) as
an example, the intersection point i is the candidate intersection point which is
covered by the candidate 2R neighbors, a and b. The lower coverage region is
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Fig. 4. Two cases of the lower coverage region formed by the candidate neighbors

surrounded by m which has the minimal coverage degree among m, n, o, p,
q, i which are intersected by a’, c’, a, and b. In this way, the coverage of the
2R neighbors within the sensing range of the R neighbors will just increase the
coverage degree of the sensor node, as the coverage of c in Figure 4(a). The
coverage degree in this overlap is usually higher than the required K-coverage
degree. Therefore, to determine the eligibility of a node with low computa-
tional cost, after the lower coverage regions surrounded by the R neighbors
are found, we focus that how the 2R neighbors cover the founded regions. If
the candidate 2R neighbors do not fully cover the region, as Figure 4(a), a
new lower coverage region will be formed by the candidate R neighbors and
the candidate 2R neighbors. Therefore, we only need to trace their intersection
points and find out the points with the minimal coverage degree. On the other
hand, if the candidate 2R neighbors fully cover the regions, since the coverage
of 2R neighbors on the sensing range of a node is limited, the lower coverage
regions will be surrounded in the center by the candidate R neighbors and the
candidate 2R neighbors, as the regions surrounded by m and n in Figure 4(b).
With the consideration that there may have complicated intersections in the cen-
ter of the node and the candidate intersection points has the minimal coverage
degree. Therefore, the algorithm will trace the coverage degree of the decision
points and the candidate intersection points.

3.3 Inaccurate Cases

Although the algorithm is workable in most cases, various coverages of the
R neighbors and the 2R neighbors of a sensor node may still cause the eligi-
bility of a few sensor nodes unable to be accurately determined. The inaccurate
cases can be classified into two types. One type is caused by the monitored edges.
For the effect of the monitored edges, this algorithm only considers whether the
candidate intersection points are outside the edges or not. Therefore, when the
lower coverage is surrounded by the points intersected by the R neighbors and



An Efficient K-Coverage Eligibility Algorithm on Sensor Networks 425

b

b'

monitored area

s
a

i

a'

j

c

a'

a

b
m

n o
i

b'
p

q

s

a'

(a) (b)

Fig. 5. Two inaccurate cases

the monitored edge, the eligibility of the node cannot be accurately decided.
Take Figure 5(a) as an example, the algorithm will determine the eligibility of
the node depending on the coverage degree of i not j. Actually, this case can be
resolved by further tracing the points of the R neighbors and the 2R neighbors
intersected by the monitored edges. Since less than half of the inaccurate cases
caused by monitored edges, to reduce the computational cost, the algorithm does
not implement the processing. The other error case is caused by various deploy-
ments of the R neighbors and the 2R neighbors of a sensor node. Figure 5(b)
belongs to the case that the candidate intersection points are covered by several
candidate 2R neighbors, but the eligibility of the node cannot be determined by
only tracing the decision points and the candidate intersection points when the
required K-coverage degree is 1. The real decision point in Figure 5(b) is q not
p. For this case, there is no a fast and correct rule can be used to predict the
lower coverage regions, except tracing each point of any two neighbors. This is
a tradeoff between the accuracy of the algorithm and the computational cost.

4 Performance Evaluation

In this section, we evaluate the performance of the EKE algorithm on NS-2 in
terms of accuracy and computational cost. Three related algorithms are also
implemented to compare with the EKE algorithm, including the K-coverage
eligibility (KE) algorithm [9], the K-perimeter-covered (KPC) algorithm [11],
and the Grid algorithm. The simulation environment is a 50m×50m square space,
and the sensing range of all deployed sensor nodes is 5m. Each result is the
average of five runs with different random network topologies. All algorithms
terminate when the coverage degree of a sensor node is less than or equal to the
required K-coverage degree.

Figure 6 illustrate the accuracy and the number of processing times of the
four algorithms when the required K-coverage degree is 2, i.e. K=2. The KE
algorithm can precisely determine the eligibility of each sensor node. Even if a
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(a) (b)

Fig. 6. (a)The correct percentages of the four algorithms. (b)The number of processing
times of the four algorithms.

sensor node is located near the monitored edges, its eligibility can also be decided
by tracing the points intersected by the edges and its neighbors within the sens-
ing range. However, the computational cost of the KE algorithm is considerably
high as the deployed sensor nodes increase. Although the KPC algorithm effec-
tively reduces the complexity of K-coverage configuration, its accuracy cannot
be guaranteed. This is because the coverage degree in the center of the sensing
range cannot be obtained by only tracing the perimeter segments of each sensor
node. Furthermore, the KPC algorithm does not distinguish the sensor nodes
located near the monitored edges from those fully inside the monitored area. The
perimeter segments outside the monitored area are also calculated. Therefore,
many sensor nodes are considered to have lower coverage degrees and lots of
redundant nodes need to be active. When there are more and more sensor nodes
deployed, the number of nodes near the monitored edges also increases, so that
the error ratio of the algorithm cannot be reduced.

Similar to the goal of the KPC algorithm, the simple Grid algorithm is usually
used to approximately determine the coverage degree of a monitored area. In our
evaluation, the sensing area of each sensor node is divided into 1m×1m grids.
The coverage degree of each grid is obtained by calculating how many active
sensor nodes cover the center of the grid. The eligibility of each sensor node
can thus be determined by tracing all grids within its sensing range. In this
algorithm, the major issue is how to determine the grid size, because both the
accuracy and the computational cost are affected by the size. Figure 6(b) shows
that when the number of the deployed nodes is less than 150, the computational
cost of the scheme is higher than the other three algorithms. However, as the
number of the deployed nodes increases, its computational cost can be bounded
by the number of the grids.

Compared to the performance of the KPC and Grid algorithms, the proposed
EKE algorithm has the highest correct ratio and the lowest computational cost,
as illustrated in Figures 6. This is because the EKE algorithm classifies the
neighbors of each sensor node into R neighbors and 2R neighbors. Based on the
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Fig. 7. The correct percentages of the EKE, Grid, and KPC algorithms

characteristics of the two groups, the eligibility of each node can be determined
by only tracing the intersection points surrounding the lower degree regions
rather than all intersection points within its sensing range.

Figure 7 presents the correct percentages of the EKE, Grid, and KPC algo-
rithms under different required K-coverage degrees. When K=1, the accuracy of
all algorithms is improved as more and more sensor nodes are deployed. This is
because when the number of the deployed nodes is large enough, all sensor nodes
in the monitored area will have the coverage degree higher than the required one.
Therefore, all algorithms can correctly determine the coverage degree of most
nodes. In the KPC algorithm, since the number of the redundancy error case
is also increased, the improvement of its correct percentage is limited. On the
other hand, as the required K-coverage degree increases, if the coverage degrees
of most sensor nodes are less than the required one, the accuracy of all algorithms
can be guaranteed. However, when there are more and more nodes deployed, the
regions covered by all neighbors on a sensor node is more complicated than the
node has fewer neighbors. Therefore, the probability of accurately determining
the eligibility of sensor nodes by the three algorithms is thus reduced. Similarly,
when the number of the deployed nodes is large enough, even if all algorithms
cannot find out the minimal coverage degree of sensor nodes, the eligibility of
many sensor nodes can be determined correctly. In the proposed EKE algorithm,
the correct percentage can be guaranteed to be more than 90% in all cases. In
Figure 8, as the required K-coverage degree increases, the computational costs
of the KE, EKE, KPC, and Grid algorithms are all reduced. This is because all
algorithms terminate when the coverage degree of a sensor node is less than or
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equal to the required degree. Since the proposed EKE algorithm focuses on trac-
ing the regions with lower coverage degree in all sensor nodes, the computational
cost is always the lowest among all algorithms.

5 Conclusions and Future Work

In this paper, we proposed an efficient K-coverage eligibility (EKE) algorithm,
which is able to accurately determine the eligibility of sensor nodes at low cost.
We presented that the neighbors of each sensor node can be classified into
R neighbors and 2R neighbors. Based on the characteristics of the two groups,
the lower coverage regions of each sensor node can be discovered. Therefore,
only some candidate intersection points surrounding the lower coverage regions,
rather than all intersection points of each sensor node, need to be examined. Sim-
ulation results demonstrate that the accuracy of the EKE algorithm is higher
than 90% and the computational cost is only 11% of a deterministic algorithm.
Furthermore, the proposed algorithm has the highest correct percentage and the
lowest computational cost among all other approximate algorithms.

Although the EKE algorithm effectively guarantees the K-coverage configura-
tion with low complexity, how to design an efficient node-scheduling algorithm
to preserve the coverage is still left open and will be investigated in the fu-
ture. Since the EKE algorithm sometimes fails to determine the eligibilities of
a few sensor nodes, how to employ a data aggregation scheme to guarantee
the surveillance quality of critical applications on sensor networks will also be
studied.
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Abstract. A b-coloring of a graph is a proper coloring where each color
admits at least one node (called dominating node) adjacent to every
other used color. Such a coloring gives a partitioning of the graph in
clusters for which every cluster has a clusterhead (the dominating node)
adjacent to each other cluster. Such a decomposition is very interesting
for large distributed systems, networks,... In this paper we present a
distributed algorithm to compute a b-coloring of a graph, and we propose
an application for the routing in networks to illustrate our algorithm.

1 Introduction

In a distributed system, a node exchanges information only with its neighbor-
hood. Every node has a set of local variables to determine a local state of the
node. The state of the entire system, called global state, is the union of the local
states of all the nodes in the system. The objective in a distributed system is
to obtain automatically a desirable global final state (called legitimate state)
where each node is considered as a distinct entity able to compute its own state
itself, with its neighborhood as only knowledge. Distributed algorithms are a
very attractive topic for a lot of fields and several graph problems arise nat-
urally in distributed systems. For example, distributed algorithms for finding
spanning trees, matchings, independent sets or particular colorings have been
studied [1,5,9,15,16]. Such algorithms are so very interesting and efficient for
dynamic networks [3,17].

The aim of our paper is to propose a distributed method to determine a
particular coloring of graphs. Thus, we propose a partitioning method under
conditions of a graph based on a graph coloring called b-coloring. A proper k-
coloring is a coloring using k colors such that two adjacent nodes have different
colors. Then, a b-coloring is a proper k-coloring where for each color i, 1 ≤ i ≤ k,
there exists a node x, with color i, adjacent to nodes colored with every color
j, 1 ≤ j �= i ≤ k. Such nodes are called dominating nodes. This coloring was
introduced by Irving and Manlove in [10] where they presented the b-chromatic
number as the maximum integer k such that G admits a b-coloring with k colors.
In [10], they also proved that finding the b-chromatic number of any graph is
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a NP-hard problem and they gave a polynomial-time algorithm for finding the
b-chromatic number of trees. This parameter was also studied for other classes of
graphs like cartesian product of graphs [13], bipartite graphs [14], power graphs
of paths and cycles [7]. More recently, Corteel et al. [6] proved that the b-
chromatic number problem is not approximable within 120/133−ε for any ε > 0,
unless P = NP . This coloring is very interesting since it partitions the nodes of
G into color classes for which at least one node is adjacent to each other color
class. The property of these nodes is very attractive to give a hierarchy of nodes,
to exchange information with other classes,. . .

The remainder of this article is then decomposed as follows. In Section 2, we
present a distributed algorithm to compute a b-coloring of a graph. Then in
Section 3, we propose an application to this clustering where we study a routing
method. Finally, Section 4 concludes with future works.

We first start with some definitions used in the following. A distributed system
will be modeled with an undirected connected graph G = (V, E), where the
node set V represents the set of processors, and the edge set E represents the
processor interconnexions. Throughout this paper, we assume that |V | = n and
|E| = m. For every node i, we define N(i), its open neighborhood, as the set
of nodes adjacent to i (the set of colors of N(i) will be denoted Nc(i)). We
let d(i) = |N(i)|, the number of neighbors of node i, or its degree, and we
let Δ = max{d(i)|i ∈ V }. Finally, let diam(G) be the diameter of the graph G,
defined as the maximum distance between any pair of vertices of G. In our study
we assume a synchronized model in which any process computes the same action
at the same time. Then, two or more processes can be in conflict (for example,
two adjacent processes colored with the same color). A central daemon selects,
among all these processes, the next process to compute. Thus, if two or more
processes are in conflict, we cannot predict which process will be computed next.
Several protocols exist ([2,4]) that provide a scheduler. Our algorithm can be
combined with any of these protocols to work under different schedulers as well.

It is very important to remark that the coloring constraint in this problem
is not only on the neighborhood of each node, but on the entire graph. Indeed,
the color of a node depends on the presence or not of a dominating node for its
color. Note that in the following we say that a color is emptyable if it has no
dominating nodes. Thus, the first idea for finding such a coloring is: 1- Find a
proper coloring of the graph; 2- For any emptyable color c, recolor nodes with
color c by other colors and discard color c. However, the b-coloring is not a
continue coloring. For instance, the hypercube Q3 admits b-colorings with 2 or
4 colors but not with 3 (see Figure 1). Thus if we remove emptyable colors,
we must remove them one by one and verify, at each step, if the coloring is a
b-coloring or not.

2 b-Coloring of a Graph

In this section we propose a distributed algorithm to determine a partitioning
(or a clustering) of the nodes of a graph G based on a particular coloring. In
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Fig. 1. b-colorings with k colors for the hypercube Q3, where a) k = 2, b) k = 4. (black
nodes are dominating nodes).

every cluster we select a clusterhead (called the dominating node in the coloring)
able to join directly each other cluster.

In this approach, the nodes are represented by processes and they search to
have a color with dominating node (i.e. the emptyable colors are removed from
the coloring). Since the information on colors are dispersed in the entire graph,
nodes need to exchange some messages with the remainder of the graph. Our
approach enables the nodes to react to these messages to reach a legitimate
state for the system. Thus nodes have different labels from the interval [1;n].
The principle of this algorithm is to detect emptyable colors. If such colors exist,
they must be removed, but as we saw, one by one.

This method is a recoloring method. So nodes must be initialized. To put the
system in an initialized state, we color a node with maximum degree by color 1
and we use Procedure 1.

Procedure 1. Init Coloring()
begin
if c(i) �= ∅ then

Let M = Nc(i) ∪ {c(i)}.
q = 0.
for every node j ∈ N(i) such that c(j) = ∅ do

q = min{k|k > q, k /∈M and k /∈ Nc(j)}.
if q ≤ Δ + 1 then c(j) = q else c(j) = min{k|k /∈ Nc(j)}. endif.

enddo.
endif.
end.

Lemma 1. Procedure 1 is done in O(m).

Proof. Procedure 1 is applied once on every colored node. For each node, the
procedure colors every of its non-colored neighbors. Since each node has d(i)
neighbors, Procedure 1 is computed in

∑n
i=1 d(i) = 2m = O(m). �

Several studies propose fast colorings of graphs which can be used to initialized
the state of nodes. In particular Hedetniemi et al. in [8], and Johansson in [12],
propose distributed colorings using at most Δ+1 colors. Our procedure has the
advantage to find exactly Δ + 1 colors in a linear time.
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To compute a b-coloring of a graph, any node needs some information about
dominating nodes and emptyable colors. We let for any node i, Domi[] as a
table containing the label of the dominating node for each color (initialized to
0). If a color c has no dominating node we have Domi[c] = 0 and the value
Domi[c] = ∅ means that the color c has been removed from the coloring. Then,
before removing a color c, every node must verify if it is not a dominating node
for this color. If it is not, it will send a message to propose to remove the color c.

Before the study of each possible message, we give the two following pro-
cedures. The first evaluates the state of a node (dominating node or not). By
comparing the set of existing colors in the graph and the set of colors in its neigh-
borhood, a node determines if it is a dominating node or not. Then, between all
possible nodes to be a dominating node for a color c, we choose the node with
the smallest label. If i is not a dominating node and if there does not exist a
dominating node for c(i), then node i supposes that its color is an emptyable
color. Note that each node maintains also the color list of its neighborhood Nc(i).

Procedure 2. Processing()
begin
Let N ′

c =
⋃

q such that 1 ≤ q �= c(i) ≤ Δ + 1 and Domi[q] �= ∅.
if N ′

c = Nc(i) (i.e. i is a dominating node) then
if Domi[c(i)] > i or Domi[c(i)] = 0 then

Domi[c(i)] := i.
send to every k ∈ N(i): M2(i, c(i)).

endif.
else

if Domi[c(i)] = 0 then
send to every k ∈ N(i): M3(c(i)).
Execute Waiting().

endif.
endif.
end.

The second procedure gives some instructions computed after a delay, used to
consider that a message reached every node in the graph. This procedure will
be applied on a node i if it determines its color c(i) as emptyable. Since the
method is distributed, any node works in the same time. Thus, if there exists a
dominating node j for c(i), this information will be propagated to every node
of G in time diam(G). We will see that if the node i receive this information, it
stops the execution of the Procedure 3. So, if i waits for a delay diam(G) + 1, it
can consider that its color has no dominating node, and it will replace it.

Procedure 3. Waiting()
begin
After a time diam(G) + 1 do

col := c(i).
c(i) := max{q|1 ≤ q ≤ Δ + 1, q /∈ Nc(i) and Domi[q] �= ∅}.
send to every k ∈ N(i): M1(i, c(i)).
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send to every k ∈ N(i): M4(col).
end.

Then, every node i will react following the received message. Messages are pre-
sented below:

– No message is received. In this case node i applies Procedure 2 to evaluate
its state.

– Message M1(j, c): ”node j has color c.”
Every node receiving this message updates the colors of its neighborhood.

– Message M2(j, c): ”node j is a dominating node for the color c.”
Among all nodes verifying the conditions to be a dominating node for color
c, the dominating node of c will be the node with the smallest label. Then,
if j is a dominating node for c(i) (i.e. c(i) = c), then node i interrupts its
procedure Waiting(). Moreover, to limit the number of messages, the node
i propagates this information only if it is new.
Then, if this message is received, node i applies the following procedure:

Procedure 4. M2(j, c)
begin
if Domi[c] > j or Domi[c] = 0 then

Domi[c] := j.
send to every k ∈ N(i): M2(j, c).
if c = c(i) then Interrupt Waiting(). endif.

endif.
end.

– Message M3(c): ”color c is emptyable.”
Among all emptyable colors, the next color to remove will be the smallest.
This message is so used by any node to determine if its color is the next color
to remove. Thus, if the color received by node i is smaller than c(i), then
it propagates the message. Moreover, if i executes currently the procedure
Waiting() (Procedure 3), then it stops it since the next color to remove will
not be c(i).

Procedure 5. M3(c)
begin
if c < c(i) and Domi[c] = 0 then

send to every k ∈ N(i): M3(c).
Interrupt Waiting().

endif.
end.

– Message M4(c): ”Delete color c”
If c(i) = c then the node i must take another existing color and it propagates
this message to remove color c from the graph. Moreover, since the color of
node i perhaps changed, it stops its procedure Waiting() and starts again
the procedure Processing().
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Procedure 6. M4(c)
begin
if c(i) = c then

Domi[c] := ∅.
c(i) := max{q|1 ≤ q ≤ Δ + 1, q /∈ Nc(i) and Domi[q] �= ∅}.
send to every k ∈ N(i): M1(i, c(i)).

endif.
send to every k ∈ N(i): M4(c).
Interrupt Waiting().
Execute Processing().
end.

Proposition 1. A legitimate state for G is reached with O(nΔ) local changes
and O(mΔ2) exchanged messages.

Proof. First, a color is removed if it is emptyable, and only one color is removed
at the same time. Thus, each node can change at most Δ times its color. Hence
the total number of local changes is O(nΔ).

Then, we can evaluate the number of exchanged messages. If the color of a
node changes, this node sends its new color to its d(i) neighbors. Since a node
can change at most Δ times its color, we have

∑n
i=1 Δ.d(i) = O(mΔ) Messages

1 sent. For Message 2, suppose that every node is a dominating node. Then,
a node can receive at most n − 1 messages on dominating nodes, and it can
also transmit these messages to its d(i) neighbors. Thus

∑n
i=1(n − 1).d(i) =

O(nm) messages are used to propagate these information. For the emptyable
colors (Message 3), a node sends a message to its neighborhood every time it
finds a smaller color to remove. Suppose that every color is emptyable. Since at
most Δ colors can be removed, each node sends at most Δ.d(i) messages. Every
time a color is removed, the same reasoning can be done. Thus, we deduce that∑n

i=1(
∑Δ

q=1 q.d(i)) = O(mΔ2) Messages 3 are exchanged. Finally, by the same
way as for Message 2, we deduce that O(nm) messages are used to remove colors
(Message 4). Therefore, the number of exchanged messages to join a legitimate
state is in O(mΔ2). �
Theorem 1. The time complexity is O(Δdiam(G)).

Proof. After the initialization step, any node determines dominating nodes in
time diam(G) (by the propagation of Message 2). During the same time, an
emptyable color can be found (if exists). However, in the worst case, two op-
posite information can traverse the graph and prevent us from determining an
emptyable color (since any node interrupted its Procedure 3). Nevertheless, in
this case no more messages are exchanged, and from the algorithm every node
applies Procedure 2. Thus, in time diam(G), an emptyable color is found (if
exists).

Consequently, an emptyable color starts to be removed after a delay diam(G)
+ 1 and it is completely removed in time diam(G). Since at most Δ colors are
removed, a legitimate state is computed in O(Δ.diam(G)). �
Figure 2 presents an example of computation of the algorithm.
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Fig. 2. Messages:M2(x, c) means ”x is a dominating node for color c”;M3(c) means ”c
is an emptyable color”;M4(c) means ”delete color c”. Thus, at t = 0 the graph G is
initialized and each node xi evaluates its state (Procedure 2). At t = diam(G), every
node knows the dominating nodes and the next color to remove. At t = diam(G) + 1,
Procedure 3 on node x2 is terminated, so it changes its color. At t = 2diam(G) + 1,
nodes know the dominating nodes and the coloring is found.

3 A b-Coloring Based Routing Method

In this section we propose an application of the above algorithm, for routing
information between nodes of a weighted graph. The idea is to decompose the
graph in clusters, and to use the clusterhead of the source node to join the cluster
of the target node.

To adapt our algorithm to a routing application, it needs some minor modifi-
cations. Indeed, the clusterhead of each cluster will communicate with the nodes
of its cluster. We just add some data to compute theses paths. Thus, we define
for each node i, Predeci[c] as the predecessor of i in the path from the dominat-
ing node of color c and i, and Disti[c] as the length (i.e. the total weight) of this
path. Thus, Procedure 2 initializes these data for any dominated color found.
Then, Message 2 can include two new parameters: the node v from which the
message comes, and its distance to the dominating node j. Then, the node i can
modify its path and so its distance to j in function of these parameters. These
modifications will be integrated to the messages propagating the domination of
j. This computation can increase the number of Message 2 sent but does not
change the complexity of the algorithm. Finally, information on the path and
the distance about a removed color can be destroyed in Message 4.

These modifications of the algorithm presented in the previous section enables
us to compute the shortest path from a clusterhead to any node of its cluster in
the same time as the b-coloring of the graph. Then, to propagate information
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from a source node s to a target node t, we use the dominating nodes of the
clusters containing s and t. Let ws and wt be the dominating nodes of clusters
containing respectively s and t. Thus, the steps for determining a path from s
to t are:

1. Finding the path from s to ws,
2. Joining a neighbor w′ of ws in the cluster containing node t (property of the

clusterhead ws),
3. Finding the path from w′ to wt,
4. Finding the path from wt to t.

The Figure 3 presents the method used to determine a route between a source
s and a destination t.

source

P
1

2
P

3
P

sw
tw

cluster

s t

w’

Gcluster

target

Fig. 3. Illustration of the routing from the source node s to the target node t in the
graph G. Any path Pi is computed in the same time as the coloring and every path Pi

is a shortest path between its endvertices.

Lemma 2. Routing method complexity is O(n).

Proof. For the determination of a path from a clusterhead x to a member of its
cluster y, we need to traverse the graph from y to x, node by node. Indeed in the
algorithm, each node knows only its predecessor in the path from x to y. Thus,
a path between any node and its clusterhead is done in O(n) (this is the case of
steps 1, 3 and 4). Moreover, each node knows its neighborhood. So, the step 2 is
done in O(1). Therefore, a path from a source node to a destination node in a
graph G is computed in O(n). �
This method depends on the complexity of the b-coloring problem. It does not
improve existing methods based on spanning trees [1,3,5] or routing table [11],
it just proposes a new way to route information by a clustering of the structure.

4 Conclusion

In this article, we presented a distributed algorithm to partition a structure
in clusters. Each of these clusters has a clusterhead with the property to join
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directly every other cluster. An interesting question completes this study: How
can react vertices if the topology of the graph evolves ? Our study concerns
currently the dynamic graphs.
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Abstract. Epidemic algorithms are an emerging technique that has re-
cently gained popularity as a potentially effective solution for dissemi-
nating information in large-scale network systems. For some application
scenarios, efficient and reliable data dissemination to all or a group of
nodes in the network is necessary to provide with the communication ser-
vices within the system. These studies may have a large impact in com-
munication networks where epidemic-like protocols become a practice
for message delivery, collaborative peer-to-peer applications, distributed
database systems, routing in Mobile Ad Hoc networks, etc. In this paper
we present, through various simulations, that an epidemic spreading pro-
cess can be highly influenced by the network topology. We also provide
a comparative performance analysis of some global parameters perfor-
mance such as network diameter and degree of connectivity. Based on this
analysis, we propose a new epidemic strategy that takes into account the
topological structure in the network. The results show that the proposed
epidemic algorithm outperform a classical timestamped anti-entropy epi-
demic algorithm in terms of the number of sessions required to reach a
consistent state in the network system.

1 Introduction

The widespread introduction of networking in modern society has provoked a
spectacular progress in the areas of large-scale computer and communication
networks. The proliferation of large-scale networks has facilitated to reduce the
emphasis on groups of people at work and in the community and afforded a
turn to networked societies that are loosely bounded. Asynchronous collabora-
tive applications in large-scale networks are complex systems consisting of many
components whose operation depends on many processes. The Internet is an
example of a large-scale, massively-distributed, and highly-interacting commu-
nication network of devices (i.e. computers) characterized by explosive growth,
extreme heterogeneity, and unpredictable or even chaotic dynamic behavior. A
major challenge in these networks is the development of reliable algorithms to
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disseminate information from a given source (node) to thousands or millions of
users (rest of the nodes in the network).

The provision of communication services within a network system is essential
to allow an entity to send information toward another entity or to broadcast
it to all the entities of the system. However, this process is not an easy task
in a large-scale and distributed network which changes arbitrarily in a self or-
ganizing way. Since the number of nodes in such networks can be quite huge
and the environment dynamic, i.e., nodes can die or move, then its topology
can change constantly. In the last few years, epidemic algorithms have been
proposed as a more efficient and reliable data dissemination technique for this
type of network systems [1,2]. Epidemic algorithms, in which each entity (node)
propagates the information by sending it to a sub-set of its neighborhood, are
network protocols that allow rapid dissemination of information from a source
through purely local interactions. This data dissemination process represents a
mechanism analogous to the disease propagation in populations or the spread
of rumor in social networks [3,4]. Therefore, the distributed and decentralized
nature of epidemic algorithms implies that these techniques potentially find a
large spectrum of application in computer and communication networks such as
mobile communication networks [5], peer to peer communication networks [6,7],
grid based networks [8], etc.

The goal of this paper is to investigate new epidemic data dissemination strate-
gies which can exploit the topological properties of large-scale distributed net-
works. In this work, we first explore the performance behavior, in terms of the
message propagation time (anti-entropy sessions), of a conventional timestamped
anti-entropy epidemic algorithm [9] through several simple network topologies.
From these results, it is shown that performance of epidemic algorithms is highly
influenced by the network topology. This suggests that the network topology
might affect the performance of epidemic data dissemination protocols in a more
complex network structure. In order to try to answer this question, we analyze
the performance of a more realistic network topology using the Barabasi and
Waxman topologies [17] which are employed as a representative of the Inter-
net network. We make use of the network topology generator BRITE [10] to
create such topology structures. Using the same conventional timestamped anti-
entropy epidemic algorithm, we evaluate its performance over these complex net-
work topologies. The evaluations show that better performance of the epidemic
algorithm is achieved in the Barabasi topology model rather than the Wax-
man model. These results strongly suggest a topology dependance performance
mainly due to the existing difference in the degree of connectivity. Exploring the
impact of these network topology properties, we propose a new epidemic strategy
for disseminating information in a more efficient fashion called topology-sensitive
epidemic algorithm. This novel data dissemination strategy will prove to perform
much faster than the conventional timestamped anti-entropy epidemic (TSAE)
algorithm.

The paper is organized as follows. Section 2 describes the system model, spec-
ifying the assumptions we make and defining our framework. In section 3, we
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outline the existing timestamped anti-entropy epidemic algorithm approach for
data dissemination of information and we introduce the proposed topology-
sensitive epidemic algorithm. Simulation results showing the performance of the
TSAE and the proposed epidemic algorithms over different topology structures
are presented in Section 4. Finally, some conclusions are drawn in Section 5.

2 System Model

This section describes the model that we rely on throughout this paper. We con-
sider a model of a distributed network system consisting of N elements (nodes).
Each of the N elements of the network can communicate only by exchanging
a message as it is shown in Fig. 1. For simplicity, the discussion in this paper
focuses on an asynchronous fully replicated system where reliable communica-
tion is assured, i. e. a message sent by node ni to node nj for i, j = 1, 2, · · · , N
is eventually received by node nj . Every node is considered to be a server site
which provides a service to a number of local clients, see Fig. 1. The clients can
make requests to a server where every request may be a read or write opera-
tion, or both. When a server receives a write operation request from a client,
this operation is also propagated to all other servers (replicas) to guarantee the
consistency of the distributed system. Moreover, if a client changes any object in
a server by requesting a write operation then an update process, a message sent
to the other replicas, needs to be carried out to all other servers in the network
system.

Client

Server

Fig. 1. Client-server network model under consideration

3 Epidemic Algorithms

Epidemic algorithms are used in a wide set of applications, i.e maintaining the
consistency of distributed database systems (see [11] and [13]), routing in Mobile
Ad Hoc networks [5], collaborative peer-to-peer applications [14], etc. Epidemic
mechanisms follow the model of nature to spread information and define simple
rules for information to flow between nodes of a network. Different variants of
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epidemic dissemination algorithms exist, each with its own distinctive charac-
teristics to disseminate information among a large number of processes with a
dynamic connection topology. Among those main characteristics are:

• Self-organization: nodes only need to know about a few neighbors nodes.
Generally, epidemic algorithms require few protocols sessions (short time) to
update a distant node through the data dissemination mechanism without
neither a central system controller nor topological system structure knowl-
edge.

• Fault-tolerance: all active nodes will eventually receives the updated mes-
sages from others nodes despite of failed nodes and/or links in the network.

• Scalability: every node only needs to know a few neighboring nodes regardless
the total number of nodes in the system.

• Autonomy: A server node can still provide or maintain the services to the
group of clients connected to it even if there is not a temporal link between
this server node and the rest of the network.

In this work, we select the already proposed timestamped anti-entropy epi-
demic algorithm used for the distributed bibliography database system presented
in [9]. In what follows, we recall this epidemic protocol. Following this, we pro-
posed two different epidemic algorithms that exploit the topology properties of
a distributed system. The detailed description of such algorithms are presented
next.

3.1 Timestamped Anti-entropy Epidemic Algorithm

In this section, we briefly describe the timestamp based anti-entropy epidemic
(TSAE) algorithm. A timestamp represents the temporal information related to
any change requested by a client in the objects kept for a particular node. Other
important data structure is the message log vector representing the temporal
buffer where the new messages in a node are stored.

The first step for the timestamped anti-entropy protocol is selecting which
neighbor to exchange information with. In this case, this selection of the neighbor
is done randomly from the collection of neighbors in the range of the node.
Then the messages initiated from the source are re-sent by neighboring nodes,
extending outward node by node until the entire network nodes have received
the messages. This process is accomplished by exchanging periodically messages
between a pair of nodes. The data exchange between nodes follows a predefined
structure which is shown in Fig. 2 and 3. This process is described below:

• A session between two nodes starts when a session request is accepted from
any of the nodes in communication.

• The next step is to exchange their summary timestamp and message ac-
knowledgment vectors. Timestamps, which represent a snapshot of the com-
munication state in the system, are used to provide an ordering upon events
within the system [16]. The messages received at each node are kept in a
message log.
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n'.SV n.SV m

FU Answer

init_session
n

n'

n''

n'.SV n.SV m

FU Answer

init_session
n

n'

n''

m (If requested)

Fig. 2. Exchanging information process by the timestamped anti-entropy epidemic
protocol and proposed topology-sensitive epidemic algorithm. Where n, n’and n” are
neighbor nodes, SV is the summary vector, FU is a query for Fast Update process and
m represents a message.

• Each node maintains a complete copy of all objects in the replication system
by checking its summary timestamp.

• When a failure situation occurs during a message exchange process, any node
can abort the session process and the state of the nodes can be discarded. A
session process ends in a message acknowledgment exchange. In a successful
session, both nodes have received the same set of messages.

3.2 Topology-Sensitive Epidemic Algorithms

The principle that characterize the epidemic data dissemination protocol de-
scribed in the previous section, is mainly concerned with the random selection
of the neighbor node. No special care has been put into the selection of nodes
according to some criteria, for example depending on the network topology struc-
ture. Epidemic algorithms can be differentiated from each other by their style
of communication between neighboring nodes. In this paper, we propose then to
modify the timestamped anti-entropy epidemic algorithm by introducing a node
selection criterion which is based on the network topology. Unlike random node
selection, the proposed epidemic algorithm chooses the neighbor node located at
distance 1 from the source, distance 1 refers to those nodes that requires only
one hop to reach the source node, with greater out-degree. We consider the term
out-degree of a node as the number of links connected to it. For this algorithm,
it is assumed that each node knows the group of neighbors at distance 1 and
their corresponding number of links of each node (out-degree). Notice that it is
not necessary for the algorithm to know the entire topology of the network. This
characteristic yields a high degree of availability, autonomy and scalability of the
proposed epidemic algorithm for data dissemination in any large-scale networks.

Taking advantage of the network topology, another characteristic we exploit
in the proposed topology-sensitive Epidemic Algorithms is through a fast update
(FU) process as shown in Fig. 2 and 4. In this FU process, when a server node
receives a new message, it immediately sends a new message to any neighbor node
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after n.wait(random time)

n’=n.select_neighbor(n.neigbors[ ],in random way)

n.send_init_session(n’) // message sent to n’

when n’.receive_init_session:

n’.send_SV(n,n’.SV[ ]) //SV: summary vector

when n.receive_SV:

n.send(n’,n.SV[ ])

//Calculate diffV==messages n’ not yet received

diffV=n.compareSV(n.SV[ ],n’.SV[ ])

foreach message m in diffV[ ]:

n.send(n’,m)//send message m to n’

when n’.receive(n.SV[ ]):

diffV[ ]=n.compareSV(n’.SV[ ], n.SV[ ])

foreach message m in diffV[ ]:

n’.send(n, m)

when n’.receive(m):

n’.process(m) //and update n’.SV[ ]

when n.receive(m):

n.process(m) //and update n.SV[ ]

Fig. 3. Pseudo-code for the basic epidemic algorithm

at distance 1 and with out-degree greater that the node itself. If the neighbor
node has already the message, the session is ended immediately, otherwise the
message is sent to this neighbor node. Then this neighbor node repeats the same
process to propagate the new message to its own neighbor nodes at distance 1
and with greater out-degree. This process is repeated until all reachable network
nodes with high degree of connectivity has received the new messages.

4 Simulation Performance

4.1 TSAE Performance in Simple Topology Networks

In order to observe the behavior of the epidemic protocol TSAE, some simu-
lations have been carried out to show the topology network influence over the
epidemic algorithms. Firstly, a TSAE algorithm simulator has been built using
Network Simulator 2 [15]. Three different types of simple topologies are evalu-
ated: 1) ring 2) line and 3) mesh. The experiments are carried out with 5000
trials with a confidence index equal to 99% for each topology.

It is assumed that all nodes contain a new message by the time the experiment
is set to start, i.e. the system is in a non-consistent state. In order to reach a
consistent state in the network system, all nodes must collect all new messages
generated by the other nodes in the rest of the network. It is also assumed that
the network system is in a maximum stress, each node in the network holds a
non-consistent state status, at the beginning of the simulations.
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after n.wait(random time)

n’=n.select_neighbor(n.neigbors[ ],HIGHEST_OUTDEGREE)

n.send_init_session(n’)// message sent to n’

when n’.receive_init_session:

n’.send_SV(n,n’.SV[ ]) //SV: summary vector

when n.receive_SV:

n.send(n’,n.SV[ ])

//Calculate diffV==messages n’ not yet received

diffV[ ]=n.compareSV(n.SV[ ], n’.SV[ ])

foreach message m in diffV[ ]:

n.send(n’,m)//send message m to n’

when n’.receive(n.SV[ ]):

diffV[ ]=n.compareSV(n’.SV[ ], n.SV[ ])

foreach message m in diffV[ ]:

n’.send(n, m)

when n’.receive(m):

n’.process(m) //and update n’.SV[ ]

foreach neighbor e in n’.neighbors[ ]

where n’.neighbors[e].out-degree > n’.out-degree:

FU=new fast_update(m.id, m.tstmp)

n’.send_fast_update(e,FU)

when n".receive_fast_update(FU):

if n".check_history(FU) == UNKNOWN):

n".request(FU.id)

else n".reject(FU.id)

when n’.receive(FU.id): //if requested

n’.send(n", m) //send message m to n"

Fig. 4. Pseudo-code for the proposed topology-sensitive epidemic algorithm
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Fig. 5. TSAE performance using a line and ring topologies
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Figure 5 illustrates the dynamics behavior of the TSAE algorithm through the
ring and line topologies. These simulation results show the number of sessions re-
quired for each node to receive all new messages from the network. We observe that
in the ring topology case, each node reach a consistent state in approximately the
same number of sessions. In contrast, the time to reach a consistent state for every
node in the line topology depends on its location, the farther away from the center
of the network the higher of the number of sessions that are required. Therefore,
it is clear then that the consistent state of the network is reached faster through a
ring topology. In the same way, Fig. 6 presents the results using now a mesh topol-
ogy. A mesh of 17× 17 nodes is considered. From this Figure, we can see the same
performance trend to those topologies analyzed in Fig. 5.
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Fig. 6. TSAE performance using a mesh topology, 17×17 nodes

4.2 TSAE Performance in Complex Topology Networks

In the previous section, we have studied the TSAE performance over simple
network topologies. This assumption is, however, not valid anymore in the case
of a more complex scale-free networks, where it is known that spreading processes
may show very different properties. To explore furthermore the topology network
influence over the TSAE algorithm, we evaluate the performance of this process
employing the Barabasi [17] and Waxman topology models which are used as
topologies representative of the the Internet network. Waxman is one of the first
developed network topology generators, it is a geographic model for the growth
of a computer network which distributes nodes randomly over a rectangular co-
ordinate grid. In this model the nodes of the network are uniformly distributed
and edges are added according to probabilities that depend on the distances
between the nodes. The probability to have an edge between nodes u and v is
given by

P (u, v) = a exp
(
− d

bL

)
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where 0 < a, b ≤ 1, d is the distance from u to v, and L is the maximum
distance between any two nodes. Observe that the probability of edges between
any two nodes increases with the parameter a. On the other hand, one of the
most interesting features of a large class of the complex networks is their scale-
free behavior: each node of the network is connected to some other k nodes. The
number of connections obeys a power-law distribution, i.e. P (k) ∼ kγ , 2 ≤ γ ≤ 3
for most networks considered. Such networks are called scale-free because the
fluctuations of the distribution around the average value k are infinite (they do
not possess any particular scale). The difference between a scale-free network
and a random network (where every link between different nodes is present with
a probability p) hints towards some mechanisms that generated the observed
network features. One of the most celebrated models that explains the emergence
of scale-free networks is the Barabasi model. According to the Barabasi model,
the two essential ingredients for the formation of scale-free networks are growth
and preferential attachment. Growth implies that new nodes are added to the
network over time at a more or less constant rate. Preferential attachment means
that a newly added node connects preferentially to nodes that already have a
high degree: a new node tries to attach to authoritative nodes and the degree of
a node is an effective representation of its authoritativeness.

We have generated Waxman and Barabasi topologies using BRITE [10], a
network topology generator, then were feed to our simulator, written on Net-
work simulator [15]. The simulations were run for 5000 experiment trails with
a confidence index equal to 0.99. As before, the systems were set to be in a
non-consistent state at the beginning of the experiment.
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Fig. 7. TSAE performance using a Barabasi and Waxman complex topology model

Figure 7 demonstrate the performance difference of the TSAE algorithm as
a function of network topology. This is illustrated by plotting the cumulative
probability function as a function of the number of sessions. We can observe
that the probability of reaching a consistent state by the TSAE algorithm in
7 sessions is almost of 1 with the Barabasi model while a probability of 0.8
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is obtained for the Waxman model. In general, the TSAE algorithm performs
better (faster propagation process) over the Barabasi topology model than the
Waxman model. It indicates that the topology structure strongly affects the
propagation mechanism of the TSAE algorithm. In this case, the performance
difference is yielded by the degree of connectivity in both topology structures.

4.3 Proposed Epidemic Algorithm Performance Using the Barabasi
Model

In this section, we evaluate the performance of the proposed epidemic algorithm
using the Barbarasi model since it provides a topology network representative
of Internet (scale-free network). Using the same assumptions and simulation
parameters as presented in the previous section, we show in Fig. 8 the results
for the proposed topology-sensitive epidemic algorithm. As before, the epidemic
algorithm performance is measured in terms of the cumulative probability for
the number of sessions required to reach the consistent state in the network
system. It is observed in Fig. 8 that there is a probability of almost 1 for the
proposed epidemic algorithm to reach a consistent state in the network in less
than 5 sessions. In contrast, a consistent state in the network is reached with
a probability of 1 by the TSAE algorithm in approximately 9 sessions. It is
then clear that a faster information spreading process can be achieved by the
proposed epidemic algorithm. We believe this improvement is obtained mainly
by a number of high out-degree nodes which increase the network connectivity.
Since the number of connections obeys a power-law distribution, the number of
nodes with high out-degree results to be smaller than those with low out-degree.
Although there is a smaller number of high out-degree nodes, this property helps
to improve the connectivity of the entire network. Exploiting such characteristics,
the proposed algorithm is designed to send the data in a preferential fashion to
the nodes with high out-degree allowing a faster information spreading process.
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5 Conclusions

In this paper, we have studied the effect of network topology in epidemic al-
gorithms for the information spreading process. Through simulations, we have
firstly presented the behavior and properties of the TSAE epidemic protocol
over simple network topologies, results for a line, ring and mesh topologies were
presented. We showed that, for the purpose of information dissemination, the
TSAE performance was clearly affected by the topological structure of the net-
work. Simulations of the TSAE algorithm over a more complex topology struc-
ture showed similar results. The obtained results indicate the seeking of epidemic
algorithm mechanisms which take into account the specific topology of the un-
derlying network. In order to provide with a more efficient data dissemination
process, we introduced a new topology-sensitive epidemic algorithm aimed at
large-scale networks. This approach exploits a local knowledge of the network
topology in each server node so that data can be propagated faster. A comparison
of the proposed topology-sensitive algorithm with the TSAE algorithm was car-
ried out in an Internet-like topology structure. Performance simulations showed
that the proposed epidemic algorithm obtained a significant improvement as
compared to the TSAE epidemic algorithm. These results stimulate the appli-
cability of epidemic algorithms in technological and communication networks.
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Abstract. The small-bulge multishift QR algorithm proposed by Bra-
man, Byers and Mathias is one of the most efficient algorithms for
computing the eigenvalues of nonsymmetric matrices on processors with
hierarchical memory. However, to fully extract its potential performance,
it is crucial to choose the block size m properly according to the target
architecture and the matrix size n. In this paper, we construct a perfor-
mance model for this algorithm. The model has a hierarchical structure
that reflects the structure of the original algorithm and given n, m and
the performance data of the basic components of the algorithm, such
as the level-3 BLAS routines and the double implicit shift QR routine,
predicts the total execution time. Experiments on SMP machines with
PowerPC G5 and Opteron processors show that the variation of the ex-
ecution time as a function of m predicted by the model agrees well with
the measurements. Thus our model can be used to automatically select
the optimal value of m for a given matrix size on a given architecture.

1 Introduction

The QR algorithm [1][2][3] is widely used as an efficient and reliable method to
compute the eigenvalues of small to medium nonsymmetric matrices. However,
it is not straightforward to implement the QR algorithm in a way that fully ex-
ploits the performance of modern computers such as the shared-memory parallel
machines and processors with hierarchical memory. In fact, when applying the
conventional double implicit shift QR algorithm to an n×n Hessenberg matrix,
the parallel granularity is only O(n). This is often too small to attain reason-
able speedup in the presence of large inter-processor synchronization costs. In
addition, the algorithm sweeps the whole matrix in each QR iteration, while per-
forming only O(1) arithmetic operations on each matrix element. This results in
poor data reference locality and prevents effective use of cache memory.

Many efforts have beenmade to overcome these difficulties so far [4][5][6][7][8][9].
Among them, the small-bulgemultishiftQRalgorithmproposedbyBraman,Byers
and Mathias [5] seems the most promising approach. Their algorithm computes
m shifts at once as the eigenvalues of the m ×m trailing principal submatrix,
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as in the conventional multishift QR algorithm [4], and performs so-called bulge
chasing [10][11] using these m shifts simultaneously. However, instead of chasing
one large bulge containing the m shifts, their algorithm chases m/2 small bulges
each containing only 2 shifts simultaneously in a pipelined fashion. This removes
the defects of conventional multishift QR algorithm — numerical instability
due to the use of large bulge and the resulting deterioration of convergence
speed [6][12] — and recovers the excellent convergence property of the original
double shift QR algorithm. Since the parallel granularity and the number of
operations per iteration and per matrix element are increased to O(m2n) and
O(m), respectively, as a result of using m shifts, this algorithm is ideally suited
for modern architectures. It has been reported that this algorithm can achieve up
to three times speedup over DHSEQR, the large-bulge multishift QR algorithm
in LAPACK [13], on the Origin2000 [5].

To fully extract the potential performance of the small-bulge multishift QR
algorithm, it is crucial to choose the block size m properly. Larger m will pro-
vide larger parallel granularity and more chance for data reuse, but the cost of
computing the shifts grows with m. The optimal value of m varies depending on
the target machine, the number of processors and the matrix size n. In principle,
the optimal value of m can be determined by trial and error, but this process
will require huge time.

In this paper, we present a performance model for the small-bulge multishift
QR algorithm. It is based on the hierarchical approach proposed by Dacklund
[14] and Cuenca et al. [15][16], and given the execution time models of each com-
ponent of the algorithm, such as the level-3 BLAS routines and the conventional
double shift QR algorithm to compute the shifts, predicts the total execution
time accurately. Using this performance model, the optimal block size for a given
architecture, the number of processors and matrix size can be determined prior
to execution.

There are many studies on automatic optimization of linear algebra programs.
Katagiri et al. [17] propose I-LIB, an automatically tuned linear algebra library
for distributed-memory parallel machines. They report the result of optimizing
parameters for tridiagonalization of symmetric matrices and show that consider-
able performance gains can be obtained through optimization. However, to find
the optimal set of parameters, I-LIB measures the execution time of the whole
program repeatedly with different values of parameters. Hence the cost of tuning
is very high.

The hierarchical approach to performance modeling was first proposed by
Dackland [14] and Cuenca [15][16]. The basic idea of this approach is to exploit
the natural hierarchy existing in linear algebra programs. In this approach, the
execution time models of lower-level routines such as the BLAS are constructed
first, and the total execution time is estimated by accumulating the execution
times of the lower-level routines. This approach has been applied to performance
modeling and optimization of LU decomposition [15], QR decomposition [14],
tridiagonalization of symmetric matrices [18] and so on and has proved useful in
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reducing the cost of tuning without sacrificing accuracy. Our work is along this
line of research.

Automatic optimization of linear algebra programs are studied both at a
higher and a lower level. For example, the Self-Adapting Numerical Software
(SANS) proposed by Dongarra et al. [19] aims at automatically selecting the
best routine (not parameters within a routine) to solve a given problem. On the
other hand, there are projects like ATLAS [20] and PhiPAC [21], which try to
maximize the performance of basic routines such as BLAS by automatic tuning.
These studies deal with problems that are at different levels from ours and are
therefore complementary with our work.

This paper is structured as follows: in section 2, we give a brief explanation
of the small-bulge multishift QR algorithm. Section 3 gives the details of our
performance model. Experimental results that demonstrate the effectiveness of
our model are presented in section 4. Finally, section 5 gives some concluding
remarks.

2 The Small-Bulge Multishift QR Algorithm

2.1 The Algorithm

Let us consider the application of the QR algorithm on an n × n Hessenberg
matrix A and denote the matrix after the l-th QR iteration by Al. In the con-
ventional double implicit shift QR algorithm, to compute Al+2 from Al, we first
compute the two shifts σ1 and σ2 as the eigenvalues of the trailing principal
submatrix of Al, introduce a 4× 4 bulge containing the information of the shifts
at the top left corner of Al and then chase the bulge along the diagonal by
repeatedly applying Householder transformations until it disappears from the
bottom right corner. Then the implicit Q theorem [10][11] guarantees that the
resulting matrix is the one that would be obtained by applying two explicit QR
steps with shifts σ1 and σ2 to Al.

This idea can be naturally extended to the multishift QR algorithm [4]. In
this case, we compute m shifts σ1, σ2, . . . , σm as the eigenvalues of the trailing
principal submatrix of Al, introduce a large (m + 2)× (m + 2) bulge containing
their information and then perform bulge chasing. By using a large bulge, both
parallel granularity and data reference locality of the bulge-chasing step can be
increased. The LAPACK routine DHSEQR is based on this idea. Unfortunately,
it has been shown that as the size of the bulge increases, the shift information
contained in the bulge becomes extremely prone to being contaminated by nu-
merical errors [12]. This prevents the accurate shift information to be conveyed
to the bottom right corner of the matrix and thereby retards convergence [12].
Thus the value of m is usually limited to about ten, but this is too few to use
cache memory efficiently.

To overcome this difficulty, Braman, Byers and Mathias propose the small-
bulge mltishift QR algorithm [5]. In this algorithm, the m shifts are divided
into m/2 sets of double shifts and in the bulge-chasing process, m/2 small 4× 4
bulges are chased simultaneously in a pipelined fashion. Although this algorithm
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is mathematically equivalent to the large-bulge multishift QR algorithm, it can
avoid numerical difficulties associated with the use of large bulge and recover the
excellent convergence properties of the conventional double shift QR algorithm.

The bulge chasing in the small-bulge multishift QR algorithm can be divided
into three phases. In phase I, a chain of m/2 bulges is introduced at the top
left corner of the matrix. Since bulges have to be at least three rows apart to
avoid interference, the bulges occupy rows 1 through 3m/2 + 1 when the phase
I is completed (Fig. 1). Note that to chase the bulges in phase I, only the first
(3m/2+1)×(3m/2+1) submatrix of Al, which we denote by Al,1:3m/2+1,1:3m/2+1

following [11], is necessary. We therefore divide the work in phase I into two steps
(see Fig. 2):

(a) Chase the bulges along the diagonal by applying a sequence of Householder
reflections from both sides to Al,1:3m/2+1,1:3m/2+1. At the same time, form
the product of these reflections as an (3m/2 + 1)× (3m/2 + 1) matrix U .

(b) Update the rest of rows1 through3m/2+1bymultiplyingAl,1:3m/2+1,3m/2+2,n

by U from the left.

0

Fig. 1. The matrix after the completion of phase I (m = 8). Four bulges have been
introduced in rows 1 through (3/2)*8+1.

0

: modified in step (a)

: modified in step (b)

: not modified in phase I

Fig. 2. Division of the work in phase I into two parts: (a) bulge-chasing in the diagonal
block and (b) update of the off-diagonal block.

Of these two steps, step (b) can be done entirely with the level-3 BLAS, or
matrix multiplication, and the copy operation needed to move the results back
into Al,1:3m/2+1,3m/2+2,n. Though step (a) cannot be performed with the level-3
BLAS, the computational work needed for this step is much smaller than that
for step (b) when m � n. Thus most of the work in phase I can be organized as
level-3 BLAS.
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In phase III, the m/2 bulges that lie on the last 3m/2+1 rows of Al are chased
out of the matrix. As in phase I, the work can be divided into two steps, namely,
(a) bulge-chasing within the trailing (3m/2+1)× (3m/2+1) diagonal block and
accumulation of the Householder reflectors, and (b) update of the off-diagonal
block of the last 3m/2 + 1 columns. Again, step (b) accounts for most of the
computational work and can be done with the level-3 BLAS.

In phase II, the m/2 bulges that lie on the first 3m/2+1 rows of the matrix are
chased to the last 3m/2 + 1 rows along the diagonal. In this phase, we set some
integer k and regard the operation of chasing all the bulges by k rows as one
block operation (Fig. 3). Since the sequence of the bulges occupies 3m/2+1 rows
and columns, this block operation involves 3m/2 + k rows and columns. Then
we divide the work in this block operation into three steps, that is, (a) bulge-
chasing within the (3m/2+ k)× (3m/2+ k) diagonal block and accumulation of
the reflectors, (b) update of the off-diagonal block of the 3m/2 + k rows and (c)
update of the off-diagonal block of the 3m/2 + k columns. Again, steps (b) and
(c) account for most of the work and they can be done with the level-3 BLAS.
Braman et al. [5] shows that k ∼ 3

2m is the best to minimize the computational
work of phase II.

0

k rows

: modified in step (a)

: modified in step (b)

: modified in step (c)

: not modified in this block operation

Fig. 3. Work in one block operation of phase II. The work is divided into (a) bulge-
chasing in the diagonal block, (b) update of the off-diagonal rows and (c) update of
the off-diagonal columns.

In addition to the work in phases I to III described above, there is work for
computing the shifts. Also, when the matrix Al becomes sufficiently small as a
result of deflation, its eigenvalues are computed with the conventional double
implicit shift QR algorithm. However, the computational work associated with
them are much smaller than the work in phases I to III when m � n. Thus the
small-bulge multishift QR algorithm can perform most of the work in the form
of level-3 BLAS and exploit the potential performance of modern architectures.
Numerical experiments on various test matrices show that it can attain up to
three times speedup over DHSEQR on the Origin2000 [5].

2.2 Basic Computational Routines Used in the Algorithm

As is clear from the previous subsection, the small-bulge multishift QR algorithm
consists of four types of basic computational routines as follows:
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(A) Routines for chasing the bulges within the diagonal block. We denote the
routines for phases I, II and III by BCHASE1, BCHASE2 and BCHASE3,
respectively.

(B) level-3 BLAS routines for updating the off-diagonal block of the rows or
columns. We can use DGEMM with TRANSA=TRANSB=’N’ for row up-
dates and DGEMM with TRANSA=’N’ and TRANSB=’T’ for column up-
dates.

(C) Two copy routines which we denote as COPY1 and COPY2. The former is
used to copy the result of row updates back into the matrix, while the latter
is used to copy the result of column updates back into the matrix.

(D) A Double implicit shift QR routine for computing the shifts or computing
the eiegnvalues of Al when Al is sufficiently small. We use EISPACK routine
HQR for this purpose.

In the hierarchical performance modeling to be explained in the next section, we
use these routines as basic components.

2.3 The Optimal Block Size

The attain high performance with the small-bulge multishift QR algorithm, it
is critical to choose the optimal block size m. In general, as m becomes larger,
the performance of the level-3 BLAS will increase because both the parallel
granularity and the chance for data reuse increase. On the other hand, the cost
of computing the shifts and the work of BCHASE1 to 3 relative to the total
work will also grow with m. The optimal value of m is determined from these
trade-offs and differs considerably depending on the architecture, the number of
processors and the matrix size n. In fact, to obtain the best performance on the
Origin2000, Braman et al. use m = 60 when 1000 ≤ n ≤ 1999, m = 116 when
2000 ≤ n ≤ 2499 and m = 150 when 2500 ≤ n ≤ 3999 [5]. Our objective is
to determine the optimal value of m for a given environment and problem size
prior to execution using a performance prediction model.

3 Performance Modeling

3.1 The Hierarchical Approach

To construct a performance model of the small-bulge multishift QR algorithm,
we adopt the hierarchical modeling approach [16][15][14]. In this approach, we
first construct execution time models for the basic components of the algorithm
such as the level-3 BLAS routines and the double implicit shift QR routine
based on the measurement of actual execution times. Then, the time consumed
by each call to these subroutines in the algorithm is estimated using the model
and the input parameters. Finally, the execution time of the whole algorithm is
predicted by accumulating these partial execution times. This methodology has
been applied to the performance modeling of LU and QR decompositions and
a BLAS-3 based tridiagonalizaion algorithm and has proved to give satisfactory
results both in terms of accuracy and cost of prediction.
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3.2 Modeling the Performance of Basic Computational Routines

From what we have stated in subsection 2.2, we need to construct execution
time models for eight computational routines, namely, BCHASE1, BCHASE2,
BCHASE3, DGEMM(’N’,’N’), DGEMM(’N’,’T’), COPY1, COPY2 and HQR.
Here we take up the case of BCHASE2 to illustrate the process of modeling. This
routine is used to chase the bulges within the diagonal block in phase II and has
two input parameters m and k that determine the execution time. Our aim is
to model the execution time of this routine as a function fBCHASE2(m, k) of m
and k. Note that the two-parameter model is necessary even when k is fixed.
This is because the number of rows by which the bulges are chased in phase II
is in general not a multiple of k and the remainder part must be processed by
BCHASE2 with a smaller value of k.

To construct a model, we first measure the performance of BCHASE2 on grid
points in the (m, k) plane. More specifically, we vary m from 10 to 150 with
intervals of 10 and set k to one of the five values, 1

5m, 2
5m, 3

5m, 4
5m and m. Then

we approximate the execution time for a fixed value of k as a cubic function of
m:

fBCHASE2(m, k) = f
(k)
BCHASE2(m) = a

(k)
3 m3 + a

(k)
2 m2 + a

(k)
1 m + a

(k)
0 . (1)

The coefficients a
(k)
3 , a

(k)
2 , a

(k)
1 and a

(k)
0 are determined by the least squares from

the measured data. To obtain the value of fBCHASE2(m, k) for k between the
grid points, we compute the function values at the two adjacent grid points and
use linear interpolation. It would be possible to use polynomial approximation
also with respect to k, but we chose to use linear interpolation because it is more
flexible and can approximate the function well even when it exhibits somewhat
irregular behavior due to cache miss.

The performance modeling of other routines can be done in much the same
way. In fact, COPY1 and COPY2 also have two parameters that affect the
execution time. DGEMM(’N’,’N’) and DGEMM(’N’,’T’) also have only two pa-
rameters since in our algorithm, the multiplier U is a square matrix. BCHASE1,
BCHASE3 and HQR have only one parameter and therefore their performance
modeling is easier.

3.3 Modeling the Performance of the Whole Algorithm

Once execution time models of the basic computational routines have been con-
structed, we can use them to predict the execution time of the small-bulge multi-
shift QR algorithm. The conventional approach to this is to derive an analytical
expression for the total computational work executed by each routine and then
calculate the time consumed by each routine using the corresponding perfor-
mance models. However, it is difficult to obtain accurate results with this ap-
proach because the relation between the execution time and the computational
work is usually far from linear.

We therefore take an alternative approach. We first write functions named
BCHASE1 TIME,DGEMM TIME,COPY1 TIME,HQR TIMEandsoon.These
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functions have the same input parameters as BCHASE1, DGEMM, COPY1 and
HQR, respectively, but insteadofdoing actual computation, estimate the execution
time for given input parameters using the performancemodel for the corresponding
routineandreturnit.Nextwerewritethemainprogramofthesmall-bulgemultishift
QR algorithm so that the calls to the computational routines are replaced with the
calls to the corresponding time estimation routines and the estimated execution
times are accumulated. Then, by executing the rewritten program, we can obtain
estimated execution time of the small-bulge multishift QR algorithm for a given
value of n and m. This approach has been successfully applied to the performance
modeling of a BLAS-3 based tridiagonalization algorithm. [18] reports that it can
predict the execution time of this algorithm for various matrix sizes and block sizes
on different architectures within errors of 5 to 10%.

Since the QR method is an iterative method, we have to address one prob-
lem that does not exist in the case of the tridiagonalization algorithm. We have
to specify how many times the main loop is executed before convergence and
in what manner the deflations occur. Kressner [22] observes that in average,
deflation occurs after every four multishift sweeps and at each deflation, ap-
proximately m×m trailing submatrix is isolated. We confirmed this observation
through our experiments on various matrices and adopt it as a model of conver-
gence behavior in our performance estimation program.

Our performance model takes fully into account the nonlinearity between the
execution time and computational work of the basic computational routines.
Thus it is expected to predict the total execution time accurately, except for
the variation due to variation in the number of iteration. The cost of predic-
tion is proportional to the number of calls to the basic computational routines
in the algorithm and is O(n2/m2). This is negligible compared with the com-
putational work needed for actual execution of the algorithm, which is O(n3).
Note also that our performance model can be applied to shared-memory parallel
programs without difficulty as long as parallelization is done within the basic
computational routines.

4 Experimental Results

4.1 Computational Environments

To evaluate the effectiveness of our performance model, we performed exper-
iments on two platforms, namely, a 2way SMP machine with 2.0GHz Pow-
erPC G5 processors and a 4way SMP machine with 1.8GHz Opteron processors.
For the G5 machine, we used IBM XL Fortran with options -O3 -qsmp=omp
-qarch=ppc970 -qtune=ppc970 and the GOTO BLAS. For the Opteron ma-
chine, we used GNU f77 compiler with option -O4 and the GOTO BLAS. The
routines BCHASE1, BCHASE2, BCHASE3, COPY1 and COPY2 were written
from scratch and the EISPACK routine HQR is used for computing the shifts
and for computing the eigenvalues of the matrix when it becomes sufficiently
small. Parallelization is done only within the GOTO BLAS.
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4.2 Performance Prediction

To construct the performance model, we first measured the execution times of
the basic computational routines on both machines for various values of input
parameters. For BCHASE1, BCHASE2, BCHASE3 and HQR, we varied m from
10 to 150 with intervals of 10. Performance measurement of BCHASE2 was done
as described in subsection 3.2. For DGEMM(’N’,’N’) and DGEMM(’N’,’T’), the
size of the square multiplier matrix was varied from 10 to 300 with intervals of
10, while the number of columns in the multiplicand matrix was varied from
100 to 1000 with intervals of 100. The execution times of all the routines except
for DGEMM were measured on 1 processor. The execution times of DGEMM
were measured on 1 and 2 processors (in the case of PowerPC G5) or on 1
and 4 processors (in the case of Opteron). Based on these measurements, we
built an execution time model for each routine on each platform following the
prescription of subsection 3.2.

Next we constructed a performance model for the small-bulge multishift QR
algorithm following the methodology stated in subsection 3.3 and compared the
predicted execution time with the actual execution time. We varied the matrix
size m from 1000 to 8000 and varied the number of shifts m from 30 to 120. The
value of k was set equal to m. As test matrices, we generated random matrices
whose elements follow the uniform distribution in [−1, 1] and transformed them
to Hessenberg by Householder transformation.

The results on the PowerPC G5 are shown in Table 1 and Fig. 4 for the 1-
processor case and in Table 2 and Fig. 5 for the 2-processor case. It is clear that
the model generally overestimate the actual execution time. This is because the
test matrices used here require smaller number of iterations than we assumed
in subsection 3.3. In fact, the average number of multishift QR sweeps needed
to isolate an (approximately) m × m small submatrix was between 3 and 4.
However, when we turn our attention to the relative execution time, defined as
the ratio of the execution time to the shortest execution time over all m, we see
that the model reproduces the behavior of the actual execution time fairly well
(See Figs. 4 and 5). This is sufficient for determining the optimal value of m.

Table 1. Actual (above) and predicted (below) execution times (in sec.) of the small-
bulge multishift QR algorithm (PowerPC G5, 1CPU)

n m = 30 m = 60 m = 90 m = 120

1000 5.84 5.27 5.12 6.75
8.28 6.79 6.77 7.82

2000 42.21 33.75 32.83 34.47
53.40 40.53 39.59 46.09

4000 356.85 267.65 236.20 260.97
393.86 288.60 267.22 296.86

8000 3073.24 2496.06 2270.95 2129.30
3075.62 2180.10 1969.56 2116.30
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Table 2. Actual (above) and predicted (below) execution times (in sec.) of the small-
bulge multishift QR algorithm (PowerPC G5, 2CPU)

n m = 30 m = 60 m = 90 m = 120

1000 4.51 3.94 4.51 6.02
7.06 5.80 5.92 7.07

2000 33.33 24.74 24.99 29.25
42.86 31.37 31.06 37.69

4000 274.19 190.05 176.53 207.83
307.30 208.87 191.45 220.91

8000 2448.36 1812.72 1676.86 1807.11
2370.45 1520.44 1328.71 1463.86
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Fig. 4. Actual (left) and predicted (right) relative execution times of the small-bulge
multishift QR algorithm (PowerPC G5, 1CPU)

Table 3. Actual (above) and predicted (below) execution times (in sec.) of the small-
bulge multishift QR algorithm (Opteron, 4CPU)

n m = 30 m = 60 m = 90 m = 120

1000 3.58 3.80 4.37 5.56
4.26 4.32 5.02 6.00

2000 24.32 20.86 24.67 24.18
27.38 24.39 26.26 29.95

4000 189.38 144.14 141.81 145.77
190.86 158.50 157.95 168.69

8000 1522.24 1069.79 1021.83 1014.12
1419.33 1116.15 1066.48 1089.39

We also show the results on the 4way Opteron SMP machine in Table 3 and
Fig. 6. In this case, again, the model generally overestimates the execution time,
but predicts the relative execution time as a function of m fairly well.
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Fig. 5. Actual (left) and predicted (right) relative execution times of the small-bulge
multishift QR algorithm (PowerPC G5, 2CPU)
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Fig. 6. Actual (left) and predicted (right) relative execution times of the small-bulge
multishift QR algorithm (Opteron, 4CPU)

4.3 Optimal Block Size Selection

As can be seen clearly from Figs. 4 through 6, the value of m that gives the
shortest execution time varies considerably depending on the matrix size and
the architecture. Generally speaking, the optimal value of m increases with the
matrix size. Also, the optimal value differs widely with the matrix size in the
case of the 4way Opteron machine, while it is rather insensitive in the case of
G5. Figs. 4 through 6 show that these tendencies are represented by our model
well. In fact, our model succeeds in predicting the optimal value of m in 9 cases
of the total 12 cases presented here. Even when it fails to predict the correct
m, it can be seen that the execution time using predicted m differs only slightly
from the shortest execution time. In addition, the time needed to predict the
execution time for all value of m for given n is less than a fraction of a second.
Thus we can conclude that our model can be used effectively for choosing the
optimal block size in the small-bulge multishift QR algorithm.
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5 Conclusion

In this paper, we construct a performance model for the small-bulge multishift
QR algorithm proposed by Braman, Byers and Mathias. Our model has a hierar-
chical structure that naturally arises from the structure of the original algorithm
and given the matrix size n, the number of simultaneous shifts m and the perfor-
mance data of the basic components of the algorithm, such as the level-3 BLAS
routines and the double implicit shift QR routine, predicts the total execution
time. Experiments on SMP machines based on PowerPC G5 and Opteron pro-
cessors show that the variation of the execution time as a function of m predicted
by the model agrees well with the measurements. Thus our model can be used
to automatically select the optimal value of m for a given matrix size on a given
architecture.

Future works include extension of this model to a more efficient parallel imple-
mentation of the small-bulge multishift QR algorithm, where the bulge chasing
in the diagonal block is overlapped with the update of the off-diagonal blocks.
In this case, the number of parameters to optimize will increase and we will
need an efficient search algorithm that can find near-optimal parameters with-
out an exhaustive search of all possible candidates. As another direction of re-
search, we are planning to extend the modeling methodology used in this work
to distributed-memory parallel programs.
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Abstract. Image registration is a classical problem that addresses the problem 
of finding a geometric transformation that best aligns two images. Since the 
amount of multisensor remote sensing imagery are growing tremendously, the 
search for matching transformation with mutual information is very time-
consuming and tedious, and fast and automatic registration of images from dif-
ferent sensors has become critical in the remote sensing framework. So the  
implementation of automatic mutual information based image registration 
methods on high performance machines needs to be investigated. First, this pa-
per presents a parallel implementation of a mutual information based image 
registration algorithm. It takes advantage of cluster machines by partitioning of 
data depending on the algorithm’s peculiarity. Then, the evaluation of the paral-
lel registration method has been presented in theory and in experiments and 
shows that the parallel algorithm has good parallel performance and scalability. 

1   Introduction 

Image registration is the process by which we determine a transformation that pro-
vides the most accurate match between two or more images of approximately the 
same scene or objects which acquired by different sensors or taken by the same sensor 
but at different times. This problem often occurs in biomedical and remote sensing 
applications1. Examples of these applications include change detection using multiple 
images acquired at different times2, fusion of image data from multiple sensor types 
(e.g., low-resolution multispectral image and high-resolution panchromatic one3) and 
medical image analysis4.  

In the remote sensing framework, the problem of registration has three peculiari-
ties. First, remote-sensing datasets are often huge, for example, The Earth Observing 
System daily produces massive amounts of data approaching 1 terabyte per day5. Sec-
ond, with the development of multiple platform remote sensing missions, multisensor 
satellite images often have significantly different spatial resolution when simultane-
ously observing the same scene. Third, image registration is computation intensive in 
the remote sensing applications and at the same time an image registration algorithm 
suitable for remote sensing applications should be as fast as possible and ideally fully 
automatic. Our work mostly faces to remote sensing applications, for which parallel 
automated image registration has become a highly desirable technique. 

Some attempts to accelerate image registration by using parallel supercomputers 
have been done. A parallel image registration based on a global GA model was  
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proposed in using a parallel cluster6. However, the algorithm can only register mono-
modal remote sensing data. LeMoigne presented a fine-grain parallel algorithm for 
the MasPar SIMD(Single Instruction Multiple Data) architecture7. Substantial compu-
tational savings have been reported. Unfortunately, the parallel algorithm is not appli-
cable to modern MIMD architectures. In our earlier work, a registration algorithm 
was parallelized based on a simple exhaustive search strategy8. Although this method 
is quite robust, it is not very practical for two reasons. First, exhaustive search is 
computationally expensive even for a small number of search parameters, and the 
second is it yields results of limited accuracy since accuracy depends on how fine the 
discrete mesh is.  

The above review of parallel image registration indicates that the developed work 
was quite limited in scope. The rest of this paper provides a dedicated design of appli-
cable parallel methods for registration and evaluates its performance on modern paral-
lel cluster machine using existing remote sensing data. Section 2 describes serial  
image registration algorithm framework. Section 3 then describes our parallel algo-
rithm implementation and performance analysis and associated results are presented 
in Section 4. Conclusions are given in Section 5. The main innovation of this paper is 
we address the high computation cost problem in the remote sensing mutual informa-
tion based image registration applications using a parallel implementation that takes 
advantage of modern large-scale cluster computer architectures and the algorithm is 
applicable for multisensor remote sensing image registration applications, at the same 
time this is first study on parallel mutual information based image registration in the 
remote sensing framework.  

2   Description of Serial Image Registration Algorithm  

We describe below an intensity-based remote sensing registration algorithm, and dis-
cuss how the computational issue can be addressed using the techniques of parallel 
programming. 

2.1   Definition and Transformation Model 

First, we define image registration as follows: Given a pair of two-dimensional gray-
level images, FR(x,y) and FT(x,y) that we call reference and floating image respec-
tively with coordinates (x,y) , where is a region of interest. In this paper, due 
to relative stability of imaging platforms and systematic data correction, global rigid 
transformations usually represent misalignment between satellite images quite well. 
The transformation can be written as 
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where GP(x, y) is geometrical transformation, {tx, ty} are translations in x and y di-
rections,  is rotation angle, TP is the transformation matrix and the vector P of trans-
lation parameters is (tx, ty, ). To register FR(x,y) and FT(x,y) is to find the value of P 
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which maximizes or minimizes the similarity measure S. This can be expressed 
mathematically as 

)),((arg)),((arg )( PP TTRTRT FFSoptFFSoptP == . (2) 

2.2   Image Similarity 

Similarity measure that determines how well two images are matched is a crucial part 
of a registration algorithm. The idea of using MI as similarity measure for registration 
is first introduced for medical imagery by Maes9 and Wells10. Mutual information is a 
measure originating from information theory and the mutual information of two im-
ages is a combination of the entropy values of the images, both separately. Mutual in-
formation has been found especially robust for multisensor image registration and it 
has been extensive studied for the registration of medical imagery over several years11. 
In the remote sensing framework, with the rapid development of multiplatform remote 
sensing missions, mutual information has been applied to the registration of remote 
sensing imagery recently and has been a hot topic in this research area12-14. Our imple-
mentation of mutual information and its gradient computation is described by Maes15.  

2.3   The Analysis of Algorithm 

For finding the optimal parameters that maximize the mutual information between 
reference and floating image, we employ conjugate-gradient methods. Our implemen-
tation closely follows the algorithm described in16. Conjugate-gradient method con-
structs the new search direction as being conjugate to the previous one with respect to 
the negative of mutual information to minimize. 

The key steps of the algorithm are mutual information and its gradient computation 
between reference and floating image. Tab.1 shows the percentage of the mutual in-
formation and its gradient computation time to algorithm’s total computation time. In 
this study, four remote sensing image datasets whose sizes are different are used in 
our experiments. We apply a known geometric transformation on those datasets sepa-
rately. From Table.1 we can conclude mutual information and its gradient computa-
tion accounts for the bulk of the algorithm’s computation cost.  

These are the two aspects accounting for the bulk of the algorithm’s computational 
cost. Computation of mutual information involves processing large amounts of data, in 
particular evaluating the coordinate transformation for every single pixel in the floating 
image to construct a joint histogram. On the other hand, the gradient computation need 
to construct six joint histogram derivatives and is expected to be six times as expensive 
as computation of mutual information itself. However, these joint histogram deriva-
tives can be computed together with joint histogram by scanning the floating image 
once. So the same strategy is applied in order to parallelize the two computations. 

Table 1. Percentage of the mutual information and its gradient computation time to algorithm’s 
total computation time 

 Data1 Data 2 Data3 Data4 
Total time 9s 28s 113s 407s 
MI and its gradient time 8.85s 27.53s 111.08s 400.59s 
percentage 98.33% 98.32% 98.3% 98.28% 
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3   Parallel Implementation 

Parallel processing has been proposed as a solution to computationally demanding 
problems for many years. Parallel mutual information based remote sensing image 
registration has been studied in this paper and implemented on a parallel cluster com-
puter. The reasons for using cluster computer is the cluster a commercial off-the-shelf 
(COTS) parallel computer, is a cluster of personal computers running parallel Linux, 
is very easily accessible to research groups. 

3.1   Data Distribution with Load Balancing 

According to section 2 image registration can be decomposed into sequential proc-
essing steps, and at each step every pixel is processed in a similar manner. This 
makes it a good candidate for parallelization using data parallelism, rather than pipe-
line parallelism. 

Our algorithm uses block distribution to achieve higher speedup for the hotspot of 
the serial algorithm. We now describe how the algorithm determines the image size 
for N processors. Our approach is to try to divide the floating image data into equally 
sized partitions for the purpose of load balancing. Each processor is assigned one of 
these partitions, shown as in Fig. 1.  

 

Fig. 1. Data distribution with load balancing 

In detail, we assign to each processor a continuous range of columns of the floating 
image. When the width of the floating image M can be divided exactly by the number 
of processors N, each processor will be assigned the same sized partitions; When N 
can not divide into M, if the integer part of the width of the floating image divided by 
the number of processors is n, and the result of the width of the floating image 
modulo the number of processors is m, the number of columns assigned to the former 
m processors is (n+1) and assigned to every latter processor is n. 

3.2   Parallel Mutual Information and Its Gradient Computation 

Floating image transformation is a local operation and each sample computation is in-
dependent of others. Each node computes transformed coordinates for assigned parti-
tion of floating image according to transformation matrix. 
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Fig. 2. Parallel registration algorithm framework 

Computation of mutual information and its gradient is a global operation that in-
volves the whole image. The pixel pairs encountered by each node are stored in sepa-
rate 2-D histogram. After finishing its contribution to the mutual information and its 
gradient, each node performs all-to-one reduction communication to get global histo-
gram and its derivatives with respect to transformation matrix T. A naive way to get 
global result is to sequentially send one message from the source to the destination 
process and then the data from all processes are combined through an associative op-
erator and accumulated at the destination process. However, this is inefficient because 
the destination process becomes a bottleneck. A better reduction algorithm can be de-
vised using a technique commonly known as recursive doubling17. 

According to section 2 the main computation of conjugate gradient optimization 
method in our serial registration algorithm is mutual information computation. To 
parallelize conjugate gradient optimization is to parallelize the computation of mutual 
information which has described above.  

A flowchart of the parallel registration algorithm in this paper is shown in Fig. 2. 
Obviously, the load is almost balanced. However, extra communication is introduced 
into global operation for computing the mutual information and its gradient over the 
same image. 



 A Parallel Mutual Information Based Image Registration Algorithm 469 

 

3.3   Run Time Analysis 

Here we do quantitative evaluation for our parallel algorithm and give the complexity 
analysis. LogGP is used as a computation model for analyzing our parallel algorithm 
on distributed memory machines18. The computation cost of algorithm will be evalu-
ated in terms of two measures: the computation time Tcomp and the communication 
time Tcomm. For communication time, let t is the startup time for a message, and t is 
transfer time per data of double type. Original image size is M*M, the number of his-
togram bins is K in the computation and the parallel system has N processors. There 
are R solutions at each line minimization for optimum along conjugate gradient direc-
tions. The cost of joint histogram and its derivatives is O(M2) and the computational 
cost relative to the number of histogram bins K used in the computation is O(K2). So 
the serial execution time is T(1) = O(M2+K2). 

In our parallel algorithm the maximum number of pixels assigned to each proces-
sor to compute mutual information and its gradient is MNM ⋅+ )1( , so the computation 
cost is 
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When computing mutual information and its gradient there are two communication 
steps, one of which is reduction and another is broadcast. The transferred data in the 
reduction operation contains a histogram and six histogram derivatives dH/dTij, and 
each histogram has K2 data, so the communicational cost is )lg7( 2

1 NKttOTcomm ⋅+= βα . The 
transferred data in the broadcast operation is mutual information and its gradient val-
ues, so the communicational cost is )lg4(2 NttOTcomm ⋅+= βα . 

When performing conjugate gradient optimization there are also two communica-
tion steps, one of which is reduction and another is broadcast. The transferred data in 
the reduction operation contains a histogram which has K2 data, so the communica-
tional cost is ))lg(( 2

3 RNKttOTcomm ⋅⋅+= βα . The transferred data in the broadcast operation 
is mutual information, so the communicational cost is ))lg((4 RNttOTcomm ⋅⋅+= βα . 

So the communicational cost in our parallel algorithm is 

)lg)7(( 2
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In sum the overall parallel execution time is 

)lg)7(
%

(

)(

22
22

NKRtRtKM
N

NMM
O

TTnT commcomp

+⋅+⋅+++−=

+=

βα . 
(5) 

The increase in speed due to parallelizing an algorithm with N processors is evalu-
ated by Amdahl’s Law21 and is given by following expression 
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The efficiency of the parallel program can be written as 
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According to expression (6) and (7) with the increase of image size, the speedup is 
approaching N and efficiency is approaching 1, and this shows that our parallel algo-
rithm has good parallel performance and scalability. 

4   Application Results 

In this section illustrative results of the parallel registration algorithm with four pairs 
of remote sensing images are presented. The four pairs are images used in Section II. 
Our parallel algorithm is coded entirely in C in which communication is handled with 
the message passing standard MPI, blocking message passing routines is used and 
compiled using version 2.0 of mpi compiler suite19. 

The experiment was performed on a cluster computer with 16 nodes with dual Intel 
Xeon 3.4GHz CPU, 4G RAM, and a 60GB SCSI disk drive running Linux 2.4.20. All 
nodes are connected through a 1Gbps Ethernet LAN.  

Fig.3 shows the registration result of a pair of test images, in which Fig.3(c) is the 
output of the transformed floating image matched with reference image by mapping 
function. 

               

(a) Reference image                    (b) Floating image                 (c) Output image after reg- 
       istration 

Fig. 3. Registration result of test images 

Fig.4 presents the computation speedups and Fig.5 presents the efficiencies 
achieved by different datasets on our parallel platform. Fig.4 shows that with the  
increase of image size the speedup of our algorithm goes up rapidly when the compu-
tation to communication ratio is high enough to get benefit from load balance. How-
ever, when the number of processors is increased to a special scale for given image 
size the speedup of the algorithm decreases because the computation to communica-
tion ratio goes down. Fig.5 shows that for a given image size, when the number of 
processors is increased, the overall efficiency of the parallel algorithm goes down. In 
most cases, the efficiency of the parallel algorithm increases if the image size is in-
creased while keeping the number of processors constant. In sum the experiment 
about the performance characteristics of the parallel algorithm is consistent with theo-
retical analysis and shows that our parallel algorithm has good parallel performance 
and scalability. 
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Fig. 4. Speedups of the algorithm with different datasets 
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Fig. 5. Efficiencies of the algorithm with different datasets 

5   Conclusions 

Image registration through maximization of mutual information is a hot topic in the 
area of multisensor image registration and computationally intensive. Since both the 
need for fast and reliable image registration and the amount of multisensor remote 
sensing imagery are growing tremendously, the implementation of automatic image 
registration methods on high performance machines needs to be investigated. Based 
on analyses of existing serial image registration, a parallel algorithm based on data 
parallelism for real-time mutual information based image registration is developed. 
Then, the evaluation of the parallel registration method has been presented in theory 
and in experiments. 

Future work will include the study of parallel multiresolution mutual information 
based image registration. Nonrigid image registration is a more complex problem, and 
parallel nonrigid image registration based on different transformation models will be 
our research topic and the papers about them will be published later. 
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Abstract. Broadcasting is one of the typical operations in wireless sensor 
networks where the nodes are energy constrained. Considering the characteristics 
that nodes are almost static and position aware in wireless sensor networks, we 
propose a novel broadcasting algorithm (NBA) for utilizing energy efficiently. 
The energy status of nodes is regarded as an important factor, as well as the local 
network topology, in clustering and deciding retransmission nodes. We prove the 
accurateness of NBA. Simulations show that NBA reduces the number of 
redundant retransmissions and balances traffic efficiently, so energy is conserved 
and energy dissipation is distributed evenly throughout the network. Thereby the 
lifetime of WSN is prolonged greatly. 

1   Introduction 

Recent technological advances have enabled large scale information gathering through 
a network of tiny, low power sensors. This network of sensor nodes, known as wireless 
sensor networks (WSN), has revolutionized remote monitoring applications because of 
its ease of deployment, ad hoc connectivity and cost-effectiveness [1, 2]. 

Broadcasting is one of the typical operations in WSN [3]. For instance, broadcasting 
can be used to explore routing paths if the topology of network is unknown beforehand 
and advertise important messages (e.g., an intruder detected by a sensor) to all nodes. 
The straightforward solution for broadcasting in WSN is flooding (blind flooding), 
however blind flooding is improper in WSN since it consumes too much energy which 
is deeply constrained in WSN [4, 5, 6]. Furthermore, as a node has a limited battery 
power and data transmission dominates energy consumption of a node when compared 
with sensing and computation operations [1, 2, 5, 7], broadcasting algorithms designed 
for traditional MANET are not suitable for WSN. 

In WSN, the network lifetime can be measured with respect to the time until a 
certain percentage of nodes in the network are energy-depleted [8], so energy must be 
conserved and energy dissipation must be distributed evenly throughout the nodes. 
Therefore in WSN broadcasting algorithms, balancing traffic is a key factor to 
maximize the network lifetime as well as reducing redundant transmission nodes. 

Considering the characteristics of WSN that nodes almost are static and energy 
constrained, we proposed a novel broadcasting algorithm for WSN (we call this 
algorithm as NBA), which do clustering first and then deciding transmission nodes 



 A Novel Broadcasting Algorithm for Wireless Sensor Networks 475 

 

in each round [9]. This scheme reduces transmission nodes greatly and balances 
traffic well under the condition that all the nodes in WSN receive the advertised 
message. 

To evaluate the performance of our proposed algorithm, we simulate NBA and 
some good broadcasting algorithms for MANET including MPR [10] and EMPR 
[11]. The simulation shows that NBA greatly outperforms MPR and EMPR in terms 
of reducing transmitting nodes and balancing traffic. So NBA can prolong the 
network lifetime greatly in broadcasting of WSN. 

2   Preliminaries of NBA 

In this paper, our model WSN has the following properties:  

(1) The WSN is connected. 
(2) The nodes in WSN have the same communication radius, and have the 

omnidirectional antennas to transmit by the same rated power. 
(3) The nodes in WSN are aware of their position which identifies them uniquely. 
(4) The nodes in WSN are static.  
(5) If the distance between nodes in WSN is not more than communication radius, 

the nodes can communicate correctly through local wireless broadcasting channel. 

NBA consists of two stages. One is clustering and the other is transmission 
deciding. Clustering algorithm elects cluster heads which have more residual energy 
and stronger connectivity than its neighbors. Then all the nodes are divided into three 
types: cluster head (CH), member affiliated to multiple clusters (MM) and member 
affiliated to single cluster (SM). The nodes of different types have some different 
properties. CH nodes are not adjacent one another, SM nodes are adjacent to one and 
only one certain CH node, and MM nodes are adjacent to at least two certain CH 
nodes. So if all the CH nodes do transmissions in WSN, all the other nodes can 
receive the advertised message. Moreover, as nodes have more residual energy and 
stronger connectivity than other nodes, energy is conserved and traffic is balanced via 
periodical clustering and transmission deciding in WSN. But as CH nodes are not 
adjacent one another, SM/MM nodes have to do transmissions to bridge all the CH 
nodes. Based on this idea, we design the transmission deciding algorithm of NBA. 
Transmission deciding algorithm allows almost all the CH nodes to do transmissions 
in WSN except some particular CH nodes, and tries to choose SM/MM nodes which 
have more residual energy and stronger connectivity to do transmissions. So 
broadcasting can be completed correctly in WSN, and energy is conserved and traffic 
is balanced as well. 

Some common notations and definitions are given for describing NBA: 

(1) class(u) represents the type of node u. 
(2) V represents all the nodes in WSN. Vch represents all the CH nodes determined 

by clustering. Vmm represents all the MM nodes determined by clustering. Vsm 
represents all the SM nodes determined by clustering. 

(3) p(u)=(x(u),y(u)) represents the position of node u, where x(u) and y(u) is X and 
Y coordinates of u. 
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(4) )(ud = 22 )()( uyux + . 

(5) p(u)>p(v) represents (( )(ud > )(vd ) (( )(ud = )(vd ) (|x(u)|>|x(v)|))). 

(6) If the distance between two nodes is less than or equal to communication 
radius, we call these two nodes are adjacent, and neighbors of u are represent as N(u). 

(7) d(u)=|N(u)|, where |N(u)| represents the size of N(u). 
(8) Nch(u)={x|(x N(u)) (class(x)=CH)}. 
(9) Nmm(u)={x|(x N(u)) (class(x)=MM)}. 
(10) Nsm(u)={x|(x N(u)) (class(x)=SM)}. 

3   Clustering Algorithm 

The following control message will be used in clustering algorithm: 

(1) HELLO: Node advertises its existence to neighbors.   
(2) ADV: Node advertises itself a CH node. 
(3) ABD: Node advertises itself not a CH node. 
(4) IFM: Node advertises information to neighbors. 

The following symbols will be used in clustering algorithm: 

(1) ))(/)(1()()( uiniuresidualuduweight ×+×= λ , where residual(u) and ini(u) 

represent the residual energy and the initial energy of u respectively,  ( 0) is an 
energy aware parameter. 

(2) Nabd(u) represents the neighbors of u which have sent control message ABD. 

3.1   Description of Clustering Algrithm 

When initializing, clustering algorithm assigns class(x) null, Nch(x) , Nmm(x)  
and  Nabd(x)  for every node x (x V). Then clustering algorithm is divided into 
three phases: neighbor finding, electing and information exchanging. 

3.1.1   Neighbor Finding 
Every node x (x V) sends HELLO(p(x)) via local wireless channel. According to 
assumptions 2, 3, 4 and 5, x can find their neighbors. Then x sends 
IFM(p(x),weight(x)) locally, and every node y (y N(x)) stores weight(x). 

At this phase, the message complexity of each node is O(2). 

3.1.2   Electing 
In this phase, all the nodes check their types and prepare to receive ADV and ABD, 
and then: 

(1) When the type of node u (u V) is null, i.e. class(u)=null 
u assigns class(u) CH and Nch(u) . Then u sends ADV(p(u)) locally to 

advertise u a CH node if every node x (x N(u)) satisfies (weight(u)>weight(x))
((weight(u)=weight(x)) (p(u)<p(x))). 
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(2) When node v (v N(u)) receives ADV(p(u)) 
v assigns Nch(v) (Nch(v) {u}). Then v assigns class(v) SM if |Nch(v)|=1, 

otherwise class(v) MM. And then v sends ABD(p(v)) locally to advertise v not a CH 
node if it receives ADV at the first time. 

(3) When node w (w N(v)) receives ABD(p(v)) 
w assigns Nabd(w) (Nabd(w) {v}) if class(w)=null. Then w assigns class(w) CH 

and Nch(w)  and w sends ADV(p(w)) locally to advertise w a CH node if every 
node x (x (N(w) Nabd(w))) satisfies (weight(w)>weight(x)) ((weight(w)= 
weight(x)) (p(w)<p(x))). 

At this phase, the message complexity of each node is O(1). 

3.1.3   Information Exchanging 
Every node x (x Vmm) sends IFM(p(x),class(x)) locally to advertise x a MM node, 
and every node y (y N(x)) assigns Nmm(y) (Nmm(y) {x}) when y receives IFM. 
Then x sends IFM(p(x), class(x), Nch(x) and Nmm(x)) locally, and y saves class(x), 
Nch(x) and Nmm(x) when y receives IFM. 

At this phase, the message complexity of each CH/SM node is O(1) and that of 
each MM node is O(2). 

It is obvious that the message complexity of each node in clustering algorithm is 
O(5) in the worst case. 

3.2   Properties of Nodes After Clustering 

The nodes in WSN have the following properties apparently after clustering:  

Property 1: Sets Vch, Vmm and Vsm are the partition of set V. 
Property 2: For every node x (x Vsm) there exists one and only one node u 

(u N(x)) which satisfies class(u)=CH. For every node x (x Vmm) there exist n(n 2) 
nodes u1,u2…ui…un (u1,u2…ui…un N(x)) which satisfy class(u1)=CH, class(u2)= 
CH…class(ui)=CH…class(un)=CH respectively. For every node x (x Vch) there 
exists no node u (u N(x)) which satisfies class(u)=CH. 

4   Transmission Deciding Algorithm 

Transmission deciding algorithm executed after clustering algorithm. The following 
control messages will be used in transmission deciding: 

(1) APP0: MM node advertises itself a transmission node. 
(2) APP1: CH node appoint MM node as a transmission node. 
(3) APP2: SM node appoint MM node as a transmission node. 

The following symbols will be used in transmission deciding: 

(1) The value of Boolean function transmission(u) is TRUE if node u does 
transmission, otherwise transmission(u) is FALSE. 

(2) RTMmm(u) represents MM neighbors of u which do transmissions. 
(3) RTMch(u)={x|(x )())(( yNchuNy∈

) (p(x)<p(u))}, where class(u)=CH. 
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(4) There is an equation {ch(u)}= Nch(u) if class(u)=SM. That is to say, ch(u) is the 
unique CH node which is adjacent to u. 

(5) RTMch-2(u)={x|(x )()))(()(( yNchuchNyuNy chmm ∉∧∈
)}, where class(u)=SM. 

(6) RTMch(v,u)={x|(x RTMch(u)) (x N(v))}, where v N(u) and class(v)=MM. 
(7) RTMch-2(v,u)={x|(x RTMch-2(u)) (x N(v))}, where v N(u) and class(v)=MM. 
(8) Boolean function chosen and symbol CHOSEN are introduced for convenience, 

and their meanings are described in the algorithm below. 
(9) D(v,u)={x|(x RTMch(v,u)) (chosen(x)=FALSE)}. 
(10) D2(v,u)={x|(x RTMch-2(v,u)) (chosen(x)=FALSE)}. 
(11) ))(/)(1(|),(|)),(( vinivresidualuvDeuvDeWEIGHT ×+×= λ , where the means of 

residual(v), ini(v) and  are same as mentioned above. De(v,u) represents D(v,u) or 
D2(v,u). 

(12) When the transmission deciding algorithm finished, Rsm represents SM nodes 
which do transmissions, Rmm represents MM nodes which do transmissions, and Rch 
represents CH nodes which do transmissions. 

4.1   Description of Transmission Deciding Algrithm 

When initializing, transmission deciding algorithm assigns transmission(x) TRUE 
and RTMmm(x)  for every node x (x Vch), and assigns transmission(y) FALSE 
and RTMmm(y)  for every node y (y∉Vch). Then the following three sub-algorithms 
are executed to determine the transmission nodes: 

Sub-algorithm 1 determines whether SM nodes to do transmissions. 
Every node u (u Vsm) assigns transmission(u) TRUE if the network consisting 

of ( )()( xNchuNx∈
) Nch(u) Nmm(u) ( )()( xN mmuNx∈

) is separated. 

Sub-algorithm 2 determines whether MM nodes to do transmissions. Sub-
algorithm 2 includes sub-algorithm 2.1, sub-algorithm 2.2 and sub-algorithm 2.3. 

Sub-algorithm 2.1 
Every node u (u Vmm) assigns transmission(u) TRUE and sends APP0(p(u)) 

locally if there exists one node v (v Nmm(u)) which satisfies Nch(u) Nch(v)= . Every 
node x (x (N(u) (Nch(u) Nsm(u)))) assigns RTMmm(x) (RTMmm(x) {u}) when x 
receives APP0. 

Sub-algorithm 2.2 
Every node u (u Vch) appoints MM nodes to do transmissions according to the 

following steps: 

(a) u assigns CHOSEN(u) . 
(b) u assigns chosen(x) TRUE for every node x (x (RTMch(u)  

( )())(( yN chuRTMy mm∈
))) and chosen(x) FALSE for every node x (x (RTMch(u)

)())(( yNchuRTMy mm∈
)). 

(c) u assigns CHOSEN(u) (CHOSEN(u) {v}) and chosen(x) TRUE for every 
node x (x D(v,u)) if node v satisfies p(v)=min{ p(x)|WEIGHT(D(x,u))
{max{WEIGHT(D(y,u))|y Nmm(u)}}}. 
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(d) If {x|(x RTMch(u)) (chosen(x)=FALSE)} , then goto (c). 
(e) u sends APP1(CHOSEN(u)) locally. Every node x (x CHOSEN(u)) assigns 

transmission(x) TRUE when x receives APP1, and every node y (y Nsm(u)) assigns 
RTMmm(y) (RTMmm(y) CHOSEN(u)) when y receives APP1. 

Sub-algorithm 2.3 
Every node u (u Vsm) appoints MM nodes to do transmissions according the steps 

similar to sub-algorithm 2.2 if transmission(u)=TRUE: 
(a) u assigns CHOSEN(u) . 
(b) u assigns chosen(x) TRUE for every node x (x (RTMch-2(u)  

( )())(( yNchuRTMy mm∈
))) and chosen(x) FALSE for every node x (x (RTMch(u)

)())(( yNchuRTMy mm∈
)). 

(c) u assigns CHOSEN(u) (CHOSEN(u) {v}) and chosen(x) TRUE for every 
node x (x D2(v,u)) if node v satisfies p(v)=min{ p(x)|WEIGHT(D2(x,u))
{max{WEIGHT(D2(y,u))|y Nmm(u)}}}. 

(d) If {x|(x RTMch-2(u)) (chosen(x)=FALSE)} , then goto (c). 
(e) u sends APP2(CHOSEN(u)) locally. Every node x (x CHOSEN(u)) assigns 

transmission(x) TRUE when x receives APP2. 
Sub-algorithm 3 determines whether CH nodes to do transmissions. 
Every node u (u Vch) assigns transmission(u) FALSE if d(u)=1. 
It is obvious that the message complexity of each node in transmission deciding 

algorithm is O(1) in the worst case. 

4.2   Proof of Accurateness of NBA 

If all the nodes in WSN can receive the advertised message, that is to say, the one-to-
all semantics of broadcasting can be guaranteed, the broadcasting algorithm is 
accurate. 

In transmission deciding algorithm, sub-algorithm 2.3 depends on sub-algorithm 1, 
2.1 and 2.2, and sub-algorithm 2.2 depends on sub-algorithm 2.1, and the other sub-
algorithms only depend on local information, so sub-algorithms 1, 2.1 and 3 can run 
concurrently. However, for analyzing the accurateness of transmission deciding 
algorithm conveniently, we assume that sub-algorithm 1, 2.1, 2.2, 2.3 and 3 run in 
sequence. Then we explain the sub-algorithms respectively in detail as follows. 

In sub-algorithm 1, SM node u does transmission only when it satisfies the 
proposition that the network consisting of CH and MM nodes which are 1- or 2-hops 
away from u is separated (we call it proposition 1). In fact, proposition 1 is a 
necessary condition for another proposition that the network is separated if node u 
removes from the network (we call it proposition 2). Obviously, proposition 1 is a 
necessary condition of u being a cut point and proposition 2 is a sufficient and 
necessary condition of u being a cut point in Graph Theory. So SM node which does 
no transmission must not be a cut point, and SM nodes which do no transmissions 
must not be point cut because none of them is used to judge proposition 1. Thereby 
the network consisting of Rsm, Vch and Vmm is connected, and broadcasting performs 
accurately after sub-algorithm 1. 
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If Vsm is removed, WSN are divided into multiple connected sub-networks, called 
CH-MM sub-networks, which only consist of CH and MM nodes. And all the CH-
MM sub-networks and Rsm constitute a connected network. Sub-algorithm 2.1 and 2.2 
reduce MM nodes under the precondition that the advertised message can be 
transmitted among CH nodes of a CH-MM sub-network. Sub-algorithm 2.3 reduces 
MM nodes under the precondition that the advertised message can be transmitted 
among CH nodes of CH-MM sub-networks via nodes in Rsm. Then we analyze Sub-
algorithm 2.1, 2.2 and 2.3 in detail as follows. 

According to the properties of nodes after clustering, two CH nodes in a CH-MM 
sub-network can reach each other by combinations of two types of basic path 
appropriately, which are called as P1 and P2 respectively: 

(1) P1 represents the type of path through which two CH nodes can reach each 
other only by MM node sequence. Assume the type of path P is P1 and 
P=c1m1m2…mimi+1…mnc2, where mi is an MM node (1 i n and n 2), and c1 and c2 
are both CH nodes. mi and mi+1 must satisfy Nch(mi) Nch(mi+1)= , otherwise mi and 
mi+1 can reach each other by their mutual CH neighbor and we can get the 
contradictive conclusion that the type of path P is not P1. So mi and mi+1 do 
transmissions in sub-algorithm 2.1. Therefore, CH nodes of a CH-MM sub-network 
which reach each other via P1 still remain reachable after sub-algorithm 2.1. 

(2) P2 represents the type of path through which two CH nodes can reach each 
other only by alternate sequence between MM and CH node. Assume the type of path 
P is P2, and P=c1m1…cimici+1mi+1…cnmncn+1, where ci(1 i n+1) is a CH node and 
mi(1 i n) is a MM node. As ci and ci+1 satisfy (p(ci)> p(ci+1) p(ci+1)> p(ci)), ci(or 
ci+1) will appoint a mutual MM neighbor to do transmission in sub-algorithm 2.2. 
Therefore, CH nodes of a CH-MM sub-network which reach each other via P2 still 
remain reachable after sub-algorithm 2.2. 

Obviously, if there are paths which are combinations of P1 and P2 between two 
CH nodes of a CH-MM sub-network, these two CH nodes still remain reachable after 
sub-algorithm 2.1 and 2.2. 

In sub-algorithm 2.3, it is a necessary condition that MM neighbors of SM node u 
are not neighbors of Nch(u) for the situation that CH neighbors of MM neighbor of u 
are not in the CH-MM sub-network which includes Nch(u). So u in Rsm appoints MM 
nodes to do transmissions to assure the advertised message can be transmitted 
between these CH nodes and Nch(u). 

In sub-algorithm 3, CH node does no transmission only when it is a leaf node. It is 
obvious that broadcasting can perform accurately after sub-algorithm 3. 

In a word, broadcasting can perform accurately by doing transmissions via nodes 
in Rsm, Rmm and Rch after sub-algorithm 1, 2 and 3. So we can conclude that NBA is 
accurate. 

5   Performance Evaluation 

In order to evaluate the performance of NBA, MPR EMPR and NBA are compared in 
terms of average residual energy (ARE), average energy bias (AEB), node fault ratio 
(NFR) and minimum residual energy (MRE). ARE, AEB, NFR and MRE are defined 
as follows: 
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Where in (3) isFault(x)=1 if and only if residual(x)=0, otherwise isFault(x)=0. 
To analyze energy dissipation of broadcasting algorithms conveniently, we assume 

that nodes consume energy only when they do transmissions for broadcasting. The more 
ARE means that there are less redundant transmissions. The less AEB means that traffic 
is balanced better. The less NFR means that the network lifetime is much longer. The 
more MRE means that the network will survive longer. ARE and AEB indicate the 
lifetime of WSN indirectly; NFR and MRE indicate the lifetime of WSN directly. 

5.1   Simulation Model 

Assume that the initial energy of each node in WSN is 1J. Broadcasting performs in 
rounds, and many messages can be advertised in each round. Each node doing 
transmission consumes 0.01J of energy in each round, otherwise nodes consume no 
energy. 

We simulate MPR, EMPR and NBA, and in NBA =0, =0.5, =1 and =5 
respectively. The experiment is described as follows. 

The communication radius of node is 50m. 100 nodes are uniformly deployed at 
random in two dimensioned planes: 50×300m2, 100×300m2, and 150×300m2 to 
generate a connected network respectively. After the energy of each node is 
initialized, broadcasting performs 100 times for each algorithm in each network. Then 
we compute ARE, AEB, NFR and MRE. The experiment is repeated for 100 times, 
and the average result is regarded as the final result. 

5.2   Simulation Results 

The differences in ARE, AEB, NFR and MRE of MPR, EMPR and NBA ( =0, =0.5, 
=1, =5) are shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 4. When NFR or MRE is not 

shown in some figures, it means that the value of it is zero under the corresponding 
experimental conditions. 

We can see that from these four figures: 

ARE of NBA ( =0, =0.5, =1, =5) is far more than that of MPR and EMPR, and 
AER of NBA ( =0, =0.5, =1, =5) is far less than that of MPR and EMPR. 

ARE of NBA ( =0) is the most in that of all algorithms, and AER of NBA ( =0) is 
more than NBA ( 0). The reason is that NBA ( =0) only tries to reduce  
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Fig. 1. ARE after 100 round broadcasting, when node number is 100, different areas 
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Fig. 2. AEB after 100 round broadcasting, when node number is 100, different areas 

transmissions via local network topology, and does not consider to balance traffic to 
dissipate energy of nodes evenly. Therefore NBA ( =0) degrades to non energy aware 
algorithm just same as MPR and EMPR. 

AEB of NBA ( 0) is far less than that of MPR, EMPR and NBA ( =0). 
Moreover, with the increasing of , AEB of NBA ( 0) decreases correspondingly. 
AEB of NBA ( =5) is the least in the experiment. Furthermore, ARE of NBA ( 0) is 
far more than that of MPR and EMPR, and little less than that of NBA ( =0), that is 
the cost paying for balancing traffic. 

NFR of NBA ( =0) is far less than that of MPR and EMPR, and NFR of NBA 
( 0) is zero. 

MRE of MPR, EMPR and NBA ( =0) is zero. MRE of NBA ( 0) is far more than 
that of the other algorithms. Moreover, with the increasing of , MRE of NBA ( 0) 
increases correspondingly. 
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Fig. 3. NFR after 100 round broadcasting, when node number is 100, different areas 
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Fig. 4. MRE after 100 round broadcasting, when node number is 100, different areas 

From above results, we can conclude as follows: 

1) ARE of NBA is far more than that of MPR and EMPR. 
The reason is that: NBA constructs a stable infrastructure and assigns type for each 

node via clustering algorithm at first, and then NBA decides whether nodes to do 
transmissions according to the properties of nodes. As nodes in WSN almost being 
static, little cost is paid for constructing the infrastructure. Moreover, NBA makes use 
of the position of node to reduce redundant MM nodes greatly when appointing MM 
nodes to do transmissions. As position is important for emergency and easy to get for 
nodes which either are equipped with GPS or get positions via location algorithms in 
WSN applications, it is convenient for NBA to acquire the positions of nodes. 

2) ARE of NBA ( 0) is far more than that of MPR and EMPR, and AER of NBA 
( 0) is far less than that of MPR and EMPR. NFR of NBA ( 0) is zero, and MRE 
of NBA ( 0) is far more than that of MPR and EMPR. 

The reason is that: when clustering and deciding transmissions, NBA considers not 
only the local topology but also the energy status of nodes. Therefore, NBA ( 0) 
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reduces the transmissions and balances traffic, so energy is conserved and dissipated 
evenly throughout WSN. Thus fault nodes are deceased, and the lifetime of WSN is 
prolonged greatly.  

In addition, we also can see that the message complexity of each node in MPR and 
EMPR is O(2) and in NBA is O(6). The reason is that NBA pays more cost to 
measure residual energy and balance traffic. However, how to use energy efficiently 
is always the most important factor for WSN to consider, so the cost is worthy. 

6   Conclusion 

In this paper, we propose a clustering based energy aware broadcasting algorithm, 
called as NBA, which reduces transmissions and balances traffic in WSN greatly. 
Making use of characteristics of WSN efficiently, NBA considers not only the local 
network topology to reduce redundant transmissions but also the energy status of 
nodes to dissipate energy evenly in WSN. Simulations show that NBA is much 
efficient and energy is conserved and fault nodes are deceased heavily, so the lifetime 
of WSN is prolonged greatly. And furthermore, NBA outperforms MPR and EMPR 
greatly in WSN. 
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Abstract. Grid computing and pervasive computing have rapidly emerged and 
affirmed respectively as the paradigm for high performance computing and the 
paradigm for user-friendly computing. These two worlds, however, can no 
longer be separated islands. As a matter of fact, pervasive and grid computing 
communities can both benefit from joining the two paradigms. This conjunction 
is already taking place. This paper presents a middleware for pervasive grid 
applications. It consists of a set of basic services that aim to enhance classic 
grid environments with mechanisms for: i) integrating mobile devices in a 
pervasive way; ii) providing context-awareness; and, iii) handling mobile users’ 
sessions. Such services are OGSA compliant and have been deployed as grid 
services in order to be easily integrated in classic grid environments. 

1   Introduction 

During the last decade, new computing models have emerged and rapidly affirmed. In 
particular, terms like Grid Computing and Pervasive Computing have become of 
common use not only in the scientific and academic world, but also in business fields. 

The Grid computing model has demonstrated to be an effective way to face very 
complex problems. The term “The Grid” was primarily introduced by Foster and 
Kesselman to indicate a distributed computing infrastructure for advanced science and 
engineering [1]. Successively, it has been extended to denote the virtualization of 
distributed computing and data resources such as processing, network bandwidth and 
storage capacity to create a single system image, granting users and applications 
seamless access to vast IT capabilities. As a result, Grids are geographically 
distributed environments, equipped with shared heterogeneous services and resources 
accessible by users and applications to solve complex computational problems and to 
access to big storage spaces.  

Differently, the goal for Pervasive Computing is the development of environments 
where highly heterogeneous hardware and software components can seamlessly and 
spontaneously interoperate, in order to provide a variety of services to users 
independently of the specific characteristics of the environment and of the client 
devices [2]. Therefore, mobile devices should come into the environment in a natural 
way, as their owner moves, and transparently, that is owner will not have to carry out 
manual configuration operations for being able to approach the services and the 
resources, and the environment has to be able to self-adapt and self-configure in order 
to host incoming mobile devices. 
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These two worlds are now evolving towards a common paradigm, namely the 
Pervasive Grid Computing [8]. As a matter of fact, from the Grid Computing 
community point of view, it’s now time to integrate mobile devices into the grid 
because they are becoming of common use for accessing to services in any distributed 
environment. Moreover, it is possible to enhance the QoS of existing Grid services 
with characteristics, like the context-awareness and the pro-activity, which are proper 
of the Pervasive Computing. On the other hand, Pervasive Computing environments 
can proficiently benefit from grid technologies both to interconnect existing and 
emerging pervasive environments and to build and deploy new services that require 
high performance computing and large data resources [7].  

The rest of the paper is organized as follows. Section 2 discusses some motivations 
and related work. Section 3 describes the architecture of the middleware 
infrastructure. Section 4 details the basic services. In section 5, a running scenario is 
presented. Finally, section 6 concludes the paper. 

2   Motivations and Related Work 

2.1   Motivations 

Mobile and wireless devices have not been considered, for a long, as useful resources 
by traditional Grid environments. However, considering the Metcalfe’s law, which 
claims that usefulness of a network-based system proportionally grows with the 
number of active nodes, and also considering that mobile devices capabilities have 
substantially be improved over the time, it can justifiably be stated that mobile and 
wireless devices are now of interest for the Grid community [3].  

In particular, they have to be incorporated into the Grid either as service/resource 
consumers or as service/resource providers [5].  

However, integration is not costless [6]. This is mainly due to the consideration 
that current Grid middleware infrastructures don’t support mobile devices, not only 
because they have not been devised taking into account pervasive requirements like 
spontaneity, transparency, context-awareness, pro-activity, and so on, but also for 
three main reasons: i) they are still too much heavy with respect to mobile and 
wearable equipments; ii) they are not network-centric; i.e. they assume fixed TCP/IP 
connections and do not deal with wireless networks and other mobile technologies; 
and, iii) they typically support only one interaction paradigm, that is SOAP 
messaging, whereas the Pervasive model requires a variety of mechanisms [9].  

2.2   Other Related Work 

Over the last years, some valuable efforts have been done in order to make Grid 
architectures able to support wireless technologies and mobile devices. In particular, 
the paradigm of Mobile Grid or Wireless Grid has been proposed [3-6]. More 
recently, this paradigm has evolved in the Pervasive Grid model [7-8], which again 
aims at making Grid environments able to integrate mobile devices, but in a pervasive 
way, that is seamlessly and transparently. In addition to this, the final objective is to 
enhance Grid environments with characteristics like context-awareness and pro-
activity that are typically found in Pervasive environments. 
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This effort has officially been formalized in 2003 when a Global Grid Forum 
Research Group, called Ubicomp-RG, was established in order to explore the 
possibilities of synergy between Pervasive and Grid communities. 

Some interesting work towards the realization of Pervasive Grids has been done 
and here is reported.  

In [4] mobile devices are considered as active resources for the Grid. In particular, 
authors developed a software infrastructure for deploying Grid services on mobile 
nodes and making them active actors in the Grid. This solution relies on a lightweight 
version of the .NET framework, namely the .NET Compact Framework, which 
enables to deploy on mobile devices simple Grid Services that require limited amount 
of resources. It is important to note that such a solution applies only to mobile devices 
equipped with the Microsoft Pocket PC operating system and requires several manual 
operations for installation and configuration. 

In [9] authors argue that the SOAP messaging, which is the current interaction 
paradigm for standard grid middleware infrastructures, is not adequate to face needs 
of pervasive grids. They developed several plug-ins and an handling component for 
enlarging the set of available interaction mechanisms in order to make grids able to 
support heterogeneous software components. 

Another middleware infrastructure for pervasive grids have been presented in [10]. 
In that case, authors have concentrated their effort on the extension of existing 
resource manager components in grid applications for making them able to register 
mobile devices. 

2.3   Our Contribution 

Our contribution consists of a set of basic services that realize a middleware 
infrastructure, namely MiPeG, for the realization of Pervasive Grids. In particular, 
MiPeG extends existing Grid environments with the following characteristics: 

a. Spontaneous and transparent integration of mobile devices – This 
characteristic makes the grid able to integrate mobile devices in a pervasive 
way. In particular, integration takes place without any manual configuration 
operation. The realized services grant access to mobile devices. In addition to 
this, they reliably handle implicit disconnections of mobile devices. Indeed, a 
mobile user can leave the environment without concerning about pending 
services. In this case, the environment detects disconnections and handles 
pending computations. 

b. Context-awareness – Some mechanisms for context-awareness and location-
awareness are provided. In particular, we developed services for i) locating 
mobile users in a physical area; ii) tracking their activities within the 
environment; and, iii) personalizing their access based on rights, device 
capabilities, location, and so on. 

c. Management of mobile user’s sessions – As users physically move in the 
environment, by carrying their devices, their running applications, as well as 
their virtual environments, are updated and made available for them in the new 
location. This is performed by services that handle mobile sessions. 
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3   Architecture of MiPeG 

The middleware that we have developed consists of a set of basic services, as shown 
in figure 1. Such services are exposed as Grid Services; i.e., they are compliant with 
the OGSA specifications [11].  

MiPeG integrates with the Globus Toolkit [12], which is the the-facto standard 
platform for Grid applications, in order to extend its functionalities and to provide 
mechanisms for augmenting classic grid environments with pervasive characteristics. 
It also uses the JADE framework [13] to implement some mobile agent based 
components.  

It is important to note that MiPeG supports two main interaction mechanisms: the 
SOAP messaging, for Web and Grid Services, and a publish-subscribe model for 
more generic, inter-component, asynchronous communications. 

MiPeG consists of the following basic services: 

• AsynchronousCommunicationBroker – This component is in charge of 
dispatching asynchronous events in the pervasive grid environment. It 
implements the WS-BrokeredNotification specification [14]. Moreover, it 
extends such a specification by classifying events and handling hierarchies of 
classes of events. This extension provides a more flexible and efficient 
mechanism for subscriptions and communications. 

• Access&LocationService – This service provides network access to mobile 
devices and locates them in the environment [16]. Current implementation 
grants access and locates 802.11 WiFi enabled devices. It also locates RFID 
tagged objects [17]. Moreover, we are developing and integrating 
mechanisms for granting access and locating Bluetooth enabled devices. 
Definitively, this service is in charge of communicating to the environment i) 
incoming mobile objects, ii) location changes for active objects, and iii) 
leaving objects. 

• SessionManagerService – This service handles sessions for mobile devices. It 
consists of mobile agents that maintain the list of services activated by 
mobile users. A mobile agent is created when a new device comes in the 
environment, required to move accordingly with device movements, and 
destroyed when the mobile device leaves the environment. 

• DeviceService – This service handles the list of mobile resources active in the 
environment. 

• PeopleService – This service provides basic authentication mechanisms and 
handles the list of mobile users active in the environment. 

All software elements are full open-source Java components. Moreover, most of 
them have a WSDL interface, consist in a GAR file generated with the Ant tool, and 
are deployed as Grid Services over the Globus Toolkit 4.0 platform. In addition, some 
services present Web interfaces realized with the java JSP and Servlet technologies 
and interact with MySQL databases. 
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Fig. 1. Architecture of MiPeG 

4   Details on MiPeG’s Services 

4.1   The Asynchronous Communication Broker 

The Asynchronous communication service provides an interaction mechanism based 
on the event publish-subscribe paradigm.  

It implements the WSBrokeredNotification specifications. It also extends such 
specifications with the possibility of publishing and subscribing hierarchies of classes 
of events.  

In particular, a class of events is a collection of events that are logically related. In 
this case, rather than subscribing every event of the class, a consumer can make a 
unique operation of subscription for the entire class and be notified for every event. 

Moreover, it handles hierarchies of classes. The concept of hierarchy has been 
derived from the Object Oriented inheritance technique. Since, classes can be related 
in hierarchies, when a consumer subscribes one class, it automatically subscribes 
every upper class of the hierarchy. An example is shown in figure 2. In the figure, 
Consumer1 and Consumer2 respectively subscribe classes C1 and C6. Because of the 
inheritance property of the hierarchy, Consumer1 is notified only for events 
appertaining to class C1. Differently, Consumer2 is notified for events of every class 
except C5. This is due to the fact that class C6 inherits from classes C2, C3, and C4, 
 

 
 
 
 
 
 
 
 
 

Fig. 2. A possible hierarchy of classes of events 
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which in turn inherit from class C1. In particular, it is shown the case of a producer 
that notifies an event of class C1. This event is dispatched both to Cosumer1 and to 
Consumer2. 

This model represents an extension of the WSBrokeredNotification specifications. 
As a matter of fact, the WSBrokeredNotification specifications neither support 
hierarchies of classes nor simple classes, but require that a consumer subscribe every 
specific event for which it wants to be notified. 

In figure 3, the WSDL interface of the Asynchronous Communication Service is 
shown. The Broker exposes functions for subscribing and unsubscribing classes of 
events, notifying events, creating and handling hierarchies. In addition, two 
hierarchies, which will be used in the running scenario, are detailed. In particular, 
hierarchy 1 consists of three classes. Class MOBILITY contains the event 
NEW_LOCATION. Class PRESENCE contains the events NEW_DEVICE and 
DEVICE_HAS_LEFT. Finally, class LOCALIZATION groups all events. Hierarchy 
2 consists of a single class, namely USER_PRESENCE, which contains events for 
logging in and out an user. 

Further information on the proposed model and the realized service can be found in 
[15]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Interfaces and architecture of the ACB 

4.2   Access&Location Service 

This service is able to locate active mobile objects like WiFi enabled devices and 
RFID tagged entities. It offers both locating and location functions; that is, the 
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It notifies to the environment events of the class LOCALIZATION.  
In addition to location and locating functions, this service provides basic network 

connectivity facilities for incoming mobile devices and detects leaving mobile 
objects. 

The service architecture consists of two layers and the following components: 

• WiFiLocatingComponent – This component is in charge of locating WiFi 
enabled mobile devices. In particular, a WiFi location is identified by the area 
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covered by a specific wireless Access Point (AP). In the environment, one 
WiFiLocatingComponent is deployed per every wireless AP. Current 
implementation uses 3Com Office Connect Wireless 11g Access Points. 
Whenever a mobile device connects with the AP, the AP writes an event in 
its log file. The WiFiLocatingComponent periodically interrogates such a log 
file and communicates to the LocationComponent when a new device has 
connected. The WiFiLocatingComponent maintains information on devices 
locally connected to its AP. 

• RFIDLocatingComponent – This component is in charge of locating RFID 
tagged objects. An RFID location is identified by the area covered by a specific 
RFID reader. Current implementation uses the passive, short-range (30 cm), 
Feig Electronic RFID, model ISC.MR 100/101. When a tagged object enters 
the area covered by an antenna, the RFID reader generates an event that is 
caught by the RFIDLocatingComponent. Then, the RFIDLocating- 
Component communicates to the LocationComponent such an event. 

• DHCPComponent – This component implements a DHCP service. It 
provides network connectivity to incoming IP enabled devices as a standard 
DHCP, but it has also additional functionalities. In particular, it is able to 
release an IP address on demand. By this way, if a device has left the 
environment, the LocationComponent requires that the DHCPComponent 
free the IP address of that device.  

• EcoComponent – This component sends ping messages towards mobile IP 
devices in order to detect leaving objects. When an implicit disconnection is 
detected, the component communicates such an event to the 
LocationComponent that notifies the DEVICE_HAS_LEFT event. 

• LocationComponent – This component is in charge of handling global location 
states obtained by combining information coming from Locating components. 
When a mobile object changes its position the NEW_LOCATION event is 
notified. Moreover, when a mobile object is detected for the first time by a 
LocatingComponent, it is added to the active device list and the NEW_DEVICE 
event is notified. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Interfaces and architecture of the Access&Location Service 
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4.3   People Service 

This service provides basic authentication mechanisms and handles active users in the 
environment. As shown in figure 5, it exposes a Web interface for authenticating 
connected users and for handling authorized users. An authorized user can login by 
means of a jsp form application and logout either explicitly or implicitly by closing 
the web page. moreover, some administrative functions are available. The 
environment can interact with the service via the WSDL interface in order to get the 
list of active users or the rights of a specific user.  

The service also notified to the environment whenever a user logs in or logs out. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Interfaces and architecture of the People Service 

4.4   Device Service 

This service handles a list of active mobile resources. In particular, when a new 
mobile device is detected it is inserted in the list of active mobile resources. The 
mobile device is removed from the list when it is no longer available in the 
environment.  

The service subscribes the class LOCALIZATION in order to be notified for new 
devices and for devices that have changed their position or have left the environment.  

Finally, the Device Service also exposes WSDL functionalities for looking up in 
the list of active devices.    

 
 
 
 
 
 
 
 
 

Fig. 6. Interfaces and architecture of the Device Service 
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4.5   Session Manager Service 

The SessionManagerService has two major functions. It handles both the list of 
services available at every location of the environment (in a pervasive scenario some 
services could not be available everywhere but only at specific locations) and the list 
of services activated by every user.  

As shown in figure 7, it consists of the following components: 

• LocationAgent – This is an agent deployed at a specific location. There’s a 
LocationAgent per every location. It handles the list of application services 
available at its location. Services availability may depend not only on the 
physical location but also on user’s rights and profile. In particular, several 
levels of access are defined. 

• PersonalAgent – This is a mobile agent that is created when a new device 
appears in the environment. In particular, the SessionManagerComponent, 
which is notified for the NEW_DEVICE event, creates the PersonalAgent at 
the location where the mobile device has been detected. After its creation, the 
PersonalAgent subscribes the class USER_PRESENCE and interacts with the 
local LocationAgent to have the list of available services. From this moment 
on, the PersonalAgent catches user’s requests and maintains the list of 
services activated by him. In the case the user authenticates himself, the 
PersonalAgent is notified by the LOGGED_IN event, then interacts once 
again with the LocationAgent to have the new list of available services. When 
a device moves in a new location, the SessionManagerComponent, which 
receives the NEW_LOCATION event, requires that the PersonalAgent 
migrate and update the list of services available at the new location. Finally, 
in case the user logs out or his device disconnects, the PersonalAgent handles 
pending computations.  

• SessionManagerComponent – This component is an agent container. It 
creates both Personal and Location Agents. It also drives Personal Agents to 
move accordingly with owner movements. In particular, it creates a new 
PersonalAgent when it receives a NEW_DEVICE event; it requires that the 
PersonalAgent move to a new location when it catches a NEW_LOCATION 
event; finally, it requires that the PersonalAgent destroy itself when the 
DEVICE_HAS_LEFT event is notified. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Interfaces and architecture of the Session Manager Service 
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All components for the SessionManagerService have been developed over the 
JADE framework, which is fully compliant with the FIPA specifications [18]. 

5   Experimental Scenario 

The experimental scenario consists of a physical site located in a three floors building. 
The virtual environment uses two floors of the building.  

Floor zero has a computing laboratory in which a cluster of 24 linux PCs, a 12 
processors Silicon Graphics workstation, and a motion capture system are deployed. 
Such resources are collected in a wired grid built at the top of the Globus Toolkit 4.0 
platform. 

On floor two, wireless access to the grid is available. As a matter of fact, two 
3Com Office Connect Wireless 11g Access Points identify two distinct locations. L1 
is a student laboratory where our students develop their activities and periodically 
perform E-Tests. L2 is a multimedia room equipped with a projector, an interactive 
monitor, and other multimedia devices. 

Some services are available: 

• MotionCaptureService – This service relies on the motion capture system. An 
actor (equipped with optical markers) moves around in the multimedia 
laboratory. Several cameras capture his movements that are reproduced on a 
graphic station. The graphic station shows a skeleton, which moves 
accordingly with the actor, and records data movement in a file;  

• RenderingService – This service enables users to submit row motion data and 
to build 3D graphic applications. This service is exposed as a Grid Service 
and is available at every location (L1, L2); 

• PresentationService – This service enables a user to project its presentation in 
the multimedia room. The service receives a pdf/ppt file via a dialog form 
and then enables speaker to control the presentation flow. This is an 
interactive service, which requires the speaker to be in the room for 
presentation. As a consequence, the service must be available only in the 
multimedia room (L2); 

• ETestingService – This service performs on-line evaluation tests for 
courseware activities. When a session test starts, students must be in the 
student laboratory. Evaluation tests are synchronized and students have a 
predefined period of time for completing each test section. Students can 
interrupt their test by explicitly closing the service or by leaving the 
multimedia room. This service is exposed as a Grid Service, but it must be 
available only in the student laboratory (L1); 

In this environment, services availability depends on user location, rights, and 
context. As a matter of fact, we can report some example scenarios: 

1. The PresentationService is available only to users that are located in L2. In 
particular, a mobile user, who moves in location L2, is followed by his 
PersonalAgent. The PersonalAgent interacts with the LocationAgent and 
updates the list of available services. From now on, the mobile user can get 
access to the PresentationService. 
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Fig. 8. Real environment 

2. The ETestingService is available for every authenticated mobile user within 
the student laboratory. In particular, while a test session is active, a mobile 
user that enters in location L1 can get access to the service (after having 
authenticated himself). On the other hand, if he leaves the location L1, the 
ETestingService, which is notified by the Access&LocationService, 
automatically disconnects the leaving user and denies any further tentative of 
reconnection. 

3. The RenderingService is available for authorized users at every location. 
However, the QoS is improved by context-awareness. Indeed, in the case a 
mobile user launches such a service while in location L1, rendered data are 
reproduced on his mobile device. After that, if the user moves in the 
multimedia room (L2), rendered data are automatically switched on the 
interactive monitor (if idle). 

We have monitored the access to application services for three weeks. As reported 
in table 1, we have registered 155 total accesses and 49 accesses through mobile 
 

Table 1. Number of accesses to application services  

Service Mobile Accesses Wired Accesses Total Accesses
Motion Capture Service 0 4 4
Rendering Service 7 20 27
Presentation Service 6 0 6
E-Testing Service 36 82 118
Total 49 106 155
Percentage 31,61% 68,39%  
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devices (32%).  Figure 9 represents such results. It is worth noting that access through 
mobile devices is granted because the application services are equipped with multi-
channel interfaces and because MiPeG’s basic services enable mobile devices to 
connect in a transparent and spontaneous way and the environment to efficiently 
handle and locate them. Therefore, a classic grid infrastructure wouldn’t be able to 
offer services to mobile devices. 
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Fig. 9. Distribution of accesses  

In the previous examples, we have shown how our Grid environment already 
benefits of developed pervasive characteristics.  

In addition, we are realizing an advanced multimedia service, for immersive virtual 
worlds, by integrating 1) the MotionCaptureService, 2) the Real-Time RenderingService, 
3) RFID locating technologies, and other wearable equipments like multimedia helmets 
and gloves. In particular, the service consists of a virtual world, which is visualized by a 
mobile user through an helmet. The mobile user interacts with the virtual world, 
which is rendered in real time by a Grid service. User actions and movements are 
caught by the RFID locating mechanism and notified to the rendering service, which 
consequently builds a new scene. This is just an example of new application service 
that can be realized by combining Pervasive and Grid Computing. 

6   Conclusions 

This paper has described an ongoing middleware for pervasive grids. The middleware 
provides basic services for integrating mobile devices in the grid and for extending 
the grid with context-awareness. 

Currently, integration of mobile devices has taken place mostly for enabling 
mobile users to get access to grid services in a pervasive way. Future work will aim at 
integrating mobile devices as service providers. In this case, mobile devices would act 
not only as interfaces towards the grid, but they would be perceived as available 
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resources for the grid itself, that is they could receive code to be executed or host 
special services (say for an example measurement systems) for the grid. Obviously, 
this requires the development of advanced mechanisms for resource management that 
take into account issues related to the mobility of such devices like intermittent 
network connections, battery dependency, and so on. In order to achieve this target, 
we are 1) extending the Glue Schema that is the standard information model for the 
grid’s resources and making it able to take into account properties of mobile devices 
not considered until now; 2) developing monitoring tools (like the Gram) to catch the 
mobile devices state; and 3) extending the GT4’s Monitoring&Discovery Service to 
actually integrate mobile devices into the grid. 
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Abstract. Clusters are increasingly interconnected to form multi-cluster sys-
tems, which are becoming popular for scientific computation. End-users often
submit their applications in the form of workflows with certain Quality of Ser-
vice (QoS) requirements imposed on the workflows. These workflows describe
the execution of a complex application built from individual application compo-
nents, which form the workflow tasks. This paper addresses workload allocation
techniques for Grid workflows. We model individual clusters as M/M/k queues
and obtain a numerical solution for missed deadlines (failures) of tasks of Grid
workflows. The approach is evaluated through an experimental simulation and
the results confirm that the proposed workload allocation strategy combined with
traditional scheduling algorithms performs considerably better in terms of satis-
fying QoS requirements of Grid workflows than scheduling algorithms that don’t
employ such workload allocation techniques.

1 Introduction

Clusters are becoming important contenders for both scientific and commercial ap-
plications. Clusters with different performance and architectures, owned by different
organisations are now increasingly interconnected to form a multi-cluster computing
system [12].

Complex scientific experiments within a Grid are increasingly specified in the form
of workflows, which detail the composition of distributed resources such as compu-
tational devices, data, applications, and scientific instruments [3]. Users who submit
a workflow to the Grid will often have constraints on how they wish the workflow
to perform. These may be described in the form of a Quality of Service (QoS) docu-
ment which details the level of service they require from the Grid. This may include
requirements on such things as the overall execution time for their workflow; the time
at which certain parts of the workflow must be completed; cost to the user. In order to
determine if these QoS constraints can be satisfied it is necessary to store performance
information of resources and applications within the Grid. Such information could also
be performance data for software to be run on a computational resource; resource in-
formation about speed and reliability, mean service time and mean arrival rate. Here
we see that existing Grid middleware for resource descriptions [20] and performance
repositories [6] may be used for the storage and retrieval of this data.

Scheduling within Grid is mainly based on two techniques. Either scheduling is per-
formed based on real time information such as waiting time in the queue, residual pro-
cessing time; or on average-based metrics such as mean service rate, mean arrival rate.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 499–510, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



500 Y. Patel and J. Darlington

Real time information based algorithms generally perform better than average-based
strategies [21]. However, obtaining real time information from a distributed system such
as Grid, leads to high overheads. Moreover resources may be distributed geographically,
which means that obtaining instantaneous information about the states of geographi-
cally distributed resources can lead to substantial delays and consequently to inaccurate
scheduling decisions. Also, it may not be possible to obtain instantaneous information
at any arbitrary point in time for some distributed systems. Thus, it is necessary to
develop approaches which are not dependent on obtaining accurate instantaneous in-
formation. The use of average-based strategies seems to be an appropriate approach.
Average-based scheduling, for jobs based on FCFS (First Come First Served) rule in
a Grid, consists of two stages. The first stage deals with distributing the workload re-
ceived by a central entity such as a brokering service, which connects several clusters.
This process is referred to as workload allocation strategy in this paper. The second
stage deals with dispatching jobs to resources underneath the clusters using appropriate
scheduling algorithms [15]. This second stage is referred to as job dispatching strategy
in this paper. The workload allocation scheme determines the proportion of workload
directed to each cluster, while the job dispatching strategy distributes the incoming jobs
to cluster resources in a way that satisfies the QoS requirements of the jobs. This pa-
per is organised as follows. Section 2 presents related work and compares our work
with others in the field. Section 3 describes the Grid model (figure 1) considered and
assumptions held in this paper. Workload allocation strategy in terms of minimising
workflow task failures is obtained numerically in Section 4 and the performance of
the workload allocation and scheduling strategy is evaluated in Section 5. Finally, we
conclude the paper in Section 6.

Brokering Service

Scheduler Scheduler Scheduler Scheduler

Cluster 1

Cluster 2 Cluster 3 Cluster 4

Local
Queue

1
2 3 4

Fig. 1. Grid Model

2 Related Work

Multi-cluster systems have been studied widely and there is considerable research ma-
terial available [8] [16] [12]. Projects such as EGEE (Enabling Grids for E-Science)
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[2] aim to integrate various national, regional and thematic Grid efforts, in order to cre-
ate a seamless multi-cluster Grid infrastructure for the support of scientific research. It
has been shown that it is hard to obtain an optimal workload allocation in a distributed
and heterogeneous system such as Grid [21] [17]. Banawan et al. [18] develop an op-
timization function for allocating workload to resources. However, the solution to the
objective function is not given and the optimization function is limited to a single clus-
ter only and does not extend to distributed systems such as Grid. A workload allocation
technique is developed by Tang et al. [21], which aims to optimize response times in
a heterogeneous cluster. Tang et al. obtain both an objective function and its solution.
However they assume that each cluster has only one computing node.

Using clusters to process jobs with QoS requirements is becoming propular as scien-
tific experiments and projects increasingly make use of distributed systems such as Grid
to satisfy their compute-intensive needs [7] [9]. Kao et al. [4] use two homogenous non
real time servers to provide a service that will satisfy QoS requirements of jobs. Zhu
et al. extend the work of Kao et al. by using a homogeneous cluster that aim to satisfy
QoS requirements of jobs [19]. The performance of scheduling based on minimising
failures to meet waiting time requirements (the maximum time a job can wait before
execution) of jobs is also evaluated in [19]. However, their work is confined to a single
cluster only and does not consider a distributed system such as Grid.

Our work focuses on developing a workload allocation strategy which minimises
failures of QoS-constrained workflows in a Grid. The Grid is modelled as a cluster
of clusters (figure 1), where jobs in the form of workflows arrive with certain QoS
requirements imposed on workflows. Relevant Grid components such as performance
repository, workflow management system and others are not shown in figure 1, in order
to focus on the central topic of the paper.

3 The Model

We model each cluster as an M/M/k queue [10], where k is the number of computa-
tional nodes in the cluster. The mean service rate of a node in cluster i is ui and the
arrival rate is λi. Each cluster has its own individual scheduler. Jobs to this scheduler
are dispatched via a brokering service, which in turn connects different clusters. The
brokering service receives jobs in the form of workflows, which are composed of indi-
vidual tasks. When a workflow task finishes, further tasks must be started. Hence the
brokering service dispatches jobs of new and old workflows to appropriate clusters us-
ing a workload allocation strategy developed in the next section. The jobs are executed
in the order they are received. The scheduler of a cluster sends jobs to its processing
nodes using a scheduling strategy. For simplicity we have considered round-robin and
random job dispatching only in our experimental evaluation. However this is not a re-
striction and any other traditional scheduling strategy could be used in place. The jobs
received by the clusters follow a uniform distribution of deadline requirements, as as-
sumed in [4] [19]. Workflows have overall deadline constraints, which are explicitly
specified by the end-user. There could also be other constraints such as cost, reliability,
network constraints. A full list of constraints is beyond the scope of this paper. However
for simplicity, we keep the QoS requirements of workflows limited to overall deadline
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constraints. Deadlines for individual tasks of workflows are calculated by the brokering
service using a formula given in the experimental evaluation. We define a workflow
failure as failure in meeting the overall workflow deadline. Failure in meeting an inter-
mediate workflow task deadline is not a workflow failure. We thus minimise workflow
failures by minimising failures of intermediate workflow tasks.

4 Theoretical Analysis of Minimisation of Workflow Task Failures

In this section we obtain a numerical solution for failure of tasks of Grid workflows in
a cluster and a non-linear program for computing workload allocation for clusters. The
solution of the non-linear program is the workload proportion for each cluster.

4.1 Workload Allocation Based on Failure Minimisation of Workflow Tasks

In this section, a workload allocation strategy using failure of tasks of Grid workflows
for a cluster is developed. The Grid consists of n clusters, where each cluster is mod-
elled as an M/M/k queue with infinite customer capacity, meaning the number of jobs
that can wait in the queue of a cluster are infinite. Hence essentially a cluster is indeed
an M/M/k/∞ queue. Cluster i has ki processing nodes, where each processing node
has a mean service rate of μi. We consider that the brokering service receives jobs with
an arrival rate of λ, out of which λi is allocated to ith cluster. Thus the arrival rate can
be expressed as the sum of workload proportions of clusters, given by equation 1.

λ =
n∑

i=1

λi (1)

Let ri(t) and Ri(t) be the PDF (Probability Density Function) and CDF (Cumulative
Density Function) of the response time of cluster i respectively for an M/M/k queue.
Response time of a job consist of its waiting time in the queue of a cluster and its service
time. The PDF of the response time for an M/M/k queue is given by equation 2 [10].
By definition, CDF of the response time can be represented by equations 4 and 5.

ri(t) = (1− kiρ
ki

ki!(ki − ρ)(
∑ki−1

j=0
(kiρ)j

j! + (kiρ)ki

ki!(1−ρ) )
)e−μit

− μiρ
ki(e−μi(ki−ρ)t − e−μit)

(
∑ki−1

j=0
(kiρ)j

j! + (kiρ)ki

ki!(1−ρ) )(ki − 1)!(1− ki − ρ)
(2)

ρ =
λi

kiμi
(3)

Ri(t) = P (T ≤ t) (4)

Ri(t) =
∫ t

0

ri(t)dt (5)



Allocating QoS-Constrained Workflow-Based Jobs in a Multi-cluster Grid 503

We assume a uniform distribution of deadlines of jobs to be allocated to clusters, as
assumed in [4] [19]. This is not a restriction and general distributions could be accomo-
dated as well, while still keeping the analysis effective. Let the lower and upper bounds
of deadline of jobs to be allocated to clusters be L and U respectively. Its PDF d(t) is
given by equation 6.

d(t) =
1

U − L
(6)

Now we can compute expected failures for cluster i using the following integral, given
by equation 7, where Failuresi are workflow task failures for cluster i. Equation 7
is an integral that computes a continuous expectation. It computes expected failures for
an arrival rate of λi. The term 1 − Ri(t) is the probability of jobs to finish in time
greater than t and the term d(t) is the probability of the number of jobs requiring t time
to finish. Thus the product of the two terms compute a failure probability, which when
multiplied with λi yields the expected number of failures.

Failuresi = λi

∫ U

L

d(t)(1 −Ri(t))dt (7)

Solving the integral, we obtain expected failures for cluster i, given by equation 8.

Failuresi = 1− y1 + y2μi(ki − ρ)− y2

μi

+(
1

U − L
)(

y1

μi
+

ki − ρ

μi
)(e−μiL − e−μiU )

−(
y2

U − L
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In case of arbitrary distribution of deadlines of jobs, the distribution can be expressed
mathematically given by equation 9.

P (d1) = p1, P (d2) = p2, ......, P (dm) = pm (9)

The sum of probabilities of m jobs is equal to one. The terms d1 to dm are the deadline
allocations of jobs. We can express expected failures for cluster i given by equation 10.

Failuresi = λi

n∑
i=1

P (t)(1 −Ri(t)) (10)
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Thus total failures expected is the sum of expected failures for all clusters, given by
equation 11.

Failures =
n∑

i=1

Failuresi (11)

The objective is to minimise total failures. We can now write the minimisation problem
represented by equations 12 to 14.

minimise[
n∑

i=1

Failuresi] (12)

subject to

n∑
i=1

λi = λ (13)

∀i, 0 ≤ λi ≤ λ (14)

The above problem can be solved using appropriate non-linear optimisation techniques.
We solve it as constrained Lagrange multiplier problem. We use GAMS [1] language to
model the non-linear problem and use dicopt [11] as the optimisation solver by Carnegie
Mellon University, to solve it.

5 Experimental Evaluation

In this section we present experimental results for the workload allocation and job dis-
patching techniques described in this paper.

5.1 Setup

Table 1 and 2 summarise the experimental setup. We have performed 3 simulations, the
first with workflow type 1, second with workflow type 2 and in the third simulation,
workload is made heterogenous. The workflows experimented with are shown in fig-
ure 2. Workflow type 1 is quite simple compared to type 2, which is a real scientific
workflow. In the first two simulations, the workflows are all similar but having differ-
ent overall workflow deadlines. In the third simulation, workload is made heterogenous
(HW), meaning any of the three workflows shown as heterogenous workload, in figure
2 could be submitted. Apart from that, the workflows have different overall workflow
deadlines. Cluster setups for different simulations are shown in table 1. We have per-
formed 10 runs in each different setup of a simulation and averaged out the values.
Initially 500 jobs allow the system to reach steady state, the next 1000 jobs are used
for calculating statistics such as mean execution time of a workflow, mean workflow
failures and mean utilisation of a cluster. The last 500 jobs mark the ending period of
the simulation. The simulation is developed on top of simjava 2 [5], a discrete event
simulation package. The Grid size is kept small in order to get an asymptotic behaviour
of workflow failures, as coefficient of variation (CV) of workflow task execution time
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Fig. 2. Workflows

Table 1. Clusters setup

Cluster Machines (Simulation 1/3) Machines (Simulation 2) Avg. Speed (MIPS)
1 6 3 14000
2 6 3 10000
3 6 3 5000
4 6 3 3000

Table 2. Simulation parameters

Simulation 1 2 3
Arrival Rate (λ) (per sec) 1.5-10 0.1-2.0 1.5-3.6
Task Mean (μ) (sec) 3-12 3-10 3-12
Task CV = σ/μ 0.2-2.0 0.2-1.4 0.2-2.0
Workflows Type 1 Type 2 Heterogenous Workload (HW)
Workflow deadline (deadlineW ) (sec) 40-60 80-100 40-60

or arrival rates (λ) of workflows are increased. Deadlines of individual tasks of work-
flows are calculated using equation 15. In order to compute deadlines of workflow
tasks, we put no restriction on the nature of their execution time distributions (general
distributions with finite mean and variance) and compute deadlines in a way such that
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95% of jobs would execute in time under the calculated deadline. Equation 16 is the
cumulative density function of execution time distribution associated with a workflow
task. Such bounds or confidence intervals on the execution time can be computed using
various techniques such as Chebyshev inequality [13], Monte Carlo approach [14] and
Central Limit Theorem [13] or by performing finite integration, if the underlying exe-
cution time PDFs are available in analytical forms. Deadline calculation takes care of
all possible execution paths in a workflow. deadlineW is the overall workflow deadline
for any possible path in a workflow, as shown in table 2. We provide an example for the
first task of workflow 2 in figure 2. Mean of the execution time (μ) and coefficient of
variation of the execution time (CV) are specified in table 2 with respect to a reference
machine. Equation 15 is scaled with reference to deadlineW , as it is for the first task
of the workflow. Subsequent workflow tasks’ deadlines are scaled with reference to the
remaining workflow deadline.

deadline1 =
X1

X1 + X2 + X3 + X4 + X5
deadlineW (15)

P (0 ≤ x ≤ Xi) = 0.95 (16)

5.2 Results

The job dispatching strategies used with our workload allocation scheme (FF) are round-
robin (RR) and random scheduling (RANDOM). These two scheduling strategies are
compared with global weighted round-robin (GWRR) and real time information based
least-loaded scheduling (RTLL). The GWRR scheme calculates the proportion of work-
load based on the total processing capacity of each cluster. Hence, higher the total pro-
cessing power, higher the workload proportion for the cluster. The least-loaded scheme
selects those cluster nodes which can satisfy the deadlines of jobs. The workflows don’t
have any slack period, meaning that they are scheduled without any delay as soon as
they are submitted. The main comparison metrics between the schemes are mean exe-
cution time of workflows, workflow failures and utilisation of clusters as we increase λ
and CV. However we will keep our discussion limited to failures as the main comparison
between the schemes is their ability to satisfy QoS requirements.

5.3 Effect of Arrival Rate and Workload Nature

Referring to figures 3 and 4, for low arrival rates, FFRR performs similar to RTLL.
However its performance compared to RTLL drops as λ increases. However FFRR and
FFRANDOM schemes significantly outperform GWRR. This trends continues, but the
advantage gets reducing as arrival rates increase. This can be explained as follows.
When arrival rates increase, more work needs to be scheduled in less time and the aver-
age response time is an increasing function of arrival rate, as is evident from equation
8 in section 4. Hence failures due to missing deadline assignments increase and as
a consequence workflow failures increase. For both low and high CVs, at low arrival
rates, FFRR performs similar to RTLL. Referring to figures 5 and 6, for low arrival
rates, FFRR performs similar to RTLL. However its advantage over GWRR is signif-
icant. Referring to figures 7 and 8, the situation is similar to the above cases. Hence
heterogenous workload does not change the behaviour of the schemes.
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5.4 Effect of CV of Execution Time of Workflow Tasks

For both low and high CVs of execution time of jobs, the nature of graphs are similar,
however failures increase as CV increases. In case of heterogenous workload, the graphs
climb more steeply compared to the case of type 1 workflow. In all cases FFRR signif-
icantly outperforms GWRR. This shows that the variability of execution time does not
significantly affect the nature of graphs for different schemes. However the advantage
of a particular scheme over others reduce as failures reach limiting values asymptoti-
cally. As CV is increased, failures increase because workflow jobs take longer time to
execute and thus tend to complete near their assigned deadlines or even fail to meet
their deadlines.

6 Conclusion and Future Work

The effectiveness of the workload allocation strategy is proved through theoretical anal-
ysis. The scheduling schemes combined with workload allocation strategy are also
evaluated through experimental simulation. Results confirm that workload allocation
strategy combined with scheduling algorithms perform considerably better than the al-
gorithms that do not use these strategies. When the arrival rates are low, the workload
allocation technique combined with traditional scheduling strategies perform similar
compared to scheduling algorithms based on real time performance information. Work-
flow and workload nature also don’t change the performance of the scheme notably.
Moreover execution time variability does not change the performance of schemes sig-
nificantly for both low are high arrival rates.

As future work we would like to model clusters as G/G/k queues and perform
theoretical analysis. The reason behind modelling clusters as G/G/k queues is that
M/M/k queues don’t often exist in real world situations. We would like to perform
experiments with workflows having a slack period, meaning they can wait for some
time before getting serviced.
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Camino de Vera s/n, 46022 Valencia, Spain

{jbgisber, rsalinas, lirun, fmunyoz}@iti.upv.es

Abstract. Many database replication protocols have been designed for guaran-
teeing a serialisable isolation level, since it is appropriate for almost all appli-
cations. However, it also requires a tight coordination among replicas and might
generate high abortion rates with some workloads. So, other isolation levels have
also been considered, such as snapshot isolation and cursor stability, but none of
the previous works has proposed an overall support for more than one isolation
level at the same time. This paper explores such a research line.

1 Introduction

Many data replication protocols have been published for years [1,2,3], and they have
always been centred on a single isolation level. Indeed, when multiple isolation levels
have been presented [4], a separate protocol has been designed for each of them. There
is no problem with this approach, since it makes possible a thorough description, dis-
cussion or justification for each protocol. However, applications may often require that
their transactions were executed in different isolation levels, mainly for improving the
access time of such transactions that tolerate reading non-strictly-consistent data. This
necessity of managing multiple isolation levels is a main issue for database applications,
and has been even included as part of several “standard” benchmark applications, such
as the one defined in the TPC-C [5] specification. In such benchmark, its New-Order,
Payment, Delivery and Order-Status transactions require the ANSI serialisable level,
and the same set of transactions requires that other transactions accessing the same data
(besides the Stock-Level one, that is also included in the benchmark) use the repeat-
able read level, whilst its Stock-Level transaction only demands the read committed
level. Many applications follow similar patterns on their sets of transactions.

Any serious centralised database management system (DBMS, on the sequel) is able
to manage without problem multiple isolation levels at a time (i.e. for several concurrent
transactions), but a database replication middleware is faced with some inconveniences
for providing such service. Mainly, there is no trivial way of coordinating different
replication protocols, each one providing support for a single isolation level.
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As a result, when such applications must be managed, there are only three options
for dealing with them. The first one is to discard the modern database replication
techniques, following a distributed locking approach for concurrency control. The rules
for providing the most important isolation levels have already been specified for locking
techniques [6], and are easily implementable in distributed systems with distributed locks.
However, distributed locking has proven to show a poor performance when compared
with replication techniques based on total ordered write-set propagation [3]. The second
approach consists in selecting a set of modern protocols with similar techniques and
different isolation levels, defining from scratch the rules to be followed when different
levels must be combined. This may be achieved when such protocols use similar solutions
for themost importantparameters thatdefineareplicationprotocol [7]:serverarchitecture,
replica interaction, and transaction termination. The last option consists in supporting a
single isolation level –the strictest one being needed–, thus requiring that all transactions
were executed using such level. This leads to poor performance or higher abortion rates
for those transactions that would have tolerated a more relaxed isolation level.

This paper describes a general scheme for designing replication protocols that sup-
port multiple isolation levels. Although there are multiple levels that could have been
supported, this first solution only considers four basic alternatives that are quite similar
to the ANSI standard levels, according to the generalised definitions proposed in [8].

The rest of the paper is structured as follows. Section 2 presents our system repli-
cation model. Section 3 outlines the supported isolation levels and how they have been
implemented in previous replication protocols. Section 4 describes our solution, whilst
section 5 compares it with other related work. Finally, section 6 concludes the paper.

2 System Model

We assume a fully replicated database; i.e., each node holds a replica of our database.
Each system node has a local DBMS that is used for locally managing transactions, and
that provides the mechanisms needed for ensuring the standard ANSI isolation levels.
On top of the DBMS a middleware is deployed in order to provide support for repli-
cation. This middleware also has access to a group communication service that should
support atomic multicast [9] (or uniform atomic multicast if failures are considered).
Our solutions might be also used in non middleware-based systems, but this requires
at least a minimal modification of the DBMS core, and such extension depends on the
DBMSes being considered. We do not describe such dependencies in this paper, so our
discussion is better tailored for middleware solutions.

The replication model being used is read one, write all available (ROWAA, on the
sequel), since in almost all replication protocols only the transaction write-sets are prop-
agated. The comparison made in [3] also proves that this behaviour provides better
performance than any other that requires read execution in all replicas.

3 Isolation Levels

Many current relational DBMSes support the standard ANSI SQL-92 isolation levels.
However, the definitions given in such standard are not enough precise, as they were
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criticised in [6]. In that paper, its authors distinguished between strict interpretations
of the phenomena1 discussed in the standard, and loose interpretations, showing with
some examples that with a strict interpretation some non-desired anomalies were pos-
sible in each isolation level. As a result, the standard specification must be understood
using the loose interpretations outlined in [6] that generate stricter levels of isolation.
Some traditional implementations based on locks already supported such loose inter-
pretations, but others did not. Thus, some DBMSes using multi-version concurrency
control (MVCC, for short) had followed the strict phenomena interpretations. Conse-
quently, they only provided a snapshot isolation level (as defined in [6]) when they were
asked for a serialisable one.

Unfortunately, both the loose phenomena interpretation and the lock-based concur-
rency control proscribed some transaction executions that were perfectly legal for the
required isolation levels. Adya et al. [8] detected such problems and specified again the
isolation levels. Their specifications are more precise than those presented in [6] and
also implementable with optimistic concurrency control (and this is the most common
in replicated systems, since transactions are generally allowed to proceed until they
request their commit and get validated or certified).

So, in order to be complete, we provide on the sequel a summary of the phenomena
definitions given in [8] that should be proscribed in some of the standard isolation levels:

G0 (Write cycles): A history H exhibits phenomenon G0 if DSG(H) contains a directed
cycle consisting entirely of write-dependency edges.
In this definition, DSG(H) is a direct serialisation graph [8] based on direct con-
flicts between committed transactions. Additionally, a write dependency occurs
when one transaction overwrites a version written by another transaction.

G1a (Aborted reads): A history H shows phenomenon G1a if it contains an aborted
transaction T1 and a committed transaction T2 such that T2 has read some object
modified by T1.

G1b (Intermediate reads): A history H shows phenomenon G1b if it contains a com-
mitted transaction T2 that has read a version of object x written by transaction T1
that was not T1’s final modification of x.

G1c (Circular information flow): A history H exhibits phenomenon G1c if DSG(H)
contains a directed cycle consisting entirely of dependency edges.

In this phenomenon definition, a dependency edge is either a write dependency
(see G0 description) or a read dependency. A read dependency arises when a trans-
action reads some items written by another transaction, or when the results of a
transaction read (using a predicate) are modified by a write operation made by an-
other transaction (including value changes, as well as element additions or removals
in such results). The results in such predicate-based queries are all items accessed,
plus their corresponding truth degree for the predicate, even if they do not match
such predicate. Those items that match the predicate are added to the history as
separate individual reads. So, the write operations that include or remove elements
in a predicate read are those that inserted or deleted such items in or from their
respective tables.

1 The term phenomenon refers to consistency anomalies that should be avoided when transaction
isolation is enforced.
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G2 (Anti-dependency cycles): A history H exhibits phenomenon G2 if DSG(H) contains
a directed cycle with one or more anti-dependency edges.

Informally, an anti-dependency arises when a transaction overwrites a version
observed by some other transaction.

When the anti-dependencies arise between transactions that do not use predicate-
based reads, a G2-item phenomenon occurs. In the general case (i.e., with the G2
phenomenon) both kinds of read operations are considered (predicate-based and
item-based).

These definitions match respectively the original P0, P1, P2 (equivalent to G2-item)
and P3 (equivalent to G2) phenomena definitions of the ANSI standard. However, P1
was decomposed in three different G1 subcases in order to eliminate the problems de-
tected in the loose interpretations proposed by [6]. Consider also that G1 implicitly
includes the G0 phenomenon, so if a level proscribes G1 it also proscribes G0. With
these phenomena definitions, Adya et al. specify some portable levels of isolation that
we summarise in table 1. We use these specifications in the following sections in order
to build a set of rules that might be used for defining general replication protocols able
to manage multiple isolation levels.

Table 1. Portable ANSI isolation levels

Level Disallowed phenomena Equivalent ANSI level
PL-1 G0 READ UNCOMMITTED
PL-2 G1 READ COMMITTED
PL-2.99 G1, G2-item REPEATABLE READ
PL-3 G1, G2 SERIALISABLE

4 A General Replication Protocol

There are many ways of writing a database replication protocol, since there are some
parameters that define how such protocol should behave. Thus, in [7] three parameters
of this kind were identified: server architecture, server interaction and transaction ter-
mination. Each one of these parameters can take two different values, generating eight
different classes of protocols. A replication protocol supporting multiple isolation levels
should be able to match any protocol in all these classes. Unfortunately, there are big
differences among such classes, and it would be difficult to provide a single principle
easily adaptable to all of them.

For instance, the server architecture parameter distinguishes between protocols based
on a primary server where all transactions should be forwarded, and protocols that allow
the execution of transactions in any site (called update everywhere replication). Regard-
ing concurrency control and isolation, the primary server approach does not imply any
problem, since the execution of transactions is fully centralised and we may rely on the
local concurrency control mechanisms in such primary copy; i.e., the protocols we are
looking for are trivially implementable in this kind of replication since only one replica
should take care of concurrency control, and its semantics can be directly driven by the
underlying DBMS.
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Besides this, other classes can be easily discarded due to other problems not related
with isolation, but with other requirements such as performance. For instance, linear in-
teraction (one of the alternatives for the server interaction parameter) implies extremely
expensive overheads on communication among replicas, and complicates a lot the re-
covery subprotocols. So, it is commonly discarded in the general case.

As a result of this, only two of the original eight classes identified in [7] should be
considered in this paper: those based on an update everywhere server architecture, with
constant server interaction and with either voting or non-voting transaction termination.

So, once identified the target protocol classes to be managed by our general solution,
let us see which implementation choices we assume and how a general protocol can be
defined, also proving how is it able to avoid each of the phenomena described in [8].

4.1 Protocol Implementation Features

There have been multiple database replication protocols in the update everywhere server
architecture with a constant server interaction [4,10,11,12]. Many of them share the
following characteristics, proving to be extremely adequate for replication purposes.
Thus, we will take them as a basis for designing our general protocol:

– Since they belong to the update everywhere server architecture, transactions can
be initiated in any replica. There is no special replica that centralises transaction
management.

– As they also belong to the constant interaction class, only a constant number of
messages are exchanged among replicas. In the common case, such messages are
used for propagating the updates, and they are needed once the commit has been
locally requested in the initiating replica. Although other solutions are possible, we
will limit our discussion to protocols that propagate the transaction data at the end
of each transaction; i.e., when the application has locally requested the commit.

– Write-set (and, in some cases, read-sets [12]) propagation is made using an atomic
multicast; i.e., a multicast with message delivery in total order. This ensures that
all replicas see the same sequence of write-sets (and, if needed, read-sets); i.e., the
same sequence of transactions.

– The underlying DBMS provides support for the isolation level being requested by
the user transactions. Thus, local transactions can be managed by the underlying
DBMS, and the middleware must ensure that the mix among remote and local trans-
actions also follows the requested isolation levels.

Taking these features as a basis, the design of a database replication protocol is re-
duced to check for conflicts between local transactions and write-sets being delivered,
or between those write-sets. Additionally, two schemes for such checking are possible,
depending on the transaction termination alternative being chosen [7]: either a voting
phase is needed in the transaction termination, or all replicas behave deterministically
in the certification phase and all arrive to the same decision without needing any explicit
coordination. But protocols based on voting can be divided in two different subclasses:
those that are symmetrical, requiring a vote by every replica (for instance, in order to
cope with unilateral abortions [13] or other sources of non-determinism), or others that
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rely on a delegate server2, who imposes its decision to the rest of replicas (this approach
is referred to as weak voting replication in [3]).

Between these three approaches for terminating transactions, we choose only the
weak voting replication approach, since the other two have the following problems:

– Non-voting termination. In this case, if the serialisable isolation level has to be
supported, read-sets must be propagated [13]. Although there are some techniques
that allow read-set propagation with minimal costs [12], read-set collection can be
a problem for long transactions.

– Symmetrical voting termination. The communication needs of this voting phase,
plus those already paid for total order write-set delivery generate an overall com-
munication cost similar to a 2PC. This scheme might be supported if a non-atomic
multicast is used, such as in the protocols described in [14], but with the scheme
outlined in this section its costs are too high to consider it appropriate.

Although these two approaches will not be the focus of this paper, the solution de-
scribed in the following sections might be easily adapted to both of them. In all ap-
proaches a validation phase is needed, and the issues being considered in these valida-
tions are not too different among these approaches.

4.2 A General Scheme

Our general scheme for supporting multiple isolation levels is based on the following
principles:

– If multiple isolation levels should be supported, a protocol for the strictest isolation
level –among those to be supported– has to be selected.

– When a transaction is started, its intended isolation level should be requested to the
underlying DBMS.

– When a transaction reaches the commit phase, and its write-set (and, in some cases,
read-set) is propagated, its isolation level identifier has to be included into such
propagation message.

– The validation step needed in the replication protocol for deciding whether a trans-
action must commit or abort has to consider the isolation levels of all the transac-
tions being checked. The rules to check between transactions that have requested
different isolation levels have to consider the phenomena to be proscribed by such
isolation levels.

These principles are general enough to be applied to any transaction termination
approach (i.e., weak voting, symmetrical voting, and non-voting cases). In this paper,
such scheme will be applied to the weak voting replication approach. So, this kind of
database replication must be considered as a case study for our general scheme.

A database replication protocol based on weak voting replication consists in the fol-
lowing steps [3]:

2 The delegate server is the replica that has initiated the particular transaction.
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1. When a delegate database server DSd receives a transaction T from a client C, it
executes the transaction but delays its write operations.

2. When client C requests the transaction commit, the transaction write-set is propa-
gated to all replicas using atomic broadcast. Note that if a transaction has an empty
write-set (i.e., it is a read-only transaction) no broadcast is needed and it immedi-
ately commits.

3. When such write-set message is delivered, the delegate server determines if con-
flicting transactions have been committed.

4. If so, transaction T must be aborted. Otherwise, it should be committed. Depending
on the result of this validation, the replica DSd uses a reliable broadcast to propagate
this result.

5. Concurrently with these two last steps, the other replicas have received the same
write-set and have locally applied it. Once they receive the validation result, they
take the appropriate action (either to abort or to commit transaction T).

This protocol is able to provide a serialisable isolation level, but the key for this
resides in its step number 3, where the write-set is validated and a result for each
transaction is decided. Depending on the rules being used for determining “conflict-
ing” transactions other isolation levels can be obtained.

For applying our general scheme, we only need to extend minimally this sample
algorithm in order to:

a) Extend its step 1, requesting to the underlying DBMS the appropriate level.
b) Extend its step 2, including the isolation level of such transaction as an additional

field into the write-set message.
c) Adapt its step 3, using the appropriate conflict checking rules for each level.

This last topic deserves further explanation and is discussed on the sequel.

4.3 Avoiding General Phenomena

In this section, we will show how the general phenomena presented in section 3 can be
proscribed using some concurrency control techniques and validation checks in the pro-
tocol outlined above. To begin with, let us start with the mechanisms needed for guar-
anteeing the isolation level PL-3, and later discussing how the other levels (PL-2.99,
PL-2, and PL-1, respectively) can be ensured. In all these variants, read-set propaga-
tion is not needed since read accesses are only checked against write-sets (from either
local or remote transactions) in the delegate replica where such transactions have been
started.

Portable Level PL-3. This portable level is almost identical to the ANSI serialisable
level. It requires that both G2 and G1 phenomena were proscribed.

Using traditional locking techniques, this isolation level needs long read and write
locks. In a replicated environment, these locks should be combined with the total order
being guaranteed by the atomic broadcast.

An example of database replication protocol that uses the weak voting replication
approach ensuring a serialisable level is the SER protocol of [4]. This solution also
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uses a lock-based concurrency control, requesting long locks in the delegate server for
both kinds of accesses (reads and writes), and requesting also write locks when the
write-set is delivered in remote replicas. As a result of this, its validation procedure
distinguishes the following actions:

1. The write-set application may get blocked in non-delegate replicas if the requested
locks conflict with the locks already acquired by other transactions that have been
previously delivered following the total order of the atomic broadcasts. Thus, such
write-set application simply waits for the completion of such conflicting transac-
tions, and no rollback is needed in this case.

2. Otherwise, if such lock request collides with some local read locks that belong to
transactions whose write-sets have not been delivered, such local transactions are
aborted.

Thus, in order to forbid phenomenon G2, we must ensure that no cycle with at least
one anti-dependency edge might be created in any execution of this protocol. Recall
that T1 has an anti-dependency on T2 if T1 overwrites an item (or the result of a predi-
cate evaluation) read by T2. In this protocol cycles are prohibited, since the total order
delivery ensures that all transactions are sequentially ordered and thus, it is impossible
that the same transaction initiates and terminates a cycle of dependencies (it will be
either the first or the last in such order, but not both since the local concurrency control
in all replicas also prevents such kind of cycles among local transactions).

Supose that a node Ni is trying to apply Ti’s write-set WSi. Validation action 1 en-
sures that a WSi is never applied before any previous conflicting delivered transactions
because WSi will be blocked until these transactions commit. Additionally, all not yet
delivered local transactions with read locks on items accessed by Ti never commit be-
fore Ti because validation action 2 would abort them. Both actions combined ensure
that the destination transaction for every dependency or anti-dependency edge commits
after its source transaction. This implies a sequential committing order, and justifies the
avoidance of phenomenon G2.

In a similar way, G1 is avoided since G1c is also proscribed due to the total order
delivery, introducing a sequential order of transactions that prevents cycles from ap-
pearing in the DSG(H) of any history H. Moreover, the use of local long write locks
avoids phenomena G1a and G1b. Thus, G1a (aborted reads) is avoided because due
to the long write locks, it is impossible that a transaction T2 would have read an item
previously written by a transaction T1 that finally had aborted. The same happens with
G1b (intermediate reads).

If, instead of a lock-based concurrency control other local concurrency control ap-
proaches were used similar validation actions would be needed. For instance, with
MVCC, the validation action 1 would have had the same behaviour, since write con-
flicts lead to blocking with such kind of concurrency control. On the other hand, the
validation action 2 would have had a difficult management with this kind of concur-
rency control, since no locks are requested for reading. As a result, local read opera-
tions should be translated into SELECT FOR UPDATE statements in order to detect
such read-write conflicts and a mechanism such as the one described in [15] would be
needed for dealing with such kind of conflicts, leading to the abortion of these local
transactions.
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As it has been explained for lock-based concurrency control, this solution proscribes
both G2 and G1 phenomena. Both G2 and G1c are prohibited by the total order be-
ing used for write-set delivery, whilst both G1a and G1b are trivially avoided by the
underlying MVCC, since the versions being read by each transaction have been gen-
erated by transactions already committed (intermediate versions are always private for
the transaction that has generated them, when a serialisable isolation level is requested
in a MVCC system).

Portable Level PL-2.99. This second portable level (PL-2.99) is almost equivalent to
the ANSI repeatable read isolation level. For ensuring it, in lock-based concurrency
control long locks are used for write and item-read operations, but only short locks
when the read operations use a predicate. If we plan to use an underlying DBMS with
this kind of concurrency control, we may use the same validation actions than we de-
scribed for PL-3 –but considering that now predicate reads only need short locks and,
as a result, will not get aborted by validation action 2–. Since transactions that need PL-
2.99 have requested the repeatable read isolation level to the underlying DBMS, con-
flicts among PL-3 and PL-2.99 writing transactions will be correctly managed by such
DBMS. In case of conflicts between remote write-sets and local reading transactions,
the middleware will be able to detect such conflicts using the mechanisms outlined in
[15]; i.e., reading one of the system-catalogue tables that records those transactions that
have been blocked due to conflicts with other transactions.

As a result of this, no modification over the solution already described for PL-3 is
needed for achieving PL-2.99 at the middleware level. Additionally, the justification of
the proscription of the G2-item and G1 phenomena is identical to those already given
above for PL-3.

If MVCC is used, there is no way to allow phenomena G2 for predicate-based reads;
i.e., allowing anti-dependency edges that overwrite predicate reads. Some DBMS based
on MVCC are not able to provide an ANSI repeatable read isolation level: PostgreSQL
[16] is an example. This kind of concurrency control ensures that each transaction gets
item versions that correspond to the moment when such transaction was started. As a
result of this, a write operation generates a new version for every updated item, but such
version can not be accessed by concurrent transactions. So, the isolation achieved with
this concurrency control technique for read accesses is more or less equivalent to using
long read locks in a lock-based technique. Thus, level PL-2.99 is not achievable with
this kind of concurrency control. On the other hand, this kind of concurrency control
easily provides the snapshot isolation level [6] that shares some of the characteristics of
this PL-2.99 level but that is not equivalent to it.

Portable Level PL-2. In this portable level (almost equivalent to the ANSI read com-
mitted level), phenomenon G2 is allowed, but G1 is still proscribed. So, anti-dependency
edges may be present, being able to close dependency cycles among a given set of trans-
actions. In an implementation based on locks this level only requires short locks for read
accesses, and long locks for writes.

Regarding our sample protocol described for the PL-3 level, in this case validation
action 2 can be removed since the application of a remote write-set would not abort
any local transaction. As a consequence, no abortion is generated in such validation
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actions and this means that the reliable broadcast needed in step 4 of the sample protocol
outlined in section 4.2 will not be needed by transactions that belong to the PL-2 and
PL-1 isolation levels.

If the underlying DBMS supports this PL-2 level, both G1a and G1b phenomena
are proscribed, since these phenomena are caused by read accesses and they can only
be local in our sample general protocol. Phenomenon G1c should also be proscribed.
To this end, no cycle of dependency edges should be allowed by our protocol. This is
easily ensured, since validation action 1 ensures that write-dependencies can only be
established in the order being imposed by the atomic delivery of write-sets, and this
prevents the appearance of write-dependency cycles. Read-dependencies can be locally
present in some replicas (in those where each transaction had its delegate server) but
they would not be able to close any cycle. Otherwise, a single transaction would have
read some information from a write-set that occurs after it in the write-set total order
delivery, and this is impossible (since local concurrency control mechanisms prevent a
transaction from reading something that has not yet been committed).

As stated above, phenomenon G2 should be allowed. So, a history like the following
one should be permitted (it follows the notation proposed in [8]):

H: r1(Weight>50:x0,60;y0,51) r1(x0,60) r2(y0,51) w2(y2,50) c2 r1(y2,50) c1

In such sample, transaction T1 gets all items with a weight greater than 50 and two
items are returned, x and y. Concurrently T2 updates y weight, setting it to value 50.
Finally, when T1 gets y’s data it recovers a 50 value that does not match the predicate
being used. So, we have a T1 read-dependency on T2 and a T2 anti-dependency on T1.
This situation is trivially allowed by our general protocol since read-only transactions
are not broadcast to all replicas, and in this case T1 –a read-only transaction– has been
allowed to commit by the local concurrency control on its delegate replica. Additionally,
T2 is broadcast and committed without problems in all database replicas.

In a general solution, with other validation techniques for its PL-3 level, the checks
being made for write-set collisions should be maintained in this PL-2 level, but those
checks associated to write-read conflicts can be eliminated if a local concurrency control
able to provide PL-2 is used.

Portable Level PL-1. Finally, portable level PL-1 (similar to read uncommitted) only
proscribes phenomenon G0; i.e., write-dependency cycles. As already discussed in the
previous case, write-dependency cycles are avoided if the write-set delivery order is
respected when such write-sets are applied on each replica. Again, as in the previous
case, the specific validation action 2 is not needed. However, now the underlying DBMS
needs to enforce locally only the PL-1 level and this places some restrictions on write
accesses but never on reads. Due to this type of read management, read-dependencies
may arise, allowing thus the occurrence of phenomena G1a, G1b and G1c.

The general solution to this isolation level is the same already stated for PL-2: to take
care only for write-write conflicts when write-sets are delivered. The single difference
with that level is that now some local concurrency control support specific for a PL-1
level is assumed. Note that not all MVCC DBMSes provide a so relaxed isolation level.
For instance, PostgreSQL [16] is able to provide support for read committed (PL-2) and
its serialisable (PL-3) (actually, snapshot) levels, but not for read uncommitted (PL-1)
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nor for repeatable read (PL-2.99). The same happens in Microsoft SQL Server 2005
[17] when it is configured for using optimistic concurrency control techniques.

Summary. This section has shown that dealing with multiple isolation levels in a
middleware-layer replication protocol is feasible. To this end, a good replication proto-
col for the strictest isolation level has to be chosen and local support for all the intended
isolation levels should be present in the underlying DBMS. If all these requirements can
be coped with, the concurrency control checks will be quite similar for all these isola-
tion levels, but part of them are lost in the looser levels being supported. Thus, when
a write-set arrives, the receiving replica must only apply the checks associated to the
isolation level of such incoming write-set. Note also that some non-standard isolation
levels might require other techniques for avoiding their proscribed phenomena (e.g., in
case of the snapshot or cursor stability levels), but such cases will be studied in further
works to be completed in the near future.

Figure 1 shows the resulting database replication protocol supporting the standard
isolation levels that we have generated taking the SER protocol of [4] as its basis.

1. When a transaction Ti starts, set its isolation level on the local DBMS.
2. When Ti is locally terminated:

2.1. If it is read-only, it directly commits.
2.2. Otherwise, get its write-set (WSi) and its isolation level (ILi) and

broadcast them in total order to all replicas.
3. Upon (WSi,ILi) delivery:

3.1. For each operation on WSi:
a) If ILi > PL-2 and there is a read-write conflict with a local

transaction Tj that has not delivered its write-set, abort Tj .
- If Tj has broadcast (WSj,ILj) and ILj>PL-2, broadcast abort(Tj).

b) If there is any other conflict with another local transaction Tj ,
ensure that WSj and WSi are applied in their delivery order.

3.2. Apply WSi locally.
3.3. If Ti is a local transaction and ILi>PL-2, broadcast commit(Ti).
3.4. If ILi<PL-2.99, commit Ti.

4. Upon commit(Ti) or abort(Ti) delivery, commit or abort Ti, depending
on the received message.

Fig. 1. A sample of general replication protocol

5 Related Work

Most current database replication protocols aim to provide support for only the serial-
isable [3,10] or snapshot isolation levels [11], since they are needed by a wide variety
of applications. However, there have also been some works that have studied multiple
levels of isolation, either providing protocols for each of them [4,12] or by specifying
new definitions of such levels [6,8]. But none of these works has supported more than
one isolation level in a single replication protocol. As a result, they have designed good
solutions for a single level but they can not be merged easily into a single protocol,
since such solutions are specifically tailored for their target level.
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Despite this, there have been some attempts to support multiple isolation levels in
a single protocol. This was one of the aims in the GlobData project and some initial
solutions were provided in [18]. But the isolation levels defined in GlobData were not
the ANSI standard ones, since GlobData was a system with an object-oriented interface
able to provide an object-oriented replicated database using relational database replicas,
and for those systems, there were considered another set of behaviours. So, such initial
solution is not comparable to the one discussed in this paper.

Other papers deserve special attention although their objectives are not exactly the
same as ours. In [12] two new protocols are described. The first one is an evolution of
the original Database State Machine (DBSM) approach [13] that provides snapshot iso-
lation, while the other uses some rules that are similar to those of the original DBSM but
it is able to guarantee serialisability without transferring read-sets. The latter manages
conflict classes (or logical sets) and introduces dummy writes that are able to simulate
the read-sets. Unfortunately, these two protocols are not based on the same principles
(the first one uses an update everywhere server architecture with non-voting termina-
tion, whilst the second one uses a primary copy server architecture) and, as a result of
this, they will be difficult to merge in a single protocol supporting both isolation levels.
On the other hand, it analyses two of the most used isolation levels.

Similarly, in [4] two different protocols were provided for supporting such two iso-
lation levels. Moreover, in [4] other non-standard isolation levels (cursor stability, for
instance) were also supported by other protocols. However, although all of them share
similar architectures (update everywhere server architecture and constant interaction),
nothing is said about merging all levels in a single protocol.

6 Conclusions

This paper has presented a general scheme for designing middleware database replica-
tion protocols supporting multiple isolation levels. It is based on progressive simplifi-
cations of the validation rules used in the strictest isolation level being supported, and
on local (to each replica) support for each isolation level in the underlying DBMS.

Such scheme provides a uniform management for all isolation levels, needing minimal
extensions to the original database protocol (the one initially designed for the strictest
level). This support for multiple isolation levels is specially fruitful for those applications
that manage multiple kinds of transactions, since they get an improved performance for
those transactions able to run with the loosest isolation levels. Without the described
general protocol, an application of this kind would have used a single replication
protocol supporting the strictest needed isolation level, and this would have penalised
its performance, or would increase the abortion rate of the most relaxed transactions.
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Abstract. Middleware data replication techniques are a way to increase perfor-
mance and fault tolerance without modifying the internals of a DBMS. However,
they introduce overheads that may lead to poor response times. In this paper a
modification of the O2PL protocol is introduced. It orders conflicting transactions
by using their priority, instead of the total order obtained by an atomic multicast.
Priorities are also used to avoid deadlocks. For improving its performance, it does
not use the strict 2PC rule as O2PL does. We provide a formal correctness proof
of its 1-Copy Serializability (1CS). This protocol has been implemented, and a
comparison with other already implemented protocols is also given.

1 Introduction

Database replication is an attractive way for increasing the performance and fault toler-
ance of applications, but they pay a price for maintaining data consistency. Traditionally,
replication has been achieved modifying the Database Management System (DBMS) in-
ternals, such as [1,2,3] but this solution is not portable among different DBMS vendors.
The alternative approach is to deploy a middleware architecture that creates an interme-
diate layer that features data consistency, being transparent to the final users. However,
one drawback of the middleware approach is that the replication module usually re-
implements many features provided by the DBMS. Besides, the database schema has
to be extended with standard database features, such as functions, triggers, stored pro-
cedures, etc. [4], in order to manage additional metadata that eases replication. This
alternative introduces an overhead that penalizes performance but permits to get rid of
DBMSs’ dependencies. Hence, the goal is to design a system that penalizes performance
as less as possible, and that becomes portable to different DBMSs.

The strongest correctness criterion for database replication is 1CS [1] that implies a
serial execution over a logical data unit although there are many physical copies. In [4] a
middleware architecture is introduced providing 1CS by way of the total order multicast
featured by a Group Communication System (GCS) [5,6]. The total order multicast is
used so as to determine the order in which transactions are executed on the system.
This is an interesting approach since transactions do not have to wait for applying the
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updates at the rest of nodes in order to commit, as the 2PC rule states, increasing its
performance. However, to rely on these strong GCS primitives is a high price to pay
in environments where conflicts are rare, due to the latency and extra message rounds
introduced by the total order multicast [6,3].

O2PL [2] was one of the first replication protocols that followed the Read One Write
All Available (ROWAA) approach [1]. Transactions are firstly executed at their closest
node (or master node, hereafter) and updates are propagated to the rest of nodes without
any ordering assumption. Updates reception at the rest of nodes starts a remote transac-
tion requesting a copy-lock for applying the updates. This lock behaves like a write lock
does, but it is used to prevent deadlocks with local transactions. Despite of this, a snoop
process is still needed to detect and resolve distributed deadlocks. Once updates are
applied at a replica, it sends a message to the master node saying it is ready to commit.
Meanwhile, the master node collects all ready messages coming from the rest of repli-
cas. At the time when all nodes have answered, the master node commits and multicasts
a commit message to all replicas. Therefore, O2PL is a 2PC protocol since it waits for
the updates application at all available replicas before committing a transaction.

Here, we propose an evolution of O2PL [2] adapted to our MADIS architecture [7]
called Enhanced Replication Protocol (ERP). Using MADIS, the concurrency and
replica control may be split into two levels: the underlying DBMS at each node pro-
viding serializable isolation level whilst the middleware layer is in charge of data con-
sistency. Hence, no specific DBMS feature has to be re-implemented at the middleware
layer. ERP only needs a reliable multicast as the communication mechanism among
replicas [5]. We have changed the 2PC philosophy of O2PL: a transaction does not wait
for applying the updates at the rest of nodes in order to commit. Hence, all the advan-
tages of total order based replication are obtained without their associated communica-
tion costs. Besides, all non-conflicting transactions do not need to be totally ordered as
such protocols do. This is obtained using a dynamic priority function that guarantees
the atomic commitment of transactions. The priority associated to a transaction is de-
rived from a unique weight associated to the transaction, and the state of the transaction,
which varies throughout its lifetime. This imposes the order on which conflicting trans-
actions are applied at all nodes. Therefore, the success of a transaction that broadcasts
its updates can be guessed before its submission to the underlying DBMS. Moreover,
this dynamic priority function serves as a deadlock prevention function.

The rest of this paper is organized as follows: The system model is introduced in
Section 2. The formalization of our protocol is presented in Section 3. Section 4 shows
its correctness proof. ERP has been implemented and some experimental results as well
as its comparison with other replication protocols are shown in Section 5. A brief outline
of related works is given in Section 6. Finally, conclusions end the paper.

2 System Model and Definitions

For the sake of the explanation of ERP and its correctness proof, an abstraction of
MADIS in a failure free environment is presented in this Section. Details about failures
and the recovery process are given in [8] and the interested reader should refer to that
complementary work. The system considered in this paper (Figure 1) is composed by
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N nodes which communicate among them using reliable multicast [5]. We assume a
fully replicated system. An application submits transactions for its execution over its
local DBMS via the middleware. The replication protocol coordinates the execution of
transactions among different nodes to ensure 1CS [1]. Actions in Figure 1 are shown
with arrows, they describe how components interact with each other. Actions may easily
be ported to the particular GCS primitives and DBMS operations.

Fig. 1. Main components of the system

Database. It is assumed a DBMS ensuring ACID properties of transactions and satisfying
the serializable transaction isolation level. After a SQL statement submission (denoted
op) in the context of a transaction t, the DB.notify(t, op) informs about the successful
completion of an operation (run); or, its rollback (abort) due to DBMS internals. It is
assumed that a transaction will only be unilaterally aborted if it is involved in a local
deadlock. We also assume that after the successful completion of a submitted operation,
a transaction may commit at any time. We have added two functions which are not
provided by DBMSs, but may be built by standard database functions [4]. DB.WS(t)

retrieves the set of objects written by t and the respective SQL update statements. In
the same way, the set of conflicting transactions between a write set and current active
transactions is given by getConflicts(WS(t)) = {t′ ∈ T : (WS(t′)∪RS(t′))∩WS(t) �=
∅}, where T is the set of system active transactions.

Transactions. Each transaction t has an identifier including the information about its
transaction master node (node(t)), in order to know if it is a local or a remote transac-
tion. It also contains information so as to obtain the weight associated to it (weight(t)).
This value is based on its own information, such as: number of restarts, size of readset,
size of writeset, node identifier and so on. All these parameters are defined by ERP
at the system startup with different influence in the final weight, although ensuring its
uniqueness. A transaction t created at node i (node(t) = i) is locally executed and starts
the interaction with the rest of nodes when the application wishes to commit the transac-
tion with the execution of remote transactions. Finally, ERP reports on the transaction
fate to the application. For simplicity, we do not consider an application abort.
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Signature:
{∀ i ∈ N, t ∈ T, m ∈ M, op ⊆ OP : createi(t), begin operationi(t, op), end operationi(t, op), begin commiti(t),

end commiti(t), local aborti(t), receive remotei(t, m), receive readyi(t, m),
receive commiti(t, m), receive aborti(t, m),execute remotei, discardi(t, m)}.

States:
∀ i ∈ N,∀ t ∈ T : statusi(t) ∈ {idle, start, active, blocked, pre commit, aborted, committed},
initially (node(t) = i ⇒ statusi(t) = start) ∧ (node(t) �= i ⇒ statusi(t) = idle).

∀ i ∈ N,∀ t ∈ T : participantsi(t) ⊆ N , initially participantsi(t) = ∅.
∀ i ∈ N : queuei ⊆ {〈t, WS〉 : t ∈ T, WS ⊆ {〈oids, ops〉 : oids ⊆ OID, ops ⊆ OP}}, initially queuei = ∅.
∀ i ∈ N : removei : boolean, initially removei = false.
∀ i ∈ N : channeli ⊆ {m : m ∈ M}, initially channeli = ∅.
∀ i ∈ N : Vi ∈ {〈id, availableNodes〉 : id ∈ Z, availableNodes ⊆ N}, initially Vi = 〈0, N〉.

Transitions:
createi(t) // node(t) = i //
pre≡statusi(t) = start.
eff≡ DBi.begin(t); statusi(t) ← active.

begin operationi(t, op) // node(t) = i //
pre≡statusi(t) = active.
eff≡ DBi.submit(t, op); statusi(t) ← blocked.

end operationi(t, op)
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = run.
eff≡ if node(t) = i then statusi(t) ← active

else statusi(t) ← pre commit.

begin commiti(t) // node(t) = i //
pre≡statusi(t) = active.
eff≡ statusi(t) ← pre commit;

participantsi(t) ← Vi.availableNodes \ {i};
sendRMulticast(〈remote, t, DBi.WS(t)〉,

participantsi(t)).

end commiti(t) // t ∈ T ∧ node(t) = i //
pre≡ statusi(t) = pre commit ∧ participantsi(t) = ∅.
eff≡ sendRMulticast(〈commit, t〉,

Vi.availableNodes \ {i});
DBi.commit(t);
statusi(t) ← committed;
if ¬empty(queuei) then removei ← true.

receive readyi(t, m) // t ∈ T ∧ node(t) = i //
pre≡statusi(t) = pre commit ∧ participantsi(t) �= ∅∧

m = 〈ready, t, source〉 ∈ channeli .
eff≡ receive(m);

participantsi(t) ← participantsi(t) \ {source}.

local aborti(t) // t ∈ T ∧ node(t) = i //
pre≡statusi(t) = blocked ∧ DBi.notify(t, op) = abort.
eff≡ DBi.abort(t); statusi(t) ← aborted; removei ← true.

discardi(t, m) // t ∈ T //
pre≡statusi(t) = aborted ∧ m ∈ channeli .
eff≡ receivei(m).

receive commiti(t, m) // t ∈ T ∧ node(t) �= i //
pre≡statusi(t) = pre commit∧

m = 〈commit, t〉 ∈ channeli .
eff≡ receive(m);DBi.commit(t); statusi(t) ← committed;

if ¬empty(queuei) then removei ← true.

receive remotei(t, m) // t ∈ T ∧ node(t) �= i //
pre≡statusi(t) = idle ∧ m = 〈remote, t, WS〉 ∈ channeli .
eff≡ receive(m); removei ← true;

insert with priority(queuei, 〈t, WS〉).

execute remotei

pre≡¬empty(queuei) ∧ removei .
eff≡ aux queue ← ∅;

while ¬empty(queuei) do
〈t, WS〉 ← first(queuei);
queuei ← remainder(queuei);
conflictSet ← DBi.getConflicts(WS);
if ∃ t′ ∈ conflictSet : ¬higher priority(t, t′) then

insert with priority(aux queue, 〈t, WS〉);
else

∀ t′ ∈ conflictSet :
if statusi(t

′) = pre commit ∧ node(t′) = i then
sendRMulticast(〈abort, t′〉,

Vi.availableNodes \ {i});
DBi.abort(t′); statusi(t

′) ← aborted;
sendRUnicast(〈ready, t, i〉, node(t));DBi.begin(t);
DBi.submit(t, WS.op); statusi(t) ← blocked;

queuei ← aux queue; removei ← false.

receive aborti(t, m) // t ∈ T ∧ node(t) �= i //
pre≡statusi(t) /∈ {aborted, committed} ∧

m = 〈abort, t〉 ∈ channeli .
eff≡ receive(m); statusi(t) ← aborted;

if 〈t, ·〉 ∈ queuei then queuei ← queuei \ {〈t, ·〉}
elseDBi.abort(t);
if ¬empty(queuei) then removei ← true.

� function higher priority(t, t′) ≡ node(t) = j �=i ∧ (a ∨ b)
(a) node(t′) = i ∧ statusi(t

′) ∈ {active, blocked}
(b) node(t′) = i ∧ statusi(t

′) = pre commit∧
weight(t) > weight(t′)

Fig. 2. State transition system for the Enhanced Replication Protocol

3 ERP Description

In this Section we use a state transition system [9] for describing ERP (introduced in
Figure 2). It includes a set of state variables and actions, each one of them subscripted
with the node identifier where they are considered. State variables include their domains
and an initial value. Each action in the state transition system has an enabling condition
(precondition, pre in Figure 2), a predicate over the state variables. An action is enabled
if its predicate is evaluated to true on the current state. The effects of an action (eff in
Figure 2) is a sequential program that atomically modifies the state variables; hence,
new actions may become enabled while others disabled. Weak fairness is assumed for
actions, i.e. if an action is continuously enabled then it will be eventually executed.
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Although the state transition system seems a static structure, it defines the algorithm’s
execution flow. We explain such algorithm on the sequel.

A transaction t starts the execution at its master node since statusi(t) = start as
node(t) = i. It invokes the createi(t) action followed by a sequence of pairs of the form
begin operationi(t, op) and end operationi(t, op). The begin operationi(t, op) invoca-
tion submits the SQL statement to the database (DBi.submit(t, op)) and statusi(t) =

blocked. The transaction may be aborted due to a local deadlock resolution by the DBMS
replica, as long as statusi(t) = blocked, or an ERP decision (that will be discussed after-
wards). The end operationi(t, op) action will be eventually invoked after the operation
is completed in the database and the local transaction may submit a new statement.
Once the transaction is done it requests its commitment, by means of the begin com-
miti(t) action, as statusi(t) = active. This action initializes the variable participantsi(t)

to the set of reachable nodes excluding itself. ERP starts to work. Until now only the
underlying DBMS was managing the concurrency control. ERP collects the writeset
of the transaction and multicasts a remote message to the rest of available nodes and
changes its statusi(t) to pre commit. This emphasizes that it is a local transaction that
has propagated its updates to the rest of available nodes.

ERP includes a queue so that each time a transaction t is delivered at a node via a
remote message (the receive remotej(t, 〈remote, t, WS〉) action, with j �= i ∈ N), it is
firstly enqueued (arranged by weight(t)) and the removej state variable is set to true.
This last variable governs the time when the queuej has to be inspected, i.e. when the
execute remotej action is called. The straightforward points of checking queuej are:
when database resources are released, such as a transaction commit or rollback, and
when a new remote message arrives, see Figure 2. The execution of execute remotej

disables removej and iterates through all the transactions contained in queuej in or-
der to check if any of these transactions has more priority than any other conflicting
transaction currently submitted to the database, this is done to prevent distributed dead-
lock cycles between nodes. If so, the delivered transaction will send the ready mes-
sage to the master node and all updates will be executed in the context of another
local transaction, called remote transaction. Before executing this remote transaction
all local conflicting transactions must be firstly aborted, as this transaction has sent the
ready message, it may not be involved in any local deadlock. Otherwise, when the en-
queued transaction has not enough priority, it will remain in queuej until it reaches
the highest priority or its master node decides to abort it. One can note that several
transactions (that do not conflict and have enough priority) can be submitted in one
execution of execute remotej . In either case, ready messages are collected at the
master node, via the receive readyi(t, 〈ready, t, j〉) action. Once all of them have been
received (participantsi(t) = ∅), the end commiti(t) is enabled and the master node
commits and multicasts a commit message. The receive commitj(t, 〈commit, t〉) ac-
tion will not be invoked in the rest of replicas until the updates have not been done
(statusj(t) = pre commit) as it can be seen in the enabling condition of this action.

The priority between transactions is defined by the higher priority(t, t′) function
where t and t′ play the role of an enqueued and an executing transaction respectively.
Recall that ERP does not abort a remote transaction already submitted to the data-
base unless its master node decides to do so. Hence, an enqueued transaction will have
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more priority than those local transactions, t′.node = i, still executing SQL statements
(statusi(t

′) ∈ {active, blocked}) or local transactions in pre commit whose weight(t′) is
lower than weight(t). Otherwise, an enqueued transaction will remain enqueued. There-
fore, the transaction master node exclusively decides the outcome of the transaction.

Hence, ERP has modified the 2PC rule of O2PL by the use of this function. It allows
a remote transaction to send the ready message to the master node before its comple-
tion in the database. Thus, the response time θrO2P L

(t) of a transaction t (node(t) = i)
with O2PL in the middleware architecture is determined by the sum of the following
times: the transaction processing at the master node, θDBi(t); multicasting the remote

message to the rest of nodes, θMC(t); transaction updates processing at the rest of
available nodes θDBj

(t), with j ∈ N \ {i}; and, finally, each remote node sending
the ready message back to the master node, θUCj

(t). Therefore, we have θrO2P L
(t) ≈

θDBi(t)+ θcomm(t)+maxj (θDBj
(t)), with θcomm(t) grouping all communication costs.

This response time is a consequence of the 2PC origin of the O2PL, and it is lim-
ited by the slowest remote transaction execution, since it waits for applying the up-
dates at all nodes before committing. Thus, if we send the ready message back once
the transaction has overcome the deadlock prevention function and before it has been
submitted to the database, we reduce the transaction response time to the following:
θrERP

(t) ≈ θDBi(t) + θcomm(t). This time is decreased because it does not need to wait
for the execution of the remote transactions, therefore we get rid of maxj (θDBj

(t)).
A local transaction is the single kind of transaction that may be aborted by the DBMS

while it is executing SQL statements. Hence, local aborti(t, op) may be invoked if the
DBMS may not execute the op statement contained in the begin operationi(t, op) due to
an internal deadlock resolution; thus, DBi.notify(t, op) = abort. It is important to note
that ERP aborts all local conflicting transactions before the execution of a remote trans-
action; hence, it may never be involved in a local deadlock at the time it is submitted
to the database. An aborted local transaction may be in the pre commit state, in that
case it will multicast an abort message that will enable the receive abortj(t, 〈abort, t〉)
action. In order to simplify the algorithm’s presentation, we assume that the writeset of
a remote transaction is atomically executed in order to avoid its concurrent execution
with local transaction operations that may lead to an abortion of the former. Therefore
a remote transaction may only be aborted by its master node.

4 Correctness Proof

This Section contains the most important proofs (atomicity and 1CS) of ERP in a failure
free environment. For a more detailed description of the correctness proof the reader is
referred to [8]. We continue using the notation and definitions of a state transition sys-
tem [9]. For each ERP’s action π, the enabling condition defines a set of state transitions,
that is: {(p, π, q), p, q are states; π is an action; p satisfies pre(π); and q is the result of
executing eff (π) in p}. An execution, α, is a sequence of the form s0π1s1 . . . πzsz . . .

where sz is a state, πz is an action and every (sz−1, πz, sz) is a transition of πz . An
execution is finite if it always finishes in a state, or infinite if not. Every finite prefix
of an infinite execution is a finite execution. A state is reachable if it is the end of a
finite execution. All possible finite executions are sufficient for defining safety proper-
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ties. Liveness properties require the notion of fair execution. We assume that each ERP
action requires weak fairness.

We firstly start proving that ERP is deadlock free. Local deadlocks are handled by
the local aborti(t, op) action. Remote transactions are only involved in distributed dead-
locks. The use of priorities avoids distributed deadlocks in the system. A transaction ti

(node(ti) = i) waits for another transaction tj (node(tj) = j) if and only if ti is remote at
node j such that weight(ti) < weight(tj), thus ti ∈ queuej . Assume there exist a cycle in
the system (t0 → t1 → · · · → tN−1 → t0). In such a case t

i mod N
waits for t

(i+1) mod N

for i : 0 . . . N − 1. Hence, we have that weight(t0) < weight(t1) · · · < weight(tN−2) <

weight(tN−1) and, if we continue with the cycle, weight(tN−1) < weight(t0) which is
a contradiction. Thus, the system is deadlock free.

The next Property formalizes the status transition for a given transaction t ∈ T in
ERP. It points out that some status transitions are unreachable, i.e., if sk.statusj(t) =

pre commit and sk′ .statusj(t) = committed with k′ > k. There is no action in α such that
sk′′ .statusj(t) = aborted with k′ > k′′ > k, as it can be deduced from Figure 2.

Property 1. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the ERP automa-
ton and t ∈ T . Let β = s0.statusj(t) s1.statusj(t) . . . sz′ .statusj(t) be the sequence of
status values of t at node j ∈ N , obtained from α by removing the consecutive repeti-
tions of the same statusj(t) value and maintaining the same order apparition in α. The
following Property holds:

1. If node(t) = j then β is a prefix of the regular expression:
start · active · (blocked · active)∗ · pre commit · committed

start · active · (blocked · active)∗ · pre commit · aborted

start · active · (blocked · active)∗ · aborted

start · (active · blocked)+ · aborted

2. If node(t) �= j then β is a prefix of the regular expression:
idle idle · blocked · pre commit · committed

idle · blocked · aborted idle · blocked · pre commit · aborted

idle · aborted

This Property is simply proved by induction over the length of α following the precondi-
tions and effects of the ERP actions. A status transition for a transaction t in Property 1
is associated with an operation on the DB module where the transaction was created,
i.e. pre commit to committed involves the DB.commit(t) operation. These aspects are
straightforward from the inspection of Figure 2.

The following Property is needed to prove the atomicity of a transaction; that is, the
transaction is either committed, or aborted, at all available nodes. It states the invariant
properties of ERP. If a transaction t with node(t) = i is committed at j �= i, it is
because it was already committed at its master node. A remote transaction currently
being executed at its DBj module (statusj(t) = blocked) may only change its status

if its execution is completed or by an abort message coming from its master node. In
other words, it will never be aborted by the DBj module. In the same way, a remote
transaction in the pre commit state may only change its status if it receives a commit

or an abort message from its master node. Finally, if a transaction is committed at
its master node then at the rest of available nodes it will be either committed (it has
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already received the commit message), pre commit (it is waiting to receive the commit

message) or blocked (it is still applying the updates at that node).

Property 2. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the ERP automa-
ton and t ∈ T , with node(t) = i.
1. If ∃ j ∈ N \ {i} : sz.statusj(t) = committed then sz.statusi(t) = committed.
2. If ∃ z′ < z : sz′ .statusj(t) = sz.statusj(t) = blocked for any j ∈ N \ {i} then

∀ z′′ : z′ < z′′ ≤ z : πz′′ /∈ {receive abortj(t, 〈abort, t〉), end operationj(t,WS.op)}.
3. If ∃ z′ < z : sz′ .statusj(t) = sz.statusj(t) = pre commit for any j ∈ N \ {i}

then ∀ z′′ : z′ < z′′ ≤ z : πz′′ /∈ {receive commitj(t, 〈commit, t〉), receive abortj(t,

〈abort, t〉)}.
4. If sz.statusi(t) = committed then ∀ j ∈ N : sz.statusj(t) ∈ {blocked, pre com-

mit, committed}.

The following Lemma –liveness property– states the atomicity of committed transac-
tions.

Lemma 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and t ∈
T with node(t) = i. If ∃ j ∈ N : sz.statusj(t) = committed then ∃ z′ > z : sz′ .statusj(t) =

committed for all j ∈ N .

Proof. If j �= i by Property 2.1 (or with j = i) sz.statusi(t) = committed. By Pro-
perty 2.4, ∀ j ∈ N \ {i} : sz.statusj(t) ∈ {blocked, pre commit, committed}. Without
loss of generality, assume that sz is the first state where sz.statusi(t) = committed
and sz.statusj(t) = pre commit (if sz.statusj(t) = blocked it is because of its sub-
mission to the DBj module, due to execute remotej for t). By weak fairness of ac-
tion execution, the end operationj(t,WS.op) action will be eventually invoked and
sz.statusj(t) = pre commit). By the effects of πz = end commiti(t), we have that
〈commit, t〉 ∈ sz.channelj . By Property 2.4 invariance either sz.statusj(t) = committed
or sz.statusj(t) = pre commit and 〈commit, t〉 ∈ sz.channelj . In the latter case the
receive commitj(t, 〈commit, t〉) action is enabled. By weak fairness assumption, the ac-
tion will be eventually executed, thus ∃ z′ > z : πz′ = receive commitj(t, 〈commit, t〉).
Thus, by its effects, sz′ .statusj(t) = committed.

In a similar way, when a transaction is aborted, it is aborted at all nodes, as stated in the
following Lemma. The proof is very simple, by inspection of the ERP actions.

Lemma 2. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and
t ∈ T with node(t) = i. If sz.statusi(t) = aborted then ∃ z′ ≥ z : sz′ .statusj(t) = idle for
all j ∈ N \ {i} or sz′ .statusj(t) = aborted for all j ∈ N .

Before continuing with the correctness proof we have to add a definition dealing with
causality between actions. Some set of actions may only be viewed as causally related
to another action in any execution α. We denote this fact by π ≺α π′. For example,
assuming t is a committed transaction with node(t) = i �= j, the following happens-
before relation begin commiti(t) ≺α receive remotej(t, 〈remote, t, WS〉) is held, see
Figure 2. This is clearly seen by the effects of the begin commiti(t) action: it sends a
〈remote, t,DBi.WS(t)〉 to all j ∈ N \ {i}. This message will be eventually received by
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j that enables the receive remotej(t, 〈remote, t, WS〉) action. As statusj(t) = idle, and
by weak fairness of actions, it will be eventually executed. However, this fact is dele-
gated to the execute remotej action. The following Lemma indicates that a transaction
is committed if it has received every ready message from all available remote replicas.

Lemma 3. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and
t ∈ T be a committed transaction, node(t) = i, then the following happens-before rela-
tions hold: ∀j ∈ N \{i} : begin commiti(t) ≺α receive remotej(t, 〈remote, t,WS〉) ≺α

execute remotej(t) ≺α receive readyi(t, 〈ready, j〉) ≺α end commiti(t) ≺α receive -
commitj(t, 〈commit, t〉).

The following Lemma emphasizes the happens-before relation for remote transactions.
It is based on Property 1.2 which establishes the relation between status transitions
for remote transactions to their respective algorithm actions. This will serve in or-
der to set up the relation for a transaction t, with node(t) = i �= j, between the
execute remotej, that submits t to the DBj module, and the pair end operationj(t,

WS.op) and receive commitj(t, 〈commit, t〉) actions. This is needed due to the fact that
with Lemma 3 there is no point where this causal relation may be put in.

Lemma 4. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and
t ∈ T be a committed transaction, node(t) = i, then the following happens-before rela-
tions hold: ∀j ∈ N \ {i} : receive remotej(t, 〈remote, t, WS〉) ≺α execute remotej(t)

≺α end operationj(t, WS.op) ≺α receive commitj(t, 〈commit, t〉).

In order to define the correctness of our replication protocol we have to study the global
history (H) of committed transactions (C(H)) [1]. We may easily adapt this concept to
ERP. Therefore, a new auxiliary state variable, Hi, is defined in order to keep track of
all the DBi operations performed on the local DBMS at node i. For a given α execu-
tion of ERP, Hi(α) plays a similar role as the local history at node i, Hi, as introduced
in [1] for the DBMS. In the following, only committed transactions are part of the his-
tory, deleting all operations that do not belong to transactions committed in Hi(α). The
serialization graph for Hi(α), SG(Hi(α)), is defined as in [1]. An arc and a path in
SG(Hi(α)) are denoted as t → t′ and t

∗−→ t′ respectively. Recall that our local DBMS
produces serializable histories; thus, SG(Hi(α)) is acyclic and the history is strict. Thus,
for any execution resulting in local histories H1(α), H2(α), . . . , HN(α) at all nodes its
serialization graph, ∪k SG(Hk(α)), must be acyclic so that conflicting transactions are
equally ordered in all local histories. Recall that the correctness criterion is 1CS.

Before showing the correctness proof, we need an additional Property relating the
transaction isolation level of the underlying DB modules to the automaton execution
event ordering. The following Property and Corollary establish a property about local
executions of committed transactions and their respective ERP actions.

Property 3. Let α = s0π1s1 . . . πzsz . . . be an arbitrary execution of the ERP au-
tomaton and i ∈ N . If there exist two transactions t, t′ ∈ T such that t

∗−→ t′ in
SG(Hi(α)) then ∃ z1 < z2 < z3 < z4 : sz1 .statusi(t) = pre commit ∧ sz2 .statusi(t) =

committed ∧ sz3 .statusi(t
′) = pre commit ∧ sz4 .statusi(t

′) = committed.
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Corollary 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and
i ∈ N . If there exist two transactions t, t′ ∈ T such that t

∗−→ t′ in SG(Hi(α)) then the
following happens-before relation, with the appropriate parameters, holds:

1. node(t) = node(t′) = i : begin commiti(t) ≺α end commiti(t) ≺α begin com-
miti(t

′) ≺α end commiti(t
′).

2. node(t) = i ∧ node(t′) �= i : begin commiti(t) ≺α end commiti(t) ≺α end oper-
ationi(t

′, WS′.op) ≺α receive commiti(t
′, 〈commit, t′〉).

3. node(t) �= i∧node(t′) = i : end operationi(t, WS.op) ≺α receive commiti(t, 〈com-
mit, t〉) ≺α begin commiti(t

′) ≺α end commiti(t
′).

4. node(t) �= i ∧ node(t′) �= i : end operationi(t, WS.op) ≺α receive commiti(t,

〈commit, t′〉) ≺α end operationi(t
′,WS′.op) ≺α receive commiti(t

′, 〈commit, t′〉).

Proof. By Property 3, ∃ z1 < z2 < z3 < z4 : sz1 .statusi(t) = pre commit ∧ sz2 .sta-
tusi(t) = committed ∧ sz3 .statusi(t

′) = pre commit ∧ sz4 .statusi(t
′) = committed. De-

pending on node(t) and node(t′) values the unique actions that modify their associated
status to the given values, by Property 3, are the ones indicated in the Corollary.

If we have two conflicting transactions t, t′ ∈ T , with node(t) �= i and node(t′) �= i,
such that t → t′ in SG(Hi(α)), then the execute remotei action that submits t′ to the
database must be executed after committing t, via the receive commiti(t, 〈commit, t〉)
action. The next Lemma states how the happens-before relation affects to two commit-
ted transactions executing at a remote node.

Lemma 5. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and
i ∈ N . If there exist two committed transactions t, t′ ∈ T with node(t) = j �= i and
node(t′) = k �= i such that t

∗−→ t′ in SG(Hi(α)) then the following happens-before
relation hold: ∀ i ∈ N \ {k, j} : execute remotei(t) ≺α receive commiti(t, 〈com-
mit, t〉) ≺α execute remotei(t

′) ≺α receive commiti(t
′, 〈commit, t′〉).

The same may be applied to two conflicting transactions t, t′ ∈ T with node(t) = i and
node(t′) �= i, such that t → t′ in SG(Hi(α)). The execute remotei action that submits
t′ to the database must be executed after the commitment of t by the end commiti(t)

action. The next Lemma states how the happens-before relation affects to a committed
transaction executing at a remote node.

Lemma 6. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton and
i ∈ N . If there exist two transactions t, t′ ∈ T with node(t) = i and node(t′) �= i such
that t

∗−→ t′ in SG(Hi(α)) then the following happens-before relation hold: ∀ i ∈ N :

begin commiti(t) ≺α end commiti(t) ≺α execute remotei(t
′) ≺α end operationi(t

′,
WS′.op) ≺α receive commiti(t

′, 〈commit, t′〉).

In the following, we prove that the ERP protocol provides 1CS [1].

Theorem 1. Let α = s0π1s1 . . . πzsz . . . be a fair execution of the ERP automaton. The
graph ∪k∈NSG(Hk(α)) is acyclic.

Proof. By contradiction. Assume there exists a cycle in ∪k∈NSG(Hk(α)). There are at
least two different transactions t, t′ ∈ T and two different nodes x, y ∈ N , x �= y, such
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Fig. 3. Protocols Response Time Evaluation

that those transactions are executed in different order at x and y. Thus, we consider (a)
t

∗−→ t′ in SG(Hx(α)) and (b) t′ ∗−→ t in SG(Hy(α)); being node(t) = i and node(t′) = j.
There are four cases under study:

(I) i = j = x.
(II) i = x ∧ j = y.
(III) i = j ∧ i �= x ∧ i �= y.
(IV) i �= j ∧ i �= x ∧ i �= y ∧ j �= x ∧ j �= y.

In the following, we simplify the notation. The action names are shortened, i.e.
begin commitx(t) by bcx(t); end commitx(t) by ecx(t); as each execute remotex ac-
tion may execute a set of transactions, K ⊆ T , we denote it by erx(k), with k ∈ K;
receive readyx(t, 〈ready, t, l〉), with l ∈ N , by rrx(t, l); end operationx(t, op) by eox(t);
and, receive commitx(t, 〈commit, t〉) by rcx(t).
(I). By Corollary 1.1 for (a): bcx(t) ≺α ecx(t) ≺α bcx(t′) ≺α ecx(t′). (i)
By Corollary 1.4 for (b): eoy(t′) ≺α rcy(t′) ≺α eoy(t) ≺α rcy(t). Applying Lemmas 4
and 5 for t and t′: ery(t′) ≺α eoy(t′) ≺α rcy(t′) ≺α ery(t) ≺α eoy(t) ≺α rcy(t). (ii)

For (i), via Lemma 3 for t, we have the following: bcx(t) ≺α ery(t) ≺α rrx(t, y) ≺α

ecx(t) ≺α bcx(t′) ≺α ecx(t′). Taking into account Lemma 3 for t′ and Lemma 5 for t

and t′: bcx(t) ≺α ery(t) ≺α rrx(t, y) ≺α ecx(t) ≺α bcx(t′) ≺α ery(t′) ≺α rrx(t′, y) ≺α

ecx(t′) ≺α rcy(t′). Therefore, we have that ery(t) ≺α rcy(t′) in contradiction with (ii).
(II). By Corollary 1.2 for (a): bcx(t) ≺α ecx(t) ≺α eox(t′) ≺α rcx(t′). By Lemma 6 for
t and t′: bcx(t) ≺α ecx(t) ≺α erx(t′) ≺α rcx(t′). (i)
By Corollary 1.2 for (b): bcy(t′) ≺α ecy(t′) ≺α eoy(t) ≺α rcy(t). Applying Lemma 6
for t′ and t: bcy(t′) ≺α ecy(t′) ≺α ery(t) ≺α eoy(t) ≺α rcy(t). (ii)

By Lemma 3 for t: bcx(t) ≺α ery(t) ≺α rrx(t, y) ≺α ecx(t), via (i), ≺α erx(t′) ≺α

rry(t′, x) ≺α ecy(t′) ≺α rcx(t′). Thus ery(t) ≺α ecy(t′) in contradiction with (ii).
(III). As x and y are different nodes from the transaction master node, only one of them
will be executed in the same order as in the master node. If we consider the different
one with the master node we will be under assumptions considered in CASE (I).
(IV) By Corollary 1.4 for (a): eox(t) ≺α rcx(t) ≺α eox(t′) ≺α rcx(t′). Applying Lem-
mas 4 and 5 for t and t′ at x: erx(t) ≺α eox(t) ≺α rcx(t) ≺α erx(t′) ≺α eox(t′) ≺α

rcx(t′). (i)
By Corollary 1.4 for (b): eoy(t′) ≺α rcy(t′) ≺α eoy(t) ≺α rcy(t). If we apply Lem-

mas 4 and 5 for t′ and t at y: ery(t′) ≺α eoy(t′) ≺α rcy(t′) ≺α ery(t) ≺α eoy(t) ≺α

rcy(t). (ii)



Proof and Evaluation of a 1CS Middleware Data Replication Protocol 535

By Lemma 3 for t at x and y: bci(t) ≺α ery(t) ≺α rri(t, y) ≺α eci(t) ≺α rcx(t). Via
Corollary 1.4 for (a): bci(t) ≺α ery(t) ≺α rri(t, y) ≺α eci(t) ≺α rcx(t) ≺α erx(t′) ≺α

rrj(t
′, x) ≺α ecj(t

′) ≺α rcy(t′). Therefore, we have that ery(t) ≺α rcy(t′) in contradic-
tion with (ii).

5 Experimental Results

We have implemented the ERP protocol in the MADIS architecture, in order to test the
performance improvement of the ERP protocol against other approaches, such as BRP
(based on a termination voting similar to a 2PC) and TORPE (based on total order deliv-
ery of write-sets, removing the voting phase). For all the experiments, we used a cluster
of 5 workstations (Pentium IV 2.8GHz, 1GB main memory, 80GB IDE disk) connected
by a full duplex Fast Ethernet network. We have implemented an ad hoc reliable mul-
ticast using TCP for BRP and ERP, whilst Spread 3.17 was in charge of the total order
multicast needed by TORPE. PostgreSQL 7.4 was used as the underlying DBMS. The
database consists of 30 tables each containing 1000 tuples. Each table has the same
schema: two integers, one being the primary key. Transactions consist of a number of
update operations each one modifying a given tuple randomly chosen from a table of
the database. The interarrival time between the submission of two consecutive transac-
tions is uniformly distributed. The workload is denoted by the number of transactions
submitted per second (TPS). All tests were run until 2000 transactions were executed.

These experiments test how the three replication protocols cope with increasing num-
ber of users and workloads. Workload was increased steadily from 10 to 35 TPS. For
each workload, several tests were executed varying the number of clients from 1 to 20
in the whole system. Figure 3 shows the response time obtained in this experiment for
the three presented protocols. As a general rule, the maximum throughput is limited
since a client can only submit one transaction at a time, and hence, the submission rate
per client is limited by the response time. With one client TORPE and ERP’s response
times are below 25 and 28 ms respectively, but BRP ones are close to 50 ms and it is
not possible to achieve the desired throughput. The abortion rates for this experiment
are low, between 0% and 2%, due to the random nature of the generated numbers.

Results revealed that BRP presents the worst behavior of the presented protocols, due
to its 2PC transaction termination. In ERP, the remote nodes send the ready message
once conflicts and priority rules are checked before executing the updates. In TORPE,
the master node does not wait for any response from remote nodes, only waits for the
delivery of the messages in total order. As seen in Figure 3, ERP response times keep
between 20 and 70 ms for a given number of clients with workloads up to 25 TPS.
TORPE response times, working with intermediate loads, remain between 20 ms with
1 client and 125 ms with 20 clients.

Increasing the workload and the multiprogramming level only results in higher re-
sponse times, due to the administration overhead (process switches, communication
to/from the client) and contention at specific resources. As shown in Figure 3, BRP and
ERP are more affected by this overhead than TORPE is. This happens since we have im-
plemented the ad hoc reliable multicast inside the ERP and BRP protocols, hence they
support the load of the protocol itself and the communication between nodes. On the
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Fig. 4. Response time of the replication protocols varying the submission rate

other hand, TORPE uses an underlying GCS to manage communication among nodes
that runs independently of the protocol. Thus, TORPE response times do not increase
so much as in the other protocols at high workloads. That is the reason why there is a
crossing point between ERP and TORPE in Figure 4, where only the configuration with
5 clients is analyzed.

6 Related Works

There are a lot of replication protocols defined in the literature, modifying the DBMS
core [1,2,3]. However, we will highlight those developed for middleware solutions. For
instance, with optimistic atomic broadcast, as described in [3], messages are delivered
as they are received, making possible a fast remote writeset application, although wait-
ing for the final ordered message delivery in order to commit the transaction. Thus,
only those remote transactions whose writeset did not follow the total order are rolled
back, reapplying them in the correct order. This idea has been applied in [10] for WAN
networks in the GlobData project. Respectively, a more aggressive version of the opti-
mistic atomic broadcast [3] in a middleware architecture is presented in [4]. Database
stored procedures are executed as transactions defining a conflict class. Transactions
issued by users are delivered using the optimistic atomic broadcast to all nodes but the
outcome of transactions is only decided at the master node of the respective conflict
class. Hence, remote nodes do not even have to wait for the definitive total order to ex-
ecute a transaction. It additionally provides good scalability results. The BRP and ERP
may accept any SQL statement, hence they are more flexible; however, ours present a
higher overhead since they propagate the SQL statements and we do not try to balance
the workload.

7 Conclusions

In this paper, we present a middleware database replication protocol, called ERP. It is
an adaptation of O2PL where the 2PC rule has been modified in order to improve O2PL
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performance. We have proved that ERP is 1CS –and this has been, up to our knowl-
edge, the first prove of this kind for any O2PL-based replication protocol–, given that
the underlying DBMSs feature a serializable transaction isolation level. This replication
protocol has the advantage that no specific DBMS tasks have to be re-implemented. The
underlying DBMS performs its own concurrency control and the replication protocol
complements this task with replica control.

ERP is an eager update everywhere replication protocol. All transaction operations
are firstly performed on its master node, and then all updates are grouped and sent to
the rest of nodes using a reliable multicast. However, our algorithm is liable to suffer
distributed deadlock. Hence, we have defined a deadlock prevention schema that orders
transactions, which is based on the transaction state and associated weight. Besides, as
it totally orders transactions, ERP will know if a transaction may proceed or not before
its submission to the DBMS. This allows us to get rid of the of the strict 2PC rule.

ERP has been implemented in MADIS, as well as an adaptation of O2PL (BRP) and
a total order based (TORPE) protocols. They have been compared against each other
with a specific benchmark. Results highlight the benefits of ERP when compared to
BRP. However, TORPE shows better performance in heavy loaded environments, due
to our reliable multicast implementation, whilst ERP is the best in the rest of tests,
due to the overhead introduced by Spread to provide total order. Thus, ERP may be
considered as an intermediate solution between 2PC and total order based protocols.
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8. Armendáriz, J.E.: Design and Implementation of Database Replication Protocols in the
MADIS Architecture. PhD thesis, Universidad Pública de Navarra, Pamplona, Spain (2006)

9. Shankar, A.U.: An introduction to assertional reasoning for concurrent systems. ACM Com-
put. Surv. 25 (1993) 225–262

10. Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: The GlobData fault-tolerant
replicated distributed object database. Springer LNCS 2510 (2002) 426–433



M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 538 – 548, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Reconfiguration of Information Management Framework 
Based on Adaptive Grid Computing  

Eun-Ha Song1, Sung-Kook Han1, Laurence T. Yang2, and Young-Sik Jeong1,*

1 Department of Computer Engineering, Wonkwang University 
344-2 Shinyong-Dong, Iksan, 570-749, Korea 

{ehsong, skhan, ysjeong}@wku.ac.kr 
2 Department of Computer Science, St. Francis Xavier University  

Antigonish, NS, B2G 2W5, Canada  
lyang@stfx.ca

Abstract. In this paper, GridIMF provides the users with consistency while 
adapting to variability grid information. GridIMF designs hierarchical 3-tier in-
formation management model in accordance with participating intention, roles 
and operating strategies of grid information. In order to manage grid informa-
tion in effective ways, GridIMF provides grid service while dividing to GVMS 
and GRMS. GVMS suggests optimal virtual organization selection mechanism 
for improving performance of specific applications and LRM auto-recovery 
strategy that treat faults of virtual organization. GRMS supports adaptive per-
formance-based task allocation method for load balancing and fault tolerance. 
State monitoring and visualization view provides adaptability of managing grid 
information. Application proxy removes inter-dependency between service ob-
jects of GridIMF and application objects. For analyzing GridIMF executability, 
it adapts two fractal image processing those characteristics are different. 

1   Introduction 

Grid resources are the key elements to support performance of grid application. If 
computers are the grid resources, it can be specifications of hardware and software in 
a limited definition or it can be a certain organization for specialized goals in a broad 
definition. Grid resources potentially have policies about another fields, and they are 
controlled by another institutions. Therefore, grid computing environment requires 
reconfiguration in order to support utilizing diverse resources all over the world, and 
achieve the objects of computational grid. In grid computing environment, it is 
needed to design a framework that can control upper requirements including represen-
tation of grid resources and control of grid operation [1][2][3][4].  

In this paper, GridIMF(Grid Information Management Framework) is established 
with accepting characteristics of grid resources and supporting grid services at the 
same time. In this point, grid resources mean a tool to perform an operation. Mean-
while, metadata include computing information (CPU, memory and CPU-Load)  
and networking information (bandwidth, wait time). This paper defines virtual  

* Corresponding author. 
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organization, resources, and metadata as grid resources. That is, grid resources have 
integral meaning regardless of scale of information or its characteristics [5][6]. 

According to the role of grid information, GridIMF designs hierarchical 3-tier in-
formation management model and it designs 3-layer framework model in accordance 
with managing of grid information. A framework model provides grid services with 
dividing GVMS(Grid Virtual Organization Management System) for managing vir-
tual organization and GRMS(Grid Resource Management System) for managing 
metadata. This framework shows adaptability and validity of supported service with 
two differential fractal image processing. 

2   Related Works 

As the grid logically couples multiple resources owned by different individuals or 
organizations, the choice of the right model for resource management architecture 
plays a major role in its eventual success. There are models of grid resource manage-
ment such as Hierarchical, Abstract Owner, and Economy Model, and Table 1 shows 
a representative system that follows aforementioned models [7]. 

Table 1. Three Models for a Grid Resource Management Architecture 

Model System 
Hierarchical Model Globus [8], Legion, Ninf, NetSolve, GridIMF 
Abstract Owner Model - 
Economy/Market Model Nimrod/G, JaWS, Myriposa, JavaMarket 

GridIMF designed by this paper applies Hierarchical Model that a lot of current 
grid systems follow. GridIMF includes passive elements of Hierarchical Model such 
as resources, tasks, jobs, schedules, and GRMS suggests active elements of Hierarchi-
cal Model such as scheduler, information service, and domain control agent. GridIMF 
admits managing functions about information service and resource management that 
the representative model for Hierarchical Model, Globus toolkit, includes. But it is 
inefficient in the matter of management for metadata as it has the uniformed change 
and delivery cycle which ignore the characteristic of data. Globus Toolkit can cause 
the degradation of grid performance. GridIMF provides GVMS and GRMS support-
ing Globus toolkit’s MDS and GRAM with considering management of metadata. 
GVMS applies the optimum virtual organization selective mechanism which maxi-
mizes the use of resource in the user point of view and optimizes it in the application 
point of view; and suggests auto-recovery strategy which confronts dynamically to the 
VO fault. GRMS receives the metadata information within local resource periodically 
through virtual observer and confronts the load balancing and local resource fault 
which was resulted in reducing total amount time of computing with adaptive per-
formance-based task allocation which runs scheduler. GridIMF understands the Grid 
information in real-time and adds the monitoring technique to enable the effective 
sharing and putting practice. Monitoring technique can be adapted to the variableness 
of Grid information and the various forms of virtualization view have easy way of 
management [9]. Table 2 shows the comparison of Globus toolkit and supportive 
system which was presented in this system.  
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Table 2. Globus vs. GridIMF 

3   Grid Information Management Framework 

3.1   GridIMF Architecture 

GridIMF aims the high performance and the distributed computing.  Basically in the 
infrastructure, the dynamic and effective maintenance, management, and usage of 
metadata which is the detailed element of grid information should be available.  In 
this paper, as shown in figure 1, 3-layer framework model is constructed and the ex-
isting computing resources which are preserved in one site can be formed into the 
GridIMF formation.  

 

Fig. 1. 3-layer framework model 

Infra layer includes the base task to connect the different characteristic constituent 
into the integrated resource. Middleware layer has a role to show the available infor-
mation to the user into one system and adds the function which was suggested in this 
paper to the general middleware function. The management of metadata which was 
physically divided individually is divided into GRMS and the management of virtual 

System 
Activity Functions 

Globus GridIMF Remark 

Scalability of grid   

Dynamic VO configuration   
Hierarchical 3-tier information 
management model 

Availability for service    
Deletion of replicate operation at 
fault   

Optimum virtual organizations 
selection mechanism and auto-
recovery strategy 

Information state monitoring   PDH Library, 
(LRM/RP)Virtual observer 

Information state visualization   Variable visualization view 
Load balancing strategy   
Fault tolerance strategy   

Performance-based  Task  
Allocation Method 

Independency among application   Application Proxy 
User access interface   Java Applet 
( : support, : a partial support, : nonsupport) 
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organization is divided into GVMS. In application layer, the grid applications which 
need much calculation can approach to the grid information which is connected 
through infra layer and application and dependent middleware layer service are pro-
vided through application proxy.  

3.2   Function Model of the GridIMF Components 

GridIMF divides the components of grid into RR(Resource Requester), RP(Resource 
Provider), LRM(Local Resource Manager) and GIM(Global Information Manager) 
depending on the intention and purpose of participation. Fig. 2 shows the structure of 
architecture layer and control stream of suggested GridIMF components. 

 

Fig. 2. Structure of layer and control stream of GridIMF components  

RR is the grid user and requests job submission to GIM. RR can request several 
jobs at the same time, only receives the corresponding result of requested job and 
does not participate in computation. RR plays a role of interface delivering informa-
tion of independent application. GIM is the top level manager and is a kind of re-
source brokering proxy connecting between resource and user who wants to use grid 
in remote. GIM manages the connection by providing common interface of compo-
nents and executes job submission and control management as proxy. GIM is a super 
scheduler which brings the list of LRM satisfying based on job specification of spe-
cific application and permits the connection. LRM gets the delegation collecting  
resource and allocating task for requested job. LRM selects RP through resource dis-
covery, intermediate the connection between RP and RR and makes core scheduling 
between remote resources. RP is a group which permits the execution for a part of 
task instead of huge scale of job and collects the information of metadata. RP delivers 
the executable resource, performs the operation and transmits the result. 
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4   Grid Virtual Organization Management System  

4.1   Task Brokering Rule 

Virtual organization has different policy, purpose and size. Grid application is fin-
ished its task by virtual organization with the scheduling. Therefore, the performance 
of application is the selection of virtual organization appropriate to the task. GridIMF 
defines 4 kinds of factors for selecting optimum virtual organization:   

 Possibility of application execution: One application is assumed to be executed by 
one virtual organization. One LRM is possible to execute applications independently. 
GIM provides a list of application which is already executed and should be executed. 
LRM selects application which can be executed. The first stage selection depends on 
LRM which knows the capability and size of its virtual organization. 

 Idle State: GIM senses the wait state by LRM virtual observer that is going to exe-
cute the requested task and then decides the possibility of execution.  

 Application Power: The operation result of grid application is recorded as log file. 
The attribute of log file is the application name, execution time, LRM information, 
number of LRM and RP, total amount of static CPU speed, etc.  

 LRM Performance Index: Performance index can be obtained by the analysis of 
application log file. It selects a value close to the expected value in proportion to the 
average speed of CPU and number of nodes for executing requested application.  

4.2   LRM State Control and Auto-recovery Strategy 

GIM is the manager of dynamic LRM so that transmission of control message is fre-
quent related to LRM. GridIMF makes LRM virtual observer that gathers information 
of LRM and plays communication broker, and separates operation and control. LRM 
virtual observer is the monitor which makes scheduling the task and manages RPs 
inside virtual organization. LRM auto-recovery strategy senses the LRM fault and 
secures the availability of service by obtaining the corresponding resource from an-
other LRM. RR can be possible to use the grid information and to change the specifi-
cation of executing application until the connection of GridIMF is disconnected. The 
fault information of LRM is accomplished by LRM virtual observer. When LRM fault 
is found, it looks for a new LRM in idle state. RR sends address, remote object refer-
ence and task table for the reference and operation is automatically executed by a new 
LRM. When the search for LRM is failed, RR is in wait state and added into the wait-
ing list. The management of RR task table and remote object reference do not have 
replicated operation of LRM which generated fault. 

4.3   GVMS Monitoring Information Visualization 

GVMS provides the virtualization view of various forms to manager and system plan-
ner through real-time monitor. Monitoring and virtualization data is limited to LRM 
and RP in the GIM side of hierarchical information management model and divided 
into Virtual Organization Monitor. It does not include metadata information of 
RP. The target of monitoring is RR, LRM and RP which are performing and holding 
calculation. Visualization factor recorded the relative group which was traced by 
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virtual observer in LRM Entry and RR Entry and transferred the revised information 
to the view. GVMS monitoring information visualization is provided with button 
from GIM main frame with one frame and two views as shown in Fig. 3.  

Fig. 3. Information Visualization View of GVMS  

GIM state transition frame is a demon frame which runs during main frame load-
ing. LRM/RR Join View provides the relationship between RR and LRM with table 
component, and the detailed information of selected line is output into text compo-
nent. LRM/RP Hierarchical View provides the node structure of GridIMF with hier-
archically. Fig. 3 is composed with two virtual organizations and seven RPs, but the 
dotted area performs RP as well as two applications.  

5   Grid Resource Management System  

5.1   Task Allocation Algorithms  

GRMS makes the counter measure and suggests DPTA(Dynamic Performance-based 
Task Allocation) and APTA(Adaptive Performance-based Task Allocation) for mini-
mizing the cost of resource. Table 3 is the suggested task allocation method.  

Table 3. Task Allocation Method of GridIMF 

Task Allocation Method Performance Evaluation & 
Reallocation Factor Remark 

Dynamic Performance-  
based Task Allocation 

 CPU Speed 
 Job History 

 Fault Detection 
 Append Processor 
 State Monitoring 

Adaptive Performance- 
based Task Allocation 

 CPU Speed  
 CPU Usage 
 Proportional Factor  

 Fault Detection 
 Append Processor 
 Real-time State Monitoring 

DPTA is a method allocating and reallocating task according to the ratio of per-
formance by considering RP performance. Performance index use CPU speed which 
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are the static resource factor of RP and job history. Assuming total job amount for the 
application is TotJobSize and CPU speed value of RPs is },,,{ 110 −NumRPsRPsRPsRP , the 

job size of random 
isRP  is allocated as follows.  

1~0,
1

0

−=×= −

=

NumRPiTotJobSize
sRP

sRP
JobRP

NumRP

k
k

i
i

The factor of job history is the factor measuring expectation of each RP perform-
ance and dynamically expects the job size per performance. The size of reallocated 
job for RP is as follows.  

)(Re jjii mRPComJobIncoJobIncomRPRPpRateIncomAllocJobRP −×=

j

j
ji
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j
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ComJobRP
sIncomRPsComRP

sComRP
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where,
isComRP  : Finished RP performance for the allocated job

           
jsIncomRP  : Unfinished RP performance for the allocated job  

          
jPJobsIncomR : Unfinished size of initially allocated RP job for allocated job 

jomRPComJobsInc : Size of job performed by RP which did not finish the allocated job  

jRPpRateIncom  : RP performance index occurring performance change  

APTA is a method which monitors the static and dynamic performance of RP and 
allocates the job adaptively. This establishes a standard based on the performance 
executing real allocated task not a physical performance for the RP performance. RP 
performance value applies proportional factor and CPU speed. Proportional Fac-
tor(PF) is a standard value as CPU usage rate used by RP user or internal system 
differs in the degree of total execution time depending on the range. Table 4 is the 
proportional factor in different section.  

Table 4. Proportional Factor in different section 

Section User CPU Usage PF Section User CPU Usage PF 
A 0~10% 2.10 B 10~20% 1.91 
C 20~30% 1.67 D 30~40% 1.40 
E 40~60% 1.09 F 60% over 1.00 

Assuming CPU speed value of RPs is },,,{ 110 −NumRPsRPsRPsRP , the expectation of 

total CPU usage is gCPUUsageAv at the time of reallocation and expectation of job 

processor usage rate is gJobUsageAv , the performance value of random 
iRP   is as 

follows.  
01.0))(100( ×××−−= ii sRPPFgJobUsageAvgCPUUsageAvePerformancRP

APTA uses RPPerformance value not the job history information and its reallocation 
is similar to DPTA. Reallocated job size of RP is as follows.  

)(Re jjii mRPComJobIncoJobIncomRPRPpRateIncomAllocJobRP −×=
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where, 
ipComRP   : value of RP which finished the allocated job  

              
jpIncomRP : value of RP which did not finish the allocated job 

Fig. 4 is the comparison of task allocation method that user gives random CPU us-
age rate to 4 RPs with different specification. For the case if user CPU usage rate is 
below 10%, there is no difference in task allocation methods. This implies that per-
formance changes almost did not in RPs and it did not influence on the task perform-
ance rate. On the contrary, the case of user CPU usage rate increasing to 20~30% and 
30~40%, the total job performance time of APTA considering total CUP usage rate is 
low. That is, user CPU usage rate of RP influenced on job performance rate of total 
CPU usage rate.  

Fig. 4. Comparison of task allocation method according to the change of user CPU usage rate  

5.2   GRMS Monitoring Information Visualization  

The monitoring of RPs has effect on LRM scheduling and task allocation method 
which performs real operation. The state value of RP is measured and improved the 
operation usage and controlled the defect. After revising the metadata information, the 
state information is received through RP virtual observer and transferred to RP Entry 
and provided the user selection event with a view.   

Fig. 5 provides the state information and analysis result of RP with one frame and 
five views. LRM provides task progress which is a performing task with progress bar 
component, and provides RP list which is connected to LRM with combo box. RP 
information view represents the selected metadata information of RP with progress 
bar and text component and applies to performance test of RP with analyzing sampled 
hardware information. RP Real-time Table View revised the RP information in a 
certain period and is represented in Table. RP state graph View represents the RP 
CPU usage and user CPU usage in the real-time graph form. Connection Graph View 
observes task control situation of RP which was connected to LRM. RP Network 
Information View represents the ratio between whole period of task control and net-
work transmitting period of RP in the form of bar graph.  
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Fig. 5. Information Visualization View of GRMS  

6   GridIMF Implementation and Performance Result 

6.1   Application Architecture  

Application is implemented with the verification of strategy suggested in GridIMF. 
Grid user has different request depending on application so that the application archi-
tecture is structurally divided only with minimum correlation.  

For the mechanism minimizing interdependence between different application and 
GridIMF, Application Proxy is designed as shown in Fig. 6. Application Proxy is a 
standardized common API and includes core function for interacting between applica-
tion and GridIMF. Application proxy is an Application Name of plug-in for accessing 
specific application and the object is generated dynamically by Application Templet. 

 

Fig. 6. Application Architecture of GridIMF 
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6.2   Implementation of Application and Result of Performance  

The available application to GridIMF is independent to each task and it is supposed to 
require a lot of calculation compared to small amount of data. In this paper, the fractal 
image processing is shown as Fig 7. Application performs image generation by com-
plicated calculation and performance process is certified visually. Fig. 3 (a) is the 
Mandelbrot fractal image processing of LSM coloring technique. Scheduling is APTA 
and two new RPs are joined in the calculation orderly in the middle of task perform-
ance by two RPs. Fig. 3 (c) is the result of the first calculation and there is a differ-
ence in coloring technique for re-assigning occurrence according to RP add and per-
formance change.  Resource usage and requirement change should be available before 
the end of GridIMF by grid user. So, Fig. 3 (c) can perform the re-requested job with 
changing of application list when the specific domain is established by drag. Fig. 3 (e) 
is Mandelbrot Fractal Image Processing which performs in dividing task according to 
the number of divergence. 300 times of divergency is supposed and the number of 
divergency is defined by task and it is distributed and performed to RP as perform-
ance ratio. Panel is divided into canvas which visualizes task management process 
and task result.  

 

Fig. 7. Grid application adaptation of two fractal image processing with performance analyzing 
of GridIMF 

7   Conclusions  

In this paper, grid application was applied with constructing GridIMF to adapt grid 
Information and to provide the consistency to user. Grid information is a generic 
name of virtual organization, resource, and metadata. GridIMF is composed of 3-layer 
framework model such as infra layer for grid information, middleware layer for man-
agement, and application layer for application.  Especially, middleware layer was 
divided into hierarchical 3-tier information management model according to participa-
tion intention, role, and management policy of grid information; and management 
domain was divided into GVMS and GRMS. GVMS gives authority to use remote 
resource through resource connection rule and task brokering with the optimal virtual 
organization selection mechanism by performance ratio. Even when the virtual  
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organization defect is occurred, LRM auto-recovery strategy is suggested to change 
the user requirement and to get rid of operation replication. GRMS supported the load 
balancing and fault tolerance with the adaptive performance-based task alloca-
tion which can control the grid information state change, participation, session, and 
defect.  The information state monitoring and visualization of GridIMF supports the 
reliability of grid information collection. Application proxy was established for pro-
viding service which agreed to special grid application with the minimal code modifi-
cation and the minimal relation with grid infrastructure. The service validity which 
was suggested in this paper was verified through grid application adaptation of two 
fractal image processing with performance analyzing of GridIMF and grid applica-
tion. The main contributions of this paper are as followed; scalability (hierarchical 3-
tier information management structure), adaptive (dynamic virtual organization, task 
allocation), availability of service, deletion of replication operation, information state 
monitoring/ visualization and independent of applications.  

For further study, in the view of GridIMF approach which was suggested in this 
paper, skill add of user approach interface following detailed task process for user-
centered task performance and dependability of detailed task and adaptation of spe-
cific application are needed.  

Acknowledgement. This paper was supported by Wonkwang University in 2006. 
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Abstract. The move towards IT outsourcing is the first step towards
an environment where compute infrastructure is treated as a service. In
utility computing this IT service has to honor Service Level Agreements
(SLA) in order to meet the desired Quality of Service (QoS) guarantees.
Such an environment requires reliable services in order to maximize the
utilization of the resources and to decrease the Total Cost of Ownership
(TCO). Such reliability cannot come at the cost of resource duplication,
since it increases the TCO of the data center and hence the cost per
compute unit. We, in this paper, look into aspects of projecting impact
of hardware failures on the SLAs and techniques required to take proac-
tive recovery steps in case of a predicted failure. By maintaining health
vectors of all hardware and system resources, we predict the failure prob-
ability of resources based on observed hardware errors/failure events, at
runtime. This inturn influences an availability aware middleware to take
proactive action (even before the application is affected in case the sys-
tem and the application have low recoverability).

The proposed framework has been prototyped on a system running
HP-UX. Our offline analysis of the prediction system on hardware error
logs indicate no more than 10% false positives. This work to the best of
our knowledge is the first of its kind to perform an end-to-end analysis
of the impact of a hardware fault on application SLAs, in a live system.

1 Introduction

The move towards IT outsourcing is the first step towards realization of Util-
ity Computing[1] [2], where compute infrastructure is treated as a service. The
IT service in itself comprises the hardware (servers, storage, etc.), the system
software (Operating system enabling the use of hardware) and distributed soft-
ware (Middleware enabling the use of distributed systems). Dependability of the
IT service is its capability to deliver service that can be trusted irrespective of
failures either due to faults, malfunction or security breaches. Availability, re-
liability, safety, confidentiality, integrity and maintainability are the attributes
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of dependability [3]. Depending on the application using the system, some or
all of these attributes play a significant role. Traditionally, elaborate proprietary
solutions, using redundancy options with resource and service replication, were
adopted to ensure reliability. In such solutions cost itself is a limiting factor.
With increasing globalization, such reliability cannot come at the cost of re-
source duplication, since it increases the TCO of the compute infrastructure
and hence the cost per compute unit. Today, with advances and standardization
efforts in Internet technologies many distributed collaborative applications are
being seriously explored.

Distributed systems have inherent resource replication due to several under
utilized and available systems. Business houses could use these resources as re-
dundant servers effectively, by judiciously deploying business applications. The
problem appears when a system or a service fails in such distributed environ-
ments. At the site of failure the faults maybe visible, but are not appropri-
ately propagated to the handling application because of which the error-handling
strategies may not be effective. A simple example to illustrate this point is that
of the common I/O errors encountered while writing to or reading from a file due
to disk media errors. The local machine’s Operating System (OS) has knowledge
of the media errors and if it is smart would issue block relocation transparently
without the application even knowing of the error. If the block relocation at
the disk level is not successful, the OS could return equivalent error message
that could be trapped by the middleware, which in-turn could relocate the file
to a different file system. In both cases the application may experience latency
but not errors. Such proactive recovery strategies play a useful role, particularly
in distributed environments spreading across multiple administrative domains
where most faults leave signatures on their local hosts, which are not visible or
accessible to remote applications.

In this paper, we explore such scenarios with specific focus into the aspect
of hardware failures effect on highly available distributed applications and the
techniques required to take proactive recovery steps. We propose a method for
projecting hardware failures, occurring or predicted to occur, in terms of the
resources being used by an application process, at runtime, and use the pro-
jections to take proactive recovery steps with a view towards maintaining QoS
guarantees like availability. We describe an end-to-end distributed framework to
support proactive recovery and detail the functionality of each of the framework’s
components.

2 Review of Related Work

Current state of fault management for distributed systems is addressed dis-
parately at three different layers, namely hardware (ECC and CRC like checks,
RAID, etc. associated with hardware redundancy), system software (OS level
resource duplication, reallocation strategies) and application (checkpoint and
rollback recovery, replication, backup strategies).
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Hardware Fault Tolerant techniques. The existing literature on fault tolerance
has many reported techniques to mask hardware failures. The basic strategy
used is to contain errors and this is usually achieved by establishing ECC checks.
Once an error is identified and cannot be rectified some form of redundancy is
used to mask the failure. Many hardware redundancy techniques, ranging from
component duplication, circuit-level duplication to board level duplication, have
been adopted [4]. All these methods are capable of identifying problems at the
system hardware and effectively mask hardware failures. The OS may or may
not be designed to exploit these features. Also, provisioning for hardware level
fault tolerance usually tends to be a costly affair.

Operating System Fault Tolerant Techniques. The OS abstracts the hardware
and provides a usable interface to the hardware devices. As a consequence, what
the application process uses as a resource is quite different from what is available
as a physical device. Most error monitoring mechanisms at the hardware level,
work at the physical device level. Although OS is normally aware of the errors
occurring at the hardware level, it still needs to map the physical devices to
the abstracted resources to really diagnose what resource of the currently active
process(es) is affected. As of now no OS does this diagnosis. Most OSs just
report the hardware error with the associated physical device, and in some cases
the affected OS abstracted resource, and leave it to the diagnostics personnel
to analyze and solve the problem. Usually the running process affected due to
an error is aborted. Recently, IRON File systems [5] work cites this deficiency
and suggests some form of recovery for disk-based errors on the file resources a
process uses. We also believe that similar recovery strategies can be employed
for masking errors of other hardware devices like memory, network and I/O
interfaces.

Application Level Fault Tolerant techniques. Application level fault tolerance
is the most commonly adapted technique since it is easier for the developer to
implement. Most strategies fall into the category of check-pointing with roll-
forward or roll-backward (restart strategy), n-version programming (replication
strategy) or self-checking software [6] [7] [8]. Most of these methods are quite ex-
pensive and heavyweight particularly when applied to distributed applications.
Often, most of the above-mentioned techniques are associated with highly avail-
able enterprise class systems. These systems have fairly excessive monitoring
hardware and software, but the recovery operations are restricted to application
level. Many a times, particularly with respect to hardware faults, application
recovery is coarse grained. For example, in distributed environments like the
Computational Grids, an application is set for execution after the required input
and execution files are staged-in to the chosen execution host. If the file-staging
area is hosted on a disk, which is experiencing media errors, the application
execution may fail. A typical recovery option applied when the application fails
is either restart or migrate to another host. This migration tends to be costly
if it is initiated after the execution has progressed to some extent. If there is
a mechanism that can detect why the execution failed, like in this case due to
disk media errors, the required failed file could be staged-in, on the fly, to a
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stable storage area, free of errors. The application file I/O request could be re-
initiated transparently. This needs error monitoring and recovery capability at
all stages, from the hardware, to the OS to the application, as one coordinated
effort. In order to enable such fine-grained recovery one needs to 1. Identify er-
rors occurring in the system at runtime 2. Characterize the failure effect on the
active processes currently running in the system 3. Devise and apply multi-level
recovery strategies to mask failures. In this study, we have tried addressing the
effect of hardware failures on the running processes in a system and propose a
framework that monitors and allows for multi-level recovery.

3 End-to-End Architecture for Fault Tolerance in
Distributed Environments

In distributed setups, an application can potentially get realized over physically
different machines, each possibly contributing in a different way. In its simplest
form the application would have three parts, namely, the client part from where
the user launches his request, the middleware part that understands what ser-
vices are required to satisfy the user request and the resource part that actually
executes the services. Typically, such applications have multi-tier architecture
as shown in Figure 1.

Client
Application

Resource #1

services
:uses application

register with service
providers

:application services

on different resources
:application services are launched

Service Providers

Service #2 Service #n

Application Services

...Service #1

Resource #2 Resource #n

Distributed Resources

...

:searches for required
services using service

index

Fig. 1. Multi-tier architecture of a distributed application

The Application Client is the client part, the Service Provider along-with Ap-
plication Services description and access information (dotted box in Figure 1)
form the middleware part and the Distributed Resources form the server part.
A distributed application has client and server components. The client hosts
the application request launcher and the server hosts the services that the ap-
plication uses to satisfy user requests. In collaborative service environments,
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the service composition for a specific user request could happen dynamically at
runtime. In order to locate the currently available services, application clients
communicate with known service providers. The service providers play impor-
tant role in locating services that satisfy specific QoS requirements, as stated by
the client request. Within distributed environments, this means that every com-
ponent participating in satisfying the request contributes to the QoS. In order
to assess satisfaction of QoS guarantees, appropriate monitors are established,
usually at each layer of the multi-tier. What QoS requirements are specified
along-with the request depends on the application and the specific request and
is monitored by the service provider through a Service Level Agreement (SLA).
This SLA is composed of QoS specific metrics that are monitored. These met-
rics are either associated with service, resource both. In order to ensure QoS
guarantee satisfaction, one can use resource reservation followed by allocation
schemes and then restrict system load to prevent violations. Adaptive schemes
could also be used which could allocate more than requested resource quantity,
like communication bandwidth, when there is lesser load [9]. All schemes con-
centrate on handling QoS guarantees when multiple applications are contending
for resources, but do not address the issue of non-satisfaction of QoS guaran-
tees in face of resource failures. In order to do so, like any other QoS metric,
one should be able to measure as well as monitor resource failures, their effect
leading to service failures and thereby resulting in application failure. Here we
describe one such framework for highly available applications, that is designed
to monitor resource failures and their effects on services and the application,
with an aim to enable pro-active recovery. The basic input for the monitoring
components in this framework is availability. For the purpose of discussion in
this paper we define availability as the probability that the required resource or
service is available at a given point in time to render the requested service. As of
this study we have restricted to measuring availability with respect to hardware
component failures in a system. Also, we define, two health vectors in order to
monitor availability namely hardware health vector and process health vector.

We define the hardware health vector as the list of availability probability
values of all the hardware components of a system. Typically, this would contain
the availability probability values for processor, memory, disks, network cards,
I/O cards, etc. In a Unix based machine these are usually the physical devices
of the system and are identified by a unique device path name, like the device
hardware path in HP-UX (HP’s implementation of Unix).

Any process executing on a system, uses the system’s software services and
the hardware devices to carry out its function. Assuming that the software part
of the executing process and the system are fault-free, we map the hardware
failures to the using process based on its current resource usage. We define this
mapping as the process health vector. The process health vector contains a list
of the availability probability values for the resources it is using or expected to
use. Typically this would contain the values for the files and sockets the process
needs, the virtual memory pages and swap area blocks it is currently using,
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multiple threads it has spawned, etc. We derive the process health vector from
the hardware health vector as described in the later section.

Having defined the hardware and process health vectors, we now describe the
framework showing how these vectors can be used to detect failures and activate
recovery. It is useful to note here that any pro-active mechanism would benefit
if a prediction of the failure is made prior to the actual failure. The prediction
gives the proactive mechanism time to react. Of course, none of this is effective
in case of crash failures wherein reactive measures need to be applied.
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Service Provider
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Fig. 2. Pro-Active Fault Management Framework for Distributed Environments

Figure 2 shows a schematic diagram of the framework. The diagram depicts
a typical multi-tier architecture of distributed environments like the Compu-
tational Grid [10]. We use the Computational Grid as a representative exam-
ple for describing the framework. However, the framework is not restricted to
Grids and is generic enough to be applicable to any distributed environments. In
this figure there are four-layers, namely, Grid user integrated development envi-
ronment (Grid IDE) [10], Adaptive Grid Meta-Scheduler (AGMeTS) [11], Grid
Middleware [10] and the Grid Fabric [10], in order of flow of execution control.
A Grid user composes his application and states it as a workflow composed of
job steps using the Grid IDE. Each job step could be an independent job com-
posed of collaborating services. A job step is specified with its resource and QoS
requirements. Resource availability is specified by the job step as a QoS require-
ment. A highly available application would specify its availability requirement
as 100% resource availability. For example, the job step specifies its resources
requirements as:
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<ncpus=1, memory=1Gb, input_file="/home/myinput",

output_file="/home/myouput", scratch_dir="/home/scratch">

and required resource availability as:

<processor=1.0, memory=1.0, input_file=1.0,

output_file=1.0, scratch_dir=1.0>

The value of 1.0 as availability number against a resource means that the ap-
plication expects the resource to be 100% available, at all times, during its exe-
cution run. An application that wants a best of effort run need not specify avail-
ability as a QoS requirement. AGMeTS, Grid Middleware and the Grid Fabric
use the availability information specified by the job step as an input for making
scheduling, monitoring and recovery decisions. AGMeTS [11] combines resource
brokering with fault tolerance as it’s goals and is successful in masking resource
failures autonomously in distributed environments. AGMetS is an intelligent dis-
tributed job scheduler that takes scheduling decisions based on the knowledge of
the system availability. We expand the system availability to include the process
health vector and AGMeTS to react to changes in this vector.

After the user completes the composition of his application, the Workflow
manager calculates each job step’s dependencies, composes an execution plan and
submits each job step according to this plan to AGMeTS. AGMeTS parses the
resource and availability requirements of the application and selects a suitable
compute node for dispatching the job. AGMeTS uses the job submission service
of the Grid Middleware for this. Solid arrows depict this flow of execution control
in Figure 2. Once the job step is in execution, AGMeTS starts monitoring the
host’s resource availability against the QoS requirements specified for the job
step. AGMeTS gets this information from the Grid Middleware’s resource service
provider. Dashed arrows in Figure 2 depict this flow of information.

The job submission service of the Grid middleware sets up the Grid Job
Service Monitor and Manager services after the job has been successfully sub-
mitted to the compute node. If the current host’s resource availability drops
below acceptable limit, AGMeTS triggers job-step recovery action like issuing
an application checkpoint and job step migration to the next suitable node. The
Grid Middleware publishes the host’s resource availability information specific
to the job step, the process health vector. The Job service monitor uses this
information to watch current availability of resources for the job step. In case
a specific resource’s availability drops below acceptable limits, the monitor trig-
gers resource specific recovery action. For example, the compute node detects
file read error on the job step’s input file, after the time it has started reading,
due to media errors on the file staging disk. At this point in time the job-step
would fail with an I/O error on input file.

Since now the compute node is publishing loss of availability on the input file,
the Grid Job Service Manager can take an autonomous decision on relocating
the file by issuing GridFTP afresh. The process resource manager running on
compute node would request the OS of the compute node to relocate the file
from the recent transfer to an area on disk that has so far not experienced any
media errors or locate it to an alternate disk.
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In this framework, we use the concept of recovery oriented computing [12]
to incorporate autonomous behavior, in face of failures, to the application. The
necessary information to take decisions on when to start recovery is provided
by the health vectors. These health vectors are interdependent and composed
at runtime. The interdependence is bottom-up, i.e., once we know the compute
node specific hardware resources (like disk, processor, etc.) availability, we can
map the process’ resources (like thread, file, stack, etc.) health to that of the
hosting hardware resources and from these compute the host’s health on which
the job-step is executing.

4 Generating the Hardware Health Vector

The hardware health vector of a system can be generated using any online error
monitoring and analysis method. For our purpose we use an analysis method
built using Bayesian Belief Network (BBN) [13]. Based on the current observed
hardware error events, the BBN outputs the failure probabilities of the effected
components from which the hardware health vector is easily computed. We also
use a standard exponential decay function for each hardware component to make
a prediction on its future health knowing the current health. This method was
tested on HP-UX based machines. Our offline analysis of the prediction system on
hardware error logs indicate no more than 10% false positives. What is important
here is the quantification of the availability values, which helps in rendering the
property of autonomous behaviour. Quantification enables agents or monitors
to check the values periodically or based on thresholds and take appropriate
decisions, like pro-active recovery. For one of the system used for job submission,
a failing disk was found. The hardware health vector computed for the node was
as follows:

<node_name: oldmonk>

<current>

<processor:32:1.0 0.0> <memory:49:1.0 0.0> <scsi_adapter:10/0/15/0:1.0 0.0>

<disk_controller:10/0/15/0.6:1.0 0.0>

<disk:10/0/15/0.6.0:0.013 0.987:block_address:>

<predicted:02.00.00>

<processor:32:1.0 0.0> <memory:49:1.0 0.0> <scsi_adapter:10/0/15/0:1.0 0.0>

<disk_controller:10/0/15/0.6:1.0 0.0> <disk:10/0/15/0.6.0:0.013 0.987>

The node named “oldmonk” is a single Intel processor based machine with
256MB memory with a single hard disk of 80Gb capacity connected to a SCSI
adapter. In the vector above, followed by the node name is the current health
of the component list constituting the component generic name, hardware path
(unique device name in the system) along-with it’s working and failure proba-
bility values. For devices like disk, additional information like block address is
given, in case where media errors are detected. The block address of the failing
block is useful to locate the actual affected resource, in this case a file, while
computing the process health vector. Following the current health vector, the
predicted component health values after a period of 2 hours is listed.
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5 Generating the Process Health Vector

The hardware health vector is generated based on observed hardware error events
in the system. Observing these events one discovers that these events relate
to the hardware component’s specified functioning. At a process level, the OS
abstracts the hardware devices into appropriate resources like virtual memory
pages, input-output files, etc., that are usable by the process. While computing
the health vector at the process level one needs to get the correct associations of
the involved hardware devices to the abstracted OS resources. For the example
cited earlier for the disk failure, we use the disk block address to verify if the
concerned files, currently allocated to the process, contain the block address. If
so, then the loss of availability due to the error on the disk block is factored in
while calculating the availability of the file. Before actually projecting the loss
of availability for the file, we envisage to instrument appropriate mechanisms
in the file system manager of the OS to dynamically relocate the file block to
another disk block. If this operation is successful, there is no loss of availability
projected for the file. In case this is not successful, the local OS could suspend
the process, and if the application allows for change in the file pathname, relocate
file to a different file system and restart the process. In this case also, there is
no loss of availability projected for the file. The application continues to execute
after experiencing latencies rather than terminating. In case, the file pathname
cannot change, the loss in file availability is projected in the process health
vector. This process health vector is monitored by the AGMeTS which would
take application level recovery action when the process resource availability levels
drop to unacceptable values.

Since this method was prototyped on HP-UX OS, the following two figures,
Figure 3 and Figure 4 give details of generating file resource availability in
the process health vector from the disk subsystem hardware health vector. The
diagram contains HP-UX related OS internal data structures taken from [14].
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Process
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Process

Process

Process

Process List

Kernel Thread

Kernel Thread

Kernel Thread

Thread List

P P P P P

Virtual Address Space

R R R R R

U

U

Symbol File Table

P − Pregion

R − Region

U − Uarea

Fig. 3. Kernel Process Tables in HP-UX (version 11i)
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Figure 3 above gives the details of data contained in the HP-UX kernel’s process
tables. The phash function in the above diagram is a hash table on the process id
to the proc-list structure of HPUX. The proc-list contains details of all the cur-
rent active processes in the system. These details include the number of threads
spawned by the process, its virtual memory extents, file descriptor entries, etc.
For every process of interest, we find out the resources it is allocated by nav-
igating through these tables and form the process health vector elements. An
example process health vector, for the job requirements specified in section 3 is
as follows:

File Descriptors Symbol File Table

Process
# 1547

inode cache

Input File

Availability: 1

Filesystem
inode

vnodeinode

data

buffer

buffer cache

Pfca(W) = 1.0

Pfcs(W) = 1.0

PdiskA(W) = 1.0

I/O subsystem 10/0/15
Pio=Pfca(W) *

Pfcs(W) *
Pdiska(W)

Hardware
Health
Monitor

Hardware Health Vector

Disk A: 

FC Switch:

Process Health Vector

...

fileA

FC Adapter: 

Fig. 4. HP-UX view of a filesystem tables along-with the mapping of the hardware
health vector to the corresponding resource element of the process health vector. P(W)
for a hardware component depicts the probability of the component working at a given
point in time.

<job_id:1547>

<processor=1.0, memory=1.0, input_file:fileA=1.0,

output_file:fileB=1.0, scratch_file:fileC=1.0>

For each of the vector elements’ we then navigate the appropriate kernel resource
table for a mapping between the hardware health vector to the specific vector
element of the process health vector. Figure 4 depicts the mapping between the
input file fileA for the process 1547 and the underlying hardware this resource
is realized on. In this specific case, the file fileA was physically located on a disk
DiskA. Incidentally, in this case the filesystem on which this file resides, was
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located only on this one disk. In order to consider the availability of the fileA
we need to consider it’s dependency and also the availability of the hardware of
the I/O subsystem which the device driver interacts for any I/O operation on
this file, the memory regions occupied by the inode and file system buffer caches
and the mount points. As of this study, mapping between an I/O subsystem to
the file is complete. We need to extend the mapping to include the memory and
mount point dependencies.

The proc list for the process 1547 gives the file descriptor for fileA, which
is added as an element to the process health vector for this process. From the
system file table we can trace through the inode cache to the specific inode and
the file data block. From the inode and the data blocks for the file we get to
know the disk block extents occupied by the fileA. The hardware health vector
generated for the I/O subsystem containing this DiskA contains the current
hardware health status of the disk as well as the complete subsystem. While
calculating the availability of the fileA we use the subsystem availability value
since any hardware element within the subsystem, including the disk, would
contribute to the file’s failure. This is depicted in Figure 4.

6 Conclusion

The framework described in this paper facilitates adaptive recovery, based on
observed resource failures. The framework is end-to-end and builds on multi-
level recovery approaches to mask failures. It benefits from this approach since
at the lowest level, i.e. hardware level, the recovery is lightweight. Increasing
complexity of recovery is attempted only when the lower level techniques fail.
This is against the most common approaches adopted today that tend to either
restart with checkpoints or replicate the application. This framework uses such
methods only when other recovery options have failed. This work to the best of
our knowledge is the first of its kind to perform an end-to-end analysis of the
impact of a hardware fault on application SLAs, in a live system. The use of
quantified current and predicted health aids in making appropriate decisions on
the type of recovery performed through the use of policy engines.

We are in the process of evaluating the performance overheads on the appli-
cation. Since we are looking at application failure scenarios, and the strategy is
to provide for fault masking at various layers of the framework, we believe that
the application does not really have any significant performance loss. The bene-
fit cannot be worse than the case where manual intervention is the only option
in Grid like distributed environments. We are also exploring the use of virtual
machines, like Xen and Vmware, with features like live application migration
and relocation, wherein such pro-active methods are meaningful and can help
the middleware to decide when to migrate the application alongwith it’s state.

Acknowledgments. The authors thank Harshit Singh, Tushar Agrawal and
Vagdevi Kudlur for prototype implementation and also Seenivasagan Mana-
valam and his team of Hewlett-Packard India Pvt. Ltd. for providing us with



560 J. Lakshmi et al.

representative hardware error logs. This work was supported in part by Hewlett-
Packard India Software Operations.

References

1. Ross, J.W., Westerman, G.: Preparing for utility computing: The role of it archi-
tecture and relationship management. IBM Syst. J. 43 (2004) 5–19

2. Sahai, A., Singhal, S., Joshi, R., Machiraju, V.: Automated policy-based resource
construction in utility computing environments. In: IEEE/IFIP Network Opera-
tions and Management Symposium. (2004) 381–393

3. Lussier, B., Chatila, R., Ingrand, F., Killijian, M., Powell, D.: On fault toler-
ance and robustness in autonomous systems. in proceedings of the 3rd IARP-
IEEE/RAS-EURON joint workshop on technical challenges for dependable robots
in human environments, manchester (gb), 7-9 september 2004 (2004)

4. Erez, M., Jayasena, N., Knight, T.J., Dally, W.J.: Fault tolerance techniques
for the merrimac streaming supercomputer. In: SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, Washington, DC, USA, IEEE Com-
puter Society (2005) 29

5. Prabhakaran, V., Bairavasundaram, L.N., Agrawal, N., Gunawi, H.S., Arpaci-
Dusseau, A.C., Arpaci-Dusseau, R.H.: Iron file systems. In: SOSP ’05: Proceedings
of the twentieth ACM symposium on Operating systems principles, New York, NY,
USA, ACM Press (2005) 206–220

6. Hwang, S., Kesselman, C.: Gridworkflow: A flexible failure handling framework for
the grid. In: HPDC ’03: Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing (HPDC’03), Washington, DC, USA,
IEEE Computer Society (2003) 126

7. Zhang, X., Zagorodnov, D., Hiltunen, M., Marzullo, K., Schlichting, R.: Fault-
tolerant grid services using primarybackup: Feasibility and performance (2004)

8. Xie, Z., Sun, H., Saluja, K.: Survey of fault-tolerant techniques in modern micro-
processors. Technical report, (Department of Electrical and Computer Engineering,
University of Wisconsin-Madison)

9. Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., Roy, A.: A distrib-
uted resource management architecture that supports advance reservations and
co-allocation. In: Proceedings of the International Workshop on Quality of Ser-
vice. (1999)

10. Foster, I., Kesselman, C.: The Grid - Blueprint for a New Computing Infrastruc-
ture, second edition. Elsevier Publication (2004)

11. Nainwal, K.C., Lakshmi, J., Nandy, S.K., Narayan, R., Varadarajan, K.: A frame-
work for QoS adaptive grid meta scheduling. In: DEXA Workshops. (2005) 292–296

12. Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., En-
riquez, P., A. Fox, E.K., Merzbacher, M., Oppenheimer, D., Sastry, N., Tetzlaff,
W., Traupman, J., Treuhaft, N.: Recovery oriented computing (roc): Motivation,
definition, techniques, and case studies. Technical Report UCB//CSD-021175, UC
Berkeley Computer Science (2002)

13. Narayan, R., Varadarajan, K., Lakshmi, J., S.K.Nandy, Agrawal, T., Singh, H.:
Fault localization and recovery engine: A learning system. In: Hewlett-Packard
Technical Conference. (2005)

14. Cooper, C., Moore, C.: HP-UX 11i internals, first edition. Prentice Hall Publication
(2004)



A Bluetooth MPI Framework for Collaborative

Computer Graphics

Daniel C. Doolan1, Sabin Tabirca1, and Laurence T. Yang2

1 University College Cork, Ireland
d.doolan@cs.ucc.ie, tabirca@cs.ucc.ie

2 St. Francis Xavier University Antigonish, B2G 2W5, Canada
lyang@stfx.ca

Abstract. This paper introduces a collaborative framework that resides
on top of the Bluetooth API. It is designed for Bluetooth enabled mo-
bile devices to allow for the collaborative generation of computer graphics
and message passing. This new library is called the Mobile Message Pass-
ing Interface (MMPI). Mobile devices generally have limited processing
abilities. By combining the processing power of several devices, complex
computer graphics can be rendered in a fraction of the time a single
device would take.

1 Introduction

The uptake of Mobile phones around the world is staggering with forecasts of
810 million units shipped for 2005 [13]. This is close to one sixth of the worlds
population in just a single year. Compare this with the expected sales of PC’s
at 200 million units for 2005. “What would you call a device that has a screen, a
keyboard, storage, email, documents, the ability to play audio and video, games
spreadsheets, and communications ability? A personal computer? How about
a ‘mobile phone’?” [15]. One can clearly say from the previous statement that
mobile phones have most of the computing abilities required by the public.

Current top of the range phones are running at about 100 - 200Mhz, the
phones within the next few years will be as powerful as many personal com-
puters that are in use today. On the 4th October 2005 the Cortex-A8 processor
was unveiled, yielding processing power of 1Ghz [24] [1] [2]. This is the type of
processing power that many devices such as phones, PDA’s, digital cameras and
TV’s will have in the not too distant future.

It is clear that many mobile devices (phones, PDA’s) have potential for com-
putational tasks. As with any large task, adding more processing units to the
problem generally helps to reduce to overall computation time. This is where
Bluetooth technology can be of use. So what is Bluetooth? In short it is a low
power short range communication system, named for Harald Bl̊atand “Blue-
tooth” II, King of Denmark from 940 to 981. He was renowned for getting people
to talk to each other. Hence the modern usage of the term “Bluetooth” for the
area of short-range communication.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 561–572, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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1.1 Article Overview

Several distinct areas are discussed within this paper as summarised below.

– Section 2. Discusses Message Passing and Bluetooth networking.
– Section 3. Details the structure of the MMPI library and gives some examples

of the communication methods in use.
– Section 4. Shows how the library can be applied for the creation of Fractal

Image in parallel and examines how various load balancing schemes affects
the overall processing time.

– Section 5. Focuses on the use of the library for collaborative gaming.

1.2 Importance of Bluetooth and Mobile Devices

Bluetooth allows devices to communicate within a short range. For devices such
as phones Bluetooth is a very useful means of communication as it has a very low
power consumption. It is generally of use where a small amount of data needs to
be transmitted. The Bluetooth 1.2 specification defined the maximum data rate
to be 1 Mbits/s (723Kbit/s real throughput). The Enhanced Data Rate (EDR)
version of Bluetooth was ratified in November of 2004. Under the Bluetooth 2.0
specification EDR operation will deliver a maximum of 3 Mbits/s (2.1 Mbits/s
real throughput) [16].

Bluetooth has many uses: sending data over a modem, sending voice and GPS
data are typical uses. Any Bluetooth enabled devices may be connected together.
J2ME allows developers to program for Bluetooth via the JSR-82 package. Client
/ Server systems can be developed to carry out what ever operation the developer
requires, from multiplayer games to connecting to database Servers.

1.3 The Need for Collaborative Computation

There are many problems that require extremely powerful machines to compute
the answer in a reasonable time for example weather forecasting. Such problems
cannot be tackled by a single system as it would take years of computing. The
solution to this is to use many processors. Currently the most powerful system
is IBM’s BlueGene Project which consists of 131,072 processors (top500.org).

The largest distributed systems in the world use this paradigm. The Berkeley
Open Infrastructure for Network Computing (BOINC) [4] has many research
projects to which interested parties can contribute their systems computing
power. These projects include: the study of climate change and the investigation
of protein related diseases. The most famous and largest with well over 5 million
participants is the Search for Extraterrestrial Intelligence (SETI) [5].

Mobile devices have far less processing power than that of desktop machines.
Hence if a task requires a significant amount of time to compute on a single
device then the answer is to distribute to work to multiple devices. Bluetooth
provides a useful means of connecting several mobile devices together, forming
the underlying infrastructure for collaborative computation with a set of mobile
devices.
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1.4 Motivation

Many cluster systems use the Message Passing System to communicate between
nodes. It allows the user to write a single program that can run on multiple
processors without the need of the developer to worry about the underlying
communication mechanism.

The development any Bluetooth system inherently requires the programmer
to write significant sections of Bluetooth specific code. The primary reason for
developing the MMPI system is to abstract from the underlying Bluetooth com-
munication system. This higher level of abstraction allows for shorter develop-
ment cycles. The developer can focus on the application task at hand and not
have to deal with the intricacies of inter device communication.

The MMPI system can be used within many application domains and is not
just limited to high end parallel computation. It can also be used for multiplayer
gaming and simplifies any application that requires Bluetooth communication.

1.5 Library Usage Intentions

One can say that Bluetooth communications is inherently a nomadic communi-
cation form where devices come and go from a network at random. The principle
behind this library is that it is used in an environment where this nomadic be-
havior does not occur. The use of the library for gaming is an example were
several individuals would setup a game and partake in it for a prolonged period
of time. It may also be of use within the education environment to communicate
questions and answers, even small exams within the class room. Many people no
longer are the owners of just one phone, hence the library can prove to be a useful
tool for synchronising data between several devices, be it phone, PDA or laptop.

2 Operating Environment / Background

2.1 Message Passing

Since it’s introduction in 1992 parallel programming has long benefitted from the
Message Passing Interface (MPI). What is MPI? “MPI is a library specification
for message-passing, proposed as a standard by a broadly based committee of
vendors, implementers and users” [21].

MPICH is one of the most well known freely available MPI systems currently
available [22]. MPI systems are usually based on the C or Fortran programming
languages. There are also Java based implementations available (mpiJava) [18],
this is an object-orientated Java interface to the standard message passing inter-
face. It is implemented as a set of Java Native Interface wrappers to native MPI
packages. Another all Java example is Message Passing in Java (MPJ) [9] [3].

2.2 Bluetooth

Bluetooth [6] [7] is a wireless (radio) standard designed for short range commu-
nication and low power consumption. Bluetooth products are divided into one
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of three classes based on communications power, allowing for omni-directional
communication between devices ten to 100 meters apart. Communication is car-
ried out in the Industrial-Scientific-Medical (ISM) band at 2.4Ghz. The Blue-
tooth operating band is divided into 79 channels each 1 Mhz apart (2.402 to
2.480Ghz). If also uses frequency hopping, changing channels 1,600 times per
second.

2.3 Bluetooth Network Topologies

Bluetooth Networks can be established in three differing forms: Point to Point,
Piconet and Scatternet. The simplest form (Point to Point) connects two Blue-
tooth enabled devices together. Typical uses of this form are: phone / PDA
connections to a Keyboard or phone to Bluetooth Headset to name just two
possibilities.

The Piconet is a network that may have up to eight devices connected together
at any one time. In other words a device has a limit of seven connections that it
can make to other devices.

The Scatternet is composed of a collection of Piconets. To connect the various
Piconets together some of the devices must act as both Client and Server to
establish the interconnect between separate Piconets.

3 Mobile Message Passing Interface (MMPI)

The primary purpose of MMPI is to produce an MPI like system for mobile
devices. This will abstract the programmer from the Bluetooth communications
libraries and allows for more productive development of the task at hand.

3.1 System Structure

The overall structure consists of three classes. Firstly the main MMPI class
which carries out the primary message passing functions. The two remaining
classes BTClient and BTServer are required for creating the underlying Blue-
tooth connections. The MMPI class will instantiate only one of the Bluetooth
Classes depending on the parameter value that is sent to the constructor. With
the channels of communication established the MMPI class is capable of send-
ing or receiving messages simply by accessing an element in an array of either
DataInputStreams or DataOutputStreams.

With the MMPI object instantiated the size and rank can be easily established
by calling the getSize() and getRank() methods of the MMPI object. By knowing
these values an application using the MMPI system can divide up the task appro-
priately in preparation for the communication of data to all nodes in the system.

To write any MMPI application a few simple lines of code are required. Be-
tween the creation of the MMPI object the the closing down of the interconnect
(with the finalize() method) parallel computation may be carried out. In many
programs one of the first methods to be called are getSize() and getRank() so
the node has an idea about it’s environment. This is followed by the parallel
code the user wishes to execute.
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3.2 Initialising the World

The startup of the inter-connect between all the nodes begins as a typical Blue-
tooth Client / Server system. Firstly several Client (slave) nodes are started up.
Each of these open up a Server connection and then waits (blocks) until a Client
connection is established. This is achieved via the openAndAccept() method. To
create our world with five nodes requires the initialisation of four Client applica-
tions, each of which establishes a Server connection to await Client connections.
Next the root node (Our Server) establishes connections to each of the Client
nodes by carrying out both device discovery and service discovery. At the end of
this process for five nodes we have an interconnect similar to that of Figure 1.

The main node has an array of DataOutputStreams and DataInputStreams
to each of the connected Clients. With this one to many connection the main
node can communicate with all of the connected Clients. However a system is
required whereby any node can communicate with any other node in the system.

This procedure requires the setting up of several more Server and Client con-
nections to complete the interconnect. The establishment of these connections
must be synchronized so that the appropriate Server connection is connected
with the correct Client connection. This synchronization process is carried out
through the main node of the system. Firstly all of the connected Clients need
the addresses of all the other nodes in the system. Currently the only address
that a Client knows of is that of the main node (root node). So once the root
node has established connections with all the Clients it transmits an array of
strings representing the address of all the Clients in the system. With these
addresses it is now possible to interconnect all Clients to each other.

Every device in the system requires the establishment of two arrays one for
input the other for output. The index into this array should give a connection to
the same device no matter what node is currently being examined. This means
that we can establish communication in a similar fashion to MPI whereby the
source and destination addresses are referenced by index numbers (the root node
being 0). It is also necessary to establish which node has which index number
(rank), and as such the root node sends the rank number to each Client based
on its location within the root nodes array of connections.

The number of Server or Client connections a Client node must established
can now be computed. Each Client has an array for connections whose size is
that of the size of the world. The first entry in the array maintains the connection
back to the root node Server Connection). Iterating through all the elements of
the array if the index of the array is less than the rank, then a Client connection
will be established. If the index of the array is greater than the rank then a
Server connection is established.

As each Client can potentially have many Server connections listening for
Clients to connect, it is essential to synchronize the establishment of these con-
nections. For example the first step is for Client 1 to establish a Server connec-
tion. This Client will then send the index of its current location in the array to
the root node, which forwards this on to the corresponding Client (Client 2).
Once Client 2 receives the message it can then open a connection to the Server
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of Client 1. The address of Client 1 can be found from the array of address
transmitted to all the Clients earlier in the process. Just as important as the
address to establish the connection to is the channel to which the connection
should be made.

C CH 1 1

C CH 1 2

C CH 1 3

C CH 1 4

S CH 1 0 S CH 1 0 S CH 1 0 S CH 1 0

Client 1 Client 2 Client 3 Client 4Main Node

Fig. 1. Initial Connection

C CH 1 1

C CH 1 2

C CH 1 3

C CH 1 4

S CH 1 0 S CH 1 0 S CH 1 0 S CH 1 0

Client 1 Client 2 Client 3 Client 4Main Node

S CH 2 2

S CH 3 3

S CH 4 4

C CH 2 1

S CH 2 3

S CH 3 4

C CH 3 1

C CH 2 2

S CH 2 4

C CH 4 1

C CH 3 2

C CH 2 3

Fig. 2. Complete Interconnect

To know what channel a connection should use to establish communication;
it is necessary to know how channel numbers are assigned. All Clients currently
maintain Server connections back to the root node these all operate on a par-
ticular channel (for example channel 1). As each new Server is established the
channel number is incremented. So the second Server will operate on channel 2,
the third on channel 3 and so on. The Client that is trying to connect to a Server
connection can connect to the proper channel based on the rank of the node and
the channel number back to the root node. Figure 2 show this interconnect far
more clearly.

The end result is the successful establishment of channels of communication
between all nodes within the world. This allows for any Client to communicate
with any other Client in a seamless way. Simply by indicating the correct node
(index) number one can communicate with any other node in the system. The
same as how communication in MPI is carried out.

The entire process outlined in this section is carried out when the MMPI
object is constructed. It is however necessary to pass a parameter to indicate
if a node is to act as a Server (Root node) or a Client. In the MPI world the
establishment of the world is achieved through the Init(. . .) function / method.

3.3 Communication

In MPI Point to Point communication is carried out using the send(. . .) , recv(. . .)
functions, as does the MMPI system. The Ping Pong example (Listing 1.1) is
identical in structure to that of an MPI Ping Pong program. The sending and
receiving of data is carried out on nodes 0 and 1. The sending and receiving data
must be both be an Array type Object, for example an array of Strings, Ints,
Longs. As with standard MPI programming a send on one node must match up
with a receive on the destination node. In the case of MMPI five parameters are
necessary for the sending and receiving of data. The parameters being; the input
or output buffer, the starting position of the array, the number of elements to
send or receive, the data type and finally the id of the node to which to send
data or the id of the node from where the data is to be read.
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mpiNode = new MMPI(nodeType);
rank = mpiNode.getRank();
int[] sendBuff = {rank}; int[] recvBuff= new int[sendBuff.length];
if(rank == 0){
mpiNode.send(sendBuff,0,1,MMPI.INT,1); mpiNode.recv(recvBuff,0,1,MMPI.INT,1);
System.out.print("Node 0 Got ["+recvBuff[0]+"]");

}else if(rank == 1){
mpiNode.recv(recvBuff,0,1,MMPI.INT,0);System.out.print("Node 1 Got ["+recvBuff[0]+"]" ←↩

);
mpiNode.send(sendBuff,0,1,MMPI.INT,0);

} OUTPUT: Node 0 Got [1] Node 1 Got [0]

Listing 1.1. MMPI Ping Pong Example

Parallel programs often require coordinated communication for example an
array of data may need to be distributed between all the nodes in the system.
This type of global operation can be implemented by using the Send and Receive
functions. To simplify this type of communication process a suite of collective
communication methods are provided in the form of the Scatter and Gather.
Broadcast is also another very useful function that allows for the broadcasting
of the same data to all nodes in the system.

3.4 Fault Tolerance

MPI does not have any Fault Tolerance built in to the system. If any node of the
world should die then the entire parallel operation will be aborted. Fault Tolerant
MPI (FT-MPI) [19] is an implementation to resolve this problem (first released
November 2003). FT-MPI is capable of surviving the crash of n-1 processors.
If required it can restart the crashed nodes. This however is quite an expensive
operation, and the application has to be able to recover the data of the crashed
nodes [12]. In the event of a node of the MMPI system crashing then the default
operation is to abort the processes of all nodes.

3.5 Running an MMPI Application

As can be seen from the constructor of the MMPI class a parameter is required
to indicate whether the application is to run as a Client or a Server. This is nec-
essary only to the MMPI class so that the appropriate BTClient or BTServer
objects can be instantiated according to the type of system to run. To allow
for this selection of modes all MMPI applications require a simple GUI to al-
low the user to choose the appropriate mode for the device (Client / Server).
Future developments of the system would hopefully have an automatic deploy-
ment feature that would rule out the need for user intervention to choose the
mode. To get a complete MMPI system running with several nodes it is neces-
sary to start up all the Client nodes first. The Server node will carry out device
discovery when initialised and create the world from the active Clients that it
detects.
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4 Collaborative Computer Graphics

To carry out parallel computer graphics typically requires and extension to most
MPI implementation, this extension is called Multi Processing Environment
(MPE). It provides tools and utilities for tracing and logging as well as a set of
graphical visualisation tools. We now present an example (Mandelbrot Set) where
by the MMPI system can be used for the generation of complex images in parallel.

4.1 Collaborative Mandelbrot Generation

The parallel generation of the Mandelbrot Set is a classical application of par-
allel computation [8] [23]. It is often described as an “embarrassingly parallel
computation” as the image can be easily divide into a number of completely
independent parts. Each of these parts can be computed on separate processors
with out any interdependency on results from other nodes.

The execution of the Parallel Mandelbrot Set application as with any other
MMPI program the user must be provided with an interface to choose the type
of the application to run (Client or Server). The program has been designed so
that the root node provides a Graphical User Interface through which the user
can decide on the parameters for the fractal image. The root node issues the
request to create the image to all other nodes in the system and will assemble
them into one final image for display on screen to the user. This approach mimics
MIMD type architecture but the simpler SIMD approach could also have been
taken where by the root node would also partake in the image generation process.

mpiNode = new MMPI(appType);
while(true){
mpiNode.recv(inputDataArr, 0, 1, MMPI.STRING, 0);
parseDataSetVariables(inputDataArr[0]);
for (int i = 0; i < SIZEX; i++)for (int j = 0; j < SIZEY; j++) {
Complex c = new Complex( (XMIN + i * STEPX), (YMIN + j * STEPY));
Complex z = new Complex();
for (k = 0; k < NR_ITER; k++) {
z = f(z, c);
if (z.getAbs() > R) {
r = c[k % l][0]; g = c[k % l][1]; b = c[k % l][2];
pixels[ (j * SIZEX) + i] = b + (g << 8) + (r << 16) + alpha; break;

} } }
int[] imgSliceArr = {imgSlice}; int[] dataSizeArr = {pixels.length};
mpiNode.send(imgSliceArr,0,1,MMPI.INT,0);
mpiNode.send(pixels, 0, pixels.length, MMPI.INT, 0);

}

Listing 1.2. Mandelbrot Example Code

The Mandelbrot Generation function is generally very simple (Listing 1.2).
One can clearly see that if the absolute value of the complex number lies outside
the threshold R, that the pixel at the current coordinates of the iteration through
the image will be drawn in a specific colour. The message passing section of code
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in the example starts with the construction of a new MMPI object through which
all communication is carried out.

Before the Mandelbrot algorithm is executed the parameters must firstly be
read in from the root node using the following method mpiNode.recv(. . .). The
input data is received in the form of an array and so it is passed to a method to
parse out the data and initialise the variables for the fractal algorithm.

Once the fractal generation algorithm is complete (the result of which is an
array of colour data) the pixel data must be returned to the root node. This
is carried out by the sending of three messages. The messages are firstly the
imageSlice number to indicate what section of the image has been generated.
Next the amount of data to receive (so the root node can setup the appropriate
buffers). Finally the pixel data is send out.

On the root node once the work has been distributed to all the nodes in the
system, the root node must prepare to receive image data from the worker nodes
(Listing 1.3). As the worker nodes send three messages the root must so too re-
ceive three messages. Once the pixel data has been read a new Image segment
is created by calling the createRGBImage method of the Image class passing
in the pixels read from the worker node. This continues until all sub images
have been read, at which time the completed image will be displayed to the
user.

mpiNode = new MMPI(appType);
for (int i=0; i < noConnections; i++){mpiNode.send(sectionData[i],0,1,MMPI.STRING,i+1) ←↩

;}
for (int i=0; i < noConnections; i++){
mpiNode.recv(segArr,0,1,MMPI.INT,i+1);mpiNode.recv(sizeArr,0,1,MMPI.INT,i+1);
dataArr = new int[sizeArr[0]];mpiNode.recv(dataArr,0,sizeArr[0],MMPI.INT,i+1);
fractalImageArray[segArr[0]] = Image.createRGBImage(dataArr,sliceWidth,height,false);
statusField.setText( "Images Received: " + (i+1) );

} Display.getDisplay(thisMidlet).setCurrent(imgCanvas);

Listing 1.3. Root Node Example Code

4.2 Load Balancing

Many methods may be used to decide how to divide up the work between
nodes for processing. These include Uniform Block, Cyclic and Dynamic Load
Balancing.

Both Uniform Block and Cyclic methods divide the image area into strips on
either the horizontal or vertical axis (Figure 3). In the case of Uniform Block
the number of strips is equal to the number of nodes that will be used for
the processing. So node i receives for computations the image chunk with the
consecutive columns i×w/nrNodes, i×w/nrNodes+1, ..., (i+1)×w/nrNodes−
1. With this geometric division all nodes receive the same amount of image area
to process but the amount of processing that each node will have to carry out
may vary widely.
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Fig. 3. Uniform and Cyclic Balancing
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A better approach but still using the same methodology is Cyclic Load Bal-
ancing. The image is still divided into equal sized vertical strips {S0, S1, ..., Sp−1}
each of them containing only a few columns. The partition of this p strips onto
the nodes is performed into a cyclic matter so that the node i would receive the
strips {Si+j×nrNodes : j = 0, 1, ..., p

nrNodes − 1}.
An alternative to the previous two methods is Dynamic Load Balancing (Fig-

ure 4) where by the image area is divided into a regular grid. This grid of work
units is formed into a pool of jobs and is distributed among the nodes for process-
ing. Once a node has completed a work unit and returns the results a new work
unit will be issued to the node. This process continues until all work units have
been completed. The finer the granularity the more even the work load will be
between the nodes, however one has increased communication costs.

4.3 Execution Results

A significant amount of time (55,657ms on a Nokia 6630) is required to generate
a 200 × 200 pixel image of the Mandelbrot Set. Both the 6630 and the 6690
use the ARM5 processor at 220Mhz. However the overall speed of the 6630 is
marginally better than the 6680 [26]. SPMarkJava06 [14] is a useful tool for
testing device speeds.

Overall Time with Varying Number of Compute Nodes
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ber of Nodes Increases

Fig. 6. Example Mandelbrot Images gen-
erated with differing World Sizes

Using the MMPI system and distributing the processing out to several nodes
can dramatically reduce the computation cost (Table 1, Figure 5, Table 2). The



A Bluetooth MPI Framework for Collaborative Computer Graphics 571

system was tested using four Nokia 6630’s. Figure 6 shows the resultant images
for both two and four compute nodes.

Table 1. Overall Times with Varying
Number of Compute Nodes

4 Nodes 3 Nodes 2 Nodes 1 Node
23,362ms 26,074ms 33,488ms 59,528ms

Table 2. Image Generation Times for the
Mandelbrot Set, 500 iterations

Node 1 Node 2 Node 3 Node 4
11,627ms 19,462ms 17,228ms 6,512ms

5 Collaborative Games

The MMPI library has huge potential in the area of collaborative gaming over a
Bluetooth network. One such example [17] shows that by combining Bluetooth
and the ARToolkit an interactive game of tennis can be produced between two
players. Having a library to abstract from the inner workings of Bluetooth would
greatly simplify the development cycle of such games. Using the library the game
could be expanded to four players (to allow for a doubles match).

Another example of collaborative gaming is the classical Pacman game, up-
dated to allow for multiple players at the same time would add another level of
interest and playability. Fantasy games where players have certain points levels,
stamina, hit points are also well suited to Bluetooth as the amount of data to be
passed between the engaged devices is very small (generally just status values
of a players condition) [20]. Strategy games are of course a great area of poten-
tial for this system. A single user playing against current Artificial Intelligence
players is one thing, but to vie for the winning position against a human player
is a different matter entirely, where the opponents actions cannot be predicted.

6 Conclusion

An overview of the MMPI library has been given. It has been shown that the
library has many uses in the area of mobile computing. It provides a simple
to use interface for the software developer to develop parallel applications us-
ing Bluetooth as the communications medium. Its uses are not just limited to
the area of scientific computing but also provides a useful base for collaborative
gaming across multiple mobile devices. One can also use to library to facilitate
interactive student/teacher M-Learning within a classroom environment. In gen-
eral the library is a useful tool for anywhere mobile Bluetooth communication
is required.
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Abstract. Software aging is an important factor that affects the software reli-
ability. According to the characteristic of performance parameters of applica-
tion sever middleware, a new model for software aging prediction based on 
wavelet networks is proposed. The structure and parameters of wavelet network 
are optimized by hybridization of genetic algorithm and simulated annealing al-
gorithm. The objective is to observe and model the existing resource usage time 
series of application server middleware to predict accurately future unknown 
resource usage value. Judging by the model, we can get the aging threshold be-
fore application server fails and rejuvenate the application server before sys-
tematic parameter value reaches the threshold. The experiments are carried out 
to validate the efficiency of the proposed model, and show that the aging pre-
diction model based on wavelet network with hybrid genetic algorithm is supe-
rior to the neural network model and wavelet network model in the aspects of 
convergence rate and prediction precision. 

1   Introduction 

Recent studies have reported the phenomenon of software aging [1, 2] in which the 
state of system performance degrades with time. The primary symptoms of this deg-
radation include exhaustion of system resources, data corruption and instantaneous 
error accumulation. This may eventually lead to performance degradation, crash/hang 
failure, or other unexpected effects. Aging has not only been observed in software 
used on a mass scale but also in specialized software used in high-availability and 
safety-critical applications [1]. 

In order to enhance system reliability and dependability and prevent degradation or 
crashes, a preventive maintenance technique called software rejuvenation was intro-
duced [1]. This involves occasionally stopping the running software, cleaning its 
internal state and then restart. For optimizing the timing of such a preventive mainte-
nance, it is important to detect software aging and predict the time when the resource 
exhaustion reaches the critical level. Most of the previous measurement techniques 
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for dependability evaluation were based on data from failure events [3, 4]. Estimation 
of the failure rate and mean time to failure of widely distributed software was pre-
sented in [3]. The approach for failure prediction was described in [5], which is based 
on an increase in observed error rate, an error number threshold, a CPU utilization 
threshold or a combination of the above factors. For the reason that software aging 
cannot be detected or estimated via collecting data at failure events only, by contrast, 
periodically monitoring and recording of the activity system parameters in operation 
is adopted in our works. The data related to system parameters are extracted from 
application server at regular intervals, therefore, the extracted data can be considered 
as the time series of system parameters.  

So far, many kinds of methods for time series prediction have been proposed, such 
as neural network [6], wavelet network [7-9], wavelet transform [10, 11], Bayesian 
theory [12] and support vector machine [13]. Neural networks are powerful tools for 
fitting nonlinear time series. However, the implementation of neural networks has 
disadvantages in determining the parameters of neurons and constructing network 
structure. Furthermore, as the training processes of neural network often settle in 
undesirable local minimal of the error surface, the network convergence rate is slow. 
Wavelet transform [10, 11] is a useful tool for multi-resolution decomposition of time 
series, so that slight temporal structures and the trend of time series can be revealed. 
Wavelet networks [8] can make up for the deficiencies of both wavelet and neural 
network and construct network topology efficiently. The key problem is to design an 
algorithm to determine the number of hidden nodes and train the network to adjust the 
parameters of the network to minimize the cost function, which usually is the square 
error between the output of the network and the actual. The usual method to do this in 
the domain of neural networks is based on the BP algorithm. Since genetic algorithm 
[14] is an optimization method, it can be adopted in wavelet network to help search 
the optimum number of hidden nodes and parameters of neural network and over-
come the problem of convergence towards local optima.  

In this paper, wavelet network method with genetic algorithm and simulated an-
nealing algorithm is proposed to predict resource usage for the purpose of detecting 
aging in application sever. Firstly, the collected operating system resource usage and 
system activity data at regular intervals are decomposed by wavelet. The decomposed 
coefficients are considered as the inputs of Wavelet network. Then the training of 
wavelet network is optimized by hybrid genetic algorithm to search the optimum 
number of hidden nodes and parameters of wavelet network. The prediction data of 
resource usage, which is the output of wavelet network, are then reconstructed by 
inverse wavelet transformation. Eventually, the experimental results are demonstrated 
to validate the efficiency of the proposed method, and show that the aging prediction 
model based on wavelet network with hybrid genetic algorithm is superior to the BP 
neural networks model and wavelet network model [8] in the aspects of convergence 
rate and prediction precision.  

The main contributions of this paper are as follows: 

1. Propose a wavelet- network based aging prediction model. 
2. Combine genetic algorithm and simulated annealing algorithm to optimize the 

structure and parameters of wavelet network. 
3. Use the resource parameters data collected from JUFrame application server 

system to evaluate the aging prediction performance. 
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2   Wavelet Transform and Wavelet Network 

2.1   Wavelet and Wavelet Transforms 

We briefly recall some basic concepts about wavelet transforms that will be useful for 
developing wavelet network. 

Definition 1. Let 2( ) ( )x L Rψ ∈  be a mother wavelet. The corresponding family of 
dilated and translated wavelet is defined by 

1
2

, ( ) ( )a b

x b
x a

a
ψ ψ

− −=  , , 0a b R a∈ > . (1) 

Definition 2. If a and b are properly selected, the wavelet , ( )a b xψ  can constitute a 
frame of 2 ( )L R  expressed as follows: 

22 2
,|| || | , | || ||a b

a b

A f f B fψ≤ ≤ . (2) 

where 2 ( )f L R∈ , 0A >  and 0B >  are the frame bounds. If A=B, ,{ }a bψ is the tight 

frame. IF A=B=1, ,{ }a bψ  is an orthogonal basis.  

Definition 3. A function ( )f x  in 2 ( )L R  space can be analyzed as follows 
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Definition 4. The continuous wavelet transform (CWT) is defined as follows: 
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Wavelet transform decomposes the function f(x) into a wavelet function series and 
uses such a series to approximate the function f(x). 

2.2   Wavelet Network 

Wavelet network are based on the continuous wavelet, orthogonal wavelet and wave-
let frame, and can be obtained by substituting a wavelet function for the activation 
function of the hidden nodes. According to the wavelet theory, the wavelet networks 
have the universal approximation ability in L2 space. Mathematical formula for the 
wavelet networks were provided in [8]. The wavelet network structure is illustrated in 
Fig.1, and the output of wavelet network g(x) can be expressed as follow: 

1

( ) [ ( )]
n

i i i i
i

g x w D R x t gψ
=

= − + . (5) 
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where iw are adjustable weights of the connections, it are translation vectors, iD are 
diagonal dilation matrices, iR are rotation matrices, N is the number of hidden nodes 
(wavelons) in the hidden layer and the additional parameters g is introduced to help 
dealing with nonzero mean functions on finite domains, because the wavelet ( )xψ has 
zero mean. 

1w

2w

Nw

( )g xx

g

 

Fig. 1. Wavelet network structure 

Two key problems in designing of wavelet network are how to determine the struc-
ture and parameters of wavelet network, and what learning algorithm can be effec-
tively used for training the wavelet network. 

3   Software Aging Prediction Model 

3.1   Wavelet Analysis Technology 

The time series data of memory usage has the characteristic of non-linear, strong-
correlated, multi-fractal and chaos. If the fluctuation rule of memory usage time series 
can be distinguished and analyzed, the trend of memory usage can be predicted. 
Wavelet transformation is used to enhance the efficiency of the optimization process. 

The wavelet transformation formula (4) is a direct numerical integral calculation of 
the wavelet coefficients dot by dot in the spatial domain of memory usage time series. 
However, it is time-consuming. Mallat algorithm in [15] is adopted to decompose and 
reconstruct the memory usage time series. The original time series is decomposed into 
detail coefficients and approximation coefficients, in which detail coefficients can be 
used for “detail” analysis and prediction, and approximation coefficients can be used 
for the analysis and prediction of the slow trends in the time series. 

3.2   Wavelet Network Schema 

The wavelet’s coefficients of each scale are input into the wavelet network for predic-
tion. Fig.2 illustrates the design schema of wavelet network. 

The wavelet network includes three layers: 

Layer 1 includes n input variables 1 2, , , nx x x ; 
Layer 2 is a hidden layer that consists of wavelet function substituting for activa-

tion function. Weight 1w  links the input nodes and the hidden nodes. Wavelet func-
tion is expressed as follows: 
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Fig. 2. Wavelet network schema 
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where sj, tj are dilation and translation factors of mother waveletψ . ϕ is a set of 

daughter wavelets generated by dilation s and translation t from a mother waveletψ . 
In this paper, Morlet wavelet is selected as a mother wavelet expressed as follows: 
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By substitution (6) to (7), the following formula is obtained. 
2
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Layer 3 is an output layer that sums the production of output value of the hidden 
nodes and the output connection weight 2w  that is between the hidden nodes and the 
output nodes.  
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From the theory above, the wavelet network formula can be deduced as follows 
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3.3   Learning Algorithm of Wavelet Network Based on Hybrid Genetic 
Algorithm 

It is difficult to decide the best structure of the wavelet network. Due to the fact that 
the learning algorithm of wavelet network often settles in undesirable local minima 
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and converges slowly, genetic algorithm is adopted here to help search the optimum 
number of hidden nodes and parameters of neural network such as the number of 
hidden nodes, the parameters of dilation and translation, and the connection weights. 
On the other hand, genetic algorithm is an optimization method mainly based on the 
concepts of natural selection and evolutionary process. However, the convergence is 
slow for the reason that the control probabilities for operations such as crossover and 
mutation are usually constant during the optimization process. Simulated annealing 
algorithm is combined with genetic algorithm to smooth the convergence process. 

3.3.1   Genetic Operator 

Chromosome Encoding. A chromosome consists of three parts shown in Fig.3. 
Parameters of wavelet network are decimal coded and number of hidden nodes is 
coded in binary string. The bit of ‘1’ in the binary string indicates the corresponding 
hidden node is valid, and the bit of ‘0’ in the binary string indicates that is invalid. l is 
number of hidden nodes, and the maximum value of l is selected by experience. Each 
connection weights 1ijw , 2 jkw , input ix , translation factor it  and dilation factor is  are 

set from the domain (-1 1) using random generator. 

1 2 1 2 1 2 1 21 1 1 2 2 2 1 0 1l l l ls s s t t t w w w w w w

Wavelet coefficients part Weight coefficients part Hidden node number part

 

Fig. 3. Chromosome encoding of wavelet network for aging prediction 

Fitness evaluation. The least-squared error function e  is used to represent the 
unfitness value of the genetic wavelet network associated with one individual. Thus, 
the fitness function f is defined as follows: 
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where lky is the computing value of the lth sample on the kth output node in the wave-

let network. And lkd is the actual value of the kth output node accordingly.  

Crossover operator. The crossover operation is a process by which new offspring 
generated from parent during reproduction. The gene in chromosome of two parents is 
across selected one by one as the gene of the offspring with probability of pc. 

Mutation operator. Mutation operator plays an important role in introducing new 
gene to the chromosomes with probability of 1-pc. And the mutation operator diversi-
fies the search and prevents the premature convergence that leads to nearly the same 
individuals within a population after several generations. The mutation probability 
must be sufficiently small to ensure that the crossover is the primary means of creat-
ing new offspring. 
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3.3.2   Hybrid Genetic Algorithm for Training Wavelet Network 
The main steps of training wavelet network with hybrid genetic algorithm and simu-
lated annealing algorithm can be summarized as the following algorithm 1. 

Algorithm 1. Hybrid genetic algorithm for training  
             Wavelet network 
  1. Input wavelet coefficients of memory usage time  
     series;  
  2. Generate chromosome coding of initial population 
     G(0) at random, initiate the temperature of  
     wavelet network t(0) and set i=0;  
  3. REPEAT 
    1) Compute the fitness value of each individual in 
       the population according to neural network BP 
       learning method; 
    2) Use simulated annealing (SA) algorithm for each  
       individual of G(i) as follows: 
      i. Generate new individual by using state of SA;  
      ii. Calculate C, the difference of fitness value 
          between the new individual and the old one;  
      iii. Calculate Pr=min[1,exp(- C/t(i))] as the  
           accepted probability; 
      iv. If Pr > random [0,1], then the new individual 
          substitutes for the old one, so that wavelet 
          network with a high temperature are mutated  
          severely and that with a low temperature are 
          mutated only slightly;  
    3) Sort the individual of the population in descent 
       order according to the corresponding fitness 
       value;  
    4) Set n is the number of individuals eliminated 
       from the population G(i), and set j=0; 
    5) The new generation G(i+1) evolves from the 
       population G(i) by genetic operator, and the  
       genetic operation procedure is as follows:  
       WHILE j < n 
      i. Randomly select two parents with higher  
         fitness value from top n individuals of the  
         sorted population;  
      ii. Apply crossover operation or mutation  
          operation to generate the offspring of the  
          two selected parents with probability of Pc  
          and 1-Pc separately, and the new offspring  
          replace the n-j individual of the sorted  
          population G(i); 
      iii. j++; 
    6) Set t(i+1)=v·t(i), where v (0,1) is the rate  
       of annealing temperature;  
  4. UNTIL termination criterion is satisfied or  
     generation number reaches the given maximum  
     generation number. 
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4   Experimental Results and Discussions 

4.1   Experimental Setup and Data Collection 

The experimental environment consists of a JUFrame application server, clients and 
database server. In the client, the load generator is used to generate requests to the 
application server. JUFrame application server connects and queries database server, 
and then returns results to clients. By load generator model and resource monitor 
model, the dynamic parameters in clients and application server are periodically 
monitored and recorded in a certain format separately. The experimental setup 
schema is presented in Fig.4. 

 

Fig. 4. Experimental setup schema 

The sampling interval of resource usage data is twelve minutes. System parameter 
of memory usage for 100 hours is extracted from recorded file to predict aging of 
application server.  

4.2   Prediction of Memory Usage Time Series 

Time series of memory usage is illustrated in Fig.5. At first, the original data requires 
normalizing, a process of standardizing the possible numerical range that the input 
variables can take. The procedure involves finding the maximum and minimum ele-
ments and then normalizing the input vectors xi to the range [0, 1]. 

- min

max- min
i

i
x

x = . (12) 

The normalized data are decomposed by wavelet transformation. Thus the memory 
usage time series is transformed in three stages from spatial domain to frequency 
domain. The behavior of the three-stage decomposed wavelet coefficients for memory 
usage time series is shown in Fig.6, from which the conclusion can be drawn that as 
the decomposition level increases the corresponding coefficients become smoother. 
The approximation coefficients show the trend of memory usage. 

Normalized mean square error (NMSE) is adopted as indicator of performance 
evaluation for aging prediction. NMSE is defined as follow: 

2
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Fig. 5. Original data of memory usage 

 

Fig. 6. Illustration of the wavelet decomposition of the memory usage time series. From top to 
bottom: the decomposition approximation coefficient in stage 3, the detail coefficient in stage 
3, stage 2 and stage 1. 

where x(k) is the actual value of the time series, ( )x k  is the forecasting value, n enu-

merates the points of training data set, and 2 is the variance of the actual value of 
time series over the forecasting period. 

The wavelet function is taken as Morlet wavelet. The maximal number of the hid-
den nodes is set to 80. The learning rate is set to 0.01. The maximum generation is 
determined as 1200. The number of population is set to 50.  

Table 1 presents approximation performance based on wavelet network model 
compared with neural network and wavelet network model. The table is shown that 
prediction precision of wavelet network with hybrid genetic algorithm is superior to 
that of neural network and wavelet network. Fig.7 displays the prediction data for 
one-step forward prediction model of memory usage and the error between original 
data and prediction data. From the figure, we can see that wavelet network model 
based on hybrid genetic algorithm is effective and it can predict memory usage time 
series with lower error. We can also see system performance decreases with time. 
Fig.8 illustrates the generation number and corresponding maximum fitness value. As 
is shown, when generation number reaches to 590, the fitness value convergences to 
38.22 and the maximum fitness has been achieved. 
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Table 1. Comparison of approximation performance 

Models Number of hidden nodes NMSE 
Wavelet network with hybrid genetic algorithm 26 0.0261 

Wavelet network in reference [8] 42 0.0363 
Neural network in reference [8] 60 0.0573 

        

(a)                                                                 (b) 

Fig. 7. Prediction data of memory usage for one step forward prediction (a). Prediction data
(b) Error between original data and prediction data. 

 

Fig. 8. Relation between generation and fitness in hybrid genetic algorithm training wavelet 
network 

5   Conclusions 

The effectiveness of wavelet network with hybrid genetic algorithm for aging predic-
tion has been investigated. The original time series is decomposed into wavelets. 
Then the decomposed coefficients are predicted by means of wavelet network, and an 
algorithm of back-propagation with genetic algorithm and simulated annealing is 
proposed for wavelet network learning. Through adopting multi-encoding, this algo-
rithm can optimize the structure and the parameters of wavelet network in the same 
training process, therefore, the structure of wavelet network can be more reasonable 
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and the local minimum problem in the training process will be overcome efficiently. 
Compared with previous work on wavelet network and neural network to time series 
prediction, the method proposed in this paper has superiority in aspects of conver-
gence rate and prediction precision. 

It is important to predict the critical resource usage such as memory usage for ap-
plication server. Thus software aging can be detected and the aging threshold before 
server crashed can be evaluated using the prediction model. Future work includes the 
aging prediction model considered more causations of resource resumption. 
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Abstract. A middleware in ubiquitous computing environment (UbiComp) is 
required to support seamless on-demand services over diverse resource situa-
tions in order to meet various user requirements [1]. Since UbiComp applica-
tions need situation-aware middleware services in this environment. In this pa-
per, we propose a semantic middleware architecture to support dynamic soft-
ware component reconfiguration based on ontology to provide fault-tolerance in 
a ubiquitous computing environment. Our middleware includes autonomic[9] 
management to detect faults, to analyze causes of them, and to plan semanti-
cally meaningful strategies to recover from the failure using pre-defined fault 
and service ontology trees. We implemented a referenced prototype, Web-
service based Application Execution Environment (Wapee), as a proof-of-
concept, and showed the efficiency in runtime recovery.  

1   Introduction 

The advent of Ubiquitous Computing (UbiComp), which runs dynamically over het-
erogeneous environment, emphasizes the needs of service-oriented middleware ser-
vices in the concept of anytime, anywhere, and any device computing. In the UbiComp 
environment, the concept of situation-aware middleware has played an important role 
in meeting user needs with available computing resources appropriately in dynamic 
environment. An UbiComp system consists of a heterogeneous set of computing de-
vices; a set of supported tasks; and some infrastructures the devices may rely on in 
order to carry out their tasks. It hides the heterogeneity of the resource environments 
and provides necessary services to UbiComp applications. 

As the diversity and complexity of situations in UbiComp environment, it is not triv-
ial and realistic to come up with semantically meaningful middleware services to sup-
port high availability, especially to recover from faulty situations with predefined recov-
ery strategies in real world. In addition, pursing sophisticated controls over complicated 
faulty situation takes quite amount of time to analyze the cause and plan recovery 
strategies, in order to achieve service continuity in various running environment. 

Fault-tolerance issues have been addressed in various areas of computing systems 
such as computer architecture, operating systems, distributed systems, mobile  
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computing and computer networks. In this paper, we discuss semantically meaningful 
fault-tolerant middleware architecture to improve availability of application services 
in UbiComp environments. In this paper, we suggest a semantic middleware architec-
ture to support dynamic software component reconfiguration based fault and service 
ontology to provide fault-tolerance in a ubiquitous computing environment. To enable 
a service to seamlessly run in ubiquitous environment, we introduce the Web-service 
based Application Execution Environment (Wapee). It consists with Fault Manage-
ment (FM) and Runtime Service Management (RSM) with high fault-tolerance, or 
continuous availability. The FM provides ontology-based context understanding ser-
vice in the application areas. The RSM can be dynamically service reconfiguration. 
Both are presented for the fast execution time, fault-tolerance and continuous  
availability. 

The rest of paper is organized as follows. The related works are introduced in sec-
tion 2. Section 3 presents overall architecture and the detailed description of Wapee. 
In section 4, the experiments of our prototype have demonstrated the semantically 
meaningful fault detection and recovery functionality of the mechanism in our archi-
tecture and the efficiency in runtime. We conclude with some directions for future 
work at the end of this paper. 

2   Related Works 

Research on fault tolerance has been more emphasized to provide seamless and 
continuous services in Grid [2], ubiquitous, or distributed computing environment. 
Grid Enactor and Management Service (GEMS) [3] supports the detection of indi-
vidual job process failures for parallel message-passing applications. Failed Jobs 
can be canceled and restarted, either on the same local resource if sufficient nodes 
are available in a restart queue, or on another resource. GEMS requires that a local 
resource manager support certain fault-detection and reporting capabilities. CORBA 
[4] have long lacked real support for fault tolerance. In most cases, a failure was 
simply reported to the client and the system undertook no further action. For exam-
ple, if a referenced object could not be reached because its associated server was 
unavailable, a client was left on its own. In CORBA version 2.6, fault tolerance is 
explicitly addressed. 

The Adaptive Reconfigurable Mobile Objects of Reliability (Armor) [5] middle-
ware architecture offers a scalable low-overhead way to provide high-dependability 
services to applications. It uses coordinated multithreaded processes to manage re-
dundant resources across interconnected nodes, detect errors in user applications and 
infrastructural components, and provide failure recovery. The authors describe their 
experiences and lessons learned in deploying Armor in several diverse fields. 

3   Wapee Overview 

Wapee (Web-service based Application Execution Environment) is a middleware for 
UbiComp environments contrived with the aim of supporting an application to  
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configure and adapt itself to the underlying environments. A key in this architecture is 
providing a uniform access interface to users over heterogeneous resources and dy-
namic changes of them. It is not easy to choose most relevant service instances with 
right context for application’s current situation. Service instances are evaluated based 
on the extent of fitness to current context such as current location, or preferences. To 
evaluate service fitness, Wapee focuses on providing autonomic fault-tolerance ser-
vices with fault detection, fault analysis and recovery (see Fig. 1). Application level 
service reconfiguration can be achieved by autonomic detection and analysis services 
in application-level Fault Management with semantically meaningful ontology of U-
services and faults in a ubiquitous environment. The service reconfiguration informa-
tion in an Application Description Graph (ADG) is fed in to Runtime Service Man-
agement (RSM) to be realized as U-services on a prepared resource pool. Based on 
the ADG, the RSM asks Autonomic Management Generation (AMD) Service to cre-
ate Application Deployment Description (ADD), which includes service deployment 
information such as resource description of service managers, local schedulers, input 
and output data file path, and executables; and runtime dependency of the U-services 
in the ADG. 

3.1   Runtime Service Management (RSM) 

RSM is responsible for instantiating and monitoring service (See Fig. 2). The RSM 
makes estimates of the resource usage of job submissions in order to ensure efficient 
use of grid resources [8]. Examples of service failures include service crashes due to 
bugs and operating system errors, faulty operation of services like sensing incorrect 
context, wrong inferring delivery of events. Service failures can potentially lead to 
failure of the UbiComp system. 

 

Fig. 1. Overview of Wapee 

The purpose of Monitoring service is to provide real-time job monitoring and 
status feedback to a steering service while operating in close interaction with an  
execution service, such as Condor [10], to provide interactivity, fault tolerance and 
error detection. Once a job is submitted in Wapee, Monitoring services periodically 
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monitors a job that has been submitted for execution in the Virtual Organization (VO) 
and reports job status. Whenever the state of a job changes the Monitoring service 
will update the repository. It supports querying job status and monitoring of output 
and error streams of running jobs. Resource Monitoring Service gathers information 
of resource in VO [8]. 

The RSM also addresses autonomic reconfiguration because different invocations 
of the same service may result in the selection of different components. In the Wapee 
architecture, it is primarily responsible for planning and initiating configuration 
changes in the system. Development of this adaptive reconfiguration mechanism 
requires identification of output information provided by the system and input infor-
mation that the mechanism can inject into the system to affect change. The dynamic 
resource management service we have designed is in charge of detecting configura-
tion changes, updating the distribution of directory entries on cluster nodes in the 
event of a configuration change, triggering reconfiguration of distributed services 
when needed. 

Autonomic Service Reconfiguration interacts with other components of RSM or 
Fault Management to search currently available services to be suitable to the context 
change [11]. To adopt new service, it should check and verify available resources or 
resource conflicts among services to avoid service crush or malfunction of applications. 

 

Fig. 2. The architecture of RSM 

To meet the requirement of high availability and fault tolerance, replication scheme 
is used. Fig. 3 depicts the implementation of the Replication Manager (RM) in a typi-
cal deployment scenario at a local site replicates data from one or more remote sites. 
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The RM replicates the data and the processes of an application, and distributes the 
replicas across the processors in the system. The Fault Detector of Wapee offers their 
fault notifications to the replication manager, thereby allowing it to restore the degree 
of replication if a replica has crashed. When a fault occurs, Fault Detectors detect 
fault in the objects, and report faults to the Fault Notifier. The Fault Notifier receives 
reports from the Fault Detectors, and propagates the reports as fault event notifica-
tions. The Runtime Service Management reasons about the fault reports that it has 
received. The operations of RM include location, identifying where desired data files 
exist on the Grid; transfer, moving the desired data files to the local system effi-
ciently; and registration. We considered primary-backup replication for achieving 
fault-tolerance. 

Service Reconfiguration Approaches. Our middleware makes context aware 
applications easy to be developed and deployed. When context change from an 
application is acquired and the change is resulted as a fault, the middleware 
reconfigures Application Deployment Description (ADD) to meet requirements with 
the help of Fault Management. The Runtime Service Management (RSM) has a 
reconfigured ADD. To create reconfigured ADD, RSM requests Fault Management 
(FM) to identify faults and provide recovery strategy using fault, service, and 
recovery strategies ontology trees. As FM evaluates the situations and identifies a set 
of possible faults, the service broker retrieves relevant recovery strategies to resolve 
the faults. Using a semantic relaxation method, a set of extended candidate services is 
chosen from service ontology. Only the services that can contribute to resolve the 
fault are selected as candidate services that can b used to substitute the original 
service. The reconfigured services from FM are notified to RSM to generate ADD. 
When the reconfigured context in ADD is activated, user level application 
functionalities will be provided continuously. The following procedure is Autonomic 
management for fault-tolerance. 

User can create the ADG through setting of application and domain. And then 
ADD is configured and service is initiated. When a fault occurs during execution, an 
autonomic management will be executed by the RSM and FM with fault properties. If 
a fault is classified that can be resolved at the runtime service level then it takes only 
service re-instantiation. In other case, we extend the fault handling mechanism to the 
application level, to FM, such that services can be reconfigured to utilize alternative 
services that provide the same or similar functionality as the service that caused the 
fault. Because of autonomic fault tolerance, a system maintains its level of reliability 
and availability, through reconfiguration in response to changes in its environment of 
execution. 

3.2   Fault Management(FM) 

When a fault cannot be resolved in the service manager level, the Wapee’s fault man-
ager reconfigures the application to utilize an alternative service that provides the 
same or similar functionality as the service that caused the fault. There are some  
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requirements of the application-level fault manager to ensure the functional reliability 
and continuity of an application: 

− Functional consistency: An alternative service must provide the same or similar 
functionality as the original one to achieve the consistent goal. 

− Interoperability: An alternative service must be interoperable with the adjacent 
services of the original one. Not only the interface-level interoperability, but also 
the semantic interoperability among the adjacent services must be ensured. 

− Effectiveness: An alternative service must be selected in a way that the service 
contributes to resolve the fault situation. 

− Operational continuity: The execution of an application must be continued after 
the reconfiguration of the application structure with an alternative service. 

To meet these requirements, the fault manger in our framework supports descrip-
tion models to formally describe the types of fault conditions and the functionality of 
services. The fault manager also provides a service brokering mechanism that identi-
fies a fault condition based on an exception event and service status, and finds alterna-
tive services that are interoperable with other services in an application and  
effectively resolve the fault condition. 

Ontology-based Fault and Service Description Models. We have developed 
ontology-based description models to describe semantics of service faults and 
functionalities. We define three ontology hierarchies: the fault, service, and recovery 
strategy ontology. The fault ontology is for abstracting types of faults based on their 
causes such as the limitation of memory resource, and service errors. The fault 
ontology has a property to represent the resource condition that might cause a fault. 
The service ontology is for describing the functionality and resource requirements of 
a service. Finally, the recovery strategy ontology is for describing possible strategies 
to resolve a fault condition. 

When an exception occurs in a service, the system reports the current status of the 
service and its environment. The service broker matches this fault information 
against the resource-condition property of the fault ontology to identify the corre-
sponding fault semantics [6]. To find relevant fault semantics as much as possible, 
we adopt a semantic relaxation method, which, in an ontology hierarchy, collects 
nodes that have the same set of properties and are on a hierarchy of same subsump-
tion – direct parents and children. Once a set of possible faults is identified, the ser-
vice broker retrieves relevant recovery strategies to resolve the faults. The service 
broker then finds services that provide the same or similar functionality as the origi-
nal service. A semantic relaxation method, which is similar to the method that we 
used for the fault ontology, is applied to the service ontology to extend the service 
set. The resource-requirement property of each service is then compared with the 
policy about resource property in each of the recovery strategies retrieved. Only the 
services that can contribute to resolve the fault (the services that meet the resource 
requirements) are selected as candidate services that can be used to substitute the 
original service. 
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Fig. 3. The procedure of Service Management 

4   Results 

A prototype is to develop a workflow solution for complex grid applications to sup-
port the design, execution, monitoring, and performance visualization phases of de-
velopment in a user-friendly way. We have developed a GUI based tool, Wapee Cli-
ent, for workflow management, as shown in Fig. 4. A visual interface that allows for 
the graphical manipulation of workflow process instances provides a rich medium for 
the communication of dependencies and relationships between constituent jobs of a 
workflow process instance. 

A job in workflow is represented by a set of interdependent tasks arranged in a Di-
rected Acyclic Graph (DAG) [7]. After the creation of the DAG the resources identi-
fied in the workflow must be mapped onto the available grid resources [8]. The RSM 
supports run-time execution and job monitoring. Output results can also be available 
for a view from the Wapee Client. 
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Fig. 4. Client Interface 

Our main approach to autonomic service reconfiguration is performed in two steps. 
First, context-aware service discovery provides a set of services that are candidate to 
the configuration. Second, starting from the selected services and user task, context-
aware process integration provides a set of configuration schemes that conform to the 
task’s behavior further meeting all the context requirements. 

We present a simple example that describes how our autonomic service reconfigu-
ration algorithm can be used in a UbiComp environment. This example scenario is 
web-based applications, such as aggregation, searching and ranking about enormous 
web-based information. First, user can gather tremendous editorials on various news-
paper website in the same breath using ‘Wrapper Applications’ of distinct type. Each 
‘Wrapper application’ takes different time when it finishes. We choose three ‘Wrap-
per Applications’ for this experiment. And then, user can both view the result and 
send input-file for other applications at next phase. We select ‘Ranking application’ 
and ‘Search application’ for mid-applications of our experiment. The ‘Search applica-
tion’ searches some words at forepart result. The ‘Ranking application’ finds selected 
word at forepart result and then shows ranking. Finally we join the whole information 
through different applications using ‘Aggregation application’. 

 

Fig. 5. Our test scenario 

For example, when a fault occurs at ‘Searching application’ phase, Wapee analyze 
fault properties and classify the fault type, and replace another useful searching appli-
cation using fault recovery strategy of FM. Our defined configuration property of 
searching application is shown in Fig. 5. 
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If fault occurs during using ‘Advance Searching’ application, we can overcome the 
fault using RSM and FM. If fault is classified that cannot be resolved at the runtime 
service manager level. To overcome such situation, we extend the fault handling 
mechanism to the application level, Fault Manager, such that the application can be 
reconfigured to utilize an alternative service that provides the same or similar func-
tionality as the service that caused the fault. Its case is alterative service, ‘Simple 
Searching’. 

On Fig. 6 we showed the success rate and percentage of used fault-tolerance 
mechanism in Wapee. Wapee detect fault and recover them through Runtime Service 
Manager (RSM). The whole procedure takes about 326 seconds. This fault-tolerance 
mechanism is very basic algorithms that try to allocate resources on the nearest surro-
gate possible. If faults cannot be resolved at the service manager level then the RSM 
notify the fault handling information to the Fault Manager at application level. The 
whole procedure takes about 350 seconds, if Wapee detected these faults and recov-
ered them using semantically Ontology, as shown in Fig. 6 (b). 

These figures tell us that using fault recovery system, Wapee, increases service 
availability and executes resource efficiently in ubiquitous computing environments. 
It also shows us that the overhead ratio of middleware and application is kept in a 
relatively stable level (16.16% using RSM, 24.68% using FM) regardless of the varia-
tion of resource environment and service configurations. Our experiment validates the 
practicability and soundness of Wapee. The overhead of middleware is kept in a small 
ratio with respect to the overall system cost. 

 

                                    (a)                                                           (b) 

Fig. 6. Performance Comparison using Wapee and non-Wapee of the Job 

5   Conclusion and Future Works 

Wapee with autonomic management executes likely faulty applications successfully 
with semantically meaningful strategies associating with service and fault ontology 
trees in ubiquitous environments. When a fault is found in runtime execution, Run-
time Service Management (RSM) autonomically identifies the faults and decides if 
the fault might be resolved in runtime level or not. For resolvable faults in runtime, 
RSM configures Application Deployment Description again to obtain alternative 
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resources for the application. Otherwise, Application-level Fault Management sup-
ports dynamic software component reconfiguration plan based fault and service on-
tology to provide fault-tolerance in a ubiquitous computing environment. 

Description Graph (ADG) with the help of the semantics of services and faults on-
tology; and informs the ADG for new deployment of the application autonomically. 
This allows better semantic interoperability between different context information on 
UbiComp environment. In addition, Wapee client, one of other strengths of Wapee, 
provides easy-of-use user interface for application construction, runtime execution, 
real-time monitoring and visualization of results. 

For future work in Wapee, we are planning to implant an effective and autonomic 
meta-scheduler in collaboration with various local schedulers. Scheduling will be 
done with some consideration of application configuration information, environ-
mental condition, user profile, and other special requirement such as fault tolerance 
policies to improve the quality of an application and resource utilization. 
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Abstract. In this paper we introduce and evaluate two prefetching tech-
niques to improve the performance of Java applications executed on the
grid. These techniques are experimentally evaluated on two grid envi-
ronments, by running test applications on two different grid deployment
configurations. Our testbed is suma/g, a grid platform specifically tar-
geted at executing Java bytecode on Globus grids. The experimental
results show that these techniques can be effective on improving the per-
formance of applications run on the grid, especially for compute intensive
scientific applications.

Keywords: Java applications, Class prefetching, Computational Grids,
Distributed applications, Collaborative platforms.

1 Introduction

Distributed platforms for compute-intensive processing and resource sharing,
increasingly known as grids [1], provide technologies for integrating multi-insti-
tutional sets of computational resources. Grid platforms increase the possibility
of environments in which multiple users, geographically distant, may share data,
pieces of software, computation resources, and even specialized devices [2].

The proliferation of grid platforms is fueling the development of distributed
applications, which could be executed on remote sites. In these cases, application
repositories (for instance, a client or user interface machine) and execution plat-
forms typically reside on different sites, rising the need to transfer the application
code from repositories to execution sites.

There has been increasing interest in supporting Java within the grid [3,4].
Java programs are organized as independent class files, each containing the meth-
ods and state variables that implement the class. Before any method can be exe-
cuted or any state variable can be modified, the entire class must be transferred
to the location where execution takes place.

Most Java Virtual Machines (JVM) implementations load classes on demand
at the time of the first reference to each class. This is called dynamic loading.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 594–606, 2006.
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Dynamic loading causes a delay on executions every time a class file load request
is issued, since the thread triggering the load stalls until the class has been
loaded, verified, resolved, and initialized. Hence, users experience these transfer
delay intermittently during execution as well as upon program invocation.

One solution to the performance problem associated with dynamic loading
is to load all the code at once. Hence, all transfer overhead appears before the
application starts running, but afterward the application does not stall waiting
for remote classes. However, it could result in loading (potentially many) classes
that will not be needed, causing increased resources (e.g., bandwidth, CPU time,
memory) overhead and therefore incurring in a performance penalty. It would
be desirable to make sure that most of the transferred classes will be actually
used, such as to avoid paying the costs for class files that won’t be used. This is
the execution model currently supported by most grid systems (e.g. those based
on Globus, such as lcg [5] and TeraGrid [6]).

Another solution is to use prefetching for masking transfer delay by over-
lapping class loading with computation. Prefetching for Java has been used for
improving performance in local execution contexts [7][8]. The goal is to have
classes loaded from disk into memory (or from memory to cache) before they are
referenced. The same principle has been used in the context of distributed com-
puting. In [9], they propose two techniques, namely class prefetching and class
splitting, in order to reduce remote class loading overhead involved in mobile
programs execution. An alternative strategy, also used in the context of mobile
programs, is offered in [10]. In this work, the authors propose to mask the trans-
fer time, especially initial latency, by transferring blocks of code based on their
semantic affinity. Thus, the program will be able to start executing while other
blocks, needed later, are loaded.

Prefetching request must be made early enough so that the transfer delay is
overlapped. The two goals of prefetching request are: i) to prefetch as early as
possible to reduce (or eliminate) the delay when the actual reference is made; and
ii) to ensure that prefetching is not made on a path which causes prefetching to
be performed too early (or on a path that will not be executed) and may interfere
with classes that are needed earlier than the class being prefetched. In this case,
prefetching can introduce delays by using up available network bandwidth.

In this paper, we explore the use of prefetching techniques to improve the
performance of Java applications on grids. Our testbed is suma/g [11], a grid
platform specifically targeted at executing Java bytecode on Globus grids. In
suma/g, all application’s classes and files are loaded remotely on demand into
execution platforms.

Prefetching techniques impact is assessed in two different grid environments
supported in suma/g:
Single class repository: All application classes located on the user (client)
machine. In this case, a modified version of the prefetching strategy proposed in
[9] is used.
Multiple class repositories: Application classes located on the user ma-
chine and distributed repositories. Access to classes on distributed repositories is
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provided by JaDiMa, a collaborative platform to build high performance Java
applications on grid platforms [12]. The prefetching strategy used here is part of
JaDiMa.

The main contribution of this paper are two prefetching techniques that im-
prove the performance of Java applications on the grid. These techniques are
experimentally evaluated on each grid environment, by running test applications
on two different grid deployment configurations.

2 SUMA/G Overview

suma/g (Scientific Ubiquitous Metacomputing Architecture/Globus) [11] is a
grid platform that transparently executes Java bytecode on remote machines.
It extends the Java execution model to grid platforms; in particular, classes and
data are dynamically loaded. suma/g middleware was originally built on top
of commodity software and communication technologies, including Java and
CORBA [13]. It has been gradually incorporating Globus general services by
using the Java CoG Kit [3]. Hence, suma/g grids can be connected to deployed
Globus based grids, as well as leverage on Globus technology evolution. suma/g
architecture is depicted in Figure 1; its components are described below.

Fig. 1. suma/g Architecture

2.1 SUMA/G Components

In this section, we describe suma/g components, and their role in the execution
of applications.
Proxy: Receives an object from Client Stub, containing application data such
as the name of the main class, scheduling constraints (optional) and data struc-
tures to reduce the number of communications (optional); these are called pre-
loaded data. After checking user permissions, the Proxy asks the Scheduler for
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a suitable execution platform, then sends the application object to the selected
one. In case of submitting off-line jobs, the Proxy keeps results until the user
requests them.
Scheduler: Responds to Proxy requests based on the application requirements
and status information obtained from the grid platform. Using the Globus MDS
service, the Scheduler learns of grid resources, obtaining information about
available execution platforms (including memory size, available libraries and
average load), data sets hosted at specific locations, and so on. With this in-
formation, the Scheduler selects a suitable resource satisfying the application
requirements, while looking for load balance in the grid.
User Control: It is in charge of user registration and authentication. The GSI
is used for user authentication and authorization in suma/g, as well as a mech-
anism for including all suma/g components in the grid security space.
Client Stub: It creates the application object, retrieves results and performance
data, and serves Execution Agent requests (callbacks) to load classes and data
dynamically. It is executed on the user machine or on a suma/g entry server.
In any case, the user must have a valid certificate installed on that machine.
Execution Agent: On starting, it registers itself at the Scheduler as a new
available resource. During operation, it receives the application object from the
Proxy and launches execution, loading classes and files dynamically from the
client or from a remote file system through the suma/g class loader and the su-
ma/g I/O subsystem. Once the application has finished, the Execution Agent
sends the results back to the client. In a parallel platform, it plays the role of
the front-end. Only the front-end of a parallel platform is registered on suma/g
either as an mpiJava enabled platform or as a farm, for multiple independent
job executions.

2.2 SUMA/G Execution Model

The basics of executing Java programs in suma/g are simple. The users can
start the execution of programs through a shell running on the client machine.
They can invoke either Execute, corresponding to the on-line execution mode,
or Submit, which allows for off-line execution (batch jobs). At this time a proxy
credential is generated (by using GSI) that allows processes created on behalf
of the user to acquire resources, without additional user intervention. Once the
suma/g CORE receives the request from the client machine, it authenticates the
user (through GSI), transparently finds a platform for execution (by querying
the MDS), and sends a request message to that platform. An Execution Agent
at the designated platform receives an object representing the application and
starts, in an independent JVM, an Execution Agent Slave, who actually ex-
ecutes the application. The suma/g Class Loader is started in that new JVM,
whose function is to load classes and data during execution. Supported classes
and input files sources, and output destinations, include: a) the machine (client)
where the application execution command is run and, b) a remote file server
on which the user has an account. A pluggable schema allows for implementing
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several protocols to manage remote files access. Currently, schemas for CORBA
and sftp are available; support for gridFTP and others will also be provided.

To execute an application, either on-line or off-line, the user has only to specify
the main class name. In the case of Execute service, the rest of the classes
and data files are loaded at run-time, on demand, without user intervention.
Standard input and output are handled transparently, as if the user were running
the application on the local machine. For the Submit service, suma/g Client
transparently packs all classes together with input files and delivers them to
suma/g CORE; the output is kept in suma/g until the user requests it.

3 Prefetching on Single Class Repository Environments

suma/g prefetching is inspired on an algorithm proposed in [9]. It is based on
the definition of a graph representing the control flow of classes instantiation.
In what follows, it will be called Classes Instantiation Graph (CIgraph). This
graph is built according to the first use reference to classes. Following the usual
rules for dynamic loading, a first use reference will cause a non-local class file to
be transferred.

In the original algorithm, prefetching decisions are made before execution by
analyzing the CIgraph and instrumenting the original code with prefetching
requests for classes being referenced. The prefetching decisions are based on
the CIgraph, the estimated first execution and transfer times of each class.
The estimated times are computed from previous executions profiles. The first
execution time determines the order in which first use references are processed
and it is measured from the start of the application.

We made a simpler implementation of that algorithm. Our implementation
is based on the CIgraph, but we do not instrument the original code. Instead,
we implemented a module which analyzes the graph, and makes decisions about
prefetching at execution time. The module was implemented as a thread in order
to overlap computation with class transfers. When an application is executed for
the first time in suma/g, the bytecode is parsed in order to extract the infor-
mation needed to create the CIgraph. This original CIgraph does not contain
any information about transfer and first execution times. This information will
be obtained on further executions. We use Espresso [14] to parse the code.

With the original CIgraph, all classes are prefetched according to a depth
first search order on the CIgraph. If the CIgraph has information about trans-
fer and first execution times, prefetching takes them into account. For each class
A in CIgraph, but the main class, its T ime Left is computed as

T ime Left(A) = first execution time(A)− transfer time(A) (1)

Class A is prefetched only if T ime Left > 0. Figure 2 shows an example of a
CIgraph used for prefetching request decisions: classes B, C and D are chosen
for prefetching because their T ime Left is greater than 0.

Figure 3 shows the steps for executing an application with prefetching support
on suma/g. On the client side, when a user requests an application execution,
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Fig. 2. Example of CIgraph used for prefetching request decisions

the Client Stub parses the application bytecode building a CIgraph for the
entire application. This is made only the first time the application runs on su-
ma/g. On further executions, Client Stub directly uses an already available
CIgraph, obtained from previous executions (step 1).
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2
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Application classes
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(main class name,
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4

Loading classes during execution

Fig. 3. Application execution on suma/g with prefetching support

After the suma/g client invokes the remote execution, it obtains a node with
prefetching support, and sends the CIgraph along with the main class reference
to the Execution Agent at the selected node (step 2). Once this Execution
Agent receives the execution request, it starts an Execution Agent Slave in a
separated JVM (step 3) in order to execute the application. Two service threads
are started initially within this JVM:

1. SUMAgClassLoader, whose purpose is to load classes and data on demand
from the client

2. SUMAgThreadPrefetch, which will prefetch classes during execution.
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The main class is then directly loaded from the client and started. Concur-
rently, SUMAgThreadPrefetch decides which classes to prefetch according to the
information in the CIgraph. The graph is updated with first execution and
transfer times, measured during current execution (step 4). To prefetch classes,
SUMAgThreadPrefetch uses the SUMAgClassLoader loadClass method.

When execution finishes, the Execution Agent passes this information back
to the suma/g core, which returns the results to the client, including the updated
CIgraph (step 5).

4 Prefetching on Multiple Class Repositories
Environments

Multiple Class Repositories is supported in suma/g by JaDiMa. JaDiMa [15] 1

is a collaborative platform that aims to support high performance distributed
Java applications development and execution. Its main goal is to allow applica-
tions to transparently instantiate classes located at remote repositories. JaDiMa
allows for compilation and execution of high performance Java applications that
use distributed software components without keeping them locally in the appli-
cation developer machines. In this sense, JaDiMa lets developers use a much
smaller representation of the libraries (referred to as stubs) which the application
depends on during the compilation process. Stubs are generated automatically
by JaDiMa and substitute actual libraries. When a remote class is instantiated
for the first time during execution, the JaDiMa class loader locates a repos-
itory hosting the actual class bytecode; the class is then transferred from the
repository to the execution machine, and execution is resumed. The use of a
version numbering convention allows for automatic updating of new versions of
used libraries without affecting its correct execution.

JaDiMa implements a simple prefetching strategy in order to reduce the
impact on execution time of remote class loading. Recall that pure Java model
consists of loading classes on-demand, one by one. JaDiMa goal is to try to
have some of the remote classes loaded before they are instantiated, such that
application’s idle time waiting for class transfers is diminished.

The prefetching strategy consists on grouping remote classes according to its
invocation time: whenever a remote class of a group (called cluster) is instanti-
ated for the first time, all members of the group are requested and loaded from
their respective remote repository, including the instantiated class itself. Clus-
ters are computed and adjusted at execution time. The clustering algorithm is
described below.

4.1 Class Clustering

Classes are grouped according to temporal proximity. Temporal proximity com-
putation is based on the effective time (defined below) where each remote class is

1 http://sourceforge.net/projects/jadima/
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instantiated for the first time (first execution time). First execution time for all
remote classes instantiated are registered and saved by the JaDiMa class loader
during execution; this information will be used on next application’s executions.

Fig. 4. JaDiMa class clustering

The effective time (ETime) of a class is the time, measured from the applica-
tion’s start time, of its first use reference, ignoring the time spent transferring
previously instantiated remote classes. Starting with the first remote class in-
stantiated (i.e., the main class) at execution time, the algorithm creates the
clusters. Let’s call CGx the first class of a cluster Gx, and ETime(CGx) its ef-
fective time. Every succesively instantiated remote class Ci not yet added to a
cluster and such that

(ETime(Ci)− ETime(CGx)) < ε

is added to cluster Gx. Clustering depends on ε, the Prefetch window size para-
meter. The first remote class (not yet in a cluster) whose ETime is more than ε
from ETime(CGx) become the first class of a new cluster; the procedure iterates
until all classes are grouped into clusters. Figure 4 depicts class clustering.

4.2 Implementation of JaDiMa Prefetching in SUMA/G

JaDiMa has been integrated to suma/g [11]. The suma/g Execution Agent
uses JaDiMa class loader, which takes care of remote classes instantiations; it
includes the mechanisms to compute an application’s classes clusters during exe-
cution, according to the rules explained above (section 4.1). It uses two different
threads to handle remote class transfers: one for the requested class, and another
for the rest of the members of the cluster.

During the first execution of an application, the time at which every class
is referenced, measured from the beginning of execution, is recorded. When the
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application finishes, this information, for all referenced classes, is sent to the
Client. The next time the application is executed, the previously recorded in-
formation is sent along with the execution request.

Fig. 5. JaDiMa execution model on suma/g

The JaDiMa prefetching architecture is depicted in figure 5. Whenever a
remote class is instantiated:

1. JaDiMa class loader asks the Prefetch Module to compute the requested
class’ cluster using the Prefetch window size specified for this execution

2. the list of cluster members is then passed to the Bytecode cache module,
which checks for this cluster’s classes local availability (in memory or cache)

3. those classes that are not locally available are requested remotely by JaDi-
Ma Communication Abstraction Layer (CAL) module.

The CAL module handles remote classes requests using two concurrent threads:
one for the class instantiated by the application, and another for its cluster com-
panions. Thus, whenever the instantiated class is loaded, the application can re-
sume execution, while other prefetched classes are transferred.

The prefetching of a class is triggered by the first instantiation of any member
of the cluster it belongs to. If the application is sequential (only one thread),
the execution will stall until the instantiated class is transferred. Other mem-
bers of the same cluster will proceed immediately, if the prefetching is complete
before their first use. If the application is multi-threaded, a better overlapping
of execution and class transfer might be expected.

5 Experimental Results

Theprefetching techniques are experimentally evaluated for each grid environment
by running test applications under two different grid deployment configurations:
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– LAN: All suma/g components run on machines of a laboratory in our
campus.

– WAN: suma/g CORE and Execution Agent run on machines at one site
(same laboratory as above), and the Client run on a machine located outside
the campus (25 Kms from the lab.)

The Java applications used in our experiments are JUNG [16] (Java Uni-
versal Network/Graph), and a subset of the JavaGrande benchmark suite [17].
Both applications are sequential, single threaded. It means that, when a class
is referenced and is not locally available, the execution stalls until the class is
transferred.

JUNG is an open-source software library that provides a language for model-
ing, analysis, and visualization of graphs and network data. JUNG is composed
by several packages, the main ones being COLT (http://cern.ch/hoschek/colt/),
commons-collections (http://jakarta.apache.org/commons/collections/), and
xerces (http://xml.apache.org/). The number of classes in all packages amounts
to over 200, but only 119 are actually referenced in our tests.

The JavaGrande Benchmark is a suite of sequential and parallel Java ap-
plications having large requirements for any or all of: memory, bandwidth and
processing power. It includes computational science and engineering codes, as
well as large scale database applications and business and financial models. For
this experiments, we chose the sequential subset of application in section 2, with
size A (small data size). All seven applications in section 2 are executed se-
quentially, from a main class, which also uses some utility classes. In total, the
application uses 18 classes.

The platforms used for the experiments are Linux based PCs:

– suma/g CORE and an Execution Agent run each on a Pentium 4 3.4 GHz,
1GB memory, with Debian Sarge (kernel 2.4.27). Both machines are on the
same 100 Mbps LAN.

– In the WAN configuration, the suma/g Client runs on a Pentium 4 2.2GHz,
1GB memory, connected to the Internet by a 768 Kbps DSL link. The con-
nection of the lab machines to the Internet shares an 8 Mbps link.

– In the LAN configuration, the suma/g Client runs on an AMD Athlon XP
1800, 768 MB memory, which is on the same LAN as the CORE and Client.

The results for each grid environment are shown below. The test applications
are run in LAN and in WAN configurations, both with and without prefetch-
ing. The results shown are average execution times (out of 10 runs) and the
improvement (speed up) obtained using prefetching with respect to not using
prefetching.

5.1 Single Class Repository Results

In this environment, all classes are loaded from the client machine into the
execution machine. Tables 1 and 2 show the results for, respectively, JavaGrande
and JUNG applications.
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In the case of JavaGrande, we get performance improvement both in LAN
and WAN grid configurations. Prefetching is effective since every class has an
execution time comparable to transfer times, such that some execution time and
transfer time overlapping is possible. Note the improvement is larger for WAN
than for LAN. When prefetching is not used, every class reference is transferred
from the suma/g Execution Agent to the Client. Since connection times take
longer in WAN than in LAN, a better overlapping between execution and class
transfers is obtained.

Table 1. Average execution times and speed up for JavaGrande with Single Class
Repository

No prefetching Prefetching Speed Up

LAN 36 sec. 35 sec. 3%

WAN 104 sec. 81 sec. 22%

Table 2. Average execution times and speed up for JUNG with Single Class Repository

No prefetching Prefetching Speed Up

LAN 69 sec. 71 sec. -2%

WAN 172 sec. 187 sec. -9%

For JUNG, results with prefetching are worse both in LAN and WAN. JUNG
uses many classes, but each one does little computation. Hence, the analysis of
the CIgraph results in that almost none of the classes is prefetched. Performance
degradation is mostly due to the resources used up by the prefetching thread.

5.2 Multiple Class Repositories Results

In this environment, most of the classes are loaded from two classes repositories,
and the rest from the client machine. The repositories are located close to the
execution platform, actually in the same network. Tables 3 and 4 show the results
for, respectively, JavaGrande and JUNG applications.

In the case of JavaGrande, a performance improvement is again obtained, due
to the combination of few classes to transfer and each one doing considerable
computing work.

For JUNG, we obtain a considerable performance improvement in the WAN
environment, due mostly to overlapping computing with classes transferred from
the client. In LAN environment, since transmission times from the client are
shorter, no improvement is gained.

5.3 Results Discussion

For the JavaGrande application, performance improvement was obtained with
prefetching in all cases, even though we ran the benchmark using the small size
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Table 3. Average execution times and speed up for JavaGrande with Multiple Class
Repositories

No prefetching Prefetching Speed Up

LAN 39 sec. 37 sec. 5%

WAN 54 sec. 50 sec. 7%

Table 4. Average execution times and speed up for JUNG with Multiple Class Repos-
itories

No prefetching Prefetching Speed Up

LAN 73 sec. 73 sec. 0%

WAN 103 sec. 89 sec. 13%

data set. It is expected to have even better performance improvement with more
computing intensive applications.

JUNG represents a more challenging problem for prefetching strategies. In
our experiments, performance was degraded in the Single Class Repository en-
vironment. An improvement was achieved in the Multiple Class Repositories en-
vironment due to the proximity of the repository to the execution agent. While
this is a desirable characteristic to take into account to locate class repositories
(to be close to the execution platforms), clearly it won’t always be possible to
do so.

6 Conclusions and Future Work

Java is a well established language in the programmers community, and it offers
a number of advantages for scientific applications on distributed environments.
As grids are becoming the platform of choice to execute distributed scientific
applications, a suitable support for running Java applications on grids must be
provided.

Prefetching is an interesting technique for overcoming performance degrada-
tions due to Java dynamic class loading in a distributed environment. It allows
for masking the remote classes transfer time by loading classes before they are
actually referenced.

In this paper we presented two prefetching techniques implemented on a grid
platform called suma/g, which supports Java execution model. The experimen-
tal results show that these techniques can be effective on improving the perfor-
mance of applications run on the grid, especially for compute intensive scientific
applications.

Plans for future work include conducting experiments with other kinds of
applications (e.g., different combinations of number of classes and computational
complexity of classes), as well as trying other grid deployment scenarios.
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Abstract. Large-scale, data-intensive computing requires a sophisti-
cated technology to be integrated with distributed file systems to provide
clients with reliable and scalable high-performance accesses to the stored
data. The clients physically share storage devices connected via a network
like GigaEthernet or Fibre Channel and, on those clients, distributed file
systems take responsibility for providing coordinated accesses and con-
sistent views of shared data. In such a distributed computing environ-
ment, one of the major issues in achieving substantial I/O performance
and scalability is to build an efficient locking protocol. In this paper,
we present a distributed locking protocol that enables multiple nodes to
simultaneously write their data to distinct data portions of a file, while
providing the consistent view of client cached data. We conclude with an
evaluation of the performance of our locking protocol.

1 Introduction

Large-scale, data-intensive computing requires a sophisticated technology to be
integrated with distributed file systems to provide clients with efficient and scal-
able high-performance accesses to stored data. The clients are physically con-
nected to one or more servers via a network like GigaEthernet or Fibre Chan-
nel [1,2,4,6] and, on those clients, distributed file systems take responsibility
for providing coordinated accesses to remotely stored data and for providing
consistent views of client cached data. In such a distributed computing environ-
ment, one of major considerations in achieving substantial I/O performance and
scalability is to build an efficient locking protocol.

One of the general locking protocols for a distributed environment is to provide
a token-based lock manager, as described in [1,4]. The basic idea behind the
token-based lock manager is that before a client performs file data or metadata
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operations, it requires a related lock from the lock server. If there is no conflicting
request to the lock, or the client is the only requester to the lock, the lock server
then grants the lock to the client.

A locking protocol to support data consistency and cache coherency has a
significant effect on generating high performance I/O. For example, large-scale
scientific applications in physics, chemistry, biology, and other sciences generate
huge amounts of data and utilize them for data analysis, visualization, and so
on. In order to achieve high-performance I/O, many such applications use par-
allel I/O methods where multiple client nodes simultaneously perform their I/O
operations. MPI-IO is among those parallel I/O methods.

MPI-IO [5] is specifically designed to enable the optimizations that are criti-
cal for high-performance parallel I/O. Examples of these optimizations include
collective I/O, the ability to access noncontiguous data sets, and the ability to
pass hints to the implementation about access patterns, file-striping parameters,
and so on. In order to achieve high I/O performance using MPI-IO on top of
distributed file systems, the file system must provide the ability to lock a file per
data section to have multiple concurrent writers to a file.

However, many of the locking protocols integrated with distributed file sys-
tems are based on a coarse-grained method [1,2] where only a single client at any
given time is allowed to write its data to a file, while the other clients are waiting
for the current node to finish its write operation even when the others would
write to the different data portions of the same file. This drawback significantly
degrades I/O performance in many scientific applications where supporting par-
allel write operations happens to be proved generating high I/O bandwidth.

In this paper, we present a distributed locking protocol based on multiple
reader/single writer semantics for a data portion to be accessed. In this scheme,
a single lock is used to synchronize concurrent accesses to a data portion of a
file. However, several nodes can simultaneously run on the district data sections
in order to support data concurrency. We conclude our paper by discussing
performance evaluation of our locking protocol.

2 Design Motivation

Our main objectives in developing a distributed locking protocol were to provide
high-performance parallel I/O, to minimize the communication latency occurred
during the lock negotiation steps, and to utilize local lock services as much as
possible.

– High-performance I/O. We designed the distributed locking protocol ca-
pable of allowing multiple concurrent writers to the same file to achieve
high performance I/O. Also, the locking protocol provides data consistency
between the data stored in the storage device and the data stored in the
client-side cache. On top of the distributed file system integrated with this
locking protocol, many data-intensive applications can generate high I/O
bandwidth using parallel I/O libraries, such as MPI-IO.
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– Low communication latency. We designed the locking protocol to re-
duce the network overhead taking place during the lock negotiation steps
with Global Lock Manager (GLM). All the lock requests coming from the
client nodes are evenly distributed on multiple GLMs. Moreover, in order
to minimize the number of callback messages necessary to revoke and re-
lease a lock, we grouped all the client nodes into several node groups. If
GLM finds the node group where the lock holder belongs to it then sends a
lock revocation message to the node group. After the lock holder completes
the corresponding callback function to release the requested lock, it sends
back an acknowledgement to GLM to grant the lock to the requesting client
node.

– Use of local lock service. we designed the locking protocol to utilize
local lock services as much as possible in order not to cause communi-
cation overheads with GLM. In order to use the local lock service to the
maximum extents, we designed the distributed lock scheme using the lazy-
revocation or sticky lock method [1] to retain privileges on data sections,
even in the absence of active processes on a client node. If process on a
node accesses to the smaller data section than the section controlled by
an already acquired lock and if the requesting lock mode does not conflict
with the mode of the acquired lock, the acquired lock is then split and
the lock of the requesting data section, called childlock, is returned to the
process. However, the lock information of a childlock needs not be stored in
GLM.

Fig. 1. A distributed lock interface
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3 Implementation Details

3.1 Software Architecture of Distributed Locking Protocol

Figure 1 illustrates the distributed lock interface that is integrated with distrib-
uted file systems. Applications issue I/O requests using the local file system inter-
face, on top of VFS layer. Before performing an I/O request, each client should
acquire an appropriate distributed lock from GLM in order to maintain data
consistency between the cached data on clients and the remote, shared data on
servers. The lock request is initiated by calling the lock interface, snq clm lock.
The information of the lock acquirement for clients is stored in the local lock
table that is created per node.

As mentioned in section 2, in order to reduce the communication latency
occurring at the lock acquire step, we grouped the client nodes into several node
groups. In the current implementation, an eight bit integer is used to denote node
groups. When a client acquires an appropriate lock to perform I/O operation,
the bit corresponding to the node group where the client belongs to is set to 1.

When a client requests a lock to GLM, GLM first locates the node group
where the lock holder belongs to and then sends a callback message to the nodes
of the node group. When the lock holder receives the callback message, it releases
the requested lock and sends back an acknowledgement to GLM to grant the
lock to the requester.

After a client acquires the desired lock for I/O, it sends the file metadata,
such as file size, modification time, access time, and data block addresses, to
the first GLM, GLM0, to modify the corresponding file inode. Figure 1 shows the
necessary GLM functions to serve the client lock requests.

3.2 Hierarchical Lock Layer

Figure 2 represents a hierarchical overview of the locking construct with two
client nodes and one GLM. The lock modes that we provide for are SHARED
for multiple read processes and EXCLUSIVE for a single write process. The lock
structure consists of three levels: metalock, datalock, and childlock.

The metalocks, inode0 on node A and inode1 on node B, synchronize accesses
to files and the value of a metalock is an inode number of the corresponding
file. Below the metalock is a datalock responsible for coordinating accesses to
a data portion. For example, on node A, metalock inode0 is split into two
datalocks associated with the data sections 0000-3FFF and 4000-5FFF in bytes
and, on node B, two datalocks below inode1 are associated with the data sections
0000-2FFF and 3000-4FFF in bytes. In order to grant a datalock, the lock mode
of the higher lock (metalock) must be SHARED, meaning that a file is shared
between multiple clients.

The childlock which is a split datalock sits at the lowest level. As mentioned
in section 2, given that a datalock is granted, the datalock can be split further
to maximize local lock services as long as the data section to be accessed by
a requesting process does not exceed the data section of the datalock. In Fig-
ure 2, the datalock for the data portion 0000-3FFF on node A is split into three
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Fig. 2. A hierarchical overview of distributed locking protocol

childlocks that control accesses to the data portions 0000-9FF, 1000-1FFF, and
2000-3FFF, respectively.

The childlock is locally granted and therefore the requesting process needs
not communicate with GLM to obtain the childlock. However, the childlock is
granted only when the lock mode of a childlock is compatible with that of the
higher datalock. The datalock and the childlock are located by comparing the
starting file offset and data length being passed from the local file interface.

GLM contains the global lock information consisting of a list of the locks that
each GLM is responsible for serving. In Figure 2, GLM contains the metalocks,
inode0 and inode1, and the datalocks of the data portions 0000-3FFF and
4000-5FFF of inode0 and of the data portions 0000-2FFF and 3000-4FFF of
inode1. GLM also contains the node group information indicating those groups
where the lock holders belong to.

3.3 Lock Management

Figure 3 describes the steps taken by three clients to acquire their desired locks.
Suppose that node A retains a metalock, inode0, with EXCLUSIVE mode. At
time ti, a client on node B requests a write lock to GLM for the data range
0000-3FFF of inode0 and the other client on node C requests a write lock for
the data range 4000-7FFF of the same file. GLM sends to the lock holder on
node A a lock revocation message which changes the lock mode to NOLOCK
after the lock release.

GLM grants the write lock for the data range 0000-3FFF to the client on node
B and the write lock for the data range 4000-7FFF to the client on node C. In
order to allow parallel write operations on the same file, the metalock, inode0,
held by both clients is changed to the lock mode SHARED.

The datalocks on the clients can be split to the childlocks as long as the I/O
requests associated with the childlocks do not conflict with the parent’s lock



612 J. No, C.W. Park, and S.S. Park

Fig. 3. Distributed lock management

mode. For example, at time tj , because two write operations are locally invoked
on each node and the requested lock mode (EXCLUSIVE) does not conflict
with the parent lock mode (EXCLUSIVE), the datalock on node B is split to
two childlocks, 0000-7FF and 800-3FFF, and the datalock on node C is split to
another two childlocks, 4000-5FFF and 6000-7FFF. Note that the information
about those childlock acquirements is not stored in GLM.

At time tk, when a client on node A asks GLM for a write lock to write data to
the data range 0000-9FFF, the data locks and the childlocks on node B and on node
C are released, while keeping the metalocks on both nodes with SHARED mode.

In order to avoid parallel writes and reads on the same file to be serialized
to access the same file metadata, we merge all the metadata being accessed on
GLM0 which is attached to the storage disk. When a client acquires a metalock
to access to a file at the first time, it would also receive the associated file
metadata from GLM0, along with the metalock. After finishing the I/O operation
related to the acquired lock, the client sends the file metadata to GLM0 to merge
them to maintain the consistent view of the file to all nodes. By doing this way,
each client can independently perform its I/O operation as possible, without
considering other clients accessing the same file.

3.4 Function Calls

Figure 4 represents the functions to be called to serve the lock request, lock
release, and lock grant operations. The lock request operation is started by
calling snq clm lock in the local file interface to read or write data. Once process
finishes its I/O operation, snq clm unlock is called to wake up a sleeping process,
if any, blocked while waiting for the lock to be released.
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Fig. 4. Steps to acquire a distributed lock

If the requesting lock exists in the local lock table or the data portion to
be accessed does not exceed the data portion of an already acquired lock then
the request is immediately satisfied and the lock is returned to process. If the
requesting lock does not exist in the local lock table, indicating that either it
is already held by a different node or the lock is requested at the first time,
then llm2glm lock is called to communicate with GLM. If the requesting lock
mode is EXCLUSIVE, then llm2glm promote is called to upgrade the lock
mode.

GLM receives the lock service request and then calls glm lock or glm promote
to grant a lock or to upgrade lock mode. Glm lock and glm promote both call
a callback invoke function, glm2llm callback, to send an appropriate callback
message to remote clients. Glm2llm callback invokes send callback msg that
sends a message to the node group where the lock holder belongs to. After
invoking send callback msg, glm2llm callback is blocked until it is woken up
by glm unlock or by glm demote.

Glm unlock is a function to be called to update the global information of the
lock that has been released on a remote lock holder and glm demote is a function
to downgrade a lock of a remote lock holder.

On a client node, once a callback message is received, the lock interface calls
llm callback to release or to downgrade the lock requested. The lock release
operation is performed by calling llm2glm unlock and the lock downgrade op-
eration is performed by calling llm2glm demote. After completing its intended
operation, each function sends back an acknowledgement to GLM to grant the
lock to the requesting node.

When an I/O operation is completed, snq clm unlock invokes llm merge to
send all the associated file metadata to GLM0. Glm merge collects the file metadata
from clients and writes them to the attached storage.
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Fig. 5. Time overhead to acquire a dis-
tributed lock using one GLM. Each client
read from or wrote 0.8Mbytes of data to
the distinct section of the same file.

Fig. 6. Time overhead to acquire a dis-
tributed lock using four GLMs. Each
client read from or wrote 0.8Mbytes of
data to the distinct section of the same
file.

4 Performance Evaluation

We measured the performance of the distributed locking protocol on the ma-
chines that have Pentium3 866MHz CPU, 256 MB of RAM, and 100Mbps of
Fast Ethernet. The operating system installed on those machines was RedHat
9.0 with Linux kernel 2.4.20-8. The performance results focused on the time
to obtain locks by performing lock revoke, downgrade, and upgrade operations.
The times to invalidate client cached data and to write dirty data to disk were
not included in the evaluation. In each experiment, we evaluated the effect of
the lock range alignment. With the size of the lock range aligned, the data size
being read from or written to storage is rounded up to the closest multiple of
page size.

4.1 Evaluation of the Non-overlapped Data Range

Figures 5 and 6 represent, as the number of clients increases from 4 to 32, the
time to obtain locks with the exclusive mode in write operations and with the
shared mode in read operations.

When more than one machine were configured as GLMs, each lock request is
given to a GLM, according to the round robin fashion. All clients read from or
wrote 0.8Mbytes of data to the distinct portions of the same file. In this case,
the lock requested by each client was newly created on GLM and returned to the
requesting client, and thus caused no callback message to be sent to the remote
lock holder.

As can be seen in Figures 5 and 6, with the size of the requested lock
range aligned to page size, the better performance is obtained because, with
the lock range alignment, each page can be assigned to exactly a single client at
a time even though a slight larger data than actually requested must be read or
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written. Without the alignment, boundary pages can simultaneously be accessed
by neighbor clients, causing I/O serialization on those pages.

Fig. 7. Time to acquire a distributed lock
using one GLM. A client’s data range is
shifted right so that each client is as-
signed the data section accessed by its
neighbor at the previous step.

Fig. 8. Time to acquire a distributed lock
using four GLMs. A client’s data range
is shifted right so that each client is as-
signed the data section accessed by its
neighbor at the previous step.

4.2 Evaluation of the Overlapped Data Range

Figures 7 and 8 show the time to obtain locks with the exclusive mode and with
the shared mode, while shifting right a client’s data range so that each client is
assigned the data section accessed by its neighbor at the previous step.

Figures 7 and 8 illustrate that the overhead of the lock revocation is significant
with the exclusive mode because only a single client is allowed to write to a data
section at any given time. With the shared mode, there is no need to contact
the remote lock holder since a single lock can be shared between multiple nodes.
With the shared lock mode, before granting a lock, GLM just increases a counter
denoting the number of shared lock holders.

4.3 Evaluation of Lock Cost Per Node

Figures 9 and 10 show the elapse time to acquire locks, while changing the
number of clients running on each node from 2 to 16. In order to fix the total
number of clients to be 32, the number of nodes used in each experiment is 32
divided by the number of clients per node. For example, if 2 clients are running
on a single node, 16 nodes are then used in the experiment.

In this experiment, with 2 clients running on the same node, the lock currently
kept by a client would be used by its neighborhood at the next step. In other
words, all the locks would locally be acquired every 2 I/O operations, without
each client sending a callback message to the remote lock holder. On the other
hand, with 16 clients, the callback message is sent to the remote lock holder every
16 I/O operations, reducing the cost for negotiating with the remote lock holders.
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Fig. 9. Time overhead to acquire a dis-
tributed lock using one GLM as a func-
tion of number of clients running on
each node. A client’s data access range
is shifted right at each step.

Fig. 10. Time overhead to acquire a dis-
tributed lock using four GLMs as a func-
tion of number of clients running on
each node. A client’s data access range
is shifted right at each step.

Fig. 11. Time to obtain a distributed
lock as a function of lock locality ra-
tio, using 16 clients with four GLMs. A
client’s data access range is shifted right
at each step.

Fig. 12. Time to obtain a distributed
lock as a function of lock locality ra-
tio, using 32 clients with four GLMs. A
client’s data access range is shifted right
at each step.

According to this experiment, we can observe that the dominating performance
factor to acquire locks with 32 clients total is the network overhead to contact
the remote lock holder.

4.4 Evaluation of Lock Locality

Figures 11 and 12 show the effect of the childlocks exploiting locality in the lock
requests. Figure 11 shows the execution time taken to acquire locks using 16
clients with four GLMs and Figure 12 using 32 clients with four GLMs. Both
experiments shown in
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The lock locality ratio means how often childlocks are taken; if the lock locality
ratio is of 25%, then 25% of total datalocks are childlocks needed to access to
the smaller data portion than that of an already acquired datalock. If the lock
locality ratio is of 100%, then all the locks are childlocks that do not cause
communication overheads with GLM and with remote lock holders.

5 Conclusion

Concurrent accesses to the same file frequently occur in a distributed computing
where allowing parallel write operations significantly improves I/O bandwidth.
However, most distributed client-server file systems support a coarse-grained
locking protocol in which all the concurrent write operations to a file are serial-
ized even when the data sections being written are different between writers. In
this paper, we presented a distributed locking protocol with which several nodes
can simultaneously write to the distinct data portions of a file, while guarantee-
ing a consistent view of client cached data. The distributed locking protocol has
also been designed to exploit locality of lock requests to minimize communication
overheads with GLM and with remote lock holders.
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Abstract. Data redistribution of parallel data representations has be-
come an important factor of grid frameworks for scientific computing.
Providing the developers with generalized interfaces for flexible paral-
lel data redistribution is a major goal of this research. In this article
we present the architecture and the implementation of the redistribution
module of TGrid. TGrid is a grid-enabled runtime system for applications
consisting of cooperating multiprocessor tasks (M-tasks). The data redis-
tribution module enables TGrid components to transfer data structures
to other components which may be located on the same local subnet
or may be executed remotely. We show how the parallel data redistri-
bution is designed to be flexible, extendible, scalable, and particularly
easy-to-use. The article includes a detailed experimental analysis of the
redistribution module by providing a comparison of throughputs which
were measured for a large range of processors and for different intercon-
nection networks.

1 Introduction

Heterogeneous distributed environments or grid environments provide large com-
putation resources for the execution of extremely computation intensive scientific
applications. These computing environments can be exploited to execute algo-
rithms and applications with task-parallel structure. Those applications have to
be transformed into modular component-based parallel programs which can be
executed on a grid environment. A suitable programming model and an efficient
runtime environment which implements the programming model are required
for developing this kind of applications. The modular structure of programs
can be expressed by a task graph. Each node in the task graph represents a
single grid-enabled component. These components are implemented as multi-
processor tasks (M-tasks). A task graph containing M-tasks offers two levels
of parallelism. Components can be executed concurrently but each component
may also contain data-parallel code or may even contain a recursive structure of
components.
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The runtime environment TGrid is an approach for executing M-tasks in a
heterogeneous distributed environment. The TGrid environment consists of sev-
eral modules which enable the processing of M-tasks, the mapping of M-tasks
to processors for execution, the observation of running M-tasks, and the re-
distribution of data between M-tasks [1]. M-tasks which can be executed in
the TGrid environment are able to take full advantage of the underlying com-
munication network by using MPI. On the other hand, since the M-tasks are
written in Java, they are also completely platform independent. The redistribu-
tion of data structures within cooperating components plays an important role
for component-based grid environments. There are several requirements that a
data redistribution component has to meet to provide a solid framework for
component-based programming on the grid. The data redistribution component
must be flexible to support various data types and to be easily extendible if re-
quired. It should be simple to use, i.e. the developer should only provide all the
information to allow an efficient data redistribution, and the component should
support the coupling of components.

The contribution of this paper is the design and the implementation of a
data redistribution module which enables the coupling of M-tasks in heterogenous
computation systems. The redistributionmodule is able todynamically createdata
messages from information provided by the source component (M-task) and to
automatically redistribute these data onto the processors of the target component.
Inparticular, theredistributionmodulerelieves theprogramdeveloper fromwriting
redistribution code for each component, which is tedious and error-prone.

The rest of the paper is structured as follows. Section 2 gives a short intro-
duction to the TGrid runtime system. In Section 3 the architecture of the re-
distribution module of TGrid outlined. Section 4 addresses the implementation
details and introduces the management protocol of the redistribution module.
Section 5 presents experimental results. Section 6 discusses related work, and
Section 7 concludes the paper.

2 Overview of TGrid

TGrid is a runtime system for a network of heterogenous parallel machines which
allows the execution of hierarchically-structured multi-processor tasks. Multi-
processor tasks (M-tasks) can improve the performance of parallel programs due
to a reduced communication overhead [2,3]. TGrid provides a framework to run
these M-tasks on a heterogenous collection of clusters as proposed in [4]. TGrid
consists of several subnets of which each is controlled by a subnet manager.
The subnet manager is in charge of executing and observing tasks on its private
network. Such a private network could be a homogeneous cluster or any other
heterogenous collection of machines that share a private IP address space or are
visible to each other. The subnet managers are able to transfer data through a
WAN, which might be insecure. Therefore, the subnet managers support several
protocols, such as https, ssh, etc., in order to bypass local firewalls and to perform
encrypted data transfer.
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Fig. 1. TGrid architecture

The software architecture of the TGrid runtime system and an overview of
the functioning of the subnet manager is sketched in Fig. 1. The program de-
veloper has access to one of the subnet managers and can submit programs to
this local subnet manager. A TGrid program can be represented as a directed
task graph where TGrid components are the nodes of the graph. Edges of the
task graph represent dependencies between components, which includes data
dependencies based on an output-input relation between components. If there
is a data dependency between consecutive components A and B, such that B
requires data structures produced by A, then the TGrid framework provides a
redistribution component which can automatically satisfy the dependency (cou-
pling of component). The subnet manager enqueues TGrid programs into a list
of programs to be executed. The queue controller selects the next program to be
executed on TGrid, spawns a TaskGraph Walker, and passes the user’s program
as parameter. The TaskGraph Walker executes the nodes of the task graph (com-
ponents) as specified in the application program. An instance of a TaskGraph
Walker observes the execution of a program throughout the entire life cycle of
the program.

As soon as all input data dependencies of a node (component) are fulfilled a
component is ready for execution. In TGrid, a component can only be executed
within a single subnet of the grid runtime system. Components can be arbitrary
single-processor or multi-processor tasks. TGrid is especially designed to support
the execution of hierarchically-structured multi-processor tasks based on TLib
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[2]. TLib is an MPI-based library that provides separate functions for the hierar-
chical structuring of processor groups and for the coordination of concurrent and
nested M-tasks. TGrid components can also be executed on a remote subnet. If
the component scheduler decides to execute a component in a remote subnet, the
component will be sent to this target subnet and started remotely. As mentioned
before, executing a component requires a component scheduling beforehand. The
component scheduler maps a component to processors of a subnet taking into ac-
count the current workload of the subnet as well as the component’s preferences
and requirements, e.g. minimum and preferred number of processors to run this
component. The scheduler can retrieve this information about the workload and
the connected processors by calling interfaces provided by the subnet manager.

To eventually execute a scheduled component, the TaskGraph Walker starts
a Component Executor which encapsulates the necessary actions to run the
code. For instance, components using MPI have to be started differently than
components using Java sockets. In case of MPI components, the client processor
starts an MPI component container. An MPI component container initializes the
MPI environment, registers itself with its local subnet manager, and waits for
an MPI component to execute. The subnet manager sends the component to the
component container. The component container checks if all data dependency
of this component have been satisfied. If not, it notifies the subnet manager
that it is ready for performing a data redistribution operation. When the data
dependencies have been satisfied, the component container starts the execution
of the component. The component container also informs the subnet manager
when the component has finished its computation.

TGrid and all its components are written in Java which makes them completely
platform independent. The current implementation supports components that are
based on MPI. This approach allows us to run these components on arbitrary
machines in the grid without having to recompile some parts. Moreover, the ability
to access the MPI layer through JavaMPI enables the application to benefit from
using the best network driver available on the corresponding machine.

3 Architecture of the MxN Redistribution Component

A parallel data redistribution, often known as MxN redistribution, is required for
the coupling of programs (or components) which are executed in a data-parallel
manner and have a data dependency. MxN stands for a data redistribution from
M processors of the source program to N processors of the target program.
Since all kinds of data redistributions between components require similar meta
informations, the implementations follow similar patterns. The basic steps to
redistribute data are data identification, message generation, message scheduling,
and the actual communication. For TGrid, these basic steps are realized by the
following tasks:

1. Specify the input and output variables of the redistribution. An output vari-
able defines data which are provided by the sending component. Hence, input
variables define data structures of the receiving component.
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2. Define which parts of the source data has to be transferred to the target
component (selection).

3. Define the data mapping between sending and receiving component.
4. Create a schedule of redistribution messages (communication schedule) that

includes a sequence of messages that correctly moves data structures from
the source to the target component.

5. Start communication and perform transfer.

In TGrid, the redistribution can be started when the source component has
finished its computation and the target component has been initialized. The
redistribution process has to determine all the meta information from both end-
points in order to create the communication schedule. Enumerating the infor-
mation required to create a communication schedule may be straight-forward,
however, it is difficult to design an easy-to-use and extendible (data-typing sys-
tem) software component, i.e. TGrid provides generic data type interfaces which
enables the developer to define and implement new data distribution types (e.g.
block-cyclic 2-dimensional arrays of integers) if necessary.

A major concern is the throughput and the latency that can be provided
in the communication stage. In order to gain good performance, we decided
to differentiate between inter-subnet and intra-subnet redistribution. The data
redistribution between two components which are part of the same subnet is
referred to as intra-subnet redistribution. Intra-subnet redistribution in TGrid
is characterized by direct message transfer from the sending processors to the
receiving processors. In case that a component is executed by multiple operat-
ing system processes on one machine, direct message transfer to each of these
participating processes is only possible if each processor can allocate arbitrary
ports to receive data. Since most firewalls are configured to allow communication
only on a few ports, we assume that unrestricted port management may only be
allowed in private subnets. Unrestricted port management within a subnet en-
ables the processors to directly transfer messages. As a result of the intra-subnet
design, the message transfer within processors of the same subnet can be per-
formed concurrently, i.e. no routing is involved. This ensures a high throughput
and enables a fast redistribution within subnets. The communication between
different subnets has different requirements. Many network configurations do
now allow direct communication between a pair of processors, each located in a
different subnet. However, firewalls may block traffic between two nodes and the
IP address space may be completely private to a subnet. Instead, messages from
one subnet to another have to be routed through the local subnet manager. The
subnet manager has to be set up appropriately to support bypassing the firewall
restrictions. The number of message hops increases when messages have to be
routed over several other nodes which strongly influences the achievable latency
and throughput.

Another important design goal for the redistribution module is to allow con-
current redistributions between components. The redistribution component of
TGrid is implemented entirely in a multi-threaded way, i.e. different redistribu-
tions can be performed between each pair of components at the same time.
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Fig. 2. TGrid Redistribution Protocol

4 Data Redistribution Protocol of TGrid

Data redistribution is realized by the TGrid Communication Protocol, which is
shown in Fig. 2. A common case is that a sub-matrix computed by a component
(Component 1) is required as input by another component (Component 2). The
processors that execute these components may be located on different subnets
or may be part of the same subnet. The redistributor is the entity that manages
the entire redistribution and may be located on a third subnet, called Subnet C
in Fig. 2. Since the redistributor is part of the execution of a TGrid program
(see Fig. 1 in Sec. 2) it runs on the subnet where the user has submitted the
application program. The user has to instruct the redistributor (by passing meta
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information) which data has to be transferred between the components. This
meta information includes

– unique identifiers of variables which determine the source and the target
data structure in source and target component

– the data selection in the source component and the data mapping in the
target component as described in Section 3.

– the component schedule of the source and the target component (number
of processors, mapping). It enables the redistributor to retrieve information
about the data layout which is required for generating the communication
schedule.

– references to source and target component objects.

Using this information, the redistributor creates an abstract communication
schedule. The abstract communication schedule is composed of a list of abstract
messages which do not contain system information such as host names or IP
addresses of the TGrid environment. In order to deliver messages in the current
runtime environment, the redistributor has to convert the abstract communica-
tion schedule into a system-dependent communication schedule. Therefore, ab-
stract messages are extended with a header which is used to uniquely identify
the destination of a target variables. A component’s variable can be uniquely
identified within TGrid by specifying

– the subnet to uniquely identify the subnet to route the message to.
– the component to locate the component in the subnet. TGrid components

get a unique label when they are passed to the runtime environment for
execution.

– the name of the variable which stores the data to be accessed.

The name of the variable and the name of the subnet can be easily determined.
The component id in TGrid however is assigned at runtime. To retrieve the
component identifier from a remote subnet, the restributor sends a request to
the remote subnet manager. The subnet manager responds by sending the cor-
responding component id back to the redistributor. The redistributor has now
all information to convert the abstract communication schedule into a system-
dependent communication schedule.

The redistributor starts redistribution managers on both subnets which man-
age the redistribution on the remote subnets and are primarily used to avoid
communication across subnet border when it is not required. One redistribu-
tion manager controls the actions taken by the sending processors and the other
controls the receiving processors, respectively. Redistribution managers belong
to the same subnet as the sending or the receiving processors. Therefore, only
data messages from source processors to target processors have to be sent across
subnet borders. All other protocol messages that may be necessary for the re-
distribution, e.g. synchronization, require only communication within subnets
(from processors to their redistribution manager).

TGrid is designed to run several redistributors and also redistribution man-
agers concurrently. Therefore, each redistribution manager gets a unique ID
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when instantiated. In order to determine the correct redistribution manager for
incoming messages the redistribution managers have to exchange their IDs at
first. Each redistribution manager sends its ID to the redistributor which for-
wards it to the remote redistribution manager.

The redistribution manager that controls the processors which have to send
messages is referred to as send manager and the manager for the receiving
processors as receive manager, respectively. The receive manager assigns a unique
port to each receiving processor and sends a receive request to the processors.
When all processors have responded to this request, the receive manager sends
meta data of each receiving processor (hostname, port, local rank, etc.) to the
send manager. The send manager uses this information to create a proxy object
through which the sending processors send their messages. Proxy objects are used
to make the sending of data messages transparent to the sending processor, i.e.
the processor is not aware whether the target processor is part of the same local
subnet or located on a remote subnet. With the information about the target
host, the send manager can assign the message list and proxies to each processor
that has data to contribute. Both the send manager and the receive manager
wait until all cluster machines have acknowledged that the message transfer has
been completed.

The sending or receiving of messages is not done by the component itself.
This would force the component developer to implement redistribution code
(sending/receiving) for every single component. Instead, the data transfer re-
sponsibility is part of the component container, see Section 2. Since component
containers have no knowledge of the internal data structure of a component, the
data transfer between a container and a component is realized by abstract inter-
faces which include methods to retrieve meta information (variable identifiers,
data selection, data mapping) as discussed in this section.

5 Experimental Results

We performed a number of throughput experiments to evaluate the performance
of the TGrid redistribution component. All intra-subnet tests were run on a
cluster consisting of 64 Opteron processors (Model 246, 2 GHz). The cluster has
three different interconnection networks per node; 100 MBit Ethernet, Gigabit
Ethernet, and Melanox Infiniband. Currently, the TGrid framework provides a
small number of distributed data types, e.g. distributed block-partitioned ma-
trices, which play an important role in scientific applications.

The first experiment measures the throughput achieved when redistributing a
block-partitioned matrix between two components in TGrid. Fig. 3(a) compares
the throughput per node that was achieved with several matrix configurations
and on different interconnection networks. The label ’mxn’ denotes the number
of processors that were assigned to the source (m) and to the target component
(n). For instance, the label ’Gigabit 2x2’ stands for the data redistribution over
Gigabit Ethernet between 2 processors which run the source component and
2 processors which run the target component. As expected, the throughput per
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Fig. 3. (a) Intra-subnet data redistribution performance on Gigabit Ethernet and
Infiniband. (b) Throughput comparison of several data redistributions on Gigabit Eth-
ernet and on Infiniband. Constant message size per processor.

node increases with larger matrices. The message size that each processor has
to send or receive depends on the size of the input matrix and on the number of
processors that store the matrix. If more processors are used to store a matrix
the throughput will be smaller. On the other hand, the protocol overhead has
less impact on the overall time when the message size increases. For instance,
for matrix size 4096 the throughput between 2 nodes (’1x1’) is higher than
measured with 16 nodes (’8x8’). The small throughput that can be seen for a
matrix size of 256 is a direct result of the protocol overhead of the redistribution.
The throughput of the redistribution is also limited by the object serialization
done at the Java layer. The object serialization in Java is a very powerful tool
and makes it easy to send object with different implementations across the net-
work. These limitations cause the similar performance of Gigabit Ethernet and
Infiniband.

Since the size of each message depends on the number of processors which
store a distributed matrix, it is also important to examine the throughput when
the size of matrices is adjusted in the way that the message size per processor is
held constant. Fig. 3(b) shows the throughput per node with a constant message
size per node (we used one processor per node on SMP boards). Again, the
impact of the protocol overhead decreases the throughput for a small message
size (0.5 MB) in comparison to bigger messages. We can also observe that the
throughput per node is almost equal for a specific message size taking advantage
of concurrent message redistribution.

Another important test for grid environments is to measure the bandwidth be-
tween long-distance networks. As mentioned above, TGrid is able to execute com-
ponents remotely and can also handle the data redistribution between compo-
nents which are located in different subnets. Fig. 4(a) compares the throughput
achieved by inter-cluster redistribution (routed) with the throughput achieved
by intra-cluster redistribution (direct). The inter-subnet redistribution tests were
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Fig. 4. (a) Intra vs. Inter-cluster redistribution; (b) Time spent in each redistribution
step (matrix redistribution from 4 source processors to 4 target processors, 4x4, 8
nodes). Interconnection network: Gigabit Ethernet.

performed on a single cluster. To perform these tests, we divided the number of
nodes into two disjoint subnets where each subnet is controlled by one node of
the corresponding subnet. We also used another IP range with the consequence
that the transfer between both subnets as well as the communication in between
the subnet is done over the 100 MBit interconnection network. It is not surpris-
ing to see such a huge performance difference. Considering that the 100 Mbit
card has a maximum bandwidth of 12.5 MB/s. Since each message is routed
through two different subnet managers and since each message can only be for-
warded to the next destination when it was entirely received, the throughput of
a single message has an upper bound of 12.5/3 ≈ 4 MB/s (3 message hops to
destination). Additionally, the sending of message from multiple processors has
to be synchronized on a subnet manager to some extend which in turn reduces
the possible throughput per node.

Fig. 4(b) shows the partial times spent in different redistribution steps. The
bar labeled with ’Protocol’ denotes the protocol overhead introduced by using
the TGrid redistributor. The time ’Pack’ denotes is the time for packing mes-
sages and the time ’Send’ denotes the time for transferring the message over
the network. The packing of messages contains determining the matrix elements
to be sent, allocating a message buffer, selecting and copying elements from
the local matrix buffer into the message buffer, and writing a message header
containing meta informations for message reconstruction. We can observe that
the protocol overhead is constant for different matrix sizes. For this reason, the
TGrid protocol overhead has less impact on the performance for larger matrices.
As we expected, the time for packing and sending messages increases linearly
with the number of elements to be transferred.

The redistribution component of TGrid has shown good performance when
taking into account that there is a price to pay for determining data, converting
data, and managing arbitrary data inside a heterogenous grid environment.
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6 Related Work

Data redistribution in distributed or grid environments has been an active area of
research in the last couple of years. The Parallel Application WorkSpace (PAWS)
provides a framework for coupling parallel applications within a component-like
model [5]. The PAWS approach is similar to the redistribution component of
TGrid, however, on another level of granularity. In contrast to PAWS, TGrid
uses the notion of redistribution within an application, i.e. data redistribution
is required to start a particular M-task of the application. The Model Coupling
Toolkit (MCT) [6] is a software library written in Fortran 90 which provides func-
tions to transfer data structures between parallel applications. InterComm [7] is
a redistribution library that moves the determination of data redistribution pat-
terns inside the programs to be coupled. An ongoing research project is carried
out by the CCA (common component architecture) forum. The MxN working
group of the CCA forum is working on the definition and implementation of
interfaces to transfer data elements between parallel components running with
different numbers of processes in each parallel component [8]. The framework
Seine [9] is a geometry-based interaction model which is encapsulated as a CCA
compliant component within the Ccaffeine CCA framework. Other CCA compli-
ant frameworks that support coupling of distributed components are DCA [10]
and XCAT [11]. An effective algorithm for communication schedule generation
for data redistributions is presented in [12]. Messages between different clus-
ters are scheduled in order to avoid exceeding the bandwidth capacity of the
backbone.

7 Conclusions

In this article, we have presented the data redistribution component used by
TGrid. The redistribution component is fully capable of managing arbitrary MxN
redistributions. The redistribution framework of TGrid works completely multi-
threaded so that multiple variables of components can be transferred to arbitrary
receiving components in parallel. The redistribution component provides simple
but flexible interfaces which make it an easy task to extend the implemented
data types and algorithms. The redistribution component differentiates between
intra and inter-subnet communication. The intra-subnet communication allows
the parallel sending of messages and is therefore of major importance for high
throughput. The redistribution component of TGrid has shown good perfor-
mance in the experiments.
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Abstract. The main aim of this work is to take advantage of the computer re-
sources of a single organization or Multicluster system to execute distributed
applications efficiently without excessively damaging the local users. In doing
so we propose a Metascheduler environment named MetaLoRaS with a 2-level
hierarchical architecture for a non-dedicated Multicluster with job prediction ca-
pabilities.

Among other Metaschedulers, the non-dedicated feature and an efficient pre-
diction system are the most distinctive characteristics of MetaLoRaS. Another
important contribution is the effective cluster selection mechanism, based on the
prediction system.

In this article, we show how the hierarchical architecture and simulation me-
chanism are the best choices if we want to obtain an accurate prediction system
and, at the same time, the best turnaround times for distributed jobs without da-
maging local user performance.

1 Introduction

In this paper, we consider the issue of metascheduling jobs across a Multicluster. A
Multicluster system has a network topology made up of interconnected clusters and
limited to a campus- or organization-wide network with a common domain name, while
a traditional grid is national or even global in scale [6]. Instead of grid computing,
Multicluster systems allow the construction of efficient prediction systems based on the
availability and reliability of their constituent resources.

Several studies [2] have revealed that a high percentage of computing resources in a
Network Of Workstations (NOW/Cluster) are idle. The possibility of using this comput-
ing power to execute parallel jobs with a performance equivalent to a Massively Parallel
Processor (MPP) and without perturbing the performance of the local user applications
on each workstation has led to a proposal for new resource management environments
([7,11]).

With the aim of taking advantage of these idle computing resources available across
the cluster, in previous work [4,5], we developed a cluster scheduling system named
LoRaS (Long Range Scheduler). The most important feature of LoRaS is its efficient
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turnaround predictor for the parallel jobs, which allows the most efficient space sharing
scheduling policy to be selected depending on the cluster state. In this article, we present
MetaLoRaS, an extension of LoRaS, which provides the ability for a non-dedicated
Multicluster to act as a Metascheduler. MetaLoRaS deals with each cluster by means of
the LoRaS scheduling system requesting the cluster state and the prediction of the job
turnaround time.

MetaLoRaS has a two-level hierarchical architecture. This choice is based on the
work performed in [3], where an evaluation of the interaction between Metaschedulers
and local schedulers (in each cluster) is presented. One important conclusion they pre-
sented was that among all the strategies considered, the best is to have one scheduler in
each cluster, and to drop the requirement for scheduling single-component jobs to the
cluster (or bottom) level.

The major scheduling decision of the top level of MetaLoRaS is to select the cluster
to which the parallel jobs are delivered for execution. MetaLoRaS decisions are based
on minimizing the execution time of the jobs without adding an excessive overhead
to the local tasks. Parallel job execution times in each cluster are predicted in their
respective LoRaS system, the bottom level of MetaLoRaS.

Most cluster selection policies used by Metaschedulers in the literature, employ tra-
ditional First Fit, Best Fit, or Greedy scheduling, or some variant on these ([13,10,9,3]).
Moreover, an integral space sharing scheduling with load redistribution between clus-
ters was used in [1]. A more sophisticated genetic algorithm was presented in [8]. An
alternative technique to distribute the jobs between the clusters was proposed in [12]
and [9]. They proposed distributing each job to the least loaded clusters in a redundant
manner, thus improving the system utilization and reducing average job slowdown and
turnaround time. However, the overhead involved in implementing this was found to be
a problem.

Although these above-explained environments can give acceptable performance,
they are not envisaged for non-dedicated environments and they cannot be used to pre-
dict job execution times in non-dedicated Multiclusters, the most important aims of this
work.

In this article our metascheduling system was tested in a real Multicluster made up
of three clusters. The results obtained demonstrate the good behavior of our Metasche-
duling mechanism and its applicability to Multicluster systems. Special attention was
paid to the main contribution of this article, the cluster scheduling policy, that is, the
algorithm which assigns jobs to clusters.

The remainder of this paper is outlined as follows. In Section 2, the Multicluster
Scheduling system (MetaLoRaS) is presented. The efficiency measurements of Meta-
LoRaS are performed in Section 3. Finally, the main conclusions and future work are
explained in Section 4.

2 MetaLoRaS

MetaLoRaS is based on a previously developed cluster scheduling system named Lo-
RaS. LoRaS is a space sharing scheduler which allows a large number of scheduling
facilities to be defined.
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In this section the main features of LoRaS are introduced. Next, the Multicluster
architecture is extensively explained. In doing so, the main components of MetaLoRaS
and their functionality are defined. Finally, the Metascheduling mechanism, consisting
of selecting the cluster where the jobs are mapped, is explained separately.

2.1 LoRaS

LoRaS ([4,5]) is basically a Queue Manager developed in order to provide a space
sharing scheduling facility for non-dedicated cluster systems. As can be seen in Fig. 1,
the most important components of LoRaS are the Input Queue, the Predictor and the
Scheduler.

Fig. 1. LoRaS

The jobs in the Input Queue are ordered in a FCFS manner. The mapping policy
of LoRaS selects the nodes for executing a parallel application considering the level
of resource usage throughout the cluster. Thus, it does not overload any node without
damaging the local user interactiveness.

LoRaS provides a means for predicting the execution time of parallel jobs in each
cluster. This prediction is performed by simulation. For our purpose, the simulator is
the most important component of LoRaS, because it is the basis for the Metascheduling
mechanism proposed in this article.

In order to deal with this estimation, LoRaS uses information about the parallel ap-
plications and the cluster state. Each parallel application is executed in isolation and
the following information is gathered: number of requested nodes, execution time and
percentage of used CPU and Memory. The cluster state is modeled according to the
following information about each cluster node: average load, memory occupancy, local
user activity and the Multi-Programming Level (MPL), which is the number of parallel
applications running in the node. If LoRaS sets the maximum MPL as N, no more than
N parallel tasks can be executed in each cluster node.

LoRaS also deals with user activity. The nodes where there are local user activity,
the MPL is adjusted accordingly. This way the local user jobs are also considered when
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assigning new parallel tasks. The Metascheduler proposed in the next section improves
the treatment of the local applications significantly.

As was demonstrated in [4] and [5], taking into account the information described
above, the predictor can obtain accurate estimates of the turnaround time of the dis-
tributed jobs. In fact, the turnaround deviation achieved by the predictor system is al-
ways below 20%.

2.2 MetaLoRaS Architecture

First of all, we must decide whether the Multicluster system architecture will be cen-
tralized, hierarchical or distributed. Multiclusters are usually based on high-speed local
networks, and therefore a centralized or hierarchical scheme should be suitable.

Multicluster Network

Input Queue

MULTICLUSTER

Cluster 1 Cluster 2 Cluster N

LoRas LoRas LoRas
Predictor Predictor Predictor

Metascheduler Admission

MetaLoRas

Dispatcher

Job

Multicluster
Controller

Turnaround Time

Fig. 2. MetaLoRaS

We are interested in extending LoRaS to make a Metascheduler system oriented
to non-dedicated Multiclusters. The final result is MetaLoRaS. Unlike a centralized
scheme, where the scheduling process should be performed in the Metascheduler node,
we chose the hierarchical model. This decision was based on the attempt to split metas-
cheduling decisions between the overall cluster or more precisely between the LoRaS
front-end nodes, thus reducing the added scheduling overhead in the system. Further-
more, as was pointed out in [3], the best results were obtained when there was one
scheduler in each cluster.

MetaLoRaS is made up of five components (see Fig. 2): the Input Queue (a queuing
system), the Multicluster scheduler (named Metascheduler), the Admission system, the
Dispatcher and the Multicluster Controller.
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It is reasonably expected that users outside the organization should not have direct
access to the local resources. Instead, they should use the Multicluster through one en-
try point, the Input Queue. Note that the Input Queue should comprise more than one
queue. Doing so, the jobs could be classified, for example, on the basis of their schedul-
ing priority. Nevertheless, for simplicity reasons, only one Input Queue is considered in
this article.

MetaScheduler, the MetaLoRaS scheduler, is the Multicluster scheduling system.
It is responsible for selecting the next job to be executed from the Input Queue, and
also the cluster where this job will be executed. Metascheduler is explained in depth in
section 2.3.

The Admission System is responsible for admitting new jobs into the system. This
module will accept the new job whenever its required resources fit on at least one cluster.
If not, the job is discarded. The specified resources are the number of processors and
the size of Memory.

The MetaLoRaS maintains an updated list of the state of each cluster, so it can de-
termine in real time whether the first job in the Input Queue can be executed. This
information is obtained from the Multicluster Controller system. The Multicluster Con-
troller collects real time information about the state of each cluster. If an event occurs
in one cluster (job start, finish), the Multicluster Controller is notified of such a change.
It is responsible for updating the database with the information from the different clus-
ters. In doing so, it collects the changes performed in each cluster. The LoRaS system
is responsible for notifying the Multicluster Controller about the cluster state changes.

The Dispatcher has the ability to send the job to the Input Queue of the LoRaS front-
end, selected by MetaLoRaS. The jobs to be executed can be launched in both PVM and
MPI formats.

One important issue to be taken into account is the Multicluster Network topology.
The nodes are usually grouped into clusters because they share an internal network. A
Multicluster has a distinctive architectural feature: the internal networks of the clusters
are bridged together through dedicated links. This configuration increases the complex-
ity of effectively managing both computing and networking resources.

Finally, we suppose that the clusters making up the Multicluster are accessible from
the node where the MetaLoRaS is located. Also, we suppose that the clusters are shared
between local user applications and the parallel jobs.

2.3 MetaLoRaS Scheduling System

In this section the functioning of MetaScheduler, the Multicluster scheduling system
(see Algorithm 1) is explained. MetaScheduler is responsible for selecting jobs from
the Input Queue and mapping them into clusters, controlled by the LoRaS system.

The next job (J) from the Input Queue to be executed is selected in a FIFO manner.
In this article, as we are interested in presenting an efficient prediction system, only
the FIFO policy is considered because optimal prediction accuracy is obtained when
using this policy [5]. If the selected job J cannot be executed in the Multicluster, i.e. the
resources that the job requires do not fit in one cluster, the admission system will reject
the job.
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Each job must provide the number of processors and their respective CPU and Me-
mory requirements. As mentioned in the previous section, they are obtained by the
LoRaS when executing in isolation.

Algorithm 1. Cluster Selection Policy.
Step 1 Choose in a FIFO manner the next job (J) from the Input Queue
Step 2 If there are not enough resources in every Cluster, reject job J and Go to Step 1
Step 3 Obtain the Cluster C to map job J according to the Prediction Algorithm (Algorithm 2).
Step 4 Dispatch Job J to Cluster C
Step 5 Go to Step 1

If the selected job J is not rejected (fits in almost one cluster), it will be mapped
into one cluster by means of the Cluster Selection Policy (see algorithm 1). Jobs are
selected in a FIFO manner and the considered resources are the Memory occupancy
and the maximum fixed MPL of the cluster nodes. This information is maintained by the
Multicluster Controller system. For this reason, each cluster must provide information
to the Multicluster Controller when jobs complete and free processors.

The proposed policy is based on simulation. The job execution is simulated in each
LoRaS simulator, residing in the front-end node of each cluster. With this model, the
clusters do not perform any scheduling decision, but are only responsible for dispatch-
ing the jobs that are supplied by the MetaLoRaS. The Prediction Algorithm (Algorithm
2) summarizes the steps performed by the simulation process in obtaining the cluster to
map the job J.

Next, the Prediction Algorithm is explained. The turnaround time of a job J is ob-
tained by simulation in all the clusters. In doing so, the cluster state, the waiting jobs in
the LoRaS Input Queue and the local user activity is taken into account. To select the
cluster, the MetaLoRaS is based on the Pondered Turnaround Time metric (PTT (J)).

Let C be a Multicluster made up of “n” clusters. The Pondered Turnaround Time for
a cluster k≤n (PTTk) and a job J, is defined as:

PTTk(J) = T Rk(J)
(

W
T Rk(J)

MaxT R(J)
+ (1−W)

LTk

MaxLT

)
, (1)

where T Rk(J) is the predicted turnaround time obtained in cluster k, MaxT R(J) is
the maximum predicted turnaround time across the Multicluster, LT k is the number
of nodes assigned to job J in cluster k with local user activity and finally, MaxLT is
the maximum number of nodes assigned to job J with local activity across the Multi-
cluster. To prevent a division by 0, MaxLT is set to 1 when there is no local activity at
all (MaxLT=0). W (a real value in the range [0..1]) is the weight assigned through the
formula to the turnaround time. 1 - W will then be the weight assigned to the resource
occupancy of user applications.

We define the Pondered Turnaround Time of a job J as the minimum PTTk ∀ k= 1..n.
This is:

PT T (J) = minn
k=1 {PT Tk(J)} (2)
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Our Metascheduling system will assign the job J the cluster which gives the mini-
mum turnaround time and that disturbs the local user applications as little as possible.
According to equations 1 and 2, Cluster k with PTT (J) = minn

k=1 {PT Tk(J)} will be
selected.

Algorithm 2. Prediction Algorithm.
Step 1 Metascheduler obtains the list of clusters (Lc) where the job can be executed.
Step 2 For each cluster C ∈ Lc, LoRaS obtains its cluster state.
Step 3 Metascheduler request the turnaround time of Job J in each cluster k where the job can

be executed (T Rk(J)). Also request the local resource occupancy of each cluster (LT k, ∀k =
1..n).

Step 4 Metascheduler computes PT Tk(J), ∀k = 1..n.
Step 5 Metascheduler obtains the cluster C where PT T (J) = minn

k=1 {PTTk(J)} is reached.

By varying W we can obtain different scheduling capabilities. If the local user ap-
plications must not be delayed by the parallel jobs, we will set W  0. Instead, If the
major performance metric to be taken into account is the turnaround time of parallel
applications, a W  1 should be used. For a value of W  0.5, equal importance will
have both local user intrusion and parallel turnaround times.

Note that there can also be different W values for different cluster systems. This
should be used for example to distinguish between clusters where the user applications
cannot be damaged at all (W�0).

3 Experimentation

In order to carry out the experimentation process, we need the user and parallel work-
loads. The user workload is represented by a synthetic benchmark (named local_bench)
which can emulate the usage of 3 different resources: CPU, Memory and Network traf-
fic. The use of these resources was parametrized in a real way. According to the values
obtained by collecting for a couple of weeks the user activity in an open laboratory,
local_bench has been modeled to use 15% CPU, 35% Memory and 0,5KB/sec LAN.

The parallel workload was a list of 60 NAS parallel jobs (CG, IS, MG, BT), with a
size of 2, 4 or 5 tasks, that reached the system following a Poisson distribution. These
jobs were merged so that the entire parallel workload had a balanced requirement for
computation and communication. It is important to mention that the parallel MultiPro-
gramming Level (MPL) reached for the workload depends on the system state at each
moment, but cannot exceed an MPL = 4.

In this experimentation we are interested in knowing the benefits of the new Cluster
Selection Policy (named PTT) based on the state of the Multicluster. In order to be able
to show the benefits of this policy, a comparison was done between different policies
with different values of local activity. The policies compared are: FFIT (First Fit), RR
(Round Robin), TAT (Turnaround Time) and PTT (Pondered Turnaround Time). The
first two are classic policies, whereas TAT and PTT use the LoRaS prediction system.
TAT assigns jobs in the cluster with the minimum turnaround time. In PTT (the policy
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presented in this article), not only is the minimum turnaround time taken into account
(as in TAT), but also low user intrusion is considered, as was expressed in Formula 2.

The whole system was evaluated in a Multicluster made up of three non-dedicated
clusters with the same number of nodes. The 3 clusters, named Cluster1, Cluster2 and
Cluster3 each had 5. Each cluster comprised 3GHz workstations with 1GB of RAM and
2048 KB of cache, interconnected by a 1Gigabit network.

3.1 Metrics

In order to be able to compare the different policies three different metrics, Turnaround,
Makespan and Slowdown, were used.

The Turnaround measures the mean elapsed time in executing one job of the paral-
lel workload. This metric allows us to measure the efficiency of the different Cluster
Selection Policies evaluated from the parallel application point of view.

Makespan, on the other hand, allows us to analyze the global performance of the
overall system. It gives the elapsed time from the start of the first job to the end of
the last job. This metric relates the performance of the system in executing the overall
parallel workload. It is considered a system centric metric.

To quantify the intrusion introduced by the execution of the parallel workload in the
user applications, we used a benchmark, called local_bench, that measures the averaged
latency of a set of system calls. The Slowdown (SL) of local user applications is defined
as follows:

SL =
AvLatnon−dedicated

AvLatdedicated
(3)

where AvLatnon−dedicated is the averaged latency value in executing local_bench with
the parallel workload (non-dedicated environment) and AvLatdedicated is the averaged
latency of the same benchmark when executed in isolation (dedicated environment).

3.2 Performance Comparison

In the Figure 3 we show the averaged Turnaround time of the parallel workload by
varying the local activity. 0% means that there are no local users in any cluster; 30%
one cluster is entirely occupied by user applications; 60% two clusters are occupied and
finally 100%, the overall Multicluster has user activity.

As can be seen in the figure, the FFIT policy is the worst. In this case, almost all the
parallel jobs were assigned to the same cluster (the first one) because there were enough
resources. Only when there were not enough processors to execute the job was another
cluster selected.

The RR policy behaved better than FFIT in all the situations, because it distributed
better the jobs. As Figure 3 shows, the policies TAT and PTT mapped even better be-
cause the assignment is based on the prediction of the turnaround time. This improve-
ment also demonstrates the effectiveness of the prediction module of LoRaS.

As we can see, the behavior of the PTT model depends on the value of W and the
user workload. PTT with W=1 gave similar performance to TAT in all the cases. As
Formula 2 shows, this result was expected because in both cases only the turnaround
time is considered.
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Fig. 3. Turnaround

For the W=0 case, the PTT model discards the clusters with local activity. When
there are various clusters without user activity, the policy selects the first cluster with
enough resources. In many situations the assignments are performed in the same cluster,
penalizing the Turnaround metric, as passed in the 30% case.

The best performance results are obtained for PTT with W=0.5 and W=1. This is due
to the fact that in both cases the turnaround time is considered, avoiding the commented
problems of W=0. The average of the performance results is similar in both cases.

PTT increased the performance of RR and FFIT in all the situations. Also, on aver-
age, the PTT model with W=0.5 and W=1 improved TAT in 5%.

The Figure 4 shows the Makespan results. This metric measures the overall system
performance with respect to the applied policy. As was expected, the obtained results
are very similar to the turnaround. This fact corroborates the good behavior of our
experimental environment and the implemented policies.

With regard to the Makespan metric, PTT is also the best policy. Obtaining, in aver-
age, a gain with respect to TAT of 2% for PTT W=0 and 8% for PTT with W=0.5 and
W=1.

3.3 User Slowdown

In this section, the influence of the different policies on the user applications is
evaluated.

Figure 5 shows the Slowdown obtained when executing local_bench in the same
situations as in the previous section. As can be seen, the intrusion does not increase
with the local activity. This demonstrates that LoRaS deals with the local user well, by
balancing the maximum MPL allowed in the cluster with the local activity. The greater
the local activity, the smaller the MPL and this causes that the latency to stay stable.

In general, a great negative impact on the local task performance was produced by
the FFIT model. In this case, only taking into account the fitting of the jobs in the
assignment increased the intrusion in the user applications. The RR model also does so.
With a simple distribution of the load it also caused a considerable overhead in the user
workload.
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Fig. 4. Makespan

Fig. 5. Local Intrusion

We can observe how PTT maintains the smallest latency in almost all the cases.
The exception occurred in the case of W=0 and 100% user activity. This was produced
because this model tries to decide only according to the user activity. As all the clusters
have the same user workload, this model decides in arbitrarily.

We have verified that in average, the PTT model with W=0 obtained the smallest
latency. However, the TAT model improved performance of parallel applications with
respect to PTT with W=0 in 11%. We have also verified that the best performance
is obtained for PTT with W=0.5 and W=1, with a gain with respect to TAT of 5%.
Furthermore, PTT with W=1 obtained smaller latency values than PTT with W=0.5.

4 Conclusions and Future Work

In this article we have presented MetaLoRaS, a Metascheduler system based on simu-
lation with a two-level hierarchical architecture for a Multicluster environment. Com-
pared with traditional policies in the literature, the simulation model we propose gave
the best cluster selection scheduling because it can predict the turnaround time of an
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application in a particular cluster system. This way, no redundant job assignments must
be implemented to obtain the best result (as in [12]).

The proposed Metascheduler gives good parallel performance without excessively
damaging the user workload. This is one of the most important aim of this work. Our
Metascheduler is very efficient when it is based only on the prediction mechanism. It
reduced the Makespan of the parallel workload by 23% and the turnaround by 25% with
respect to the classic policies (First Fit and Round Robin).

The proposed new policy, PTT, based on the prediction mechanism and the user
activity allows the intrusion of user applications to be reduced by an average of 9%.
Varying the W factor, we obtain different performance results depending on the user
activity. For the W=0 case, we obtained better Slowdown results. Instead, for the W=0.5
model, we obtained better average turnaround and Makespan values. W=1 obtained
gains similar to W=0.5 but reducing the user intrusion. W=1 is the best mode if we
want to balance parallel against user application performance. To improve the overall
system performance with low user intrusion, W=0 should be chosen. Instead, W=0.5 is
the best model if the goal is to improve the parallel application performance.

Future work is directed towards improving the scheduling model when the user ac-
tivity is similar across the Multicluster. As our model only considers the presence of
user activity, it do not select efficiently the clusters to map the jobs when the clusters
are evenly loaded. We need additional information, such as CPU or Memory occupancy
to distinguish the least loaded cluster to perform more efficient decisions. We want also
consider the workload changes in advance, making load-redistribution (as in [1,9]) un-
necessary.

The number of jobs waiting in the Input Queue of the LoRaS systems reduce pre-
diction accuracy. To correct this problem new proposals in the PTT policy should be
made.
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Abstract. Grid computing has been a hot topic for a decade.  Several systems 
have been developed.  Despite almost a decade of research and tens of millions 
of dollars spent, uptake of grid technology has been slow.  Most deployed grids 
are based on a toolkit approach that requires significant software modification 
or development.  An operating system technique used for over 30 years has 
been to reduce application complexity by providing transparency, e.g. file 
systems mask details of devices, virtual machines mask finite memory, etc.  It 
has been argued that providing transparency in a grid environment is too costly 
in terms of performance.  This paper examines that question in the context of 
data grids by measuring the performance of a commercially available data grid 
product – the Avaki Data Grid (ADG).  We present the architecture of the 
ADG, describe our experimental setup, and provide performance results, 
comparing the ADG to a native NFS V3 implementation for both local and 
wide area access cases.  The results were mixed, though encouraging.  For 
single client local file operations, native NFS outperformed the ADG by 15% to 
45% for smaller files, though for files larger than 32 MB ADG outperformed 
native NFS. 

1   Introduction 

Grid computing has become a popular and much-hyped term in both academia and 
industry, has been the subject of numerous research projects, and has been embraced 
as a key technology by major software vendors such as IBM, HP, Oracle, Sun, and 
others.  Today, grid systems are still an active area of computer research while at the 
same time software based on grid technology has spread into production use in 
industries as diverse as pharmaceuticals, aerospace, financial services, and 
telecommunications, for sharing enterprise resources [1-3]. 

Grid computing is a much misunderstood concept.  Many believe that it is 
primarily or even solely concerned with high performance execution environments – 
i.e. ones dedicated to improve the performance of high performance/parallel 
applications such as large individual MPI applications, or high throughput 
applications such as SETI@home and parameter space studies.  However, the full 
scope and potential of grid computing is much greater than simply coupling together 
CPUs to provide more collective cycles.  Rather, it is a concept that focuses system 
design on providing secure sharing and easy, virtualized access to resources of many 
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types, e.g. CPU, storage, data, applications, policies, instruments, etc., across wide-
area networks and across organizational boundaries [4-7]. 

While the majority of the early research and development of grid systems focused 
primarily on developing advanced execution environments [8-11], a growing number 
in the grid community have realized that it is desirable – indeed it is potentially even 
more useful – to develop equally sophisticated mechanisms for securely sharing and 
accessing data resources within and across organizations and to integrate such data 
resources into grid systems.  There are several projects [12-20] - past and present, 
academic and industry - that focus on the data side of grid systems, developing what 
we call data grids. 

Data grids take a number of different forms, and address data management issues 
such as transport, storage, wire integrity, security, replication, caching, and 
consistency.  There are copy-in/copy-out systems that use FTP-like [21] mechanisms 
to make copies of the data at different locations, library-based approaches that provide 
special APIs to access remote data [13, 22, 23], complete distributed file systems [24], 
and interposition agents that mimic standard operating system behavior and redirect 
selected I/O operations to remote sources [9]. 

Each of the styles imposes different constraints, performance trade-offs, and 
programming burden on users.  The most commonly used style to date has been copy-
in/copy-out approaches as exemplified by the use of GridFTP [19].  The basic idea is 
simple.  Before program execution, required data sets (including possibly the 
executable) are first copied from a remote location to a local file system.  The 
application is executed, and specified output files are either copied to a remote 
location or are kept for local consumption. 

There are several shortcomings to FTP-like approaches. Among them are 
redundant file copying, the need for accounts at multiple locations (if non-anonymous 
access is to be provided), and the cognitive burden placed on programmers to 
explicitly manage data transport, caching, and consistency issues.  (A more detailed 
analysis is provided in Section 5.) 

An alternative to FTP-like approaches is a Transparent Grid Data Management 
System (TGDMS) that emulates standard file system behavior while managing 
security, transport, caching, and consistency on behalf of the user.  In a TGDMS the 
data resources in the grid are mapped into a directory-based namespace, which in turn 
is mapped into local operating system file system name spaces as a “mounted” 
directory.  The result is that user applications can access data located throughout the 
grid without modifying their applications or scripts at all.  Both programmers and 
end-users are completely isolated from even knowing the grid is there. 

A common critique of TGDMSs is that the performance penalty for transparency is 
too high – and that it is not worth the cost.  While “too high” is a subjective issue, the 
costs and performance penalty can be described quantitatively. In this paper we 
examine the performance of a commercially-available TGDMS, the Avaki Data Grid 
version 5.11, using a set of synthetic benchmarks that were designed to mimic four 
typical data access scenarios: a single client reading a local file, a single client reading 
a remote file, a single client writing a local file, and multiple parallel clients accessing 

                                                           
1 Newer versions are now available – we believe that the main conclusions of this paper 

remain true. 
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a local file.  The results were compared to the use of a Linux native NFS 
implementation.  The outcome was that transparent read access can be achieved with 
either a small penalty (<10%) or – in the case of parallel access – a performance 
benefit.  The story with write performance was not as promising - the penalty for 
writes was quite significant, typically a factor of eight slower.  However, we believe 
that much of that can be attributed to implementation issues, and that more acceptable 
performance is possible. 

The remainder of this paper is organized as follows: in Section 2 we present a brief 
description of the Avaki Data Grid architecture while the experimental design is 
discussed in Section 3.  Performance results are detailed in Section 4.  Section 5 
presents related work and alternatives to TGDMSs. 

2   The Avaki Data Grid 

The Avaki Data Grid (ADG) [11-14][5, 14, 25, 26] is commercial grid software 
designed to simplify provisioning, access, and integration of data from multiple, 
heterogeneous, distributed sources.  The primary goals of the Avaki Data Grid are 1) 
to deliver data to applications and users from a collection of geographically-
distributed sources, and 2) to provide a single transparent interface to the data, 
facilitating data access, integration, and application development.  Conceptually, the 
ADG architecture consists of three layers - an access layer, a transformation layer, 
and a provisioning layer. 

The access layer provides a means for users and applications to access data in a 
location transparent fashion.  This layer presents a familiar hierarchical namespace, 
where the interior nodes are directories, and the leaves are data objects – specifically 
files in our discussion here.  Read/write access to files is provided via Avaki-specific 
NFS and CIFS servers, as well as via web interfaces, i.e., a browser.  The NFS and 
CIFS servers are implemented by Avaki Data Grid Access Servers or DGAS.  A 
DGAS presents the illusion of a single file system to client machines.  By mounting 
the Avaki NFS or CIFS server, a client operating system essentially maps the Avaki 
namespace into the local operating system namespace, providing transparent access to 
remote resources.  The DGASs are responsible for enforcing access control, caching 
data, and providing cache consistency. 

The transformation layer supports the creation of abstract data objects, files, DBs, 
etc., that are the result of performing a transformation on other data objects.  For 
example, filtering a file, merging and sorting two files, or performing an XSLT 
transformation.  These transformations can be chained, and all of the resulting and 
intermediate data objects may exist in the namespace, have access control, and other 
metadata. 

The provisioning layer maps local data sources, for example, file system directory 
trees, database tables and views, into the Avaki namespace.  After checking per- 
missions, the provisioning layer services data requests from the access and 
transformation layers. 

Avaki has a grid-of-grids architecture.  Each organizational unit, department, 
school, division, or company has one or more Avaki Grid domains.  Grid domains are 
typically synonymous with administrative domains, i.e., authentication and identity 
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domains.  Avaki grid domains may be joined together by connecting their namespaces 
and exchanging certificates.  In the case that two domains are separated by a firewall, 
a proxy server can be set up, which routes the requests and responses between the 
provider and the consumer. 

An ADG domain consists of four components: a grid domain controller (GDC), 
which manages the global namespace; one or more grid servers (GS), which handle 
transforms, meta-data, and the data catalog; share servers (SS), which export local 
files and directories into the ADG in the form of Avaki shares; and data grid access 
servers (DGAS), which provide access to the data in the grid, as well as data and 
meta-data caching.  An example of an ADG domain is given in Fig. 1. 

 

 

Fig. 1. Avaki Data Grid Architecture. A typical ADG domain consists of share servers that 
provision the data, a grid domain controller and zero or more grid servers that implement the 
name space and perform transformations, and one or more data grid access servers that provide 
cached access to client machines via NFS and CIFS. 

Tracing a single read through the stack is illustrative of how the pieces work 
together.  Suppose a client application issues a read on a file.  The read is routed to 
the local operating system NFS or CIFS client.  Assuming that the data are not in the 
local cache, the request is forwarded to a DGAS which first checks permissions.  
Access control information is a part of the file metadata.  If the file metadata are not 
in the local DGAS cache, then the DGAS interrogates the GDC using the users’ 
credentials, asking for the metadata and for a signed access cookie2.  The GDC looks 
up the location of the data object, loads metadata from a database, and checks the 
credentials against the access control list.  Once the DGAS has the metadata and 
signed cookie, it interacts directly with the share server for all subsequent operations.  
The DGAS then reads the data from the share server and returns the results to the 
client operating system, which in turn returns the data to the application.  Note that 
the above steps are not necessary if the data are cached. 

In order to expedite the data access, the DGAS has both an in-memory cache and 
disk cache.  On reads the DGAS checks to see if the data are already in one of its 
                                                           
2 The details of mapping from local identity spaces, e.g., Unix UID, to global name spaces, 

acquiring credentials, etc., is beyond the scope of this paper.  Here we are giving a simplified 
overview that focuses on the data movement, not on security. 
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caches and still within the coherence window.  If so, the cached data are returned.  The 
coherence window is a property of each data object and is specified in seconds.  If the 
data in the cache have been there longer than the coherence window, the DGAS must 
check with the share server to see if the data have been modified (a last write 
timestamp is part of the file metadata).  If the data have been modified, the current 
cached data are evicted, and new data are retrieved and placed in the cache.  If the data 
have not been modified, the window is reset and the read satisfied from the cache. 

On writes, the DGAS cache use write-through; that is, the data are immediately 
written to the destination.  The DGAS caches files in blocks.  The block size, along 
with other DGAS parameters, can be dynamically tuned at run-time.  The DGAS 
evicts cache blocks based on an LRU policy when the cache is full. 

3   Experiment Design 

3.1   Objectives 

Our experiment was designed with three objectives.  First, the experiment should 
reveal the file I/O performance of the Avaki Data Grid, namely, bandwidth and 
latency.  Bandwidth was defined as the bytes read or written by one or more clients 
over a time period.  Latency was the time from when a request was submitted until the 
response was available. 

Second, only the performance of the ADG should be measured; that is, the 
experiment should exclude caching effects from the local file system.  Towards this 
end, we intentionally flushed the cache by disconnecting the NFS mount point after 
the previous I/O operation and reconnecting the mount point before the next I/O 
operation.  Without the calls of umount and mount to flush caches, the clients would 
see the results nearly instantaneously from the local file system caches. 

Third, we wanted to measure the performance of the ADG under stress, i.e., how 
well the ADG responded when many clients sent requests at the same time.  We did 
this using an MPI application described later.  In this case, the aggregate bandwidth 
was defined as the bytes received by all clients before the slowest client finished its 
request.  Thus, it was possible that some clients finished their tasks early and waited 
for the completion of the slowest client.  We computed the aggregate bandwidth as 
the product of the number of clients and the bandwidth of the slowest reader, since 
each reader read the same file.  This penalized ADG, but for a parallel application, it 
is more realistic since most parallel applications must wait for the slowest task. 

The experiments were characterized from the perspective of the client.  During the 
read experiments, the client read data from the DGAS via the local OS and the NFS 
protocol and simply discarded the transferred data.  On writes, the client transferred 
data from its memory to the DGAS via the local OS and the NFS protocol.  Both read 
and write operations were sequential whole file operations, i.e., the client accessed a 
file from beginning to end.  Given the elapsed time and the file size, we could 
compute the latency and the bandwidth for the client. 

The read/write operation was repeated immediately.  The first operation was 
intended to measure the performance when the DGAS cache was cold while the 
second operation measured performance when the DGAS cache was warm.  Note that 
the local OS caches were emptied between runs as mentioned above. 
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3.2   Experiment Implementation 

There were several factors that could affect performance.  We focused on the three 
that we observed had the largest impact - remote versus local data, file size, and the 
number of concurrent readers. 

For our tests we generated files containing synthetic data.  The files varied in size 
from 1 MB to 1 GB by powers of 2, i.e., 1, 2, 4, 8 MBs.  We placed those files in 
share servers both locally and remotely. 

To measure bandwidth we created a synthetic benchmark to read/write data 
from/to a file.  Two versions of the benchmark were created – a sequential version 
and an MPI parallel version.  Unbuffered I/O functions were used in order to 
eliminate the effects from buffered I/O utilities.  Bandwidth was measured by 
dividing the bytes read or written by the elapsed time.  Pseudo code for the body of 
the sequential benchmark is as follows: 

long start_times[2], end_times[2];
get_timing(start_times);     // start the timing
while (result = read(fd,buf,buffersize) > 0); // read the file
get_timing(end_times);     // stop the timing  

For any two consecutive reads/writes the code was repeated.  Between two 
requests the local caches were flushed by unmounting and mounting the NFS mount 
point. 

The second benchmark measured multiple readers within a cluster.  We slightly 
modified the sequential benchmark to add an MPI barrier before and after each read 
operation, which released all clients at the same time.  To compute bandwidth we 
multiplied the number of MPI tasks (readers) by the file size, and divided by the 
elapsed time.  Pseudo code for the parallel benchmark follows: 

long start_times[2], end_times[2]; 
MPI_Barrier(MPI_COMM_WORLD); // wait for everyone is ready
get_timing(start_times);    // start the timing
while (result = read(fd,buf,buffersize) > 0); // read the file
MPI_Barrier(MPI_COMM_WORLD); // wait for everyone completes
get_timing(end_times);          // stop the timing  

C was used for the implementation.  The code was compiled by gcc with default 
settings. 

4   Performance 

The performance evaluation environment consisted of two ADG domains.  Avaki 
Data Grid release 5.1 was used.  One domain was TACCDataGrid, at the Texas 
Advanced Computing Center (TACC) of the University of Texas at Austin, whose 
grid server was hosted by a dual-processor 3.06 GHz Intel Xeon CPU with 2 GB 
memory, running version 2.4.20-31.9smp of the Linux kernel.  The other domain was 
UVaCenturionGrid, at the University of Virginia, which had a dual-processor 2 GHz 
AMD Opteron CPU with 2 GB memory, called centurion-home, and a cluster of 20 
machines called sunfire1, sunfire2, etc.  Each sunfire was a dual-processor 2.8 GHz 
Intel Xeon with 1GB memory.  All machines at the University of Virginia were 
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running version 2.4.20-8smp of the Linux kernel.  The two sites were connected via 
the Internet.  Wide area throughput was limited by an OC-3 connection from the 
University of Virginia to the Internet and a 100 Mb connection from 
UVaCenturionGrid to the University of Virginia campus backbone. 

We present and analyze the performance of the Avaki Data Grid under five 
scenarios.  When we use the phrase “native NFS” in this paper, we mean the NFS V3 
protocol with a native Linux NFS server.  Avaki numbers are given using a Linux 
NFS client and an Avaki DGAS speaking NFS.  For each scenario we ran the test 10 
times before we computed the means and 95% confidence intervals. 

Scenario 1: File open in LAN. The centurion-home hosted the GDC, a share server, 
and the DGAS.  The reader, sunfire1, mounted the DGAS via NFS protocol just like 
any NFS client.  In this scenario the DGAS handled requests as an NFS server.  They 
were connected by Gigabit Ethernet.  The latency for file open was measured. 

Scenario 2: File read in LAN. The computers were connected as in Scenario 1.  In 
this case, the bandwidth for a file read was recorded instead of latency.  We read each 
file twice to reveal the effect of the cache in terms of bandwidth, and recorded both 
values. 

Scenario 3: Simultaneous file read in LAN. The centurion-home hosted the grid 
server and share server.  The difference was that more than one client read the file 
simultaneously.  To be precise, 16 sunfires acted as concurrent clients.  Each client 
had its own DGAS mounted locally via NFS protocol, i.e., each host had a separate 
DGAS that the host mounted and each DGAS communicated with the share server.  
All connections were Gigabit Ethernet. 

Scenario 4: File write in LAN. Same as in Scenario 2, except that sunfire1 became 
a writer.  Because DGAS uses a write-through cache strategy, the write operations 
were performed only once. 

Scenario 5: File read in WAN. Each domain had its own GDC.  The source share 
server was hosted at TACC, as were the files to be read.  The client, sunfire1, 
mounted to the DGAS on centurion-home via NFS.  On read, sunfire1 sent the read 
request to centurion-home, which forwarded the request to the grid server at TACC.  
In response, the share server from TACC sent the data back to sunfire1 provided the 
user had permission to the data.  We do not show in the paper the performance of file 
writes in WAN because the performance as expected suffered by the limited 
bandwidth and long latency of wide area network. 

4.1   File Open in LAN 

Latency was measured as the time for a client to establish a connection and open a file 
on a server.  The client opened an existing file for reads.  In case of writes, the client 
created a new file.  Both the client and the server were in the local area network.  
Table 1 lists the file open latencies for native NFS and ADG in LAN.  A file open for 
read in ADG needed three times as much time as native NFS, while a file open for 
write in ADG imposed even more significant overhead compared to NFS.  We 
speculate that the reason is that ADG has to perform many steps with regard to 
metadata at several locations, such as share server, data grid access server and grid 
server.  In contrast, metadata in NFS is handled at one location, the NFS server.  As a 
result, NFS consumed less time and was more efficient. 
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Table 1. File open latencies. We ran the tests for ten times. 

Read/Write Latency (milliseconds) 95% Confidence Level 
Native NFS read 1.1112 0.0385 
Native NFS write 2.2947 0.1202 

ADG read 3.5117 1.4938 
ADG write 28.6897 11.9093 

4.2   File Read in LAN 

Corresponding to Scenario 2, the result of file read by an NFS client across a LAN is 
shown in Fig. 2.  We can see that the bandwidth of the second read achieved 60 MB/s, 
an increase as much as six times of 10 MB/s bandwidth of the first read.  The 
performance of the subsequent read improved greatly because the files were cached in 
the DGAS after the first read.  Such a bandwidth increase for the second read sustained 
till the file size exceeded 1 GB, which exceeded the cache size of the DGAS. 

 

Fig. 2. File read in LAN for both ADG and native NFS.  Average performance for each of the 
four tests is given, as well as the 95% confidence intervals. 

With the intention of finding out the performance penalty that ADG pays for 
transparency, we always measured the performance of native NFS in the same setting.  
Fig. 2 also shows the performance of a native NFS client reading a file from an NFS 
server.  For the first read, native NFS beat ADG by a margin of 5 MB/s.  However, 
ADG outperformed native NFS by up to 20 MB/s for the second read, sustaining the 
bandwidth for files that were larger than 8 MB.  This indicated that native NFS has a 
smaller cache than ADG, which makes use of disk space as file cache in addition to 
in-memory cache.  Although writing data to the disk slowed down the first read, such 
aggressive caching of DGAS significantly benefited the second read on large files, 
and for files that were being read from a remote location.  The performance 
differences in percentages are shown in Table 2 below.  One can see that the native 
NFS usually beat the ADG by at least 15%, except on the second read of larger files.   



650 H. Howie Huang and A.S. Grimshaw 

Table 2. Difference in Percentage (%) = (1 - ADG/NFS) * 100% 

Difference in Percentage (%) File Size (MB) 
1st Read 2nd Read 

1 43.72495 30.94852 
2 19.83195 21.25632 
4 35.95397 26.16955 
8 29.6479 28.51128 
16 15.19068 12.40469 
32 16.30578 -1.28616 
64 24.50852 -17.8668 
128 28.36182 -22.0486 
256 44.22514 -45.4627 
512 43.55048 -42.122 
1024 33.19589 -6.48357 

4.3   Simultaneous File Read in LAN 

We chose a 128 MB file size for our simultaneous readers experiment.  Both the 
performance of ADG and that of native NFS are shown in Fig. 3.  It is well-known 
that native NFS does not scale when there are many concurrent reads.  Our tests 
confirmed this fact: the aggregate bandwidth for NFS consistently stayed around 110 
MB/s.  So as more clients were added, each client got less bandwidth.  When there 
were four clients, each one achieved a bandwidth of 27 MB/s but when there were 16 
clients, each one only achieved about a bandwidth of 7 MB/s.  In addition, there was 
no significant difference between the first and second read, which suggested that NFS 
cache has no effect for the second read because it is network bandwidth limited. 

 

Fig. 3. Simultaneous file read. Averages are shown with 95% confidence intervals. 
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Although the first read for ADG was slower than that of native NFS, each ADG 
client could expect a much better performance at the second read, thanks to ADG 
caches.  In ADG, the aggregate bandwidth of the first read maintained at a level of 45 
MB/s for up to 16 clients, where the bandwidth was 2.8 MB/s for each client.  
However, for the second read, the aggregate bandwidth was linear with the number of 
clients.  The more clients were added, the larger became the aggregate bandwidth.  
When there were four clients, the aggregate bandwidth was 298 MB/s.  When there 
were 16 clients, a four times increase in the number of clients, the aggregate 
bandwidth was 1128 MB/s, an increase of 3.9 times in bandwidth.  On average each 
client got a bandwidth of 70 MB/s, eight times what a native NFS client got when 
there were 16 clients.  This suggested that ADG scales well when there is reuse, as for 
example, when bioinformatics codes are being repeatedly run against a large sequence 
or protein database. 

4.4   File Write in LAN 

For file write, both native NFS and ADG presented a fairly consistent performance 
for various file sizes shown in Fig. 4.  In general, native NFS significantly 
outperformed ADG for write.  A client could write a file at a bandwidth of 40 MB/s in 
native NFS, while at the bandwidth of 4 MB/s in ADG.  ADG wrote data through to 
the share server without any caches.  Thus, the performance suffered as more 
components were involved in ADG.  We did not repeat file write twice as we did for 
file read because ADG directly writes data to the share server without any cache.  
Each time a client writes a file, he/she should expect the same bandwidth. 

 

Fig. 4. File write in LAN. Averages are shown with 95% confidence intervals. 

4.5   File Read in WAN 

In Fig. 5 we present the bandwidth file read in the wide area network between the 
University of Virginia and TACC.  As expected the first read was slow at a bandwidth 
close to 1 MB/s due to network limitations.  The performance of the second read in 
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Fig. 5. File read in WAN. Averages are shown with 95% confidence intervals. 

WAN was around 65 MB/s, which was comparable to that in LAN because the data 
were cached in the DGAS after the first read.  This characteristic of ADG can greatly 
reduce the read latency and network load in cases that a lot of clients want to read the 
same set of files on the remote location.  After the data are cached in the DGAS, the 
Avaki Data Grid is able to serve many clients with the local copy of the data without 
the need for retrieving one copy for each client.  This saves significant network 
bandwidth resources.  Most importantly, a client is able to access the data quickly and 
seamlessly regardless of the original locations. We do not compare ADG with native 
NFS here, because NFS V3 is not suitable for wide area networks, which will be 
explained in Section 5. 

5   Related Work 

The problems that data grids solve have been around for as long as networks have 
existed between computers.  A number of solutions have been created to solve the 
problems of remote data access.  In this section, we take a closer look at some of the 
more popular solutions and present their advantages and disadvantages.  For each 
solution we will take up a case of a local user at one site trying to share a file with a 
remote user at another site.  The first user, say Alice, is a user on the local machines 
owned by one company, whereas the second user, say Bob, is a user on the remote 
machines owned by another company.  The two companies may not share a mutually-
trustful relationship although the sharing of Alice’s file with Bob has been approved. 

5.1   Network File System – NFS 

NFS V3 is the standard Unix solution for accessing files on remote machines within a 
LAN.  With NFS, a disk on a remote machine can be made part of the local machine’s 
file system.  Accessing data from the remote system now becomes a matter of 
accessing a particular part of the file system in the usual manner.  In our use-case 
above, Alice could run an NFS server on her machine, and Bob could run an NFS 
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client to mount Alice’s file system onto his.  Bob can now access the exact file that 
Alice wishes to share. 

There are several advantages to NFS, the most significant of which is that it is easy 
to understand.  Typically, Unix system administrators configure the server and client, 
and ordinary users like Alice and Bob simply use it without necessarily realizing that 
they are doing so.  Moreover, applications need not be changed to access files on an 
NFS mount – the NFS server supports standard OS file system calls.  Accordingly, 
files may be accessed entirely on in parts as desired.  Finally, the NFS server and 
client tools come standard on all Unix’s.  On Windows, a special service pack must be 
purchased and installed. 

The biggest disadvantage with NFS V3 is that it is a LAN protocol – it simply does 
not scale to WAN environments.  If Alice and Bob are separated by more than a few 
buildings, using NFS between them becomes problematic.  Moreover, if Alice and 
Bob belong to different organizations, as they are in our use-case, NFS cannot be 
deployed with reasonable guarantees of security. 

Three characteristics of NFS doom it for use in wide-area, multi-organizational 
settings.  First, the caching strategy on the NFS server typically releases data after 30 
seconds and reloads the data on subsequent access.  The result is a frequent 
retransmission of data and over-consumption of bandwidth.  A related problem is that 
the read block size is too small, typically 8 KB.  In a wide-area environment, latency 
can be high, therefore larger block sizes are needed to amortize the cost of the remote 
procedure call (RPC).  Although the block size can be changed, most NFS V3 clients 
do not change it. 

Second, and most seriously, NFS V3 does not address security well.  An NFS V3 
request packet is sent in the clear and contains the (integer) User ID (UID) and Group 
ID (GID) of the user making the read or write request.  The NFS V3 server “trusts” 
the NFS client to not lie about the identity of the user making the request.  Such a 
trustful relationship does not exist among multiple organizations, such as Alice’s and 
Bob’s.  Even if the organizations do trust each other, man-in-the middle, imposter and 
snooping attacks can be made with NFS traffic.  A VPN deployed between the 
organizations may attenuate some of these attacks, but VPNs introduce their own 
problems of management, trust and scalability.  Further, firewalls typically do not 
permit NFS traffic through them making NFS impossible for cross-site use across 
firewalls. 

Third, even assuming that the packets can be sent in a safe and trustworthy fashion, 
NFS requires that the identity spaces at the two sites be the same.  In other words, not 
only should Alice and Bob have accounts on each other’s machines, but Alice’s UID 
on Bob’s machine must be the same as her UID on her own machine.  Likewise, Bob 
must synchronize his UIDs on his machine and Alice’s machine in the same manner.  
Such synchronization would be possible if Alice and Bob were within a single 
domain; in our realistic use-case, they are not. 

Other disadvantages plague NFS; we will mention them briefly here.  NFS 
performance does not scale in a wide-area setting because it is a request-reply 
protocol which requires acknowledgments to be sent for every request, thus 
increasing effective transmission latency.  NFS is a stateless protocol, i.e., the server 
does not keep track of the position of files being read.  Accordingly, the server cannot 
pre-cache data or pre-position accesses to give clients better performance.  Increasing 
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the number of clients overwhelms the one server deployed to serve data, thus 
reducing performance.  In our use-case Alice wants to give Bob access to one of her 
files.  If Bob also had some files he wished to share with Alice, he would have to run 
an NFS server on his machine and ask Alice to run an NFS client on hers.  This kind 
of configuration can lead to a morass of cross-mounting, which can over-burden most 
administrators.  In general, NFS requires m×n connections if m clients access data on 
n servers. 

5.2   FTP and GridFTP 

FTP has been the tool of choice for transferring files between computers since the 
1970s.  FTP is a command-line tool that provides its own command prompt and has 
its own set of commands.  FTP may be used within a script; however, in that case, the 
password for the remote machine must be stored in a clear-text file on the local 
machine.  Using ftp, Alice may connect to Bob, enter a username and password 
relevant to Bob’s machine, change to the appropriate remote directory and then 
transfer the file. 

The benefit of using ftp is that it is relatively easy to use, has been around for a 
long time and is therefore likely to be installed virtually everywhere.  However, the 
disadvantages of ftp are numerous.  First, Alice must have access to an account on 
Bob’s machine, complete with username and password.  Having such access means 
that Alice potentially could do more than just file transfer – she might be able to log 
in to Bob’s machine and access files, directories and other machines to which she has 
not been given explicit access.  From Alice’s perspective, every transfer requires her 
typing the appropriate machine name, username and password.  She could ameliorate 
some of this burden by using a configuration file for ftp, but that file may require 
storing a clear-text password for Bob’s machine. 

In order to eliminate some of these problems, Bob’s site may choose to implement 
anonymous ftp.  In this case, Alice need not have a username and password for Bob’s 
machine, but must still remember the machine name and part of the directory 
structure.  The problem with anonymous ftp is obvious – anyone may now access 
Bob’s ftp directory, not just Alice.  The potential for unauthorized overwriting or 
filling up of disk space is large. 

FTP is also inherently insecure; passwords and data are transmitted in the clear.  
Snooping attacks may easily compromise Alice and Bob.  Hence, most sites that have 
firewall protection shut down the standard ftp port to discourage such attacks.  Even 
without firewalls, there are other disadvantages to using ftp.  Because ftp requires 
making a copy of the data on Bob’s machine, if Alice ever changes her own copy of 
the file, she must remember to ftp the new version of the file.  Moreover, if Bob ever 
changes the file, he must remember to ftp the file back to Alice and reconcile 
concurrent changes, if any.  This process is fraught with potential for inconsistencies, 
and the problem is compounded if additional people need to use Alice’s file and 
receive versions from her at different points in time.  Also, ftp is an all-or-nothing 
protocol – if even one bit of a large file changes, the entire file must be copied over.  
Finally, ftp is not conducive to programmatic access.  Applications cannot use ftp to 
take advantage of remote files without significant modification. 
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SCP/SFTP belong to the ssh family of tools.  SCP is basically a secure version of 
the Unix rcp command that can copy files to and from remote sites, whereas sftp is a 
secure version of ftp.  Both are command-line tools.  The syntax for scp resembles the 
standard Unix cp command with a provision for naming a remote machine and a user 
on it.  Likewise, the syntax and usage for sftp resembles ftp. 

The benefits of using scp/sftp are that their usage is similar to existing tools.  
Moreover, password and data transfer are encrypted, and therefore secure.  However, 
a disadvantage is that these tools must be installed specifically on the machines on 
which they will be used.  Installations for Windows are hard to come by.  Moreover, 
scp/sftp do not solve several of the problems with ftp.  In our use-case, Alice must 
still have access to an account on Bob’s machine and she must continue to remember 
the appropriate machine name, username and password.  Alice could ameliorate some 
of this burden by using an authorized keys file which permits password-less access, 
but she must then store her private key safely on her local machine. 

Sites protected by firewalls may permit scp/sftp traffic on the designated port 
because the traffic is encrypted.  However, scp/sftp does not attempt to solve the 
consistency problems of proliferating multiple copies of the file.  Like ftp or rcp, a 
change of even one bit requires the entire file to be copied over.  Finally, these tools 
are not conducive to programmatic access.  Applications cannot take advantage of 
remote files using scp/sftp without significant modification. 

GridFTP is a tool for transferring files built on top of the Globus toolkit [27].  
GridFTP is an example of a service that characterizes the Globus “sum of services” 
approach for a grid architecture.  Alice and Bob, in our use-case, could use GridFTP 
to transfer files from one machine to another, similar to the way they would use ftp.  
Naturally, both parties must install the Globus toolkit in order to use this service. 

GridFTP solves the privacy and integrity of the problems with ftp by encrypting 
passwords and data.  Moreover, GridFTP provides for high-performance, concurrent 
file transfer by design.  An API enables accessing files programmatically, although 
applications must be re-written to use new calls.  Data can be accessed in a variety of 
ways - for example, blocked and striped.  Part or all of a data file may be accessed, 
thus removing the all-or-nothing disadvantage with ftp. 

However, GridFTP does not address the identity space problems with ftp.  Alice 
and Bob in our use-case must still have an account on each other’s machine, thus 
giving them more privileges than just file access.  Instead of a machine name, 
username and password as in ftp, Alice and Bob have to remember just the machine 
name.  Their identities are managed by Globus using session-based credentials.  
Finally, GridFTP does not solve the problems of maintaining consistency between 
multiple copies, because Alice and Bob would still be required to maintain at least 
two copies of the file, one on each user’s machine. 

5.3   NFS over IPSec 

IPsec is a protocol devised by IETF to encrypt data on a network.  With IPSec 
installed and configured properly, all traffic on a network can be encrypted.  
Consequently, illegitimate snooping of network traffic does not affect the privacy and 
integrity of the communication between a server and a client.  NFS over IPSec 
implies traffic between an NFS server and an NFS client over a network on which 
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data has been encrypted using IPsec.  The encryption is transparent to an end-user.  
NFS over IPSec removes some, but not all, of the disadvantages of using NFS. 

NFS over IPSec results in encrypted NFS traffic, thus regaining privacy and 
integrity.  However, NFS continues to be a LAN-based protocol which does not scale 
to the WAN-like environment typical in our use-case.  All of the performance, 
scalability, configuration and identity space problems we discussed earlier remain.  In 
addition, in order to deploy IPSec, all of the machines in Alice’s and Bob’s domains 
must be reconfigured.  Specifically, their kernels must be recompiled in order to insert 
IPSec in the communication protocol stack.  This recompilation is hard; anecdotal 
evidence suggests that the recompilation is risky, error-prone and ill-documented.  
Finally, once this recompilation is done, all traffic between all machines is encrypted.  
Even web, email and ftp traffic is encrypted whether desired or not. 

5.4   De-Militarized Zone – DMZ 

A DMZ is simply a third set of machines accessible to both Alice and Bob using ftp 
or scp/sftp, established to create an environment trusted by both parties.  When Alice 
wishes to share a file with Bob, she must transfer the file to a machine in the DMZ, 
inform Bob about the transfer and request Bob to transfer the file from the DMZ 
machine to his own machine.  Although both Alice and Bob have relatively unfettered 
access to the DMZ machines, neither party compromises his/her own machines by 
letting the other have access to them. 

With a DMZ, neither Alice nor Bob requires an account on the other’s machines.  
Typically, companies deploying DMZs also deploy scp/sftp or some such secure 
means of file transfer.  Therefore, these tools must be installed on all concerned 
machines.  Alice and Bob both have to remember machine names, usernames and 
passwords for the DMZ machines.  However, they now have to remember an 
additional step of informing the other whenever a transfer occurs. 

DMZs worsen the consistency problems by maintaining three copies of the file.  
Also, because the file essentially makes two hops to get to its final destination, network 
usage increases.  DMZs may address security concerns, but they do not ameliorate any 
of the other problems with scp/sftp and they do increase administrative burden.  If 
Alice’s company decides to co-operate with a third company, thus requiring Alice to 
interact with Chris at that company, she must now create and remember yet another 
DMZ configuration for interacting with Chris.  The Alice-Bob DMZ cannot be reused 
because of the potential for Chris to access files intended for Bob. 

5.5   Andrew File System – AFS 

The Andrew File System is a distributed network file system that enables access to 
files and directories distributed across multiple sites.  Access to files involves 
becoming part of a single virtual file system.  AFS comprises several cells, with each 
cell representing an independently-administered file system.  In our use-case, the file 
system on Alice’s machine would be one cell, whereas the file system on Bob’s 
machine would be another.  The cells together form a single large virtual file system 
that can be accessed similar to a Unix file system. 
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AFS permits different cells to be managed by different organizations thus managing 
trust. In our use-case, Alice and Bob would not require accounts on the other’s 
machines. Also, they could control each other’s access to their cell using the fine-
grained permissions provided by AFS.  When Bob accesses one of Alice’s files for 
which he has permission, he accesses exactly the current copy of the file.  Thus, AFS 
avoids the consistency problems with other approaches using copy-on-open semantics 
unless there are multiple concurrent writers (which AFS does not deal with well.) In 
order to improve performance, AFS supports intelligent caching mechanisms. Since 
access to an AFS file system is almost identical to accessing a Unix file system, users 
have to learn few new commands, and legacy applications can run almost unchanged. 

AFS implements strong security features.  All data are encrypted in transit.  
Authentication is using Kerberos, and access control lists are supported. 

The drawbacks of AFS revolve around the use of Kerberos and the fact that it is a 
file system.  Let me explain.  The use of Kerberos means that all sites and 
organizations that want to connect using AFS must themselves use Kerberos 
authentication and all of the Kerberos realms must trust each other.  In practice this 
means changing the authentication mechanism in use at the organization.  This is a 
non-trivial and typically politically very difficult step to accomplish.  Second, the 
realms must trust each other.  This is similarly difficult to accomplish.  Third, the 
Kerberos security credentials time-out eventually.  Therefore, long-running 
applications must be changed to renew credentials using Kerberos’s API.  Also, AFS 
requires that all parties migrate to the same file system.  In other words, Alice and 
Bob would have to migrate their entire file systems to AFS, which would probably be 
a significant burden on them and their organizations. 

6   Conclusion 

The question we asked at the beginning of the paper is whether a grid file system can 
achieve transparency without significant compromise in performance.  To answer it, 
we measured the performance of file I/O in the Avaki Data Grid and compared it to 
“native” NFS performance.  The results were mixed, though encouraging.  For single 
client local file operations, native NFS outperformed the ADG by 15% to 45% for 
smaller files, though for files larger than 32 MB ADG outperformed native NFS.  For 
writes ADG was significantly slower than the native NFS – it was not quite clear 
why.  On the other hand, for concurrent readers ADG outperformed native NFS by as 
much as a factor of five. 

The big win is in remote data access.  Avaki’s cache makes subsequent access 
significantly faster than re-transmitting the data.  While end-users could explicitly 
manage their own cache, in our experience they don’t.  The result is either significant 
resending of data that has not changed, or users accessing out of date data 
inadvertently3. 

                                                           
3 The authors have seen an internal report of a top 10 pharmaceutical company that reports that 

40% of all jobs end up being recomputed because the wrong – or more often old – data were 
used. Thus the jobs need to be re-executed, consuming resources, and delaying drug 
development. 
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In conclusion, although the data grid we tested did introduce some overheads, it 
does not seem, in our opinion, an unreasonable price to pay in order to achieve 
transparency and scalability.  By quantifying I/O performance in this paper, we hope 
to help researchers and IT professionals gain an insight into the trade-offs between 
transparency and performance in data grids. 
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Abstract. This paper introduces a novel unstructured P2P system able to adapt its
overlay network topology to the load conditions. The adaptation is performed by
means of a mechanism which is run by the nodes in the network in an autonomous
manner using only local information, so no global coordinator is needed. The
aim of this adaptation is to build an efficient topology for the resource discovery
mechanism performed via random walks. We present the basis of the adaptation
mechanism, along with some simulation results obtained under different condi-
tions. These results show that this system is efficient and robust, even in front of
directed attacks.

1 Introduction

The Peer-to-Peer (P2P) paradigm has brought new communication opportunities for
Internet users. P2P systems present advantages like flexibility, scalability and fault tol-
erance, thanks to the lack of central coordinators or controllers. But this same lack of
central entities has brought new technical challenges.

Maybe one of the key issues to be solved is how to locate resources efficiently. Sev-
eral solutions have been proposed, each with its advantages and drawbacks. It seems
that P2P systems with unstructured overlay networks are suitable for certain scenarios
like mass-market distributed resource sharing.

Unfortunately, it is not trivial to offer efficient search solutions in unstructured net-
works. Flooding based proposals (like the first versions of Gnutella) present scalability
issues. Because of this, the research community is making efforts to develop solutions
based on random walks. More specifically, to combine random walks with dynamic
overlay topologies (topologies that change during the system life) is an approach that
has lead to promising results [1, 2].

Here we introduce a solution based on the same idea of using random walks along
with a dynamic topology. Changes on the topology are performed by the nodes them-
selves to adapt it to the load on the network. In order to do this, each node runs a
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reconnection mechanism (the same for all nodes) that periodically computes to which
other peers the node must connect. This solution has been implemented in a system
called DANTE2

1.
This paper is organized as follows. In Sect. 2 we revise some current solutions for

resource location in P2P networks. Section 3 presents previous works which form the
conceptual basis of DANTE2. Section 4 describes the adaptation mechanism used by
DANTE2. Section 5 presents some results obtained by simulation. Those results mea-
sure the performance of DANTE2 under a variety of circumstances. Finally, Sect. 6
contains the conclusions of this paper and possible lines of future work.

2 Resource Discovery in P2P Systems

Traditionally, solutions for resource location in P2P systems are classified in two groups:
centralized and decentralized. In centralized solutions a central repository stores an
index of all resources in the network (like in Napster [3]). This approach makes the
system vulnerable to attacks or censorship and poses scalability issues.

In decentralized systems, on the other hand, the resource discovery service is pro-
vided by the peers themselves. Decentralized systems are usually classified by the kind
of search mechanism they implement to route search messages through the network:

1. Structured systems. These systems use specialized placement algorithms to assign
responsibility for each resource to specific peers, as “directed” search mechanisms
to efficiently locate resources. One example is Chord [4].

2. Unstructured systems. These systems do not have precise control over the resource
placement and, traditionally, use search mechanisms based on flooding, random
walks or supernodes. Examples are Gnutella and KaZaA.

Structured systems are very efficient: they usually require few communication steps
to find some resource, and do not produce false negatives (i.e., the search fails only if
the demanded resource is not in the system). On the other hand, unstructured systems
tend to be less efficient, and may yield false negatives.

Yet, unstructured systems have some advantages: they have little management over-
head, adapt well to the transient activity of P2P nodes, take advantage of the spon-
taneous replication of popular content and allow to perform queries by keyword in a
simpler way than with directed search protocols. These advantages seem to make un-
structured systems suitable for many real-world situations, like massive file sharing sys-
tems. Further discussion comparing structured and unstructured systems can be found
in [5].

2.1 Resource Location in Unstructured P2P Networks

Three search methods are typically used for resource location in unstructured networks.
The first one is flooding, where each peer broadcasts the queries to all its neighbors. It
is well known [6] that the flooding solution presents problems of scalability.

1 From Dynamic self-Adapting Network TopologiEs.
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Another solution is based on the idea of superpeers. These are special nodes that
store the index of resources shared by the rest of peers. The eDonkey [7] network, for
instance, uses this approach. Yet, these systems are dependant on the availability of
those powerful enough nodes.

Finally, the third search mechanism is based on random walks. Here, nodes forward
each query to only one peer, chosen randomly among its neighbors. There is little com-
munication overhead compared with flooding, but it can take longer to solve queries.
In [8] and [9] we can find some studies that state that random walks seem to be a
promising technique suitable to solve the scalability problems of flooding.

2.2 Dynamic Topologies Based Proposals

It is well known that the performance of random walks is highly dependant on the
topology of the overlay network [10, 11, 12]. Thus, some solutions have been proposed
that try to adapt the overlay topology to the network load, in order to improve the
efficiency of the search process.

First, Lv et al. [2] introduced a P2P system in which nodes avoid congestion by
means of a flow control mechanism that redirects the most active connections to neigh-
bors with spare capacity. Another work is Gia [1], proposed by Chawathe et al. In Gia,
queries are forwarded to high capacity nodes. An active flow control mechanism avoids
overloading hot spots: each node notifies its neighbors the number of queries they can
send to it, which depends on its spare capacity. Topology is adapted by a mechanism
based on nodes’ level of satisfaction, which measures the distance between a node’s
capacity to the sum of its neighbors capacities, normalized by their degrees. This pa-
rameter determines whether or not each node will adapt the topology, and the frequency
of these adaptations.

DANTE2 implements a different reconnection mechanism that we deem can lead
to even more efficient topologies. First of all, DANTE2 is inspired on the results of
Guimerà et al. [13] on the relationship between network topologies and search perfor-
mance (see Sect. 3). Another difference is that nodes in DANTE2 do not keep track of
their neighbors’ state, nor implement any explicit flow control technique. Thus DANTE2

avoids the communication overhead due to those activities. Some simulations compar-
ing DANTE2 and Gia are presented in Sect. 5.

3 Previous Work

The self-adaptation mechanism used in DANTE2 is inspired on the results of Guimerà
et al. [13] and on the algorithm proposed by Cholvi el al. [10]. Guimerà et al. were
able to characterize the topologies that, given a search mechanism based on random
walks, minimize the average time needed to perform a search. They found that when
the system is not congested, the optimal topology is a star-like structure. Furthermore,
they also found that when the system is congested, the optimal topology is a random-
like one. However, Guimerà et al. did not state how these topologies could be achieved
dynamically in a real system. In P2P networks, we face two problems: the lack of global
knowledge, and the absence of a coordinator that tells nodes to which other peers they
must connect to.
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Thus, applying Guimerà results to P2P networks is not straightforward. A topology
adaptation mechanism that fits P2P systems should be run locally at the nodes, and
should not need global knowledge. Cholvi et al., in [10], proposed a first mechanism
that, depending on the current system load, makes nodes to locally change their con-
nections so that the obtained topologies are random for high loads and star-like for low
loads. Yet, in that solution nodes need to now all other peers state.

Finally, both in [13] and in [10] it is assumed that all participants have the same
capacities, that is, the network is homogeneous. Nonetheless, nodes in real networks
are known to be heterogeneous [14].

A previous version of DANTE2 was introduced in [15]. Although the core idea of
that work was the same used here (using a self-adapting topology to improve searches
efficiency), this paper introduces key improvements: a better, more accurate reconnec-
tion mechanism that takes into account the nodes heterogeneity, and more complete
simulations in different and more realistic scenarios.

4 DANTE2 Self-adaptation Mechanism

In DANTE2 each peer knows its own resources as well as the resources held by its
neighbors. Based on this, it is easy to understand that nodes are more interested on be-
ing connected to peers with many neighbors. Therefore, DANTE2 encourages peers to
establish connections with high degree nodes. DANTE2, in fact, aims to form highly
clustered (even centralized) topologies. However, this holds only as long as highly con-
nected nodes can handle all the incoming traffic.

Taking into account this reasoning, DANTE2 uses an algorithm that, when the net-
work traffic is low, drives the network to a star-like overlay topology. Thus, searches
can be answered in only one hop, since the central nodes know all the resources in the
system. In turn, when the number of searches increases, well-connected nodes will be-
come congested and their neighbors will start to disconnect from them. Hence, this will
drive the network to a more random-like topology that, although it makes search mes-
sages to traverse longer paths to find some resource, will balance the load and perform
better than by using a highly congested central node.

More specifically, in DANTE2 each node can establish connections to other nodes.
We say that a connection is native for the establishing node and foreign for the ac-
cepting node. Nodes can change their native connections, but not their foreign ones.
Furthermore, each node periodically runs a reconnection mechanism with which native
connections are changed. This mechanism firstly obtains a list of potential candidates C
to which it can connect. Then, it assigns a probability pi to each candidate i, and chooses
candidates at random using their respective probabilities. Finally, the peer reconnects
its native connections to the chosen candidates.

The probability assigned to a candidate i ∈ C is based on its “attractiveness”,
denoted as Πi and defined as

Πi = kγi

i (1)

where ki is the degree (number of neighbors) of peer i, and γi is computed as

γi = 2 × cinorm × (1 − tinorm) (2)
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cinorm is the normalized processing capacity of node i, where the normalization is per-
formed as follows. Let ci be the capacity of node i, and cmax = maxi∈C{ci}. Then,

cinorm =
ci

cmax
(3)

it follows that 0 < cinorm ≤ 1, ∀ i, where a larger cinorm means that node i is more
attractive as it has more capacity to process searches.

tinorm represents the average time spent by a search at node i (time in queue plus
processing time), normalized. The normalization is computed as follows. Let ti be the
mean search processing time of node i, tmax = maxi∈C{ti} and tmin = mini∈C{ti}.
Then,

tinorm =
ti − tmin

tmax − tmin
(4)

It is straightforward to see that 0 ≤ tinorm ≤ 1 ∀ i, where a lesser tinorm means that
node i is more attractive as it takes less time for searches to be served.

Finally, once the Πi values are computed for all candidates in C, each candidate
i ∈ C is assigned a probability pi of being chosen that is computed as

pi =
Πi∑

j∈C Πj
(5)

By the definition of Πi (Eq. 1), the attractiveness of node i is strongly dependant on its
degree ki. The higher the degree, the more attractive the node becomes, and so more
peers will try to connect to it, increasing again ki (and therefore Πi). This process leads
quickly to centralized topologies. The form of γi, on the other hand, comes from the
fact that the reconnection function must favor high capacity nodes (capacity is repre-
sented by ci), and avoid loaded peers (load is given by ti). Thanks to this reconnection
mechanism, the system behaves in an adaptative manner, changing its topology to suit
the load conditions.

Candidates Sampling. The reconnection mechanism of DANTE2 depends on the set
of candidates C to which the node can connect. There are several mechanisms that
could be used to build this list of candidates. For example, a gossiping based service
like [16] could spread information about nodes in the network. Another solution is to
make nodes to keep a cache of other peers in the network.

DANTE2 implements a third solution. Whenever a node starts a new reconnection,
it launches a special Look For Node message, that traverses the network following a
random walk with a bounded TTL. When the TTL expires, another message is sent to
the source node with the list of traversed peers. This list becomes the set of candidates.
This technique has small incidence on the network load, and Newman’s results [17]
show that the set obtained is a good sample of the overall network.

5 Simulations

To study DANTE2’s performance we have developed a simulator that implements its re-
connection mechanism. Simulations use the microsecond as the minimum unit of time.
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The capacity of each node is set by two parameters: bandwidth and processing capac-
ity. Nodes perform tasks, like the processing of an incoming message or an internally
started process (e.g., the triggering of a new reconnection). When performing some task
the node is said to be busy. Any other pending task in the node is enqueued until the
present task is finished.

The processing time tproc depends on the tasks being performed. Tasks other than
searching for a resource in the lists of known resources are assumed to take one unit
of time. Searches for resources take a time proportional to the number of resources
checked m and the node’s processing capacity ci, tproc = m

ci
. Some tasks need to send

a message. The duration of sending a message , tsend, depends on the node’s bandwidth
bi and the packet size s, tsend = s

bi
. Finally, the time the node is busy, tbusy , for one

task is computed as tbusy = max{tproc, tsend}. This time is not tproc + tsend, be-
cause we assume that the sending of messages and the processing of searches run in a
pipeline. Nodes capacities and bandwidths are assigned following the distribution de-
picted in Table 1. This distribution is derived from the measured bandwidth distributions
of Gnutella nodes reported in [14].

Table 1. Capacities and upload bandwidths distribution for simulations

Capacity level Percentage
of nodes

Processing
capacity ci

Bandwidth bi

1x 20 % 0.1 0.01

10x 45 % 1 0.1

100x 30 % 10 1

1000x 4.9 % 100 10

10000x 0.1 % 1000 100

Each node starts a new search for a random resource periodically. The time between
searches, tbs, is a parameter of the simulation that allows to set the load on the system.
Each node holds 100 resources. All resources have the same popularity (no resource is
more likely to be looked for than other). The replication rate r is another simulation
parameter, that states the rate of nodes that hold each resource (in percentage).

Nodes manage 10 native connections each. Reconnections are triggered every 30
seconds of virtual time. Nodes change 5 native connections at each reconnection. We
assume there is an external service that provides peers, at start-up time, with a list of
some other nodes present in the system. When some peer is started it chooses its initial
neighbors randomly from the list provided by that service. Hence, all experiments start
with a random topology. Similarly, if a native connection points to some node that
leaves the network (is attacked or deactivated), that connection is redirected to another
peer chosen at random from a list again obtained from the external service.

The Look For Nodes messages have a TTL of 30 hops. Resource search messages
have a TTL of 1000 hops. Both values were chosen empirically. The first one proved to
be enough to get a good sampling of the network, the second one allowed to obtain a
high success rate, both for DANTE2 and Gia simulations.



666 L. Rodero-Merino et al.

Topology Evolution in DANTE2. First, we study how in DANTE2 the system is able
to adapt itself, changing its topology as the (virtual) time passes. The results of two
simulations are shown, with two different replication rates: r = 0.01 and r = 0.05. Both
simulations are run with 10000 nodes (so r = 0.01 implies that each resource is held
by only one node) and a time between searches tbs = 1 second. Simulations were run
for 60 minutes of virtual time. All searches finished successfully in both simulations.

In Fig. 1.(a) we see how the mean number of hops changed as the virtual time passed.
In the X axis we represent the virtual time, in minutes. In the Y axis we represent the
average number of hops that took to solve searches started during the corresponding
minute of virtual time. The number of hops decreases readily as the time passed, until
it is stabilized to 1 after some minutes (tens of reconnections). This means that the net-
work has reached a centralized topology, starting from a random one, and all searches
are solved in just one hop.

On the other hand, we see in Fig. 1.(b) how the topology evolution makes the aver-
age search time to decrease. DANTE2 builds an efficient topology, where searches are
completed in very little time (about 30 milliseconds).
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Fig. 1. Average number of hops and searches duration

Robustness Against Peers Churn. It is well known that peers may enter and leave
the network at a high rate. This can, in some cases, compromise the efficiency of the
system. In this section we present some simulations results that show how DANTE2

performance is not strongly affected by the churn of peers.
The simulations of this section are run with 10000 nodes. The replication is r =

0.05 and the time between searches is tbs = 5 seconds. Only searches started between
minutes 31 and 60 (included) are taken into account for the results. Searches started
before minute 31 are discarded to avoid the initial transition state. The simulations were
run until all searches started before minute 61 were finished.

Initially, nodes are active with a probability of 0.5. At start time, active nodes form a
random topology. Each active node will run for a certain time that is independently cal-
culated using a exponential distribution. When the time expires, the node is deactivated:
it discards all searches in its queue, and closes its connections with all its neighbors.
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After 0.5 seconds of virtual time, the node changes to the active state again, pointing
its native connections to 10 nodes chosen at random, and the time to remain active is
recalculated. This is similar to simulate nodes leaving the system as other nodes simul-
taneously joining it (a similar approach is used in [1]).

To simulate different churns, we set different values for the mean of the exponential
distribution used to compute the time nodes will stay active: 1, 5, 10, 50 and 100 min-
utes. Finished searches are classified into three categories: successful, failed (the search
TTL expired before the resource was found) or discarded (search was at a node that
changed to the deactivated state). Figure 2 shows searches results for each experiment.
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Fig. 2. Search results under churn

For the higher churn, the number of discarded plus failed searches is about 10% of
the total. Yet, when the mean of the distribution increases, the number of discarded
and failed searches decreases sharply. When the mean is 10 minutes, the number of
unsuccessful searches (approximately 2600) represents only the 0.07% of the total.

In Figs. 3.(a) and 3.(b) it is shown how the churn of peers affects the search per-
formance (only for successful searches). Although the number of hops and the time to
complete queries increase, they are within what we deem are acceptable bounds even
when the churn of peers is high.

Robustness Against Attacks and Congestion Avoidance. In DANTE2, high capacity
nodes tend to have more connections, even forming a starlike topology. Thus, it can be
argued that DANTE2 is vulnerable to attacks targeted to well-connected nodes, or that
those nodes could become congested and so compromise the system performance. In
this section we discuss how attacks can affect DANTE2’s behavior, and how congestion
is avoided by the reconnection mechanism. The simulations presented here were run
with 10000 nodes, and replication r = 0.01. Two different loads were tested.

The results are shown in Figs. 4.(a) and 4.(b). Both of them show how the network
behavior evolves as the virtual time passes, from the first minute of simulation (remem-
ber that initially nodes form a random topology) to minute 90. At minute 30, when
the network has moved to a centralized topology, an attack is performed: the 10 best
connected nodes (central nodes) are forced to leave the network. Those are also the
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Fig. 3. Searches hops and duration under churn
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Fig. 4. Searches hops and duration under attack

10 most capable nodes in the network (see Table 1). 30 minutes later, those nodes are
reactivated. We will check how DANTE2 reacts to those events.

Figure 4.(a) shows how the average number of hops to find resources decreases
sharply in a few reconnections until it reaches a value close to 1. At that moment the
network has a centralized topology. When the attack is performed at minute 30, the
remaining nodes redirect their connections randomly, so a random topology appears
again. From that moment on, nodes will try to connect to the remaining peers with
higher capacity (in this case, nodes of the fourth Capacity Level at Table 1). The net-
work is never centralized again, as there are no nodes with enough capacity to become
central. Here we can see how DANTE2 actively avoids overloading nodes, not allowing
them to receive too many connections if they can not handle them. Yet, highly con-
nected nodes appear so the mean number of hops decreases sharply in a few minutes (to
lesser values with lesser load). Finally, when the attacked nodes are back, the network
changes again to a centralized topology.

In Fig. 4.(b) we see how the attack affects to the search times. As expected, those
times increase to values close to those obtained at the beginning of the experiment.
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Then, as nodes change their connections the topology is adapted again, lowering the
average search time to a fair value. It can also be observed that the network has reached
again a stable state, due in part to the fact that no node gets overloaded. If well connected
nodes had become congested, then their messages queues would grow indefinitely, and
so would the resulting average searches times. Finally, when the 10 nodes attacked are
back, the search times gradually return to the values previous to the attack. In both
experiments, the proportion of discarded searches is around 0.005%, and the proportion
of failed searches is less than 0.04%.

We can conclude that DANTE2 can be temporarily affected by well targeted attacks.
Yet, even in a scenario where nodes that have become central are all successfully at-
tacked at the same time, and no other nodes of the same capacity remain in the system,
the network adapts again to reach another efficient state. The system is never fully shut
down, because it is not dependant on any particular subset of nodes.

These experiments also show how the reconnection mechanism implemented by
DANTE2 avoids overloading peers, preventing the network from reaching an unstable
state. If there are not enough high capacity nodes that allow to form a centralized con-
figuration, the resulting topology becomes more ‘randomized’. In conclusion, DANTE2

maintains at all times the topology as clustered as possible, but at the same time prevents
nodes from becoming overloaded.

DANTE2 vs. GIA. As explained in Sect. 2.2, Gia is another proposal of a P2P system
that uses an adaptation mechanism to improve the efficiency of searches. In [1] Gia
authors carried on some simulations that show how self-adapting networks can offer a
better performance than other solutions (like flooding) in a variety of scenarios. Thus,
instead of repeating those same simulations with DANTE2, we have deemed more in-
teresting to compare Gia and DANTE2.

We have developed a Gia simulator that implements the mechanisms described in [1]:
a flow control system to avoid overloading nodes, a biased random walk search mecha-
nism, and a topology adaptation protocol. An important parameter of Gia is the maxi-
mum number of neighbors (max neigh). Nodes in Gia try to connect to as many nodes
as possible, and to those with the highest capacity. We have set that limit to 20 (twice
the number of native connections in DANTE2), so that the average degree is the same as
the one obtained in the DANTE2 simulations. Gia advocates could reason that setting a
higher maximum bound would improve performance, as searches would need less hops
to locate resources. But then, it would be enough in DANTE2 to increase the number of
nodes native connections to max neigh/2 again.

Simulations were run with 1000 nodes, with replication r = 0.1. As usual, nodes
capacities and bandwidths are set following the distribution of Table 1. Only searches
started between minutes 31 and 60 are taken into account.

In Fig. 5.(b) we plot the average search times for different loads on both systems.
DANTE2 seems to perform better than Gia for all loads. Additionally, beyond a certain
point, Gia search times start to grow quickly with the system load, while DANTE2 is
able to keep search times low for the same loads. Figure 5.(a) helps us to understand the
reason of DANTE2’s better behavior: searches in Gia need many more hops to find a
certain resource (about 160) than in DANTE2 (about 7). The reason is that, although the
topology in DANTE2 is not totally centralized (as there are not enough high capacity
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Fig. 5. DANTE and GIA searches number of hops and duration

nodes), it still keeps a clustered form where a few nodes are well connected and hence
allows queries to be completed in a few hops.

All searches were successful in DANTE2. Gia, on the other hand, presented a certain
proportion of failed searches (between 1.5% and 2%) in all experiments.

6 Conclusions and Future Work

P2P systems are a promising new paradigm, yet they demand innovative solutions to
new problems like resource location. DANTE2 proposes a self-adapting mechanism
that makes the network change its topology aiming always to an efficient configuration
that depends on the system load and the peers capacities. The results obtained with
DANTE2 seem promising. However, much work remains to be done in order to improve
the performance of these techniques. For example, new reconnection heuristics could
be studied and developed.
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Abstract. We describe a replication-based protocol that uses group
communication for fault tolerance in the Computational Grid. The Grid
is partitioned into a number of clusters and each cluster has a designated
coordinator that manages the states of the replicas within its cluster.
The coordinators belong to a process group and the proposed protocol
ensures the correct sequence of message deliveries to the replicas by the
coordinators. Any failing node of the Grid is replaced by an active replica
to provide correct continuation of the operation of the application. We
show the theoretical framework along with illustrations of the replication
protocol and its implementation results and analyze its performance and
scalability.

1 Introduction

Computational Grids consist of heterogenous computational resources, possibly
with different users, and provide them with remote access to these resources [1],
[2]. The Grid has attracted researchers as an alternative to supercomputers for
high performance computing. One important advantage of Grid computing is the
provision of resources to the users that are locally unavailable. Since there are
multitude of resources in a Grid environment, convenient utilization of resources
in a Grid provides improved overall system performance and decreased turn-
around times for user jobs. Users of the Grid submit jobs at random times
with significant turnaround times and failure of a node of the Grid would halt
the execution of the application necessiating the need for fault tolerance in the
Grid. Furthermore, the difficulty and the cost of recovering from faults in the
Grid environment may be higher than the normal applications. Fault tolerance
schemes in the Grid environment can be classified as the application specific
fault tolerance based on middleware fault detection; task and data replication
at middleware and transport levels; WAN, MAN and LAN resilience schemes at
Internet/Network Level [3].

In this study, we propose a model and a protocol to perform task replication
at middleware level for fault tolerance in the Grid using the process groups. A
process group is a logical name for a set of computing elements whose member-
ship may change with time. Replication using process groups for fault tolerance
has attracted many researchers for many years [8][9][10][11]. There are several
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systems which provide fault tolerant group communication such as Transis [7],
Horus [16] and Totem [6]. Moshe [14] extends these services to a WAN. The com-
mon goal of these projects is to provide a reliable multicast communication for
process groups. Total Order Multicast is the basic paradigm to provide message
ordering in fault tolerant systems that use active replication [15]. It has been
studied extensively and many protocols have been proposed. A detailed survey
is given in [12].

An important component of the replication mechanism is the Total Order
Multicast (TOM) protocol which ensures that all of the replicas receive the mul-
ticast messages destined to the replica group in the same order so that all of the
replica finite state machines are in identical states. To achieve TOM in the Grid,
we assume that the Grid is partitioned into clusters by a suitable algorithm or
manually. Each cluster is controlled by a cluster head called the coordinator.
These coordinators are the cluster heads and interface points for the ordinary
nodes to the network. They perform TOM on behalf of the ordinary nodes they
represent. The rest of the paper is organized as follows. Section 2 provides the
background on group communication and TOM. In Section 3, the proposed pro-
tocol including the coordinator and the node algorithms is described. In Section
4, the operation of the protocol is illustrated and Section 5 provides the analy-
sis of the algorithms. The implementation results obtained from the tests are
given in Section 6 and Section 7 contains the concluding remarks along with
discussions.

2 Background

2.1 Group Membership

Replication is a common approach to achieve fault tolerance in a distributed
system such that replicas provide redundancy in case of a failure of a server.
Two main classes of replication are the active and passive replications. In passive
replication, client deals only with one replica and the primary sends messages
to the secondaries to update their views. A client sends a message to all of the
replicas in active replication and the states of the replicas are maintained as
identical, in general, using finite state machines. To ensure consistency of the
replicas, a group communication primitive called the Total Order Multicast may
be used which guarantees that the requests by the clients are received by all
replicas in the same order.

A group membership service manages a group of processes and is based on
the view which is the list of processes belonging to a group. View change should
be notified to all members. There are three basic operations needed to manage
group membership effectively; join, leave and exclude. Join is executed by a
process p and upon acceptance of it, all of the processes update their view. More
importantly, the state of the group needs to be transferred to the new member p.
A process will be removed from a group by exclusion if its crash is detected by
a member of a group and exit is a voluntarily release of a process from a group
by itself. The group management module should also provide the two primitives;
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send multicast to send a message to all members and receive multicast to receive
a message sent by a member of the group. These two primitives can be realised
using various approaches such as reliable broadcast, reliable FIFO broadcast and
total order multicast. Reliable Broadcast of a message in a group ensures that
messages are delivered by all processes or none.

2.2 Total Order Multicast

Total Order Multicast (TOM) ensures that no pair of messages are delivered to
the members of a group in a different order. TOM can be specified in terms of
the following properties :

– Validity : If a correct process broadcasts a message m, then some correct
process in its group will eventually deliver it.

– Uniform Agreement : If a process delivers a message m, then all correct
processes in its group will eventually deliver it.

– Uniform Integrity : Every correct process in the sender’s group delivers m
at most once and only if m was previously broadcast.

– Uniform Total Order : If two correct processes deliver two messages m1 and
m2, they do it in the same order.

Atomic broadcast is a special case of total order multicast where a TOM mes-
sage is delivered to all of the group members or none. In other words, Atomic
Broadcast obeys TOM and Reliable Broadcast. Atomic Broadcast or Reliable
TOM protocols can be symmetric or asymmetric depending on whether some
nodes are privileged in the system exist or not. Most of the symmetric protocols
such as Isis [8] impose total order from the casual order relation between the
messages. The static sequencer protocols such as in Amoeba [13] assume a se-
quencer where messages are first transmitted to this sequencer which multicasts
them in order. One disadvantage of the central sequencer type of asymmetric
TOM protocols is the message bottleneck around this component and having a
single point of failure in the system.

3 Replication Protocol

3.1 The Model

We assume that the clusters of the Grid are already formed. For TOM in the
Grid, we propose the architecture shown in Fig. 1 where replicas form clusters
and each cluster is represented by a coordinator. Each replica cluster is a process
group called the replica group and furthermore, coordinators of the clusters form
a single outer group called the coordinator group. Election of a new coordinator
is provided as in [5] if it crashes. Coordinators perform multicast communication
in both groups they belong but their main function is to represent their cluster
replicas in the outer coordinator group.
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COORDINATOR

GROUP

REPLICA GROUP 1 REPLICA GROUP 2

C1
C2

C3

REPLICA GROUP 3

Fig. 1. The Replication Model for the Grid

3.2 The TOM Protocol

The TOM protocol proposed for the hierarhical groups use the Static Token
Algorithm (STA) which employs similar data structures for the Token as in
Suzuki-Kasami [17] algorithm for distributed mutual exclusion. A process that
acquires the system wide unique token has the right to send a TOM message.
The token data structure is as follows :

– Token Sequence Number (TSN) : integer;
– Token Request Queue (TRQ) : Queue of nodes;

Also every node has a Local Sequence Number (LSN) which shows the last se-
quence number of any TOM Msg that node has received. Any node that requires
to send a TOM Msg, sends a request (Node Req) to its coordinator as shown in
the state machine diagram of Fig. 2. The request by the node is converted to a
Tok Req by the coordinator which is circulated in the ring. The coordinator sets
its state to Wait Token (WTTK) and changes to Hold Token (HLTK) when it
receives the token and then forwards it to the requesting node. Once a node re-
ceives the token from the coordinator, it incerements TSN and stamps the TOM
message with this TSN and sends it to the coordinator. Since there is a unique
Token with a unique TSN, any TOM message from any node will have a unique
sequence number which provides the total ordering of the messages. The FSM of
the coordinator also depicts the sequence for atomicity. When the coordinator
receives the TOM Msg from the node, it broadcasts this to the ring and upon
reply, it sends TOM Chk message to check the acknowledgements. If all nodes
in the group have received the TOM msg, the operation is succesful and a final
TOM Set message is sent to all coordinators to allow the final delivery to the
nodes. Any node receiving the TOM Set message checks whether LSN+1=TSN,
that is, whether this message has arrived in sequence. If so, TOM Msg is deliv-
ered to the application, otherwise it is delayed until prior messages arrive. At
any state, a coordinator may receive a remote TOM Msg which is not shown in
Fig.2 for simplicity. In this case, the coordinator braodcasts the TOM msg in its
cluster and also receives replies from each node.
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Fig. 2. The Coordinator for Static Token Algorithm

4 Illustration of STA

Fig. 3 shows an example scenario for STA. Initially, Token is held in the replica
cluster 2 by coordinator C2. For simplicity, it is assumed that coordinators are
directly connected to the nodes and to each other. The following is the sequence
of events :

1. Node n13 in cluster 1 requests Token from its coordinator C1 by Node Req.
2. C1, does not have the Token, hence broadcasts this request by R13 in the

coordinator group.
3. C2 has the token which is not being used and has TSN as 0 and its queue

is empty. C2 sets the destination of the token as n13 and sends this token to
C1.

4. C1 receives the Token and sends it to n13 which is received by it. These first
four steps are depicted in Fig. 3.(a).

5. While n13 is holding the Token, nodes n21 and n32 in clusters 2 and 3 make
requests consecutively to their coordinators for the Token which in turn send
requests R21 and R32 tothe coordinator group.

6. R21 and then R32 reach C1 consecutively. C1 queues these requests.
7. When n13 receives the token, it increments TSN of the Token to 1 and sends

TOM message with this sequence number to C1 along with the Token. Steps
5-6-7 are depicted in Fig. 3.(b).

8. C1 receives the Token and the TOM message. It broadcasts TOM on the
coordinator group. C1 also checks its local Coordinator Token Request Queue
(CRQ). It appends the nodes in its local queue to the Token Queue, removes
the first node from the TRQ (n31) and sends the token to C2.

9. C3 and C2, pass an acknowledgement message (TOM Ack) to the source.
Steps 8 and 9 are depicted in Fig. 3.(c).

10. If C1 receives (TOM Ack) acknowledgements from every node in the group,
the TOM is succesful. In this case, C1 issues a TOM Set message to finally
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initate the actual delivery of the TOM message to the application. The
replica node however, checks its LSN with TSN to conclude TOM delivery
as described above.

11. When C2 receives the Token from C1, it proceeds similar to 7-8-9-10 above
and when n21 finishes with the Token, C2 sends it to C3. Steps 10 and 11
are depicted in Fig. 3.(d). Note that this is performed in parallel with the
TOM Msg delivery of n13.
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Fig. 3. Operation of the STA Algorithm

5 Analysis of STA

Assuming k, m, n and d are upperbounds on the number of clusters, nodes in a
cluster in the network, nodes in the ring of coordinators and the diameter of a
cluster respectively, the sending and atomically reception of the TOM message
by all nodes in the group requires the following steps :

1. Request by the node : O(d)
2. Circulation of Tok Req and reception of token : O(k) as this is All to All

Communication in a unidirectional ring or again O(k) this is k unicast mes-
sages to implement a multicast message in case of a different architecture.

3. Sending of Token to the Node : O(d)
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4. Sending of TOM message by the node to the coordinator : O(d)
5. Circulation of TOM message by the coordinator : O(k)
6. Local broadcast of TOM by each coordinator in its cluster O(m)
7. Collection of the acknowledgements from the nodes by each coordinator :

O(m)
8. Circulation of acknowledgement message (TOM Ack) by the coordinator :

O(k)
9. Set operation by the source cordinator for atomicity : O(k)

10. Set operation by the coordinators in local clusters for atomicity : O(m)

Theorem 1. The total time per TOM using STA Algorithm is OTOMT (m)

Proof. The total time required for TOM delivery is the sum of all of the 9 steps
above which can be evaluated as follows

OTOMT = 4k + 3m + 3d = OTOMT (m) (1)

assuming k=m and d is negligible.

Theorem 2. The total number of messages per TOM using STA Algorithm is
OTOMM (m2)

Proof. The total number of messages required for TOM delivery can be found
similarly by calculating the sum of messages in transit at each step of operation
above except for local broadcast operations (steps 6,7 and 10) where the number
of messages sent are k*m.

OTOMM = 4k + 3km + 3d = OTOMM (m2) (2)

assuming k=m and d is negligible.

Corollary 1. For a network of N nodes, the total time per TOM using STA
Algorithm is OTOMT (

√
N) and the total number of messages required per TOM

using STA is OTOMT (N).

Proof. It was shown by theorems 2 and 3 that OTOMT (m) and OTOMM (m2).
Since total number of nodes in a network N is equal to the total number of
nodes in the model network which is km=m2 assuming k=m, OTOMT (

√
N) and

OTOMT (N).

An algorithm like Suzuki-Kasami [17] would require 0 or N messages (N − 1 for
requests and 1 for Token). By Corollary 1, we can conclude that STA provides
and order of magnitude decrease in TOM execution time including obtaining the
Token with respect to an algorithm like Suzuki-Kasami.

5.1 Verification of Total Order Multicast Properties by STA

The TOM properties can be verified for STA operation follows :
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– Validity : When a correct process broadcasts a message msg, then all of
the correct TO Node processes will deliver this message as directed by their
cluster coordinators in TOM Set message.

– Uniform Agreement : The delivery of the messages to the application by
all of the TO Node processes occur in the same cycle and the messages are
delivered by all of the correct TO Node processes in the cluster identities of
which are supervised by the local coordinator.

– Uniform Integrity : The messages at a node are delivered at most once by
the TOM Set message issued by the coordinator.

– Uniform Total Order : The messages are delivered in the same order as there
is only one sequence number (TSN) kept at Token and only the holder of the
Token can send a TOM message. Each node has a local sequence number
(LSN) and will not deliver a message that is larger than its LSN+1 which
means any out of order messages wil be delayed until the TOM Msg with
the correct sequence arrives.

6 Implementation Results Using MPI

We implemented the architecture shown in Fig. 1 using the MPI (Message Pass-
ing Interface) [4] over a cluster of 20 processors. The end-to-end run times of the
STA Algorithm for a single request, from the time of the request until the actual
delivery of the TOM message to the application are measured against varying
number of clusters and the size of clusters as shown in Fig. 4.

Fig. 4. TOM Run Time Results against Cluster Size and Numbers

MPI multicast message facility was used for group communication within a
cluster. As shown in the figure, the run time of STA increases linearly with the
number of clusters and also the count of processors in each cluster. The perfor-
mance of the proposed architecture in terms of the size of the single message
delivered to the application is depicted in Fig. 5. It can be observed that the
delivery times are almost stable with respect to cluster numbers and sizes.
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Fig. 5. Daisy Architecture Run Time Results against Message Size

7 Discussions and Conclusions

We proposed a framework and a protocol with two algorithms to implement
TOM in the Grid to provide fault tolerance by replication to the application.
We showed that the proposed algorithms provide significant gains in the number
of messages and the time to deliver TOM messages theoretically with respect
to a flat architecture without any hierarchies. The preliminary results indicated
that the protocol is scalable in terms of run times and the sizes of the messages
delivered. The coordinators have an important role and they may fail. New co-
ordinators may be elected and any failed node member can be excluded from
the cluster which is an improvement over classical algorithms as they do not
provide recovery for a crashed node in general. The recovery procedures can be
implemented using algorithms as in [5] which is not discussed here. One other
advantage of the proposed model is the pre-processing of the requests of the
nodes by the coordinators are performed independently resulting in improved
performance. We are looking into implementing this protocol in a Grid environ-
ment with larger cluster sizes and counts and measure the performance of the
whole protocol including the clustering algorithm.
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Abstract. Replicating objects in distributed object systems provides
fault-tolerance and increases availability. We have designed a replication
protocol for distributed object systems that provides increased availabil-
ity by relaxing consistency temporarily. The protocol allows all partitions
in a partitioned system to continue operating. The states of certain repli-
cas are allowed to diverge. The application programmer can specify the
required consistency using integrity constraints.

We present an analytical model of the new protocol and evaluate it
against the primary partition model, where only a majority partition is
allowed to continue. Furthermore, we identify the type of application for
which our protocol provides increased availability.

1 Introduction

Replication is a common means of providing fault-tolerance and improving avail-
ability in distributed systems. We propose a new replication protocol for distrib-
uted object systems, which allows availability to be increased by temporarily
relaxing consistency. The protocol enables nodes in a partitioned system to con-
tinue operating, in contrast to the primary partition model [1], where only one
partition can continue. An analytical model of the protocol is presented in this
paper and compared with the primary partition model.

The new replication protocol forms part of the DeDiSys middleware architec-
ture [2]. The aim of the DeDiSys research project is to investigate the trade-off
between consistency and availability. Furthermore, the objective is to allow this
trade-off to be configured. The main idea is that by reducing consistency tem-
porarily, availability can be improved.
� This work has been funded by the European Community under the FP6 IST project
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A partitionable system is a system in which groups of nodes or individual
nodes might become separated from the rest of the system, because of a network
failure. Replicating objects in such a system allows operations on objects to
continue, even if a node that hosts an object becomes unreachable, as long as a
replica remains accessible. The degree to which a system can continue operating
on a replica depends on the policy used for keeping replicas up-to-date and on
the consistency required by the application. Object versions in various partitions
might diverge, since conflicting accesses to replicas of the same object in different
partitions can not be detected until the network failure is repaired and the
system has recovered. If the required consistency is strong, operations must be
severely limited during partitioning. These limitations reduce the availability of
the system.

We base consistency on integrity constraints. Each constraint is associated
with an operation and defined over parts of the state of one or more objects. An
example of such a constraint would be a rule that states no single person can
reserve more than ten tickets in a ticket booking system. Such a constraint can
be coded easily in a constraint object in our system. Constraints are described
in more detail in [2]. The system is said to be fully constraint consistent, if
only changes to objects caused by operations whose constraints have been met
are accepted.

During partitioning we allow consistency to be relaxed. However, once the
system has recovered, it has to be in a fully constraint-consistent state. To this
end, we introduce a classification of integrity constraints, reflecting different
degrees of consistency.

We have obtained initial performance results for the new protocol, by evalu-
ating it in the DeDiSys Lite prototype environment, which serves as an environ-
ment to simulate replication protocols. These results are presented in [3].

2 Related Work

Mobile databases provide a variety of solutions to the partitioning problem. In
these systems reconciliation between replicas whose states have diverged is a
common occurrence.

Bayou [4] allows temporarily disconnected nodes to synchronise efficiently
using an anti-entropy protocol. Write-write conflicts are dealt with in an
application-specific manner. Although this approach is very flexible, it imposes
the need to write complex conflict resolution procedures on the application pro-
grammer.

Tentative transactions [5] are used by many systems to allow transactions to
commit locally. At reconnection time it is attempted to commit the previously
locally committed transactions at a server. The locally committed changes have
to be undone, if the server commit fails.

The mobile transactions in [6] extend the concept of tentative transactions to
allow the application to specify pre-conditions and post-conditions. The authors
of [7] apply this principle to a distributed object system.
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Phatak and Badrinath [8] keep track of different versions of data-items, in order
to resolve conflicts by “agreeing” on a non-conflicting past version of replicas.

Finally, a technique used to reduce conflicts is to restrict operations to com-
mutative operations as much as possible [9] [5].

The replication framework presented in this paper uses some of the techniques
used in mobile database systems and applies them to a distributed object model.
In particular, a form of tentative transactions with multi-versioning is used.

The trade-off between consistency and availability has been investigated in
the context of other distributed systems. These systems generally require the
application programmer to specify the required consistency or the required avail-
ability.

The authors of [10] use consistency units (conits) to specify the bounds on
allowed inconsistency. A conit is a set of three values representing “numerical
error”, “order error” and “staleness”. The system does not support partitioning.

In CoRe [11] the principle of specifying consistency is extended to allow the
programmer to define consistency using a larger set of parameters. The system
only focuses on data objects; that is, objects that do not cause invocations to
other objects.

AQua [12] approaches the trade-off from the other direction by allowing avail-
ability requirements to be specified. In AQua “quality objects” are used to specify
quality of service requirements. AQua considers crash failures, value faults and
time faults, but does not consider partitioning.

None of the distributed systems described above considers constraint consis-
tency.

3 System Model

We assume a partially synchronous system. In such a system clocks are not syn-
chronised, but message time can be bound. We also assume the presence of a
group membership service [13] which provides all the server nodes with a single
view of which nodes are part of the system or the current partition. Further-
more, a group communication service provides the server nodes with reliable
FIFO broadcast according to the definition in [14].

The “pause-crash model” [15] is assumed for node failures, and the “link fail-
ure model” [16] for communication services. As we cannot distinguish between
a failed node and an isolated node until recovery time, we treat every failure as
partitioning. Partitions can occur in any number and order. Recovery of parti-
tioning can be in a different order in which the partitioning originally occurred.

We employ a relaxed passive replication model. In passive replication [17] [18]
requests are only processed by one primary copy. Updates are then propagated
to the secondary copies. However, we do relax this for read-only operations.
Read-only operations can be served by any secondary copy.

If a primary copy of an object is not reachable, a secondary copy is promoted to
a temporary primary copy. We therefore, have a “primary per partition model”.
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4 The Primary-Per-Partition Protocol

We have developed a replication protocol that allows all partitions to continue,
when groups of nodes are separated due to a network failure. The Primary-per-
Partition Protocol (P4) relaxes consistency during partitioning, but full consis-
tency is restored at reconciliation time. If the primary copy of the object is in
a different partition, a secondary copy is promoted to a temporary primary. In
order to increase system availability, we allow write operations on temporary
primaries in certain conditions.

Consistency is based on integrity constraints. Constraints are associated with
object methods. They restrict the state the objects have to be in for an operation
to be executed (pre-condition). Alternatively, they restrict the state in which
the objects have to be in after an operation is executed (post-condition). In
order to evaluate a constraint reliably, an up-to-date version of all objects that
participate in the constraint is needed. During partitioning however, secondary
copies of an object might be stale, if the primary copy resides in a different
partition. During reconciliation constraints might be violated retrospectively,
when missed updates are propagated. Therefore, some operations that where
performed during partitioning might have to be undone to restore consistency.
This behaviour might be acceptable for the majority of the operations, but there
are some operations that should never occur, if they might have to be undone
later on.

We therefore introduce the notion of critical constraints. A constraint la-
belled critical is a constraint that needs up-to-date versions of all of the partic-
ipating objects. Such a constraint cannot be evaluated if a participating object
is stale. Furthermore, the protocol has to ensure that critical constraints are
never violated “in retrospect” during conflict resolution. In contrast regular
constraints can be evaluated on stale objects. A post-condition expressed as
a regular constraint has to be re-evaluated, once all the objects are up-to-date.
However, a pre-condition is not re-evaluated at reconciliation time.

Read operations cannot introduce data inconsistencies. The following descrip-
tion therefore focuses on write operations.

Normal Mode
1. All object write invocations have to be directed to the primary replica.
3. All the pre-condition constraints, associated with the operation are evaluated.
If a constraint is not met, the operation is aborted.
4. The operation is invoked. Nested invocations might be started.
5. Once the primary replica has updated its local state, all the post-condition
constraints, associated with the operation are evaluated. If a constraint is not
met, the operation is aborted.
6. Once these checks have been successfully completed, all primary replicas up-
dated in the operation propagate the new object states to the backup replicas.
8. Once this update transfer has terminated, the operation result is returned to
the client.
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Degraded Mode
A write operation in degraded mode is similar to that in normal mode with the
following additions:

1. If the primary copy of an object being written to is not found, a secondary
copy is chosen in some pre-determined way, for example based on the replica
identifier. The chosen secondary replica is promoted to a “temporary primary”.
This is not done, if the operation has a critical constraint as a pre- or post-
condition.
2. Objects that are changed are marked as “revocable”, if any of the post-
condition constraints associated to the operation that has been executed has
been evaluated on possibly stale objects.
3. Critical constraints are not evaluated, if a participating object might be stale.
If this were the case, the operation is aborted.
4. Regular post-condition constraints with possibly stale objects are marked for
re-evaluation at reconciliation time.
5. Operations with critical constraints that include a revocable object are not
permitted, so that critical constraints cannot be violated retrospectively, when
a revocable object is rolled back.

Reconciliation
When two or more partitions re-join, reconciliation is started. During this process
no write operations are processed. Reconciliation is done in three phases:

Phase 1: Restoring replica consistency. When partitions are being joined,
replica consistency is restored. If two primary copies of the same object have
been modified in different partitions a write-write conflict has occurred. To
solve this conflict the application is asked to resolve the conflict. To this end
a handler routine which has been previously registered by the application is
called. Conflict resolution strategies the application may employ range from
choosing one of the conflicting primary copies to installing a completely new
version.
Phase 2: Restoring constraint consistency. All constraints that are marked
for re-evaluation and for which the original primary copy of all participating
objects is now available are now re-evaluated. If a constraint is violated, the
application is again asked to resolve the conflict. To this end another handler
routine is called. The application handler can restore consistency by setting one
of the objects marked as revocable to a state that meets the constraint. All other
post-condition constraints of operations that have been executed during parti-
tioning and in which the revocable object participates have to be re-evaluated.
This re-evaluation has to be performed to avoid constraints being violated ret-
rospectively.
Phase 3: Updating secondary copies. Finally, all changes to primary copies
which have occurred in phase 1 or phase 2 have to be applied to the secondary
copies of the modified objects.
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4.1 Automatic Reconciliation

The P4 protocol can also be employed without application interaction; that is,
through using automatic reconciliation, instead of application handler routines.
However this involves storing a large amount of extra data about object changes
during degraded mode. For each object, a list with previous versions has to be
kept. Furthermore, for each of the object versions a list of the nodes present
in the current partition during the time of the write access needs to be kept.
Finally, for each regular post-condition constraint, a reference to the last known
version to meet the constraint of each updated participating object needs to be
saved.

If several partitions try to re-join and write-write conflicts between two pri-
mary copies occur, the protocol can choose one of the primaries according
through some pre-defined precedence order or a more complex algorithm.

Constraint violations that are detected at reconciliation time could also be
dealt with automatically. If on re-evaluation a regular constraint is not met, one
associated object marked as revocable is chosen to revert to its previous version.
Among all the revocable objects, one of them is chosen following an increasing
order of object identifiers. This object is reverted to previous versions repeatedly,
until a version is found that either leads to the regular consistency constraint
being met or has the same version number as the last known version that sat-
isfied the constraint. If the later case occurs, without the constraint being met,
another revocable object must go through the process of reverting to previous
versions. Once the constraint is met, all other regular post-condition consistency
constraints associated with the objects that have reverted to a previous version
have to be re-evaluated.

5 Availability Model

5.1 Overview

An analytical availability model has been developed for the new protocol de-
scribed in section 4. A model for the primary partition model [1] has also been
developed, in order to compare the availability of the two approaches. The pri-
mary partition model has been traditionally used when strong consistency is a
requirement. The model only allows a majority partition to proceed in the case
of partitioning. Such a majority partition has to contain more than half of the
nodes in the system. The primary partition model has the advantage that sec-
ondary copies in the proceeding partition are never stale, as no changes can occur
in other partitions. Hence, the availability in one partition can theoretically be
higher than in our model, but is zero in all other partitions. The P4 protocol in
contrast suffers from possibly stale replicas, but allows every partition to pro-
ceed. Intuitively, the P4 appears to provide better availability in applications
with more regular than critical constraints.
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5.2 Parameters

The independent parameters that determine the behaviour of the model are the
following:
Related to the system:
• N → Number of nodes in the system.
• {P1, P2, . . .Pq}→ Partitioning pattern (q is the total number of partitions, and
Pi the number of nodes of the i-th one). PM is the cardinality of the majority
partition (if there is no majority, PM = 0, otherwise PM > N

2 ).
Related to the data:
• M → Total number of objects.
• r → Replication degree (number of replicas per object).
• Rc → Number of critical constraints.
• oc → Average number of objects involved in a critical constraint.
• Rnc → Number of regular constraints.
• onc → Average number of objects involved in a regular constraint.
As an alternative to Rc and Rnc we may use the pair of parameters RT ≡ Rc+Rnc

and ρ ≡ Rc
Rc+Rnc

.
Related to the application:
• τI → Number of invocations launched per node and time unit.
• f → Ratio of writing invocations to the total.
• n → Depth of an invocation, i.e. order of nesting.
• oI → Width of the invocation, i.e. average number of objects involved in a
single level.

5.3 Definitions and Assumptions

We calculate the following quantities:
• NAR(PP) → Non–availability for reading operations in the primary partition
(PP) model.
• NAW(PP) → Non–availability for writing operations in the primary partition
model.
• NAR(P4) → Non–availability for reading operations in the primary per parti-
tion (P4) model.
• NAW(P4) → Non–availability for writing operations in the primary per parti-
tion model.
Each of them is defined as the ratio of the failed operations, i.e. those that can-
not be completed due to non-availability of some resource, to the total number
of invocations of the same type, τIfN and τI(1 − f)N for writing and reading
invocations, respectively.

The following assumptions have been identified and are used in the model:
• In the primary partition model (PP), no writing operation is allowed to proceed
if launched in a minority partition.
• Reading operations are always possible, unless the current partition contains
no replica of a required object.
• Finally, the distribution of replicas and primaries among nodes, and that of



Increasing Availability in a Replicated Partitionable Distributed Object 689

objects into constraints are all assumed to be uniform. Moreover, the constraints
are sparse, so that the probability of a certain object to enter more than one
constraint is neglected. This can only be true if ocRc + oncRnc � M .

5.4 Some Probabilities and Other Useful Quantities

Here we deduce or mention some quantities which are extensively used in the
following sections:
• Probability of a given node to hold a replica of a given object → r

N .
• Probability of a given object to be part of a critical (regular) constraint → ocRc

M(
oncRnc

M

)
. This must be small (or at least ≤ 1), according to the sparseness

hypothesis.
• Probability of a certain node to hold the original primary of a given (fixed)
object → 1

N .
Thus, the probability of having the primary within partition Pi is Pi

N .
• Total number of objects directly accessed by an invocation → oD ≡

∑n
k=0 ok

I =
on+1
I −oI

oI−1 + 1.
• Total number of objects accessed by an invocation (including those that are
only used for checking constraints) →

õI ≡ oD + oconstraints = oD

[
1 +

ocRc

M
(oc − 1) +

oncRnc

M
(onc − 1)

]
.

•Probability of not having a replica of a certain object in partition Pi →
(
1− r

N

)Pi .
• Probability that an invocation involves no critical constraints → (

1− ocRc
M

)oD .

5.5 Primary Partition Model

Writing invocations In the primary partition model, a writing operation fails
if either it is launched in a minority partition or it starts in the majority, but fails
to find an available replica of some object accessed by the invocation directly or
through the evaluation of a constraint. Then we may write

NAW(PP) =
∑

i,Pi≤N/2

Pi

N
+

PM

N

[
1−

(
1−

(
1− r

N

)PM
)õI

]
. (1)

The subexpression between brackets represents the complementary of the proba-
bility of having at least one replica of every accessed object õI within the majority
partition. Such term must vanish in the case of total replication, r = N . In that
case, we may check that the non-availability equals the proportion of nodes that
are not in a majority partition,

(NAW(PP))r=N =
1
N

∑
minority

Pi = 1− PM

N
. (2)

If no majority partition exists (PM = 0), there is no availability at all in this
model.
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Reading invocations Since reading is always allowed on stale copies of any
object, the only source of non-availability for reading invocations is the lack of
replicas of the required objects in the current partition.

NAR(PP) =
q∑

i=1

Pi

N

[
1−

(
1−

(
1− r

N

)Pi
)oD]

, (3)

where the sum is taken over all partitions.
Differently to the writing case, here the only replicas required are those of

directly accessed objects, as no constraint needs to be checked for a reading
invocation.

5.6 Primary Per Partition Model

Writing invocations. In the primary per partition model, there is no difference
between the behaviour in minority and majority partitions. A writing operation
always fails if there is at least one ”accessed” object that has no replica available
in the local partition, but due to the existence of critical constraints and revo-
cable objects that might roll-back to a former state at reconciliation time, an
invocation may fail even having all the replicas available. In particular, the invo-
cation will fail if the original primary is missing for some of its critical objects.
By critical object of an invocation we mean an object that is subject to a criti-
cal constraint, and which is either directly accessed by the invocation or whose
critical constraint affects one of the directly involved objects. The probability of
involving some critical constraint can be written

[
1−

(
1− ocRc

M

)oD
]

.

If we define õc to be the total number of critical objects accessed by the invoca-
tion, õc = oD

o2
cRc
M , the probability of missing some of the original primaries in

the partition Pi reads (
1−

(
Pi

N

)õc
)

.

There is still one source of non-availability to be taken into account. Even if
all the original primaries for critical objects are available in the current parti-
tion, if any of them has already been written by some earlier invocation since
the partition occurred, the evaluation of the corresponding constraint will not
be possible, and the invocation will also fail. We may define P

(c)
W (Pi, t) to be

the probability of a critical object to have been written before instant t in the
partition Pi. This will depend on the frequency of invocations, τI, f , the other
system parameters and the time since the partition occurred. In terms of this
probability, we may write
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NAW(P4) =
q∑

i=1

Pi

N

{[
1−

(
1−

(
1− r

N

)Pi
)õI

]
+

[
1−

(
1− r

N

)Pi
]õI [

1−
(

1− ocRc

M

)oD][(
1−

(
Pi

N

)õc
)

+
(

Pi

N

)õc (
1−

(
1− P

(c)
W (Pi, t)

)õc
)]}

. (4)

Or, in a slightly more compact manner,

NAW(P4) =
q∑

i=1

Pi

N

{[
1−

(
1−

(
1− r

N

)Pi
)õI

]
+

[
1−

(
1− r

N

)Pi
]õI [

1−
(

1− ocRc

M

)oD]

×
[
1−

(
Pi

N

)õc (
1− P

(c)
W (Pi, t)

)õc

]}
. (5)

We may calculate P
(c)
W (Pi, t) as the number of critical objects that have been

written between t = 0 and t divided by the number of critical objects that reside
in partition Pi (ocRcPi/N). The increment in the number of already written
critical objects in the time interval [t, t + dt] is determined by the number of
writing invocations that involve some critical constraint and whose primaries
are available and have not yet been changed since t = 0. Each such successful
invocation modifies õc/oc critical objects.1 Then the number of critical objects
written from t to t + dt is

τIPif

[
1−

(
1− r

N

)Pi
]õI [

1−
(

1− ocRc

M

)oD]

×
(

Pi

N

)õc (
1− P

(c)
W (Pi, t)

)õc õc

oc
dt. (6)

This allows us to write a differential equation for P
(c)
W (Pi, t)

dP
(c)
W (Pi, t)

dt
= B

(c)
I (Pi)

(
1− P

(c)
W (Pi, t)

)õc

, (7)

where we have defined the auxiliary function

B
(c)
I (Pi) ≡ τIPif

[
1−

(
1− r

N

)Pi
]õI

[
1−

(
1− ocRc

M

)oD](Pi

N

)õc−1
oD

M
.

1 As each object is assumed to take part in a single constraint, the invocation may
only write one object per constraint checked.
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The equation above is separable and can be easily solved (integrate with the

change of variable y = 1− P
(c)
W , dy

dt = − dP
(c)
W

dt ).
After imposing the initial condition P

(c)
W (Pi, 0) = 0, the expression for P

(c)
W

reads

P
(c)
W (Pi, t) = 1−

[
1− (1− õc)B

(c)
I (Pi) t

] 1
1− õc , (8)

valid for õc �= 1. If õc > 1, P
(c)
W is a monotonically increasing function of t, well

defined over t ∈ [0, ∞[, which approaches 1 as t → ∞. If õc < 1, the solution of
the equation is well defined for t < tmax ≡ 1

B
(c)
W (Pi)(1−õc)

, whereas for t > tmax,

P
(c)
W (Pi, t) ≡ 1.
Finally, for õc = 1, the solution can be written as P

(c)
W (Pi, t) = 1− e−B

(c)
W (Pi)t.

The above discussion allows us to write the time dependent expression of
NAW(P4). From the result it is obvious that the availability degrades with time.
Its upper bound, corresponding to P

(c)
W = 1, and that will be reached if P

(c)
W

grows fast (or if the partition lasts long enough), is given by

lim
t� NAW(P4) =

q∑
i=1

Pi

N

{[
1−

(
1−

(
1− r

N

)Pi
)õI

]
+

[
1−

(
1− r

N

)Pi
]õI

[
1−

(
1− ocRc

M

)oD]}
(9)

In this limit, no writing invocation is allowed if it involves any critical con-
straint.

Reading invocations. The non-availability of reading operations in this model
is exactly the same as in the case of primary partition, since the only source
of failure for a reading operation is a missing replica for some of the directly
accessed objects.

NAR(P4) = NAR(PP). (10)

6 Evaluation

The model introduced in the previous section has been used to evaluate the P4
protocol against the primary partition model. To this end, some of the para-
meters identified in section 5.2 have been fixed to certain values. The values
used have been taken from a real-world distributed object system. The Dis-
tributed Telecommunication Management System (DTMS) is one of the target
applications of DeDiSys. The system monitors and controls a distributed voice
communication system used in air traffic control.
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One hundred nodes with a total of 500 objects and 10 replicas per object
are assumed. An average of 3 objects are involved in both critical and regular
constraints. On average, 10 invocations are launched per time unit. Furthermore,
as partitioning is assumed to take a while to repair, all the availabilities have
been calculated after one hour of partitioning. The reason for this one hour delay
was to take into account the degradation of availability that can occur in the P4
protocol due to overlapping constraints. That is, in the P4 protocol an operation
cannot proceed if an associated constraint contains a revocable object.

Fig. 1. Availability vs. number of con-
straints

Fig. 2. Availability vs. partition size

Figure 1 shows the availability of write operations that was calculated for
the two models plotted against the total number of constraints in the system.
The percentage of critical constraints was varied. The availability of the primary
partition model remains almost constant at about 0.5, since partitions of almost
the same size are assumed.

In the case of the P4 protocol, firstly, the ideal case of 0% of critical constraints
has been plotted to show the best case availability. As can be seen, availability re-
mains close to the maximum of 1 and decreases very slowly. Secondly, the cases of
10% and 25% of critical constraints have been plotted to demonstrate a realistic
application scenario. In DTMS the ratio of critical constraints is approximately
10%. As can be seen, in these cases availability decreases relatively slowly. In the
DTMS case a very high number of constraints would be needed for the primary
partition model to provide better availability. Finally, the worst case scenario is
demonstrated by setting the ratio of critical constraints to 100%. Availability,
in this case, decreases relatively fast and the primary partition model starts to
perform better at a relatively low number of constraints.

As can be seen the P4 performs well, if the number of critical constraints
is relatively low. The P4 protocol should be used in applications that are able
to tolerate temporary relaxation of consistency, whereas the primary partition
model performs better for applications which require a high level of consistency.
In the DTMS scenario the P4 protocol provides the overall better availability.

As a further analysis, availability of the two models has been plotted against
the number of nodes in a partition in the system. (Figure 2). 0% critical con-
straints were assumed in this case. The number of partitions in the system has
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been plotted at 3, 4 and 10. The horizontal axis lists the number of nodes in the
partition as a percentage of the total number of nodes in the system. As can be
seen, availability of the primary partition model is 0 until a majority partition
exists. This is because in the primary partition model no partition can continue,
if there is no majority.

In contrast the P4 protocol provides availability, even when no majority exists.
Furthermore, availability of the P4 is higher than that of the primary partition
model for all number of nodes in one partition in this case (no critical con-
straints). The availability of the P4 model is higher, if there are fewer partitions.
This is due to the probability that a replica is available in the local partition.

7 Conclusion and Future Work

We have designed a replication protocol for increased availability in replicated
distributed object systems. The protocol allows consistency to be temporarily
relaxed, in order to increase the availability. Consistency is based on integrity
constraints.

In a partitioned system we allow operations to continue in each partition, in
contrast to the primary partition approach, in which only a majority partition
may proceed. We have developed an analytical model of both approaches, in
order to compare them. The results indicate that the new protocol increases the
availability significantly for applications with a low number of critical integrity
constraints; that is, for applications where consistency can be relaxed. Further-
more, the protocol has the advantage that operations can proceed, even if the
accessed object is not in a majority partition.

We are currently implementing the P4 protocol in the CORBA version of
the DeDiSys middleware [19], in order to verify the results obtained by the
analytical study presented in this paper and the simulation results obtained
in our prototype environment [3]. Furthermore, we plan to investigate further
replication strategies tailored for different target applications of DeDiSys.
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Abstract. Exploiting computing resources available within “depart-
mental” organizations to run large-scale applications can be considered a
difficult task since such resources are usually represented by computing
nodes that belong to non-routable, private networks and are connected
to the Internet through publicly addressable IP front-end nodes. This
paper presents a Java middleware that can support the execution of
large-scale, object-based applications over heterogeneous multidomain,
non-routable networks. Furthermore, the middleware can be exploited
to relieve programmers of the classic burden tied to the deployment of
PVM runtime libraries and program executables among computational
resources belonging to distinct administrative domains.

1 Introduction

Middlewares make it possible to exploit the enormous, but often poorly utilized,
computing resources existing on the Internet in order to solve large-scale prob-
lems. They extend the concept, originally introduced by PVM [1], of a “parallel
virtual machine” restricted and controlled by a single user, thus enabling the
building of computing systems, called “metacomputers”, composed of heteroge-
neous computing resources of widely varying capabilities, connected by poten-
tially unreliable, heterogeneous networks and located in different administrative
domains [2]. However, the peculiarities characterizing such a computational con-
text require that middlewares deal with highly variable communication delays,
security threats, machine and network failures, and the distributed ownership
of computing resources in order to support programmers in configuring and
optimizing their large-scale applications. Therefore, middlewares can build on
most of the current distributed and parallel software technologies, but they re-
quire further advances in techniques and tools to bring together computational
resources distributed over the Internet to efficiently solve a single large-scale
problem according to the scenario introduced by grid computing [2].

On the other hand, cluster computing still remains a valid alternative to
grid computing, since clusters of workstations represent high performance/cost
ratio computing platforms, and are widely available within the so called “de-
partmental” organizations, such as research centres, universities, and business
enterprises [3]. However, workstation clusters are usually exploited by running
MPI or PVM applications within trusted and localized network environments,
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where problems concerning security, ownership, and configuration of the used
networked resources are easily solved within the same administrative domain.
Furthermore, it is also worth noting that most of the computing power exist-
ing within departmental organizations is often represented by computing nodes
that belong to non-routable, private networks and are connected to the Inter-
net through publicly addressable IP front-end nodes [3]. Therefore, it cannot be
considered actually available to run large-scale applications, since it cannot be
easily exploited by many currently used middlewares for grid computing [2,3].

The considerations reported above suggest that a middleware should be able to
use computing resources across multidomain, non-routable networks and relieve
programmers of the usual burden of manually deploying PVM or MPI runtime
libraries and program executables among computational resources belonging to
distinct administrative domains [4]. Furthermore, the need for adaptability re-
quires that a middleware is also characterized by a flexible implementation de-
veloped according to a component-based, reflective architecture [5] in order to
facilitate dynamic changes in the configuration of the built metacomputers.

Java has been widely used to develop middlewares for metacomputing. It has
been designed for programming in heterogeneous computing environments, and
provides a direct support to multithreading, code mobility and security, thus fa-
cilitating the development of concurrent and distributed applications. However,
most of the Java middlewares do not often adequately support the programming
and execution of dynamic parallel applications on multidomain, non-routable
networks. Furthermore, they often exploit tightly-coupled interaction and com-
munication paradigms based on the “message-passing” model or on the Java
RMI package, thus lacking specific coordination mechanisms able to manage the
resource variability in the configuration of metacomputers.

This paper presents a customizable middleware that can support the execu-
tion of large-scale, object-based applications over heterogeneous multidomain,
non-routable networks. The middleware, called Java Multidomain Middleware
(JMdM), can exploit computing resources hidden from the Internet, but con-
nected to it through publicly addressable IP front-end machines, as computing
nodes of a unique metacomputer. Thus, the computing power existing within de-
partmental organizations as non-publicly IP addressable computing nodes can
be made available to run applications without having to exploit low-level, “ad
hoc” software libraries or specific systems or resource managers for grid comput-
ing, which could turn the development of parallel applications into a burdensome
activity as well as penalize application performance [4,6]. Finally, JMdM has
also been developed to support programmers in deploying ePVM [3] applications
among computational resources belonging to multidomain clusters.

The outline of the paper is as follows. Section 2 presents JMdM and describes
the architecture of the metacomputers that can be built by using the middle-
ware. Section 3 describes the main implementation details of JMdM . Section 4
describes how ePVM applications can be deployed by exploiting JMdM . Section
5 reports on some experimental results. Finally, in Section 6 conclusion remarks
are available.
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2 The Proposed Middleware

JMdM is a Java-based middleware designed according to the reference model
originally described in [7]. It makes it possible to build and dynamically recon-
figure a metacomputer on which large-scale applications can be deployed and
run. The configured metacomputer can aggregate computing resources directly
available on the Internet as well as those belonging to multidomain, non-routable
networks, i.e. computing nodes not provided with public IP addresses, but con-
nected to the Internet through publicly addressable IP front-end nodes. Thus,
even though the computing nodes composing the metacomputer result in being
arranged according to a hierarchical physical network topology consisting of two
levels (the level of the publicly addressable IP nodes and the level of the not pub-
licly addressable IP nodes belonging to non-routable networks), they virtually
appear as arranged according to a flat network topology (see Figure 1).

Computing nodes can be PCs, workstations or computing units of parallel sys-
tems interconnected by heterogeneous or dedicated networks. However, JMdM
enables programmers to exploit the features of the underlying physical compu-
tational and network resources in a transparent way. To this end, the metacom-
puter is viewed as abstractly composed of computational nodes interconnected
by a flat virtual network and unambiguously identified by integer values assigned
at the metacomputer start-up. More precisely, the nodes hidden from the Inter-
net or connected by dedicated networks can be grouped in macro-nodes, which
thus abstractly appear as single, more powerful, virtual computing units. The
metacomputer is assumed to be made up by at least one macro-node, called the
main macro-node, which groups all the publicly addressable IP computing nodes
taking part in the metacomputer.
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Each node maintains status information about the run-time architecture of
the metacomputer, such as information about the identity and liveness of the
other nodes. In fact, the hierarchical physical organization of the metacomputer
allows each node to keep and update only information about the configuration
of the macro-node which it belongs to, thus promoting scalability.

Each macro-node is managed by a special node called Coordinator (C) that:

– is allocated onto the publicly addressable IP node of each non-routable net-
work interconnecting other non-directly addressable IP nodes;

– creates the macro-node by activating nodes within the private network that
it manages;

– takes charge of updating the status information of each node grouped by the
macro-node;

– monitors the liveness of nodes to dynamically change the configuration of
the macro-node;

– carries out the automatic “garbage collection” of the crashed nodes in the
macro-node;

– acts as a “gateway”, since it
• forwards system communications to the internal nodes of the macro-node;
• enables nodes belonging to distinct macro-nodes of the metacomputer to

directly communicate.

The metacomputer is controlled by the Coordinator of the main macro-node,
called Root, which is directly interfaced with the user through the Console,
by which the metacomputer configuration can be dynamically managed (see
Figure 1). To this end, each node wanting to make its computing power avail-
able to JMdM runs a special server, called Node Manager (NM), which takes
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charge of interacting with the Console as well as running further software com-
ponents that enable the node to participate in the metacomputer.

The Console can only interact with the NMs running on publicly addressable
IP nodes, i.e. the nodes belonging to the main macro-node. Therefore, when
a NM hosted by a node running a Coordinator receives a command from the
Console, such as, for example, a “configuration” command, it has to forward it
to the NMs of the nodes grouped by its macro-node. Then, the NM contacts
the Coordinator of its macro-node, which exploits the configuration information
stored in a specific XML file to forward the received command to the NMs of the
nodes inside the macro-node. In fact, information contained in the XML file is
initially provided by the administrator of the nodes grouped by the macro-node,
and then dynamically updated by the Coordinator (see Figure 2).

All the nodes can exchange messages according to a communication semantics
based on the “one-sided” model [8]. Therefore, each node can directly send ob-
jects, which can be either simple messages or tasks. Objects can be sent also to
the nodes that do not store the object code. To this end, each node is provided
with a “code loader”, which can retrieve the object code from a distributed code
repository, called Distributed Class Storage System (DCSS), purposely developed
to ensure scalability to the proposed middleware (see Figure 3).

The architecture of the DCSS follows the global architecture of the meta-
computer. Therefore, each macro-node is provided with a dedicated “code base”
managed by the Coordinator. When a node needs a code, it requires the Coordi-
nator of its macro-node to retrieve it. If the Coordinator lacks the required code,
it asks the Root for it, which stores all the code of the running application. How-
ever, whenever a Coordinator obtains the required code, it stores it in a local
cache, in order to reduce the loading time of successive code requests coming
from other nodes of the macro-node.
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JMdM also provides a “publish/subscribe” information service implemented
by two servers: the Resource Manager (RM) and the NM (see Figure 4). In
particular, each macro-node has an RM, which can be allocated onto one of
the nodes belonging to the macro-node. A RM is periodically contacted by the
NMs of the nodes belonging to the macro-node and wanting to publish infor-
mation about the CPU power and its utilization or the available memory or
the communication performance. Information is collected by the RM and made
then available to the “subscribers”, which are the Coordinators belonging to
the metacomputer. Thus, each Coordinator can know the maximum comput-
ing/communication power made available by its macro-node. Furthermore, this
information is also made available to the Root, which can thus know the power
of all the macro-nodes making up the metacomputer. This allows users to know
the globally available computing power and reserve a part of it by issuing a “sub-
scription” request to the Console. Then, the Console can ask the RM of the main
macro-node for selecting and reserving only the required computing resources.
The result of this process is an XML file containing system information to create
a metacomputer without having to consult anew the RM.

3 The Implementation of the Middleware

JMdM has been designed according to a component-based, reflective approach
that enables the middleware’s software architecture to dynamically adapt to
changes in the configuration of physical components [5]. Therefore, all the ser-
vices supplied by JMdM are implemented by software components whose
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interfaces define an abstract design able to provide solutions for metacomputing
problems. Such a design is concretized by the definition of classes, which im-
plement the interfaces of the abstract design and interact with the basic classes
representing the skeleton of the middleware architecture. This approach gives the
possibility of modifying or substituting a component implementation without af-
fecting other parts of the middleware, and allows a component to have different
implementations, each of which can be dynamically loaded in the middleware.

Based on the design principles reported above, Coordinators and nodes are
all implemented as processes that can load a set of software components either
at start-up or at run-time. In particular, the main components loaded by each
node are (see Figure 5): the Node Manager (NM) and the Node Engine (NE).

The main tasks of the NM consist in storing system information and inter-
acting with the Coordinator in order to guarantee the macro-node consistency.
The NE takes charge of receiving application messages from the network and
processing them. In fact, the NM implements some system tasks, and so it:

– monitors the liveness within the metacomputer by periodically sending con-
trol messages to the Coordinator of its macro-node;

– kills the node when the macro-node Coordinator is considered crashed;
– creates the NE by using the configuration information supplied by the Co-

ordinator of its macro-node.

The NE implements the node behavior by installing a set of components,
which are dynamically loaded by a specific component of the NM, called the
Loader (LD). In fact, the components loaded by the NE are all configurable, and
make it possible to customize the node behavior in order to provide applications
with the necessary programming or run-time support. However, applications are
not allowed to directly access the NE, but they can exploit its features or change
its behavior through the NM. As a consequence, the NM also represents the
interface between the application and the services provided by the middleware,
such as the metacomputer reconfiguration and management.

The configurable components of the NE are: the Execution Environment (EE),
the Sender (SD) and the Message Consumer (MC) (see Figure 5). They implement
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the abstractions that define the execution behavior of a node: a passed on to the
MC, which is the interface between an incoming communication channel and the
EE. Then, the message is delivered to the EE, which processes it according to the
strategy coded in the EE implementation. As a result of message processing, new
messages can be created and sent to other nodes by using the SD.

The EE defines the node behavior. It can contain either application compo-
nents or data structures necessary to run parallel or distributed applications ac-
cording to a specific programming model. Therefore, since each node can handle
a different EE implementation, MIMD applications can be run by simply distrib-
uting their components wrapped in the implementations of the EE of each node.
Furthermore, EE can dynamically control the configuration of the metacomputer
as well as exploit the services implemented by the other node components, since
it has access to the NM. Thus, a running application can both evolve on the
basis of the configuration information characterizing the metacomputer and dy-
namically configure it, by adding, for example, a node, if more computing power
is necessary.

The SD implements services for routing the messages generated on a node
towards all the other nodes of the metacomputer. In particular, JMdM provides
a default implementation for this component, called Default Sender (DS), which
is loaded if any other SD is not installed by the user application.

The DS implements basic communication mechanisms that can exploit the
multidomain network organization of the metacomputer and support the devel-
opment of more sophisticated communication primitives, such as the ones based
on synchronous or collective messaging. It exploits some components of the NE
not accessible to the user, called End Points (EPs).

An EP is the local image of a remote node belonging to the macro-node. It
manages a link to the transport module selected during the configuration phase
of the metacomputer to enable communications, through a specific protocol, to-
wards the remote node represented by the EP. To this end, the transport modules
are characterized by a communication interface independent of the underlying
transport protocol used to manage communications. Thus, a transport module
implementing a new communication protocol or exploiting a native communi-
cation library can be easily integrated in JMdM by only developing a specific
module, called adapter, able to abstract from the implementation details charac-
terizing the low-level communications. In fact, every adapter has to carry out the
serialization of the objects sent by the application according to the specific fea-
tures implemented by the corresponding transport module. In particular, JMdM
implements, by default, three adapters. The first is based on TCP, the second
extends UDP by adding reliability, and the third is based on “Fast Messages”
[9] for Myrinet networks.

An MC is a component whose reference is passed on to all the transport mod-
ules installed on the node. It implements the actions that have to be performed
on the node, according to the strategy of message consuming defined by the
programmer, whenever a message is received from the network.
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4 Deploying ePVM Applications

As described in the previous section, JMdM implements an architecture that
can host dynamically loaded software components. To this end, it supplies a Java
runtime environment in the form of a component container. In fact, components
can be uploaded by users who have appropriate permissions, while the admin-
istrators of the nodes aggregated by JMdM retain complete and fine-grained
control over the computing and network resources they manage. In particular,
each NM may request the Java Virtual Machine (JVM) running on each node
to link a dynamic native library. More precisely, a NM can transparently resolve
and link at runtime the appropriate version of a library precompiled for different
platforms by following a four-steps scheme. Therefore, the NM:

1. obtains the library path referred to the code repository;
2. resolves the actual Java “resource” name by combining information about

the library path, requested library name, and detected platform type;
3. stages the resource to a temporary local file;
4. loads the library from that file.

To this end, NMs assume an automatic platform detection type based on the
classification method adopted by PVM [1]. Furthermore, JMdM assumes that
the loaded resources may originate from an arbitrary URL.

ePVM [3] is an extension of PVM developed to enable PVM applications
to run across multidomain clusters made up by computing nodes belonging to
non-routable, private networks, but connected to the Internet through publicly
addressable IP front-end nodes. In particular, to run an ePVM application, the
only files that have to be present at the nodes aggregated by JMdM are: the
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ePVM daemons, the ePVM runtime library, and the application itself [3] (see
Figure 6). In fact, ePVM has not external dependencies except for the standard
C library, and this makes precompiled versions of these files portable within
a single platform type. Therefore, to set up the ePVM runtime, the Console
requests NMs to load the ePVM daemons and runtime library. Then, NMs take
charge of staging and starting up the appropriate platform-specific versions of
the ePVM daemons, fetching them from a network code repository. To this end,
it is worth noting that the execution of the “set up” command requested by the
Console is managed by JMdM as a normal command, according to what shown
in Figure 2. This means that only the NMs belonging to the publicly addressable
IP nodes can directly load the ePVM runtime, whereas the NMs running on nodes
inside macro-nodes can load the runtime through their Coordinators.

It is worth noting that node administrators have only to authorize the deploy-
ment, but they have not to configure the ePVM runtime, since NMs can stage
and start up the appropriate platform-specific versions of the ePVM daemons
and runtime library. Furthermore, users are allowed to execute ePVM applica-
tions on computing nodes where they have not a login account but instead, only
restricted JMdM access. As a consequence, the setup procedure implemented
by JMdM hides heterogeneity from users as well as releases node administrators
from the responsibility to install or configure additional software except for the
JMdM support itself.

The ePVM runtime setup is directly followed by the application deployment
(see Figure 6). To this end, the application binary has to be stored in a specific
directory, designated by the ePVM daemons, of the file system of each node.
Therefore, the Console can ask NMs for loading the application binary from a
URL code base that the user may specify along with the executable name. As
illustrated in Figure 6, the execution request coming from the Console is handled
by publicly IP addressable NMs, which use their already described capabilities to
fetch the platform-specific versions of the application and save them in files local
to nodes. Then, these NMs ask their Coordinators for forwarding the execution
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Fig. 8. Speedup values obtained by exploiting three PC clusters configured as non-
routable, private networks

request to NMs running on the nodes inside macro-nodes, thus enabling the
deployment of the application on all the nodes aggregated by the metacomputer.

After the deployment of the application, each NM can directly invoke the
ePVM daemons to launch the application from the local file. However, to provide
protection against malicious code, NMs can assess whether the deployed appli-
cation can be trusted. To this end, NMs can base their decisions upon the code
source and/or user who requested the execution, according to the basic Java
security model. In particular, NMs can restrict the code source to designated
places that can be specified as URL base paths and/or verify code signatures
and/or use flexible authentication mechanisms to determine user identity.

5 Experimental Results

This Section reports on some performance experiments conducted by exploiting
three different clusters of PCs connected by a Fast Ethernet network.

The first cluster is composed of 16 PCs connected by a Fast Ethernet hub and
equipped with Intel Pentium IV 3 GHz, hard disk EIDE 60 GB, and 1 GB of
RAM. The second cluster is composed of 16 PCs connected by a Fast Ethernet
switch and equipped with Intel Xeon 2.8 GHz, hard disk EIDE 80 GB, and 2
GB of RAM. The third cluster is composed of 8 PCs interconnected by a Fast
Ethernet hub and equipped with Intel Pentium IV 2.5 GHz, hard disk EIDE 40
GB, and 1 GB of RAM. All the PCs use the release 5.0 of the SUN JDK.

Two classes of experiments have been conducted. In the former, all the PCs be-
longing to the clusters have been provided with public IP addresses, and this has
made it possible to build a metacomputer characterized solely by the main macro-
node. In the latter, the PCs belonging to the clusters have been configured so as
to form three private, non-routable networks. Therefore, the built metacomputer
has been composed of three macro-nodes.
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In both the classes of experiments, the parallel product of two square matrices,
whose size is N , has been executed. The product has been implemented by using
the “striped partitioning”: the right matrix is transferred and allocated on each
node of the metacomputer, whereas the left matrix is split in groups of rows
each one transferred to a different node. In particular, the speedup values have
been measured under a varying number of nodes building the metacomputer.
The nodes have been evenly allocated among the PCs of the three clusters.

The product has been programmed according to two different programming
models: the “Send/Receive” (S/R) model and the “Active Objects” (AO) model.
The former is the well-known message-passing model used to program parallel
and distributed applications, whereas the latter is the model proposed in [10,11]
to overcome some limitations of the classic message-passing and RPC models.



708 F. Frattolillo and S. D’Onofrio

 0

 20

 40

 60

 80

 100

 6  10  14  18  22  26  30  34  38  42

E
ff

ic
ie

nc
y 

(%
)

Number of nodes

Efficiency values (N=3000)

S/R, all pub. addr. IP nodes
S/R, three macro-nodes

AO, all pub. addr. IP nodes
AO, three macro-nodes

Fig. 11. Comparison of the efficiency values achieved by exploiting both the S/R and
the AO model

Both models have been implemented by customizing the NE components, ac-
cording to what reported in the previous sections. Moreover, the TCP transport
protocol has been used among all the nodes of the metacomputer.

Figure 7 and Figure 8 show the speedup values obtained by running the
product of matrices programmed by exploiting the S/R model. The curves show
that the speedup values tend to increase with the number of nodes depending
on the size of the matrices. In particular, the PC clusters exploited in the test
of Figure 8 have been interconnected by a Fast Ethernet network and have been
interfaced to a further multi-homed PC used to only run the Console.

Figure 8 shows that the speedup values obtained with the multidomain net-
work configuration are similar to the ones shown in Figure 7. In fact, Figure 9
shows that the performance penalization determined by the overhead caused by
the management of the macro-nodes is rather limited and within 10%.

The results obtained by employing the S/R programming model are essentially
confirmed by exploiting the AO programming model, as shown by Figure 10. In
fact, Figure 11 shows that the efficiency values achieved in the two classes of
experiments are rather similar, with differences within 10%. This demonstrates
that JMdM is characterized by a good flexibility that is achieved without re-
ducing the performance of the executed applications.

6 Conclusions

In this paper a customizable and reflective middleware able to run parallel and
distributed object-based applications across heterogeneous multidomain, non-
routable networks is presented. The middleware enables all the computing power
available within departmental organizations and non-directly IP addressable to
be harnessed to run applications without having to exploit low-level, “ad hoc”
software libraries or specific systems or resource managers for grid computing,
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which could turn the development of parallel applications into a burdensome
activity as well as penalize application performance.

The middleware enables the building of metacomputers made up by abstract
computing nodes, each of which can dynamically install interacting components
that can be purposely customized in order to adapt the programming model
supported by the metacomputer to the application needs. Furthermore, the
middleware also supports programmers in deploying ePVM applications among
computational resources belonging to multidomain clusters.

Finally, the proposed middleware has been tested by conducting some exper-
imental tests programmed by implementing two different programming models.
In fact, the obtained results demonstrate that flexibility can be achieved without
reducing performance.
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Abstract. Replicated systems are commonly used to provide highly available
applications. In last years, these systems have been mostly based on the use of
atomic broadcast protocols, and a wide range of solutions have been published.
The use of these atomic broadcast-based protocols also has aided to develop re-
covery protocols providing fault tolerance to replicated systems. However, this
research has been traditionally oriented to replication systems based on constant
interaction for ensuring 1-copy-serializability. This paper presents a general strat-
egy for recovery protocols based on linear interaction as well as providing other
isolation levels as snapshot isolation. Moreover, some conclusions of this work
can be used to review recovery protocols based on constant interaction.

1 Introduction

Fault tolerance, high availability and performance are success keys in nowadays infor-
mation systems. Consequently, distributed systems have been widely expanded among
organizations and enterprises in order to provide these characteristics.

Particularly, replicated systems are the most common way used to reach these goals,
being replicated databases an example of typical application. Therefore, several repli-
cation techniques have been largely studied and a wide range of proposals have been
implemented. Latest trends in replication techniques are oriented to make use of group
communication system (GCS) semantics. In fact, most non-commercial solutions com-
bine eager update propagation with constant interaction [1] using atomic broadcast pro-
tocols [2], providing more efficient implementations. A wide number of approaches [3],
[4], [5] are described in the literature.

Applications built on top of GCS (e.g. replication protocols) make use of GCS mem-
bership mechanisms which manage group partitions [6]. On one hand, this mechanism
excludes disconnected, failed or partitioned nodes from the group, notifying the changes
to survivor nodes. On the other hand, it allows new incorporations to the group or node
reconnection, also notifying the membership changes to the group members.

Usually, these membership changes may originate outdated nodes, i.e. replicas that
have lost some updates, and therefore without the last state. But traditionally, replication
protocols do not give great relevance to the outdated nodes recovery, not being a real
fully-functional fault tolerant system. So it is needed a new architecture component
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that knows what to do when: a node failure occurs, a failed node rejoins to the group
or a new node is added to the replicated system. The most important function of this
component consists of updating those replicas with an outdated system state before they
become full-functional system nodes. Therefore, the recovery protocol must include in
the replication protocol additional actions, in order to store and maintain the information
used in the recovery processes (whenever it is needed).

The outdated nodes recovery can be done in many ways, ranging from the simplest
one (backup transfers) to more complex alternatives. Ideally, this process must be per-
formed without disrupting the replicated system work. In this direction, a wide variety
of recovery protocols has been presented in the literature scoped on replicated data-
bases, as [3], [7], [8] most of them based on group communication.

This work presents a general strategy for recovery protocols based on linear inter-
action, in contrast of using the constant interaction [1] approach. Linear interaction,
in spite of its high performance cost, will be the only feasible alternative for object-
oriented replicated systems with large data states to transfer, and with a transactional
support, such as FT-CORBA with its complementary Transaction Service, where con-
stant interaction will either lead to huge messages or be impractical in case of partial
replication, since the state to be transferred should be collected from different source
nodes. But, as it will be shown, the management required by linear-recovery proto-
cols is more complex because it must manage multiple messages per transaction. In
addition, for ensuring correctness under linear interaction, messages belonging to not-
yet-committed (as well as for rolled-back) transactions, must be adequately treated.

In parallel, the proposed recovery strategy adopts the crash-recovery with partial-
amnesia failure model because it supports the recovery of outdated nodes. Recovery
which becomes a key point for building fully-functional fault tolerant systems in repli-
cated systems with large data states. The traditional adopted failure model, crash or
fail-stop, is not adopted because does not support outdated nodes recovery presenting
only good behavior for replicated systems with few data state.

The idea is to obtain a recovery protocol for linear interaction replication protocols
which minimizes the effort and cost of the recovery process, without stopping the repli-
cated system work for primary partitions. It is also intended to perform partial recover-
ies, when needed. Finally, as our design is performed as a middleware recovery system,
it can be easily applied to different transactional scenarios, specially including database
replicated systems. The obtained results can be used to perform a generic revision of
recovery protocols for constant interaction replicated systems.

This paper is structured as follows. Section 2 details the assumed system model, the
node system architecture, the assumed failure model, as well as the associated progress
condition. The general recovery schema is described in section 3. Afterwards, the infor-
mation needed by the recovery process is explained in section 4. The following sections,
5, 6 and 7, present three important aspects: the amnesia recovery for realistic systems,
the consistency problem due to on-going transactions, and the recovery information
persistence policy respectively. Finally, some related work is given in section 8, and
section 9 concludes the paper.
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2 System Model

Our model considers the replicated system as a group of several replicas, where each
replica is located in a different node. These nodes belong to a partially synchronous
distributed system: their clocks are not synchronized but the message transmission time
is bounded. Each replica has a copy of the whole state system.

The replicated system uses a group communication system (GCS) providing different
communication semantics. Point-to-point and broadcast deliveries are supported. The
minimum guarantee provided is a FIFO and reliable communication.

It is also assumed the presence of a group membership service, who knows in ad-
vance the identity of all potential system nodes. These nodes can join the group and
leave it either explicitly or implicitly by crashing. The group membership service com-
bined with the GCS provides Virtual Synchrony [9] guarantees, thus each time a mem-
bership change happens, it supplies consistent information about the current set of
reachable members. This information is given in the format of views. Sites are noti-
fied about a new view installation with view change events.

As shown in figure 1, the replication protocol performs its linear interaction by
broadcasting (typically with an abcast) the update operations among the application
view members. Also the membership service collaborates with the communications sys-
tem to detect changes in the group composition and notify these changes to the group
members. Finally, the recovery protocol utilizes the membership service to detect out-
dated nodes and the communications system to send recovery information. Also, the
recovery protocol uses the membership service for triggering the process.

Replication Protocol

Recovery Protocol

GCS

Recovery Module

View Management Algorithm

Membership Service

Fig. 1. Node Architecture

The view notification mechanism is extended with node application state information
providing the enriched view synchrony [10] approach. This makes simpler and easier the
support of system cascading reconfigurations. These enriched views (e-view) not only
inform about active nodes, but they also inform about the state of active nodes: out-
dated or up-to-date. The use of e-views refines the primary partition model into the pri-
mary subview model, therefore the system only can work when a progress condition is
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fulfilled1. Parallelly, the state consistency is ensured because only the primary subview
is able to work in partition scenarios. Thus, this subview is the only one allowed to
generate recovery information, which will be afterwards used for recovery. For simmilar
reasons, new transactions only can be started by fully updated nodes.

2.1 Failure Model

We consider the crash-recovery with partial-amnesia model instead of the crash or
fail-stop model[2] for node failures. This implies that an outdated node must be recov-
ered from two “different classes of up-to-dateness losses”: forgotten state and missed
state. This assumption supports a more realistic and precise way to perform the recov-
ery process. So the assumed model allows to recover failed nodes from their previous
crashing state maintaining their assigned node identifiers. Consequently, when a node
crashes, every active node must abort any transaction started by the failed node whose
commit messages have not been yet delivered. A similar behavior is adopted when the
system can not go on because the progress condition has been lost. In this situation,
the nodes in minority (e.g. disconnected) must also abort the started transactions whose
commit message has not been yet delivered. Thus, the whole activity that was not com-
mitted during the working life is aborted.

2.2 Progress Condition

A progress condition determines when the replicated system can work. This condition
must be fulfilled in order to avoid the existence of majority partitions that, if they go on
working, could lead to different information evolutions in the replicated system. This
definition is extended in order to guarantee that a majority partition will be always able
to reach a consistent up-to-date state for every composing node. The selected progress
condition influences the recovery information needed by the recovery protocol. In order
to define these conditions a replicated system compound by n replicas is assumed.

The most traditional condition consists of requiring n
2 + 1 up-to-date nodes. Thus,

this condition will not let the system work until n
2 + 1 nodes are fully up-to-date, even

if the partition contains N alive nodes. When this condition is required, in any possible
majority partition it will exist at least one node fully updated able to recover out-of-date
nodes, regardless the failure history.

A less restrictive condition consists of requiring n
2 + 1 alive nodes to conform a

majority view. It lets the replicated system to work as soon as a majority partition is
achieved. However, since only up-to-date members are enabled to start transactions, and
a majority partition could contain no up-to-date node when this second progress condi-
tion is assumed, it becomes possible for a majority partition to be unable to progress if a
cooperative recovery 2 is not guaranteed to be feasible. To this end, it must be collected
specific recovery information with particular policies.

1 This characteristic prevents the system from working in the starting phase until a primary
subview is reached, and therefore, during this initial phase, the recovery protocol must not
perform any work.

2 This information can be spread among all alive nodes, so they must work together to reach the
last system data state.
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3 Log-Based Recovery

Since the replication protocol we assume uses linear interaction for implementing its
functionality, the most natural way for performing the recovery will follow a log-based
strategy to recover outdated nodes.

The main dependency of using log-based recovery relies on the way the upper repli-
cation protocol broadcasts the transaction updates among replicas. Any recovery pro-
tocol extracts from the broadcast messages the recovery information. However, while
constant interaction protocols have typically a single message for each transaction, lin-
ear replication protocols manage multiple messages per transaction. Having multiple
messages per transaction will present several complications for the recovery protocol,
being shown the two more important in sections 6 and 7. Moreover, different storing
and recovery policies can be applied, being presented here the simplest one.

The log-based node recovery process is initiated by a node detected to be outdated
after its (re)connection to the replicated system. The outdated node starts selecting a
recovery master node (RMN), which must be one of the most up-to-date alive nodes,
and performs the following steps:

– missed recovery stage (MRS). Where outdated nodes update their missed views.
– current view recovery stage (CVRS). This last step is done if the replicated system

is working during the outdated node recovery. It is performed once the node has
applied all its missed views, and its goal is to apply in the recovering node any
message received during the previous stages (which could not be applied, since the
node was not updated yet).

In addition, the (re)connected node must always do the amnesia recovery stage
(ARS) priorly to any other stage. Notice that the ARS is always triggered by node
(re)connections. The used log-based recovery algorithm is summarized in figure 2.

if the outdated node is the (re)connected node:
it performs its ARS

the outdated node performs its MRS:
for each non-applied view vi:

if the outdated node does not have the log-recovery view information for vi:
it demands the log-recovery information for vi to the RMN(vi)

the outdated node updates view vi

notify the alive nodes that vi has been recovered in this node
if the replicated system was working during the node recovery (all lost views were applied):

the outdated node performs its CVRS

Fig. 2. Recovery Algorithm.

The first step, the ARS, is used by (re)connected nodes to retrieve the right state
they had at their crash time. In this process, the outdated node must apply the messages
received and not yet committed before its failure. A deeper discussion of this recovery
step is done in section 5.
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The MRS stage is performed by every outdated node. Each outdated node starts the
recovery of its missed views by selecting its RMN for such views (in a primary partition,
a single node can be used for every view3). Since views are sequentially numbered, the
first view to be recovered is the next one to its last fully applied view, and finishes when it
reaches the last applied view in the RMN4. As this recovery is performed view by view, it is
possible to request to the RMN just the log-recovery information for the lost views. Once
the outdated node has this information (i.e. missed messages), it applies them to recover
this view. The application of these missed messages must be performed in the same order
they were delivered in the replication system total order. When the outdated node has
finished the recovery of this view it must notify all alive nodes that it has recovered this
view, therefore they may discard the available recovery information for such view.

Every time a membership change occurs it must be checked how it affects to each
recovery process started. Obviously if the outdated node crashes the recovery process
ends. If the RMN has failed the outdated node must look for a new RMN for going on
with the recovery process.

The third step, CVRS, is performed by outdated nodes recovered as long as the system
is working (i.e. if the (re)connection was into a primary partition). In this scenario, the
system generated activity during the recovery process, but the recovering node delayed
the application of such activity (it just persisted it in a queue as part of a “seen view”).
Thus, once all the non-previously-applied views are applied in the recovering node, it
must conclude its recovery by applying all these delayed messages in their delivery
order. If a new working view is installed during the recovery of a node, a new queue is
created for the new view5.

The generic log-based recovery protocol, as it has been described, is intended to pro-
vide recovery support for replication systems based on linear interaction. But the use of
linear interaction rises several problems that must be considered for recovery purposes.
As we show in section 6, the consistency problem associated to ongoing transactions
must be emphasized as one of the main problems to be treated.

4 Recovery Information

As said, we assume a crash-recovery with partial-amnesia failure model. Consequently,
once a crashed node is reconnected, it neither knows anything about the work performed
during its disconnection nor can remember exactly which was its exact state before the
crash occurrence.

Thus, node recovery must include both the recovery of missed state, and the recov-
ery of the “forgotten state”. The first one refers to the data state that the node has not
received because it was disconnected. The second one covers the state received but later
lost (due to the amnesia) when the node crashed. Therefore, the recovery system must
maintain information allowing it to handle these two out-of-date causes.

3 This approach allows partial recoveries if the outdated node is in a system which does not fulfil
the progress condition.

4 If the system is in a working view the previous view to the current one is considered the last
one applied in the RMN.

5 Notice that in this case the outdated node has already the information of the previous view.
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The log-based policies use the broadcast messages as recovery information. If the
amnesia is not considered, the recovery information only refers to messages missed by
non-connected nodes. Thus, in this case, the recovery information must be created when
the membership monitor detects non-connected nodes in the system. The information
must be maintained until the outdated nodes have applied the missed messages.

r1

r2

r3

A

B

X

t1 t2

Fig. 3. Log Recovery Information.

However, the amnesia recovery information for log-based policies relates to those
messages belonging to transactions not-yet-committed at crashed nodes when they
failed. Therefore, the recovery system must store the received and not-yet-committed
messages at each node. These circumstances require from each node to maintain its
own log-based amnesia recovery information during its normal activity, whilst the rest
of recovery information is maintained in other nodes just when failed nodes exist.

Figure 3 shows the information needed to recover an outdated node using the log-
recovery strategy. In this figure node r2 crashes at time t1 and reconnects at time t2.
At this moment, the system must start the r2 recovery. Firstly, it needs the A block
information recovery used to recover the amnesia, it contains the messages received but
not committed by r2 before its crash at t1. Secondly, the system needs B block which
contains the messages missed by r2 (either committed or not-yet-committed) during its
failure time. Obviously, the A block can be managed and maintained by r2 whilst the
B block must be generated and managed by a non-failed node.

Complimentary to the above information the system must maintain information
about which nodes have missed which views. Thus, each time a new view is installed
in the system the alive nodes must store the identifiers of the failed nodes in this view.
When a node recovers a view its identifier is deleted from the recovered view failed
nodes information. When the list of failed nodes in a view is emptied, the recovery
information of this view can be deleted.

5 Amnesia Recovery

As described above, the assumed failure model implies that on reconnection of crashed
nodes, they can not remember exactly which was their last state before the crash oc-
currence by themselves. Thus, extra information is needed to be maintained to this
particular end, being afterwards used in ARS.
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The amnesia problem is manifested in different ways. The main amnesia effect refers
to the not-yet-committed transactions state which is lost when a node crashes. This state
must be recovered before performing the real recovery process in order to reach con-
sistent and non-diverging data states. This lost state can be recreated by reapplying the
messages belonging to the on-going transactions existing at the failure time. Therefore,
to perform this amnesia recovery, the system must maintain two different types of infor-
mation. On one hand, the system must store the messages belonging to non-committed
transactions in order to reapply them when the node is reconnected. On the other hand,
the node must know precisely the identity of every committed transaction in the under-
lying system of this replica. This is necessary because it is possible for a transaction
expected to be committed in the system to have not been actually committed in this
replica (e.g. due to overhead or because the node is being recovered and could not ap-
ply the currently received replication messages). Thus, this amnesia phenomenon can
be observed at two levels:

The amnesia at the transport level implies that received messages non-persistently
stored are lost when the node crashes. If this occurs, the amnesia recovery could not
be performed. So the system must ensure these messages are available for recovery
purposes by storing them in a persistent way.

As long as there exist failed nodes in the system, the alive nodes must persistently
store the broadcast messages in order to perform the recovery of these failed nodes, as
it has been commented in 7. Thus, this information can be used in ARS. However, if
there are no failed nodes, each node can manage its own amnesia recovery information
persistently. This storage of received messages must be kept until the respective owner
transaction is either committed or aborted6. Moreover, if the messages must be main-
tained after its transaction commit, they must be marked in some way to remember that
they have been already applied.

In addition, the permanent storing of a received message must be performed atom-
ically with the GCS message delivery. Under this principle, if the node is not able to
persistently store the message, the GCS does not consider this message as delivered
(thus ensuring that the delivery is coupled with the persistent storage).

If other approaches are taken (i.e. maintaining the information in other nodes) mes-
sages cannot be discarded without additional synchronization rounds, because the other
nodes do not know by themselves when a message could be discarded. This implies a
high memory cost, or network overheads.

The amnesia at the replication level relates to the fact that the system can not re-
member which were the really committed transactions. Even for those transactions for
which the “commit” message was applied, it is possible for the system to fail during the
commit. Thus, the information about the success of such commit must be also stored
because it is needed by the recovery amnesia process in order to know which are the
messages that must be applied (as we discussed previously). So, at the replicated system
level, the problem is to know if a “commit” message was successfully applied before
the failure or not.

6 i.e. discarding them on transaction aborts, or maintaining them for committed transactions only
when failed nodes exist.
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The mechanism for generating this information consists of maintaining some infor-
mation about the last committed transaction for each open connection. Thus, when a
transaction commit is performed in the replica, the system must write this information
in a single atomic step, as part of the transaction itself. Thus, on commit success, the
system contains the identity of this last committed transaction. Afterwards, when the
connection is closed, the entry corresponding to this connection is erased.

This information is useful in the recovery process to check if messages marked as not
committed have been really committed. When the node becomes alive again and starts
its ARS it will check if there are messages marked as not committed, but its owner
transaction is marked as committed in the replica.

A similar problem arises regarding the state associated to not committed messages
(messages belonging to not yet committed transactions), since it is lost at the crash
instant, since the replication system is also a transactional system. Therefore, these
messages applied by the replication system but not committed must be again reapplied.

There are three possible scenarios where messages maintained as non-committed
belong to a transaction whose owner connection does not have an entry in the table of
committed transactions:

– The node did not start to apply this connection and its transactions before the node
crash. Then, these messages must be applied in the ARS.

– The connection is closed before committing some of its related transactions (imply-
ing that these transactions will be aborted) but the node crashes before the system
erases those messages. Thus, all the messages will be reapplied in the ARS but they
will be aborted again as it has happened in the normal work way.

– The transaction was really committed, the system has not marked yet its messages
as committed, and it has already deleted its table connection entry. This scenario
must be avoided, because it will lead the system to apply twice a transaction if
a recovery process is performed. So, when the “remove connection” message is
applied, the removal of the corresponding entry in the system must be done after
the middleware considers committed the transaction.

As a result, the ARS recovery stage will just consist of reapplying the messages
marked in the log recovery as “not applied” or “not committed”, first checking against
the replica if they were not really committed.

6 On-Going Transactions and Consistency

The use of linear interaction in replication protocols implies the broadcast of messages
belonging to not-yet-committed transactions. Thus, these messages belonging to differ-
ent transactions are interleaved and applied to the replica in their delivery total order.
Finally, each transaction is committed when its commit is applied. In this context, if a
node crashes, all associated changes to not-yet-committed transactions are lost whilst
associated updates to committed transactions remain permanent.

Afterwards, when the crashed node becomes again active, the recovery process up-
dates it, reapplying among others the messages associated to not-yet-committed trans-
actions at the crash time, while the committed transaction messages at the crash time are
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non reapplied (since they were already persisted in the replica). In this scenario, some
inconsistencies could arise if these reapplied messages were interleaved with commit-
ted transaction messages in the original work sequence, because this original order is
misunderstood in the recovered node. The inconsistencies appear if these transactions
conflict and the selected isolation level tolerates these conflicts.

It must be noticed that this problem only occurs when an outdated node reconnects
to the replicated system, and this last one has been working continuously during the
disconnection of the recovering node.

The following example shows this problem in a more intuitive way. Let us assume a
replicated system of three nodes, α = r1, r2, r3. At the beginning, the three nodes are
up-to-date and working. During a replicated system work lifetime period the sequence
of events shown in the figure 4 happen.

m1 (T1)

m2 (T2)

m3 (T1)

m4 (T2)

m5 (T1 commit)

m6 (T2 commit)E1 E2

T1 = {m1, m3, m5} (started in r1)
T2 = {m2, m4, m6} (started in r2)
E1 -> Node r3 crashes
E2 -> Node r3 recovery process starts

Fig. 4. Timeline events

As it could be seen, in the original sequence order messages of T 1 and T 2 are inter-
leaved. The T 1 commit is performed before the crash of node r3 while the T 2 commit
is done during the r3 failure time. Therefore the final messages sequence seen in r1 and
r2 is [m1, m2, m3, m4, m5, m6], whilst the final message applied sequence in r3 once
it has been recovered is [m1, m3, m5, m2, m4, m6].

This message order misunderstood in r3 is created by the recovery protocol. In
fact, the node r3 before E1 applies the same sequence message order as r1 and r2,
[m1, m2, m3, m4, m5]. However, when it fails, it loses non-committed changes (in this
case the changes performed by T 2). When r3 reconnects to the system its data state is
[m1, m3, m5]

At this moment the recovery process applies the not-yet-applied updates in r3, which
are the messages regarding T 2, which provokes the message order misunderstood. This
different message order in T 2 could lead to a different data state with regard to the
state in r1 and r2 if T 1 and T 2 conflict and the selected isolation level tolerates it (for
instance, when using Snapshot Isolation). In this example a conflict could arise if m2
and m3 perform the following sentences respectively:

m2→ ”UPDATE employees SET salary=salary*1.05 WHERE points>10”
m3→ ”UPDATE employees SET points=points+1 WHERE points == 10”

With these sentences it is possible that in r3 some employees increase their salary
while in r1 and r2 their salaries are not increased. Thus the recovery protocol can gen-
erate different data state evolutions in recovered nodes with regard to not recovered
nodes. This problem appears because the recovery protocol cannot store the original
context of on-going-transactions.
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In order to avoid this problem two solutions can be applied. The first and more natural
one would be to select an isolation level that aborts this kind of conflicts, which in fact
implies to apply the SERIALIZABLE isolation level. Thus, this approach avoids the
problem presented above allowing to use the proposed recovery strategie.

Other option would be to relax the required consistency guarantees, which tolerates
this kind of conflicts, but avoiding the above presented problem performing the recov-
ery process under a special condition. This condition requires that the recovery process
must be done when the recovery messages to apply (i.e. on-going transactions) does not
conflict with transactions committed during its life. It means that the recovery messages
to apply were not interleaved with conflicting committed messages. As controlling the
fulfilment of this condition is difficult it must be selected an easiest control condition.
This new condition would be to select as base recovery point (BRP) a “timepoint” in the
replicated system lifetime where there does not exist on-going transactions. Obviously
this BRP must be later than the moment when the outdated node crashed. Thus, the
outdated node recovery is performed in two steps: In the first one the outdated node re-
covers the data state up to the selected BRP 7. In the second step the messages delivered
after the selected BRP (if there exist) will be applied using the log-based approach. This
solution could be implemented in two different ways: reactive (forcing the existence of
a BRP after the reconnection of the recovering node) and proactive (founding a suitable
BRP during the normal work of every node).

As conclusion, the only possible solution to use a log-based recovery approach with-
out using a version-based one forces the system to adopt the SERIALIZABLE isolation
level. Another aspect that must be considered is which recovery information policy
must be applied, and how it is affected by the linear recovery interaction. The following
section is devoted to the discussion of this aspect.

7 Recovery Information Persistence

There exist some recovery situations, that depending on the progress condition and the
persistence policy for the recovery log-information adopted the system is unable to
guarantee the correct system data state progress.

Obviously, the messages of committed transactions must be persistently stored to
perform the recovery of failed nodes.

The further question is if messages belonging to ongoing transactions must be also
persisted in all nodes. The answer depends on the adopted progress condition. For in-
stance, assume that the used progress condition is the majority partition and that mes-
sages not committed are not persistently stored. Consider then the following case, a
replicated system α = {r1, r2, r3, r4, r5} which is working with r1, r2, r3 as alive
replicas, and there exists a long term transaction T1 started in r1 which has already
broadcast some operations m1, m2. Then, a failed node (r5) reconnects and the sys-
tem starts its recovery while T1 broadcasts more messages (m3, m4) being received by
all alive nodes. Now, before T1 commit message is broadcast and r5 is being recov-
ered, one of the previous alive nodes (e.g. r3) fails momentarily, excluding the one that

7 It must be remarked that in this step it can not be used the log-based recovery strategy because
the problem of different state evolution would not be avoided.
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started T1 (if r1 crashes T1 is aborted), and reconnects quickly. Thus r4 will lose the
messages belonging to T1. At this moment, after the r3 crash and reconnection, and
before the r3, r5 full recovery, the T1 commit is broadcast. Then, T1 is committed in
r1, r2 while r3, r5 maintain this message to apply it afterwards because they have not
yet been fully recovered. Immediately, r1 and r2 crash before the recovery system has
transferred m1, m2 to r3, r5. Thus, it would not be possible to reconstruct T1 in r3 and
r5. Moreover, if the next majority partition is reached because r4 reconnects, the sys-
tem can not progress in an accurate manner because it will not be able to commit T1

in r3, r4, r5 since it has been committed in r1, r2. Notice that this second case is also
related to the amnesia recovery process of node r3.

This case of non correct progression can be avoided if the selected progress condition
only lets the system to go on working if n

2 + 1 replicas are fully recovered instead of
going on working each time a majority partition has been reached. In this case this
proposed progress condition will abort T1 when the node r3 has crashed.

The other solution that can be adopted is to maintain the majority partition as
progress condition, but forcing the recovery system to persist messages belonging to
ongoing transactions. With this solution r3 would not have lost the m1, m2 messages
when it crashed, being afterwards the recovery system enabled to reconstruct T1 without
the participation of the nodes that have committed it.

Between these solutions, the second one is selected because it relaxes the progress
condition enabling the system to work any time a majority partition is reached. Ev-
idently, this adopted recovery system presents the necessity of storing permanently
broadcast messages as a drawback.

8 Related Work

In the area of recovery protocols for replicated distributed systems two basic approaches
are used: version based and log based. The first one consists of transferring to outdated
nodes those data items changed during their failure period, whilst the second one con-
sists of transferring the messages missed by outdated nodes.

A wide range of proposals about this classic problem[11] have been presented for
a long time in the last years either version-based [3], [12] and log-based [3], [8], [7].
First ones are typically useful for long-term outages whilst the latter ones present better
performance for recovering short-term failures. Therefore, combining a version-based
technique with a log-based one to construct a recovery framework has been proposed
in several works as [3], [8] to improve the recovery features, choosing the recovery
strategy that presents a lower cost each time an outdated node is detected.

The most widely assumed correctness criterion for replicated systems is
1-copy-serializability, which consequently leads to recovery protocols intended to work
with such systems, often using log-based approaches [7], [3], [4]. However, the use of
other isolation levels has not been traditionally treated in recovery protocols, proba-
bly based on the assumption that replication protocols are intended to provide 1-copy-
serializability. In fact, this is the isolation level that best fits the consistency guarantee
in a general distributed system. But, when the replicated state requires high transfer
rates, its use implies a high performance cost. Also, for transactional systems, where



722 R. de Juan-Marı́n, L. Irún-Briz, and F.D. Muñoz-Escoı́

isolation must be enforcing by using specific concurrency control mechanisms, this
problem is even worst. These two drawbacks are specially problematic in replicated
databases, where the enforcement of 1-copy-serializability usually leads to extremely
inefficient systems. Therefore, relaxed isolation guarantees are used there to alleviate
the performance degradation associated to the highest isolation level. One of the most
widely adopted relaxed levels is Snapshot Isolation, having the interesting property of
allowing read-only transactions to proceed without being blocked or delayed by any
other transaction. In this way, recent publications [13], have proposed some replica-
tion protocols providing Snapshot Isolation [14]. Moreover, the most extended DBMS
(Postgres, MySQL,..) provide snapshot isolation as the basic isolation guarantee.

On the other hand, recovery protocols are also typically designed to work for repli-
cated protocols based on constant interaction[3]. Others ,simply outline how these pro-
tocols can work using linear interaction. In fact, a few works have designed recovery
protocols[4] which work over linear-interaction-based systems. In [4], different log-
based recovery protocols are presented including proposals either for constant and lin-
ear interaction, but always focused on SERIALIZABLE systems.

9 Conclusions

In this paper, we detail a middleware-based general log-based recovery strategy in-
tended to provide fault tolerance support for linear interaction-based replication sys-
tems. This obtained system lets to perform on-line recoveries, fulfilling one important
condition for building a high available system. Most important, this paper studies which
effects has the use of linear interaction on the recovery work, specially emphasizing the
global data state consistency and the recovery information management.

Moreover, the paper also analyses and designs an amnesia recovery process as part of
the whole recovery strategy, supporting a more realistic failure scenario. This amnesia
phenomenon has been discussed at the two different levels in which it could appear, and
a basic strategy to bound the amnesia problem has been also detailed.

In addition, the proposed strategy supports re-inclusions in minority partitions, per-
forming partial or full recoveries, helping the system to accelerate outdated nodes re-
covery.

Other important point considered in the paper is the progress condition, meaning the
requirements that the replicated system must fulfil for continuing working. Two dif-
ferent progress conditions have been discussed: One following the stricter [3] approach
and another more relaxed, based on the majority partition concept. This second progress
condition, as it has been shown in section 7, must be accompanied by a particular recov-
ery information policy, required to avoid possible different state evolutions, depending
on the failure histories.

Another important aspect demonstrated in this work, in section 6, is that using a
linear-interaction replication protocol forces the system to use SERIALIZABLE isola-
tion level to avoid consistency problems after any log-based recovery process. In fact,
the use of any other isolation level could let different replicas to reach different data
states after applying the same transactions set.

In an indirect way, this paper also has highlighted that the existence and manage-
ment of on-going transactions (due to linear interaction) from a recovery point of view
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presents several difficulties (replicated consistency, amnesia delimitation boundaries),
whose solution reduces the whole system performance and scalability. Therefore this
paper reinforces the traditional arguments (traffic net overhead) that discourage the use
of the linear interaction approach on replication systems.

A sequel of this work will be a generic revision of existing recovery protocols based
on constant interaction taking under account the results obtained in this work for recov-
ery systems working in linear interaction replicated systems.
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Abstract. Collective communication libraries are widely developed and
used in scientific community to support parallel and Grid programming.
On the other side they often lack in Mobile Agents systems even if mes-
sage passing is always supported to grant communication ability to the
agents. Collective communication primitives can help to develop agents
based parallel application. They can also benefit social ability and inter-
actions of collaborative agents. Here we present a collective communi-
cation service implemented in the Jade agent platform. Furthermore we
propose its exploitation to interface transparently heterogeneous execu-
tions instances of a scientific parallel application that runs in a distrib-
uted environment.

1 Introduction

Collective communication is a communication activity that involves more entities
belonging to a group and sharing a common goal or a common interest. In com-
mercial application it can be exploited to enhance the way internet users have
today to communicate by Internet. In high performance computing it represents
a parallel programming paradigm that allows communication and synchroniza-
tion of processes by message passing. Collective communication primitives are
constructs of the language which exploit the underlaying middleware to per-
form specified schemes of message exchange. They can help to develop agents
based parallel applications. They can also benefit social ability and interactions
of collaborative agents. Mobile Agents technology has been widely addressed in
the scientific community to provide a flexible programming approach in paral-
lel and distributed environments. Some experimental results can be found in
[1,2,3,4]. A mobile agent is a Software Agent with an added feature: the capa-
bility to migrate across the network together with its own code and execution
state. This paradigm allows both a pull and a push execution model [5]. In
fact, the user can choose to download an agent or to move it to another host.
Mobility can provide many advantages when we aim at developing distributed
applications. System reconfiguration by agent migration can help to optimize
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the execution time by reducing network traffic and interactions with remote sys-
tems. Furthermore, statefull migration allows to redistribute dynamically the
agents for load balancing purposes. Several different criteria can guide agent
distribution, such as moving the execution near to the data, exploiting new idle
nodes, or allocating agents on the nodes in such a way that communications are
optimized. Many different implementations of the mobile agent programming
paradigm are available. A list of more than 60 known agent platforms can be
found at http://labe.felk.cvut.cz/~bendap1/agentsoftware/list.html.

However existing Mobile Agents platforms do not provide collective commu-
nication primitives which can help the programmer to develop parallel applica-
tions. Here we present a collective communication service implemented in the
Jade agent platform and we propose its exploitation in a scientific parallel appli-
cation to interface transparently heterogeneous executions which run in parallel
in a distributed environment. Next section introduces message passing, collective
communication concepts and technology together with agents systems. Section
three presents the collective communication service and its implementation. Sec-
tion four describes the parallel application we are going to use as case study.
Finally Conclusions summarize the current status of our research and ongoing
work.

2 Message Passing and Collective Communication:
Concepts and Technology Together with Agents
Systems

Message passing libraries and collective communication primitives to support
parallel and Grid programming are widely developed and used in scientific com-
munity. As an example, we cite MPI (Message Passing Interface), the best known
standard [6] which defines more the 300 routines. Its implementations for fortran
and C languages are available on different architecture by countless developers.
JavaMPI [7] is a pure java implementation of the standard, while MPIJ [8] is a
java interface to a native code implementation of the supported methods. Other
parallel environments such as DECK [9] provide similar facilities. On the other
side collective communication primitives can be rarely found implemented in
agents platforms. The FIPA standard [10] provides specifications to design an
agent platform. It describes the software architecture of an agent platform, the
basic services which must be provided, the life cycle of an agent, but the most rel-
evant part of the standard concerns the agent communication language. In fact,
FIPA original effort aims, above all, at supporting interoperability among au-
tonomous agents belonging to the same platform or to different ones. Regarding
agent communication FIPA defines communicative acts and their requirements
[FIPA00037], grammatical structure of Agent Communication Language, agent
interaction protocols, their ontology, semantic and requirements. The standard
do not deal with the transport communication protocol and the way to ex-
change messages. Nowadays many platforms are compliant with the FIPA spec-
ifications and implement many message transport protocols (MTPs) to support
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interoperability with other agent systems. An example is JADE, developed by
TILAB (Telecom Italia laboratory) which implements HTTP MTP, IIOP MTP,
Orbacus MTP for inter platform communication and RMI for intra platform
communication. Regarding the communication primitives supported by a mobile
agents platform different message passing models can be available: synchronous,
asynchronous, future messaging, etc. They differ according to the way the sender
behaves when sending a message. It can wait for the end of the message handling
at destination, it can wait or check later for a response. The Aglet Workbench,
developed by IBM Japan research group [11] supports all the mechanisms de-
scribed above.

3 Mobile Agents Collective Communication

In a previous paper we have presented MAGDA - Mobile Agents based Grid
Architecture - [14]. It is conceived in order to provide secure access to a wide
class of services in an heterogeneous system, locally and geographically distrib-
uted. MAGDA is a layered architecture, which strictly adheres to the Layered
Grid Model[15]. We exploited MAGDA to develop Mobile Agents based parallel
applications in [12,4,13]. We extended the multicast communication mechanism
supported locally in the Aglet Workbench in order to make it working in a
distributed environment. Now we aim at providing at agent level a collective
communication library and at developing an agent gateway to extend the com-
munication ability of legacy applications (such as classical MPI applications) to
heterogeneous and distributed environments. The conceived model defines two
communication layers, as shown in Figure 1. The first one is implemented by a
native parallel middleware; the second one, at upper level, is implemented by
agents. An agent gateway is able to perform as a bridge forwarding messages
from an environment to the other. A similar approach is exploited by MPICH G2
[16] in the Globus middleware among proprietary implementation of the MPI
standard. In our architecture, a collective communication manager coordinates
groups, collects and delivers messages being able to migrate across the network,
in order to optimize the mean latency and the traffic according to the physical
location of the communicating parties.

3.1 Designing the Collective Communication Service

We designed the collective communication facility as a service provided by an
agent inside the Jade platform. The provider is both a group and a message man-
ager. It can be federated with other providers in order to distribute the handling
of groups and of messages. Furthermore it is mobile and can migrate to a best
suited node according to the physical distribution of group members in order
to minimize latencies and traffic which affect the network. The communication
manager accepts subscriptions by agents to new or to already available groups.
Afterwards, agents can send to it messages which must be handled according
to the selected communication mechanism. In the starting phase the provider
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Fig. 1. The two layer communication hierarchy

publishes its service as Collective Communication Service in the directory fa-
cilitator which is the FIPA standard directory where agents look for available
services (according to the standard, it must be implemented by an agent and
must run in each platform). Each agent requestor is able to look for the service
and to subscribe dynamically to a collective communication group identified by
the provided identification label. If the required group is unknown a new group is
built with the received label otherwise the agent is added to the already existing
group. The agent subscription is delayed till any open collective communica-
tion involving that group will be successfully completed. Each agent requestor
is able to subscribe to a group, to unsubscribe to the same group and to take
part in a collective communication by sending a message to the provider and
waiting for the response. According to the selected communications mechanism,
the response is returned when all the other group members have joined the same
communication instance. We support the following communication mechanisms:

– broadcast : the message is forwarded to all the members of all existing group
registered by a provider

– multicast : the message is forwarded to all the agents of the specified group.
– scatter : the content of the message received by a specified agent (the root)

is distributed to the other group members.
– gather : the content of the received messages are collected in a vector that

is sent to the specified root member of the specified group. All the others
agent receive an acknowledge when the communication is completed.

– allgather : the content of the received messages are collected in a vector that
is sent to all the members of the specified group.

– alltoall : content of the received message from each agent is divided among
the others group members in the way that each one receives part of the
content from all messages.
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We implemented the described service in the Jade platform. We provide a
set of APIs at client side that allows the programmer to create a MPI message
and to invoke the desired collective communication primitive. In the jade pro-
gramming model the developer can define an agent behavior extending a basic
Behavior class whose instances will be scheduled by the agent itself. As it is
shown in Figure 2 we implemented a MPIBehaviour that looks for an available
collective communication service and provide some final methods which allow the
agent to subscribe/unsubscribe to communication groups and to take part in the
supported collective communication actions. The datatype parameter identifies

+ MPIBehaviour(myAgent: Agent)

+ subscribe(group: String): void

+ unsubscribe(group: String): void

+ multicast(buffer: Vector, root:String, datatype:String, group:String): void

+ broadcast(buffer: Vector, root:String, datatype:String): void

+ gather(buffersend: Vector, bufferrec: Vector, root:String, datatype:String, group:String): void

+ allgather(buffersend: Vector, bufferrec: Vector, root:String, datatype:String, group:String): void

+ scatter(buffersend: Vector, bufferrec: Vector,root:String, datatype:String, group:String): void

+ alltoall(buffersend: Vector, bufferrec: Vector, root:String, datatype:String, group:String): void

-MPIService: AIDProvider

MPIBeahvior

+ MPIBehaviour(myAgent: Agent)

+ subscribe(group: String): void

+ unsubscribe(group: String): void

+ multicast(buffer: Vector, root:String, datatype:String, group:String): void

+ broadcast(buffer: Vector, root:String, datatype:String): void

+ gather(buffersend: Vector, bufferrec: Vector, root:String, datatype:String, group:String): void

+ allgather(buffersend: Vector, bufferrec: Vector, root:String, datatype:String, group:String): void

+ scatter(buffersend: Vector, bufferrec: Vector,root:String, datatype:String, group:String): void

+ alltoall(buffersend: Vector, bufferrec: Vector, root:String, datatype:String, group:String): void

-MPIService: AIDProvider

MPIBeahvior

Fig. 2. The MPIBehaviour class diagram

the object class inserted in the buffer. The programmer can send or receive any
datatype and any amount of object by a Vector instance. The root parameter is
the agent identifier of the receiver/sender in the specific communication pattern.
The group parameter defines who will participate to the communication.

3.2 Mobile Agent Communication Gateway

In order to interface the agent based communication service described in the
previous section with legacy MPI applications we have designed an agent gate-
way. The agent will start the MPI application and will be considered by the
MPI processes as a process itself. When a communication primitive is invoked,
the agent transparently will act as message gateway forwarding the information
to other agent gateways which subscribed to a collective communication group
of higher level. Hence, the agent gateway represents a virtual process which is
physically allocated on a remote heterogenous node or distributed among more
nodes. It will be implemented by a real MPI process that will take part in the
communication at two different levels: at the lower one it exploits native MPI,
at the higher one the agent technology. We are still evaluating its implementa-
tion details so we are not able to provide a final design of the component of the
communication middleware. In [17] we have implemented in a Grid environment
a parallel application to study plasma turbulence. Starting from this previous



Mobile Agents Based Collective Communication 729

experience, we are going to apply the presented approach to the case study
described in the next section. As shown previously, we have provided all the
necessary communication primitives: scatter, broadcast and alltoall implemen-
tations. Note that all the MPI primitives are handled by MPI daemons running
on each node. We will have to extends these daemons to support the hierarchical
communication presented above.

4 Plasma Turbulence Simulation

Particle-in-cell simulation consists [18] in evolving the coordinates of a set of Npart

particles in certain fluctuating fields computed (in terms of particle contributions)
only at the points of a discrete spatial grid and then interpolated at each particle
(continuous) position. Two main strategies have been developed for the workload
decomposition related to porting PIC codes on parallel systems: the particle de-
composition strategy [19] and the domain decomposition one [20,21]. Domain de-
composition consists in assigning different portions of the physical domain and
the corresponding portions of the spatial grid to different processes, along with
the particles that reside on them. Particle decomposition, instead, statically dis-
tributes the particle population among the processes, while assigning the whole
domain (and the spatial grid) to each process. As a general fact, the particle de-
composition is very efficient and yields a perfect load balancing, at the expenses
of memory overheads. Conversely, the domain decomposition does not require a
memory waste, while presenting particle migration between different portions of
the domain, which causes communication overheads and the need for dynamic
load balancing [22,21]. The typical structure of a PIC code for plasma particle
simulation can be represented as follows. At each time step, the code

1. computes the electromagnetic fields only at the Ncell points of a discrete
spatial grid (field solver phase);

2. interpolates the fields at the (continuous) particle positions in order to evolve
particle phase-space coordinates (particle pushing phase);

3. collects particle contribution to the pressure field at the spatial-grid points
to close the field equations (pressure computation phase).

We can schematically represent the structure of this time iteration by the fol-
lowing code excerpt:

call field_solver(pressure,field)
call pushing(field,x_part)
call compute_pressure(x_part,pressure)

Here, pressure(1:n cell), field(1:n cell) and x part(1:n part) (with
n cell= Ncell and n part= Npart) represent pressure, electromagnetic-field and
particle-position arrays, respectively. In order to simplify the notation, we will
refer, in the pseudo-code excerpts, to a one-dimensional case, while the real code
refers to a three-dimensional (3-D) application. In implementing a parallel version
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of the code, according to the distributed-memory domain-decomposition strat-
egy, different portions of the physical domain and of the corresponding spatial
grid are assigned to the nnode different nodes, along with the particles that reside
on them. This approach yields benefits and problems that are complementary to
those yielded by the particle-decomposition one [19]: on the one hand, the mem-
ory resources required to each node are approximately reduced by the number of
nodes (n part∼ Npart/nnode, n cell∼ Ncell/nnode); an almost linear scaling of
the attainable physical-space resolution (i.e., the maximum size of the spatial grid)
with the number of nodes is then obtained. On the other hand, inter-node com-
munication is required to update the fields at the boundary between two different
portions of the domain, as well as to transfer those particles that migrate from one
domain portion to another. Such a particle migration possibly determines a severe
load unbalancing of the different processes, then requiring a dynamic balancing,
at the expenses of further computations and communications. Let us report here
the schematic representation of the time iteration performed by each process,
before giving some detail on the implementation of such procedures:

call field_solver(pressure,field)
call check_loads(i_check,n_part,n_part_left_v,

& n_part_right_v)
if(i_check.eq.1)then
call load_balancing(n_part_left_v,n_part_right_v,

& n_cell_left,n_cell_right,n_part_left,n_part_right)
n_cell_new=n_cell+n_cell_left+n_cell_right
if(n_cell_new.gt.n_cell)then
allocate(field_aux(n_cell))
field_aux=field
deallocate(field)
allocate(field(n_cell_new))
field(1:n_cell)=field_aux(1:n_cell)
deallocate(field_aux)

endif
n_cell=max(n_cell,n_cell_new)
n_cell_old=n_cell
call send_receive_cells(field,x_part,

& n_cell_left,n_cell_right,n_part_left,n_part_right)
if(n_cell_new.lt.n_cell_old)then
allocate(field_aux(n_cell_old))
field_aux=field
deallocate(field)
allocate(field(n_cell_new))
field(1:n_cell_new)=field_aux(1:n_cell_new)
deallocate(field_aux)

endif
n_cell=n_cell_new
n_part=n_part+n_part_left+n_part_right
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endif
call pushing(field,x_part)
call transfer_particles(x_part,n_part)
allocate(pressure(n_cell))
call compute_pressure(x_part,pressure)
call correct_pressure(pressure)

In order to avoid continuous reallocation of particle arrays (here represented
by x part) because of the particle migration from one subdomain to another,
we overdimension (e.g., +20%) such arrays with respect to the initial optimal-
balance size, Npart/nnode. Fluctuations of n part around this optimal size are
allowed within a certain band of oscillation (e.g., ±10%). This band is defined
in such a way to prevent, under normal conditions, index overflows and, at the
same time, to avoid excessive load unbalancing. One of the processes (the MPI
rank-0 process) collects, in subroutine check loads, the values related to the
occupation level of the other processes and checks whether the band boundaries
are exceeded on any process. If this is the case, the “virtual” number of par-
ticles (n part left v, n part right v) each process should send to the neigh-
bor processes to recover the optimal-balance level is calculated (negative values
means that the process has to receive particles), and i check is set equal to 1.
Then, such informations are scattered to the other processes. These communica-
tions are easily performed with MPI by means of the collective communication
primitives MPI Gather, MPI Scatter and MPI Bcast. Load balancing is then per-
formed as follows. Particles are labelled (subroutine load balancing) by each
process according to their belonging to the units (e.g., the n cell spatial-grid
cells) of a finer subdivision of the corresponding subdomain. The portion of the
subdomain (that is, the number of elementary units) the process has to release,
along with the hosted particles, to neighbor subdomains in order to best ap-
proximate those virtual numbers (if positive) is then identified. Communication
between neighbor processes allows each process to get the information related
to the portion of subdomain it has to receive (in case of negative “virtual” num-
bers). Net transfer information is finally put into the variables n cell left,
n cell right, n part left, n part right. Series of MPI Sendrecv are suited
to a deadlock-free implementation of the above described communication pat-
tern. Portions of the array field have now to be exchanged between neighbor
processes, along with the elements of the array x part related to the particles re-
siding in the corresponding cells. This is done in subroutine send receive cells
by means of MPI Send and MPI Recv calls. The elements of the spatial-grid ar-
ray to be sent are copied in suited buffers, and the remaining elements are
shifted, if needed, in order to be able to receive the new elements or to fill pos-
sibly occurring holes. After sending and/or receiving the buffers to/from the
neighbor processes, the array field comes out to be densely filled in the range
1:n cell new. Analogously, the elements of x part corresponding to particles to
be transferred are identified on the basis of the labelling procedure performed in
subroutine load balancing and copied into auxiliary buffers; the residual array
is then compacted in order to avoid the presence of “holes” in the particle-index
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space. Buffers sent by the neighbor processes can then be stored in the higher-
index part of the x part (remember that such an array is overdimensioned).
After rearranging the subdomain, subroutine pushing is executed, producing
the new particle coordinates, x part. Particles whose new position falls outside
the original subdomain have to be transferred to a different process. This is
done by subroutine transfer particles. First, particles to be transferred are
identified, and the corresponding elements of x part are copied into an auxil-
iary buffer, ordered by the destination process; the remaining elements of x part
are compacted in order to fill holes. Each process sends to the other processes
the corresponding chunks of the auxiliary buffer, and receives the new-particle
coordinates in the higher-index portion of the array x part. This is a typical all-
to-all communication; the fact that the chunk size is different for each destination
process makes the MPI Alltoallv call the tool of choice. Finally, after reallocat-
ing the array pressure, subroutine compute pressure is called. Pressure values
at the boundary of the subdomain are then corrected by exchanging the locally-
computed value with the neighbor process (subroutine correct pressure), by
means of MPI Send and MPI Recv calls. The true value is obtained by adding the
two partial values. The array pressure can now be yielded to the subroutine
field solver for the next time iteration.

5 Conclusions

We presented a collective communication service for mobile agents system. The
mobility feature allows to dynamically optimize the dispatching of messages by
migrating the service itself or, if it is possible, the communication parties. A first
implementation in the Jade platform supporting limited communication primi-
tives has been presented. We still lack to provide optimized implementation of
messaging forwarding. Also strategies to move the provider to the best nodes and
federation of multiple providers need to be implemented. We described how this
service is going to be exploited for interfacing heterogeneous parallel applications
which interact by collective communication primitives such as the ones defined
in the MPI standard. We have finally introduced a real parallel application, used
in our ongoing work, which has being used to test our proposed architecture for
collective communication service for mobile agents. Due to lack of time we are
not able to provide stable results, but performance analysis will be discussed on
the conference event.
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Abstract. Wepresent a static parallel implementation of themultifrontal
method to solve unsymmetric sparse linear systems ondistributed-memory
architectures. We target Finite Element (FE) applications where numer-
ical pivoting can be avoided, since an implicit minimum-degree ordering
based on the FE mesh topology suffices to achieve numerical stability. Our
strategy is static in the sense that work distribution and communication
patterns are determined in a preprocessing phase preceding the actual nu-
merical computation. To balance the load among the processors, we devise
a simple model-driven partitioning strategy to precompute a high-quality
balancing for a large family of structured meshes. The resulting approach
is proved to be considerably more efficient than the strategies implemented
by MUMPS and SuperLU DIST, two state-of-the-art parallel multifrontal
solvers.

1 Introduction

Finite Element (FE) applications typically rely on the numerical solution of sys-
tems of Partial Differential Equations (PDEs) modeling the behavior of some
physical system of interest [16]. From a computational point of view, solving
these PDEs involves the solution of large, sparse linear systems whose sparsity
pattern depends on the topology of the FE mesh. Since the physical phenom-
ena under simulation may be non-linear and evolving through time, a given FE
mesh may require the solution of many linear systems with the same sparsity
pattern but with different numerical values. In turn, each of these linear sys-
tems can be solved through iterative or direct methods [10]. The use of direct
methods becomes particularly desirable if the FE application is such that nu-
merical pivoting is unnecessary and the mesh topology remains unchanged over
many iterations. Under this common scenario, successive solutions of (numeri-
cally) different linear systems can share the same computation schedule, hence
heavy preprocessing, whose cost is amortized over the iterations, can be used for
optimization purposes.

In what follows, we regard an FE mesh as a graph with N vertices, represent-
ing degrees of freedom (unknowns) of the physical system, and edges connecting
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any two unknowns interacting within some constraint. Under this view, an ele-
ment becomes a fully-connected subgraph (clique) of M vertices, where M is a
small constant (usually less than 100). Each clique is connected to other cliques
by boundary vertices in a sparse pattern. The N×N linear system Ax = b associ-
ated to the FE mesh at some iteration is assembled by computing A =

∑ne

e=1 Ae,
and b =

∑ne

e=1 be, where ne is the number of elements of the FE mesh, and the
entries ae

ij may be nonzero only when i and j are indices of vertices of the e-th
element of the mesh.

Direct methods solve the assembled linear system by decomposing A into
easy-to-solve factors, the most effective strategies for unsymmetric matrices be-
ing based on LU decomposition. The elimination order aims at reducing the
emergence of fill-ins to preserve sparsity, and can be represented by an Assem-
bly Tree (AT) whose nodes relate to the elimination of a set of unknowns with
the same sparsity pattern. An effective implementation of this idea is the mul-
tifrontal method [11,15], which can be regarded as a post-order visit of the AT
where eliminations at a node employ dense matrix kernels for improved perfor-
mance [4]. If the linear system arises from an FE application, then the resulting
AT can be directly related to the topology of the FE mesh, namely, the former
represents a hierarchical decomposition of the latter into connected regions, with
each AT node corresponding to one such region.

The multifrontal method interleaves phases of assembly of larger and larger
portions of the FE mesh with elimination phases, where a partial LU decom-
position is executed on Fully-Summed (FS) rows and columns, which are those
that need never be updated by further phases. Visiting a leaf of the AT in-
volves computing the matrix Ae and the right hand side vector be of the related
mesh element. Visiting an internal node of the AT entails merging the two re-
gions corresponding to its sons and then eliminating the resulting FS rows and
columns1.

Any efficient implementation of the multifrontal method maintains a compact
representation of the matrices associated with the nodes of the AT into dense
two-dimensional arrays storing the non-zero entries of the corresponding matri-
ces. When two regions are merged together into a larger region associated with
node n of the AT, during the assembly phase we build an f × f matrix An. If s
rows and columns of An become FS due to the assembly, the entries of An can
be arranged as

An =
[

Sn Rn

Cn Nn

]
, where

{
Sn ∈ IRs×s,Rn ∈ IRs×(f−s),

Cn ∈ IR(f−s)×s,Nn ∈ IR(f−s)×(f−s) . (1)

Submatrices Sn, Rn, and Cn are called the FS blocks. After each assembly, the
elimination phase computes the following matrices from An:
1. LnUn ← Sn; 3. L̄n ← Cn(Un)−1;
2. Ūn ← (Ln)−1Rn; 4. Ān ← Nn − L̄nŪn.

1 To avoid ambiguity, we will use the term “vertices” exclusively for the vertices of
the FE mesh, while the word “node” will be reserved for the vertices of the AT.
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After the elimination phase, matrices Ln, Un, Ūn, and L̄n can be stored else-
where in view of the final forward and backward substitution activities needed
to obtain the final solution, whereas the Shür complement Ān will contribute to
the assembly phase associated with the parent of n. Steps 2, 3, and 4 can employ
high-performance BLAS Level 3 routines [9], whereas any efficient LU decom-
position algorithm can be used in Step 1. The pair of assembly and elimination
phases for a region n will be referred to as the processing of that region.

This paper describes an efficient parallel implementation of the multifrontal
method, whose main feature is a static, model-driven approach to work distribu-
tion and load balancing among the processing elements. By static, we mean that
work distribution and communication patterns do not depend on the numeri-
cal characteristics of the solution process. This is possible whenever numerical
pivoting can be avoided, since a simple implicit minimum-degree pivoting strat-
egy ensures the same numerical stability [5]. The benefit of a static strategy
is twofold. First, inter-processor communication patterns can be precomputed
and optimized; second, heavy preprocessing can be performed to gather data
needed to speed up the subsequent numerical computation with negligible mem-
ory overhead. Preprocessing time can be amortized over the repeated solutions
of systems with the same sparsity structure.

The last few years have seen the emergence of a number of multifrontal solvers
(see [2] and references therein).However, only twoprominent solvers,MUMPS [1,3]
and SuperLU DIST [8,14], work in parallel on distributed-memory architectures
and are capable of solving general unsymmetric linear systems. For this reason, we
will compare the performance of our newly developed solver solely with MUMPS,
and SuperLU DIST2. MUMPS implements a multifrontal algorithm based on a
parallel hierarchical LU decomposition approach similar to the one used in our
solver, but it follows a dynamic approach to distribute the work between the
computing processors. In contrast, SuperLU DIST starts from the full matrix
of the system and partitions it by means of a different technique (based on the
identification of supernodes).

The results presented in this paper substantiate the claim that the fully sta-
tic approach adopted by our solver may ensure considerable performance gains
over the more complex dynamic solution, provided that simple and effective sta-
tic load balancing techniques can be afforded by the application domain under
consideration.

The rest of the paper is organized as follows. In Section 2 we describe the basic
features of a general framework for a parallel multifrontal solver, and introduce
the notation used throughout the paper. In Section 3 we provide the details of our
parallel multifrontal algorithm. In Section 4 we focus on the model-driven parti-
tioning algorithm devised and present a number of issues related to the AT topol-
ogy. In Section 5 we compare the performance of our application with MUMPS
and SuperLU DIST on a number of benchmark FE meshes modeling the behav-
ior of porous media. Finally, Section 6 reports some concluding remarks.

2 In fact, a previous study [2] has proved the superiority of MUMPS over SuperLU DIST.
We decided to retain SuperLU DIST in our comparison mainly for completeness.
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2 A General Framework for a Parallel Multifrontal Solver

In a parallel environment, the work attached to each node of the AT can be
speeded up by distributing this work among the available processors. Define a
function Π that maps each AT node n into a subset Πn

def= Π(n) of available
processors that will perform the work attached to that node. Similarly, let Π l

n

and Πr
n denote the processor sets assigned, respectively, to the left and right

son of an internal node n. We say that two arbitrary processors in the same
set (either Π l

n or Πr
n) are on the same side, while a processor in Π l

n is said
to be on the other side from a processor in Πr

n. The pair (Π , AT) defines a
static processor allocation. In order to carry out the partial LU decomposition
associated with node n, the processors in Πn must first obtain and assemble
the Schür complements Āx and Āy previously computed by the processors in
Π l

n and Πr
n at nodes x and y, children of n. Within this framework, a parallel

multifrontal algorithm defined over (Π , AT) must determine for each node n: 1)
suitable communication patterns among the processors in the subsets Πn, Π l

n,
and Πr

n and 2) how the processors in Πn cooperate to decompose the newly
assembled matrix.

This general framework can be simplified by making some reasonable assump-
tions on the pair (Π , AT). First of all, it is natural to assume that the number
of mesh elements ne (hence, the number of leaves of the AT) is greater than the
number of available computing processors np. Therefore, we can find a set of np

disjoint subtrees that cover all the leaves of the AT and associate each of these
subtrees with a single distinct processor. After an initial data distribution, com-
putation on these subtrees can proceed in parallel without any communication
involved. We call each of these subtrees a Private Assembly Tree (PAT). The
computation on each PAT proceeds as in the sequential case amply described
in [4]. The (uncovered) subtree of the AT that has the roots of the private sub-
trees at its leaves is called Cooperative Assembly Tree (CAT) since it involves
explicit communication between processors. In order to maximize parallelism
while limiting the communication volume and enhancing submachine locality,
we will consider allocation strategies for which Πn = Π l

n ∪Πr
n, for each node n

of the CAT.

3 Distributed LU Decomposition Algorithm

Our parallel multifrontal strategy essentially computes the same matrices pro-
duced by the sequential algorithm. From here on, these matrices will be referred
to as virtual matrices. In the parallel algorithm a virtual matrix associated with
an internal node n of the CAT is distributed among the processors of Πn, with
each such processor working on a partial (sub)matrix. Consider the virtual matrix
An of Eq. (1). We partition the rows of Cn and Nn into |Πn| subsets denoted
as Cp

n and Np
n, where p ∈ Πn. The task assigned to processor p is to decompose

the partial matrix
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Ap
n =

[
Sn Rn

Cp
n Np

n

]
(2)

by means of the four-step sequential algorithm described in Section 1.
Observe that all processors in Πn need the same decomposition Sn → LnUn

and the solution to the same triangular system Ūn ← (Ln)−1Rn in order to
solve different triangular systems L̄p

n ← Cp
n(Un)−1 and compute different partial

Schür complements Āp
n ← Np

n − L̄p
nŪn. These partial Schür complements form

a row partition of the virtual Schür complement Ān among the processors in
Πn, and will be used in the assembly phase of the father of n. In our solver, we
choose to replicate the above common computation in each processor rather then
having a single processor gather the relevant data, perform the computation, and
then scatter the result to the other processors in Πn. This master/slave scenario
is instead the adopted solution in MUMPS3.

The way we partition the rows of Cn and Nn affects the whole parallel algo-
rithm. We now describe one possible solution that reduces the amount of data
exchanged during the assembly phase. Let Vn and V p

n be the sets of mesh vertices
related, respectively, to the rows of the virtual matrix An and the rows of the
partial matrix Ap

n assigned to p ∈ Πn. Clearly,
⋃

p∈Πn
V p

n = Vn. Our partition-
ing makes sure that V p

n = Vn ∩ V p
ρ , where ρ is the root of the PAT assigned to

processor p, whence we call V p
ρ the set of initial vertices of p. The main drawback

of this simple strategy is that this subset keeps shrinking along the path toward
the root of the AT, and will eventually become empty due to rows becoming
FS, eventually leaving processor p potentially idle: we will address this cause of
imbalance in Section 3.2. Note that the vertices related to the columns of partial
matrices are the same of the corresponding virtual ones. In fact, the choice of
partitioning with respect to the rows (rather than the columns) is totally arbi-
trary. A totally symmetric column-oriented algorithm can be easily obtained by
switching the role of rows and columns.

3.1 The Assembly Phase

In order to build its partial matrix Ap
n, p first has to upgrade the rows of the

partial Shür complement computed by p itself in the previous elimination phase,
to include the entries of the columns held by processors sharing a subset of its
initial vertices. Observe that if more than one processor on the same side has an
initial vertex v, then the corresponding rows of their partial Schür complements
are the same. As a consequence, during the assembly of Ap

n, processor p can
exchange data with at most one other processor per vertex, and this processor
is on the other side from p. No communication within the same side is required
during this step. When this assembly step is finished, all processors having v as
an initial vertex will have the (same) corresponding row in their partial matrix.
This first step of the assembly phase is called the merging step.

3 Note that both approaches afford employing optimized parallel routines for the LU
decomposition of Sn at the root of the AT, without the large communication over-
heads which would be required at internal nodes.
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After the merging step, in order to finish the assembly, p must still complete
the blocks Sn and Rn with the FS rows relative to non-initial vertices. Observe
that the missing FS rows can be found somewhere within the same side, since FS
vertices are shared by both the left and the right components, and the merging
step has already upgraded the corresponding rows. As a consequence, during this
step each processor can exchange data with at most one processor per missing
vertex, and one such processor can always be found on the same side. No commu-
nication with the other side is needed during this step. We call this second assem-
bly step the distribution step, which completes the assembly phase for node n.

3.2 Communication Pattern and Load Balancing

In order to find the communication pattern, we define Sn as the set of shared
vertices among the processors of the left and right son of node n. As we did for
virtual matrices, for each processor p ∈ Πn, we define Sp

n = Sn ∩ V p
n to be the

subset of vertices of p which are also shared. What processor p needs to receive
during the merging step are the rows whose indices are in set Sp

n and arriving
from processors within the other side. Analogously, for the distribution step, we
define Fn as the set of vertices that become FS when processing node n of the
CAT. Clearly, we have that Fn ⊆ Sn. For each p ∈ Πn, we define F p

n = Fn∩V p
n to

be the subset of vertices of p which become FS. What processor p needs to receive
during the distribution step are the rows whose indices are in the set Fn \ F p

n

and arriving from processors within the same side of processor p. Since each
processor has multiple potential sources for gathering the data needed for the
merging and distribution steps, deciding the optimum communication pattern
and the amount of data to gather from each processor involves the solution of a
computationally hard problem. To deal with such a problem efficiently, we make
the reasonable assumption that the latency in setting up a communication is
the real bottleneck. We are then left with minimizing the number of processors
that each processor needs to contact, which is an instance of a Minimum Set
Cover (MSC) problem. The well known greedy strategy for MSC [7] can then be
employed to compute a communication pattern whose performance is not too
distant from the optimal.

When all the vertices in V p
ρ become FS, processor p becomes potentially idle.

Depending on the shape of the region corresponding to the root of the PAT
assigned to processor p, this may happen before the last elimination phase. To
avoid a waste of computing power, an idle processor may be assigned a cer-
tain number of rows belonging to partial matrices of other processors that are
still active. If we limit the possible “donors” of rows to Πn, the resulting load
balancing will feature a high degree of locality easing the parallel forward and
backward substitution algorithm [12]. The communications required for balanc-
ing can be predetermined during the symbolic analysis phase described in the
next subsection. Our approach to balancing is model-driven, in the sense that
we use the same cost model described in Section 4 for partitioning the mesh to
estimate the load of a processor, and adopt a threshold criterion to maintain a
convenient computation/communication ratio.
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3.3 Speeding Up the Assembly Phase

As mentioned in the introduction, there is no change in the sparsity pattern
of the matrices involved in each of the numerous iterations of the multifrontal
solver for a given FE problem. Moreover, our target application domains are
such that numerical pivoting can be avoided. Therefore, as already done in the
sequential application [4], we can spend time on a preprocessing activity that
“simulates” the decomposition process without performing the actual numerical
decomposition. During this symbolic analysis phase, crucial information regard-
ing the decomposition process are gathered, which can then be used to speed
up the subsequent numerical computation. Moreover, in the parallel case, our
static work distribution and load balancing strategies make it possible to ex-
tend symbolic analysis to encompass the optimization of data exchange between
processors during the merging and distribution steps. Specifically, a symbolic
representation of a communication pattern is precomputed, so that the matrices
can be assembled directly from the receive buffers into their final location so
to avoid expensive intermediate buffering and reducing cache-inefficient indirect
addressing and conditional branches.

The symbolic data used to speed up the numerical merging step are an ex-
tension of the γ-functions used to speed up the assembly phase of the sequential
algorithm in [4]. These functions implement inverted references, in the sense that
they map the indices of each entry of the destination buffers to the indices of the
corresponding source buffers containing the values contributing to the assembly
of that entry.

4 A Model-Driven Partitioning Algorithm

When processing an internal CAT node n, processors in Πn synchronize their
work in two different ways: external synchronization is required during the merg-
ing step, since processors on opposite sides exchange data, while internal syn-
chronization takes place during the distribution step between processors ex-
changing FS rows within the same side. The load balancing strategy described
in Section 3.2 aims at reducing internal synchronization, given that all proces-
sors in Πn will be on the same side during the distribution step associated with
the parent of node n. External synchronization time at a node depends on the
discrepancy between the running times of the processors computing the left and
the right subtree of that node. Balancing the total running time on these two
subtrees is much trickier than balancing the work on a single node, since the
total time depends on the overall topology of the AT and on the map between
its leaves and the mesh elements. In order to produce an AT topology capable of
yielding an adequate global balancing, we have developed a very simple recursive
heuristic that simultaneously partitions the FE mesh into nested rectangular re-
gions and determines the working processors for each region (see Fig. 1 for an
example).

The mesh partitioning is driven by the cost function f(n) that models the
execution time of the block LU decomposition step performed at a node n of
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the AT, depending on the block sizes of the matrices allocated to each processor
in Πn. On a fixed AT, based on f(n) we are able to estimate the computing
time t(n) to process its subtree rooted at node n. We synthesize f(n) by least
square interpolation from the running times of a suite of sequential block LU
benchmarks to be run during the installation of the solver library on a target ar-
chitecture. When n is a node of a CAT, the function deals only with computation
time and not with communication.

1
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16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39
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Fig. 1. CAT for 20 processors and the corresponding model-driven partition in 20
regions (one for each leaf) of a square FE mesh. Mesh regions are numbered with the
corresponding leaf identifier.

Driven by function t(n), we may determine the region corresponding to each
node of the AT by visiting the fixed-shape CAT in a depth-first manner. Starting
from the root, which corresponds to the whole mesh, we search for a bisection
that minimizes the difference between t(l) and t(r), where t(l) and t(r) are
recursively obtained in the same fashion. The resulting partitioning algorithm is
exponential in the mesh size but fortunately we can employ simple heuristics to
make it affordable. First, we seek nested partitions of rectangular shape, hence
the number of possible bisections of a mesh region with m elements is Θ(

√
m).

Second, we limit the exhaustive search activity only at the levels of the CAT
whereas we simply decompose each region within a PAT (which will be assigned
to single processor) into roughly equally sized subregions.4 As a result, very
few evaluations of the cost function are generally required before finding such a
minimum.

After partitioning, we are left with mapping the leaves of the CAT with the
processors, trying to enforce as much sub-machine locality as possible. For ex-
ample, when using a parallel machine made by SMPs with p processors each,
every CAT subtree with p leaves should be processed by a single SMP node
to avoid slower inter-node communications. To this purpose, our code features
a very simple greedy strategy for confining communications between different
SMP nodes as close to the root as possible.

4 This latter simplification affects the quality of the resulting partition minimally,
since most of the solver’s work is done at the nodes of the CAT.
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5 Results

We have compared our solver, dubbed FEMS (Finite-Element Multifrontal Solver)
against MUMPS v. 4.6 and SuperLU DIST v. 2.0. In order to quantify the con-
tribution to performance of the model-driven partitioning strategy described in
Section 4, we have also set up a modified version of FEMS (called FEMS-M in the
following)which uses the METIS package [13] for partitioning. Our targetmachine
is an IBM eServer 575 with 64 Power5processorsworking at 1.5 GHz, each capable
of a peak performance of 6 Gflop/s. Processors are grouped into 16-processorSMP
nodes connected by an IBM High Performance Switch. We used MPI to perform
communications among processes, and IBM libraries for sequential and parallel
dense linear algebra routines.

Table 1. Test cases main characteristics

Mesh N. of elements Matrix order N. of non-zeros
170 × 170 28900 436905 33955468
140 × 140 19600 296805 23028328
400 × 50 20000 304505 23497308
60 × 150 9000 137105 10573748

Our test suite comprises rectangular meshes of rectangular elements, mod-
eling scenarios in porous media simulations [6], a computationally challenging
application where each finite element has at least 40 degrees of freedom and the
involved sparse linear systems are amenable to direct solution without numer-
ical pivoting. For the sake of brevity, we report here the results obtained for
four large FE meshes in the suite, whose features are summarized in Table 1.
By “large meshes” we mean meshes for which the computation makes an in-
tensive use of main memory. Indeed, as can be seen in Table 2, some execution
times are missing due to memory limitations. FEMS, however, is usually able to
solve each problem with the smallest number of processors w.r.t. its competitors,
which is a clear indication of the fact that the overall memory requirements of
FEMS never exceed those of MUMPS and SuperLU DIST. In fact, the static
approach of FEMS allows to compute the amount of memory required by the
computation exactly, while dynamic approaches generally entail overestimation
of memory requirements.

Table 2 summarizes the factorization time of one iteration for various proces-
sor configurations, where the lower-order terms due to symbolic analysis, data-
distribution, and backward/forward substitution are not included. FEMS and
FEMS-M employ implicit minimum-degree ordering, while we let MUMPS au-
tomatically choose the fastest pivoting strategy between minimum-degree and
METIS ordering, and set up SuperLU DIST to use minimum-degree ordering on
AT + A. In order to make a fair comparison, we disabled numerical pivoting in
both competitor solvers. Results show that our solver outperforms MUMPS and
SuperLU DIST with both partitioning methods on all test cases and processors
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Table 2. Running-time comparison of FEMS, FEMS-M, MUMPS and SuperLU DIST.
Times are in seconds (missing values are due to memory limitations arising when the
large test cases are run on a few processors).

Number of processors
Solver 1 4 8 12 16 24 32 48 64
FEMS – 12.70 7.14 5.65 4.77 3.99 3.49 3.11 3.01
FEMS-M – 16.63 9.20 8.20 6.55 5.38 4.85 4.41 3.98
MUMPS – – 25.21 18.69 18.64 14.79 11.75 8.64 6.68

17
0x

17
0

SuperLU DIST – – – 15.29 13.55 21.97 15.12 10.71 11.21

FEMS – 7.22 4.15 3.34 2.77 2.38 2.06 1.89 1.80
FEMS-M – 9.32 6.89 4.74 4.69 3.82 3.32 3.04 2.84
MUMPS – 22.31 15.67 12.24 12.19 10.01 7.21 5.66 4.12

14
0x

14
0

SuperLU DIST – 17.80 11.31 9.57 8.54 8.26 7.60 7.04 7.51

FEMS 19.18 4.88 2.73 2.03 1.64 1.27 1.06 0.89 0.81
FEMS-M – 7.72 5.22 3.85 3.48 3.23 2.51 1.99 1.69
MUMPS – 11.82 7.81 5.90 6.86 5.91 4.47 3.84 3.35

40
0x

50

SuperLU DIST – 13.86 9.23 8.16 7.45 7.51 6.93 6.59 7.05

FEMS 8.06 2.08 1.15 0.97 0.77 0.66 0.60 0.53 0.52
FEMS-M 9.91 3.14 1.71 1.55 1.28 1.16 1.05 0.79 0.78
MUMPS 16.57 4.78 3.31 2.56 2.87 3.04 2.79 2.70 3.20

60
x
15

0

SuperLU DIST 16.08 6.06 4.01 3.57 3.41 3.26 3.13 2.81 3.18
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Fig. 2. Parallel performance of the solvers. The graph on the left shows the scalabil-
ity, whereas that on the right the effective utilization of the computing power. The
rate graph is limited to 32 processors due to flop-count limitations of our computing
environment.

configurations. The better performance of our solver also in the sequential case
shows the benefits of precomputing index functions to speed up the assembly
phase. Moreover, it is clear that the model-driven partitioning algorithm sub-
stantially improves performance over the use of the general METIS partitioning
routines.
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Figure 2 gives a better insight into the parallel behavior of the solvers, where
we chose to plot the speedup and performance rate graphs relative the 60× 150
test case, since the corresponding matrix is small enough to be sequentially fac-
torized by each solver within the available memory. Our solver exhibits consider-
ably higher scalability than the others and makes a better use of the computing
power, even if this test case is relatively small. The relatively worse performance
of FEMS-M over FEMS mainly depends on a larger external synchronization
time since the number of floating-point operations executed by the two versions
of our solver is roughly the same.
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Fig. 3. Differential time analysis of FEMS and FEMS-M on the CAT of Figure 1

A better perspective on the effectiveness of our model-driven partitioning al-
gorithm can be gained by looking at Figure 3 where we compare the running
times achieved by FEMS and FEMS-M on each subtree of the CAT shown in
Figure 1. Each group of bars represents the total time to compute the subtree
rooted at node n (in abscissa), with |Πn| shown above the bars in square brack-
ets; gray and white bars represent, respectively, the minimum and the maximum
finishing time of processors in Πn, with the black portion of each bar represent-
ing the fraction of the total time due to the elimination phase. The graph on the
left proves that our cost model is very accurate, since the resulting balance of
the elimination time is almost perfect. Furthermore, modeling only elimination
time seems to be an effective choice also in guaranteeing a good balancing of
the overall running time of sibling subtrees. In contrast, observe in the graph on
the right that the balancing of the elimination time is much coarser when using
METIS, which uniformly partitions the FE mesh into equally sized regions, with-
out considering the distribution of the ensuing computation along the assembly
tree.

6 Conclusions and Future Work

We presented a parallel multifrontal linear system solver especially tailored for
FE applications, whose main features are a static allocation of work based on the
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topology of the FE mesh and a model-driven load balancing technique. Future
work will involve the release of a software library providing our FEMS solver.
The library will adapt to the computing platform by running a carefully selected
suite of microbenchmarks needed to determine the parameters of the cost model
used to provide the partitioning. In order to enable to run FEMS also on hetero-
geneous machines, we are planning to provide the possibility of instantiating the
cost model differently on different nodes of the parallel machine. Finally, further
research effort will be devoted to the effective application of our model-driven
partitioning and static work allocation strategy for unstructured and 3D meshes.
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Abstract. The problem of growing computational complexity in finance indus-
try demands manageable, high-speed and real-time solutions in solving com-
plex mathematical problems such as option pricing. In  option trading scenario, 
determining a fair price for options “any time” and “any-where” has become vi-
tal yet difficult computational problem. In this study, we have designed, imple-
mented, and deployed architecture for pricing options on-line using a hand-held 
device that is J2ME-based Mobile computing-enabled and is assisted by web 
mining tools. In our architecture, the client is a MIDP user interface, and the 
back end servlet runs on a standalone server bound to a known port address. In 
addition, the server uses table-mining techniques to mine real-time data from 
reliable web sources upon the mobile trader’s directive. The server performs all 
computations required for pricing options since mobile devices have limited 
battery power, low bandwidth, and low memory. To the best of our knowledge, 
this is one of the first studies that facilitate the mobile-enabled-trader to com-
pute the price of an option in ubiquitous fashion. This architecture aims at 
providing the trader with various computational techniques to avail (to provide 
results from approximate to accurate results) while on-the-go and to make im-
portant and effective trading decisions using the results that will ensure higher 
returns on investments in option trading.  

1   Introduction 

Option pricing forms a fundamental objective and backbone of financial risk man-
agement and decision-making solutions in option trading. Active trading takes place 
either at the trading floor or through computers with instructions from investors or 
investment managers. However, once an investor steps away from the workplace, the 
investor encounters problems of interrupted trading, as the required information is no 
longer available. In such cases, investors have to rely on the data provided by some 
source (such as electronic board display). If the investor is away from the building, 
he/she has to be in continuous touch through other sources such as a broker to get 
some basic information about the market. However, the information provided by 
                                                           
* Corresponding author. 



748 K. Kola et al. 

intermediary brokerage firms is generally inadequate especially in the case of comput-
ing the option values.  

Mobile technology is a new technology that rides a new wave of business innova-
tion. The use of mobile technology for e-business and decision-making strategy is 
slowly changing the dialogue between investors and traders on the floor of a stock 
exchange into M-business deals. In this study, we focus on three major issues to 
achieve ubiquity in derivative markets: (i) mobile commerce aspects in derivative 
markets (particularly financial options) (ii) various computational techniques used to 
price options. (iii) mining real-time finance data from web sources. We have incorpo-
rated these issues to provide a value-added, ubiquitous service to the trader on the go. 
We use the terms ubiquitous, and pervasive interchangeably in this paper.  

1.1   Motivation for Ubiquitous Pricing 

In our preliminary work [1], we have done a feasibility study of derivative pricing 
using a short-range wireless connectivity with a PDA.  Our goal in the current study is 
to enable wireless trading strategies in ubiquitous fashion and ensure portability for 
the trader. We have experimented and validated our architecture on J2ME-based mo-
bile emulators, which is applicable for limited and broad range of wireless range net-
works.  

Many researchers attempted to address research issues and possible solutions in 
mobile commerce. Research efforts by Varshney and Vetter [2] emphasize that mo-
bile financial application is one of the important component of m-commerce, which 
can replace banks, ATMs, and manual methods by wireless aided services such as 
online brokerage, and micro payments, etc. The current research is motivated by the 
concept of providing value-added services in option trading to trader-on-the-move , 
driven by the principles of operational focus, personalization, multi-channel trading, 
and handiness[3]. 

1.2   Vocabulary in Option Trading   

An option [4]  is a security that gives its owner or holder the right without creating 
any obligation to trade-in a fixed number of shares of a specified asset (e.g., stocks) at 
a fixed price (strike price) at any time on or before a specified future (maturity) date.  

There are two parties involved in the option trading namely holder and writer. The 
holder of the option gets the right to buy (call) or sell (put) assets at a predetermined 
time in the future for a predetermined value; the writer of the option is obliged to 
deliver (call) or take delivery (put) of the underlying asset.  

Two basic styles of options are European and American. While the former can be 
exercised only at maturity, the latter can be exercised at any time prior to maturity. 
Every option has a set of parameters required to compute the price of the option. Such 
as the strike price, stock price, risk free interest rate, period of contract, and volatility 
of the underlying asset. The strike price of a call (put) option is the contractual price 
at which the underlying asset will be purchased (sold) in the event that the option is 
exercised. The risk-free interest rate (r) is the rate at which an investment (such as 
simple deposit) would grow without incurring any risk to the capital. The time in 
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years until the expiration of the option is called maturity date. A measure of the 
change (either up or down movement) of the underlying security over a given period 
is known as volatility ( )σ . In option markets, accuracy and ability to respond quickly 
to the fluctuating market is vital for every active investor. 

Rest of the paper is organized as follows: We have presented some background de-
tails on mobility in derivatives market and option pricing in sections 2 and 3 respec-
tively.  We then describe our overall architecture design for real-time option pricing 
in sections 4 and 5.  We discuss a set of results in section 6 and our conclusions in 
section 7.  Our contribution through this work is the design and development of an 
architecture that enables mobiquitous pricing in the emerging business scenario. 

2   Mobile Computing Developments Related to Trading 

In this section, after listing possible benefits of ubiquity in trading, we classify the use 
of the ubiquity into three broad aspects (i) commodity trading (ii) risk management 
and (iii) services and software. In order to make conscious decisions in an uncertain 
market place, every investor needs time-critical information in a ubiquitous fashion. 
Kargupta et al. [5] justify the needs and benefits of reporting time-critical information 
of stock data through wireless networks. Ajenstat [6] proposed a new idea for automa-
tion of on-line derivative (stock options) trading in any place and at any time without 
the presence of a decision maker. For our research, we integrate time-critical informa-
tion pervasively.  That is, with predefined threshold and boundaries on the price 
movements of the asset in question, our architecture will initiate new computation in a 
pervasive fashion whenever “real-time” price of the asset deviates from a predefined 
value or a predefined range. The “real time” prices on an asset are monitored continu-
ously. For instance, time-critical information for option pricing such as “volatility”, 
and “prime rate” are mined from reliable web sources (presently Yahoo! Finance and 
Money Cafe). In addition, we have developed our architecture to choose one compu-
tational technique (at a time) among various techniques that we have implemented on 
our back end server. These techniques exploit the time-critical information in order to 
compute the price of an option accurately for a particular underlying stock.    

2.1   Round-the-Clock Trading 

There are several factors behind the large dependence on wireless trading. Couple of 
most compelling factors are: first, wireless devices make this possible to track various 
market movements anytime or anywhere. Hence. trading activity is becoming a 24-
hour-a-day business; second, Roche [7] states that, on black Monday (1987), one 
option trader lost £55,000 in 5 minutes just for leaving the market for such a short 
period. The author emphasizes that several market participants would prefer on-line 
trading while on the move, due to many obvious advantages.  Wireless traders do not 
have the time or power to browse on-line information from hand-held devices and 
calculate the risk level of a particular asset. However, a trader seeks personalized 
information to be delivered in a ubiquitous fashion. Currently, investors price options 
on-line from their desktop computers using various software tools. However, once an 
investor steps away from the work place, he/she is disconnected from the market 
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place. There have been some recent advancements to aid traders on the move, SMS 
(Short Message Service) being one of them.  A trader can subscribe to services such 
as CommSec [8] and Quo Trek [9] in order to be connected on the move. Technically, 
by subscribing to equity-alert-services, one can receive personalized equity informa-
tion (real-time price information for personalized stock options) over a mobile phone. 
However, information provided by brokerage firms, via SMS, is insufficient and can-
not be used to compute the option price for a particular option contract. 

As a first step towards an organized use of mobility devices, Mobility Partner Ad-
visory Council recently announced [10] that “The Chicago Board of Trade (CBOT) is 
deploying up to 10,000 wireless enabled pocket PC devices in the two years (2004-
2005) to floor traders to automate the trading process”.  CBOT is integrating with 
Leapfrog technologies to introduce wireless technology for commodity and option 
trading. 

Patsystems [10] has developed software called H-trader, which assists a trader to 
do Martini Trading. H-trader operates on a mobile phone to trade derivatives across 
the world. Thinkorswim [11], a brokerage company in Chicago enables the registered 
trader to perform trading (stock options, and other securities) via web-based, PDA, or 
Mobile devices.  

Windale technologies [12] and FIS-Group [13], present innovative pricing software 
with various option-pricing techniques that evaluate American and European style 
call and put options. In addition, support for both desktop environment and Pocket PC 
versions is available.  

Ineffectiveness of these technologies is as follows: (a) the above-mentioned enter-
prise versions are high-priced products; (b) frequent changes in these products require 
new updates to the software each time; (c) the computing technique(s) employed for 
option pricing and their working principles are not explained in their products to the 
end user; and (d) these products do not present the trader with real-time prices and 
other parameters (prime interest rate, volatility). Unfortunately, parameters (for ex-
ample, volatility) used in the computational techniques are highly sensitive to the 
market fluctuations.  

In the current study, we have used various computational techniques as mentioned 
before. For each technique, our goal is to use real-time information that is mined from 
reliable web-sources such as Yahoo! Finance. Our architecture uses the cost-effective 
implementation of a client and server scheme (for instance, Apache Server, and 
MIDP-interface development are open source environments). In addition, if there are 
any new updates in computation techniques, we just need to upload the techniques to 
the back end server rather than uploading them to client. This way, client saves the 
overhead cost each time when there is a new update. Due to lack of space, we do not 
describe the algorithm for web mining related to option pricing. We refer the reader to 
our earlier work [1].  

3   Computational Techniques for Option Pricing 

Many techniques, such as the binomial tree method, the finite differencing method, 
and the Monte-Carlo method are being used for pricing options. We describe below 
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one of the recent computational techniques for pricing options known as finite-
difference technique to solve financial models manifested as partial differential equa-
tions. We have implemented other computational techniques and for lack of space, we 
do not describe them here. More information on these and other methods can be ob-
tained from [14][15][16].  We can use any of these techniques as stand-alone modules 
for option pricing in our architecture described in section 5 and we can incorporate 
any of the latest pricing techniques in addition to these modules, if necessary. Finite 
differencing technique is a fundamental numerical approach for pricing financial 
securities. There are several finite-difference schemes available such as, McCormack 
scheme, Richardson scheme [17]. Consider the Black-Scholes model [4], a classical 
option-pricing model  

2 2 2
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u S u u
rS ru

t SS

σ∂ ∂ ∂+ + − =
∂ ∂∂
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where u is the option price, t is time,  is volatility, S is the asset price, and r is the 
interest rate with initial and boundary conditions: u(0; t) = 0; and limS  u(S; t) = S, 
u(S; T) = max(S-E; 0) for a call option and u(S; T) = max(E-S; 0) for a put option. We 
will only consider a call option here. The appropriate discretization for each term in 
equation (1) is dictated by the individual terms of the PDE together with the required 
precision and performance constraints. The accuracy of the results can be controlled 
by the use of a finer grid in the computational time direction as well as the space di-
rection. That is, we iterate the solution process over many computational time steps 
until we reach a steady state solution. For our research, we have implemented FTCS 
finite-difference scheme to price options.  This is a forward differencing in time direc-
tion and central differencing in space direction (for further details on finite-difference 
schemes please refer to [17][18].  

4   Developing Mobile Interface 

There are five major platforms available for developing mobile applications such as 
BREW, Windows Mobile, Symbian, WAP (Wireless Application Protocol) and J2ME 
(Java 2 Micro Edition). For our research, we developed the architecture on a J2ME 
platform. J2ME is supported by major carriers (for example Nokia, Motorola) and it is 
relatively easy to deploy the application for a trader to download and install on mobile 
devices. We describe in this section J2ME and its implementation details of the cur-
rent study.  J2ME is a stripped down version of Java aimed at machines with limited 
hardware resources such as a PDA or a mobile phone [19].  

We describe  details about three important design issues for J2ME that are essential 
for our study: (i) designing and building a MIDP User Interface (UI) (ii) communica-
tion of the MIDP and back end server and (iii) security issues of the network. MIDlet 
is a MIDP application [20]. Similar to applet, a MIDlet is a managed application. A 
web browser manages applets, whereas, the Application-Management System (AMS) 
manages MIDlet. Every MIDlet class handles its own logic and life cycle, which 
reflects the methods of the MIDlet class. There are three possible methods in a 



752 K. Kola et al. 

MIDlet’s life-cycle such as startApp(), pauseApp() and destroyApp(). MIDlet enters 
the active state after the application manager calls startApp(); MIDlet remains in the 
active state until the application manager calls pauseApp() or destroyApp(). In the 
pause-App() method, MIDlet is temporarily suspended whereas in destroyApp(), the 
MIDlet completely terminates the application itself and awaits garbage 15 collection. 
In MIDP, UI classes are located in the javax.microedition.lcdui package of J2ME. In 
J2ME, commands are used to create UI objects that behave like buttons (action events 
in Java); commands such as OK, EXIT, and HELP are characterized by instances of 
command class.  

Option pricing is computationally intensive. Since the required processing power 
and the memory are both in short supply on mobile devices, computation of option for 
particular asset is done on the server-end by utilizing the total functionality of Java 2 
Standard Edition (J2SE). Moreover, in order to optimize the consumption of resources 
on mobile devices, it is desirable to keep the communication to a minimum. There-
fore, the connection between the server and the device is kept open just long enough 
to exchange user data.  

The connection to dissimilar types of wireless devices will need different forms of 
connection interfaces. The Generic Connection Framework (GCF) [19] is available in 
J2ME/CLDC to reflect the need for small-footprint networking for a range of mobile 
devices. GCF is a hierarchy of interfaces defined in the “javax.microedition.io” pack-
age that allows mobile applications readily available to the trader on the network. The 
GCF interfaces reflect different capabilities and ensure the operations in a logical 
fashion. MIDP simplifies this GCF to a single connection type called HTTP (Hyper 
Text Transfer Protocol) and HTTPS (secure HTTP available in MIDP 2). HTTP is 
built around client requests and server responses, and it has two parts: header and 
content. The communication format (for example XML, text, and binary) between 
MIDlets and the back end server in the body of HTTP depends on the design of the 
application. We tried with GET, HEAD, and POST methods, which are simple to 
implement and then with XML-RPC and KXML-RPC1 over HTTP/HTTPS.  In our 
random observations of speed and bandwidth tests, XML tends to have heavy band-
width between the mobile and the server rather than byte arrays (either it is a string or 
data of any sort).   

In order to provide enough security for data transmission, we used secure HTTP 
(HTTPS) provided by MIDP 2.0 (If device support MIDP 2.0, it has default HTTPS; 
for example, Motorola E390 supports MIDP 2.0). On top of that, to provide additional 
security, we use open source lightweight API called the “Bouncy Castle” library that 
supports a large number of cryptography algorithms [20]. Therefore, the mobile com-
ponent of our architecture will be secured. Finally, the task of deployment of the 
above application (MIDlet Suites) to a specific mobile device can be done using OTA 
(Over-The-Air installation of MIDlets) or Infrared (IR) or Bluetooth technology. 
Before illustration of our server design, we will describe the design layout of our 
architecture with aid of diagrammatic representation. 
                                                           
1  XML-RPC is a standard way of implementing remote procedure calls (RPC) using XML and 

HTTP. To accomplish this, it uses XML to mark up all of the method and uses HTTP to 
transfer the methods 
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5   Ubiquitous Architecture for Option Pricing 

In this architecture (Figure 1), a broker remits a strike price and a contract period of a 
particular option (with a specific asset) to a subscribed Mobile/PDA/wireless trader. 
The information provided by the broker is incomplete and can only partially aid in 
computing the fair value of the option. If the trader (client) needs to decide if entering 
the option contract is beneficial, the trader has to compute the option value by select-
ing the underlying assets and computational technique to be used for computation at 
the back end server. Moreover, the trader enters the number of time steps to be proc-
essed for computing the option price. All the above values entered by the trader are 
sent to the web/compute server for computation. 

 

Fig. 1. Mobile Infrastructure 

Once the client submits time steps, underlying asset and the computational tech-
nique, back end servlet mines (using table mining technique) real-time values such as 
spot price, volatility, and prime interest rate from the web sources. The server then 
computes option price with the above real-time values, using finite-differencing tech-
nique described in Section 3, or other computational techniques such as binomial 
lattice or Monte-Carlo method. 

Theft and misappropriation are greatest vulnerable factors in wireless trading.  
Mobile devices can be easily stolen and misused which may result a financial debacle. 
Consequently, access control and identification of authentic trader are undoubtedly 
vital in wireless trading. In our framework, transmission mode between client and 
server are secured in every aspect (as mentioned in section 4). In addition, in order to 
access his/her portfolio, a trader has to setup and will able to access their accounts 
that will facilitate customized tables and data analysis based on the underlying com-
putation (for example, to access tables such as risk-free zone, healthy bids, and fa-
vored stocks which are discussed in results section). Trader’s devices are enabled by 
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security token and each token generates 5-digit security code that is periodically 
changed, updated, and acknowledged by the trader to the server or vice-versa. 

6   Architecture Results  

We have divided our results into two parts: (A) computational results (B) mobile-
enabled option trading scenario  

(A) Computational Results: In Figure 2, we present one set of results on the com-
puted call option values. We notice that as the strike price increases the call option 
value decreases, as expected. Implementing the computational techniques in a parallel 
environment will circumvent the computational cost. This is not the objective of the 
current study, however.  
Intel Corp (INTC) CALL OPTION:  Table 1 presents the option values computed 
at various stock and strike prices for Intel Corp. call option.  The real time data for S 
is 25.52.  To make some speculation we have computed the option values based on 
currently traded stock, and strike prices.  This is done to come up with a healthy bid to 
enter the option contract as presented in table 2.  

Table 1. INTC (CALL) option values for varying stock and strike prices 

  

Figure 2 shows option values (y-axis) for various strike prices (x-axis). For each 
strike price there are 6 different stock prices.  One (third from the left among six) of 
them is an on-line value and others are speculated values.   

 

Fig. 2. Option values at various stock and strike prices  
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Risk-free Zone: To be in the risk-free zone, we have set up a Healthy Bids based on 
the ASK price and Error rate of online contracts with stock price 25.52.  Ask price can 
be defined as the price at which a writer is willing to sell (buy) an asset; also called 
the offer price. We propose a four-step procedure for calculating “healthy bids” of the 
option contract: (1) Ask price is mined from online web sources (for example Yahoo!) 
and option price is calculated (as mentioned in section III) based on real time values. 
Once we have option price of the contract and online ASK value, we can calculate 
percentage error, mean error, and finally healthy bid.   (2) Calculating percentage 
error: Percentage Error rate can be calculated as: (ASK price – Option price)/ASK 
price x 100.   For our research, we consider errors within the range of (0-10%). If the 
error rate is more than the specified range, it is discarded. For practical purposes, the 
real-time error could be improved with advanced computational techniques mentioned 
earlier. If error is within the specified range, we can continue with the calculation of 
the Healthy Bid. (3) Mean error: Healthy Bid can be calculated based on the mean 
error rate and is calculated by the formula:  abs ((ASK price + option price)/2 – ASK 

price).  (4) If (ASK price – Option Price) < 0: Healthy bid = Ask – mean error and if 

(ASK price – Option Price) > 0: Healthy bid = option price + mean error As seen in 
Table1, trader will be provided with various tables with speculated stock values to 
provide various scenarios of option values and a healthy bid. These tables are made 
available to the trader (client) from the web/compute server.  Depending on the cur-
rent knowledge of the trader on the behavior of the underlying asset, the trader will be 
able to select one of the healthy bids (please see table 2 - an example for Intel call 
option) and instruct the broker to enter the option contract at that bid. If the writer 
finds this bid comfortable he/she will agree to this price and will agree to sell the 
underlying asset at the agreed upon strike price at the maturity date. In essence, the 
investor (client), therefore, has used his/her mobile device ubiquitously to value an 
option and enter the contract with a level of comfort that the investor can expect a 
profit from the option contract.  

Table 2. Healthy bids for option contract (INTC) when stock is 25.52 

 

(B) Mobile-enabled Option Trading Scenario 
Mobile emulation is done on Net Beans, which is open source software with integra-
tion of J2ME Wireless Toolkit platform. Moreover, UEI (Unified Emulator Interface) 
compatible emulators allow us choosing different devices (for example, NOKIA and 
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MOTOROLA) from various companies [21]. The following Mobile screens (1-6) 
describe the flow design and the trading scenario. This architecture enables pricing 
multiple stock options with various strike prices in ubiquitous fashion. The con-
tract/pricing information of particular stock is updated continuously to the trader on  
 

 

Screen 1. Flow design of mobile terminal and server response 

 
(2)                                    (3) 

Screen 2 and 3. Alerts from the trading floor-services or brokers; and Active stocks on the 
trading floor 

 

Screen 4. Details of the contract and computational techniques available for pricing 
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(5)                                    (6) 

Screen 5 and 6. Response of the computed results from the web server (back end servlet) 

the move by aid of floor-services (exchanges) or brokers in time-to-time fashion. 
Once the clients get the option price from the web server, he/she will utilize built-in 
wireless device’s small computing power to calculate healthy bids for various stocks 
in different sectors. 

7   Conclusions 

Fundamental challenges to design the current ubiquitous software architecture for 
option trader are from three different scientific domains: option trading, web mining, 
and mobile computing. Every domain has its own challenges for its functionality. We 
list the challenges that we faced to build the architecture and our solution to each of 
the respective challenges and thereby our contribution to the emerging mobiquitous 
business scenario: 

Computation issues: (i) option pricing by itself a computationally intensive problem; 
(ii) parameters required for computing option price are continuously changing due to 
market fluctuations. In such a situation, accurate results will depend heavily on ap-
propriate use of current market conditions; (iii) configuring and implementing the 
existing computational algorithms and handling multiple traders simultaneously and 
remotely is a challenging task. 
 Contribution: We have implemented couple of computational techniques (binomial 
tree method and finite-differencing technique) maintaining accuracy to a large extent. 
Higher accuracy can be obtained by introducing appropriate new technique (when and 
if available or developed) in this module of our architecture 
Challenges in Web Mining:  mining real-time finance data from reliable web 
sources and forwarding the observed results. 
Contribution: Heuristics for single dimensional and two-dimensional tables are em-
ployed that are simple yet significant, however not described in the current version 
due to lack of space.  
Challenges in mobile computing: (i) designing and building mobile trading terminal 
for computing option price any time and any where is one of the main challenging 
components of the current research; (ii) as the architecture depends heavily on real 
time data access, network connectivity and security between mobile client and back 
end server remain an important issue.   
Contribution: To handle these issues we have employed iterative secured-flow-
design-approach for building screen logic and layout design of the Mobile interfaces. 
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In addition, to provide additional security to wireless devices, we employed light-
weight API called “Bouncy Castle.”  

The essence of this framework is in its novelty, which stems from three different 
domains to enable mobile trader to compute the price of an option in pervasive fash-
ion, which is an important application in option trading. Hence, this is one of the first 
studies that facilitate the service of option pricing on-the-go. To make the architecture 
more effective, our plan is to introduce parallel computing of the option pricing prob-
lem at hand. Conclusively, our architecture enables an active investor to price options 
in real-time using various computational techniques in mobiquitous fashion that 
would pave way for effective investment trading towards higher profitability.   
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Abstract. We present our joint effort to develop a web based interface
for the GNU Scientific library and its parallelization. The interface has
been developed using standard web services technology to enable the use
of non local resources to execute parallel programs. The final result is
a computing service where sequential and parallel routines demanding
high performace computing are supplied. The design allows to incorpo-
rate new servers and platforms with a small number of software require-
ments. We also introduce an open source development environment to
allow developers to cooperate in the parallelization of the GNU Scientific
library codes. These codes also will be available trough the web based in-
terface to end users. Performance results are shown for some GSL codes
in two cluster heterogeneous systems using the interface enabled with
web services technology.

1 Introduction

High Performance Computing (HPC) systems can be implemented with standard
hardware available in the market. But users use to build these systems step by
step. On the other hand, user from different institutions can colaborate to build
HPC systems joining their resources. This fact makes that these systems becomes
heterogeneous. The access to this computing resources can be facilitated through
the use of web technologies. This wellknow technologies can help to carry the
HPC resources to users and help to minimize the access cost to this systems by
end users.

The use of web services based technologies is becoming very popular for web-
based applications. A Web Service (WS) basically consists of the use of open
standards to connect applications through a communication network. This ap-
proach allows to homogenize the access to those services and eases the develop-
ment at the clients. Since the information exchange employs Extensible Markup
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* Available Jobs
* Run a Job
* Get Job Status

e-mail with the job result

* availableJobs()
* getJobDescription()
* getJobStatus()
* sortSerial()
* sortDistributed()
* sortShared()
* availableJobs()
* getJobDescription()
* getJobStatus()
* matrixProductSer()
* matrixProductDist()
* availableJobs()
* getJobDescription()
* getJobStatus()
* rap()

* gsl_usmv()
* gsl_dmdd_usmv()

* gsl_sort_vector()
* gsl_dmdd_sort_vector()
* gsl_sm_sort_vector()

* gsl_rap()

Servers

Client

Users

Fig. 1. Generic view of the web service implementation

Language (XML) documents, the application is independent of the transport
layer protocols and interfaces.

Standardizing and easing the access to distributed resources is a tendency
that has also been observed in the parallel computing community, in projects
such as Netsolve [1].

The use of WS technologies enables the access to nonlocal resources, with
well-known examples being the execution of parallel programs in parallel or
geographically distributed machines [2], or the interaction among heterogeneous
devices [3]. Another advantage is that WS communicate through any common
firewall security measures without requiring changes to the firewall filtering rules.

In this paper, we describe a parallel computing service that has been imple-
mented according to the W3C (World Wide Web Consortium) recommendations
for WS development [4]. The service is addressed to users with little (or even
without) experience in programming and facilitates the execution of sequential or
parallel routines demanding high performance computing. Flexibility to enlarge
the service with new computational proposals is an important issue considered
in our design strategy. Furthermore we pursue that, as the service is extended,
platforms can be easily incorporated with only a small number software require-
ments. We focus on the use of the services on a cluster of heterogeneous systems
where each node may have different computational capabilities.

It is worth noticing that a WS based design adds, by itself, new facilities to
those provided by some other projects [1]. Moreover, a web based interface en-
ables the use of the system by a larger number of users, including those without
any knowledge in programming (both sequential or parallel). A second difference
with respect to [1], is the use of W3C recommendations for the WS development,
that imposes a modular design based in layers (levels). Layers can be indepen-
dently extended or even replaced to provide new facilities without altering the
rest of the parts of the system.

At the back-end, our computational service currently implements (fig. 1) the
GNU Scientific Library (GSL) and its parallel version in the Pelican library [5,6]
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for heterogeneous systems. Our goal is to enable the use of the routines in both
libraries via a web interface as part of a free service to the scientific commu-
nity. The service has been implemented using the HTTP Apache server and the
NuSOAP library [7]. Users registered at the service can execute precompiled rou-
tines in the GSL and Pelican libraries providing their own input data. However,
since the proposed methodology is generic, the approach is applicable to any
other sequential or parallel library. Although we are not using knew concepts,
our main design effort has been to connect all these ideas together, and make
them to work into a successful tool that will be very useful for many scientific
communities.

The paper has been structured as follows. In section 2 we describe the software
architecture of our parallel approach for the GNU Scientific Library. Section 3
describes the Open Source development infrastructure to allow other developers
to collaborate with the project. Section 4 summarizes some basic web services
concepts. In section 5 we present the web service interface. We describe the
technology used for the client and for the server, and its use is illustrated through
a very simple combinatorial optimization routine. We finalize the paper in section
7 with some concluding remarks and future lines of work.

2 The Parallel GNU Scientific Library (Pelican)

GSL is a collection of hundreds of routines for numerical scientific computations.
Although coded in ANSI C, the routines present a modern application program-
ming interface for C programmers, and the library employs an object oriented
methodology allowing wrappers to be written for very high-level languages. The
library includes numerical routines for complex arithmetic, matrices and vec-
tors, linear algebra, integration, statistics, and optimization, among others. The
Pelican project collects the joint efforts towards the parallelization of GSL using
MPI and OpenMP. As a result, the Pelican library is portable to a wide range
of parallel architectures, including distributed and shared-memory multiproces-
sors, hybrid systems -consisting of a combination of both types of architectures-,
and clusters of heterogeneous nodes. Besides, the Pelican library targets two
different classes of users: a programmer with an average knowledge of the C pro-
gramming language but with no experience in parallel programming, that will
be denoted as user A, and a second programmer, or user B, that is familiar MPI
or OpenMP.

The Pelican library has been designed as a multilevel software architecture
composed of four layers; see Fig. 2. Following a common approach in computer
networks, each layer offers certain services to the higher layers and hides those
layers from the details on how these services are implemented. The design has
been tested and validated [8], [6], [9] and the performance obtained is acceptable
when compared with that of similar alternatives. We briefly describe next the
contents of the major layers in the software architecture.

The User Level (the top level) provides a sequential interface that hides
the parallelism to user A and supplies the services through C/C++ functions
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Fig. 2. Software architecture of the Pelican Library extended with the WS

according to the prototypes specified by the (sequential) GSL interface (for ex-
ample, a gsl sort vector() routine is provided to sort a gsl vector data array,
possibly in parallel).

The Programming Model Level provides a different instantiation of the GSL
library for each one of the computational models: sequential, distributed-memory
considering both homogeneous and heterogeneous systems, shared-memory, and
hybrid. The semantics of the functions in the Programming Model Level are
those of the parallel case so that user B can invoke them directly from her own
parallel programs. The function prototypes and data types in user A codes are
mapped into the appropriate ones of this level by just a renaming procedure at
compilation time. The Programming Model Level implements the services for the
upper level using standard libraries and parallelizing tools like (the sequential)
GSL, MPI, and OpenMP.

At the Physical Architecture Level, the design includes shared-memory plat-
forms, distributed-memory architectures, and hybrid and heterogeneous systems
(clusters of nodes with shared-memory and processors with different capabili-
ties). We map one process per processor of the target parallel system where, in
order to balance the computational load, a process will carry out an amount
of work that is proportional to the performance of the corresponding processor.
The performance of the parallel routines will depend on the adequacy between
the programming paradigm chosen by the user and the target architecture.

In this paper we introduce a new module in the Pelican software architecture,
as depicted in Fig. 2. This module is located at the user level and comprises
a WS application that provides the sequential and parallel routines as a free
parallel computational service accessed through a common web interface. In the
scheme, the user supplies the input data for the routines, and the servers execute
the sequential or the parallel routines, according to the user’s interfaces.
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3 Source Code Liberation

3.1 Motivation

The number of routines in the GSL library roughly approximates to one thou-
sand, therefore, the whole parallelization of the library would be a very long
time project for a small group of people. We have implemented the necessary
infrastructure to expand the project as a true open source one, allowing people
outside the project to cooperate in it. We are currently publishing the developed
code under the GNU General Public License (GPL), as stipulated by the original
source.

The fundamental goal to develop this infrastructure is to increment the num-
ber of codes to be parallelized. By providing free access to the repository we
allow the potential future developers to get source code samples, and also future
developments can be set at a centraliced fixed location.

Currently we provide the following services: A Control System Version man-
aged by Subversion. Mailing lists to discuss topics related to the project. Free
access for stable releases. Documentation. Access to the web service from the
same portal.

3.2 Version Control System

Our current version control system is supported in Subversion. Subversion is a
control version application quite similar to CVS. Although we analyzed several
alternatives like (CVS, Subversion, Darcs, GNU Arch and Bazaar-NG), we finally
decided to use Subversion for the following reasons:

– Is a free software application.
– Is becoming quite popular and widely used.
– Is a centralized system.
– Can be integrated with Apache and therefore can be accessed from the

80/TCP port.
– Improves the main drawbacks found in CVS.
– Provides a client for most of current the operating systems.

Some of the former are requirements are imposed by the target environment
platform where the project is located. To be more precise, it is a well known
fact that this kind of projects must coexist with the security policies of the
organizations. In particular, at La Laguna University, as in many organizations,
most of the communication ports are closed. The access to the service must
be devised through common ports as the ports 22 (SSH) or 80 (HTTP). We
discarded CVS since it forced us to create an account on the server for every
user, and the use of Subversion integrated in Apache seems to be a suitable
option.
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Fig. 3. The web services protocol stack and security implementation

4 Web Service Concepts

A WS is usually regarded as a client/server application where the interaction
between those is implemented using open standards. The services are commonly
associated to Internet but this is not strictly necessary. Examples of WS are the
Google API [10] or the Amazon WS [11].

WS are typically described using a protocol stack similar to that shown in
Fig. 3(a). In particular, the WS protocol stack specifies how a WS is described,
discovered, and implemented.

1. Transport: The messages generated on a WS are independent of the trans-
port layer. Standard, well-known protocols, as HTTP, SMTP, or FTP, are
commonly used.

2. Messages: The information is exchanged in XML documents. Protocols like
SOAP (Simple Object Access Protocol) [12] or XML-RPC (XML-Remote
Procedure Call) [13] can be used for that purpose.

3. Description: This layer describes the operations (specifically, routines and
their input/output parameters) available at the WS. The description follows
a standard known as WSDL (WS Description Language) [14].

4. Discovery: At this level the catalog of available WS, known as UDDI (Uni-
versal Description, Discovery, and Integration) [15], is maintained. The aim
is to facilitate the search and publication of services.

An important issue on the web service standard are the security matters, for
example, there is a communications protocol WS-Security (Web Services Se-
curity [16]) that provides means for applying security to Web Services. Some
other security measures to be made are related to the message encryption or
the client authentication. For simplicity reasons, we decided to use HTTPS
to encrypt the message and the facilities provided by Apache to protect the
access to a resource with a username and a password to authenticate clients
(fig. 3(b)). The access will be impossible at all if the pair (username, password) is
unknown.
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(a) (b)

Fig. 4. The Pelican WS modules and WS stack

5 The Pelican WS Architecture

Our WS enables the execution of parallel tasks on all the machines registered at
the service. Although the current interface employs web pages, interfaces based
in protocols as SMTP (e-mail) or FTP could also be easily incorporated. We have
installed the system in two testbed clusters, one at the University of Jaume I at
Castellón and a second one at the University of La Laguna, with the following
characteristics:

– ra.act.uji.es: Cluster of symmetric multiprocessors (hybrid system) com-
posed of 34 nodes with dual Intel Xeon processors connected via a Myrinet
network.

– tegasaste.pcg.ull.es: Cluster of symmetric multiprocessors (hybrid sys-
tem) composed of 24 nodes with dual Intel Xeon processors connected via a
Gigabit and Infiniband networks.

Two modules compose the WS package, namely, the server (side) module and
the client (side) module; see Fig. 4(a). The modules implement the three lower
level layers of the WS stack: Service Description, XML Messaging, and Service
Transport. The Service Discovery level has not been implemented for security
reasons. Thus, system managers still control the client services accessing the
clusters via traditional techniques for authentication.

5.1 The Technology

Several approaches are currently available to implement servers as WS: ISS +
Microsoft .NET, Apache + NuSOPA or Tomcat + Axis. Although .NET is a
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Fig. 5. List of available routines accessible through the WS

software approach that is being widely used under specific operating systems, the
proprietary nature of this product leaves it out of the scope of our project, which
attempts to be portable to as many platforms as possible. Tomcat and Axis are
Java-based solutions that agree with the portability goal of our project and so it
does Apache. In the end, we decided to use the combination of Apache+NuSOAP
due to their low resource requirements. Figure 4(b) shows the web services stack
in our implemention.

5.2 The Client

The client provides a user interface and translates the requests into queries for
the server.

The users of the service should be registered at the client. This registration is
made at the client web page through a form. The information required consists of
an e-mail address, to collect the results and news, the username and password to
be authenticated at the client and some information relative to her organization
to help the system manager to decide if the registration succeeds or not. Once
these information has been submitted the account will not be activated until the
organization, through a privileged user (the system manager), decides whether
the request is accepted or not. At this moment the user is notified about the
resolution.

The current implementation consists of a web interface that the user can
employ to access lists of several routines of the GSL and Pelican libraries; see
Fig. 5.

Each entry of the lists shows a brief description of the routine. Tasks are
grouped according to the servers supporting them so that, when execution of a
routine is requested, the target platform is implicitly selected.

We next illustrate the implementation strategy using a dynamic programming
routine to solve a Resource Allocation Problem (RAP) [17]. For a specific allo-
cation function, an instance of the RAP is determined with the number of activ-
ities and the number of resources to be assigned. An HTML form is dynamically
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Fig. 6. Servers management option

generated according to the description of the job to input the parameters needed
for its execution. Listing 1.1 shows the HTML form for the RAP example.

The service notifies the user via e-mail when the job is finished, with the
standard output of the job incorporated as an attachment to that mail. Also, a
web interface allows to learn the state of the jobs submitted to execution , and
to collect other results stored by the job into disk files.

As it has been previously mentioned, users with management privileges can be
added. These users may access to the management options at the client (fig. 6)
and they will be responsible for adding and removing users and servers.

5.3 The Server

The server manages all issues related to the jobs: making these available at the
service, and controlling their state and execution. The server needs to know how
a job will be executed and how to query the state of a job in execution on the
server supporting it. For that purpose, two methods of a PHP class, the class
PelicanJob, should be overwritten. These methods enable the execution of the
job (under the queue system) and to ask for the state of the jobs. In addition,
an XML description of each available routine needed to specify the job. As an
example, Listing 1.1 shows the XML description for the RAP. The tag <name>
holds a representative identifier for the routine and the tag <binary> is the path
to the executable file. Then a description for the problem and the arguments
of the routine with their data types are introduced. Once the user submits a
job request, the server executes the associated binary code with the arguments
supplied by the user. The binary is a precompiled file of the code in Listing 1.2.
Thus, new services are easily incorporated to the service just by adding the
description XML file with the precompiled code to the server.
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Listing 1.1. Describing a Problem.

<?xml ve r s i on=” 1 . 0 ” encoding=”UTF−8”?>
<?xml−s t y l e s h e e t type=” tex t/ x s l ” h r e f=” job . x s l ”?>

<job xm ln s : x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”
xsi:noNameSpaceSchemaLocation=” job . xsd”>

<name>RAP</name>
<se rv i ce name>rap</ se rv ice name>
<binary>bin/ rap</ binary>
<d e s c r i p t i o n>Resource Allocation Problem</ d e s c r i p t i o n>
<argument type=” in t e g e r ”>

<name>num_act</name>
<sdesc>Number of Activities</ sdesc>
< l d e s c>The number of activities available to assign

resources .</ l d e s c>
</argument>
<argument type=” in t e g e r ”>

<name>num_res</name>
<sdesc>Number of Resources</ sdesc>
< l d e s c>The number of units of resource .</ l d e s c>

</argument>
</ job>

Listing 1.2. RAP GSL Dynamic Programming: main code.

i n t main ( i n t argc , char ∗ argv [ ] ) {
i n t N ; /∗ Ac t i v i t i e s ∗/
in t M ; /∗ Number o f Resources ∗/
in t result ;

i f ( argc != 3) {
printf ( ”Usage :\n” ) ;
printf ( ”\ trap <NUM ACTIVITIES> <NUM RESOURCES>\n” ) ;
re turn 1 ;

}
N = atoi ( argv [ 1 ] ) ;
M = atoi ( argv [ 2 ] ) ;
result = dp_rap_value (&f , N , M ) ;
printf ( ”# opt imal va lue = %d\n” , result ) ;
r e turn 0 ;

}

For security reasons, the server can be protected using a username and a
password. We have used the HTTP server (Apache) facilities, so that every access
to the path where the server was installed will demand the client authentication.
The pair username/password will be supplied during installation and it should
be delivered to any authorized client.

6 Computational Results

A sorting routine is used next to illustrate the performance of the distributed-
memory programming model. For generality, the library chosen the well-known
Parallel Sort by Regular Sampling (PSRS) algorithm, introduced in [18]. Figure
7 shows the results of the execution performed using both the heterogeneous and
the homogeneous replicated versions of the routine. The heterogeneous version
automatically performs a data distribution proportional to the computational
capabilities of the processors involved in the computation.



770 F. Almeida et al.

 0

 10

 20

 30

 40

 50

 60

 0  2  4  6  8  10  12  14  16  18

S
ec

on
ds

Number of processors

Heterogenous vs. Replicated distribution

Replicated (25M)
Hetero (25M)

Replicated (10M)
Hetero (10M)

Fig. 7. Sorting in an heterogeneous cluster. Heterogeneous vs homogeneous replicated
versions.

We generated double data vectors with entries randomly distributed. Problem
sizes vary from 10 × 106 until 25 × 106. The heterogeneous cluster has been
obtained from Tegasaste using different type of nodes. Processors are included
at the computation according to their computational capabilities, i. e., first the
faster processors are considered and later on the slow processors. That means,
for instance, that an execution using six processors uses 2 × nodes Dual Xeon
3.2GHz (4 processors) and 1 × node Dual Xeon 2.6GHz (2 processors). The
running times shown at Fig. 7 do not measure the initial data distribution.
The homogeneous replicated version produces the usual decrease in performance
and peaks in the running times as a consequence of the introduction of slow
processors. On the other hand, the use in the heterogeneous version of a data
distribution proportional to the computational power of the processors results
in a softer and improved execution time curves.

7 Conclusion and Future Work

We conclude that our aim of developing a web based interface for the GNU Sci-
entific Library and its parallelization has been successfully achieved. The design,
based in web services technologies, is quite simple and enables to incorporate
new computational resources (clients and servers) with a minimum effort. In
order to facilitate the use of the service, we plan to include the possibility of
job submission via e-mail. A second addition to the system would consist of let-
ting the system choose the execution platform automatically, depending on an
estimation of the one which would provide the smallest response time.

We have set the bases for an Open Source development environment in order
to help developers to parallelize new codes from the GSL library and put them
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available to end users trough the web service interface. We provide a versioning
system (SVN), mailing lists, documentation, public access to stable releases and
access to the web service interface through the portal of the project.
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Abstract. Similarity searching is particularly important in fully distrib-
uted networks such as P2P systems in which various routing schemes are
used to submit queries to a group of relevant nodes. This paper focuses
on the maintenance cost models and performances of similarity search
in the HON P2P system, where data and peers are organized in a high
dimensional feature space. We show through extensive simulations that
HON has a low maintenance cost and is resilient to peers’ failures.

1 Introduction

P2P systems and applications are gaining in popularity, spurred by the need for
seamless interconnection of services and resources; distributing data indexes and
processing among multiple nodes; and sharing large amount of data in dynamic
ad hoc environments. Early popular file sharing P2P systems are based on simple
exact keyword matching lookup and cannot meet the performance requirements
of emerging applications. These applications often require complex range queries
or content based similarity search on data such as images, text and video. The
content of nodes is described by features, particularly physical image features
that are represented in multidimensional data space.

Many search techniques have been proposed for P2P systems relying on their
underlying overlay infrastructure. Flooding [2] is one of the first search tech-
niques employed in P2P systems where each peer broadcasts the received query
to directly connected peers. A Time-To-Live (TTL) mechanism or a random
walk method can be used to reduce the number of peers that are involved in
processing a query and avoid overloading the network. DHT systems [10] [9] [3]
organizes data in a key space for efficient data access. Unique identifiers are as-
signed to the peers and the data. A data object is mapped to the peer with the
closest identifier. Each peer maintains a routing table composed of its neighbors’
identifiers. A lookup query routed to and processed by the peer that contains
the corresponding data keys. DHT techniques are efficient for complete exact
match queries but perform poorly for approximate similarity search. Thus, the
main challenge for that systems is to process complex queries such as similarity,
approximate and range selections. This challenge was recently addressed in [8]
by adding a layer on top of the existing DHT systems to process multi-attribute
range queries.
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In our previous work [6], we have presented a Hybrid Overlay Network (HON)
for efficient similarity search. HON organizes both peers and data in an n-
dimensional feature space based on content description. It is based on two key
ideas. First it organizes and clusters peers sharing similar contents in the n-
dimensional feature space to limit flooding overhead and send queries only to
relevant peers. Second, it organizes and places similar data objects in relatively
dense and adjacent regions of the feature space to achieve efficient processing of
complex queries such as range and neighboring queries. The feature space repre-
sents particular attributes associated with data objects (e.g., color for an image,
concept or keyword for text document) and is partitioned into cells obtained by
dividing the range values of each feature into a number of intervals. Two data
are similar if they are mapped to the same cell. The distribution of data objects
over the cells defines the similarity between peers. Two peers are similar if their
contents are distributed on the same sub regions of the feature space. We have
presented extensive performance evaluation of similarity search quality in HON
and shown that it achieves a high success rate.

The focus of this paper is on maintenance cost and fault tolerance issues
of HON. Routing and localization methodologies are implemented in HON by
maintaining partial routing tables in each peer, making the system very sen-
sitive to membership changes. When peers join or leave the system, messages
are exchanged to maintain the right P2P network topology. Thus, maintenance
overheads and fault tolerance capabilities are important and can affect the per-
formance of the system. The contributions of this work are two-fold: 1) we present
and evaluate the HON system showing its scalability to large network size and
numbers of data objects. Moreover, its adaptability to dynamic membership
with low maintenance overheads. 2) we show through extensive simulations that
HON efficiently routes queries along best available paths which make it resilient
to peers’ failures.

The remainder of the paper is organized as follows. In the next section, we
give a brief description of HON. In section 3, we present the simulation setup
describing the different parameters and metrics used to evaluate the system.
Section 4 presents the evaluation results. Section 5 gives an overview about some
related semantic-based search techniques to our approach. And finally section 6
concludes the paper.

2 HON

HON is a Hybrid Overlay Network that groups in the same clusters peers whose
data objects are similarly distributed in a feature space defined by a set of
features f1, f2, ..., fn. The basic idea is to define a partition of the feature space
into cells and use the distribution of data objects over the cells as the basis
for defining peer similarity, creating clusters and computing query similarities to
peers and clusters. Three steps are required to organize the data and peers in the
feature space and create the clusters. First, the content of peers is distributed
over the cells. Figure 1 shows the partition cells of a 2-dimensional feature space
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Fig. 1. Partition cells and Clusters

using the features f1 and f2 and the distribution of the contents of the peers P1,
P2, P3 on the cells. Second, each peer is mapped into a set of cells containing its
data objects. The mapping depends on a threshold value T . A peer is mapped
to a cell only if it has a number of data objects higher than T in that cell. The
last step is to create clusters by grouping the peers belonging to adjacent and
dense cells in the feature space. We remind that two cells are adjacent if they
share a (d-1) dimensional hyperplane, where d represents the dimension of the
feature space. In addition, a cell density represents the number of objects the
cell contains. The objectives of the clustering algorithm (called density-based)
are to: 1) cluster peers belonging to adjacent cells for retrieving similar objects.
2) build clusters according to cells density to provide a high recall. Grouping
peers within cells having high densities increases the number of retrieved similar
objects. Clustering will not be discussed further in this paper. More details
about the density-based algorithm and query processing can be found in our
previous work [6]. The HON architecture contains two types of peers: Super
peers and Simple peers. Super peers manage and maintain information about
cells. Simple peers connect to super peers to process queries and have information
about neighboring peers. Peers connection and disconnection to the network is
processed in the following way.

Peer join: a new HON peer connects to the network and initiates the discovery of
relevant super peers by broadcasting a Join descriptor containing its IP address
and the set of cells to which its shared data belong. When a relevant super peer
receives a Join descriptor, it updates the index tables and sends the new peer
an Accept-Join descriptor with its IP address. Then, the new peer confirms its
connection and builds the index tables with the information received from its
super peers. Note that a new peer becomes the super peer of the empty cells to
which it is mapped.

Peer leave: when a peer leaves the network, it sends a Disconnect descriptor
to its super peers. A super peer receiving a Disconnect descriptor, removes all
information related to the disconnected peer. When a super peer leaves the
network, it first sends a Disconnect descriptor to its neighbors to initiate the
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choice for a replacement. Then, one of those neighbors takeover the cells of the
disconnected super peer. The peers belonging to the corresponding cells update
their index tables. In the case where the super peer disconnects suddenly from
the network due to failure, there is a need for keeping in each peer information
about the super peers of the neighboring cells.

3 Simulation Setup

We evaluate HON using extensive simulations that focus on the maintenance
cost and failure tolerance. We use then several parameters and metrics. Parame-
ters represent a set of measurable factors, such as Threshold, that determines the
system behavior. Metrics are measurement functions that facilitate the quantifi-
cation of some particular characteristics of the system such as the Maintenance
Cost.

3.1 Parameters

Two sets of parameters are used in our simulation: Control parameters and
Workload parameters.

Control: Parameters of control are used to build the system. Their values are
specified before starting a simulation, and can change for each simulation to
evaluate the system in different situations. Default values of parameters are
defined if no particular specifications are given for the simulation.

Parameter Description

T represents the threshold value used to map peers to cells. It is
initialized to 0 and varies between 0 and 50% of the average data
object number per peer.

N is the number of peers in the network. It varies from 2 to 216. Its
default value is 216.

G the cell granularity which is defined by the number of partitions
of features. The number of partitions takes its values between 0
and 20 and the default value is 10.

O the number of data objects per peer. It varies from 50 to 150 and
its default value is 100.

D is the type of the data distribution. It can be Uniform or Zipfian.
The default value is the Zipfian distribution which reflects the real
cases.

Workload: Parameters of workload are related to the occurring events in the
system. They are specified when the system is build up to simulate a mixture of
peer join, departure and search operations.
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Parameter Description

β is used to simulate peers failure. It represents the percentage of
failed peers in the system. β takes its values from 0% to 70% and
its default value is initialized to 20%.

QN is the average number of queries a peer sends over the network.
Its default value is 500.

QD specify the type of queries distribution. Similarly to data distri-
bution, query distribution can be Uniform or Zipfian. Its default
value is set to a Zipfian distribution.

3.2 Metrics

In addition of improving similarity search performance at a minimum over-
head [6], we analyse in this paper other aspects of HON, such as maintenance
cost and fault tolerance. Thus, we define the following metrics to evaluate sys-
tem scalability and fault tolerance: Maintenance Cost, Load Cost and Failure
Cost.

• Maintenance Cost: is the number of maintenance messages required to build
the system. When peers join the network, we compute the number of exchanged
messages between peers to update indexes. We consider M the total number of
maintenance messages and N the number of peers in the network. The average
maintenance cost is defined by M/N .
• Load Cost: represents the number of hops that maintenance messages require
to reach the destination. Let H be the number of hops of all maintenance mes-
sages. The average load cost is computed by H/M , where M is the number of
maintenance messages.
• Failure Cost: we simulate the failure of a specific percentage of peers af-
ter the network is build up. The percentage of failed peers varies between
10% and 70%. We then measure the ratio of searches that fail to find ex-
isting data objects in the network. Let TQ be the total number of queries
and FQ the number of failed queries. The search failure ratio is computed by
FQ/TQ.

4 Evaluation Results

We focus in our simulations on evaluating the maintenance cost and failure
tolerance of HON. As the system size increases, the number of peers and cells
might grow exponentially. Thus high number of indexes has to be maintained and
updated when peers join and leave the network. Therefore, we need to carefully
plan and consider the impact of system size increase and dynamic nature of peers
on maintenance costs, thus scalability and user satisfaction. In addition, peers
failures are common events in P2P systems. Hence a robust system needs to be
resilient to theses failures.
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4.1 Scalability

Overlay maintenance cost is proportional to the number of states maintained at
each peer. We study the maintenance cost after a set of peers joining events. The
maintenance cost depends on several parameters that are studied in this section
to analyse the system behavior. We start running a first simulation where we vary
the number of peers from 2 to 216. Each peer contains between 50 and 150 data
objects following a uniform distribution. The feature space is described using 5
features and divided into 1024 cells. Then, we compute the average maintenance
cost of simple peers, the average maintenance cost of super peers and last the
average maintenance cost of total peers constituting the system.

Figure 2 shows that when the system starts with few peers, the average main-
tenance cost of super peers increases while the one of simple peers is null. This
can be explained by the fact that when the system starts, all the cells are empty.
Therefore, the joining peers are defined as super peers to manage those cells. As
a result, almost no simple peers are present at the beginning of the system life.
More peers join the network, more the number of empty cells decreases, thus the
probability that a new peer will become a super peer decreases. Consequently,
when no more peers are designed as super peers, the super peers cost will sta-
bilize as shown in figure 2. Meanwhile, the average maintenance cost of simple
peers start increasing and stabilize till new events occur in the system.

Figure 2 shows the average maintenance cost of total peers. We notice that
it goes trough three steps: Cost Increase, Cost Decrease, and Cost Stabilization.
The average maintenance cost increases when the number of super peers is in-
creasing, decreases when simple peers join the network with their low cost, and
stabilizes when the system is completely build up.

Fig. 2. The average maintenance costs

The average maintenance cost depends on several parameters. Here we study
the impact of three parameters: Data distribution, Cells Number and Threshold.
We start by the data distribution and we consider two types, the first one is a
uniform distribution where each peer has equal chance to be mapped to any cell
of the feature space. The second distribution follows a zipf law where peers are
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mapped to few cells of the feature space. The cells have almost the same number
of objects using a uniform distribution while using a Zipf distribution 80% of
each peer’s content is mapped to 20% of cells.

We run our simulations using a Uniform distribution and a Zipf distribution
to analyze their impact on the maintenance cost. As shown in figure 3-(a), The
Zipf distribution assures lower average maintenance cost than the uniform distri-
bution. Using a Zipf distribution a peer belongs to few cells in the feature space
which means that it maintains few links to other peers in the system. While,
with a uniform distribution, a peer may be mapped to a large number of cells
that require a higher number of maintenance messages. For example, in figure
3-(a), the average maintenance cost when the system is build up is equal to 20
messages per peer using a Zipf distribution and 30 messages per peer using a
uniform distribution. In the same way, we compute the maintenance cost accord-
ing to the second parameter which is the number of cells. We notice that the
number of cells depends on the dimensionality and the number of feature par-
titions. According to the results shown in figure 3-(b), the average maintenance
cost increases with the number of cells.

Fig. 3. Distribution and number of cells impact on maintenance cost

The third parameter we use to evaluate the maintenance cost is the thresh-
old value. We run our experiments using a Zipf distribution. Then we vary the
threshold value used to map peers to cells and observe the system behavior.
Figure 4-(a) shows that the average maintenance decrease when the thresh-
old value increases. For example, when the threshold T increases from 0 to
10, the maintenance cost decreases from 20 to 2 messages per peer. It means
when the threshold increases, it reduces the number of cells to which a peer
can be mapped. Therefore, peers have fewer indexes to build and to update
which reduce significantly the maintenance cost. On the other hand, when the
threshold value increases, the load cost increases as shown in figure 4-(b). More
hops are required when the peer gets less number of connections to other peers
in the network by increasing the threshold value. The results presented in 4-
(b) show that a threshold T=0 provides an average load cost equals to 3 hops
per message, or a threshold T=10 provides a load cost equals to 21 hops per
message.
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Fig. 4. Threshold impact on maintenance and load costs

4.2 Tolerance to Failures

Each peer maintains a state parameter set to 1 or 0 to indicate respectively if
the peer is online or offline. A failure simulation is given by setting the state of
β peers to 0 and then start a set of search operations to compute the search
failure ratio. We remind that β represents the percentage of failed peers and
takes its values between 10% and 70%. We show in the following that HON is
resilient to failures in spite of its hierarchical architecture. Since there are many
different paths between two points in the feature space, when one or more of
peer’s neighbors fail, this peer can still route along the next best available path.

The fault tolerance of HON system depends on three parameters: Data distri-
bution, Threshold and Cells Granurality. We consider first the data distribution
parameter using uniform and Zipf distributions. According to figure 5-(a), we
note that a uniform distribution improves the fault tolerance of HON system be-
cause a peer maintains a large number of links which increases the probability to
reach the required destination when peers failures occur. For example, as shown
in figure 5-(a), using a uniform distribution the search failure ratio reaches only
12% with 70% of failed peers, while it reaches 49% using a Zipf distribution.

The second parameter that has a great impact on the fault tolerance in HON
is the threshold value. A high threshold reduces the number of links maintained
per each peer. Thus, the increase of the threshold value implies an increase of
the search failure ratio. As shown in figure 5-(b) using a Zipf distribution and
a threshold T=0, 50% of failed peers results in a 37% of failed queries, while a
T=6 provides a search failure ratio equals to 92%.

The last parameter that we studied to measure the fault tolerance is the
cells granularity. Low granularities group a high number of peers in one cell
which increase the probability to find data objects with lower hops number.
Therefore, the search process has a low probability to fail. In figure 5-(c), we
notice that a cell granularity equals to 40 assures a null search failure ratio and
a cell granularity equals to 5 provides a search failure ratio of 71% with 70% of
failed peers.
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Fig. 5. Fault tolerance in HON

5 Related Work

Several deterministic semantic search approaches based on high dimensional
space description of peers’ content have been proposed. pSearch was the first
system to allow decentralized, deterministic and non-flooding P2P information
retrieval based on contents and semantics [1]. The main idea of pSearch is to
store information of documents in DHT-based overlay network based on their
representations. pSearch is based on CAN system[10] and uses latent Semantic
Indexing LSI to generate semantic vectors for each document and query. These
semantic vectors are used as index keys to store documents and route queries in
the CAN space. pSearch aims to avoid the scalability problems of systems that
are based on centralized indexing or index/query flooding. Even though each
peer in pSearch maintains a large number of states (20), the search failure ratio
grows rapidly with the number of node failures.

A similar approach to pSearch called MURK (Multi-Dimensional Rectan-
gulation with Kd-trees) have been proposed by Ganesan et al. It uses a multi-
dimensional data space that is partitioned into zones, where each zone is
managed by one peer. A key difference between pSearch and MURK is that
when a new pSearch joins a zone managed by an existing peer, that zone is di-
vided equally between the two peers. Nevertheless, MURK splits zones into two
parts of equal loads. In addition, the number of dimensions used by pSearch is
governed by the dimensionality of the data while it is based on routing consid-
erations in MURK. Ganesan et al focused on studying data locality properties
and routing costs.

Li et al [7] have proposed a Semantic Small World (SSW) approach to facili-
tate efficient semantic based search in P2P networks. It is based on a semantic
space where peers are clustered according to the semantics of their local data.
These peer clusters are then self-organized into a small world network to assure
an efficient search performance with low maintenance overhead. Li et al [7] have
shown through extensive simulations that SSW is much more scalable to very
large network sizes and very large numbers of data objects compared to pSearch.
In addition, SSW assures good fault tolerance properties.

The multi-dimensional approaches presented above use mainly a maximum
size M to define the boundaries of the feature space partitions. M represents
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the number of peers within the partition and is set to 1 in pSearch and MURK
approaches. In HON, we use predefined partitions of the feature space to perform
the similarity search giving more precise description of peers’ content. The search
is cell-based which assure an efficient accuracy using high granularities.

6 Conclusion

Similarity search plays a key role in information sharing in P2P systems. We
have presented the main characteristics of the Hybrid Overlay Network (HON), a
P2P system that organizes data and peers in a multidimensional feature space to
allow efficient data search. We have evaluated HON using extensive simulations
that focus on the maintenance cost and failure tolerance. We have shown the
scalability of HON to large network size and numbers of data objects. Moreover,
its efficiency to route queries along best available paths which make it resilient
to peers’ failures.

Our ongoing work focuses on studying the high dimensionality problems in
HON, and the load balancing issues. Moreover, we are further tuning the perfor-
mance of HON to measure the efficiency of the density-based algorithm in the
dynamic environment of P2P networks.
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Abstract. Despite Imagine presents an efficient memory hierarchy, the straight-
forward programming of scientific applications does not match the available 
memory hierarchy and thereby constrains the performance of stream applica-
tions. In this paper, we explore a novel matrix-based programming optimization 
for improving the memory hierarchy performance to sustain the operands 
needed for highly parallel computation. Our specific contributions include that 
we formulate the problem on the Data&Computation Matrix (D&C Matrix) that 
is proposed to abstract the relationship between streams and kernels, and pre-
sent the key techniques for improving the multilevel bandwidth utilization 
based on this matrix. The experimental evaluation on five representative scien-
tific applications shows that the new stream programs yielded by our optimiza-
tion can effectively enhance the locality in LRF and SRF, improve the capacity 
utilization of LRF and SRF, make the best use of SPs and SBs, and avoid index 
stream overhead. 

1   Introduction 

Imagine is a programmable stream processor which implements an efficient memory 
hierarchy including several local register files (LRFs), a 128 KB stream register file 
(SRF) and off-chip DRAM to sustain computation on 48 arithmetic units arranged as 
8 SIMD clusters [1][2][3]. Each LRF relates to a 256-word scratchpad unit (SP) used 
for local arrays and each SRF bank contains 8 stream buffer (SB) banks used to inter-
face between the SRF storage and the 8 clusters [4]. Fig.1 diagrams the bandwidth 
hierarchy for the Imagine [5]. The stream applications on Imagine are structured as 
some computation kernels that operate on sequences of data records called streams 
[6][7]. However, most scientific applications exhibit multiple loops iterating over the 
same large array. It is a simple streaming method to look upon each inner loop as a 
separate kernel and each array as a stream. Unfortunately this straightforward coding 
of scientific applications does not match the available memory hierarchy on Imagine 
that constrains the performance of the stream applications due to the overhigh com-
pute rate [8]. Therefore, it is necessary to explore the programming optimization for 
improving the utilization of the memory hierarchy.  
                                                           
* This work was supported by the National High Technology Development 863 Program of 

China under Grant No. 2004AA1Z2210. 
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Memory hierarchy optimization aims at achieving high utilization of the bandwidth 
hierarchy. The major challenge in stream programming for improving the bandwidth 
utilization is the utilization of the underlying hardware. First, the utilization of LRF 
bandwidth is limited to the kernel locality, the LRF capacity, and the usage of SPs. 
Similarly, the SRF bandwidth utilization is affected by the SRF locality, the SRF 
capacity, and the occupancy factor of SBs. Another significant aspect is the DRAM 
bandwidth utilization, which is decided by the application of index streams. In this 
paper we explore a novel matrix-based programming optimization for fully exploiting 
the utilizations of the above aspects to improve the memory hierarchy performance. 
Our specific contributions include that we formulate the problem on the 
Data&Computation Matrix(D&C Matrix) that is proposed to abstract the relationship 
between streams and kernels, and present the key techniques for improving the band-
width utilization of LRF, SRF and DRAM based on this matrix. The experimental 
evaluation on ISIM simulation of Imagine [9][10] shows that the optimizing stream 
programs can effectively enhance the memory hierarchy performance. 
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Fig. 1. The bandwidth hierarchy of Imagine 

2   D&C Matrix  

Our approach is based on building a matrix called the Data&Computation Matrix 
(D&C Matrix) for a given program shown in Fig. 2. This Matrix shows the access 
pattern of every array that is yielded by each iteration of all loops in the program 
accesses. Each raw of the D&C Matrix represents an array and each column of this 
matrix describes the access pattern of a loop. Suppose Di represents a sequential lay-
out of the array in the ith row and Lj denotes the loop in the jth column, the item in the 
ith row and the jth column position of the D&C Matrix corresponds to a mapping de-
noted as mij: Di→I such that I is an iteration vector which presents computation order 
according to data order. In other words, mij(d) for d∈Di is the iteration numbers in Lj 
that access d. Note that when each array in the nest is referenced many times, the 
mapping mij maps multiple data to multiple iterations. The right part of Fig. 2 gives an 
example of this mapping such that mij (c)={x, y}, mij(d)=y and mij (e)=z for c, d, e∈Di 
and {x, y}, {y}, {z}∈I. To afford facilities for clarifying our approach, we express the 
reverse mapping of mij as mij

-1 (y)={c, d}. To explain our technology, it is necessary 
to introduce the following definitions. 
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Definition 1. Suppose that two iterations x and y of a loop access the same data, then 
the computation distance Cdistance(x,y) is defined as the number of iterations be-
tween x and y such that Cdistance(x,y)=y-x.  

Definition 2. Suppose that data c and d are accessed successively, then the data dis-
tance Ddistance(c,d) is defined as the interval between the two data layouts such that 
Ddistance(c,d)=d-c. 

Data D

Computation
(Loop iteration)

The Mapping

x z y... ... ... ...

c d e... ... ... ...

Cdistance(x,y)

Ddistance(c,d)
iji

j

mD

mD

mmD

LLL

212

12111

21

 

Fig. 2. The D&C Matrix and the mapping in the matrix 

Each item in the D&C matrix is a mapping that presents some significant informa-
tion of the access pattern of streams, including the temporal locality, the spatial local-
ity, the access order, and the basic stream organization. For instance, data D in the 
right part of Fig. 2 presents the successive layout like stream layout so that we can 
loop upon D as a basic stream. The Cdistance(x,y) expresses the temporal locality of 
record c and Ddistance(c,d) denotes the spatial locality of stream D. Furthermore, we 
treat loop iteration spaces unrolling as the stream organization pattern, that is, the data 
sequence accessed by all the ordinal iterations can be organized as a stream. To clar-
ify distinctly, we formulate this approach of stream organization as follows where 
ORG(i, j) is the stream organization of the ith array accessed by the jth loop in the 
D&C Matrix, the symbol “ ” denotes the connection of different data sequences, 
max(x) is the maximum iteration of the loop body.  

( )IxxmjiORG ij

x

x

∈= −

=

+ |),( 1
)max(

0

 (1) 

Thus, the layout of the basic stream D is important for it affects the stream organi-
zation involving the amount and the stride of index streams [11]. For example, if the 
basic stream D is organized as Fig.2, it need to derive a index stream as (c,e,c,d) 
which presents large index stride; while if the basic stream D is organized as (c,e,d), 
the index stream is organized as small index stride compared with Fig. 2 and thereby 
reducing the overhead of DRAM reordering. By analyzing the D&C Matrix, form the 
basic streams according to the least common array region of the most time-consuming 
loops. The basic stream can also be varied dynamically. We formulate the basic 
stream layout of each array as follows, where BAS(i) denotes the basic stream layout 
of the ith row array in the D&C Matrix, f represents the time-consuming factor involv-
ing the invoking frequency and the running time, which shows the importance of each 
loop for deciding the basic stream layout. 
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3   Stream Programming for Memory Hierarchy Optimization   

To improve the memory hierarchy performance of Imagine, we propose a novel ma-
trix-based programming optimization. 

3.1   Improving LRF Bandwidth Utilization   

The utilization of LRF bandwidth is limited to the kernel locality that is affected by 
the temporal locality, the spatial locality, the LRF capacity, and the usage of SPs. 
Enhancing the utilization of these factors can provide high LRF bandwidth. 

3.1.1   Enhancing Temporal Locality in Kernel 
The temporal locality in kernel is achieved if each record is accessed many times 
continuously in LRF. Enhancing LRF temporal locality can increase the computa-
tional intensity [12]. Thus we propose LRF temporal locality optimizations by matrix 
transformations and reducing the computation distance in the D&C Matrix. 

Given the jth column loop with the ith row stream of a kernel in the matrix, we pro-
vide the following formula for fine kernel temporal locality based on the D&C Ma-
trix, where x is a arbitrary iteration in the jth column loop, D(K) presents the streams 
of kernel K, and L(K) presents the loops of kernel K. 

( ) ( )( ) ( ) ( )( )KLLKDDxmxmLxji jiijijj ∈∈±=∈∀∀∀ −− |111  (3) 

First, aiming at increasing more operations per memory access, we restructure all 
the loops based on the D&C Matrix to centralize all the computations that perform on 
the same stream into a large kernel. To implement this optimization, we perform ma-
trix distribution and matrix fusion on the loops that satisfy the following formula. 
Then yield a new D&C Matrix with fine computational intensiveness. 

( ) ( )( )( )( )φ≠∈∃∈∀ amamDaIjj ijiji 2121
 (4) 

Second, if arbitrary successive iterations in a loop access the same record of a 
stream, we can say this kernel exhibits temporal locality. Thus after matrix transfor-
mation, we consider reducing the computation distance in the new D&C Matrix by 
computation reordering to improve the kernel temporal locality as follows. 

1. Eliminating loop-carried dependence 
Data dependence tells us that two references point to the same LRF location, thus 

the computation distance can be shortened by eliminating the loop-carried depend-
ence [13] through array expansion, code replication etc. transformations, and making 
dependence just exist within inner loops, which is shown in Fig. 3. 

2. Tiling the computation space 
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If the loop-carried dependence between loops of long stream can’t be converted 
into the loop-independent dependence, we consider tiling the computation space given 
in Fig. 3 for reducing the computation distance [14]. Above all, we need partition the 
computation space to several parts. Then change the order of these parts to shorten the 
computation distance between the parts. Thus the size and the order of these computa-
tion parts play an important role in kernel temporal locality.  

eliminate loop-carried dependence 

tile the computation space 

a b c a c b

computations 

basic stream 

computations 

basic stream 
    

data alignment

computations 

basic stream 

..

combining records 

 

Fig. 3. Enhancing LRF temporal locality            Fig. 4. Enhancing LRF spatial locality 

3.1.2   Enhancing Spatial Locality in Kernel 
The spatial reuse of LRF is highest when records in the LRF are accessed sequen-
tially. In addition, having the right loop as the inner loop is critical because the inner 
loop determines which array dimension is accessed sequentially and the iterations of 
inner loop need to be placed into a cluster to enhance high spatial locality in kernel. 

Given the jth column loop with the ith row stream of a kernel in the matrix, we pro-
vide the following formula for fine kernel spatial locality based on the D&C Matrix, 
where a is a arbitrary record in the ith row stream.  

( ) ( )( ) ( ) ( )( )KLLKDDamamDaji jiijiji ∈∈±=∈∀∀∀ |1  (5) 

To improve LRF spatial locality, we need to shorten the data distance in the D&C 
Matrix as follows through changing the records accessed by the same computation so 
that the neighboring records are referenced close together in time. 

1. Data alignment 
The approach of data alignment [15] is to align different records to the same com-

putation by adding an extra iteration and adjusting the indices of one of the statement, 
and thereby the data distance can be reduced so that achieve fine spatial locality in 
kernel.  Here is an example shown in Fig. 4. We can observe the spatial locality of the 
basic stream is enhanced. 

2. Combining records 
All items of a record are placed on a cluster to perform the same computations. So 

the spatial locality can be improved by combining the records referenced by the same 
computation as a big record according to the capacity of LRF shown in Fig. 4. At the 
same time, we must claim attention to save the array boundary of the big record, for 
the record may be as large as the capacity of LRF [16]. This idea can avoid assigning 
dependent data within an iteration to different clusters and make full use of LRF. 
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3.1.3   Improving the Capacity Utilization of LRF 
To solve the locality problem of long stream, we must avoid the very latter part of a 
long stream reusing previous data due to the limited LRF capability, we must perform 
two program transformations: one side, the loop-carried dependence need be con-
verted into loop-independent dependence for eliminating the reuse of LRF between 
loops of long stream; on the other side, LRF locality with limited capability can be 
improved by strip mining the inner loop so that a single strip length fits in LRF and 
then moving the loop that iterates over the strips to the outermost position. 

3.1.4   Improving the Utilization of SPs 
Different from the spatial reuse in cache where the cache line can make random ac-
cess through index support, the spatial reuse in LRF is successive and limited to the 
overhead caused by SPs. The spatial locality of LRF occurs when each iteration of a 
loop accesses a LRF location that is adjacent to location used in the previous iteration, 
thus the intermediate variables produced by the previous iteration are assigned to SPs 
for latter iteration using. So the allocation and usage of SPs are particularly important 
for enhancing LRF locality. We formulize the number of SPs kept before iteration y, 
where NUM(X) denotes the number of sequence X.  

( )( ) ( ) ( ) ( )( ) ( )( )( )KDDymzmzyzizmNUM iijijij ∈<∃>∀∀ −−− 111 |  (6) 

The fewest SPs are required to hold the values between source and sink of the de-
pendence, that is minimize ( )( )− zmNUM ij

1 . Up to this point, we must reduce the 

dependent threshold of inner loop which denotes how many SPs would be allocated to 
reduce SP overhead. At the same time, to avoid the latter part of a long stream reusing 
the previous data due to overfull SPs, we must perform transformations involving 
eliminating the loop-carried dependence and tiling the computation space.  

3.2   Improving SRF Bandwidth Utilization   

Enhancing the utilization of the following factors can provide high SRF bandwidth: 
the SRF locality [17], the SRF capacity and the utilization of SBs. 

3.2.1   Improving SRF Locality  
The SRF locality is exposed by forwarding the streams produced by one kernel to 
subsequent kernels. In order to enhance SRF locality, the order of kernels in the D&C 
Matrix need to be reordered when the new matrix is produced. Then we bring forward 
optimizations for enhancing the SRF locality based on the new matrix.  

1. Unifying streams between kernels 
To achieve the stream reuse between successive kernels in SRF, we need to alter 

the streams’ region to make the streams in successive kernels uniform. This idea 
given in Fig. 5 emphasizes on adding or reducing some additional records of certain 
of the streams with the variety of the corresponding computations. 

2. Strip-mining streams 
If some parts of a long stream can be reused between multiple kernels, we consider 

strip-mining the stream to enhance SRF locality. Strip-mining partitions the input 
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stream into segments known as strips such that all of the intermediate state for the 
computation on a single strip fits in the SRF. Thus multiple strips can be operated on 
in sequence. This method organizes streams that can be captured entirely in on-chip 
memory, and do not generate off-chip memory accesses. 

computations of kernel 1 

basic stream 

computations of kernel 2 

computations of kernel 1 

basic stream 

computations of kernel 2     

computations of kernel 1 

basic stream 

computations of kernel 2 

computations of kernel 1 

basic stream 

computations of kernel 2  

              Fig. 5. Unifying streams in SRF           Fig. 6. Improving the SRF capacity utilization 

3.2.2   Improving the SRF Capacity Utilization  
Another aspect of improving the SRF bandwidth utilization is the SRF capacity utili-
zation. We present some methods to make full use of the SRF capacity. First, we can 
transfer some loops in the previous kernel to the next kernel, if these loops exist data 
dependency with partial loops in the next kernel, which is shown in Fig. 6. This idea 
can reduce the producing of intermediate results to guarantee SRF capacity enough 
and enhance SRF reuse. The essence of this transformation is to distribute the loops in 
different kernels and then to fuse partial loops to a kernel based on data-centric analy-
sis. Second, we can also use strip-mining to partition an input stream into smaller 
strips when this stream is larger than the SRF. 

3.2.3   Improving the Utilization of SBs 
With sequential SRF access, each SB is statically allocated to a single stream, that is, 
SRF supports eight streams transfer with each cluster at the same time. Thus, we must 
try our best to sustain the maximal streams to clusters. To increase the number of 
streams of a kernel, [5] proposes a method named stream partition according to its 
length or record. But this method is just suited for the programs with special streams. 
The more efficient method for optimizing the SBs utilization is enlarging the kernel 
granularity with more streams. We can use loop distribution and loop fusion [18][19] 
to combine loops into larger loops as many as possible to enlarge the kernel granular-
ity by applying various transformations including privatization, alignment, replication 
and so on. We can also use loop scheduling introduced in section 3.2.2 to expose 
more streams to SBs for high performance. 

3.3 Improving DRAM Bandwidth Utilization  

The usage of index stream makes stream organization flexibly, but it also reduces 
DRAM bandwidth performance owing to too much overhead of reordering stream in 
DRAM and reloading the index stream to SRF. So we must avoid using index stream 
or reducing the length and stride of index stream for stream organization as follows. 
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Fig. 7. Improving DRAM bandwidth utilization 

3.3.1   Organizing Streams as the Basic Stream 
To avoid using index stream that causes DRAM reordered overhead, we need select 
basic streams as operation objects of kernels. Based on the basic streams, we can 
choose appropriate index streams to avoid changing the loop regions and communi-
cating between clusters accordingly. For example, if just modify a part of a big ma-
trix, we can save this matrix as a small matrix and express this small matrix as basic 
stream based on access pattern, so the basic stream can be used instead of index 
stream to achieve good performance.  

A stream is restructured as the organization of the basic stream can also reduce the 
index stride by some transformations like loop interchange. For example, suppose the 
basic stream are stored in column-major order so if the loop iterating over a row is at 
the innermost position, we must perform loop interchange to reduce the index stride 
with less overhead of index organizing. 

3.3.2   Unroll-and-Jam 
Performing unroll-and-jam [15] to reduce the length of index stream by improving 
computations per record. The essence of this transformation is to unroll the outer loop 
to multiple iterations and then to fuse the copies of the inner loop. As an example, 
consider the loop in Fig. 7. By performing this transformation, the new version of the 
loop performs only one load of B(J) for each two uses as follows, so the index streams 
of B are shortened half length from 2*N2 to N2 for reducing the overhead of index 
stream loading. 

3.3.3   Data-Centric Loop Splitting 
We bring forward a new transformation to avoid index stream for higher performance 
compared with unroll-and-jam, which is data-centric loop splitting. We can distill the 
computations that reuse data with large temporal span as self-governed loop. As the 
previous example, the multiple loop can be split into two loops with computations on 



790 X. Yang et al.  

B and A respectively due to the discontinuous temporal reuse of B(J), thus the kernel 
can use the basic streams of B and A without indexing overhead, which is shown in 
Fig. 7. 

4   Experimental Results and Analysis 

Five representative scientific programs are used to evaluate our matrix-based optimi-
zation named MBO on ISIM that is a cycle-accurate simulator of Imagine [9], includ-
ing 171.Swim, Dfft, Transp, Vpenta and N-S. 

Swim is a weather prediction program in SPEC2000, which present large data 
amount, irregular access pattern and few computations correspondingly. Dfft is the 
most time-consuming subroutines in Capao that is an application on the field of op-
tics. It possesses small computations and fine computational intensiveness by apply-
ing butterfly algorithm. Transp that presents huge computations also comes from 
Capao due to its large time overhead. It exhibits loops that can be restructured to 
achieve high computational intensiveness, and the dependences of the loops provide 
the probability of enhancing locality. Vpenta is one of the kernels in NASA, which 
involves eight loop nests, and uses seven 2-dimensional arrays and two 3-dimensional 
arrays with regular data access pattern. N-S is an application of solving partial differ-
ential equation, and it is used widely in the field of fluid dynamics. N-S presents regu-
lar access pattern, fine data locality and large computations with invoking a great deal 
of mathematical functions. 

Fig.8 shows the effect on kernel size by applying our MBO optimization compared 
with the stream programs without using MBO, as well as the number of computations 
per memory access and the number of kernels. We can observe the MBO optimization 
improves kernel granularity of the five programs. But the granularity of Swim 
achieves a little varying, because this program has too many data and irregular access 
pattern so that the loops in Swim are difficult to be distributed or combined, and re-
sults in low computations per memory access. Transp, Vpenta, N-S and Dfft can 
enlarge the code amount of kernels obviously, that is the computational intensiveness 
is enhanced accordingly except Transp. Transp that involves two imperfectly nested 
loops can apply MBO to implement loop distribution and loop fusion by array 
 

 

   Fig. 8. The variety of kernel size                    Fig. 9. The reduction of index streams 
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expanding effectively, however all the arrays in Transp are referenced rarely leading a 
little variety of computational intensiveness compared with original stream program. 
Different from Transp, Vpenta achieves not only fine kernel granularity but also 
higher computations per memory access by matrix-based optimization due to repeti-
tive references to each array in this program. Dfft and N-S that are computational 
intensive applications require high computation per memory access to amortize off-
chip memory bandwidth, thus the MBO optimization can centralize all computations 
in Dfft and N-S to a kernel so that the computational intensiveness of the two applica-
tions are increased observably. 

Fig. 9 shows the reduction of index streams by applying MBO. One of the key 
techniques in MBO is to form appropriate basic streams so that the index streams can 
be reduced by appropriate program transformations based on the basic streams. But in 
Swim, the choice of basic stream has little effect on stream forming owing to complex 
data access pattern, and thus the number of index streams reduces a little. Dfft has a 
few data in original stream program, so the index streams are lessened a little too. The 
index streams of Transp, Vpenta and N-S reduce observably for achieving higher 
performance. In Transp, lessening the scale of original basic streams at the beginning 
of this program can avoid a great deal of index streams. The index stream can be 
eliminated in Vpenta by applying MBO when stream is short due to regular data ac-
cess pattern. The speedup variety according to varying stream length of Vpenta is 
shown in Fig.10. We can observe the speedup is improved highly when the streams 
are shorter than 256, because there is no index stream by using SPs in kernel. In N-S, 
the basic stream reorganization plays an important role of reducing index streams. 

 

Fig. 10. The speedup for varying stream length    Fig. 11. Computation rate of applications 

Fig.11 presents the variety of computation rate of these applications measured in 
the number of operations executed per second by applying MBO optimization. And 
illuminates the degree of memory operations and computation overlapping, with the 
goal of keeping all the units busy at all times. Our MBO optimization assigns all de-
pendent data to a cluster, avoiding communication delay and memory access latency. 
However Swim optimized by MBO still presents overfull index steams so that mem-
ory delay can’t be overlapped, resulting in low computation rate. Despite Transp and 
Vpenta both achieve higher LRF locality by eliminating loop-carried dependence 
between inner loops and shortening dependent threshold in inner loop, their computa-
tion rate are increased a little, because both low computational intensiveness of 
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Transp and the usage of index streams in Vpenta when streams are long make over-
lapping memory latency difficultly. N-S also presents high computational density by 
applying MBO optimization, however the computation rate of N-S is slow because it 
invokes inefficient mathematical kernels for many times involving sine function, 
cosine function, exponential function, extraction function, and exponentiation func-
tion. The high computation rate of Dfft indicates that the stream programming system 
delivers high computational density on this application. 

Table 1 illustrates the efficiency of the program (MBO) yielded by our optimiza-
tion compared with original stream program (Orig) and serial program (Seri). It is 
obvious that our optimization provides high speedup of Dfft, Transp, Vpenta and N-S 
due to fully utilize the underlying hardware. And compared with highly sensitive to 
memory latency of general processor, these applications can hide latency to achieve 
good performance. But for data intensive applications such as Swim, the speedup is 
low due to irregular access pattern so that our optimization can’t hide memory access 
latency. In conclusion, Swim is not well suited for the Imagine architecture. 

Table 1. Comparison of different implementation for the scientific applications 
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5   Conclusion and Future Work  

In this paper, we have presented a novel matrix-based programming optimization for 
improving the memory hierarchy performance to sustain the operands needed for 
highly parallel computation. The key techniques include that we formulate the prob-
lem on the Data&Computation Matrix (D&C Matrix) that is proposed to abstract the 
relationship between streams and kernels, and present the key techniques for improv-
ing the bandwidth utilization of LRF, SRF and DRAM based on this matrix. Our 
approach is simple and generates stream programs for scientific applications such as 
Swim, Dfft, Transp, Vpenta and N-S in our experiment. The experimental evaluation 
shows that the new stream programs yielded by our optimization can effectively en-
hance the locality in LRF and SRF, improve the capacity utilization of LRF and SRF, 
make the most use of SPs and SBs, and avoid index stream overhead. 

One future work is to research more program transformations in our optimization 
to exploit more architectural features of Imagine so that our optimization can achieve 
higher performance and more wider applicability. Another is to search more scientific 
applications suited for stream architecture by applying our optimization. 
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Abstract. Distributed Shared Memory (DSM) environment is built by using 
specific softwares, to combine a number of computer hardware resources into 
one computing environment. Such environment not only provides an easy way 
to execute parallel applications, but also combines resources to speedup 
execution of these applications. DSM systems need to maintain data 
consistency in memory, what usually leads to communication overhead. 
Therefore, there exist a number of strategies that can be used to overcome this 
overhead and improve overall performance. Prefetching strategies have been 
proven to show great performance in DSM systems, since they can reduce data 
access communication latencies from remote nodes. However, these strategies 
also transfer unnecessary prefetching pages to remote nodes. In this research 
paper, we focus on the analysis of data access pattern during execution of 
parallel applications. We propose an Adaptive Data Classification scheme to 
improve prefetching strategy, with the goal to improve overall performance. 
Adaptive Data Classification scheme classifies data according to the access 
behavior of pages, so that home node uses past history access patterns of remote 
nodes to decide whether it needs to transfer related pages to remote nodes. 
From experimental results, our method can improve the performance of 
prefetching strategies in DSM systems. 

1   Introduction 

Software Distributed Shared Memory (DSM) provides a convenient and effective 
solution for programming parallel applications. DSM systems provide the abstraction 
of shared address space among computers locally interconnected: private physical 
memory on each host is interconnected to form a global virtual memory. However, 
the overall performance of a DSM system is influenced by the coherence scheme. In a 
DSM system, data is distributed to each computing node, and thus, it needs to access 
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data on the remote computing nodes when executing applications. Unfortunately, 
some problems such as false sharing and extra communication may occur when 
attempting to maintain coherence. 

There are a number of strategies available to improve performance of DSM 
systems, such as home migration [1, 6], prefetching [9], and write detection [4]. 
Basically, these methods assist DSM systems to achieve shorter executing time 
toward better performance. Prefetching permits the home host to “pre-send” data to 
remote hosts. Overlapping communication time and data access time can greatly 
reduce number of remote page faults. Unfortunately, there are some problems in 
prefetching strategy such as unnecessary prefetching. Consequently, we want to use 
data classification to prefetch precisely. Thus, performance of distributed shared 
memory can be improved by reducing page faults and communication time among 
nodes. 

The main idea of our method is using the requested access sequences of home 
pages on each node as a class. Our method adds two components into Effective 
Prefetch Strategy. One component is adding DPRE as the status of pages that our 
method uses. This can distinguish from pages that Effective Prefetch Strategy 
prefetch and eliminate pages of data classification that already have been sent. 
Another component is established in home nodes. When page faults occur, 
requesting nodes decide which status of pages will be accessed, and home nodes 
decide if they need to transfer extra data for data classification. Then, we propose a 
method to improve the way of data classification and to enhance system 
performance. When page faults occur, our method can transfer pages that related to 
requested page to node that requests that page. It can reduce times of page faults 
when accessing data. By this way, we can reduce times of page faults and 
communication time between nodes. 

Our DSM experimental environment is based on JIAJIA [2, 3, 5, 6, 7, 13], which is 
using a lazy release consistency protocol and supporting scope consistency to 
maintain data consistency. The global shared memory is distributed across the 
processors, where each processor acts as the home of a portion of the shared memory. 
Each shared page has an item in the global page table to record the pointer to the 
home host of the page, the index to the home page table, and the index to the cache 
page table. Our method mainly is established in Effective Prefetch Strategy. We use 
three applications to make our experiment Merge, IS, and Red-Black SOR. We 
make our experiments to compare our Adaptive Data Classification with original 
JIAJIA and Effective Prefetch Strategy. From experiments, our method can improve 
about 9% ~ 31% of performance over original JIAJIA. 

The remaining of this paper is organized as follows. In Section 2, we introduce 
some prefetching strategies and data classification method. In Section 3, we introduce 
the method that we proposed. In Section 4, the proposed strategy is evaluated by 
executing Merge, IS, Red-Black SOR, and LU parallel applications in a DSM system, 
where different performance issues among the original JIAJIA are analyzed between 
the proposed strategy and Effective Prefetch Strategy. Finally, brief conclusions and 
comments about future work are presented in Section 5. 
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2   Prefetching Strategies and Data Classification 

In this section, we review History Prefetching, Effective Prefetch, and Adaptive 
Granularity. 

2.1   History Prefetching Strategy 

History Prefetching is utilizing temporal locality. History Prefetching Strategy 
predicts which pages will be used in next operation through the status of each node 
accesses from home node in barrier. If it deduces that the next operation for a page 
will be an access, then the page will be prefetched. Multiple pages can be prefetched 
with one message [8, 9, 13, 14]. Unfortunately, History Prefetching Strategy has some 
disadvantages such as Misprefetching, Accumulated Waiting Phenomenon, and 
Waiting Synchronization Phenomenon [9, 13, 15]. 

2.2   Effective Prefetch Strategy 

Effective Prefetch Strategy [10, 15, 16] improves the prefetching hit rate, reduce the 
number of Waiting Synchronization Phenomenon and Accumulated Waiting 
Phenomenon. For filtering Unnecessary Prefetches, it mainly uses different memory 
statuses to judge if prefetching is necessary. JIAJIA manages cache pages by using 
the Read-Only (RO), Read-Write (RW), and Invalid (INV). Effective Prefetch 
Strategy adds a new status, PREF, which indicates the status of pages that Effective 
Prefetch Strategy prefetches in cache. When the node occur a page fault, it will check 
the status of the page. If the page status is PREF, it will not record that page. That 
means that page has already been prefetched to that node, but that node did not use 
that page again. So it is unnecessary to prefetch that page.  

Distributing Prefetch Overhead mainly is requesting remote nodes to record the 
memory addresses of invalid pages before a barrier or a lock. Remote nodes will send 
the addresses of invalid pages to home node during barriers or locks. Therefore, home 
node will send prefetching data to remote requesters during barriers or locks. Home 
node does not manage the GETP string that records pages which remote nodes 
request, the INV string that records which node has invalidated pages, and other 
system overhead. 

Load Balancing with Barrier Synchronization mainly is to improve the effect of the 
Accumulated Waiting Phenomenon and Waiting Synchronization Phenomenon. 
When nodes are asked to send prefetching data, the nodes receiving the request will 
execute a conditional loop with threshold. When half the nodes finish sending their 
prefetching data, all the senders will be forced to leave the conditional loop. 

2.3   Adaptive Granularity 

We refer to Adaptive Granularity, which is proposed in [11, 12], to develop our data 
classification method. Adaptive Granularity can transfer different message sizes  
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according to data types. It divides data into two kinds: bulk data and normal data  
[11, 12]. Normal data is using page as memory unit in DSM system, and the size of 
bulk data will be decided by home nodes. Then the type of data is decided by local 
nodes. Using original method in DSM to transfer normal data, though using the size 
that bulk data defined to transfer bulk data. When the false sharing occurs, it will 
divide data into two blocks that have equal size. It will only transfer half block of data 
that contains partial data that is requested by remote node. This can reduce data flow 
in network. It is shown as Fig. 1. 

 

Fig. 1. Principles behind Adaptive Granularity 

To support both memory replication and variable granularities, it also allocates a 
data structure called NCPT (Node Controller Page Table). NCPT has one record for 
each page of physical memory that is mapped to the local node on behalf of the home 
node. It contains information about how the page is mapped [11, 12]. 

3   Adaptive Data Classification 

Our Adaptive Data Classification scheme is established in Effective Prefetch Strategy 
[15, 16] and is referring to the transfer message form of Adaptive Granularity  
[11, 12]. We hope to use data classification and prefetching strategy technique to 
improve performance of program executed in cluster system, reduce large amount of 
network traffic which is induced by maintaining data consistency in distributed shared 
memory, and improve the using efficiency of network. 

3.1   Adaptive Data Classification 

The best way to reduce remote page faults of maintaining data consistency is to let the 
node that wants to modify data can access data in local memory. We use this method 
to transfer data that maybe will be accessed to reduce remote page faults. The main 
idea of this method is using the requested access sequence of home pages on each 
node as a class. This is because the most used page of remote nodes’ requests in each 
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home node is different. If we can find some fixed access pattern sequence, we can use 
this sequence to help home node to predict which pages that remote nodes will access.  

Fig. 2 is the overview of our Adaptive Data Classification scheme. We use 
Adaptive Data Classification by the way that is similar to Adaptive Granularity, but 
the action of our method is different from the action of Adaptive Granularity. We 
observe that our method includes eight steps. In the process of dealing with page 
faults, we make decision if prefetching data to the node which occurring page faults. 
From requests of page faults, home nodes will decide which kind of pages it will need 
to transfer by using Adaptive Data Classification. If the page fault request is 
requesting page for RW, home node will not do this Adaptive Data Classification. If 
the page fault request is requesting page for RO, home node will do some judgments 
to add the page into the message and return that message to the node that occurs the 
page fault. 

 

Fig. 2. Overview of Our Adaptive Data Classification Scheme 

This can transfer related data at the same time that can be seen as the extending 
prefetching. This also can reduce times of remote accesses, times of page faults, and 
time of communication and computation. 

3.2   Implementation 

Our Adaptive Data Classification scheme adds two components with Effective 
Prefetch Strategy in JIAJIA. The first component is using PREF status and adding 
DPRE status. The PREF status means the pages that prefetched by using Effective 
Prefetch Strategy, and the DPRE status means the pages that carried by using our 
Adaptive Data Classification. This is in order to distinguish from prefetching pages of 
Effective Prefetch Strategy and eliminate pages of Adaptive Data Classification that 
already have been sent be arranged in prefetching table again. These two statuses are 
also used to distinguish from original statuses that JIAJIA uses. When a page fault 
occurs, it will check the status of that page. If the status of that page is not PREF or 
DPRE, it will insert this page into prefetching table. It is shown as Fig. 3. 
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Fig. 3. Adaptive Data Classification Scheme with Effective Prefetch Strategy in JIAJIA 

The second component is established in home node. It is shown as Fig. 4. Fig. 4 is 
the procedures of the home node deciding which pages will be transferred to which 
nodes by using Adaptive Data Classification scheme. When home node receives the 
page request, it will check if the request is for RO. If the request is for RO, home node 
will check if the request page is in the table, which this method established. If the 
request is not for RO, home node will abort this method.  

 

Fig. 4. Steps of Adaptive Data Classification Scheme in Home Node 

The requesting node decides what action, such as RO or RW, it will do for that 
page, and the home node decides if it needs to transfer extra data by using Adaptive 
Data Classification scheme. If the page that requesting node wants to access is not in 
the table, home node will add the requested page into table and record times of it. If 
the page that requesting node wants to access is in the table, it will add times of it and  
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set flag as “1” which means home node needs to transfer extra data. Then home node 
will also check if times are over half of nodes. If the times of its record is over half of 
nodes, home node will set that page needs to be transferred. 

When home node transfers fault pages, home node will check the flag in the table 
to know if there are extra pages need to be transferred. If there exists, home node will 
find out pages that after this fault page and set them need to be transferred and add 
them into message. Then the pages of Adaptive Data Classification scheme that home 
node transfers is not over two pages. This is because that a message packet at most 
can contain three pages in JIAJIA. Therefore, besides the page that the requesting 
node occurs page faults, one message packet can contain other two pages of Adaptive 
Data Classification scheme. When requesting node receives message, first it will 
handle fault page. If message exist extra pages, it will add extra pages into cache and 
set the status of that cache page as DPRE. When node accesses the status of that page 
is DPRE, it will use RO to handle this page. By this way, pages that Adaptive Data 
Classification scheme transfers will be adaptive. 

4   Performance Analysis 

The experimental platform consists of 8 PCs, each with one AMD Athlon 2400+ and 
1GB DDR memory, all interconnected via Gigabit Ethernet, running OS RedHat 9.0 
with kernel version 2.4.20. We evaluated the performance of the original JIAJIA 
DSM system, Effective Prefetch Strategy, and Adaptive Data Classification running 
four parallel applications: Merge, IS, Red-Black SOR, and LU. 

4.1   Merge 

The application Merge performs the merge sort on n integers using p processors. The 
n integers, appeared as p sorted arrays, are held by the p processors at the starting 
phase. At each stage, two arrays held by adjacent processors are merged together as 
one sorted array by one of the processors. Hence the merging is done in log p stages. 
Notice that in this program, using more processors will slow down the execution, 
since an extra stage of merging will be introduced when the number of processors 
doubles [13]. 

Fig. 5(a) shows the execution time of Merge with JIAJIA, Effective Prefetch 
Strategy, and Adaptive Data Classification scheme. Our method can improve 
performance about 10% over JIAJIA, and improve performance about 17% over 
Effective Prefetch Strategy. 

In Fig. 5(b), we analyze Adaptive Data Classification scheme in detail. SIGSEGV 
time (SEGV) represents the data miss penalty, including local and remote misses. 
Synchronization time (Syn.) and Server time (Server) represent the time spent on 
synchronization and servicing remote requests, respectively. Our scheme can reduce the 
SIGSEGV time, Synchronization time, and Server time of system. That means home 
node transfers related pages to remote nodes can help Merge be handled in DSM. This 
method reduces the number of remote page faults of remote nodes and the time of home  
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node to handle remote page faults. Because this method uses extra status to manage 
pages, home node can reduce unnecessary prefetching pages when processing 
prefetching pages. That can make home node reduce the time of processing prefetching 
in synchronization because it reduces amount of transferring prefetching pages. 

   
                                 (a)                                                                (b) 

Fig. 5. (a). Execution Time of Merge (b). Time Statistics of Merge 

4.2   IS 

IS application from NAS Benchmark Programs (NPB) ranks an unsorted sequence of 
keys using bucket sort. It divides up the keys among processors. There is a shared 
bucket for all processors and each processor has a private bucket. First, each 
processor counts its keys in the private array of buckets. These values in private 
buckets are then summed up into the shared bucket in a critical section that is 
protected by a lock. Finally, each processor reads the sum and ranks their keys [13]. 

   
                                 (a)                                                                (b) 

Fig. 6. (a). Execution Time of IS (b). Time Statistics of IS 

Fig. 6(a) is the execution time of IS with JIAJIA, Effective Prefetch Strategy, and 
Adaptive Data Classification scheme. Our method can improve performance about 
24% over original JIAJIA, and improve performance about 11% over Effective 
Prefetch Strategy.  
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Fig. 6(b) is the SIGSEGV time (SEGV), Synchronization time (Syn.), and Server 
time (Server) of IS which is using 8 computers. We can observe that prefetching can 
reduce time of handling page faults from Fig. 6(b). Approximately, IS is the same as 
Merge. Effective Prefetch Strategy and our Adaptive Data Classification scheme can 
reduce remote nodes occurring remote page faults, and reduce the time that home 
node handles remote page faults. Our method also reduces unnecessary prefetching 
pages of home node. 

4.3   Red-Black SOR 

Red-Black SOR (RBS) application is performed on two n × n matrices, one known as 
the red matrix, and the other called the black matrix. At each stage of the program, the 
values of the elements in each of the two matrices are updated according to the values 
of the elements in the other matrix. This routine is performed for 20 iterations. In the 
program, the red and black array are allocated in shared memory and divided into 
roughly equal size bands of rows. Each processor computes a red and a black band, 
and synchronizes with other processors with barriers. Communication occurs across 
the boundary rows on a barrier. Two barriers are used in each iteration [13].  

   
                                 (a)                                                                (b) 

Fig. 7. (a). Execution Time of RBS (b). Time Statistics of RBS 

Fig. 7(a) is the execution time of Red-Black SOR with JIAJIA, Effective Prefetch 
Strategy, and Adaptive Data Classification scheme. Our method can improve 
performance about 9% over original JIAJIA, and improve performance about 2% over 
Effective Prefetch Strategy. Fig. 7(b) shows the SIGSEGV time (SEGV), 
Synchronization time (Syn.), and Server time (Server) of Red-Black SOR that is using 
8 computers. From Fig. 7(b), we can observe that both Effective Prefetch Strategy and 
our method can reduce these three kinds of time. In Red-Black SOR, our method only 
reduces SIGSEGV time and server time, and Synchronization time is almost the same 
as Effective Prefetch Strategy. 

4.4   LU 

LU factors a dense matrix into the product of a lower triangular and an upper 
triangular matrix with the block factorization algorithm. We select the contiguous 
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block allocation LU that allows blocks to be allocated contiguously and entirely in the 
local memory (home in JIAJIA) of processors that “own” them.  

The algorithm factors the matrix in steps. Each step first factors the diagonal block, 
then the following blocks in the same column is divided by the diagonal block, and 
the trailing sub-matrix is updated at last. Barriers are used to separate the three phases 
in each factorization step [13]. To achieve good reference locality, the block size is 
set to 32 and the page size is set to 8192 bytes (the default page size is 4096 bytes) in 
the evaluation. The sizes of LU, 4096 × 4096, are run in our evaluation. 

Fig. 8(a) is the execution time of LU with JIAJIA, Effective Prefetch Strategy, and 
Adaptive Data Classification scheme. Our method is better than original JIAJIA, but 
it is worse than Effective Prefetch Strategy. Our method can improve performance 
about 18% over original JIAJIA, but decrease performance about 8% from Effective 
Prefetch Strategy.  

 
                                (a)                                                                (b) 

Fig. 8. (a). Execution Time of LU (b). Time Statistics of LU 

Fig. 8(b) shows the SIGSEGV time (SEGV), Synchronization time (Syn.), and 
Server time (Server) of LU that is using 8 computers. Although our method increases 
some overhead in Synchronization time, the performance of our Adaptive Data 
Classification scheme is still better than original JIAJIA. The major factor of latency 
is even our method can reduce prefetching pages in Effective Prefetch Strategy when 
prefetching, but it can only reduce a little. Our method lies on the request situation in 
the past. If the situation of regular page access is not precise, our method will be 
inefficient and may result in some latency. 

4.5   Summary 

From above experiments, we can observe that our Adaptive Data Classification can 
improve the performance of Effect Prefetch Strategy. Fig. 9 is the performance 
achievements when using our Adaptive Data Classification. It shows performance 
improvement when compared to JIAJIA. Our method shows the best overall 
performance. Our method can increase the accuracy of data access in Effective 
Prefetch Strategy, so it can reduce page faults and misprefetch. Adaptive Data 
Classification can improve performance about 9%~31% over original JIAJIA. 
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Fig. 9. Comparison of Adaptive Data Classification 

5   Conclusions and Future Work 

Although prefetching strategy can provide performance improvement in Distributed 
Shared Memory systems, there still exist some issues that need to deal with, such as 
misprefetch, Accumulated Waiting Phenomenon, Waiting Synchronization 
Phenomenon, among others. Our proposed Adaptive Data Classification scheme 
mainly reduces remote data access time, as also reducing the amount of same data that 
processors use when executing parallel applications. As result, it reduces network 
transmission and occurring rate of false sharing when system maintains data 
consistency. 

The proposed method still has a number of issues, since it relies on the situation of 
requesting past data to help remote nodes to get pages that may be accessed in the 
next operation. If the situation of regular page access is not precise, our Adaptive 
Data Classification scheme will be inefficient for inducing extra latencies. That means 
it is not suitable to use the requested access sequence of home page on each node as a 
class in some applications. We can still improve the performance of Effective 
Prefetch Strategy in JIAJIA, there exist some disadvantages. We will continually 
improve disadvantages of this method and propose more suitable data classification 
scheme for every application that will greatly alleviate serious Waiting 
Synchronization Phenomenon in Effective Prefetch Strategy. 
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Abstract. Traditional debug techniques using breakpoints and single stepping 
are hard to meet the requirements of debug and optimization problems related 
with temporal behavioral of the real-time programs in multiprocessors. In this 
paper an on-chip trace system TraceDo (Trace for Debug and Optimization) of 
a multiprocessor SoC (YHFT-QDSP) is introduced to overcome the debug 
challenge. Several novel methods including LS encoder, branch configuration 
bits and configuration instructions, have been presented in TraceDo to trace the 
program paths, data access and events with timestamps from four Digital Signal 
Processor (DSP) cores of YHFT-QDSP efficiently. The results of benchmarks 
show that TraceDo with LS encoder can improve the compression ratio of trace 
information by 27% than the best reference result on average. When using 
branch configuration bits, this value goes to 64%. 

1   Introduction 

The increasing demand of embedded systems makes embedded software more 
complex [10]. Developers are increasingly overwhelmed by development challenges 
such that system reliability is decreasing. 

However, more complex software is not the only challenge to developers. The 
traditional debug tools are not efficient enough to keep up with new characteristics of 
embedded systems under time-to-market pressures.  

Breakpoints and single stepping are fundamental debug methods. But they change 
software behavior in the real-time systems [19], and the concurrency in multi-
processor systems is hard to be watched using traditional debug techniques [18]. In 
control systems, mechanical parts are easily damaged or out of control by stopping 
systems suddenly using breakpoints. 

Logic analyzers do not change software behavior. But on higher integration of 
SoCs and processors with on-chip cache, board-level interfaces which could 
previously be monitored and debugged with logic analyzers are now buried in silicon 
[9] [14].  

Software instruments and profiling are popular technique for software debug and 
optimizations. Information of program execution is collected by adding instructions to 
source code [6]. This method is intrusive and consumes excessive system resources 
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such as CPU cycles and memories [16]. This limits its utilizations in resource-
sensitive embedded systems. Software behavior in real-time or parallel systems may 
be also changed by the instructions added.   

When these problems have to be solved by additional area and power, on-chip 
trace technique is becoming popular in recent years. The leading processor-core 
vendors such as ARC, ARM and MIPS Technologies provide their on-chip solutions 
[1] [2] [7]. The IEEE-ISTO NEXUS 5001 STD also includes protocols to support on-
chip trace [15]. 

This paper introduces TraceDo (Trace for Debug and Optimization), the on-chip 
trace system of YHFT-QDSP. YHFT-QDSP is a heterogeneous multiprocessor SoC 
integrated a commercial RISC core and four DSP cores of YHFT-DSP/700. The 
YHFT-DSP/700 is a high performance VLIW (Very Long Instruction Word) DSP [5]. 
For program debug and optimizing, TraceDo and a traditional multi-core debug 
system are designed for YHFT-QDSP. The traditional debug system with an 
enhanced JTAG port is used for breakpoints, single stepping and configuring 
TraceDo, etc. 

TraceDo is designed for DSP cores in YHFT-QDSP. It records the run-time 
information of programs non-intrusively with special hardware support, and sends this 
information out of processors for storage and analysis. TraceDo encodes these 
messages into trace messages with configurable on-chip timestamps. With novel 
methods including LS encoder and branch configuration bits, TraceDo gets better 
compression ratios than reference solutions on program path trace. Besides normal 
trace of program path and data access, TraceDo also records pipeline stalls as event 
trace for optimizations. With a separated encoding scheme for stall messages, users 
can achieve a good trade-off between enough precision and bandwidth consumed. A 
NOP_config instruction is designed to configure TraceDo non-intrusively. A detailed 
analysis of TraceDo and other trace solutions is also present in this paper. Benchmark 
programs with various characters are tested in experiments.  

The remainder of this paper is organized as follows. Section 2 describes TraceDo’s 
functionality, architectural design, and advantages. This is followed in Section 3 by 
discussing related works. Section 4 presents experimental results of benchmark 
programs. Section 5 concludes the paper. 

2   TraceDo 

2.1   Overview 

TraceDo is an on-chip trace system for debug and optimizations, as shown in Fig.1. It 
comprises the on-chip trace hardware, the Emulator and the software tool called Trace 
Analyzer embedded in the YHFT-DSP Integrated Development Environment (IDE). 
Trace Module of each DSP core collects and compresses trace messages. The 
compressed trace messages are sent to Trace Port through Trace Bus. The Emulator 
receives trace messages on Trace Port and attaches out-chip timestamps to them.  
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Trace messages are stored in DRAM buffers of Emulator or in Debug Host PC. The 
Trace Analyzer decompresses and analyzes trace messages to recover the behavior of 
programs. To reduce the bandwidth to Debug Host PC, a 24-bit timestamp counter is 
used in Emulator. Long time records are implemented by adding a block ID to every 
trace message block in Debug Host PC.  

The message format of TraceDo is various lengths aligned on bytes boundary. 
Details of messages are present in the next section. Every type of message has a 
unique header in its first byte. The message length is indicated by a follow bit (F bit) 
or the length field in the message. The F bit indicates if there is another byte followed 
in this message. Such message format has several advantages: (i) various lengths 
aligned on bytes boundary simplify the hardware structure of FIFO and data path, in 
contrast to various lengths in bits. (ii)The messages in higher probability have fewer 
overhead bits for headers. (iii)In each type of message, with F bits, information of 
message length consumes fewer bits for short messages in higher probability. (iv)The 
massage format is independent with Trace Port.  

 

Fig. 1. Structure of TraceDo 

2.2   On-Chip Trace Hardware 

The structure of on-chip trace hardware is modular and scalable, as shown in Fig.2. 
Trace Module consists of three Trace Units collecting program path, data access and 
events information respectively with appropriate compression schemes. The Unit 
Arbitrator assembles the compressed trace messages into Trace FIFO. The Trace Bus 
Arbitrator reads messages from Trace FIFO and sends them into Trace Package. 
Trace Bus Arbitrator also adds core IDs to messages. Messages are transferred out of 
the chip through Trace Port. An interface wrapper is used to make signals in DSP  
core to compliant with interfaces of Trace Units. This wrapper simplifies the 
implementation of Trace Module in other specific processors.  
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Fig. 2. Structure of On-chip Trace 

2.2.1   Path Trace  
TraceDo implements a Program Flow Change Model in which program path trace is 
synchronized at each program flow discontinuity. The program flow discontinuities 
are caused by branches and interrupts. The messages generated for this model are 
referred to as Path Trace Messages. 

The Trace Analyzer can interpolate what transpires between program flow 
discontinuities by correlating information from Path Trace Messages with static 
source or object code files.  

There are five types of program flow discontinuities in DSP cores: direct branches 
to constant addresses (BC), conditional direct branches to constant addresses (IBC); 
indirect branches to target address in registers (BR); conditional indirect branches to 
target address in registers (IBR) and interrupts to interrupt service routine. The BC 
causes determinate program flow change therefore it is not required by Trace 
Analyzer. Only one bit that indicates if an IBC is executed (taken or not taken) is 
required, and the constant target address can be attained from the instruction code. 
Target address of BR and IBR executed, taken address and target address of interrupt 
are also traced by default.   

In this model, program code running in processors should be the same as the code 
analyzed by the Program Flow Change Model. Therefore, self-modifying code cannot 
be traced because the code in processors is not static.  

A branch changes program flow just at instruction address of the branch or the 
following address caused by branch delay; therefore Trace Analyzer can distinguish 
branch taken address by only recording their temporal orders. Interrupts could change 
program flow at any address, so Interrupt Trace Messages with taken address 
information are separated from Branch Trace Messages.  

Three type configuration bits are designed to control branch trace in TraceDo. One 
type configuration bits are four output Enable Bits in a configuration register of the 
Path Unit. They are designed for setting output enable mode of branch messages. The 
default output mode of BC is disabled, and modes of BR, IBC, IBR are enabled. 
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Another type configuration bit is the output Force Bit. It’s set in the branch instruction 
code of BR/IBR. A Force Bit forces this branch to be traced out even if this type 
branch is disabled by its Enable Bit. Branch instruction address instead of branch 
target address is encoded into the message when Force Bit is valid. There is also a 
Degrade Bit in the instruction code of BR/IBR. The BR with its Degrade Bit set is 
treated as a BC by Path Units and will not be traced out by default. Similarly, the IBR 
with this bit set is treated as an IBC and only its execution will be traced out. The 
Degrade Bit is designed because many BR/IBR instructions are not inserted by the 
compiler for the uncertain target address, but because the target address could be out 
of the range of BC/IBC, or in respect that the return address of function call could be 
stacked. Force Bit and Degrade Bit are two reserved bits of original BR/IBR 
instruction code in YHFT-DSP/700. TraceDo takes advantage of these bits to 
communicate with on-chip trace hardware. Because the instruction code of BR/IBR 
has not the full target address but only the register ID, there are always some reserved 
bits in these instructions of 32-bit processors. In general, reserved bits of other 
instructions can also be used as Force Bits for communication. By reconfiguring 
Enable Bits, Force Bits and Degrade Bits, users can control path trace flexibly.  

Five messages are designed for the Path Trace. Three of them are shown in Fig.3 
as examples. Long Chart Messages and Short Chart Messages are generated by a 
hardware circuit named LS Encoder to record an execution history of IBC. The 
default mode of LS Encoder is History Mapping Mode. The history buffer of the LS 
Encoder is implemented as a left-shifting shift register of 6 bits. The register is always 
pre-loaded with a value of “000001”. The “1” in this value acts as a stop bit so that 
the Trace Analyzer can determine which bit is the last bit of valid history. A value of 
“1” is shifted into the history buffer when an IBC is taken, and a value of “0” is 
shifted when an IBC is not taken. A not taken IBR is treated as a not taken IBC. If the 
five valid bits in the history buffer are all “1”s or “0”s, the LS Encoder turns from 
History Mapping Mode into Length Encoding Mode. The history buffer’s lower 4 bits 
are replaced by the counter of “1”s or “0”s that will be received sequentially. A Long 
Chart Message is capable of recording 20 branches including the five received in 
History Mapping Mode. The 5th bit of the history buffer is the value it counts  
(“0” or “1”). The LS encoder sends out a Long Chart Message when it is ended in 
History Mapping Mode and sends out a Short Chart Message when it is ended in 
Length Encoding Mode. When the history buffer overflows or the next trace message 
encodes address of BR/IBR or interrupts, the LS encoder has to be ended. If the next 
bit received is not same to the previous one in Length Encoding Mode, the LS 
encoder will also be ended. 

Indirect Branch Messages contain the branch target address’s unique portion for a 
taken indirect branch. For example, if target address is 0x1010 and reference address 
is 0x1020, only the lower 6 bits of 0x1010 (the unique portion to 0x1020) are encoded 
into this Indirect Branch Message. Such compression scheme is named “XOR” in this 
paper. The reference address is the last address sent out or the address in the last 
synchronization message. 

A Synchronization Message is generated every 255 branches of all types or when 
Trace FIFO overflows. The synchronization message contains the instruction address 
of a not taken branch or the target address of a taken branch. The address is 
compressed by removing redundant zeros in higher address bits.  
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Interrupt messages contain three data packets: interrupt ID (IntID), interrupt 
request register (MaskIntReg) and the number of instructions executed after the last 
branch sent out (Instr_Count). The later two packets can be disabled. With the packet 
of Instr_Count, the Trace Analyzer knows which interrupt is taken and where the 
interrupt is taken. 

      

 

Fig. 3. Path Trace Messages 

2.2.2   Data Trace and Event Trace 
Data Trace Unit records data transferred by load/store instructions. TraceDo reduces 
the massive data access by triggers and filters. To utilize the locality of data, the XOR 
compression scheme is used. There is also a Synchronization Message for Data Trace. 

Events traced by TraceDo include the pipeline stalls caused by program fetch 
(PStall) or data fetch (DStall). With the two signals users can analyze where the CPU 
cycles are wasted easily. Other events such as cache missing or DMA busy can also 
be traced by Event Trace Unit. The encoding scheme of Event Trace is to record the 
counter of taken times or valid cycles of stalls at a configurable interval. The interval 
set in advance is defined by a number of CPU cycles or branches recorded by the Path 
Trace Unit. Configuration instructions can also define this interval. Such encoding 
scheme can achieve a good trade-off between enough precision and bandwidth 
consumed. 

2.2.3   Trace Messages Combination and Timestamps 
Trace messages from all Trace Units in YHFT-QDSP are transferred to one Trace 
Port by a two-level combination. The first level combination is to sort trace messages 
of three Trace Units into one Trace FIFO of each core. The second level is to sort 
trace messages of FIFOs into one Trace Port. The Unit Arbitrator in each core 
controls which messages will be written into the FIFO according to the predefined 
priorities and employments of the buffer registers in each Trace Unit. The buffer 
register can buffer the last two messages when the Trace Unit working for a new 
message.  

Trace FIFO has eight input ports and one output port constructed with eight two-
port register files for buffering burst messages from three Trace Units. When Trace 
FIFO or buffer registers overflows, a Synchronization Messages is sent out by Trace 
Unit.  
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To recover the trace messages from different cores with temporal orders, the on-
chip timestamps can be configured attached to messages in Trace Units. But only the 
difference between this stamp and the “port time” are encoded. The “port time” is a 
timestamp when the message reaches to Trace Port. The difference of two timestamp 
is the indeterminable delay of trace message caused by FIFO. Trace Port and each 
Trace Module have their own 12-bit on-chip timestamp counters sharing one global 
clock and one reset signal. With on-chip and out-chip timestamps, user can get precise 
time marks of messages. The Trace Bus is 16-bit width.  

2.2.4   Trace Port 
Trace messages packaged are transferred to the Emulator through the Trace Port. The 
Trace Port has four signals, as shown by Fig.4. A data path can be configured to 4 
bits, 8 bits or 16 bits in width by sharing 12 pins or 8 pins with other ports for 
bandwidth required by applications. An OutputActive signal indicates the active 
cycles on data path. An input command signal accepts simple commands from the 
Emulator. All these signals are synchronized with an input clock signal for working at 
a flexible interface frequency. 

                  
 
 

2.3   Trace Configuration 

The configurable functions of trace are programmed through configuration registers. 
All configuration registers of on-chip trace hardware can be accessed by JTAG 
instructions. Configuration registers of Trace Modules are also mapped into memory 
space of each DSP core and can be accessed by CPU instructions. Besides of load 
and store instructions, TraceDo supports a non-intrusive configuration instruction 
called NOP_config. NOP is the no-operation instruction of YHFT-DSP/700 for 
filling delay slots of multi-cycle instructions or empty slots in parallel instruction 
packages. NOP has a high instruction ratio, so they can be used by TraceDo to 
communicate with on-chip trace hardware. As a new instruction, NOP_config is the 
same as a NOP instruction in DSP core’s pipeline, but Control Unit of TraceDo 
extracts the reserved 14 bits of this instruction as configuration commands or 
Context ID, as shown in Fig.5. The Context ID is sent to Trace Port as Context 
Messages. To synchronizing Configuration Registers and Trace Analyzer, every 
config write is sent to Debug Host PC. 

Fig. 4. Trace Port Signals Fig. 5. NOP_config instruction and Context 
Message
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2.4   Implementation of TraceDo 

TraceDo is synthesized with timing constraints of 4ns using standard cells in 0.18um 
CMOS process. The area of TraceDo is 1,166,059 um2, less than 1% of total chip 
area. One Trace Module requires 263,501um2. LS Encoder only requires 2,651um2.  

3   Related Research and Analysis 

An embedding debugging architecture for SoCs is introduced [9]. It integrates 
processor cores and development tools from different vendors into one debug 
environment. This architecture is not for real-time trace because it is based on scan-
chains. Triggers, filters and timestamps are mentioned to support debug of multiple 
processors [12]. On-chip trace functions of some debugging systems are analyzed in 
[11]. The result shows real-time performance analysis is less well supported. An on-
chip events monitor on system level is introduced in [17]. It is hard to reuse this 
monitor because it is based on hardware-accelerated real-time operating systems. 

The CoreSight Frame of ARM core defines a multi-core debug and trace solution 
[2]. The CoreSight has well defined structures and functions at the cost of resources. 
The Embedded Trace Macrocell (ETM) in CoreSight is a real-time trace module 
capable of instruction and data tracing [3]. It has up to 90k gates alone [4]. The trace 
system of MIPS cores supports multi-pipelines. At least one trace message is sent out 
on every instruction executed [7].  

A general framework of on-chip real time trace for multiprocessor SoCs is 
introduced [8]. In this framework, several interfaces have been defined to decouple 
the debug support and debug infrastructure from processors. The taken direct 
branches are indicated by setting bits in a fixed length message. The target addresses 
of indirect branches, data values and data addresses are all compressed by calculating 
difference between the current and previous values. How to deal with interrupts are 
not mentioned in this framework. 

The IEEE-ISTO NEXUS 5001 STD defines the basic multiple core debug support 
for embedded processors and external tools [15]. Nexus focuses on protocol formats 
and doesn’t define implementations. Two versions of Nexus are 5001™-1999 
(Nexus1999) and 5001™-2003 (Nexus2003). Nexus defines the message format 
composed of a 6-bit message header and several data packets. Packets are defined in 
variable lengths by removing redundant zeros in higher bits of packet value. Variable 
length of packets and variable number of component packets make packaging trace 
messages into regular lengths for auxiliary port problematic. There are one or two 
control bits to assist external tools to partition packets and messages in data stream. 
The above message formats bring in redundant zeros, because two packets with 
variable length have to be aligned with the width of data path on auxiliary port. The 
first Nexus1999 implementation was in the Motorola (now Freescale) MPC565 [13]. 
There are still no reports about processors with Nexus2003 by now.  

Every branch message of Nexus has to include a C-INT packet, because of only 
taken branches sent out and no special message for interrupts [13] [15]. The C-INT is  
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the number of instructions executed from the last taken branch. Without C-INT 
packets, development tools can not distinguish taken branches from other branches in 
source codes, or acquire taken addresses of interrupts. The redundancy comes from 
that addresses of all branch instructions have been known from source code but they 
are still indicated by I-CNT, and interrupts in relative less probability could be 
handled specially. Nexus2003 adds HIST packet into the indirect branch message 
[15]. The executions of all direct branches are mapped into the HIST. Nexus2003 
adds another new message only for repeating indirect branches. But few loops 
constructed with indirect branches are found in benchmarks.  

TraceDo records all conditional direct branches and not taken conditional indirect 
branches by bit mapping or length encoding. The LS Encoder switches from bit 
mapping to length encoding efficiently. There are separate messages for interrupts. 
With an “F” bit in every byte instead of a 5-bit extension header in [8], fewer bits are 
used to indicate the length of short messages that happen in high probability. TraceDo 
separates information of pipelines into program path messages and stall messages. 
The separation can profile pipelines with tradeoff on precision and bandwidth while 
ARM and MIPS have only precise mode. The quantities of trace data can be reduced 
significantly in TraceDo by the novel configuration of Enable Bits, Force Bits, 
Degrade Bits and NOP_config instructions. 

In above researches, ARM and MIPS have to record every instruction executed, 
while MPC565, Nexus2003, [8] and TraceDo only record branches. These two 
methods can not be fairly compared. In the following section, we compare the 
compression ratios of program path trace among MPC565, Nexus2003, [8] and 
TraceDo. 

When comparing area, the four-core solution1 of [8] requires about 1,069,395um2 

that is less than the area of TraceDo. While including interconnects of on-chip trace 
hardware, areas of the two solutions are close. Because 16-bit Trace Bus of TraceDo 
will consume much less area than the 40-bit Point-Point bus of [8]. The message 
format in various lengths of TraceDo has advantages but leads to complex hardware 
structure on combining trace messages. LS Encoder of TraceDo only requires 
2,651um2 and hardware overheads of configuration bits can be omitted.  

4   Experiments and Comparison 

To evaluate TraceDo and related works, four Verilog-HDL models are constructed to 
describe program path trace schemes of MPC565, Nexus2003, [8] and TraceDo. The 
models are co-simulated with the RTL model of one DSP core in YHFT-QDSP. The 
max length of HIST packet of Nexus2003 is configured to 31 bits. The I-CNT packet 
of Nexus2003 has a max length of 8 bits, the same as that of MPC565. 
Synchronization messages are not considered in experiments for their low proportions 
and similar contributions to all results. 

Ten benchmark programs of different characters are selected to test the 
performance of four trace schemes. Brief descriptions of benchmarks are listed in 
Table 1.  
                                                           
1 Not include the area of Trace to Memory Unit and Break and Trigger Unit. 
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Table 1. Brief descriptions of benchmarks  

 

Compression efficiency of program path trace schemes is evaluated by the 
Compression Ratio, defined as:   

 

Trace message bytes in this definition are the output of trace schemes. The original 
information before compression is instruction addresses and target addresses of all 
taken branches. Because of 32-bit program counter, the original size is the number of 
all taken branches multiplied eight bytes.  

4.1   Comparison of Path Trace Schemes  

Path trace messages of TraceDo are used in this comparison. The test results are 
shown in Fig.6. There is 27% improvement in compression ratio on average, relative 
to the best reference result Nexus2003. No configuration bits or NOP_config is used 
in this test. The improvement of TraceDo comes from LS Encoder. 
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Fig. 6. Compressions of Program Path Trace. The result of [8] is labeled as Hopkins06. 
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4.2   Degrade Bits 

To improve the compression of TraceDo, Degrade Bits are used for special indirect 
branches in five benchmarks. The indirect branch with the Degrade Bit set is treated 
as a direct branch and will not be traced by TraceDo, thus the benefit from Degrade 
Bits is related to the quantity of indirect branches selected. In the level-1 
improvement with Degrade Bits, four indirect branch instructions executed most 
frequently are selected in each benchmark, and fifteen instructions are selected in 
level-2 improvement. The decrease of indirect branch messages is indicated in Fig.7. 
The Compression Ratios of Path Trace Messages are shown in Fig.8. Level-2 results 
in 80% improvement in float FFT and 64% on average, relative to the result of 
Nexus2003.  
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Fig. 7. Indirect branch messages decrease when selecting different Degrade Bits 
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Fig. 8. Compressions of Program Path Trace with Degrade Bits. The result of [8] is labeled as 
Hopkins06. 

5   Conclusions and Future Work 

This paper introduces TraceDo, an on-chip trace system in a multiprocessor SoC. It is 
modular and scalable. TraceDo records information of program path, data access and 
pipeline stall of multicores non-intrusively. With several novel methods, TraceDo can 
reduce the quantity of trace messages effectively and support the tradeoff between 
precision and bandwidth by configuration. This paper also analyzes other trace 
solutions.  
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As future work, the Degrade Bits selected manually in benchmarks will be selected 
by tools automatically. As an important application of TraceDo, parallel program 
optimizations in YHFT-QDSP will be researched practically. 
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Abstract. This paper introduces a formal framework for automatically gener-
ating performance optimized implementations of the discrete Fourier transform
(DFT) for distributed memory computers. The framework is implemented as part
of the program generation and optimization system SPIRAL. DFT algorithms are
represented as mathematical formulas in SPIRAL’s internal language SPL. Using
a tagging mechanism and formula rewriting, we extend SPIRAL to automatically
generate parallelized formulas. Using the same mechanism, we enable the gen-
eration of rescaling DFT algorithms, which redistribute the data in intermediate
steps to fewer processors to reduce communication overhead. It is a novel feature
of these methods that the redistribution steps are merged with the communication
steps of the algorithm to avoid additional communication overhead. Among the
possible alternative algorithms, SPIRAL’s search mechanism now determines the
fastest for a given platform, effectively generating adapted code without human
intervention. Experiments with DFT MPI programs generated by SPIRAL show
performance gains of up to 30% due to rescaling. Further, our generated programs
compare favorably with FFTW-MPI 2.1.5.

1 Introduction

For many important numerical problems, current compilers are not able to produce code
that is competitive with hand-tuned code in efficiency. To overcome this shortcoming,
a number of research efforts have developed novel methods aiming at automatic pro-
gram generation, optimization, and platform adaptation [17]. Examples include ATLAS

for basic linear algebra subroutines (BLAS), FFTW for the discrete Fourier transform
(DFT), and SPIRAL for more general linear transforms. These and other approaches
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address the problem of automatically tuning to single processor platforms. Specifically,
one goal is to tune code to a given memory hierarchy. However, with few exceptions,
parallelization is still done by hand. The improvement of this situation for the DFT on
distributed memory computers is the subject of this paper.

Contributions of this Paper. SPIRAL is a program generation and optimization system
for linear transforms including the DFT and many others [19]. SPIRAL supports a
wide range of platforms including vector architectures [7,10] and shared memory plat-
forms [9]. In this paper we extend SPIRAL to generate MPI programs for the DFT. To do
this, we identify rewriting rules that enable the automatic parallelization of FFTs given
as mathematical formulas. This replaces expensive compiler analysis by simple pattern
matching. In addition, we provide rules that rescale the computation to a different num-
ber of CPUs during the computation. By integrating these rules in SPIRAL’s rewriting
system, SPIRAL’s automatic search mechanism can find the fastest among alternatives
and generate DFT MPI code that is adapted to a given computing platform. We show
that the generated programs benefit from rescaling for many sizes and that they compare
favorably to FFTW-MPI 2.1.5. Besides performance improvement, the generation of
rescaling DFT programs provides greater flexibility to the user in that it decouples initial
data distribution and processor use. This flexibility is usually not provided in libraries.

Related Work. The work described in the following addresses the common problem
of obtaining fast code for distributed memory platforms by automatically tuning to the
platform’s characteristics. The approaches range from classical compiler techniques to
high level formula manipulation and program generation. The respective application
domains range from general linear algebra and linear transforms to more application
specific problems like quantum chemistry computations.

A compiler framework for generating MPI code for arbitrarily tiled for-loop nests
by performing various loop transformations to gain inherent coarse-grained parallelism
is presented in [14]. [18] describes the generation of collective communication MPI
code by automatically searching for the best algorithm on a given system. Another em-
pirical approach for generating efficient all-to-all communication routines for Ethernet
switched clusters is used by [6].

SCALAPACK [3] is a portable library of high performance linear algebra routines
for distributed memory systems following the message passing model. Built upon LA-
PACK, it is highly scalable on various architectures using different processor numbers.
SCALAPACK requires the user to define the processor configuration and to distribute
the matrix data herself.

[2] presents a parallel program generator for a class of computational problems in
quantum chemistry. The input is described by tensor contractions and is manipulated
using algebraic transformations to reduce the operation count. Data partitioning and
memory usage optimization are performed for a specified number of processors on a
given target system by using a dynamic programming search.

FFTW [11,12] is a self-adapting DFT library supporting one- and higher-dimensional
real and complex input data of arbitrary size. Typically, FFTW is faster than most other
publicly available FFT libraries and also compares well to vendor libraries. MPI support,
i. e., MPI-FFTW, is available in FFTW 2.1.5 but not in the more recent version 3.1 [13].
FFTW requires the data to be provided in slab decomposition. It then estimates the op-
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timal number of processors to use for a given computation. If this number is different
from the number of CPUs the user’s program runs on, FFTW requires the user to redis-
tribute prior and after calling FFTW. If other data layouts are required, users often resort
to their own custom implementations to increase performance [5,15]. Experiments [1]
show that substantial portions of the runtime are spent on communication between pro-
cessors. A program generation framework as presented in this paper is a step towards
improving this situation in that it enables customization without programming effort.

[16] describes the extension of a sequential self-adapting package for the Walsh-
Hadamard transform (WHT) to support MPI code. Different WHT matrix factorizations
provided in Kronecker notation exhibit different data distributions and communication
patterns. Searching the space of WHT formulas leads to the best performing factoriza-
tion on a given platform. In spirit, the approach taken in [16] is similar to the framework
developed in this paper.

Synopsis. Section 2 introduces the DFT and the mathematical foundation for repre-
senting its fast algorithms. Then we explain the SPIRAL system, which is the platform
for our work. In Section 3, we develop the formal framework to generate MPI DFT
implementation; an application of this approach to a novel method of rescaling DFT
algorithms is illustrated in Section 4. We implemented the framework as extension of
SPIRAL and show benchmarks of automatically generated and optimized DFT code
in Section 5. The results show that rescaling provides performance gains and that our
generated MPI programs compare favorably with FFTW.

2 Background: Discrete Fourier Transform and SPIRAL

Discrete Fourier Transform. The discrete Fourier transform (DFT) is the matrix vec-
tor multiplication x �→ y = DFTn x, where x, y ∈ Cn are the input and output,
respectively, and DFTn is the n× n matrix defined by

DFTn = [ωk�
n | k, � = 0, . . . , n− 1], ωn = e2π

√−1/n.

The famous Cooley-Tukey fast Fourier transform (FFT) can be expressed as a factor-
ization of DFTn into a product of structured sparse matrices [21], namely, for n = km,

DFTkm → (DFTk ⊗Im)T n
m(Ik ⊗DFTm)Ln

k (1)

We call (1) a breakdown rule since it formally represents a divide and conquer algo-
rithm. This is emphasized by writing→ instead of =.

In (1) we used the following notation. The n× n identity matrix is denoted with In;
Ln

k is the stride permutation matrix defined by its underlying permutation

Ln
k : jm + i �→ ik + j, 0 ≤ i < m, 0 ≤ j < k.

It is equivalent to transposing an m× k matrix stored in row-major order in memory.
Most importantly, the tensor or Kronecker product of matrices is defined by

A⊗B = [ak,�B], for A = [ak,�].

Finally, T n
m is a diagonal matrix, called twiddle matrix, whose exact form can be found

in [21].
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Table 1. Compiling SPL into code is done by recursively using the above correspondences. x
denotes the input and y the output vector. We use Matlab-like notation: x[b:s:e] denotes the
subvector of x starting at b, ending at e, and extracted at stride s.

SPL construct code

y = (AnBn)x
t[0:1:n-1] = B(x[0:1:n-1]);
y[0:1:n-1] = A(t[0:1:n-1]);

y = (Im ⊗ An)x
for (i=0;i<m;i++)

y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y = (Am ⊗ In)x
for (i=0;i<m;i++)

y[i:n:i+m-1] = A(x[i:n:i+m-1]);

y = Lkm
k x

for (i=0;i<k;i++)
for (j=0;j<m;j++)

y[i+k*j]=x[m*i+j];

Recursive computation of the DFT using (1) and other FFTs (in case that n does not
decompose) enables the computation of the DFT in O(n log(n)) operations. Note that
there is a large degree of freedom in recursing, since at each step several factorizations
of n may be possible. These recursions have roughly the same operations count but
different memory access patterns, which leads to different runtimes when implemented.

SPIRAL. SPIRAL [19,20] is a program generation and optimization system for linear
transforms such as the DFT and many others. Its internal structure is shown in Figure 1.

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
e
a
rc

h
/L

e
a
rn

in
g

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

(SPL Compiler)

Evaluation

Level

Fig. 1. SPIRAL’s architecture

The user formally specifies a transform she
wants to have implemented, e.g., “DFT256”.
First, SPIRAL recursively applies breakdown
rules such as (1) to generate one out of
many possible formulas, represented in the
language SPL (signal processing language),
which was informally introduced above.
Namely, SPL expresses algorithms as sparse
structured matrix factorizations using prod-
ucts, tensor products, and basic matrix such
as the identity and permutations. Next, SPI-
RAL optimizes the structure of the formula
using a formula rewriting system (see [4] for
an introduction to rewriting systems). The
rewriting effectively performs optimizations
for the memory hierarchy [8], for vector in-
structions [10], or for shared memory plat-
forms [9]. The idea is to perform these optimizations at a high level of abstraction
(namely on formulas), since they are unpractical at the C code level.

The obtained optimized SPL formula is then translated into C code using a special
purpose compiler. This is possible since formulas have a clear interpretation as code. A
few simple examples are shown in Table 1. The obtained code is further optimized and
then compiled and its runtime measured.
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The runtime is fed into a search engine, which drives, in a feedback loop, the formula
generation process and the selection of implementation options such as the degree of un-
rolling. In doing so, SPIRAL effectively searches for the formula, or algorithm, that runs
fastest on the given computing platform. Search strategies include dynamic program-
ming and evolutionary search. Upon termination, the final program is output to the user.

The goal of this paper is to present first steps in extending SPIRAL to generate effi-
cient programs for distributed memory platforms. Similar to the vector code generation
and shared memory parallel code generation, we achieve this through a suitably de-
signed extension of SPIRAL’s rewriting system and the SPL compiler. This is explained
in the next sections.

3 Translating Formulas into MPI Programs

In Section 2 we explained SPIRAL and its theoretical underpinning: the formula lan-
guage SPL, which enables algorithm generation and optimization at a high level of ab-
straction. Our goal is to enable SPIRAL to generate efficient MPI implementations. To
this end, we now introduce formula constructs that are translated into message passing
programs by an extension of the SPL compiler, called MPI-SPL compiler. The MPI-
SPL compiler is one major contribution of this paper.

Data distribution. We introduce the tag “par(p)” to express that a formula will be
implemented on p processors. We assume that all distributed data vectors are block dis-
tributed, i.e., each processors’ memory holds one equal sized contiguous chunk of the
data vector. For instance, if a formula A6, representing the computation y = A6x, op-
erates on vectors of 6 data elements which are distributed across 2 processors, we write⎛

⎝ y0
y1
y2

y3
y4
y5

⎞
⎠ = A6︸︷︷︸

par(2)

⎛
⎝ x0

x1
x2

x3
x4
x5

⎞
⎠ .

The tag “par(2)” implies that the computation of y = A6x is distributed across 2
processors. The elements x0, x1, x2 and y0, y1, y2 are stored in the memory of
processor 0, while the elements x3, x4, x5 and y3, y4, y5 are stored in the memory of
processor 1. We add a horizontal line between vector elements that reside in the local
memory of different processors.

In addition, we introduce tags that express data redistribution. The tag “par(q ←
p)” expresses that the input vector x is distributed over p processors and the output
vector y is distributed over q processors. This implies that the tagged formula does a
redistribution from p to q processors during its computation. For instance, we denote a
formula A6 operating on vectors of 6 data elements with the input x distributed across
2 processors and the output y distributed across 3 processors by⎛

⎜⎝
y0
y1

y2
y3

y4
y5

⎞
⎟⎠ = A6︸︷︷︸

par(3←2)

⎛
⎝ x0

x1
x2

x3
x4
x5

⎞
⎠ . (2)

The tag “par(3 ← 2)” implies that the computation of y = A6x is started on 2 pro-
cessors and finished on 3 processors, redistributing during computation. The elements
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x0, x1, x2, and y0, y1 are stored in the memory of processor 0, the elements x3, x4, x5,
and y2, y3 are stored in the memory of processor 1, and the elements y4, y5 are stored
in the memory of processor 2.

Finally, we introduce the tag “par(p ← q ← p),” which expresses that a formula’s
input and output are distributed across p processors but the formula internally redis-
tributes to q processors. For instance,

y = AB︸︷︷︸
par(p←q←p)

x with AB︸︷︷︸
par(p←q←p)

= A︸︷︷︸
par(p←q)

B︸︷︷︸
par(q←p)

has the input x and the output y distributed over p processors, but the output of B (i.e.,
the input of A) is distributed across q processors.

Parallel computation. The formula construct

Ip ⊗Am×n =

⎡
⎢⎣Am×n

. . .
Am×n

⎤
⎥⎦ , Am×n ∈ C

m×n

is a block-diagonal matrix of p blocks of Am×n. The tagged formula

y =
(
Ip ⊗Am×n

)︸ ︷︷ ︸
par(p)

x (3)

expresses a p-way embarrassingly parallel computation. Each Am×n operates on an
independent part of x and y. The vectors x ∈ Cpn and y ∈ Cpm are distributed across
p processors into p local vectors x′

i ∈ Cn and y′
i ∈ Cm with x = x′

0 ⊕ · · · ⊕ x′
p−1

and y = y′
0 ⊕ · · · ⊕ y′

p−1; ⊕ denotes the stacking of column vectors. All p processors
execute the formula Am×n in parallel computing y′

i = Am×nx′
i. Since it is the same

formula in each case, (3) is easily implemented as single program multiple data (SPMD)
MPI program.

Similarly, formulas consisting of diagonal matrices,

y = D︸︷︷︸
par(p)

x, D ∈ C
mp×mp diagonal, (4)

can be trivially mapped to MPI programs.

All-to-all communication. Permutations express data reordering. In a distributed ad-
dress space this reordering translates into explicit communication if the source and tar-
get location are in the local memory of different processors. Permutations of the form
Pmp ⊗ In, where Pmp ∈ Cmp×mp is a permutation matrix, reorder mp chunks of n
consecutive elements where m chunks reside in each processor’s memory. This means
that up to m messages of length n are to be sent and received per processor. Thus,

y = (Pmp ⊗ In︸ ︷︷ ︸
par(p)

)x (5)

encodes an all-to-all communication of p processors with message size n and the com-
munication pattern described by P . For instance, when implementing
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y =
(
L4

2 ⊗ I2

)︸ ︷︷ ︸
par(2)

x =

⎡
⎢⎢⎢⎢⎣

1 · · · · · · ·
· 1 · · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · · · 1 ·
· · · · · · · 1

⎤
⎥⎥⎥⎥⎦ ·

⎛
⎜⎜⎜⎜⎝

x0
x1
x2
x3
x4
x5
x6
x7

⎞
⎟⎟⎟⎟⎠ ,

processor 0 sends the message (x2, x3) to processor 1 and processor 1 sends the mes-
sage (x4, x5) to processor 0.

In our example not all chunks of length m become messages. For instance, (x0, x1)
and (x6, x7) stay in the memory of their respective processor. We capture this by de-
composing (5) into a local part that copies data within the local memory of each pro-
cessor and a global part that must be implemented using message passing. Formally,
we decompose P in (5) into a sum of two matrices,

P = F + C,

and thus
Pmp ⊗ In = (F ⊗ In) + (C ⊗ In).

Each “1” entry in P ends up either in F or C, hence the sum does not incur actual
operations.

F contains all “1” entries of P within the block diagonal with blocks of size m×m.
It describes the addressing of all data chunks that stay within the local memory of each
processor. F ⊗ In will be implemented as data copying by the respective processor.

C contains all remaining, i.e., off-blockdiagonal “1” entries. It describes the address-
ing of all data messages that have to be transmitted between two processors. C ⊗ In

will be implemented using one send/receive pair per message.
To make the message addressing explicit, we further factor C as

C = SC′G with C′,

where C′ is a permutation matrix. This factorization is explained next. Assume, that Pmp

requireskp messages (k ≤ m). Then C′ ∈ C
kp×kp is a permutation matrix describing the

message addressing. C′
i,j = 1 implies that message (j mod k) sent by processor 
j/k� is

message (i modk) received by processor 
i/k�. G is a rectangular block-diagonal matrix
of p blocks of size k×m. G assigns k of the m data chunks within each processor’s local
memory to one of the k messages to be sent by this processor. S is a rectangular block-
diagonal matrix of p blocks of size m × k. It stores the k messages received by each
processor at their final location within the local memory of each processor.

Analysis of S, C′, and G enables highly optimized implementations like using MPI
collective communication functions or implementing y =

(
P ⊗ In

)
x inplace (vector

x and y share the same memory location). For instance, if C′ is symmetric and S=GT

(transpose), then C ⊗ In can be implemented inplace using send-receive-replace op-
erations. The required analysis is implemented using the techniques described in [8].
Details of the analysis are beyond the scope of this paper.

As illustrative example we parallelize L9
3 for 3 processors. We factor L9

3 into the
local matrix F and the communication matrices S, C′, and G:
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y = L9
3︸︷︷︸

par(3)

x = Fx + SC′Gx.

The explicit form is shown next and represents the communication addressing pattern:

y0

y1

y2

y3

y4

y5

y6

y7

y8

=

x0

x3

x6

x1

x4

x7

x2

x5

x8

=

1 · · · · · · · ·
· · · 1 · · · · ·
· · · · · · 1 · ·
· 1 · · · · · · ·
· · · · 1 · · · ·
· · · · · · · 1 ·
· · 1 · · · · · ·
· · · · · 1 · · ·
· · · · · · · · 1

L9
3

par(3, mpi)

·

x0

x1

x2

x3

x4

x5

x6

x7

x8

=

1 · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · 1 · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · 1

F

·

x0

x1

x2

x3

x4

x5

x6

x7

x8

+

· · · · · ·
1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1
· · · · · ·

S

· · 1 · · ·
· · · · 1 ·
1 · · · · ·
· · · · · 1

· 1 · · · ·
· · · 1 · ·

C′

· 1 · · · · · · ·
· · 1 · · · · · ·
· · · 1 · · · · ·
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · 1 ·

G

·

x0

x1

x2

x3

x4

x5

x6

x7

x8

.

The matrix F encodes that x0 (in processor 0’s memory), x4 (in processor 1’s mem-
ory), and x8 (in processor 2’s memory) do not require communication and are moved
from x to y by their respective processors. The matrix G specifies which elements of
the vector x become which message. In our example the data packets are x1, x2 (sent
by processor 0), x3, x5 (sent by processor 1), and x6, x7 (sent by processor 2). C′ is a
6× 6 permutation matrix encoding the send/receive addressing of the data packets. For
instance, the entry C′

4,1 = 1 of C′ = [C′
i,j ]i,j describes that message 1 sent by processor

0 (x2) is message 0 received by processor 2. The matrix S describes the final location
of the received data packets. For instance, message 0 received by processor 2 (x2) will
be stored at location y6. Figure 2 shows the MPI corresponding implementation.

Data redistribution. Formula (2) requires different data distributions for x and y.
To capture this, we generalize the idea of all-to-all communication from the previous
section to data redistributions. Permutations

Pm ⊗ In with p, q | m, Pm permutation matrix ∈ C
m×m (6)

reorder m chunks of data of size n. Thus,

y =
(
Pm ⊗ In

)︸ ︷︷ ︸
par(q←p)

x (7)
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int proc[][] = {{1,2}, {0,2}, {0,1}}, // communication pattern
msg[][] = {{0,0}, {0,1}, {1,1}},
SG[][] = {{1,2}, {3,5}, {6,7}},
F[] = {0,1,2};

// parallel function, call by 3 MPI processes simultaneously
void L_9_3(double *yLocal, double *xLocal, int mpirank) {

// output: yLocal[3], input xLocal[3]; part of x[9] and y[9]
MPI_Request send[2], recv[2]; int i;
yLocal[F[mpirank]] = xLocal[F[mpirank]]; // y = Fx +...
for(i = 0; i < 2; i++){ // + SC’Gx

// nonblocking send
MPI_Isend(xLocal + SG[mpirank][i], // source ofs

1, MPI_DOUBLE,
proc[mpirank][i], // receiving proc
i, // msg id
MPI_COMM_WORLD, send + i);

// nonblocking receive
MPI_Irecv(yLocal + SG[mpirank][i], // target ofs

1, MPI_DOUBLE,
proc[mpirank][i], // sending proc
msg[mpirank][i], // msg id to get
MPI_COMM_WORLD, recv + i);

}
MPI_Waitall(1, recv, MPI_STATUSSES_IGNORE);

}

Fig. 2. MPI program implementing y = L9
3x on 3 processors

redistributes data from p to q processors using message size n and with the message ad-
dressing encoded in P . We apply again the approach of the last section and decompose
P into local operations and communication to generated MPI code:

P = F + C.

As an example of a redistribution from 2 to 3 processors consider

y = L6
2︸︷︷︸

par(3←2)

x =

⎛
⎜⎜⎝

x0
x2
x4
x1
x3
x5

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

1 · · · · ·
· · 1 · · ·
· · · · 1 ·
· 1 · · · ·
· · · 1 · ·
· · · · · 1

⎤
⎥⎥⎦ ·

⎛
⎜⎜⎝

x0
x1
x2
x3
x4
x5

⎞
⎟⎟⎠ .

Processor 0 sends the message x1 to processor 1. x0 and x2 stay in the memory of
processor 0. Processor 1 sends the message x3 and x5 to processor 2 and receives x1

from processor 0. x4 stays in in the memory of processor 1.

Parallelization through formula rewriting. Above we introduced formula constructs
that can be implemented as parallel computation or as communication. Products of
these formulas can be implemented as a sequence of parallel communication and com-
munication steps. This gives rise to the following definition.
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Definition 1 (Parallelized formula). Formulas of the form (3), (4), (5), (7), and prod-
ucts of these formulas are called parallelized. Parallelized formulas can be implemented
using MPI.

However, not all formulas are parallelized. For instance, the right-hand side of (1) is
not a parallelized formula. Thus, we introduce a set of rewriting rules to use SPIRAL’s
rewriting system to transform formulas into parallelized formulas. This rule set is sum-
marized in Table 2 and is one of the contributions of this paper. The rule set is designed
for the generation of DFT MPI code. Using this rule set, SPIRAL can automatically
parallelize formulas for the DFT at a high level of abstraction.

As a small example of the workings of the rewriting system consider

y = (Im ⊗An)︸ ︷︷ ︸
par(p)

x. (8)

(8) is not parallelized for m �= p. Assuming p|m, the application of rule (13) trans-
forms (8) into

y =
(
Ip ⊗ (Im/p ⊗An)

)︸ ︷︷ ︸
par(p)

x

which matches (3) and is thus parallelized in the sense of Definition 1. A more elaborate
example showing the parallelization of a DFTmn and rescaling it from p to q processors
is given in the next section.

Table 2. Parallelization and rescaling rewriting rules

AB

par(p)

→ A

par(p)

B

par(p)

(9)

A

par(p)

→ A

par(p←q←p)

, q|p (10)

AB

par(p←q←p)

→ A

par(p←q)

B

par(q←p)

(11)

AB

par(q←p)

→ A

par(q)

B

par(q←p)

(12)

Im ⊗ An

par(p)

→ Ip ⊗ Im ⊗ An

par(p)

(13)

(Am ⊗ In)

par(p←q)

→ Lmn
m

par(p←q)

(In ⊗ Am)Lmn
n

par(q)

(14)

(Am ⊗ In)

par(q←p)

→ Lmn
m (In ⊗ Am)

par(q)

Lmn
n

par(q←p)

(15)

Lmn
m

par(p)

→ Ip ⊗ L
mn/p
m/p Lp2

p ⊗ Imn/p2 Ip ⊗ (Ln
p ⊗ Im/p)

par(p)

(16)

Lmn
m

par(q←p)

→ Iq ⊗ (Ip/q ⊗ L
mn/p
m/p )

par(q)

Lp2

p ⊗ Imn/p2

par(q←p)

Ip ⊗ (Ln
p ⊗ Im/p)

par(p)

(17)

Lmn
m

par(p←q)

→ Ip ⊗ L
mn/p

m/p

par(p)

Lp2

p ⊗ Imn/p2

par(p←q)

Iq ⊗ (Ip/q ⊗ Ln
p ⊗ Im/p)

par(q)

(18)
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4 Rescaling FFTs Using SPIRAL

The framework developed in Section 3 allows us to explore trade-offs between com-
munication and computation. Assume a subroutine computing a DFT on p processors
in parallel. Depending on the cost of communication and the speed of processors, com-
puting on q < p processors may speed up the computation. However, the initial and
final data distribution on p processors is fixed by the subroutine’s interface. In this situ-
ation the performance gain by computing on only q processors can easily be lost in the
necessary data redistribution from p to q processors before the computation and q to p
processors after the computation.

Rescaling. Using the parallelization rules in Table 1 we can systematically derive for-
mulas that internally use less processors than at the beginning and at the end of the
computation. Further, the necessary redistribution is performed as part of the communi-
cation that has to be done anyway. Thus, these formulas are candidates to speed up the
whole computation without changing the subroutine interface. We call this approach
rescaling.

Specifically, we perform downscaling (to fewer processors) together with the first oc-
curring communication step, while upscaling is performed with the last communication
step. Hence, all encapsulated communication steps profit of the reduced communication
effort.

After choosing a number of processors to rescale to, there is still to decide which q of
the p processors to use for calculation. On machines with non-uniform communication
structure (for instance clusters of symmetric multiprocessors) this can be an important
choice that strongly influences the achieved performance.

In SPIRAL, the formula rewriting is performed automatically; SPIRAL’s search will
find a formula, and thus a rescaling strategy that performs fastest on the given platform.

Example: Rescaled DFT. We show the rewriting process that parallelizes a DFTmn,
for p | m, n, across p processors and rescales it to q | p processors for the intermediate
computation steps. In SPIRAL, this derivation is done automatically. We tag DFTmn

for p processors and expand it using rules (1) and (10)–(12):

DFTmn︸ ︷︷ ︸
par(p)

→ (DFTm⊗In)︸ ︷︷ ︸
par(p←q)

T mn
n︸︷︷︸

par(q)

(Im ⊗DFTn)︸ ︷︷ ︸
par(q)

Lmn
m︸︷︷︸

par(q←p)

.

This introduces rescaling to q processors. Next we apply rules (9), (14), and (16)–(18)
to formally parallelize:

→(
Ip⊗ L

mn/p
m/p

)
︸ ︷︷ ︸

par(p)

(
Lp2

p ⊗ Imn/p2

)︸ ︷︷ ︸
par(p←q)

(
Iq⊗ (Ip/q⊗ Ln

p⊗ Im/p)
)︸ ︷︷ ︸

par(q)

(
Iq ⊗ (In/q ⊗DFTm)

)︸ ︷︷ ︸
par(q)

· (Iq⊗L
mn/q
m/q

)
︸ ︷︷ ︸

par(q)

(
Lq2

q ⊗ Imn/q2

)︸ ︷︷ ︸
par(q)

(
Iq ⊗ (Ln

q ⊗ Im/q)
)︸ ︷︷ ︸

par(q)

T mn
n︸︷︷︸

par(q)

(
Iq ⊗ (Im/q ⊗DFTn)

)︸ ︷︷ ︸
par(q)

· (Iq ⊗ (Ip/q ⊗ L
mn/p
m/p )

)
︸ ︷︷ ︸

par(q)

(
Lp2

p ⊗ Imn/p2

)︸ ︷︷ ︸
par(q←p)

(
Ip ⊗ (Ln

p ⊗ Im/p)
)︸ ︷︷ ︸

par(p)

.

(19)
Inspection shows that the final expression is parallelized in the sense of Definition 1.
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Analysis. The communication and computation cost of (19) depends on the choice of
the scaling factor k = p/q. Table 3 summarizes the effect of scaling on packet size,
number of packets, computation cost, and total data to be transmitted as function of k.
In essence, scaling down keeps the overall amount of data to be transmitted practically
constant while increasing the message size and the computation cost. The best choice
of q depends on the relation between the speed of the processor, the communication
latency, and the bandwidth.

Table 3. Effect of rescaling by k = p/q on computation and communication

computation data volume packet size #packets

O(k) O(1) O(k2) O(1/k2)

5 Experimental Results

In this section we evaluate our approach. We first show that rescaling speeds up smaller
DFTs. Then we show that our generated DFT programs compare favorably with FFTW.

Benchmark setup. All experiments were done with complex-to-complex double-
precision 2-power FFTs. The platform is a cluster of AMD Opteron 250 CPU dual
nodes running at 2.4 GHz, connected by a Mellanox InfiniBand high speed network
with a theoretical peak of 10 Gb/s and 4 μs latency. All codes were compiled using the
GNU C compiler 3.4.4 with the option -O3 and linked with the mvapich 0.9.5 MPI li-
brary. Performance data is given in pseudo Mflop/s computed as 5n logn/t, where n is
the DFT size and t the runtime in microseconds. This measure is proportional to inverse
runtime and hence preserves runtime relationships. Further, it gives an indication of the
absolute floating-point performance [12].

Experiment 1: Rescaling. Figures 3 (i)–(iii) show the performance impact of rescal-
ing for the problem sizes 212, 215, and 218. We start with p = 16 processors and let
SPIRAL generate downscaling programs for q = 1, 2, 4, 8, and 16 processors (16 pro-
cessors implies no downscaling). We compare the performance of the original and the
downscaled programs to FFTW-MPI running on 16 processors. Figures 3 (i) and (ii)
show a performance peak at q = 8 processors. Thus, for the sizes 212 and 215 we gain
from downscaling. Figure 3 (iii) shows that p = 16 processors are required for the best
performance at problem size 218. For this size, the increased workload per processor
overcompensates the gain in communication speed.

On the benchmark platform, rescaling speeds up only for smaller sizes. On machines
with slower, higher-latency networks we saw performance gains due to rescaling for
larger problem sizes.

Experiment 2: Comparison to FFTW. Figure 4 (ii) shows the speed-up of SPIRAL

generated FFT programs run on 16 CPUs without downscaling, and with optimal down-
scaling (8 CPUs for small sizes), compared to FFTW-MPI 2.1.5 using 16 CPUs. For
sizes up to 217, downscaling provides significant performance gains. For these sizes
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Fig. 3. Effect of downscaling from p = 16. The plots show, for three DFT sizes n, the best
performance obtained for different scaling factors k = p/q. p = 16 and the x-axis is labeled
with q. The dashed line is the performance achieved by FFTW. Higher is better.
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Fig. 4. Relative performance. Performance of SPIRAL generated MPI FFT programs without
down-scaling (dashed), and optimally rescaled (solid), relative to FFTW-MPI 2.1.5. Higher is
better.

SPIRAL generated programs are up to 80% faster than FFTW-MPI. For larger sizes,
SPIRAL’s performance is comparable to FFTW-MPI.

Figure 4 (i) shows the same experiment, but for 8 CPUs. The optimal downscaling
found in this case is to 4 CPUs for small sizes. SPIRAL generated MPI programs are
between 1.5 and 2.5 times faster than FFTW-MPI, showing higher relative speed for
problems smaller than 216.

6 Conclusion

We presented a formal framework for generating efficient MPI algorithms by rewrit-
ing formulas representing FFT algorithms. We applied the framework to implement
the idea of flexible rescaling and thus enable adaptation to a platform’s characteristics.
By including the framework into SPIRAL’s infrastructure, the entire implementation
and adaptation process is automated. It is worth pointing out that we used very similar
approaches before to the related problems of vectorization and shared memory paral-
lelization. In fact, all these optimizations are performed using the same infrastructure
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in SPIRAL. Since our approach is formula based, it is domain-specific but can be gen-
eralized to other linear transforms.

Ongoing work aims to enable SPIRAL to optimize the runtime of the DFT includ-
ing possible data redistributions. This way, the user can specify the desired data layout
before and after the computation to interface with his application. As both data distri-
bution and transform are represented on a mathematical level they can be optimized
jointly, thus reducing the overhead.
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Abstract. A debugger is a crucial part of any programming system, and is 
especially crucial for those supporting a parallel programming paradigm, like 
OpenMP. A parallel, relaxed-consistency, distributed shared memory (DSM) 
system presents unique challenges to a debugger for several reasons: 1) the 
local copies of a given variable are not always consistent between distributed 
machines, so directly accessing the variable in the local memory by the 
debugger won’t always work as expected; 2) if the DSM and debugger both 
modify page protections, they will likely interfere with each other; and 3) since 
a large number of SIGSEGVs occur as part of the normal operation of a DSM 
program, a program error producing a SIGSEGV may be missed.  In this paper, 
we discuss these problems and propose solutions.     

1   Introduction 

A software distributed shared memory (DSM) system [10] allows a program to run on 
a set of distributed computers by simulating a hardware shared memory. This 
provides for what could be called “automatic message passing” to move data between 
the distributed systems. Programming with a DSM is significantly easier than using 
explicit message passing calls inserted by hand. High level parallel languages, like 
OpenMP [17], can be built on top of a DSM to further simplify the programming of 
distributed machines.  

This simulation of hardware by software embedded in the program itself presents 
unique problems to a debugger. Debuggers typically depend upon the hardware to 
maintain data consistency for the program. Normally, when the debugger halts a 
program and queries memory, the hardware returns the appropriate value. When the 
debugger halts a DSM program, the consistency mechanism is halted as well.. If any 
memory is not up-to-date when the debugger halts the program, and the user asks the 
debugger to read that memory, the debugger must allow the consistency mechanism 
to operate in order to be guaranteed a consistent result 

Additionally, if both the debugger and the DSM modify page protections as part of 
their normal operation – for watchpoints in the debugger and for page invalidation in 
the DSM – then there must be careful coordination between the two programs.   

Much of the research in debugging parallel and distributed programs focuses on the 
scalability of the debugger [1, 12], the detection and handling of distributed 
breakpoints [14], and the re-execution of parallel programs [10, 15, 16]. This paper 
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complements these lines of research by focusing on solving the fundamental problems 
that break the conventional debugger functions when DSM systems are involved. 

The remainder of this paper is organized as follows: Section 2 discusses the 
technical details of DSM systems. Section 3 discusses debuggers and the problems 
they encounter with DSM systems. Section 4 discusses our design and how it 
addresses these problems. Section 5 briefly discusses our prototype implementation. 

2   Distributed Shared Memory 

2.1   DSM Basics 

Data referenced by more than one thread in a parallel region will be referred to in this 
paper as sharable data. The DSM system implements the consistency mechanism to 
be used for the sharable data. There are many choices for a consistency protocol. The 
simplest is sequential consistency [9]. Sequential consistency dictates that memory 
accesses happen in program order on each thread, and a single sequential order for the 
memory accesses is maintained across all threads. This is simple, but requires 
synchronization on each memory access, making such a code significantly slower 
than the equivalent parallel program on an SMP. 

People have devised “relaxed consistency” mechanisms that allow the overlap of 
memory operations, yet still allow correct execution. Weak ordering [5] is one such 
relaxed consistency mechanism. Weak ordering removes the ordering constraints on 
all memory operations except for synchronization operations. One thread needs not 
see modifications made to sharable data by another thread until the two threads 
synchronize with each other. 

DSM systems are implemented in a variety of ways, but a common way is to 
replicate sharable data on all systems, and to protect pages that are not fully up to 
date in a particular system. When the program accesses data on a protected page, a 
SIGSEGV signal is delivered to the program, the program gathers modifications to 
the page from remote systems, the modifications are applied to the local page, the 
protection is removed, the instruction is restarted, and this time the access 
succeeds. 

In such a scheme, a process needs to know which remote processes have  
made modifications to any given page. This information is communicated at 
synchronization points within the code. As part of the synchronization, one process 
will send write notices for a page to another process. This allows the process that 
receives the write notices to keep track of which other processes must be contacted 
when bringing the page up-to-date. TreadMarks [8] is a well-known DSM system that 
uses this scheme along with a relaxed consistency protocol to maintain sharable data 
between processes. 

2.2   The Intel DSM 

Our DSM was originally based on an exclusively-licensed, enhanced version of 
TreadMarks. The TreadMarks code has been extensively modified. Many of its  
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limitations were relaxed, and it is now based on a Communications Abstraction Layer 
(CAL) that handles communication between distributed processes. The CAL software 
allows our DSM to transparently use multiple interconnection fabrics. 

The consistency of data in the sharable part of the address space is provided by the 
execution of the DSM code. Figure 1 shows a block diagram of the consistency 
mechanism implemented as part of this DSM. Other software DSM systems that rely 
on page protections would follow a similar process. 

 

Fig. 1. Handling the reading or writing of a sharable variable within the DSM runtime library. 
The consistency mechanism is enclosed in dashed lines. 

3   Problems in Debugging a DSM Program 

3.1   Debugger Basics 

Debuggers are generally used to find errors in the source code of a program.  Several 
operations are usually available to the debugger user 
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• Breakpoints – A breakpoint can be set at a line or function call in the user code. 
The debugger can implement breakpoints by inserting an illegal instruction in the 
code causing the kernel to raise SIGTRAP when the code is executed. At a 
breakpoint, the user program is halted and the debugger begins an interactive 
session with the user. 

• Watchpoints – Watchpoints are similar to breakpoints except they are set to watch 
changes to program data.  One way to implement watchpoints is to protect the page 
on which the variable resides, causing the kernel to raise SIGSEGV when a write 
to the page occurs. At this point, the debugger can determine whether the access 
was to the variable being watched.  If so, the debugger begins an interactive 
session with the user. 

• Program state examination and manipulation – A debugger allows the user to view 
program state information such as register data, variable data, a source code 
location, an assembly language instruction, etc. Such information can often be 
modified or manipulated to assist in debugging the program. 

• Single Stepping – Debuggers generally provide a mechanism for executing the 
code one line or instruction at a time. This allows the user to stop and examine 
state information before and after a given line of code is executed. 

• Inferior calls – When the debugged process (i.e., the debuggee) is stopped, the 
debugger can initiate the execution of a routine defined in the debuggee. Such an 
execution is called an inferior call. When an inferior call returns or aborts, the 
debugger is responsible for restoring the execution context (such as the register 
contents and the execution stack) to what it was before the inferior call.  

3.2   Debugging a DSM 

3.2.1   Sharable Variables 
When debugging an application on a hardware shared memory machine, a debugger 
can make the assumption that the value that is read from memory is the correct value 
because the underlying hardware maintains the consistency of the shared memory. 
Debuggers for MPI [13] can make the same assumption because there are no variables 
that are shared between nodes, so consistency beyond what the hardware provides is 
not an issue.   

In DSM systems, however, the page containing a sharable variable may be 
invalidated at any time, indicating that the value is out-of-date. If such a variable is 
read from memory by the debugger without allowing the consistency mechanism to 
run and bring it up-to-date, then the debugger may receive a value that is different 
from what the program would have read at the same point in the execution.   

Furthermore, each process may have a different up-to-date value depending on 
synchronization patterns between processes. For example, if a process writes to a 
sharable variable and then the debugger is stopped, that process will have a 
different value than any other processes for that variable. Another process would 
only get an up-to-date value after the next synchronization with the writing process. 
Looking at the values of the variable on all processes might be confusing to a naïve 
user. 
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3.2.2   DSM Signal Handling 
When software DSM systems use page protections to keep sharable memory 
consistent between processes, they must intercept SIGSEGV signals for their 
coherence protocols to work. Debuggers may intercept SIGSEGV for two purposes: 

1. To catch program errors. 
2. To implement watchpoints. 

 Both of these uses conflict with signal handling in the software DSM.   

4   Solving the DSM Debugging Problems 

In the following sections, we propose solutions to the problems we have pointed out 
with debugging a DSM program. The solutions require modifications to both the 
debugger and the DSM, and require significant cooperation between the two 
mechanisms but they do not require any modifications to the application. 

4.1   Debugging Interface 

To correctly present information about a DSM process to the user, the debugger and 
the DSM need to cooperate. One way to do this is to use a debug assistant interface to 
specify a set of functions that the debugger can call to communicate with the DSM.  A 
similar setup is used for MPI, pthreads, and UPC [2,4,6]. The interface would also 
stipulate using an event function, which the DSM system would call in order to 
transfer control to the debugger when some debug event occurs. We will refer to this 
event function as debug_event in the rest of this paper.    

When the debugger is about to debug a DSM process, the debugger dynamically 
loads the shared library that implements the debug assistant interface for the DSM 
system. The debugger then creates an agent for the process. The agent serves all 
requests on the DSM process from the debugger making use of debugger provided 
callback functions to read and write data from the process and to make inferior calls. 
After the agent is created, the debugger sets a breakpoint on debug_event so that it 
can take control when the event function is called by the DSM system. After the 
breakpoint is set, the debugging activity on the DSM process can proceed.  

The debugger in this modular design would implement only the generic 
capability to present to the user the DSM-specific information, whereas the debug 
assistant interface would gather that information for the debugger. If designed 
properly, one debug assistant interface can support many DSM systems. The 
debugger only needs to load the appropriate shared library implemented for the 
DSM system that the process being debugged runs on. This not only dramatically 
reduces the complexity of the debugger, but it also makes supporting new DSM 
systems more cost effective because only a new implementation of the interface 
needs to be written. 
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4.2    Safe State 

4.2.1   Safe State Defined 
As explained earlier, a DSM contains a memory consistency mechanism that the 
debugger must allow to run in order to guarantee a consistent view of memory for the 
user of the debugger. In order to do this, the debugger must ensure that the 
consistency mechanism continues to run while inspecting memory values in a 
program. Otherwise, the debugger has no guarantee that it is presenting the proper 
view of memory to the user. When the debugger halts a program at some arbitrary 
point, the debugger must make sure that any memory consistency operations that are 
in-flight are allowed to finish. A process that has no such operations outstanding and 
no threads in a state that will prevent any such operations from executing is said to be 
in a safe state. 

Definitions. A focus thread in a DSM program is the thread that raises a debugger 
event. The DSM runtime (or just runtime) refers to the runtime library routines that 
enable the execution of a DSM program. The user threads are the threads that execute 
the user code. The helper threads handle consistency and synchronization requests 
between processes. These threads are part of the DSM runtime. A safety barrier is a 
state that safe threads enter, to wait until all threads are safe. 

A user thread in a DSM process is stopped in a safe state if and only if both of the 
following are true:  

1. The thread is currently executing the code outside the dashed line box in Figure 1. 
If a thread is currently executing inside the box, then the state of the thread is 
currently “in transition to a safe state”. The state of sharable memory is unknown 
during the transition. 

2. The thread is not holding a resource that would prevent another thread in the same 
process from entering or leaving the code in the dashed line box of figure 1. Failure 
to ensure this condition can result in deadlock if the focus thread manipulates 
sharable memory. 

A helper thread in a DSM process is always in a safe state, if it is running. If a 
helper thread is stopped, it must meet both of the following conditions to be safe: 

1. It is part of the focus thread’s process.  If a helper thread is not part of the focus 
process then it must continue to run in order to service requests from the focus 
process. 

2. It meets condition 2 of the user thread’s safe state criteria. 

A DSM process is in a safe state if and only if all of the threads in the process are 
in a safe state. Only the focus thread can leave the safe state before the user continues 
the application. A DSM application is in a safe state if and only if all of its processes 
are in a safe state. We say a thread/process/application is safe if and only if it is in a 
safe state; otherwise, it is unsafe. 
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In general, all debugger operations that have the potential to access sharable 
memory require a safe process. These operations include sharable memory read, 
sharable memory write, and single-stepping an instruction. Failure to do so may result 
in a deadlock. 

4.2.2   Safe State Transition  
If the debugger must do an operation O that requires a safe application, it must cause 
all threads to transition to a safe state.  The following process must be followed to do 
the transition: 

 
1. The debugger informs the runtime to prepare to get all threads into a safe state. 
2. The debugger obtains the set U of unsafe user threads via the interface. It 

also obtains the set S of safe user threads. The debugger stops the threads in 
S. The threads in U and the helper threads will continue to run. Each thread 
in U executes until it becomes safe, at which time it is forced into a safety 
barrier. 

3. The debugger receives an event from the runtime via the event function when 
all threads in U are saf e.  

4. The debugger stops all user threads, and does the operation O on the focus 
thread.  

5. When O completes, the debugger informs the runtime that the operation has 
completed. 

 
Note that the helper threads are resumed in Step 2 and are still running in Step 4 

when the debugger does O. 

4.2.3   Reading and Writing Sharable Variables 
If the operation O to be done by the debugger is a read or a write of a sharable 
variable V at memory address M, the debugger must go through the safe state 
transition as described above. In Step 4 of the safe state transition, it must bring the 
page upon which the variable resides up-to-date. One way for the debugger to update 
M is to make an inferior call in the debuggee to leverage the memory consistency 
protocol in the DSM. That is, the inferior call does the memory access inside the 
application,, triggering the software memory consistency mechanism. 

For a read from variable V, the debugger makes an inferior call on a routine that 
does a memory copy (e.g. memcpy) of the size of V from M to a buffer B. If V is 
invalid (i.e., the memory page on which M resides is read protected), the memory 
copy triggers a SIGSEGV and the SIGSEGV handler in the DSM would update V. 
After the inferior call returns, the debugger can get the up-to-date value of V  
from B.  

For a write to variable V, the debugger writes the new value for the variable V to 
the buffer B. Then, the debugger makes an inferior call on a routine that does a 
memory copy from B to the memory address M. If M is write protected, the copy 
operation raises a SIGSEGV, triggering the DSM memory consistency protocol to 
record the change made to V.  



840 J. Olivier, C.-P. Chen, and J. Hoeflinger 

 

4.3   DSM and Debugger Coordination 

4.3.1   SIGSEGV Coordination 
To allow for coordination between the debugger and the DSM, the debugger would 
set a breakpoint in the debug_event function in the DSM and pass all SIGSEGV 
signals on to the DSM application by default.  If the DSM encounters a SIGSEGV 
signal that it can’t handle, it will inform the debugger by calling debug_event (with 
arguments indicating a SIGSEGV) There are two cases where this might happen: 

1. A programming error results in a SIGSEGV outside of sharable memory. 
2. The debugger has set the permissions on a page such that the access would 

have faulted if the DSM was not intercepting the SIGSEGV signal. If the 
DSM protections also would have caused a fault, the DSM should always do 
its work before calling debug_event to signal the debugger. 

4.3.2   Page Protection Coordination 
The DSM needs to know what the debugger protections are for a given page.  From 
the debugger side, this can be done in one of two ways: 

1. The page protection can be set through an inferior call which can be handled 
through an interface routine. In this case the DSM is responsible for changing 
protections on a page and storing the debugger protections. 

2. The debugger can query the current DSM protections of the page before cha-
nging the protections and then inform the DSM via an interface routine that the 
debugger protections have changed. 

In either case, to ensure that all SIGSEGV signals are caught appropriately, the 
protections must be set as follows: 

 

page protection = max_protection(DSM_protections, debugger_protections) 

4.3.3   Watchpoints 
Given the SIGSEGV and protection coordination schemes, it is simple to see how 
SIGSEGV watchpoints might be implemented. Figure 2 and Figure 3 show pseudo 
code for one possible implementation. Figure 2 contains routines implemented by the 
debugger whereas Figure 3 contains routines implemented by the DSM. 

In order to show that the algorithm for watchpoints works without compromising 
the consistency of the memory model of the DSM, it is sufficient to consider the four 
possible scenarios as illustrated below: 

1. A SIGSEGV is raised on a page that isn’t protected by either the runtime or 
the debugger. That is, the SIGSEGV is purely an error in the user code. In 
this case, the statement labeled NO_SHAR in Figure 3 is executed in the 
runtime. As a result of that, the debugger takes control.  Since the debugger 
is not watching the page, it will execute the code labeled PROG_ERR in 
Figure 2 reporting an error to the user.  
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Fig. 2. Debugger routines to implement DSM watchpoints for debuggers that use page 
protections to implement watchpoints. The routine set_watchpoint is called when a user 
sets a watchpoint on a variable. The routine handle_SEGV_in_debugger is called when 
a debug_event call indicates a SIGSEGV. 

2. A SIGSEGV is raised on a page that is protected by the runtime but not by 
the debugger. That is, the page is sharable in the DSM but there is no 
watchpoint on it. In this case, the block of code labeled DSM_SEGV in 
handle_SEGV_in_DSM in Figure 3 is executed, setting the right protection 
for the page to prepare for the re-execution of the instruction that causes the 
SIGSEGV and brings the contents of the page up-to-date. The offending 

void 
set_watchpoint(watchpoint_id,address,size, protections)  
{ 
  
store_watchpoint_in_table(watchpoint_id,address,size,permi
ssions); 
  set_protections_in_DSM(page_start(address),protections); 
} 
void handle_SEGV_in_debugger(addr,ip) 
{……  
     
if(!on_watched_page(addr)||is_single_stepping_breakpoint_s
et) 
     { 
PROG_ERR:  This is a real error.  Report to user. 
     } 
     else 
     { 
WPT_HIT: // Prepare to single step 
         set_protections_in_DSM(page_start(addr), none); 
         // Usage of ip+1 means stop at next instruction 
         set_single_stepping_breakpoint(ip+1); 
         is_single_stepping = TRUE; 
         resume the execution of the debuggee; 
         wait for the debuggee to stop; 
         single_step_succeeds = handle_event(); 
         // Revert back to the state before single 
stepping. 
         remove_single_stepping_breakpoint(ip+1); 
         is_single_stepping = FALSE; 
         protection = get_debugger_protection(page_start); 
         set_protections_in_DSM(page_start(addr), 
protection); 
         if (single_step_succeeds) { 
             if (watchpoint_hit(addr)) { 
                 inform user of watchpoint hit; 
             } else { 
                 Resume_debuggee(); 
             } 
         }  
         //if there is an error single stepping, it will 
be  
         //reported in the statement labeled PROG_ERR. 
     } 
} 
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instruction will be re-executed by the operating system when 
handle_SEGV_in_DSM returns. Note that the conditional labeled DBG_SEGV 
is false in this case, thus the debugger never takes control. 

void set_protections_in_DSM(page_start, protection) 
{ 
     page_struct = get_page_struct(page_start); 
     if (page_struct != NULL) { 
SHAR:  page_struct->debugger_protection = protection; 
       set_page_protection(page_struct, 
          max_protection(protection,page_struct-
>DSM_protection); 
     } else { //Just change the protections on the page  
       //to the debugger protection. 
PRIV:  protect_page(start_addr, protection); 
     } 
} 
void handle_SEGV_in_DSM() 
{ 
    instr = the instruction at the current program counter; 
    offending_address = the address of the memory accessed by 
instr; 
    if ((page  = get_page_struct(offending_address) == NULL) { 
        //the page is not a sharable page 
NO_SHAR:debug_event(SEGV, offending_address, instr); 
    } else { 
DSM_SEGV: 
       if (memory_access_caused_fault(instr, 
                            page_struct->DSM_protection){ 
          //changes DSM_protection field  
          handle_fault(instr,page_struct); 
          set_page_protection(page_struct,  
                max_protection(page_struct-
>debugger_protection,        
                        page_struct->DSM_protection); 
          //page_struct->debugger_protection must default to 
NONE 
       } 
DBG_SEGV: 
       if (memory_access_caused_fault(instr, 
                      page_struct->debugger_protection) { 
          debug_event(SEGV, offending_address, instr); 
       }  
} 

Fig. 3. DSM routines to implement DSM watchpoints for debuggers that use page protections 
to implement watchpoints. The routine set_protections_in_DSM is called when the 
debugger needs to change protections on a sharable page. The routine handle_SEGV_in_DSM 
is the SIGSEGV handler. 

3. A SIGSEGV is raised on a page that is protected by the debugger but  
not by the runtime. This indicates that the page has a watchpoint on it yet the 
DSM doesn’t care about the SIGSEGV. If the page is not in sharable 
memory, the statement labeled NO_SHAR in Figure 3 will be executed, 
triggering a debug_event call. If the page is sharable, the conditional 
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labeled DBG_SEGV in handle_SEGV_in_DSM in Figure 3 is true and  
the debugger takes control. Then, the debugger would process the watchpoint  
as usual with the block of code labeled WPT_HIT in the routine 
handle_SEGV_in_debugger in Figure 2. Note that the routine 
set_protections_in_DSM in Figure 3 handles both private and sharable 
page protection settings.  The difference is that the DSM doesn’t need to 
store debugger protections on private pages. 

4. A SIGSEGV is raised on a page that is protected both by the runtime and the 
debugger. This is basically a combination of 2 and 3 above, with one 
difference. In 2, the instruction is re-executed by the operating system, 
whereas here the instruction is re-executed by the debugger code that handles 
the watchpoint hit. 

5   Implementation 

OpenMP provides a productive environment for writing parallel codes for hardware 
shared memory machines. It is generally easier to parallelize an existing serial code 
with OpenMP than to rewrite it for a message passing system like MPI. 

Due to its wide acceptance and the fact that it uses a relaxed consistency shared 
memory model, it is natural to consider running OpenMP programs on a DSM 
system. Cluster OpenMP [7] is an add-on feature of the Intel® compilers, version 9.1 
and later. It implements OpenMP on top of our DSM system.   

An implementation of the design described in Section 4 is prototyped in the Intel® 
Debugger (IDB) for use with the Cluster OpenMP runtime library. When IDB is 
started, it identifies the processes in a Cluster OpenMP job using a mechanism similar 
to that used for MPI. IDB brings the job under control by attaching one debugger to 
each process in the job [3]. In order to do this the debugger loads a library that 
implements an interface between the debugger and the runtime library.  The debugger 
provides several callbacks for reading and writing to the process memory, retrieving 
symbol addresses, and performing inferior calls. 

Our implementation relies heavily on the use of inferior calls and, therefore, does 
not yet support core file debugging. For example, for safe state transition illustrated in 
section 4.2, each query through the interface will ultimately query the runtime 
through an inferior call. The runtime supplies a global buffer that the interface library 
can read and write on behalf of the debugger. 

6   Conclusion 

Debugger design for a DSM system must be done carefully.  If both the debugger and 
the DSM alter memory protections, then they must coordinate changes with each 
other. Also, since memory consistency is maintained by code in the executable, that 
code must be allowed to run when the debugger manipulates the program’s sharable 
variables. Our design solves fundamental problems that conventional debuggers 
encounter when debugging DSM applications. The debugger and DSM cooperate via 
a debugger interface. It introduces the novel ideas of safe state transition, SIGSEGV 
coordination, page protection coordination, and a watchpoint handling algorithm.  
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Abstract. This paper examines the memory performance of the vector-
parallel and scalar-parallel computing platforms across five applications
of three scientific areas; electromagnetic analysis, CFD/heat analysis,
and seismology. Our evaluation results show that the vector platforms
can achieve the high computational efficiency and hence significantly
outperform the scalar platforms in the areas of these applications. We
did exhaustive experiments and quantitatively evaluated representative
scalar and vector platforms using real applications from the viewpoint
of the system designers and developers. These results demonstrate that
the ratio of memory bandwidth to floating-point operation rate needs
to reach 4-bytes/flop to preserve the computational performance with
hiding the memory access latencies by pipelined vector operations in the
vector platforms. We also confirm that the enough number of memory
banks to handle stride memory accesses leads to an increase in the exe-
cution efficiency. On the scalar platforms, the cache hit rate needs to be
almost 100% to achieve the high computational efficiency.

1 Introduction

Supercomputing systems are categorized into vector-parallel and scalar-parallel
supercomputers. The mainstream of supercomputers has been dominated by the
commodity-based scalar-parallel platforms. However, the growing gap between
sustained and peak performance for scientific applications on the scalar-parallel
platforms has become remarkably exposed year by year in high performance
computing. On the vector-parallel platforms, the Earth Simulator, which is the
largest vector-parallel computing system in the world, has achieved a sustained
performance (efficiency) of 26.58 Tflops (64.9%) for a global atmospheric simu-
lation and 16.4 Tflops (50.0%) for a turbulence simulation [1,2]. Recently, Oliker
et al have compared the application performance of the scalar-parallel plat-
forms with that of the vector-parallel platforms [3,4]. These researches show
that the vector-parallel platforms have the potential for excellent performance on
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scientific applications. On the other hand, the performance characteristics of the
vector platforms have been researched since 1980’s. Fatoohi show that the impor-
tant factors of the sustained performance on the vector platforms are the average
vector length, the ratio of floating point operations to memory references and
the memory strides [5,6]. In addition, Shan and Strohmaier have investigated
the memory performance characteristics of a modern vector-parallel platform:
Cray X1, and show the average vector length and the memory bank conflicts
have a great impact on the sustained performance [7].

The sustained performance of supercomputers strongly depends on their
memory systems. The vector parallel platforms employ the interleaved memory
systems to improve the memory access performance, while the scalar parallel
platforms use the hierarchical cache memory systems. This paper first evaluates
supercomputers from the viewpoint of memory access performance using real
applications, and then clarifies the requirements for high performance comput-
ing of scientific applications. The contribution of this paper is to quantitatively
discuss the effects of ”byte/flop (B/FLOP)” and the number of memory banks of
the vector systems on the sustained system performance when executing real ap-
plications in the fields of leading computational science. In particular, although
a 4 B/FLOP is empirically believed as the golden rule for high-performance vec-
tor platforms, there is no quantitative discussion on how this metric affects the
performance in executing real applications.

The rest of the paper is organized as follows. Sections 2 and 3 briefly describe
the evaluated platforms and scientific applications we used, respectively. In Sec-
tion 4, performance of the memory systems on these applications is analyzed.
Finally, Sections 5 summarizes our results.

2 Architectural Characteristics of the Platforms

We compare scientific applications performance of vector-parallel systems: NEC
SX-7 and SX-7C, with scalar parallel platforms equipped with the Intel Ita-
nium2: NEC TX7 and SGI Altix3700. The SX-7 and SX-7C, which are installed
at Tohoku University in Japan, are representative systems in modern vector-
parallel systems and their architectures are similar to the Earth Simulator.
Table 1 summarizes the architectural characteristics of the four platforms. The

Table 1. Architectural Summary of the Platforms

Clock Per CPU
Platform CPUs/Node Freq. Peak Perf. Memory BW L3 Cache Processor

(MHz) (GFLOPS) (GB/s) (MB) Types

SX-7 32 1104 8.83 35.3 - Custom processor

SX-7C 8 2000 16.0 64.0 - Custom processor

TX7/i9510 32 1600 6.4 6.4 9 Intel Itanium2

Altix3700 64 1600 6.4 6.4 6 Intel Itanium2



Implications of Memory Performance 847

memory bandwidths of the SX-7 and SX-7C are 5.5 and 10 times higher than
those of the TX-7 and Altix, respectively. On the other hand, the scalar platforms
employ large on-chip caches to cover the lower memory bandwidth.

2.1 Vector-Parallel Platforms: SX-7 and SX-7C

The SX-7 and SX-7C are shared-memory vector-parallel systems. A node of the
SX-7 contains 32 processors for peak performance of 282.5 Gflops with 256GB
main memory [8], and that of the SX-7C contains eight processors for peak
performance of 128 Gflops with 128GB main memory. The SX-7 and SX-7C
run SUPER-UX (R14.1, and R15.1, respectively) a 64-bit UNIX operating sys-
tem based on System V R3 with the BSD features. FORTRAN compiler, FOR-
TRAN90/SX R.316, supports ANSI/ISO Fortran95 in addition to functions of
automatic vectorization and automatic parallelization.

Their processor has a vector operation unit and a 4-way superscalar oper-
ation unit. The SX-7’s vector operation unit contains four vector pipes (Logi-
cal, Add/Shift, Multiply, Divide) with 144KB vector registers, and achieves a
peak performance of 8.83 Gflops. Similarly, the SX-7C’s vector operation unit
contains four vector pipes (Logical, Add/Shift, Multiply, Divide/SQRT) with
144KB vector registers, and achieves a peak performance of 16 Gflops. The
4-way superscalar operation units of the SX-7 and SX-7C achieve peak perfor-
mances of 1.1 Gflops and 2 Gflops, respectively. The memory bandwidths of the
SX-7 and SX-7C are 35.3 GB/s with DDR-SDRAMs and 64 GB/s with DDR2-
SDRAMs, respectively. The memory bandwidth per flops of the SX-7 and SX-7C
is 4 B/FLOP.

The SX-7 and SX-7C use an interleaved memory system for the main mem-
ory. The interleaved memory system organizes memory chips in banks to access
multiple words at a time. The memory latency of the second memory access or
later are hidden in the interleaved memory system. Here, the certain number
of memory banks named minimum number of banks is needed to hide the
memory latency (bank cycle time) by sequential memory access. The minimum
number of banks Nm is

Nm = Bw ×Bc/D

where Bw is memory bandwidth (GB/s) per processor, Bc is bank cycle time of
memory (ns), and D is the size of a word for floating-point data: 8 bytes. Hence,
Nm of the SX-7 is 353 banks per processor, and that of the SX-7C is 512 banks
per processor. The SX-7 contains 512 banks per processor, 16,384 banks per
node, and the SX-7C contains 512 banks per processor, 4,096 banks per node.
Thus, the SX-7 has a margin of 159 banks; however, the SX-7C does not have a
margin. We will examine how these margins affect the performance through the
experiments using real applications.

In addition, the SX-7 and SX-7C can hide the memory access times by
pipelined vector operations when a vector operation ratio (VOR) and an av-
erage vector length (AVL) of applications are large. This has a beneficial ef-
fect on high performance of the SX-7 and SX-7C. Figure 1 shows a pipeline
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diagram of the following loop. The load times of C and D are hidden by the
vector operations of B * C and V + D.

DO I = 1, N
A(I) = B(I) * C(I) + D(I)

END DO

V <-- B * C

Load  B Load  C Load  D

A <-- V + D

Store  A
hidden memory access time

time

Fig. 1. Pipeline diagram: memory access times are hidden by pipeline operations. Each
parallelogram shows load/store pipelines, multi pipeline, and add pipeline.

2.2 Scalar-Parallel Platforms: TX7/i9510 and Altix3700

The TX7/i9510 and Altix3700 are ccNUMA (cache coherent Non Uniform Mem-
ory Access) systems. A node of the TX7/i9510 contains eight cells and crossbar
network modules [9]. Each cell contains four Intel Itanium2 processors and a
32GB main memory, which are interconnected by a 6.4GB/s bus. A computa-
tional building block of the Altix3700 consists of four Intel Itanium2 processors,
main memory, and two controller ASICs called the SHUB, which connect the
processors and memory at 6.4GB/s bandwidth. The Altix interconnect is called
the NUMAlink, custom network in a fat-tree topology. The Itanium2 has 3-tier
on-chip data caches consisting of 32KB of L1, 256KB of L2, and 6MB (Altix)
/9MB (TX7) of L3. The Itanium2 does not use the L1 data cache to store
floating-point data.

The performance of memory system depends on the cache system. In the case
of the TX-7, the memory access time is 20 times or more as long as the L3
cache access time. Therefore, when a cache hit rate is low, a memory access time
becomes dominant in the total processing time; the computational efficiency on
the cache based platforms gets worse accordingly.

The TX7 and Altix run 64-bit Linux (RedHat AS2.1 and SGI Advanced Linux
Environment, respectively), and supports Fortran95 (NEC R4.3) with optimiza-
tion functions and parallel processing functions specialized for the Itanium2.

3 Scientific Applications

Five leading applications from three areas in scientific computing are used to
compare the sustained performance of the SX-7 and SX-7C with that of the
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TX7 and Altix3700. The applications have been developed by researchers of
Tohoku University and are representative of each research area. Table 2 shows
the summary of the applications whose methods are standard in individual areas.

3.1 GPR Simulation

This code is for a simulation of an array antenna SAR-GPR (Synthetic Aper-
ture Radar - Ground Penetrating Radar), which detects anti personnel mines in
shallow subsurface [10]. The GPR simulation evaluates performance of the SAR-
GPR in detection of buried mines. The simulation method is based on the three
dimensional FDTD (Finite Difference Time Domain) method with Berenger’s
PML (Perfectly matched layer) [11]. The simulation space consists of two regions;
air-space and subsurface space with PML of 10 layers. The performance of this
code is primarily determined by the electromagnetic filed calculation processes.
The basic computational structure of the processes consists of triple-nested loops
accessing the memory at non-stride 1 addresses; the ratio of its calculation cost
to the total is 80%. The length of the innermost loop is over 500.

3.2 APFA Simulation

Radiation patterns of an Anti-Podal Fermi Antenna (APFA) are simulated to
design high gain antennas [12]. The simulation consists of two sections, a cal-
culation of the electromagnetic filed around an APFA using the FDTD method
with Berenger’s PML, and an analysis of the radiation patterns using the Fourier
transform. The performance of the simulation is primarily determined by cal-
culations of the radiation patterns; the ratio of its calculation cost to the total
is 99%. The computational structure of the calculations is triple-nested loops;
the innermost loop is a stride 1 loop, and its length is 255. On Itanium2, the
innermost loop is executed on the caches. The ratio of floating-point opera-
tions to memory references in the innermost loop is 2.25. Therefore, this code is
computational-intensive, and the performance of the code is not dominated by
memory references.

Table 2. Summary of scientific applications

Areas Names and Descriptions Methods Subdivisions

Electromagnetic GPR simulation: Simulation of Array FDTD 50×750×750
Analysis Antenna Ground Penetrating Radar

Electromagnetic APFA simulation: Simulation of FDTD 612×105×505
Analysis Anti-Podal Fermi Antenna

CFD/Heat PRF simulation: Simulation of DNS 513×513
Analysis Premixed Reactive Flow in Combustion

CFD/Heat SFHT simulation: Simulation of SMAC 711×91×221
Analysis Separated Flow and Heat Transfer

Seismology PBM simulation: Simulation of Plate friction 32400×32400
Boundary Model on Seismic Slow Slip law
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3.3 PRF Simulation

This code provides direct numerical simulations of two-dimensional Premixed
Reactive Flow (PRF) in combustion for design of engines of planes [13]. The
simulation uses the 6th-order compact finite difference scheme and the 3rd-order
Runge-Kutta method for time advancement. The performance of the code is
primarily determined by calculations of derivations of physical equations; the
ratio of its calculation cost to the total is 50%, and the rest of the cost has been
distributed to various routines. The calculations have doubly nested loops; the loop
of x-derivations induces stride 1 memory accesses, and the loop of y-derivations
induces non-stride 1 memory accesses. The length of each innermost loop is 513.

3.4 SFHT Simulation

This simulation code realizes direct numerical simulations of three-dimensional
laminar Separated Flow and Heat Transfer (SFHT) on surfaces of a plane [14].
The finite-difference forms are the 5th-order upwind difference scheme for space
derivatives and the Crank-Nicholson method for a time derivative. The resulting
finite-difference equations are solved using the SMAC method. The performance
of the code is primarily determined by calculations of the predictor-corrector
methods; the ratio of its calculation cost to the total is 67%, and the rest of the
cost has been distributed to various routines. The calculations have triple-nested
loops; the innermost loop needs stride 1 memory accesses, and its length is 349.

3.5 PBM Simulation

This code uses the three-dimensional numerical Plate Boundary Models (PBM)
to explain an observed variation in propagation speed of postseismic slip [15].
This is a quasi-static simulation in an elastic half-space including a rate- and
state-dependent friction. The performance of the simulation is primarily deter-
mined by a process of thrust stress with the Green function; the ratio of its
calculation cost to the total is 99%. The computational structure of the process
is a doubly nested loop which calculates a product of matrices, the innermost
loop results in stride 1 memory accesses, and its length is 32400.

4 Experimental Results and Discussion

The experiments conducted in this work measure the performance of the orig-
inal source codes, which have been developed for SX-7, with optimizations of
the compilers; compiler’s options are high-level optimizations (SX: -C hopt, TX,
Altix: -O3) and inlining subroutines. We used NEC compiler for the Intel Iita-
nium2 on the TX7 and Altix, to evaluate the performance under the same level
optimizations. On SX-7 and SX-7C, the five applications are vectorized by the
compiler. The applications are automatically parallelized by the compiler on four
studied platforms. All the performance statistics of four studied platforms were
obtained using the NEC compiler option ftrace.
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Table 3. Characterizations of the five applications on the evaluated platforms

SX-7/7C TX/i9510 Altix3700
VOR AVL L2 L3 L2 L3 PR

GPR 99.7% 245.1 70.6% 40.2% 71.0% 42.6% 98%

APFA 99.5% 255.5 99.9% 26.7% 99.9% 26.8% 99%

PRF 99.3% 179.0 89.6% 78.9% 89.5% 79.9% 93%

SFHT 99.4% 192.9 92.4% 21.8% 92.4% 21.7% 98%

PBM 99.5% 255.5 88.7% 54.8% 88.9% 63.2% 98%

4.1 Characterizations of Applications

To characterize computation behavior we show a vector operation ratio (VOR)
and an average vector length (AVL) on the vector platforms, the L2 and L3
cache hit rates on Itanium2, and a parallel ratio (PR) of thread-level parallelism,
which is the fraction of the code executed in parallel. As Table 3 shows, these five
applications are highly vectorized and parallelized, and the L2 cache hit rates
range from 70% to 99.9% according to their irregularity in memory accesses.

4.2 Efficiency of Applications on Four platforms

The overall performance comparison of the four platforms for the five applica-
tions is shown in Figure 2. The vector platforms achieve the high computational
efficiency of over 40% and the higher sustained performance across all of the
applications. The scalar platforms show that the computational efficiency is less
than 14% across all of the applications. We will discuss the effects of the per-
formance of memory access on computational efficiency of the vector and scalar
platforms later in Sections 4.3 and 4.4.

The SX-7 and SX-7C can hide the memory access times by the interleaved
memory system and the pipelined vector operations because VOR and AVL of the
five applications are large. The memory access times not hidden by overlapping

Fig. 2. Overview of performance for the five applications on one processor, computa-
tional efficiency and sustained performance
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calculations of the four platforms are showed in Table 4. The non-hidden memory
access time of the vector platforms are much shorter than that of the scalar
platforms. In particular, the non-hidden memory access time of PBM simulation
on the SX-7 is 5 seconds. However, the sum of calculated floating-point data is a
13.5 trillion; 108 terabytes in the PBM. Hiding memory access latency by pipelined
vector operations works best for the PBM, because the PBM simulation has the
longest loop length (32400) among the five applications and further sequentially
accessesmemory.On the cache basedplatforms, theTX7 andAltix, thenon-hidden
memory access times are 600+ times longer than that of the SX-7. In the longer
loops of larger simulations, the vector platforms are more advantageous in the
performance.

Table 4. Memory access time (Sec) and ratio of SX-7 for the five applications on one
processor

GPR APFA PRF SFHT PBM
Platform Sec Ratio Sec Ratio Sec Ratio Sec Ratio Sec Ratio

SX-7 171 1 17 1 40 1 81 1 5 1

SX-7C 90 0.5 3 0.2 21 0.5 32 0.4 6 1.2

TX7/i9510 23399 137 568 34 2170 54 3674 45 5652 1082

Altix 26319 154 612 37 1745 43 3910 48 3323 636

Figure 3 shows the ratio of non-hidden memory access time to processing time
for the five applications on one processor of the four platforms. The processing
time of the scalar platforms consists mostly of the non-hidden memory access
time. The APFA simulation achieving a 99.9% cache hit rate shows the smallest
ratio of non-hidden memory access time among the five applications on the
scalar platforms; however the ratio is still over 20%. The memory systems of
the vector platforms are more effective for science applications than that of the
scalar platforms.

Fig. 3. The ratio of memory access time to processing time on one processor
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Figure 4 shows the speedup ratio in 32 processors of our studied platforms
for the five applications. The speedup ratio of the PRF simulation is the lowest
among the five applications on each platform, because the parallel ratio (PR) of
the PRF is 93% and lowest. The SX-7 outperforms the other platforms across all
of the applications. The TX7 and Altix utilize the same processors; however, the
Altix scalability is higher than the TX7. This is due to a lot of access contentions
on the TX-7 bus with the lower bandwidth.

4.3 Discussion on the Memory Performance of SX-7 and SX-7C

We use the PRF and SFHT simulations to examine the non-overlapped memory
access latencies when changing of the number of banks per processor on the SX-
7. The performance of the PRF is dominated by memory references, because the
memory access has a 4104-byte stride, and the ratio of operations to memory
references is 0.7. In the SFHT, the memory access needs a 16-byte stride, and
the ratio of operations to memory references is 1.0. Thus, the PFR is more
memory-intensive than the SFHT. The experimental results shown in Figure
5 indicate that the non-hidden memory access time increases as the number of
banks decreases. When one processor of the SX-7 has 16K banks, the non-hidden
memory access times of the PRF and SFHT are 40 and 81 seconds, respectively.
When one processor has 0.5K banks, the non-hidden memory access times of the
PRF and SFHT are 113 and 131 seconds, respectively. The non-hidden memory
access time of PFR increases faster than that of SFHT. This is because the
strides of memory access of PFR are longer than that of SFHT, and needs more
banks to reduce the memory access time.

In general, a lot of scientific applications need non-stride 1 memory accesses,
and therefore the number of banks per processor should be more than the min-
imum number of banks to keep the higher computational efficiency. To evaluate
the effect of the number of memory banks on the performance, we compare the
performance of 8-parallel GPR simulation between the SX-7 and SX-7C. The
memory access of the GPR has a 576-byte stride. Figure 6 shows that the effi-
ciency of the SX-7 is 1.7 times higher than that of the SX-7C in the case eight
processors. Although the peak performance of the SX-7C is 1.8 times faster

Fig. 4. Speedup ratio in 32 processors for the five applications
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16k banks on the SX-7

than that of the SX-7, the SX-7 and SX-7C are comparable in the sustained
performance of the GPR using eight processors.

On the SX-7 and SX-7C, when an application uses eight processors in a node,
each processor can use 2K banks in the SX-7 and 0.5K banks in the SX-7C. As
discussed in Section 2.1, the SX-7C does not have the margin in the number
of banks. In the case of non-stride 1 memory accesses, the processing time on
eight processors of the SX-7C increases due to the memory access latency not
hidden by the interleaved memory. On the other hand, the SX-7 has the margin
in the number of banks, and the SX-7 is superior to the SX-7C in terms of
the capability to hide the memory access latency. Therefore, the SX-7C would
require more banks for more effective computing and scalable performance when
using entire processors of one node.

We investigate the effect of memory bandwidth per processor on the non-
overlapped memory access time of the SX-7. Table 5 shows the results of rela-
tive memory access times on each application when the memory bandwidth of
the SX-7 is reduced by partially shutting off network switches between proces-
sors and memory units. When the memory bandwidth is adjusted to 1/2 or 2
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Table 5. Relative memory access time of five simulation codes normalized by the 4
B/FLOP case on the SX-7

B/FLOP GPR APFA PRF SFHT PBM

4 1.0 1.0 1.0 1.0 1.0

2 3.5 3.0 2.2 3.5 75.6

1 9.5 11.5 5.7 10.1 316.7

B/FLOP, the memory access time is two or more times longer than that of the
4 B/FLOP case. When the memory bandwidth is reduced to 1/4 or 1 B/FLOP,
the memory access time is four or more times longer than that of the 4 B/FLOP,
which is almost comparable to the cases of the scalar platforms. As the memory
bandwidth decreases, the memory read/write time increases, and the memory
access time is not hidden by the pipelined vector operations. In the PBM sim-
ulation, the memory access time not hidden by vector operations is 316 times
as long as that of the 4 B/FLOP case. Therefore, the sustained performance
is seriously affected by the B/FLOP rates, and a memory bandwidth of the 4
B/FLOP is essential to keep the superiority of the vector platforms against the
scalar platforms.

4.4 Discussion on the Memory Performance of TX7/i9510 and
Altix3700

The performance of the TX7/i9510 and Altix3700 depends on the cache hit rate.
Figure 7 presents the correlation between the cache hit rate and the ratio of the
memory access time to processing time of the five applications on one processor;
here, the cache hit rate is a sum of the L2 and L3 caches. The ratio of non-hidden
memory access time becomes more than 50% even when the cache hit rate is
95%. Therefore, the cache hit rate needs to be almost 100% to achieve the high
computational efficiency on the cache based platforms.
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We measure the memory access times of GPR simulations on the TX7 and
Altix. The GPR simulation has a low cache hit rate and the memory-intensive.
Figure 8 is the results of the GPR simulation, and shows that the memory access
time of the TX7 does not decrease in the case of eight or more processors. On
the other hand, the memory access time of the Altix decreases constantly. This
is because the system buses of the TX-7 connecting processors to memory are
saturated with the data transfers. On the TX7 and Altix, a cell card contains
processors and a main memory, which are interconnected by a 6.4GB/s bus.
The cell cards of the TX7 and Altix contain four processors and two processors,
respectively. In the experiment, the TX7 and Altix consist of eight cell cards
and 32 cell cards, respectively. In the case of eight or more processors, the TX7
uses two or more processors per cell, and the bus of the TX7 is more likely
to saturate with data transfers between processors and a memory than that
of the Altix, because two or more processors of a TX7 cell share the 6.4GB/s
bus. Therefore, the experimental results suggest that it is necessary for system
configurations of the cache based platforms not to saturate the bus with data
transfers on the bus, and the cell card of the TX7 should have two processors at
a maximum.

Similarly, we measure the non-hidden memory access times of APFA simula-
tions on the TX7 and Altix. The APFA simulation has a high cache hit rate,
and the ratio of operations to memory references is 2.2. Thus, the APFA is less
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memory-intensive than the GPR. The experimental results of the APFA shown
in Figure 9 indicate that the non-hidden memory access time of the TX7 and
Altix decreases in the case of eight or more processors. In this case, the buses
of the TX7 are not saturated with data transfers between processors and a
memory.

5 Summary

This paper has presented the memory performance of the vector platforms of the
SX-7 and SX-7C and compared it against the cache based scalar platforms of
the TX7/i9510 and Altix3700. We have examined five science applications from
three areas. The experimental results show that the vector platforms achieve
the high efficiency and significantly outperformed the scalar platforms. We have
quantitatively presented that the most important factor affecting the compu-
tational performance on science applications is the memory performance. The
vector platforms use the interleaved memory systems, and their memory access
latencies can be hidden by pipelined vector operations. We have confirmed that
the high performance of the vector platforms is obtained due to a high mem-
ory bandwidth and a large number of banks. Our experiments using practical
application codes have shown that both a balanced performance of 4 B/FLOP
and the enough number of memory banks that exceeds the minimum number of
banks to hide the bank cycle time are essential to achieve the higher sustained
performance.

On the scalar platforms, the computational performance depends mainly on
cache hit rates. We have quantitatively presented the correlation between the
cache hit rate and the ratio of the memory access time to processing time of the
five applications, and have confirmed that the cache hit rate must be almost 100%
to achieve efficient computing. Additionally, the computational performance also
depends on the performance of the memory bus that connects processors and
memory in a cell card. We have demonstrated that the buses of the TX7 are
saturated with data transfers among processors, when two or more processors
share a 6.4GB/s bus, whereas the exclusive use of the bus by a single processor
leads to the scalable performance. To avoid such a situation the scalar platforms
would require maintaining the bus bandwidth per processor not to saturate the
bus with data transfers and using cache effectively.

In this paper, the original codes of the five applications were used for the eval-
uation of the scalar and vectors platforms. In the future work, we will evaluate
the performance when optimizing the codes for the scalar platforms.
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Abstract. The resolution of the linear systems generated by the dis-
cretisation of partial differential equations in semiconductor device sim-
ulation is the most time consuming part of the simulation process. In
this paper we have presented an optimisation proposal of the linear sys-
tems resolution procedure used in the PSPARSLIB library. The linear
systems employed in this work arise from a three–dimensional parallel
simulator of semiconductor devices, specifically HEMTs, based on the
drift–diffusion model. This optimisation increases the parallel efficiency
of the simulation process and improves its scalability.

1 Introduction

Three–dimensional numerical simulation of semiconductor devices is extremely
demanding in term of computational time because it involves complex numerical
schemes. The large amount of memory and floating point operations needed make
necessary the use of parallel machines and appropriate algorithms in order to
obtain the maximum performance and reduce simulation times.

In this work, we have used a 3D parallel device simulator [1] for HEMTs
(High Electron Mobility Transistors) [2], based on the drift-diffusion (D–D) ap-
proach to the semiconductor transport. This approach constitutes a system of
coupled, nonlinear partial differential equations that have been discretised using
finite element methods. Domain decomposition methods, implemented by the
PSPARSLIB library [3], have been used to solve the linear systems arising from
the linearisation of these equations.

In this paper, an optimisation proposal of the linear system resolution stage
implemented with the PSPARSLIB library is presented. For this purpose, an
analysis of the most time consuming parts of this stage, which is the main
contribution to the simulation time, has been carried out in order to find the
parameters with the most severe influence in its parallel efficiency, being the
main goal the minimisation of the execution time of the 3D simulator.

This paper is organised as follows. Section 2 presents the mathematical ex-
pressions of the D–D transport model and briefly summarises the simulation
process. Section 3 reviews the linear system solving methods used in this paper,
it describes the main characteristics of the PSPARSLIB library and presents a
modification proposal to optimise the resolution of the linear systems. Results
obtained are presented in Section 4 while conclusions are drawn up in Section 5.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 859–868, 2006.
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2 Mathematical Model

In this work we have used a 3D device simulator based on the D–D approach
to the semiconductor transport. The mathematical expressions of this model,
a brief description of the simulation process and its parallel implementation
are shown below. The equations of the drift–diffusion model are the Poisson
equation and the continuity equations for electrons and holes. These coupled
and nonlinear equations describe the relation between the electrostatic potential
and the densities of the charge carriers in a semiconductor device. In stationary
state they can be written in the following form:⎧⎨

⎩
−div(ε∇φ) + q[n(φ, φn) − p(φ, φp) − N+

D + N−
A ] = 0

−div(qμnn(φ, φn)∇φn) + qGR(φ, φn, φp) = 0
−div(qμpp(φ,φp)∇φp) − qGR(φ,φn, φp) = 0

(1)

The unknowns of the problem are φ, the electrostatic potential, φn, the quasi–
Fermi level for the electrons and φp, the quasi–Fermi level for the holes.

In the simulation process, drift–diffusion equations are discretised using the
finite element method (FEM) [4] on an unstructured tetrahedral mesh. The
partition of the mesh into subdomains is performed using the program METIS
[5]. The same program was used to relabel the nodes in subdomains in order
to obtain a more suitabl erearrangement to reduce the fill–in of the matrix.
The solution scheme to solve the system of non–linear equations (1) consists
of decoupling the equations using the Gummel method and linearising them
using Newton’s algorithm. All these resolution techniques are implemented fully
in a parallel manner. The linear system associated with the Poisson equation
is in general well–conditioned. However, the linear systems associated with the
continuity equations cause significant difficulties because the matrices associated
with these equations have high condition numbers and are badly conditioned [6].

3 Solution of Linear Systems of Equations

The part of the simulation process that requires more computational time is
the resolution of the linear systems associated with the drift–diffusion model.
In general, linear systems of equations can be expressed as Ax = b, where A in
our study is a sparse and non–symmetric matrix. The basic strategies used to
solve sparse linear systems are based on direct or iterative methods. Most direct
methods for sparse linear systems perform a LU factorisation of the original ma-
trix and try to reduce cost by minimising the fill–in, that is the nonzero elements
introduced during the elimination process in positions which were initially zeros.

Krylov subspace methods are considered to be among the most important
iterative techniques available for solving large linear systems. Iterative methods
are usually combined with preconditioners to improve the convergence rates.
Especially for ill–conditioned matrices, iterative methods fail without the appli-
cation of a preconditioner. Two of the most common preconditioning techniques
are ILU factorisations and domain decomposition methods.
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(a) (b)

Fig. 1. 1(a) Example of a tetrahedral mesh of a HEMT device with 126,166 nodes
divided in four subdomains. 1(b) Time employed by each processor to perform an ILU
factorisation in both versions of the code.

ILU factorisations are based on algebraic manipulations of the matrix to ob-
tain some kind of approximation to the inverse matrix. The matrix A is factorised
but without introducing all the fill–in that is produced during this process. For
example, in the ILU(fill, τ) factorisations two criteria to introduce the fill–in
are used, the position inside the matrix and a numerical threshold.

Domain decomposition methods refer to a collection of techniques which re-
volve around the principle of divide and conquer. If we consider the problem of
solving an equation on a domain Ω partitioned into p subdomains Ωi, the domain
decomposition methods attempt to solve the problem on the entire domain by a
problem solution on each subdomain Ωi. Each node belonging to a subdomain is
an unknown of the problem. It is important to distinguish between three types
of unknowns: interior nodes are those that are coupled only with local nodes,
local interface nodes are those coupled with external nodes as well as local nodes,
and external interface nodes are those nodes in other subdomains which are cou-
pled with local nodes. Examples of preconditioning techniques based on domain
decomposition are Additive Schwarz, Multicolor SOR and Schur complement
methods.

3.1 Optimisation Proposal for Solving Sparse Linear Systems

In the 3D simulator, PSPARSLIB library has been employed to solve the linear
systems of equations. The linear system is firstly partitioned, then split accord-
ing to the partitioning, a distributed data structure is constructed and, finally, a
preconditioned Krylov solver is invoked for its solution. It uses domain decom-
position preconditioners, such as Additive Schwarz, Multicolor SOR and Schur
complement methods [7].

Previously, for matrices arising from semiconductor device simulation, an
analysis of the performance of solution methods and preconditioning techniques
employed in PSPARSLIB has been carried out [8], and the lowest execution
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(a) (b)

Fig. 2. Pattern of a local matrix reordered with the METIS program previously to
the call of the SETUP function (Fig. 2(a)), and the same matrix reordered with the
SETUP function (Fig. 2(b))

(a) (b)

Fig. 3. Flux diagram of the initial linear systems solving stage (Fig. 3(a)) and of the
optimised one (Fig. 3(b))

times were obtained with the Additive Schwarz method [9]. This algorithm is
similar to a block–Jacobi iteration and consists of updating all the new compo-
nents from the same residual. Assuming that Ai is the local matrix of the linear
system of equations to be solved on a particular subdomain Ωi, and xi represents
the local solution, the basic Additive Schwarz iteration works as follows:

1.- Obtain the external interface nodes yi,ext

2.- Compute local residual ri = (b −Ax)i

3.- Solve the local linear system AiΔi = ri

4.- Update the solution xi = xi + Δi

In our case, a standard Incomplete LU factorisation with Threshold (ILUT)
preconditioner combined with Flexible Generalised Minimal Residual method
(FGMRES) is used to solve the linear system AiΔi = ri for each of the blocks.

The main goal of this work is to study how to improve the parallel efficiency of
the 3D D–D simulator in order to reduce the simulation time. For this purpose,
the linear systems solving stage of the simulator has been analysed to find its
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Table 1. General information about the meshes employed in the simulation

Mesh Nodes Tetrahedrons NNZ Mesher

S 29,012 147,682 398,102 QMG
M 76,446 433,824 1,116,664 MMG
L 126,166 723,040 1,852,656 MMG
H 221,760 1,253,760 3,223,110 MMG

Table 2. For the S mesh, dependence with the number of processors of the average
times needed for: an incomplete LU factorisation (tILU ), the FGMRES solver to achieve
the convergence (titer.method) and the solution of a local linear system (tsolver). It is
also shown the average number of iterations of the inner solver (itsolver).

proc tILU tILU−O titer.method titer.method−O tsolver tsolver−O itsolver

1 20.76 20.61 0.45 0.45 21.21 21.06 2
2 9.82 6.71 5.28 7.55 15.10 14.27 33
4 4.62 1.64 7.21 3.25 11.84 4.90 39
8 1.95 0.51 4.38 1.01 6.34 1.52 41
16 0.67 0.15 1.38 0.37 2.05 0.52 55
32 0.21 0.05 0.49 0.17 0.70 0.22 67
62 0.06 0.03 0.13 0.08 0.19 0.11 61

most time consuming part. For a low number of processors, the incomplete LU
factorisations are one of the most important contributions to the total simulation
time, limiting the improvement of the parallel performance. As an example,
results filled in with slashes in Figure 1(b) (Original) show, for a mesh with
126,166 nodes divided in 4 subdomains, the incomplete LU factorisation time for
each employed processor. The solution time of an incomplete LU factorisation is
in average 150 s, being the total time of the solution of a local linear system 250 s,
and between the fastest and the slowest processors there is a difference in time of
roughly 48%. This unbalanced behaviour is mainly due to an internal reordering
made by the PSPARSLIB library. This library needs to call a function (SETUP)
before performing the ILU factorisation. This function reorders the nodes of the
local matrices in such a way that it first labels the internal nodes, then the local
interface ones and finally the external interface ones. This reordering changes the
pattern of the local matrix, that had been optimised in arrow format with the
reordering made by METIS in previous stages of the simulation, and increases
its fill–in. Figures 2(a) and 2(b) represent the pattern of a local matrix before
and after calling the SETUP function, respectively.

PSPARSLIB uses the SETUP function to overlap computations and com-
munications in the following matrix–vector products since this reordering puts
external interface nodes at the end of the structure sorting them by processors.
Figure 3(a) shows a flux diagram of the linear systems solving stage implemented
with the PSPARSLIB library. As we stated above, to solve the local nodes within
each subdomain we have employed a FGMRES iterative algorithm. This method
is preconditioned by a PGMRES iterative procedure, which is a simple version
of the ILUT preconditioned GMRES algorithm.

In our optimisation proposal we have tried to reduce the ILU time but without
compromising this overlapping of tasks. Therefore, for the ILU factorisation, the



864 N. Seoane and A.J. Garćıa-Loureiro

Table 3. Same results as the ones shown in Table 2 but using the M mesh

proc tILU tILU−O titer.method titer.method−O tsolver tsolver−O itsolver

2 113.20 75.90 39.11 30.47 152.32 106.37 32
4 56.04 23.40 46.89 32.09 102.93 55.49 48
8 30.54 5.27 58.92 17.13 89.46 22.40 60
16 9.35 1.23 18.87 5.11 28.22 6.34 69
32 2.63 0.35 8.86 1.25 11.49 1.60 82
62 0.65 0.11 1.84 0.47 2.49 0.58 93

Table 4. Same results as the ones represented in the two previous tables but using the
L mesh

proc tILU tILU−O titer.method titer.method−O tsolver tsolver−O itsolver

4 139.19 50.29 115.28 62.83 254.47 113.12 83
8 62.88 14.47 83.78 44.08 146.66 58.55 104
16 24.69 3.45 51.28 21.32 75.97 24.77 110
32 7.70 0.85 26.10 6.92 33.80 7.77 129
62 1.93 0.26 7.31 1.16 9.24 1.42 130

initial matrix (previous to the one originated with the SETUP routine) has been
used, whereas in the FGMRES iterative procedure the new reordered matrix has
been employed. So, after every ILU factorisation it is necessary to permutate the
matrix resulting of this process in order to adapt it to the new labelling originated
with the SETUP reordering. Figure 3(b) shows a flux diagram of the optimised
linear systems solving stage.

This optimisation technique decreases noticeably the ILU factorisation time
per processor and improves the balancing of computational effort between pro-
cessors. For example, Figure 1(b) also shows the ILU time for each one of the
processors employed in the optimised version. The incomplete LU factorisation
times are in average 50 s and between the slowest and the fastest processors
there is a difference of approximately 30%.

Therefore, the main objective of this optimisation is the use, in the resolution
of an ILU factorisation, a matrix with a lower bandwidth per row than the
original one. This is important due to the fact that the bandwidth per row
fixes the extreme positions of a row where fill–in elements can be introduced.
Hence, this optimisation permits to work with lower values of fill–in, saving
computational time and memory usage.

Table 5. Influence of the number of processors in the time needed to obtain the solution
of the Poisson equation in equilibrium, for the two versions of the code

mesh S mesh M mesh L
proc tequi tequi−O tequi tequi−O tequi tequi−O

1 570.53 568.68 – – – –
2 460.34 377.45 4236.52 3665.68 – –
4 339.26 132.81 3728.74 1481.93 6216.41 2930.07
8 164.02 43.49 2088.04 678.61 3654.45 1537.60
16 55.35 16.54 829.02 150.19 2148.47 534.75
32 19.47 7.71 265.75 38.88 868.13 169.43
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(a) (b)

Fig. 4. These figures represent, for mesh S, tsolver, tILU and titer.method versus number
of processors, for the initial and optimised versions of the code respectively

In the optimised version, as we have seen in the flux diagram, the ILU function
receives as input a matrix reordered with the METIS program (A), different from
the one given by the SETUP function (A′), in order to reduce the fill–in. The
only cost of this optimisation, per iteration, is the computing time necessary
to permute the vector of the solution of the Lusol0 function, to adapt it to the
original ordering given by PSPARSLIB. The Lusol0 function performs a forward
followed by a backward triangular solve for a LU matrix, therefore this function
receives as input the output of the ILU function (LU).

4 Numerical Results

The numerical results have been obtained in an HP Superdome Cluster formed
by two HP Integrity Superdome servers, each with 64 Itanium2 1.5 GHz, 6 MB
cache processors. The meshing in the 3D simulator is carried out using two
programs, the QMG [10] and the MMG [11]. An example of a tetrahedral mesh,
divided in four subdomains, arising from the MMG program is shown in Figure
1(a). To accomplish our study we have employed four meshes with different size.
Their main characteristics are shown in Table 1. The results we are going to
present from now on are comparatives between the two versions of the code,
initial and optimised. Both versions are distinguished through the inclusion in
the labelling of the optimised version results a −O symbol. We have focused this
study on the solution of the Poisson equation in equilibrium, although in the
optimised version similar results have been found for the solution of the electron
continuity equation. A fixed value of fill = 700 has been employed, being 2 ·fill
the maximum number of fill–in elements per row that can be introduced in the
structure of outgoing data.

Tables 2, 3 and 4 show for the meshes S, M and L respectively, the dependence
with the number of processors employed on: the average time of performing an
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(a) (b)

Fig. 5. Comparative, for the M and L meshes respectively, between tsolver, tILU and
titer.method versus number of processors for the two versions of the code

incomplete LU factorisation (tILU ), the average time needed by the FGMRES
solver to achieve the convergence (titer.method), the average time of solving a
local linear system (tsolver), being tsolver = tILU + titer.method, and the average
number of iterations of the inner solver (itsolver). This value is common for both
versions of the code.

The minimun number of processors that can be employed in each one of the
analysed cases depends on the size of the mesh and on the memory requirements.
So, for the M mesh it is only possible to obtain results for more than 1 processor
and for the L mesh it is necessary to employ at least 4 processors. As expected,
in the sequential case, both versions of the code, initial and optimised, produce
the same timing results since our optimisation does not change anything.

In the sequential case, tILU is the main contribution to tsolver , however, with
the increase in the number of processors, and due to the reduction in the size of
the local matrices, there is a drastical drop in the factorisation time tILU . The
resolution of an incomplete LU factorisation is a task very well parallelizable
in both versions of the code, although factorisation times are always lower in
the optimised version of the code. On the other hand, titer.method in the sequen-
tial case is almost negligible in comparison with the contribution of the ILU
time. This is due to the low number of iterations that the iterative method has
to carry out to achieve the convergence of the system. However, the influence
of this time to tsolver increases with the number of processors because of the
increase of the number of inner solver iterations. This increase of the number
of iterations causes that titer.method for 2 processors is higher than the one ob-
tained in the sequential case, although this time scales well with an increase in
the number of processors. For the S mesh, considering the optimised version,
titer.method becomes lower than the sequential time for more than 8 processors.
This is not true in the initial version of the code, where titer.method is only lower
than the sequential time using 62 processors. Also, for this mesh, Figures 4(a)
and 4(b) show the contributions of tILU and titer.method to tsolver , for the ini-
tial and optimised versions of the code respectively, and their dependence with
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Fig. 6. For the two versions of the code, Fig. 6(a) shows the parallel efficiency, for the
S, M and L meshes, obtained in the solution of the Poisson equation in equilibrium
and Fig. 6(b) presents the dependence of simulation time and memory usage with the
number of nodes of the mesh

the number of processors employed. Figures 5(a) and 5(b) show, for the meshes
M and L respectively, a graphical comparative between tILU , titer.method and
tsolver for the two versions of the code. These figures are useful to notice the
improvements, in the simulation time and therefore in the performance, given
by the optimised version of the code. These improvements are not only impor-
tant for the resolution of the incomplete factorisations but are also important
for achieving a fast convergence in the iterative method. Table 5 shows the im-
pact of the number of processors in the solution time for the Poisson equation
for the S, M and L meshes. These times were obtained for both versions of
the code, initial and optimised and do not represent average times but the to-
tal time used in the resolution of the non–linear systems needed to obtain the
global solution of the problem. Numerical results emphasize the improvements
in time and scalability of the optimised version in comparison to the initial one.
Figure 6(a) represents the parallel efficiency for these three meshes and its de-
pendence with the number of processors. Both versions of the code are shown
in the figure for comparative purposes. The optimised version achieves super-
linear efficiency up to 32 processors whereas in the initial version the increase
in the efficiency is less important and only using 32 processors the efficiency
reaches super–efficiency values. The parallel efficiency for the S mesh reaches
a saturation value for a high number of processors. This behaviour is due to
the reduction with the number of processors of the size of the local subdomains
and the increase of the communications. Finally, Figure 6(b) represents for the
four studied meshes and for the two versions of the code, using 8 processors, the
simulation time and memory usage against the size of the problem. The utilised
memory increases linearly with the number of mesh nodes, and both versions
give almost identical results. However, the increase in simulation time is much
more pronounced in the initial version than in the optimised one, especially for
high number of mesh nodes.
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5 Conclusions

In this paper we have presented an optimisation proposal of the linear system
resolution stage, implemented with the PSPARSLIB library, of a 3D parallel
simulator of HEMTs, although this is a general strategy and it can be useful in
other scientific fields.

This optimisation increases the parallel efficiency of the simulation process
and improves its scalability, leading to superlinear efficiency values. For more
than 1 processor and up to 62, it reduces drastically the simulation times for the
solution of the Poisson equation in equilibrium. Furthermore, similar reductions
in timing results have been obtained for the solution of the electron continuity
equation.
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Abstract. One of the main objectives of Content-based Multimedia Retrieval
systems is the automation of the information extraction process from raw data.
When dealing with video data, the first step is to perform a temporal video seg-
mentation in order to make a shot decomposition of the video content. From a
computational point of view, this is a very high demanding task and algorithm
optimization must be seeked. This paper presents a comparison between two
different parallel programming paradigms: shared-memory communication and
distributed memory processing using the message passing paradigm. Taking into
account the software solutions, experimental results are collected over two al-
ternative parallel architectures: a shared-memory symmetric multiprocessor and
a cluster. This paper analyzes the performance achieved from the viewpoints of
speed and scalability.

1 Introduction

High performance computing fits in a natural way in application areas where large vol-
umes of data are required to be managed or processed. When dealing with multimedia
databases, or even with unstructured multimedia data collections, automatic techniques
for extracting relevant information from raw data must be seeked in order to efficiently
access it. Content-based Multimedia Retrieval (CBMR) systems provide a very useful
help to users whose aim is to introduce a query in the system and retrieve those items
in the data sets which look more similar [1, 2, 3]. When large volumes of data are con-
sidered, as it is very often in the case of multimedia databases it may become necessary
to look for parallel solutions in order to process, store and gain access to the available
items in an efficient way [4, 5, 6, 7]. Multiprocessor shared-memory architectures are
being used for these purposes since a long time ago. During decades, they were the first
scientists’ choice when dealing with parallel implementations [8, 9, 10]. On the other
hand, last decade has settled clusters as a feasible distributed solution for applications
where higher levels of scalability and lower costs are required [11, 12].

When dealing with video data, the first step is to perform a temporal video segmen-
tation in order to isolate the minimum unit with semantic meaning: shots. This work
focuses on comparing the performance achieved by two alternative parallel implemen-
tations of a video shot segmentation algorithm using two different parallel programming
paradigms: shared-memory communication and distributed memory processing using

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 869–883, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the message passing paradigm. Taking into account the software solutions, two differ-
ent parallel architectures are considered to compare both implementations: a shared-
memory symmetric multiprocessor (SMP) and a distributed system. The former is a
Silicon Graphics Prisma 350 with 16 processors Itanium 2 1500 MHz. The latter is based
on a Class II Beowulf cluster using a mixing of commodity hardware and software with
standard technology and some specific components to improve the data transferences
and I/O operations [13]. This paper analyzes the performance achieved by the imple-
mentations from the viewpoints of speed and scalability. To the author’s knowledge
there are not any other works comparing both parallel architectures and programming
paradigms for video segmentation as well as any work with a distributed implementa-
tion of the video shot extraction problem.

The contents of this paper may be broken down into a first paragraph to describe the
video segmentation algorithm used for the tests (section 2), followed by a presentation
of the parallel implementations carried out (section 3), the results achieved during the
tests (section 4) and the conclusions obtained (section 5).

2 Shot Extraction Algorithm Overview

2.1 Sketch of the Sequential Algorithm

Video cut detection has two main challenges: to accurate delimit the start and the end of
video shots and to process the video content in a more efficient way. As stated in Section
1 it is the unavoidable first step to proceed with new data in a Content-based Video
Retrieval process. Depending on the work domain, these techniques can be classified in
non-compressed [14, 15] and compressed video shot segmentation [16]. This paper is
focused on non-compressed video segmentation since it is an interesting testbench for
primitives to be also used in a retrieval stage, as in [17].

The basic idea of video cut detection algorithms is to compute the differences be-
tween consecutive frames or groups of frames. Existing techniques differ in the way
these differences are computed. Figure 1 depicts a scheme of the whole process. Di de-
notes the difference between the considered frame and the previous one. In the present
case, the computed Di difference values are based on several shape and color features,
although other possibilities can also be considered [18, 15]. At this point, it must be
noticed that the extraction of difference values does not affect the posed parallelization
strategy.

The user can select the discriminating primitive depending on the video contents. The
implemented features have been Zernike invariants for the shape primitive and quanti-
fied histograms for the color feature [17]. From a computational point of view Zernike
invariants are more demanding than quantified histograms, so the shape primitive will
be described in the following. However, the same discussion may be applied to the color
primitive.

A candidate for cut is detected when difference Di values are higher than a dynami-
cally computed threshold Th. The expression of Th is defined by (1):

Th = weight

∑j+W
i=j−W D(i)
2W + 1

(1)
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Fig. 1. Cut detection algorithm

where W is the number of difference values computed from the left and right local
neighbor windows, i is the frame under consideration and weight is a gain factor. There-
fore, threshold Th is updated for each processed frame. One of the typical artifacts
present in videos is the appearance of flashes that distort normal analysis of video sig-
nals, because there is no change in the video content but abrupt changes appear in signal
intensity. In order to filter out flashes, a second threshold Tflash has been implemented,
following the model of Zhang et al. [19]. Finally, once comparisons are performed
threshold Th is recalculated depending on the variance of the sliding window, so that if
it varies too much from frame i to next frame i + 1, as it is the case when, for example,
very fast camera movements occur, the value can be adapted to the new video signal
content.

Zernike invariants have been selected as shape primitive because of its demonstrated
good performance in object recognition problems [20, 21]. Starting from Zernike poly-
nomials and projecting the function over the orthogonal basis composed by the polyno-
mials, Zernike moments can be generated as follows:

Amn =
m + 1

π

∑
x

∑
y

f(x, y)V ∗
nm(x, y)dxdy with x2 + y2 ≤ 1 (2)
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Table 1. Execution time and maximum speedup under Amdahl’s law for different Zernike poly-
nomials

Method Decode time Segmen. time Total time Serial frac. Parallel frac. Max. speedup

ZER3 3504 52452 55956 0.06 0.94 15.97
ZER5 3540 100123 103663 0.03 0.97 29.28
ZER10 3611 350609 354220 0.01 0.99 98.09

where V ∗
nm is a set of complex polynomials defined inside a unity radius circle. From

these functions, the modulus is computed to obtain the l different invariant values for
each considered case. The invariant values are used to create a vector of l elements ZIi

that collect shape information from a frame i. For example, in the case of polynomials
up to tenth degree, l would be 36. These vectors are used to obtain the value Di that
determines if two consecutive frames are different enough to be considered as a shot
boundary:

Di = dist(ZIi, ZIi−1) (3)

where dist refers to the Euclidean distance. The expression that filters flashes is

ratioflash =
Ds

Di
, (4)

where Ds is the difference between the W frames preceding the current frame and the
W ones after it and Di is the distance defined above. For the chosen Zernike moment
based invariants, the expression Ds is:

Ds = dist

(
1
W

i−1∑
k=i−W

ZIk,
1
W

i+W∑
k=i+1

ZIk

)
(5)

where dist refers to the Euclidean distance. As it can be deduced from (2), invariant
computation is a very high demanding task, so different order polynomials have been
tested so as to verify if there were significant differences between their responses. Fur-
ther details about the contents of this section can be found in [22] and [23].

2.2 Algorithm Computational Analysis

Working with video data coded in MPEG implies a first decoding stage of the com-
pressed data and a second stage where video shot extraction is performed over the non-
compressed frames following the algorithm described in Sect. 2.1.

Decoding and segmentation time values have been obtained on a 3GHz Pentium IV
processor. Table 1 shows data about the execution time for a video sequence of 5000,
10000 and 20000 frames encoded at 29.97 frames per second. Several order polynomi-
als have been tested: differences of Zernike moment invariants up to third order poly-
nomials (ZER3), up to fifth order (ZER5) and up to tenth order (ZER10). It can be
observed how the increment of the polynomial degree greatly increases the execution
time of the segmentation stage.
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Analyzing the execution time involved in each stage, it can be noticed that the shot
boundary stage involves much larger computational load than the decoding stage even
when low order polynomials are considered. Following Amdahl’s law it can be com-
puted the maximum achievable speedup when it is only considered ed a parallelization
of the segmentation stage. Table 1 shows how maximum speedup is quite sensible to
the polynomial degree selected. This is due to the fact that the serial fraction (i. e.
the decoding time) remains constant, while the parallel fraction (i. e. the segmentation
time) grows with the polynomial degree. Values in Table 1 show the benefits of using a
parallel implementation, specially when using high order polynomials.

Apart from that, the decoding stage must be solved sequentially, due to the data de-
pendencies existing among the video frames. The best way to parallelize it would be to
divide the original video so that each processor would decode its own video chunk. Up
to the writers knowledge, some previous works have tackled the problem of paralleliz-
ing the decoding stage for MPEG videos although these works have been based on a
shared-memory platform [24, 25].

2.3 Implementation Analysis

Upon observing the operations involved in the extraction stage, it can be deduced that
all processed frames have data dependency, but only those belonging to shot boundaries
are critical to compute the exact points where shots start and end. This means that
an approach based on data decomposition could be feasible if the boundary is fully
inside the frame slice assigned to one of the p threads or processes. Therefore, the shot
extraction stage could be fully parallelized.

The sequential version of the algorithm requires the displacement of a symmetric
mask window with W coefficients to detect the presence of a shot boundary in the frame
where the mask is placed. It implies that the assignment of frame slices to threads must
be made taking into account the extra frames needed to compute mask operations in the
slice’s first and last frames. Due to this, there will be two small windows overlapping
among consecutive slices, as Fig. 2 shows, adding W − 1 frames to p − 2 slices and

(W

2 + 1)� frames to the first and last slice.
Therefore, if we consider a video with r frames, each slice will be composed by


(r
p + 1)�+ 
(W − 1)� images.
When dealing with large videos, the distributed solution based on the message pass-

ing paradigm may collapse the memory of the master processing node if there are no
limitations on the amount of data sent by the master in one or successive slices. Further
details about this problem will be given in the following paragraphs.

3 Parallel Implementations

As mentioned before, in this paper we deal with two different parallel architectures
(SMP and cluster) and with two different parallel programming paradigms. In the fol-
lowing sections four different approaches are proposed. The first two are thread-based
and the last two are MPI-based.
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Slice 1

Thread 3: shot extraction
Slice 3

Thread 1: shot extraction

Main thread

Thread 2: shot extraction

Slice 2

Slice p

Thread p: shot extraction

Fig. 2. Implementation strategy at thread level

3.1 Shared-Memory Paradigm

The first solution proposed is based on the shared-memory paradigm. It has been im-
plemented using LinuxThreads [26], the available implementation of the Posix 1003.1c
thread package for Linux in the Prisma SGI multiprocessor. The selection of Posix li-
braries to implement threads has been made considering that they are a long stable
library standard, but also due to their high portability and efficiency, which guarantee
good levels of software development quality. This implementation has the advantage of
introducing a minimal overhead on CPU-intensive multiprocessing, reaching an assign-
ment of almost one thread per available processor.

Two alternative approaches have been developed, differing on the data access and
the decoding stage.

Distributed Decoding Approach (DDA). In this approach, each thread is in charge of
data access, video decoding and shot detection tasks, so there is no need of a master
thread. At the beginning each thread has to perform a positioning stage and once they
have reached their previously assigned starting place, they can begin to compute the
shot detection algorithm.

Taking into account that this algorithm is based on an adaptive threshold computed
over a sliding window, each thread must begin its shot detection process some frames
before the corresponding place and has to end some frames after it as well. This is
the reason why assigned chunks overlap as can be seen in Fig. 2. Finally each thread
generates an ordered list of detected cuts including the exact first and last frame numbers
of each shot.
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Centralized Decoding Approach (CDA). In this approach a master thread is in charge
of decoding chunks of video data and passing them right after to the worker threads
using shared memory. In this case the idea was to process independently both the de-
coding and the segmentation stages since the former has a problematic parallelization
and, above all, because decoding time is much lower than segmentation time. This way,
the goal is to avoid information transferences that appear in DDA when using data
communication through the common input/output subsystem.

3.2 Message-Passing Paradigm

Implementation of parallel applications on distributed architectures, such as clusters
or grids, is based on message-passing paradigm. The distributed implementation has
been programmed using MPI libraries as communication primitives between master
and slave processes. MPI has been selected given that it currently constitutes a de facto
standard for message passing communications on parallel architectures, offering a good
degree of portability among parallel platforms [27]. The 1.2.6-1 MPICH version devel-
oped by the Argonne National Laboratory has been chosen for the cluster implemen-
tation. It is an open-source and portable implementation of MPI [28]. This is a fully
supported MPI 1.2 implementation with additional features from MPI-2 like I/O func-
tions, cluster status and data constructors. These implementations have the advantage
that can be used also on SMP architectures. In the SMP, we have employed the 7.2
LAM version from the Laboratory for Scientific Computing of Notre Dame University,
a free distribution of MPI [29]. Although different MPI versions have been used in the
SMP and in the cluster, independent-architecture metrics like speedup or efficiency will
guarantee the validity of comparisons and analysis.

Since input data are stored in one of the cluster nodes, the most suitable solution
is a farm based structure where the master distributes the workload among the slave
processes and collects the partial results processed in each slave to obtain the video
shots. In this case two alternatives are also proposed.

Static Data Distribution (SDD). The master process does an initial and homogeneous
data distribution among the slave processes. Data package size is obtained dividing the
total number of frames in the video by the number of available processors. Process
structure in this case is very simple. The master begins a decoding loop, sending a
complete data package to each slave. Slave processes will send the results back to the
master after finishing the segmentation stage. The master gathers these partial results
and stores them.

Dynamic Data Distribution (DDD). As previously stated, package size is not limited
in SDD Approach. Thus, when dealing with large video sequences and a few slaves
the amount of memory needed to perform the video decoding stage is very demanding.
DDD Approach tries to solve this problem by processing fixed size packages. This
way, the master decodes chunks of fixed size and sends each chunk to the correspond-
ing slave. When the slave finishes processing the assigned chunk, the master resends
another decoded chunk.

In this case, package chunks will have the same size and they will be fixed by the user.
Usually, the number of packages will be greater than the number of slave processes.
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Algorithm 1. Master pseudo-code
repeat

Decode one package
Send the decoded package to the slave

until there are available slaves for processing chunks of video
loop

Wait for partial results sent from slaves
When partial results are received, check
if there are pending packages then

Send a new package to the transmitter slave
else

Send the end label
end if

end loop

Algorithm 2. Slave pseudo-code
loop

Receive a package from the master
Process the package
Return the package to the master and wait for a new message from the master with a new
package or with the end label

end loop

Therefore, each slave will process more than one data chunk. The pseudo-code of the
corresponding implementation of master and slave processes is shown in Alg. 1 and 2.

Several advantages of this implementation can be stand out:

– Reduces the memory problems that appear in the previous implementation (SDD
Approach).

– Favours dynamic load balancing among the processing nodes.
– Minimizes slaves waiting time.

On the other hand, this solution results in a more complex implementation.

4 Experimental Results

4.1 Parallel Architectures

The parallel implementations have been tested on a SMP and on a cluster described
next.

Nemea: Shared-Memory Symmetric Multiprocessor. The experiments performed
on the shared-memory symmetric multiprocessor have been tested on a SGI Prisma
350 machine, an SMP scalable up to 128 processors with the following configuration:
16 Intel Itanium 2 IA-64 1500 MHz microprocessors model 2 rev. 1; 32 GB DDRAM
NUMAlink main memory; 4 MB L3 cache; 800 GB from 5 Serial ATA SGI TP9300
hard disks and one 70 GB ATA disk; several external storage interfaces (2 QLogic
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QLA2312 Fibre Channel Adapters and one IDE adapter); network interface model SGI
IO9/IO10 Gigabit Ethernet (Copper). This is a symmetric multiprocessor in which all
processors access the main memory using a common address map. Access is gained
through a high-speed bus with a peak bandwidth of 12.8 GB/s. The operating system is
SuSe Linux 9 Enterprise with 2.6.5 kernel, using XFS journaled filesystem.

Magerit: Beowulf Cluster. The cluster setup is a subset of the available resources in
the CeSVIMa center [30]. The CeSVIMa cluster is made up of 180 eServer BladeCen-
ter JS20 nodes (168 process nodes and 12 I/O nodes) linked together using a Myrinet
network with 1Gb of bandwidth connected by one e1350 Myrinet switch and one Cisco
6509 switch with 180 ports. Each of the nodes features the following configuration: 2
IBM Power 970 2.2 GHz processors and 4 GB of main memory. The cluster has addi-
tional specific I/O resources, like 2 servers for storage management model pSeries 615,
with 2 Pentium IV 1.45 GHz and 8 GB of main memory, and 1 DS4100 disk controller
managing two EXP100 extensions with 14 50GB SATA disks each one. The cluster
operating system is SuSe Linux 9 Enterprise with 2.6.5 kernel. Jobs in the cluster are
launched using IBM LoadLeveler for Linux.

4.2 Experimental Setup

Tests have consisted on running the optimized video segmentation implementations
using as input different length videos and using different number of threads and cluster
nodes. Video sizes tested have been 5000, 10000 and 20000 frames. As frame rate is
29.97Hz, the length of test videos is approximately 3, 5 and 11 minutes respectively. On
the other hand, tests using different number of threads and cluster nodes have been run
in order to measure both the speedup and the efficiency achieved on different scenarios.

In Nemea, several setups with 1, 2, 4, 8 and 16 processors have been tested. In DDA
Approach, all processors run the same code. In CDA Approach, one of the processing
nodes decodes the video sequence; when it has one package ready, it is sent to the slave
that performs the segmentation. In the general case, each slave process is assigned to
one of the available processors, plus one processor dedicated to run master code. The
only exception is the setup with the maximum number of processing nodes, 16, running
the master in one of them and 15 slaves processes in the rest of them.

For the message passing paradigm, we have tested the SDD Approach in Nemea
and the DDD Approach in Magerit. Nemea implementation is based on the SDD Ap-
proach since it is very similar to the CDA Approach and this way we can compare the
LinuxThread and the MPI implementations in the SMP machine. Magerit implementa-
tion is based on the DDD Approach because this version avoids the memory bottleneck
that appears in the SDD Approach. In Magerit, implemented versions with 1, 2, 4, 8,
16 and 32 processors have been tested.

The planned tests allow to compare both architectures and both programming
paradigms.

4.3 Results Analysis

This section collects the obtained results and the analysis done from the experimental
results. The main goals of the experiments are the following:
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Fig. 3. Parallel application response time with LinuxThreads on Nemea
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Fig. 4. Parallel application response time with MPI on Nemea and Magerit (SDD Approach)

– To validate the viability of a parallel solution for the video segmentation application
in different architectures and with several parallel programming paradigms (shared-
memory and message passing).

– To compare the performance of two alternative architectures, based on shared-
memory and on distributed memory, to evaluate which one offers the best figures in
this application. The comparison will take into account the response time and the
communication overhead appearing in each case.

– To compare two parallel computation paradigms, like shared-memory versus mes-
sage passing programming. In this case, it must be noticed the great influence of
the selected libraries on the implementation results (LinuxThreads and MPI).

Figures 3 and 4 present the evolution of the response time for both implementations
when the number of processors is increased and considering several data sizes: video
sequences of 5000, 10000 and 20000 frames. The greatest packet size is fixed by the
test with the maximum number of nodes. The other values are divisors of this value.
Response time is defined in the classical sense as the time spent by the application from
the user’s point of view. All figures show a great reduction of response times, so it can be
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Fig. 5. Speedup of the LinuxThreads versions on Nemea

deduced that parallel implementations are a good solution to cut down the application
response time.

A more detailed analysis of the results achieved by each implementation shows that
the response time of both thread versions are very similar, as can be seen in Fig. 3. On
the other hand, Fig. 4 shows very similar curves for the MPI implementation on both
parallel architectures, Nemea and Magerit. It can be noticed how response time values in
the SMP are quite lower than response time values obtained in the cluster when dealing
with a setup with few processors: slightly under 50%. These figures can be due to the
different performance achieved by the microprocessors installed in both parallel archi-
tectures. A deeper analysis of this topic is out of the scope of this work, but the reader
may consult some of the available microprocessors benchmarks to look for a better jus-
tification of these values [31]. When the number of slaves in the cluster is increased, the
reduction slope of the curve is sharper in Magerit. Better response times in Magerit
can be achieved since the number of available processors is greater than in Nemea.

MPI version over the SMP architecture clearly improves LinuxThreads version on
the same architecture. This improvement is into the interval [30%,50%], increasing
with the number of processors in the setup and remains almost constant when data
size changes. This means that the LinuxThreads synchronization mechanisms are not
so optimized as the communication and synchronization primitives available in MPI.
Therefore, it can be concluded that even in a shared-memory architecture, the use of
MPI surpasses the performance achieved by the LinuxThread implementation.

Figures 5 and 6 present speedup values computed from the execution time of the
previous figures. It can be noticed how the speedup follows a nearly linear curve as a
function of the number of considered processors. Figure 5 shows a linear curve with
a slope value of 0.55, although experimental results are far away from the theoretical
optimum value. It must be also emphasized that speedup is almost independent of the
input data size increment, therefore communication overhead is negligible with respect
to processing time. Speedup curves of the MPI versions, as shown in Fig. 6, are also
almost linear, but in this case with experimental values very close to the optimum ones.
The slope of the speedup curve is 0.82 for the SMP and 0.91 for the cluster. Com-
paring both implementations, it can be asserted that the MPI implementation behaves
much better than the LinuxThreads implementation in terms of speedup (Fig. 5-CDA
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Approah vs. Fig. 6-Nemea). Comparing both parallel architectures with the MPI ver-
sion, the cluster is slightly more scalable than the SMP. (Fig. 6-Nemea vs. Fig. 6-
Magerit).

Figure 7 shows response time and efficiency1 values obtained when package size
used in the experiments performed with the DDD Approach executed in Nemea
changes. With 16 slaves, one of them shares the corresponding CPU with the master.

Analyzing the performance figures with respect the change in the data package size,
measured in number of frames, it can be noticed a light but insignificant improvement.
The small improvement is the result of combining two opposite effects:

– On one hand, increasing the package size reduces the global communication over-
head because a fewer number must be transmitted, improving the response time.

– On the other hand, increasing the package size rises the decoding time per package,
causing higher waiting time values in the slaves.

The net result of combining both factors produces a modest improvement of the perfor-
mance taking into consideration the package size.

1 Efficiency =
Speedup

Number of processors .



Video Shot Extraction on Parallel Architectures 881

5 Conclusions and Future Work

This paper has presented a comparison among different parallel architectures and paral-
lel programming paradigms of a video shot segmentation algorithm used in a Content-
based Multimedia Retrieval System. Programmed implementations attempt to cover
all possible parallel programming aspects, just as the different studied paradigms: two
LinuxThreads implementations and two MPI versions, tested on a shared memory sym-
metric multiprocessor and on a cluster.

The aim of the experiments is to evaluate the performance achieved by the differ-
ent implementations. The main conclusions extracted from the experiments are the
following:

– Shared memory architectures obtain better results with a small number of proces-
sors, but are less scalable than clusters, even considering applications demanding
a very high network bandwidth, like the one tackled in this paper. This is deduced
from the Nemea figures when dealing with two or four processors, since in these
cases response times are better, but the speedup values are worse, meaning a poor
system scalability.

– Beowulf clusters with very powerful networks, like Myrinet in this case, achieve
excellent scalability results.

– Experiments based on message passing paradigm have obtained very good perfor-
mance results, improving thread-based implementations even when they are run in
the shared memory architecture.

Future work will include a deeper scalability analysis of the cluster architecture.
Load balancing will be considered in cluster implementations to improve the overall
performance of the video shot detection system. Further analysis of the I/O bottleneck
in the shared memory architecture will be also studied to solve the existing bottleneck in
the video positioning stage. Disk stripping and Redundant Arrays of Inexpensive Disks
(RAID) will be considered in this study.
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Abstract. A variety of real-time data scheduling heuristics were proposed for 
distributed, data intensive real-time applications running on a distributed 
computing system. The proposed heuristics are used to produce real-time data 
dissemination schedules for the applications’ requests for the data stored on the 
machines in the system. However, how these real-time data scheduling 
heuristics will perform for different data replacement policies and data access 
patterns is a question left unanswered. Based on this motivation, in this study, 
the performance of the two real-time data scheduling heuristics, namely the Full 
Path Heuristic and the Extended Partial Path Heuristic, are evaluated under 
different data replacement policies and data access patterns. A detailed set of 
simulation studies are presented to reveal how these algorithms are affected by 
the changes in the data replacement policy and data access pattern as well as the 
other system parameters of interest. 

1   Introduction 

Applications with real-time requirements are currently emerging in many disciplines 
of science and engineering, some of which are defense, scientific experimentation, 
monitoring and control via wireless sensor networks, intelligent transportation 
systems, and automotive. A common characteristic of such applications is that data 
produced or stored in one component of the system need to be transferred across a 
network of limited resources to another component (or components) while respecting 
associated real-time attributes. Achieving such data transfers in a timely manner and 
servicing as many data transfer requests as possible in a distributed environment is a 
nontrivial problem known as the real-time data dissemination, data distribution, or 
data scheduling problem [1]-[3].   

Recently, a class of real-time data dissemination algorithms has been proposed in 
[1]-[3]. In [1], three different heuristics for the Battlefield Awareness and Data 
Dissemination (BADD) are proposed. Later, better algorithms in terms of maximizing 
the number of satisfied requests (their deadlines are met) are introduced in [2], [3]. 
All of these real-time data dissemination algorithms are applicable to BADD-like 
environments as well as to distributed computing platforms in which a set of storage 
facilities are serving for the applications’ real-time data transfer requests. For 
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example, Data Grids, which harness geographically distributed storage and computing 
resources, are envisaged to run a variety of scientific simulation and experiment 
applications which involve a large number of data-intensive jobs [4]. Furthermore, 
these applications require the efficient management and transfer of terabytes and 
petabytes of information [4]. A major problem identified for peta-scale data intensive 
computing is how to schedule jobs and their related data in an effort to minimize jobs’ 
completion times and bandwidth/storage space consumed due to the data transfers [5]-
[7]. In order to alleviate these problems, data are dynamically replicated on multiple 
storage systems guided by a replication algorithm [5]-[9]. Even though efficient data 
replication and caching reduce the time to transfer data from a storage unit to a 
machine on which a requestor job (or jobs) of the data is running, it is clear that they 
are not sufficient to support multiple applications producing thousands of real-time 
data transfer requests on a Data Grid. A solution to this challenging problem is to 
deploy the real-time data dissemination algorithms proposed in [1]-[3] together with 
the replication and caching strategies in [5]-[9] so as to realize a real-time Data Grid 
infrastructure.  

The motivation of this study is based on the following observations. The studies in 
[1]-[3] evaluated the performance of the respective algorithms assuming a naïve data 
replacement policy and totally random data access pattern only. However, according 
to [5]-[9], both the data replacement policy and the data access pattern can have 
significant impact on the performance of the system. On the other hand, the studies in 
[5]-[9] assessed the value of a variety of replication/data replacement strategies under 
different data access patterns. But, they did not consider accessing the data under 
some time constraints, which could be essential for satisfying some Grid users. Thus, 
this preliminary study tries to elaborate on the performance of the real-time data 
scheduling algorithms under different data replacement policies and data access 
patterns.  

2   Problem Formulation 

A Data Grid is composed of a set of machines M= {M1, M2, ..., Mm} and links L= 

{L1, L2, …, Ln} each of which provides a bidirectional connection between two 

machines. Each machine Mi has a limited storage capacity Ci and each link Lj is 

associated with a specific bandwidth of Bj. These machines are organized in tiers, 
which are due to the Large Hadron Collider (LHC) tiered computing model [10]. In 
this study, the Data Grid is modeled to have four tiers as in [8], [9] (there are five of 
them in the LHC architecture). The Tier 0 is the source where all data are produced; 
the Tier 1 includes a few national centers around a country; each Tier 1 has a number 
of related Tier 2 work groups at universities or research labs; the Tier 3, finally, 
consists of a large number of workstations.  

The Data Grid is used for running real-time distributed applications which generate 
a set of requests R= {R1, R2, …, Rr} for data-items X, where X= {X1, X2, …, Xq} 

denotes the set of q unique data-items. Each request Rk is associated with one of q 

data-items Xk to be transferred from a source machine to a destination machine Mk, a  
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deadline value Dk by which data-item Xk must be delivered to its destination Mk, and 

a release time Ak after which the request should be considered for scheduling. Thus, 

request Rk is summarized by the following tuple: {Xk, Mk, Dk, Ak}. As in [8], [9], it is 
assumed that all data-items X are initially stored in the Tier 0 and that the requests 
can come from only the Tier 3 machines. With respect to this setting, the Tier 1 and 
Tier 2 machines will act just as intermediate storage sites on which data-items can be 
replicated during their transfer to the Tier 3 machines. Apart from the tiered 
computing model adopted in this study, the studies in [1]-[3] assumed a computing 
system in which all data are distributed among the machines of the system and each 
machine can generate a real-time data transfer request for a data-item which it does 
not already have. 

In the Grid, a centralized scheduler accepts requests from the applications running 
on the system and creates a data dissemination schedule for the current requests under 
which the respective data-items will be transferred from machine to machine until 
their destination machines. In [1]-[3], the scheduler adopts the following staging 
model in establishing real-time data dissemination schedules. 

Definition 1. Staging a data-item from a source machine to a destination machine is 
defined as moving the data-item in its entirety from the source to some intermediate 
machines along the path to the destination machines. Intermediate machines should 
keep the data-item until it is delivered to its destination machine(s).  

This model is also considered as a possible replication strategy for the Data Grids in 
[8], which called it as the Fast Spread. According to [8], the Fast Spread is the best 
strategy among the six different replication/caching strategies studied therein in terms 
of minimizing the job completion times and bandwidth usage if the Data Grid users 
access data in a totally random manner or if their access pattern shows a small degree 
of temporal locality, which is at the cost of excessive storage consumption. 
Furthermore, under both small degree of temporal and geographical locality, it is still 
the best in saving the bandwidth, and it comes second in reducing the job completion 
times. Based on these promising results as well as the fact that it is the underlying 
data staging model of the algorithms in [1]-[3], the Fast Spread has been chosen as the 
replication strategy of this study. Cooperating with the Fast Spread, three different 
data replacement policies are considered. The first one is the Least Recently Used 
(LRU) which deletes the oldest referenced data-item(s) on a machine to free up large 
enough storage space for a new data-item. The second one is the data replacement 
policy of [2] (and [3]) under which once a data-item has reached to its destination, it 
is immediately removed from all intermediate machines along its path. The third 
policy is from [1] which keeps the data-item on the intermediate machines even after 
it has been delivered to its destination. This policy requires that the data-item be 
deleted from the intermediate machines at once as soon as the respective request’s 
deadline plus some fixed amount of time has been passed. When the LRU and the 
latter two policies are compared, an important difference should be emphasized. The 
LRU is a dynamic policy in the sense that a data-item can be replaced on any machine 
at any given time. As a result, there is no blocking among the requests. On the other 
hand, the latter two can be considered to be static since they do not allow the data  
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replacement on the intermediate machines until a specific point of time. For example, 
under the policy of [2], a data-item on an intermediate machine cannot be replaced 
until it is delivered to its destination. Thus, a request may block another one for some 
time on an intermediate machine, which is directly proportional to when the blocking 
request’s data-item is reached to its destination.  

Assuming that the Fast Spread is the replication strategy, the goal of the scheduler 
is defined as satisfying as many request deadlines as possible in an oversubscribed 
Data Grid with limited storage and bandwidth capacities under a specific data 
replacement policy. 

3   Real-Time Data Scheduling Heuristics 

In this section, two real-time data scheduling heuristics, namely the Full Path 
Heuristic (FPH) [1] and the Extended Partial Path Heuristics (EPP) [2] are described 
in some detail to keep this study as a self-contained one.   

3.1   Full Path Heuristic 

The Full Path Heuristic proposed in [1] is built around the Dijkstra’s multiple-source 
shortest path algorithm. The FPH runs as follows: In each iteration, it finds a least 
cost request among the satisfiable requests (a satisfiable request is the one for which 
the Dijkstra’s multiple-source shortest path algorithm can find an available shortest 
path from a source to its destination and its deadline can be met using this shortest 
path); it, then, transfers the least cost request’s data-item from a source machine up to 
the destination along the shortest path. Specifically, the FPH with the LRU policy, 
which is very similar to the original FPH in [1], is composed of the following steps: 
 
1. For a given set of requests R, repeat steps (2)-(6) until R is an empty set. 
2. For each request Rk  R, run the Dijkstra’s multiple-source shortest path algorithm 

to determine a shortest path from a set of source machines of data-item Xk to the 

request’s destination machine Mk. 
3. Mark a request as satisfiable if a shortest-path from a source to its destination 

machine meeting the request’s deadline is found; otherwise, mark the request as 
unsatisfiable.  

4. For each satisfiable request, compute the value of a cost function, which is taken as 
the urgency of the request in this study. 

5. Determine the most urgent request and transfer the respective data-item to the 
destination machine along its shortest path. During the transfer, replicate the data-
item on every intermediate machine (as well as on the destination) while enforcing 
the LRU if enough storage space to hold the data-item is not available. Update the 
storage space consumption on each machine along the path. 

6. Drop a request from R if either the request is satisfied or the request’s deadline 
cannot be met at all.  
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3.2   Extended Partial Path Heuristic 

The Extended Partial Path Heuristic proposed in [2] is also built around the Dijkstra’s 
multiple-source shortest path algorithm. The EPP produces schedules as follows: In 
each iteration, similar to the FPH, the EPP groups the available requests as satisfiable 
and unsatisfiable requests. Apart from the FPH, however, the EPP calls the Partial 
Path Heuristic (PPH) proposed in [1] under the infinite storage capacity assumption 
for each machine for this grouping. Among the satisfiable requests, the most urgent 
request together with its extended path, a path with usually more than one hop is 
determined. Then, the data-item of the most urgent request is transferred along the 
computed extended path towards its destination. Specifically, the EPP with the LRU, 
which is a little bit different from its original in [2], consists of the following steps: 

 
1. For a given set of requests R, repeat steps (2)-(7) until R is an empty set. 
2. For each request Rk  R, run the Dijkstra’s multiple-source shortest path algorithm 

to determine a shortest path from a set of source machines of data-item Xk to the 

request’s destination machine Mk. 
3. Call the PPH under the assumption that infinite storage capacity is available for 

each machine and the request’s urgency is to be its cost. As an input set of 
requests, let the PPH have every request for which an available shortest path 
meeting the corresponding deadline is found in Step 2. Mark a request as 
satisfiable if its data-item can be delivered before the deadline by the PPH; 
otherwise, mark the request as unsatisfiable.  

4. For each satisfiable request, compute its urgency. Determine the most urgent 
request (request with the minimum urgency value) and the second most urgent 
request among the satisfiable requests.  

5. For the most urgent request, compute the length of the extended path in terms of 
the number of hops. The length of the extended path is determined based on the 
urgency value of the second most urgent request so that the most urgent request is 
transferred from one machine to another until the urgency value of the second most 
urgent request is not negative. 

6. Transfer the data-item of the most urgent request by one or more hops along its 
extended path towards its destination. During the transfer, replicate the data-item 
on every intermediate machine (as well as on the destination) while enforcing the 
LRU if enough storage space to hold the data-item is not available. Update the 
storage space consumption on each machine along the path. 

7. Drop a request from R if either the request is satisfied or the request’s deadline 
cannot be met at all.  

There is a subtle difference in enforcing the Fast Spread policy between the FPH 
and EPP due to their scheduling nature. The FPH transfers a data-item from a source 
up to the destination without scheduling another request, i.e., there is only one data-
item in transit at any given time. Under the Fast Spread, the data-item is replicated on 
each machine along the path and each replica can later be replaced in accordance with 
the LRU. But, the EPP completes the transfer of a data-item in usually more than one 
step based on the computed extended paths and the Fast Spread will be applied to 
each of these steps individually. That is, a copy of the data-item is left on each 
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machine along the extended path, which is usually shorter than the full path. As a 
result, because of the capacity constraints, a data-item which has been transferred by 
several hops towards its destination can be replaced by another data-item in several 
machines.   

4   Simulations 

A simulator was developed to investigate the performance of the FPH and EPP 
together with the Fast Spread data replication strategy, and the data replacement 
policies of the LRU and the ones in [1] and [2]. The simulator consists of three parts. 
The network component is used to create LHC-like tiered computing systems. On top 
of the network component, the FPH and EPP are built. The final component of the 
simulator is the request generator which produces real-time data transfer requests. 

Network: With the start of the simulation, a LHC-like tiered computing system is 
created. As in [8], there are four tiers. The Tier 0, 1, 2, and 3 are assumed to include 
1, 4, 16, and 79 (64 in [8]) machines, respectively, which is a total of 100 machines. 
These machines are interconnected by a randomly generated tree topology.  

The amount of data in a Grid will be in the order of peta-bytes, which is assumed 
to correspond to 1,000,000 unique data-items. However, it is not feasible to simulate 
the transfer of such a large number of data-items on a single computer. Thus, the 
number of data-items is scaled down from 1,000,000 to 100 using a scale of 1:10,000 
as in [8]. Accordingly, the storage capacity of each machine should be scaled down as 
well, since the performance of a replication strategy depends on the percentage of 
data-items that can be stored at each machine. After scaling down, each Tier 0, 1, 2, 
and 3 machine has 200 Gigabytes (GB), 100 GB, 10 GB, and 2 GB storage capacity, 
respectively.  

In the tree topology generated, each machine except those in the Tier 3 has at least 
one child machine in the lower tier. The bandwidth of a link connecting two machines 
in the different tiers is assumed as follows: 2.5 Gbit/s for a link between Tier 0 and 
Tier 1, 600 Mbit/s between Tier 1 and Tier 2, and 100 Mbit/s between Tier 2 and Tier 
3. It should be noted that the storage space at the tiers and the link bandwidths 
between the tiers reduce while going downward from the Tier 0 to Tier 3 in [10], 
which is a trend followed here as well. Finally, the size of a data-item is randomly set 
to 500 Megabytes (MB), 750 MB, 1 GB, 1,25 GB, 1,5 GB, 1,75 GB, or 2 GB, and all 
data-items are initially stored in the Tier 0. 

Heuristics: The FPH and EPP are implemented to schedule real-time data requests. 
Furthermore, the Fast Spread and data replacement policies are also realized in this 
component. The FPH and EPP are programmed to use the LRU as their dynamic data 
replacement policy. Two other versions of the FPH, namely FPH-1 and FPH-2, are 
also realized: The FPH-1 assumes the static strategy of [2], while the FPH-2 is based 
on that of [1] in which a data-item is kept on the intermediate machine until the 
respective request’s deadline has been passed. Both the FPH-1 and FPH-2 rely on the 
LRU for the Tier 3 machines simply because their capacities are very limited to keep 
more than a few data-items. It should be noted that the EPP is implemented in only 
one version, since the performance relationship between the FPH and the other two 
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versions is believed to reflect the relationship between the EPP and the EPP under the 
data replacement policies in [1] and [2].  

Request generator: The requests are submitted to the scheduler from only the Tier 3 
machines. Since there are no actual data access patterns available as of now, three 
commonly used data access patterns are used, namely random, geometric, and Zipf 
[5]-[9]. The requests are assumed to come in to the Grid according to a Poisson 
process with a specific arrival rate. Upon its arrival, each request is associated with a 
randomly chosen Tier 3 destination machine and a deadline value. 

Using the simulator developed, a set of simulation studies were conducted. First, a 
base set of results was established. In the base set, the FPH, EPP, FPH-1, and FPH-2 
are evaluated in terms of the number of satisfied requests for the random, geometric, 
and Zipf data access patterns under the following simulation parameters: number of 
data-items= 100, number of requests= 1000, deadline factor= 100, and inter-arrival 
time of requests= 25 seconds. Later, each of these simulation parameters is 
individually varied to study the impact of the parameter on the performance of the 
respective algorithms. The results of the simulation studies are presented in Tables 1-
5, where each data shown is the average of 20 simulation runs. Note that each 
iteration of the simulation creates a different Grid topology and request set under the 
given simulation parameters. 

Table 1. The performance of the FPH, EPP, FPH-1, and FPH-2 under the base simulation 
parameters  

Table 1 shows the base set of results. Note that, for both the geometric and Zipf 
data access patterns, three different data-item popularity parameters (0.75, 0.85, and 
0.95) related to the respective probability distribution function are used. As far as the 
performance is concerned, the EPP is always the best, followed by the FPH, FPH-2, 
and FPH-1. The EPP owes its superior performance to its ability to schedule more 
likely satisfiable requests along their extended paths up to their destinations usually in 
more than one step. The FPH performs better than both the FPH-1 and FPH-2, which 
reveals that a dynamic replacement policy like the LRU is better as compared to the 
static ones considered in this study. As expected, the FPH-1 is the worst, since it does 
not benefit from replication at all. The performance gain of the FPH over FPH-1 due 
to the replication is 8% on average. The FPH-2 enjoys the benefit of the replication to 
some extent and it is always superior to the FPH-1. In terms of the impact of the data 
access pattern on the performance, the following trend is common for all algorithms. 
The best results on average are obtained assuming the geometric data access pattern, 

 Base 
 Geometric Zipf 
 

Random 
0.75 0.85 0.95 0.75 0.85 0.95 

FPH 403 665 565 473 480 499 513 
EPP 427 671 574 490 497 513 526 

FPH-1 390 595 509 443 452 467 478 
FPH-2 402 648 553 470 479 495 505 
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followed by the Zipf and random. The reason why the algorithms perform 
considerably better under the geometric and Zipf distributions is that a relatively 
small set of data-items are accessed many times from different machines, which 
boosts the efficiency of the replication. On the other hand, the longer tail of the Zipf 
distribution as compared to the geometric distribution is proved to have an adverse 
impact on the replication efficiency. Specifically, for each algorithm, the performance 
improvement for the geometric and Zipf data access patterns over the random one is 
as follows: 41% and 23% for FPH, 35% and 20% for EPP, 48% and 31% for FPH-1, 
and 44% and 27% for FPH-2, respectively. Based on these detailed results, it is 
evident that both the data replacement policy and the data access pattern have 
significant impact on the performance of the real-time data scheduling algorithms. 

Table 2. The performance of the FPH, EPP, FPH-1, and FPH-2 under two different values for 
the number of data items 

 No of data item= 100  (Base) No of data item= 50   
 Random Geometric Zipf Random Geometric Zipf 

FPH 403 565 499 421 584 505 
EPP 427 574 513 440 595 521 

FPH-1 390 509 467 400 524 467 
FPH-2 402 553 495 420 574 497 

Table 2 compares the performance of the algorithms when the number of data-
items is decreased from 100 to 50 while keeping the other simulation parameters 
unaltered. Note that, for both the geometric and Zipf data access patterns, the data-
item popularity parameter of 0.85 was used for this and the following studies. 
Reducing the number of data-items should increase the efficiency of the replication, 
since the percentage of data-items that can be stored at each machine is increased. 
According to Table 2, all algorithms have increased their performance as expected.  

Table 3. The performance of the FPH, EPP, FPH-1, and FPH-2 under two different values for 
the number of requests 

 No of requests= 1000  (Base) No of requests= 2000   
 Random Geometric Zipf Random Geometric Zipf 

FPH 403 565 499 689 1221 925 
EPP 427 574 513 713 1241 941 

FPH-1 390 509 467 657 1110 846 
FPH-2 402 553 495 684 1192 908 

Table 3 presents the performance of the algorithms when the number of requests is 
increased from 1000 to 2000 while keeping the other simulation parameters fixed. 
This simulation study is conducted to see how the algorithms react when the request 
load in the Grid is increased.  In order to see the reaction, the completion ratios, 
which is the ratio between the number of satisfied requests and the number of 
requests, must be looked up. When the completion ratios are computed, it is seen that 
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all algorithms improve their performances under the geometric data access pattern, 
while they tend to perform worse under the random and Zipf data access patterns 
under heavier request load conditions.  

Table 4. The performance of the FPH, EPP, FPH-1, and FPH-2 under two different values for 
the deadline factor 

 Deadline factor= 100  (Base) Deadline factor= 200  
 Random Geometric Zipf Random Geometric Zipf 

FPH 403 565 499 584 766 671 
EPP 427 574 513 596 768 677 

FPH-1 390 509 467 560 698 632 
FPH-1 402 553 495 582 762 671 

Table 4 shows the performance of the algorithms when the deadline factor is 
increased from 100 to 200 while keeping the other simulation parameters unchanged.  
In the simulations, increasing the deadline factor leads to relaxing the request 
deadlines. Thus, it is expected that all algorithms perform better when the deadline 
factor is 200. Indeed, Table 4 indicates that the FPH, EPP, FPH-1, and FPH-2 
improve their completion ratios 38%, 35%, 38%, and 39% on average, respectively. 
Furthermore, the average improvements for the random, geometric, and Zipf data 
access patterns are 43%, 36%, and 34%, respectively. 

Table 5. The performance of the FPH, EPP, FPH-1, and FPH-2 under two different values for 
the inter-arrival times of the requests 

 Inter-arrival time= 25 sec (Base) Inter-arrival time= 50 sec 
 Random Geometric Zipf Random Geometric Zipf 

FPH 403 565 499 606 822 706 
EPP 427 574 513 621 827 718 

FPH-1 390 509 467 580 745 663 
FPH-2 402 553 495 603 809 700 

Table 5 shows the performance of the algorithms when the request inter-arrival 
time is increased from 25 sec to 50 sec while keeping the other simulation parameters 
fixed. Relaxing the average request inter-arrival time has two consequences. First, 
knowing that the average data-item size is 1.25 GB based on the equally possible 
seven different data-item sizes, the transfer time from the Tier 0 to a Tier 3 machine is 
roughly 125 sec. Thus, during such a data transfer, five new requests come in to the 
Grid on average if the inter-arrival time is 25 sec and 2.5 if it is 50 sec. Therefore, a 
scheduling heuristic is put under less stress in terms of making the right scheduling 
decision if the inter-arrival time is lower. Second, increasing the inter-arrival time 
results in relaxing the requests deadlines as well because of the way followed in 
computing the requests deadlines. Under the combined effect of the two 
consequences, all algorithms have significantly improved their performances. 
Specifically, Table 6 indicates that the FPH, EPP, FPH-1, and FPH-2 improve their 
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completion ratios 45%, 43%, 46%, and 46% on average, respectively. Moreover, the 
average improvements for the random, geometric, and Zipf data access patterns are 
49%, 46%, and 41%, respectively. When Table 4 and Table 5 are compared, it is seen 
that doubling the request inter-arrival time has more positive impact on the scheduling 
algorithm performance as compared to doubling the deadline factor.  

5   Conclusions  

From the results presented in the previous section, it is evident that the data 
replacement policy chosen and the data access pattern of the Grid users have 
significant impact on the performance of the real-time data scheduling heuristics. A 
dynamic data replacement policy like the LRU is shown to lead to the FPH to 
improve the Grid’s performance as compared to the other two static approaches. 
Similar results are expected for the EPP as well. Among the data access patterns 
studied, all four algorithms perform better under the geometric data access pattern, 
followed by the Zipf and random. The long tail of the Zipf distribution is shown to 
adversely affect the algorithms. 
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Abstract. Most previous research on job scheduling for multi-site distributed 
systems does not take into consideration behavioral trends when applying a 
scheduling method. In this paper, we address the scheduling of parallel jobs in a 
multi-site environment, where each site has a homogeneous cluster of non-
dedicated processors where users submit jobs to be executed locally, while at 
the same time, external parallel jobs are submitted to a meta-scheduler. We use 
collected load data to model the performance trends that each site exhibits in 
order to predict load values via time-series analysis and then perform schedul-
ing based on the predicted values.  

1   Introduction 

A multi-site system typically consists of different clusters of computers which most 
probably have completely different characteristics either in computational capabilities, 
network communication or simply the number of resources available. Furthermore, in 
the case where these systems are not dedicated, that is, there are users submitting jobs 
for local execution during the day, their behavior changes even in the case where their 
performance characteristics stay the same. In those systems, an important issue that has 
an obvious impact on performance is the local users’ job submission scheme. Analyzed 
data from several supercomputer centers show that the resource demand in such a 
system exhibits a wide variance from maximum to minimum capacity of the system. 
Since most users tend to request resources that follow a timely pattern, apparently it 
would be useful to identify the trends that lie in users’ job submissions and use them to 
make an efficient prediction model for the system’s behavior. 

The multiple submissions have proven to offer better turnaround times in an  
heterogeneous context [1], but there is a considerable overhead involved in maintain-
ing a large number of reservations due to network latency bound. We use time-series 
prediction models to minimize the number K of selected sites and therefore reduce the 
network communication overhead improving the overall turnaround time. 

Jobs submitted to the meta-scheduler consist of parallel tasks that are scheduled to 
execute concurrently on a set of processors. This type of resource management is called 
“gang scheduling” or “co-scheduling”. There are several techniques to implement gang 
scheduling from which the simplest of all is considered to be local scheduling (uncoor-
dinated), where no measures are taken to coschedule processes in a gang [2].  
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The paper is organized as follows. In Section 2, we provided some background in-
formation about heterogeneous job scheduling, time-series analysis and prediction 
models as well as related previous work. Section 3 provides information about the 
simulation model used for this study and describes the scheduling strategies that we 
use. Model implementation along with the results of the simulation experiments are 
presented and analyzed in section 4. Section 5 is the conclusion and provides sugges-
tions for further research and the sixth section is references. 

2   Related Work 

There has been a considerable body of work on scheduling parallel jobs either in  
homogeneous or in heterogeneous context. [3] discusses the advantages of multi-site 
scheduling. As examined in [1] better turnaround times can be achieved with multiple 
requests to a number of sites and aggressive or conservative backfilling scheduling 
strategies. In [4] the authors use multiple requests with priorities for local jobs, in [5] 
task duplication is used, and [6] uses adaptive multi-site scheduling that via a simple 
decision rule decides whether to use or not to use multi-site scheduling. So the notion 
of submitting simultaneously the same job to more than one processing unit is proven 
to have improved results. [7] proposes an informed-search algorithm for restricted 
complexity problems, [8] utilizes probabilities of information received by sensors 
with the Bayesian approach, [9] uses stochastic scheduling to achieve good and pre-
dictable performance, [10] uses past information in a multi-processor system and 
shows the effectiveness of choosing randomly two processors, and [11] models exe-
cution time based on measurement results of various configurations. Therefore, there 
has been some effort to use the information in hand from actual use of the system, in 
order to facilitate our scheduling decisions in the future. 

We use time series as a forecasting methodology. The intrinsic nature of time se-
ries is that observations are dependent or correlated, and the order of the observations 
is therefore important. Time series analysis is a suitable technique to successfully 
model a system minimizing forecast errors as much as possible, as is done in [12]. 

3   Model and Methodology 

3.1   System and Workload Models 

We consider a multi-site grid consisting by N sites with 22i
iP += processors per site i, 

where i = 0, 1, …, N-1. Each site is considered as a homogeneous cluster with identi-
cal processors, while the whole system of the N sites is a heterogeneous one, since 

i jP P≠  when i j≠  for i, j = 0, 1, …, N-1. A job x consists of mx tasks where 

1 max( )x im P≤ ≤ , i = 0, 1,…, N-1. This means that all jobs can run to at least one of 

the simulated sites. In this paper, we do not consider the scheduling of a single job 
across multiple sites. When the number of parallel tasks in a job is greater than the 
number of processors in a site s, then s is excluded from the site selection set and the 
scheduler has to substitute it with one or the rest of the sites where x im P≤ , i = 0, 

1,…,  s-1, s+1,…, N-1. 
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Jobs are processed in arrival order by the global scheduler and at the same time, 
there are jobs submitted by users locally thus contributing to the load of each site. 
Those jobs are executed in the site where the submission is taking place, so the global 
scheduler does not have to make any site selection decision about them. Both types of 
jobs enter the same waiting queues when the site is selected.  

Each job begins execution only when enough idle processors are available to meet 
its needs. When a job terminates execution, all processors assigned to it are reclaimed. 

We assume that there is no correlation between job size and task service demand. 
For example, a small job may have a long service time. The number of jobs that can 
be processed in parallel depends on job sizes and on the scheduling policy applied. 
We also assume that job sizes are uniformly distributed over the range [1..2N]. Since 

22i
iP += , there are always at least two sites where a job may find sufficient re-

sources, even if it has the maximum size. 
The jobs that are submitted to the global scheduler are considered to have inter-

arrival times that follow the exponential distribution with a mean of 1/ , while the 
service demands of tasks are also exponentially distributed with a mean of 1/ . 

At the same time jobs arrive at the meta-scheduler, users submit their own jobs to 
each of the N sites, as a Poisson stream of rate 1. For each job the destination site is 
predetermined and for this simulation experiments it is chosen randomly. These jobs 
are also scheduled for execution according to the local scheduling policy of the par-
ticular site. We consider those jobs to be sequential in nature, which means that they 
do not require more than one processor for their execution. A similar scheme, with 
parallel and sequential jobs submitted simultaneously is examined in [13]. They do 
not contribute to the performance metrics other than as a load variance factor for the 
computations we need to make for the parallel jobs performance evaluation. This 
means, that although the users jobs exist as an additional load factor for the sites’ 
queues and processors, we are only interested in the average turnaround time and av-
erage slowdown of the parallel jobs.  

3.2   Scheduling Algorithms 

First, we consider the random choice of K sites where each job is automatically sub-
mitted. It has been shown that choosing K = 2 instead of one random destination 
yields an exponential improvement and from then on, the improvement is by just a 
small factor, if not negative due to network latencies from the multiple requests sent 
back and forth [14], [1], [2]. 

Then we follow the greedy scheme of assigning each job to the site with the lowest 
instantaneous load. The instantaneous load is considered to be the ratio of the total 
remaining processor-runtime product for all jobs (either queued or running at that 
site) to the number of processors at the site [1]. When a job is submitted to the meta-
scheduler, a computation of each site’s instantaneous load is performed, the K least 
loaded sited are chosen and the job is submitted to all K sites at the same time.  

The third option is the use of predicted values for the load and then assign the jobs 
to the least predicted loaded sites. To construct the prediction model, we calculate the 
instantaneous loads of each site for an adequate number of jobs. We use the previous 
data to perform time series analysis producing a load prediction model via Single Expo-
nential Smoothing. The particular scheme weights past observations with exponentially 
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decreasing weights to forecast future values. Its characteristic is that it gives to recent 
observations relatively more weight in forecasting than the older observations.  

The basic equation for the single exponential smoothing model is  

( )1 11 ,   3,   0< 1 .t t tS y S tα α α− −= + − ≥ ≤  (1) 

This can be written as: 

( )1 .t t tS S α ε+ = +  (2) 

where tε  is the forecast error (actual – forecast) for period t. 
So when the load changes due to these submissions, the forecasting model will take 

into account most recent load values thus minimizing prediction error. The main pa-
rameter for this scheme is the smoothing constant which is a meter of how fast we 
“dump” old values in benefit of new ones. Since 0 1α< ≤  we choose the value that  
minimizes the MSE from 0.1 to 0.9. Our system’s variability factor is the different 
number of processors per site, therefore the smoothing constant could variate between 
specific values according to the way the job sizes are distributed through time, in or-
der to provide a more sufficient forecasting model. 

Three algorithms are used for the scheduling of jobs at the sites, Adaptive First 
Come First Serve (AFCFS), Largest Gang First (LGF) and Aggressive Backfilling 
(AgBF).  

3.3   Performance Metrics 

Response Time rj of a job j the time spent in the site’s queue plus the job service time. 
Slowdown sj of a job j is the job’s response time divided by the job’s service (run) 
time. It measures the delay of a job against it’s actual runtime.  

Utilization uj of a site j is the fraction of time when a site’s resources are used to 
the total simulation time. But since per each time unit there is a different portion of 
the site’s resources being utilized, we need to insert to this definition the number of 
processors used per time unit [15]. So, if we partition the total simulation time in time 
intervals, where each interval begins each time the number of busy processors 
changes, the utilization of site i is defined as:  

1

1

T

j j
j

i T

i j
j

b t
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P t

=
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⋅Δ
=

Δ
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where bj are the busy processors during the time tj, Pi the number of the site’s proc-
essors and T is the number of time intervals during which the number of busy proces-
sors is unchanged. 

The following metrics were used for perfomance evaluation: 

The Mean Response (Turnaround) Time RT : 
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j
j
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n =

= , (4) 
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where n is the total number of processed jobs. 

The Mean Slowdown SLD : 

1

1 n

j
j

SLD s
n =

= , (5) 

where n is the total number of processed jobs. 

The Mean Utilization U : 

1
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j j
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i j
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b t

U

P t

=

= =

⋅Δ
=

Δ
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4   Simulation Results and Discussion 

4.1   Model Implementation and Input Parameters 

We first implemented the system’s model selecting K=2 sites randomly from the 
available N=4 sites with the restriction that jobs are submitted only to sites where they 
can find enough resources. That is, the number of tasks of each job is always smaller 
than the total processors of the chosen sites. The maximum number of tasks per job is 

16, while the maximum number of processors per site is 22 ,  0,..3i
iP i+= = , so every 

job that is submitted to the meta-scheduler is able to find at least two sites with suffi-
cient resources. 

The queueing model is simulated with discrete event simulation modeling [16], us-
ing the independent replication method. For each set of workload parameters we run 
30 replications of the simulation with different seeds of random numbers and for 
40000 served jobs in each replication. For every mean value, a 95% confidence inter-
val is evaluated. All confidence intervals are less than 5% of the mean values. We set 
the mean service time: 1/  = 1. The number of tasks is as we mentioned uniformly 

distributed in the interval [1, 16], so the average gang size is 
1 16

8.5
2

+ = . The total 

processors in all sites are 60, therefore when all of them are busy, the average number 
of jobs that can be served per time unit is 7.059. So, we have to choose a  as job arri-

val rate such that it hold the conditions
1 1 0.142

7.059 , i.e. the sites queues will 

not be saturated. But we also have to take under consideration the job submissions by 
the local users, that contribute towards the system’s saturation. After experimental 
runs with various values of 1/  we chose 0.172 as the smallest mean inter-arrival  
time for the experiments, and the rest of the values that we used are: 0.178, 0.185,  
0.192, 0.2. 

For the users jobs we have to take under consideration the fact that in order for 
their presence in the system to have an impact on the system’s behaviour, we have to 
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set their arrival rate 1 so that their contribution to the system’s load status remains 
significant without overloading it. 

Since the total number of processors is 60 and the average job size is 1, 

then
1 1 0.017

60 , which means that based on the fact that the jobs are uniformly 

distributed among the sites, with an average of 15 jobs/time-unit per site, the system 
is saturated. But because the sites potential of serving jobs is different due to their dif-
ferent processor numbers, we have to take under consideration the fact that we cannot 
estimate 1/ 1 based to the system’s total number of processors, because that way we 
would overwhelm site 0 (P0 = 4) with too many jobs from the users, making it impos-
sible for the gangs to use it. So for site 0, the number 3.75 jobs/time-unit is enough to 
become saturated. We use the formula 

0
1

1

0

1
N

i
i

N P

P
λ

λ
−

=

⋅
=

−
 

(7) 

to produce 1 as a function of  in order to avoid overwhelming the smaller sites with 
bulk arrivals of users jobs. Therefore, the corresponding values of 1/ 1 for the previ-
ous values of 1/  are: 0.295, 0.294, 0.293, 0.292, 0.291. 

4.2   Performance Analysis 

Figure 1 shows the simulation results for the system’s mean utilization, mean  
response time and mean slowdown for both the three scheduling algorithms. It is clear 
that LGF outperforms AFCFS, as in [17] and [18] also, but AgBF has significantly 
better results in terms of mean slowdown and mean response time.  

We performed the load calculations for different values of . The best value is the 
one that minimizes the Mean Squared Error (MSE) of actual values vs the predicted 
ones [19]. If  = 0.9 it means that the mostly weighted values are the most recent. 
Based on the results, if we don’t want to fully reject past values we should choose a 
smoothing constant equal to 0.7, where the MSE is stabilized.  

The predicted values, follow the actual ones very closely, which means the predic-
tion error for all cases is very small and therefore the prediction model is trustworthy. 
The error is higher for the first values because the model uses them to adjust better to 
the subsequent values. The error variation seems to be higher for the case of site 0, 
which is due to its small capacity (only 4 processors) that produces high variation to 
its utilization. The site may be full with a single job at a certain time and the next 
moment with only one processor occupied by a user’s job. The higher the variation, 
the more difficult it gets for the model to “smooth” the predicted values. 

There is a cost when the job contacts all sites to see whether it should start, based 
on the current policy and then, when a job is ready to start, there is the cost of notify-
ing all the other sites where it was submitted, to cancel their reservation. This cost is 
in terms of network latency and involves at least 3(K-1) messages. There is also the 
cost from the job’s transfer to each of the selected sites, which is in terms of network 
bandwidth. It is obvious that this overhead is a function of K, and that the smaller K 
is, the smaller the communication cost.  
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But the multiple reservation scheme benefits more as K increases, so by using the 
prediction model, we reject a number of reservations, thus reducing network commu-
nication between sites without having to choose a smaller K. We use as criterion, in 
order to choose which reservation should be rejected, the standard deviation between 
sites’ loads. When the load exceeds the standard deviation of the mean loads, the site 
is rejected.  
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Fig. 1. Mean utilization (a), response (b) and slowdown (c) for different values of  for the 
three scheduling algorithms AFCFS, LGF and AgBF 

The strategy that seems to benefit most from the use of the instantaneous load as a 
site selection criterion is LGF with significant improvement in average response and 
slowdown. This is probably because of the smaller jobs which get to choose more 
wisely their destination and avoid getting stuck behind many large jobs. The smaller 
jobs also have the advantage of more available choices since they don’t usually have 
to discard a site because of the insufficient number of processors. Large jobs have 
fewer suitable sites to select and so when many large jobs concentrate to relatively 
large sites, the smaller jobs have the opportunity to balance the load by selecting the 
“smaller” sites where they won’t be delayed behind larger jobs.  

We repeat the above simulation runs using the predicted values this time in select-
ing the K sites. The cases where the model fails to make the right choices, can be con-
sidered statistically insignificant for a large set of jobs.  

The variation for the prediction errors, concerns only the first 1300 job arrivals, 
where the error is higher, because the model uses the first values to adjust itself. After 
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a while the model works with almost zero error. We actually used 80000 jobs for the 
simulation experiments. With the use of a simple linear formula as communication 
overhead model, where the overhead is a function of K,  we calculate it with the val-
ues for K that are produced via the use of the prediction scheme. 

We present the cases of the AgBF and LGF algorithms as scheduling policies at the 
sites. The results are shown in Figure 2. 
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Fig. 2. (a) Mean Utilization, (b) Mean Response and (c) Mean Slowdown for AgBF (left) and 
LGF (right) with (black line) and without (grey line) the use of the prediction model 
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The results show a slight degrade in terms of mean utilization, a 1.51% for AgBF 
and a 2.85% for LGF in average, which was expected since with greater latencies, 
there are fewer jobs available to fit in the processors at the same time. In terms of 
mean slowdown, there is an average improvement of a 8.87% for AgBF and a 17.19% 
for LGF, but the best results are for the mean response, where there is an average im-
provement of 11.17% for AgBF and 21.25% for LGF. The LGF algorithm is once 
again the one that benefits the most even though its performance in general is worse 
than the AgBF’s. This is due to the fact that when the larger jobs delay because of 
communication overhead they make it even harder for the smaller jobs to find a suit-
able set of sites to reserve and the performance of LGF is based on the relative behav-
iour of small versus large jobs. When the prediction scheme is used, the messages  
between sites are reduced, thus the communication cost is reduced and for the LGF 
this is even more prominent because there are fewer sites available for selection any-
way, so K is minimized and the algorithm performs better. 

5   Conclusion 

The use of predicted load values results in lowering the communication overhead that 
comes with the multiple reservation scheme, by reducing the number of the selected 
sites where the job is to be reserved. Most users follow a certain behavioural pattern 
in the jobs they submit. Time series analysis exploits this pattern to create a prediction 
model of the system’s status in terms of load.  

We plan to extend the research in cases where local submissions are not just uni-
formly consistent, but show a trend or periodicity, demanding appropriate adjustments 
to the corresponding prediction model and to test the model’s reliability with data 
from an actual grid. 
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Abstract. In this paper we present and simulate a new self–organising algo-
rithm for P2P unstructured networks inspired by human relationships. This al-
gorithm, called PROSA , tries to simulate the evolution of human relationships
from simple acquaintance to friendship and partnership. Our target is to obtain a
self–reconfiguring P2P system which possesses some of the desirable features of
social communities. The most useful property of many natural social commu-
nities is that of beeing “small–worlds”, since in a small–world network queries
usually require a small amount of “hops” to walk from a source to a destination
peer. We show that PROSA naturally evolves into a small–world network, with
an high clustering coefficient and a relly short average path length.

1 Introduction

The way social contacts and relationships are arranged, how they evolve and how they
end, is matter for psychologists and social scientists research. Nevertheless some stud-
ies about social groups and their connections reveal that a “social network”, i.e. the
network of relationships among people from simple acquaintance to friendship, has
many interesting properties that can be exploied in a real–world P2P structure.

The Milgram experiment of 1966 [6] showed that a message from a “source” to
a “destination” person can be delivered by forwarding it step–by–step to just one of
the related people, in the direction of the destination. In practise Milgram asked to sixty
people located in Kansas to send a letter to a specified person located in Cambridge. The
participants could just pass the letter to personal acquaintances, hand–by–hand. About
one quarter of the total number of letters were delivered to the destination person, and
Milgram found that the mean number of “hops”, i.e. the number of persons involved
in each delivery, was about six. This experiment opened the research in the field of
“small–world” networks [9].

The small–world property seems to be a characteristic of many human communi-
ties, such as mathematicians, actors, scientists. A small–world arises almost naturally
whenever social contacts among people are involved: many researchers are trying to
understand the reasons of this behaviour. In this work we’re not interested in answer-
ing this question. Our target is just to develop a P2P system using rules and concepts
inspired by human behaviours and relationships dynamics.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 904–915, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In a social network there are several kind of social links among people. We can
identify “acquaintance–links” and ”semantic–links”: the former expresses a simple “ac-
quantaince” among people; the latter requires at least an acquaintance–link plus some
additional information about interests, culture, abilities, knowledge etc. In our life
semantic–links arise almost naturally. You need no great effort to establish a semantic–
link with somebody: you have just to share a knowledge field or a passion or simply an
interest with a person and meet him in some circumstances, have a talk with him and
no more. Once you know somebody shares a certain knowledge or passion with you, a
semantic–link in that field with that person is established and you’re ready to use that
link the next time you need information, help, assistance or collaboration in that field.

In real life we massively use semantic–links to speed up information retrieval. For
example if a car vendor wants information about Linux, he asks his nephew, who is
studying Computer Science at University, but doesn’t ask his wife since she is a biolo-
gist and she does not like computers. Note that both of them (this nephew and his wife)
are “semantic–links”, but they belong to two different semantic fields. His nephew, who
doesn’t know anything about Linux, will ask to one of his colleagues of the Operating
Systems course, who is famous as being a Linux guru and can give him the required
information: using semantic–links a car vendor reaches a Linux guru in just two hops.
If the car vendor in our example doesn’t have a nephew studying Computer Science, he
asks to a friend (acquaintance–link) at random, hoping somebody knows what Linux
is. Our daily experience says that, at the end, he will find somebody who can help him
gathering information about Linux.

The same mechanism that allowed Milgram’s letter to be correctly delivered from
Kansas to Cambridge in just six hops is exploited in the given example: small–world
characteristic of a network allows efficient information retrieval. This is how small–
world networks work.

In this paper we introduce a P2P structure, named PROSA [2], in which seman-
tic proximity of resources is mapped onto topological proximity of peers. PROSA is
inspired by social relationships and their dynamics, since social networks character-
istics can be exploited to optimise query forwarding and answering. PROSA uses a
self–organising algorithm that dinamically links peers sharing similar knowledge and
resources, putting them into high clustered and self–structured “semantic groups”. To
validate the proposed algorithm we developed a functional simulator and we used it to
show that PROSA really evolves into a small–world network.

The paper is organised as follows: Section 2 is a short survey about current work in
the field of P2P resource retrieval; in Section 3 we discuss our proposal; in Section4 we
show simulation results and finally Section 5 presents a plan for future work.

2 Related Work

In the last years the interest on overlay networks has increased, mainly because band-
width, computing power and cheapness of personal computers allow to implement such
kind of “logic” networks. Examples of overlay networks include Gnutella, Freenet [3],
CAN [5], Tapestry [10]. Each of them focuses on a particular aspect of P2P comput-
ing: Gnutella is totally unstructured, Freenet is practically anonymous, CAN is search–
efficient and so on.
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Few P2P structures proposed till now face the problem of efficient resources retrieval.
In particular one of the more desirable feature in a P2P network is the possibility to
perform query based on semantic resource description. Semantic queries are interesting
because they are similar to the natural way a user describe concepts.

In unstructured networks, such as Gnutella, semantic query for resource can be per-
formed, but for each request most part of the network is flooded, and there are no
response guarantees either if the requested resource is present ([4]). In networks or-
ganised as Distributed Hash Tables (DHT) [3][5][10] semantic queries are not allowed,
since resources are described by a certain hash of their content or description, so no “se-
mantic proximity” can be neither defined nor used to discover them. Some recent works
[1][11] proposed to organise a P2P network in semantic groups of “similar” peers, to
facilitate resource search and retrieval based on semantic queries. In particular in SETS
[1] the network is split in semantic areas by a super–peer which also maintains a table
of groups centroids; a centroid represents the “topic” of a given area. The main draw-
back of SETS is the introduction of a network manager, which represents a single point
of fault. In GES [11] peers maintains two sets of links to other peers: semantic–links
and random–links. Queries for resources are first forwarded to a so–called “semantic–
target”, which is the first peer that can answer the query, and then flooded to this peer
neighbours (the semantic group).

3 PROSA

Our target is to create a P2P network based on acquaintance– and semantic–links, where
peers join the network in a way similar to a “birth”, then achieve more links to other
peers according to the social model, i.e. by linking (semantically) with peers which have
similar interests, culture, hobbies, works and so on, and maintaining a certain number
of “random” acquaintances. In P2P networks the culture or knowledge of a peer is
represented by the resources (documents) it shares with other peers. On the other hand,
different types of “links” among peers simulate acquaintances and semantic–links. To
implement such a model it is necessary to have:

– A system to model knowledge, culture, interests etc...
– A self–organising network management algorithm

3.1 Modelling Knowledge

In PROSA , knowledge (each resource) is represented using the Vector Space Model
(VSM) [8]. In this approach each document is represented by a state–vector of
(stemmed) terms called Document Vector (DV); each term in the vector is assigned
a weight based on the relevance of the term itself inside the document. This weight is
calculated using a modified version of TF–IDF [7] schema, as follows:

wt = 1 + log(ft)

where ft is the term frequency into the document. It has been proved [8] that this way
of calculating relevance is a good approximation of TF–IDF ranking schema. The VSM
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representation of a document is necessary to calculate the relevance of a document with
respect to a certain query. We model a query by means of a so–called Query Vector
(QV), that is the VSM representation of the query itself. Since both documents and
queries are represented by state–vectors, we define the relevance of a document (D)
with respect to a given query (Q) as follows:

r(D, Q) =
∑

t∈D∩Q

wt,D · wt,Q (1)

Using VSM we obtain also a compact description of a peer knowledge. This descrip-
tion is called “Peer-Vector” (PV), and is computed as follows:

- For each document hosted by the peer, the frequencies of terms it contains are
computed (Ft,D).

- Terms frequencies for different documents are summed together, obtaining overall
frequency for each term:

Ft =
∑

t

Ft,D

- Then a weight is computed for each term, using:

wt = 1 + log(Ft)

- Finally all weights are put into a state–vector and the vector is normalised.

The obtained PV is a sort of “snapshot” of the peer knowledge, since it contains infor-
mation about the relevant terms of the documents it shares.

The relevance of a peer (P) with respect to a given query (Q) is defined as follows:

r(P, Q) =
∑

t∈P∩Q

wt,P · wt,Q

This relevance is used by the PROSA query routing algorithm. It is worth noting that a
high relevance between a QV and a PV means that probably the given peer has docu-
ments that can match the query.

3.2 Network Management Algorithm

As stated above, relationships among people are usually based on similarities in inter-
ests, culture, hobbies, knowledge and so on. And usually these kind of links evolve from
simple “acquaintance–links” to what we called “semantic–links”.

To implement this behaviour three types of links have been introduced:

- Acquaintance–Link (AL)
- Temporary Semantic–Link (TSL)
- Full Semantic–Link (FSL)

TSLs represent relationships based on a partial knowledge of a peer. They are usually
stronger than ALs and weaker than FSLs.
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SP DP

SP DP

SP DP

Aquaintance Link

Temporary Semantic Link

Full Semantic Link

Fig. 1. Link types

Since usually relationships are not symmetric, it is necessary to specify what are the
source peer (SP) and destination peer (DP) of a link. Figure 1 shows the representations
for the three different types of links.

To efficiently use the appropriate link in any given situation, each peer maintains
a list of known peers, that we call Peer List (PL). It is a finite list of links divided
into three parts: the first one contains FSLs, the second one contains TSLs and the
third contains ALs. The size of each portion is an algorithm parameter. Note that FSLs
represent “stable” connections (parents, relatives), TSLs are similar to FSL but are not
so strong (friends, colleagues), and finally AL are really weak links.

Joining. The case of a node that wants to join an existing PROSA network is similar to
the birth of a child. At the beginning of his life a child “knows” just a couple of people
(his parents). A new peer which wants to join, just searches other peers (for example
using broadcasting, or by selecting them from a list of peer that are supposed to be up,
as in Freenet or Gnutella) and adds some of them in his PL as ALs. These are ALs
because a new peer doesn’t know anything about its “relatives” until he doesn’t make
query to them for resources. This behaviour is quite easy to understand: when a baby
comes to life he doesn’t know anything about his parents. He doesn’t know his father’s
job, neither that is mother is a biologist. The joining phase is represented in figure 2,
where “N” is the new peer; N chose some other peers (P) at random as initial ALs.

PROSA

P

P

P

N

AL

AL

AL

Fig. 2. A new node joining PROSA



Evaluating the Dynamic Behaviour of PROSA P2P Network 909

Updating. In PROSA FSLs dynamics are strictly related to queries. When a user of
PROSA requires a resource, he performs a query and specifies a certain number of re-
sults he wants to obtain. The relevance of the query with respect to the resources hosted
by the user’s peer is first evaluated, using equation 1. If none of the hosted resources
has a sufficient relevance with respect to the query, the query has to be forwarded to
other peers. The mechanism is quite simple:

- A query message containing the QV, a (possible) unique QueryID, the source ad-
dress and the required number of results is built.

- If the peer has neither FSLs nor TSL, i.e. it has just AL, the query message is
forwarded to one link at random.

- Otherwise, the peer computes the relevance between the query and each entry of
his Peers–List.

- It selects the link with a higher relevance, if it exists, and forwards the query mes-
sage to it.

When a peer receives a query forwarded by another peer, it first updates its PL. If the
requesting peer is an unknown peer, a new TSL to that peer is added in the PL, and the
QV becomes the corresponding Temporary Peer Vector (TPV). If the requesting peer is
a TSL for the peer that receives the query, the corresponding TPV in the list is updated,
adding the received QV and normalising the result. If the requesting peer is a FSL, its
PV is in the PL yet, and no updates are necessary.

After PL update, the relevance of the query and the peer resources is computed.
There are three possible cases:

- None of the hosted documents has a sufficient relevance. In this case the query is
forwarded to another peer, using the same mechanism used by the forwarder peer.
The query message is not modified.

- The peer has a certain number of relevant documents, but they are not enough
to full-fill the request. In this case a response message is sent to the requester
peer, specifying the number of matching documents and the corresponding rele-
vance. The message query is forwarded to all the links in the PL whose relevance
with the query is higher than a given threshold (semantic flooding). The number
of matched resources is subtracted from the number of total requested documents
before forwarding.

PROSA

P

P

P

P

P

N

r

1

Fig. 3. Query forwarding: new TSL arise
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- The peer has sufficient relevant documents to full-fill the request. In this case a
result message is sent to the requesting peer and the query is no more forwarded.

This situation is showed in figure 3, where peer “N” forwards a query to one of his
ALs randomly chosen, since it has niether TSLs nor FSLs. In our example the chosen
peer is “P1”. As soon as P1 receives the QV, it automatically establish a TSL with N
(see figure 3) and then it forwards the query if needed.

When the requesting peer receives a response message it presents the results to the
user. If the user decides to download a certain resource from another peer, the request-
ing peer contacts the peer owning that resource and asks it for download. If download
is accepted, the resource is sent to the requesting peer, together with the Peer Vector of
the serving peer. This case is illustrated in figure 4, where peer “N” received a response
from peer “Pr” and decided to download the corresponding resource. Note that Pr es-
tablished a TSL with N, because it received a QV from it, and N established a FSL with
Pr, because it successfully received a resource from it.

4 PROSA Simulations and Results

In order to validate PROSA dynamics and effectiveness, we developed a simple func-
tional simulator in Python. The three “phases” of peers life (joining, querying and leav-
ing PROSA ) are represented by different “behaviours” and triggered by events off-line
generated by an event-generator. The choice of data sets is of the most importance in or-
der to obtain consistent and relevant simulation results. To simulate PROSA functional-
ities, we chose to use a data set composed by scientific articles from two different fields:
Maths and Philosophy. Maths articles comes from “Journal of American Mathematical
Society”, “Transactions of the American Mathematical Society” and “Proceedings of
the American Mathematical Society”, for a total amount of 740 articles. Philosophy ar-
ticles comes from “Journal of Social Philosophy”, “Journal of Political Philosophy”,

PROSA

P

P

P

P

P

N

r

Fig. 4. Query forwarding: new FSL arises
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“Philosophical Issues” and “Philosophical Perspectives”, for a total amount of 750
articles.

We chose documents from these to fields in order to test if a PROSA network is able
to dinamically adapt his structure, allowing “similar” peers to link together by means
of Full Semantic Links or Temporary Semantic Links, and adaptively form “semantic–
groups”. We define a “semantic–group” as a group of semantically–linked peers that
host documents belonging to a certain shared field.

Article terms have been stemmed and stored into a database. For each article, it’s DV
was computed, using only the most 100 frequent terms of the document. We choose to
limit the number of terms of the DV because in [11] it has been proved that a larger DV
does not give better results.

4.1 Simulation Results

The main target of this work is to show that a relationships–inspired network naturally
evolves to a small–world. For this reason, preliminary simulations of PROSA have been
focused on topological characteristics, such as clustering coefficient and average path
length, because small-worlds graphs have high clustering coefficient and small average
path length.

Since links netween peers in PROSA are not symmetric, it is possible to represent a
PROSA network as a directed graph G(V,E). The clustering coefficient for a node in a
directed graph can be defined as follows [9]:

CCn =
En,real

En,tot
(2)

where En,real is the number of edges between n’s neighbors and En,tot is the maximum
number of possible edges between n’s neighbors. Note that if k is in the neighborhood
of n, the viceversa is not guaranted, due to the fact that links are directed. The clustering
coefficient of a graph is defined as the mean graph coefficient for all the vertices (nodes)
in the graph:

CC =
1
|V |

∑
n∈V

CCn (3)

In figure 5 the clustering coefficient (CC) and average path length (APL) of PROSA
is compared to that of an “equivalent” random graph defined as a graph with the same
number of nodes and edges of the PROSA network and randomly chosen edges.

The clustering coefficient and the average path length of a random graph with |V |
vertices and |E| edges has been computed using equations (4) and (5) [9].

CCrnd =
|E|

|V | · (|V | − 1)
(4)

aplrnd =
log |V |

log (|E|/|V |) (5)

These measures regard the case of PROSA networks where each peer starts with 20
documents on average. The CC and APL are computed after 10.000 queries. Each
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# nodes # edges CC prosa APL prosa CC rnd ALP rnd CC prosa/CC rnd
400 15200 0.26 2.91 0.095 1.65 2.7
600 14422 0.19 2.97 0.04 2.01 4.75
800 14653 0.17 2.92 0.02 2.29 8.5
1000 14429 0.15 2.90 0.014 2.58 10.7
3000 15957 0.11 2.41 0.002 4.8 55
5000 19901 0.06 2.23 0.0008 6.17 75

Fig. 5. Clustering coefficients and APL for different network size

query contains 4 terms, on average. Looking at the results, it is clear that PROSA net-
works always present a higher clustering coefficient than the corresponding random
graphs. This means that each peer tends to link with a strongly connected neighborhood,
which represents (a part of) the “semantic group” joined by the peer. This behaviour is
mainly due to the fact that links are mainly “semantic links” (both FSLs and TSLs) with
nodes that provided (or requested) resources belonging to a given field. Note also that
the APL for a PROSA network decreases when the number of nodes increases, while it
seems to linearly depend on the network size for the correspondent random graph.

As showed in figure 6, the clustering coefficient for both PROSA and random net-
work decreases, but the ratio between CC prosa and CC rnd increases almost exponen-
tially with the number of nodes. We think this is due to the fact that in PROSA the
clustering degree of the network is strictly related to the number of queries performed
by nodes, expecially in this case, where the PL has a non–limited length. Figure 7 re-
ports the ratio between number of edges and number of nodes for PROSA networks
with 400 to 5000 edges (divided by 100) and the corresponding clustering coefficient.

It is clear that the clustering coefficient seems to depend on the average number of
links per node. To verify this conjecture, we simulated PROSA networks behaviour
for different numbers of queries, from 5000 to 20000. Results are showed in the four
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Fig. 6. Clustering coefficients for PROSA and random graph – 10.000 queries
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Fig. 7. Ratio between # of edges and # of nodes for different network sizes
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Fig. 8. Clustering coefficient for PROSA and random graph for different network size and # of
queries

subfigures of figure 8. These graphics show that a PROSA network has higher clustering
coefficient than the corresponding random graph for networks that have more than 200
nodes.

The ratio between the clustering coefficient of PROSA networks and that of corre-
spondent random graphs (showed in figure 9) says that PROSA clustering coefficient
is always 2 to 15 times higher than that of a random graph. Due to this results, we can
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Fig. 9. Ratio between PROSA and random graph clustering coefficients, for different sizes and
number of queries

finally deduce that a PROSA network evolves to a “small–world” after a number of
queries which depends on the number of peers, because of the really short average path
length and the relative high clustering coefficient we obtain.

5 Conclusions and Future Works

In this paper a novel P2P self–organising algorithm for resource searching and retriev-
ing has been presented. The algorithm emulates the way social relationships among
people naturally arise and evolve, and finally produces a really small–world network
topology, as confirmed by simulation results. The next step is to prove that a PROSA
network is internally organized into semantic–groups, i.e. highly clustered groups of
peers formed by nodes that share knowledge into a certain field.
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Abstract. This work describes an adaptive parallel pipeline skeleton
which maps pipeline stages to the best processors available in the system
and clears dynamically emerging performance bottlenecks at run-time
by re-mapping affected stages to other processors. It is implemented
in C and MPI and evaluated on a non-dedicated heterogeneous Linux
cluster. We report upon the skeleton’s ability to respond to an artificially
generated variation in the background load across the cluster.

1 Introduction

Pipelining is the decomposition of a repetitive sequential process into a suc-
cession of distinguishable sub-processes called stages, each of which can be ef-
ficiently executed on a distinct processing element or elements which operate
concurrently.

In software, this approach is widely used to address grand-challenge compu-
tational science problems [1], numerical linear algebra algorithms [2], and signal
processing applications [3]. Pipelines are exploited at fine-grained level in loops
through compiler directives and in operating system file streams, and at coarse-
grained level in parallel applications employing multiple processors. In particular,
coarse-grained pipeline applications refine complex algorithms into a sequence
of independent computational stages where the data is “piped” from one com-
putational stage to another. Each stage is then allocated to a processing element
in order to compose a parallel pipeline. Our pipeline follows this model.

The performance of a pipeline can be characterised in terms of latency, the
time taken for one input to be processed by all stages, and throughput, the
rate at which inputs can be processed when the pipeline reaches a steady state.
Throughput is simply related to the processing time of the slowest stage, or bot-
tleneck. When handling a large number of inputs, it is throughput rather than
latency which constrains overall efficiency. Our system schedules and dynam-
ically reschedules stages to processors, in the face of the dynamically varying
processor capability which is typical of grid systems, with a view to maintaining
high throughput.

The problem addressed in this paper is as follows: given a parallel pipeline
program, find an effective way to improve its performance on a heterogeneous
distributed environment by adapting dynamically to external load variations.

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 916–926, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Our adaptive parallel pipeline has two main components: calibration and
feedback. Initially the calibration is used to map stages to the best processors
available in the system. Subsequently, the feedback mechanism clears perfor-
mance bottlenecks at run-time by re-mapping the stages to other processors.
This pipeline is implemented as a stateless skeleton in C and MPI. We present
promising results of parallel executions in a non-dedicated heterogeneous Be-
owulf cluster, using a stage function based on a numerical benchmark.

This paper is structured as follows. First, we provide motivation for this work.
Then we describe the adaptive parallel pipeline algorithm and its implementa-
tion, followed by the experimental evaluation. Finally we discuss some related
approaches and make final remarks.

2 Motivation

2.1 Idealised Pipelines

We must review some generic performance issues in pipelined processing. Sup-
pose that the original sequential process requires time ts to process a single
input. Consider an n-stage pipeline, in which tı is the execution time for the ıth

stage.
In an idealised model, without significant communication costs, the sequential

and parallel (one processor per stage) times to process S inputs are then

Tseq = S × ts

Tpar =
n∑

ı=1

tı + (S − 1)×max(tı)

where max(tı) is the bottleneck stage time

It is well known that perfect pipelined performance is obtained when the stage
times tı are all equal to ts

n , since we can then reduce the expressions to:

Tseq = S × ts

Tpar = ts + (S − 1)× ts
n

so that as S grows large, speed-up asymptotically approaches n.
Outside this perfect situation, it is more important to reduce the bottleneck

time than the latency, since the former affects the multiplicative term in Tpar,
where the former affects only the asymptotically insignificant additive term.

2.2 Pipelines on Dynamically Heterogenous Resources

With the advent of heterogeneous distributed systems, whether geographically-
contiguous (clusters) or in different administrative and geographical domains
(grids [4]), it is widely acknowledged that one of the major challenges in pro-
gramming support is the prediction and improvement of performance [5]. Such
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systems are characterised by the dynamic nature of their heterogeneity, due to
shifting patterns in background load which are not under the control of the
individual application programmer. The challenge is therefore to produce and
support applications which can respond to this variability.

In our current work we focus on the computational aspects of heterogeneity.
In what follows we make assumptions designed to keep the number of exper-
imental variables tractable. Subsequent work will consider relaxation of these
assumptions. Specifically, we assume that

– the computational weight of each stage is identical, in the sense that all
stages would take the same time to process one item if executed on the same
reference processor. In effect, this is to assume that the programmer has
done a good abstract job of balancing stages and reducing the bottleneck.
This allows us to focus on addressing issues which arise when the available
processors vary dynamically in performance with respect to such a reference
processor.

– communication time is not significant. Note that this is not to assume that
communication is negligible, but rather to assume that communication costs
hinder all stages equally.

The challenge can now be stated simply. The application programmer is re-
quired to write sequential code for the body of each pipeline stage and make a
call to our pipeline skeleton to apply these stages to a set of inputs. The “grid”
provides a pool of available processors. Our system maps the stages to (a subset
of) the processors. It may choose to map several stages to the same processor
when this processor is more powerful than the others. Periodically, our system
checks the progress of the computation and may decide to remap some or all
of the stages. In the following section we describe the mechanisms employed to
construct this overall framework.

3 Adaptive Pipeline Parallelism

The core of our system is an algorithm for mapping pipeline stages to proces-
sors. Its main feature is that processors are calibrated at run-time, to provide
the performance information upon which the mapping is based. The mapper is
embedded within an iterative scheduling scheme, allowing the pipeline imple-
mentation to be adapted to prevailing conditions within the pool of available
processors. We will now discuss the mapper and the rescheduler in turn.

3.1 Mapping Stages to Processors

The first step in mapping is to determine the current ‘fitness’ of each available
processor. This is achieved by running, by way of calibration, an instance of
one of the stage functions on each processor, and measuring the execution time.
Any stage will do, since we have assumed that all stages are equally inherently
‘heavy’. This allows us to rank processors by descending fitness (i.e. by increasing
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calibration time). We can immediately discard all but the n fittest processors
from the initial mapping. The mapping is generated by a greedy algorithm, which
computes xi, the number of stages to be executed by processor i.

Algorithm 1 provides a detailed description of the calibration procedure. In
this algorithm, X is the aggregated array containing all xi entries, t records the
aggregated execution time of the stage function in every node, and Chosen
is the array of selected nodes. That is to say, P contains all nodes in the
MPI COMM WORLD, Chosen holds only the processors to be used, and X indicates
the number of processes per node capped by the maximum processes per node.
As per the greedy nature of the algorithm, every entry ti in t takes into account
the workload generated by the increasing number of stage-function instances to
be executed in a given node.

We make an initial mapping in which one stage is assigned to each of the n
fittest processors. We construct a ranking of the chosen processors, according
to the time tı they will take to process an item, given their currently allocated
stages. Initially this is identical to the calibration ranking, but as a processor is
assigned extra stages, its tı will be the product of the number of allocated stages
and its original calibration time.

The initial mapping is iteratively improved by application of the following
step:

Consider the effect of moving one stage from the processor Pb with the
highest processing time (i.e. the current bottleneck) to the processor Pl

with the lowest processing time. If the new resulting processing time at Pl

is smaller than the original processing time at Pb then make the switch.

Iteration proceeds until no further improvement is possible. It is not difficult
to see that such a strategy is optimal.

Suppose there was a better mapping M ′ than the one with which the algorithm
terminates, M . Suppose that the bottleneck processor Pb in M is assigned k
stages. M must assign fewer than k stages to Pb (otherwise it wouldn’t better)
and more stages to at least one other processor Px (because the extra stage must
be assigned somewhere). Then M can be improved by moving one stage from Pb

to Pl (which may or may not be Px, it doesn’t matter), and the greedy algorithm
will do so, thereby contradicting the (premature) assumption of termination. ◦

3.2 Monitoring Performance and Rescheduling

Once the pipeline is in operation, the feedback phase detects performance bottle-
necks by checking whether all processors are functioning according to the initial
calibration. Each stage times itself and propagates its current ti through the
pipeline, piggy backed with the real data. The final stage verifies that the Tpar

is acceptable by comparing with the original calibration times, using a fixed
threshold to determine acceptability. This threshold regulates the margin be-
fore a re-calibration takes place and is expressed as a fraction of the original
value.
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Algorithm 1. Calibration Algorithm
Data: f : Stage Functions;
n: Number of Stages;
P : Nodes;
Result: Chosen: Lookup table of fittest processing elements;
X: Number of processes per Chosen node;

forall nodes in P do
Execute f concurrently ;
Set ti ← execution time(f);

end
if root node then

set X ← 0 ;
collect ti into t;
sort the P nodes ; /* Using t as key */

set ı ← 0 ;
set  ← n ;
while ı <  − 1 do

set flag ← false ;
set k ← ı + 1 ;
while k <  ∧ ¬flag do

set α ← � tk−ti
ti/xi

�;
if α �= 0 then

set ti ← ti + ti/xi ;
set xi ← xi + 1 ;
set  ←  − 1 ;
insert in order (ti, t);
set flag ← true ;

end
if ¬flag then

ı ← ı + 1;
end

end
end
send Chosen and X to other nodes

else
send time from this node to root node;
receive Chosen and X;

end

For example, if a threshold is equal to X , it indicates that if a ti is more
than (1 + X) times slower than the original worst recording, a bottleneck has
been detected and a remapping is scheduled. Similarly, should the worst time be
(1−X) times faster than the original best, remapping is considered.

It is crucial to note that the threshold is key to the adaptivity mechanism
since a small value may cause too many remappings (thrashing) while a large
one will deactivate the adaptiveness. Once a decision to remap has been made,
the pipeline is allowed to drain before resuming under the new mapping.
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4 Implementation

To facilitate our experiments we have designed an algorithmic skeleton [6], pro-
grammed in ANSI C with MPI to handle internode communication. Its API is

void pipeline(stage t *stages, int no stages,int in data[], MPI Comm comm)

The first parameter stages is an array of pointers to functions which contains
the f stages, no stages is n, in data is the input data stream S (using simple
integers here, but easily generalisable), and comm is a communicator encompass-
ing the processor pool.

Based on previous experiences with skeletons on geographically dispersed
grids [7], where we empirically learned the costly implications of the inherent
synchronisation in collectives, we have based this design on explicit send-receive
pairing. Internally, each stage is composed by a MPI Recv call, the invocation to
the f function, and a MPI Send call.

Internally, the processor pool is represented as a lookup table of active proces-
sors. Each processor uses the table to determine its predecessor and successor.
It is built during the calibration process by simply sorting the processors in the
communicator by execution times. The table is also of particular importance
during process migration since the migration is in essence an exchange of its
entries.

On the infrastructure side, there exist a few libraries which provide MPI
process migration, mainly devoted to preserving index and context variables
in loops. Although they address generic MPI programs, their use requires spe-
cialised underlying distributed filesystems [8] or daemon-based services [9]. Since
a key criterion to the process migration is fast process migration, we opted to
develop a simple process migration mechanism based on the aforementioned
process pool.

It is important to stress the fact that there are not pre-determined processors
required for the execution of the pipeline. That is to say, after calibration not even
the MPI COMM WORLD root process must belong to the set of fittest processes. There-
fore, a re-mapping always implies a process migration with result preservation.

5 Results

The full system has been compiled with gcc 3.4.4 using “-pedantic -ansi -Wall -
O2” flags and employs LAM/MPI 7.1.1. It has been deployed on a non-dedicated
heterogeneous Beowulf cluster, located in the School of Informatics of the Uni-
versity of Edinburgh, and configured as shown in Table 1. The processors have
different frequencies and exhibit different performance as determined by the
BogoMips reading which is the standard Linux benchmark.

For reproducibility purposes, we have employed as stage function the
whetstones procedure from the 1997 version [10] of the Whetstone benchmark
with parameters (256,100,0). It accounts for some 5 seconds of double-precision
floating-point processing on an empty node in the Beowulf cluster.
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Table 1. Beowulf cluster bw240 Configuration

Nodes: 64
CPU: Intel P4
Memory: 1 GB / node
Network: 2x100Mb/s (Shared)
OS: Linux Red Hat FC3 - Kernel 2.6
BogoMips: 3350.52–3555.32
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Fig. 1. Correlation between the size of the data input S and the number of stages n

Thus, all variability in the system is due to external load and, to a lesser
extent, to the difference in performance among processors. All execution times
reported below sum up the average of three measurements, with a standard
deviation of less than 1%.

Figure 1 shows a “sanity-check” initial exploration of the parameter space,
running pipelines with 2, 4, 8 and 16 identical stages, one per processor (note that
a pipeline with more stages is doing more work in absolute terms) on increasingly
large inputs. The execution times are primarily determined by |S|, the input size
of the data stream, and marginally influenced by the number of stages n in the
pipeline.

We have firstly explored the overhead incurred by the calibration phase. Fig-
ure 2 shows that the overhead is minimal and increases at a slow rate (< 1% for
every power-of-two increment in the number of processes).

We then measured the performance impact of our system under different
load conditions. Figure 3(a) depicts the times of different executions using two
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Fig. 3. (a) Comparison of the parallel pipeline using two threshold parameters: Infinite
(non-adaptive) and 0.5. (b) Load generating program (adapted from [11]).

threshold parameters: infinite, which implies a non-adaptive pipeline, and 0.5.
This threshold value was empirically determined using a series of test runs.
Figure 3 (b) shows the actual program employed to generate load.

Taking into account the fair CPU allocation algorithm used in Linux and to
assure the existence of changing load conditions, we have incrementally injected
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load dynamically to the system using a simple load generation program. Each
instance of this program added 1 to the load displayed by the Linux uptime
command in a certain node (“bottleneck node”) until this node became a bot-
tleneck, while the rest of the processors did not experience any significant load
variation. Thus a Load = 0 implies no bottlenecks, Load = 1 an instance of the
load generator was running on the “bottleneck node” and so on. The instances
were triggered after 60 seconds from the start of the program.

Figure 3(a) shows a comparison of the measured execution times with n = 8
and |S| = 128. The x-axis indicates the injected load, i.e. the number of instances
of the load generator running in one processor, which were triggered during the
pipeline operation.

We see that the adaptive methodology has responded well under changing
load conditions, since the execution times in the non-adaptive parametrisation
have increased at a considerably higher rate than the adaptive ones.

6 Related Work

The scheduling problem of the parallel pipeline construct has been previously
studied in the literature.

The LLP system [12] furnishes a conceptual framework for static multi-stage
allocation using algorithmic skeletons. By approaching the problem with a 0/1
knapsack problem methodology, LLP is employed to develop a theoretical solu-
tion to stage scheduling.

Based on direct-acyclic graphs, the macro-pipelining methodology [13] gives a
theoretical framework for scheduling parallel pipelines. While macro-pipelining
provides guidance on the coarse distribution of work to different stages, its ap-
proach is limited to dedicated digital-signal processing systems.

Another approach presents a multi-layer framework for the stage scheduling
in dedicated real-time systems [14]. This work describes a series of steps to cal-
culate end-to-end latencies based on a time-series model for a video-conferencing
application. Unfortunately, it does not address the general case.

Recent work on adaptive systems [15,16] has reinforced the importance of
platform adaptation for optimisation of parallel codes in heterogeneous dis-
tributed systems. While implementation of parallel pipelines can be found in
several established skeletal libraries [17,18], adaptive skeletal constructs have re-
cently started to use resource-aware mechanisms based on process algebra [19]
and statistical methodologies [20], paving the way to the development of a com-
prehensive library of self-adaptive algorithmic skeletons for non-dedicated het-
erogeneous systems.

7 Conclusions

Our methodology is fundamentally different since it provides a generic system

– to pragmatically tune up the pipeline parallelism skeleton regardless of the
complexity of the stage functions (calibration phase); and
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– to dynamically adapt to non-dedicated heterogenous environments once the
pipeline processing is established (feedback).

A close examination of the methodology will show that there is certainly room
for a more instrumented approach to the determination of the re-calibration
threshold. Our work provides evidence that the proposed adaptive methodology
enhances pipeline parallelism performance: execution times are almost an order
of magnitude greater when not using the adaptive pipeline.

It is important to emphasise this work has covered load variations attributable
to different processing capabilities, while maintaining the stage function com-
plexity constant. Although this scenario does not comprehensively address all
possible pipeline applications, it certainly provides guidance on the behaviour of
the general case on distributed systems.

In time, we intend to expand the experiment space by analysing pipelines
with stage functions with distinct complexity and, possibly, including a pipeline-
oriented application such as image processing.

In the same manner, we will study the correlation between the threshold
and the stage functions. Such a study may eventually lead to the automatic
determination of the optimal threshold for a given set of stages.
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optimal mapping of pipeline algorithms. Parallel Comput. 29 (2003) 241–254

13. Banerjee, S., Hamada, T., Chau, P.M., Fellman, R.D.: Macro pipelining based
scheduling on high performance heterogeneous multiprocessor systems. IEEE
Trans. Acoust. Speech Signal Process. 43 (1995) 1468–1484

14. Chatterjee, S., Strosnider, J.K.: Distributed Pipeline Scheduling: A framework for
distributed, heterogeneous real-time system design. Comput. J. 38 (1995) 271–285

15. Vadhiyar, S.S., Dongarra, J.J.: Self adaptivity in grid computing. Concurrency
Computat. Pract. Exper. 17 (2005) 235–257

16. Kelly, P.H.J., Beckmann, O.: Generative and adaptive methods in performance
programming. Parallel Process. Lett. 15 (2005) 239–255

17. Aldinucci, M., Danelutto, M., Teti, P.: An advanced environment supporting struc-
tured parallel programming in Java. Future Gener. Comput. Syst. 19 (2003) 611–
626

18. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel Comput. 30 (2004) 389–406

19. Yaikhom, G., Cole, M., Gilmore, S.: Combining measurement and stochastic mod-
elling to enhance scheduling decisions for a parallel mean value analysis algorithm.
In: ICCS 2006. Number 3992 in Lect. Notes Comput. Sc., Springer-Verlag (2006)
929–936
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Abstract. Although parallel systems with high peak performance have been ex-
citing, high peak performance often means high power consumption. In this pa-
per, power-aware parallel systems are investigated, where each node can make 
dynamic voltage scaling (DVS). Based on the characteristics of communication 
and memory access in MPI programs, a compiler is used to automatically form 
communication and computation regions, and to optimally assign frequency and 
voltage to the regions. Frequency and voltage of each node are dynamically ad-
justed, and energy consumption is minimized within the limit of performance 
loss. The results from simulations and experiments show that compiler-directed 
energy-time tradeoff can save 20~40% energy consumption with less than 5% 
performance loss. 

1   Introduction 

Manufacturers in high-performance computing have been pursuing parallel systems 
with high peak performance. Parallel systems with high peak performance often bring 
about large power consumption. Earth simulator, for instance, has 18MW peak power 
consumption [1], and another parallel system, Blue Gene/L, has 1.6MW peak power 
consumption [2]. Large energy consumption has increased the operating cost. Fur-
thermore, high power consumption has led to the increase of environment tempera-
ture, and as a result, system reliability has been reduced. Hsu, et al presented some 
data on the reliability of high-performance systems, and the results showed that the 
reliability was significantly reduced when environment temperature is increased [3]. 
At the same time, limited by network and memory performance, the systems with 
high peak performance often cannot obtain high real performance, and they have 
lower energy efficiency. 

Power consumption from computation nodes is one of the largest power compo-
nents in parallel systems. Parallel execution of parallel applications often does 
not completely utilize the ability of computation nodes. Limited by network and 
memory performance, computation nodes often could be idle. Although they keep 
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Grant No. 2004AA1Z2210 and Server OS Kernel under Grant No. 2002AA1Z2101. 
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idle, computation nodes always run in the highest speed and consume large energy 
consumption. Therefore, when computation nodes become idle, we can adjust their 
frequency/voltage [4] and reduce the running speed, and the performance loss, how-
ever, is minimized. That is to say, with some minor performance loss, we can get 
large energy savings. In the past, dynamic voltage scaling (DVS) is often used in 
embedded systems to improve energy efficiency of a single processor. Recently, some 
attempts of DVS are to establish parallel clusters with DVS-enabled processors. Ge, 
et al have established a cluster with 16 nodes, in which each node is a Pentium M 
processor [5]. Freeh, et al have given a 10-node cluster, and each node is an Athlon-
64 processor [6]. The results show that DVS-enabled parallel systems can obtain large 
energy savings with some minor performance loss. 

The past work has been using manual methods to explore energy-time tradeoff, 
and does not propose an automatic method to perform it. As a result, it is difficult of 
them to make tradeoff for real operational applications. In this paper, we present 
compiler-directed energy-time tradeoff in MPI programs on DVS-enabled parallel 
systems. Parallel applications often consist of computation and communication at the 
same time. In computation regions, each node performs parallel computation; in 
communication regions, computation nodes exchange data each other. Currently, 
interconnection networks have lower performance than that of computation nodes, 
and the communication is often the performance bottleneck. Another bottleneck is 
the memory. Network and memory often make computation nodes idle. So we divide 
parallel applications into computation regions and communication regions, and in-
strument parallel applications. By real execution, we obtain the execution time of 
each region on different frequency levels. Based on the specified limit of perform-
ance loss, we formulate it as a 0-1 integer-programming problem (IP), and obtain the 
optimal frequency/voltage assignment for the regions, which minimizes the energy 
consumption.  

The rest of this paper is organized as follows. In Section 2, we review the related 
work. In Section 3 we interpret the simulation environment in detail, and analyze 
some typical communication and computation applications. In Section 4, we give the 
compiler-directed energy-time tradeoff technique. In Section 5, we present the simu-
lation and experiment results. In the last section, we conclude the paper. 

2   The Related Work 

Initially, dynamic voltage scaling is used in desktop and embedded systems. Weiser, 
et al presented the earliest OS-directed voltage scheduling [7]. Lorch summarized the 
low-power techniques on OS level, including the DVS [8]. Mosse, et al proposed 
compiler-directed real-time dynamic voltage scheduling [9]. Hsu, et al analyzed com-
piler-directed energy-time tradeoff in a single processor [10]. 

Recently, some work investigated dynamic voltage scaling in high-performance 
computing domain, and the typical work is the tradeoff between energy and time. Ge, 
et al analyzed the feasibility of energy-time tradeoff in DVS-enabled parallel system, 
and proposed three kinds of DVS scheduling methods [5]. Freeh, et al gave some 
detailed cases of MPI applications to prove that large energy savings is possible with 
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a few performance loss [6]. Hsu, et al presented a parallel voltage scheduling tech-
nique on OS level [3]. Springer, et al proposed the problem how to minimize the exe-
cution time when the energy consumption is within the user-defined limit [11]. The 
common characteristic of the work is to perform the energy-time tradeoff according 
to the user’s experience, and it is difficult for them to be used in real operational 
applications. 

3   Simulation Environment 

3.1   MIPSpar: A DVS-Enabled Parallel System 

We establish a cycle-accurate performance/power simulation environment named 
MIPSpar. The performance simulation of MIPSpar has used the parallel simulator, 
ISIS [12]. Each node of ISIS cycle-accurately simulates MIPS instruction set, model 
in-order pipelining structure, and consists of the divided instruction cache and data 
cache. Each node models the detailed bus and memory access. By a network interface 
(NI), each node connects to the interconnect network. ISIS can model distributed and 
shared memory architectures, and we only use the distributed memory architecture. In 
the parallel systems, each node has its local memory, the interconnection network 
connects the nodes, and using the data in another node need explicitly pass message 
between them. We have use the 2D-torus direct network, as shown in Figure 1. Each 
node includes a router, and the network links connect the routers. Each router uses the 
wormhole switching technique, and uses the virtual channel technique to avoid dead-
lock. We extend the interconnection network, and add the credit mechanism that sup-
ports parametric network latency and bandwidth. 

N N N N

N N N N

N N N N

N N N N

N N N N

N N N N

N N N N

N N N N

MP

bus NI

R

 

Fig. 1. The architecture of the parallel system 

We add the support for dynamic voltage scaling in ISIS, and each node can sepa-
rately adjust frequency and voltage. We use the frequency configuration of Athon64 
3200+ [3], as listed in Table 1. We suppose that the power consumption of the node is 
50W when the frequency is 2GHz, and as a result, the effective switching capacitance 
is 11.11nF. Use the formula P=Ceff f V

2, we have 7W power consumption when the 
frequency is 800MHz. The frequency and voltage adjustment has time and energy 
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overhead. A detailed statistics from Hsu’s [13] shows that the switching time often 
needs a few microseconds, and we set 10 sμ  time overhead. The energy overhead is 
computed by the formula 1 [14] 

||)1( 2
1

2
2 VVCE −⋅⋅−= η  (1) 

where η  is the switching efficiency, and generally is set to 90%. C is switching ca-
pacitance with 11.11nF, and V1 and V2 are the voltages at the beginning and end of the 
switching. 

Table 1. The voltage and frequency configuration 

f(GHz) V f(GHz) V 
0.8 0.9 1.6 1.3 
1.0 1.0 1.8 1.4 
1.2 1.1 2.0 1.5 
1.4 1.2   

The performance simulator only can give the execution cycles, and in order to ad-
just frequency, we add a parameter to accumulate the execution time. In the simula-
tion environment, the nodes can make dynamic voltage scaling, and the memory and 
network is run in fixed frequency. Therefore, after the frequency adjustment, the rela-
tive performance of the three components is changed. We divide the whole system 
into three clock domains, and exhibit the performance variation by changing the 
memory and network latency. Currently, the latency of memory access is 101~102ns 
[15], the network latency is 10-1~102 sμ [16]. Therefore, when the frequency is 2GHz, 
we define the memory latency as 50 cycles, and define network latency as 200 cycles. 
For other frequencies, the memory latency and network latency are computed by 

40/flatm =  

and 

10/flatn =  

The simulation environment consists of a MPI library, Osiris. Osiris library in-
cludes basic blocked point-to-point MPI communication functions. Based on the 
point-to-point communication functions, we add some collective communication 
functions [17]. In order to support users or compilers to adjust voltage and frequency, 
we add a frequency adjustment function: 

MPI_Setfreq(int  freq) 

Users or compilers can modify the system frequency by calling the function. The 
function changes the system frequency by writing a fixed device port. According to 
the frequency configuration, the system adjusts the voltage and frequency to the cor-
responding level at the same time. Therefore, when we refer to the frequency adjust-
ment, we always adjust the voltage and frequency simultaneously. 
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3.2   The Effect of DVS for Communication and Computation 

We investigate the effect of DVS for communication and computation on MIPSpar. 
We select the representative communication functions, which consist of point-to-point 
communication, broadcast, reduce, allreduce, barrier, and alltoall. We use five appli-
cations from StreamIt’s [18] to investigate the effect of DVS for computation, which 
include bitonic, fft, firref, matmul, and matrix.  
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Fig. 2. The normalized execution time on 16-
node systems for communication functions 

Fig. 3. The normalized execution time for 
computation functions 

We investigate the effect of DVS for communication functions on a 16-node sys-
tem, as shown in Figure 2. Here, the x-axis is the clock frequency, and y-axis repre-
sents the ratios. Re indicates the ratios of energy consumption of current frequency 
versus maximum frequency, and Rfreq indicates the ratios of current frequency versus 
maximum frequency. The reduced curves present the ratios of execution time of cur-
rent frequency versus maximum frequency. The results show that the decreased fre-
quencies have resulted in the minor performance loss of communication functions, 
and at the same time, we obtain large energy savings. Due to the limit of network 
performance, there are large quantities of idle cycles, and as a result, the decreased 
frequency results in large energy savings with some minor performance loss. Fur-
thermore, there is the same characteristic for every communication function, and there 
is no obvious distinction for the communication functions. 

As shown in Figure 3, we illustrate the effect of DVS for computation functions. 
Compared with communication functions, there is much significant effect for compu-
tation functions. The execution time of matrix, for instance, has increased 50% when 
the frequency is reduced to 800MHz. Moreover, there are different effects for differ-
ent functions. For example, the ratio of the prolonged execution time of matrix is 
larger than that of bitonic by 20%. 

4   Compiler-Directed Energy-Time Tradeoff on DVS-Enabled 
Systems 

Based on the analyses of application characteristics, we see that DVS can significantly 
reduce energy consumption of parallel applications with some minor performance loss. 
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Therefore, if there is no special performance need from user, we can run applications 
with lower frequency and get larger energy savings. Furthermore, there are different 
characteristics between communication regions and computation regions. We divide 
an applications into communication regions and computation regions, and within the 
user-defined limit of performance loss, we assign the optimal frequency for different 
regions to minimize energy consumption. Specifically, we integrate the communica-
tion functions and their neighboring computation into some communication regions, 
and the reduced part of the application is formed into a computation region. By in-
strumentation and execution, we obtain the performance loss of different regions, and 
finally we assign the optimal frequency for different regions and minimize the energy 
consumption by solving a 0-1 integer-programming problem. 

Next, we present the problem in detail. Assume that an application consists of n re-
gions Ri, i=0,…, n-1. Here, Ri, i=1,…, n-1 are communications regions, and R0 is the 
reduced part, that is to say, a computation region. Suppose that the execution time of 
Ri on frequency f is defined as T(Ri, f), and the power consumption is denoted as Pf. 
The time overhead of DVS is Ttr, the energy overhead of DVS is Ptr, and the times of 
frequency switching are Ntr. The performance loss does not exceed the p percent of 
the execution time on maximum frequency. If the program is run in m nodes, we 
compute the optimal frequency configuration for each node. We have m 0-1 integer 
programming problem: 

( )j
trtrfi

j
if

j
i NPfRTPfRMIN ⋅+⋅⋅

,
),(),(δδ  

subject to 

),()1(),(),( max,
fPTpNTfRTfR jj

trtrfi
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i

j
i ⋅+≤⋅+⋅δ  

where j =1,…,m-1. Here, Pj is the whole application on the jth node. ),( fR j
iδ  is a 

variable defined as 0 or 1. 1=δ  means the ith region on the jth node is executed in 
the frequency f. Since each region has used only one frequency, we have 

1),( =fR j
if

δ , i=1,…,n-1,  j= 1,…, m-1. 

Let N(R0,Ri) denote the transition number between R0 and Ri, then the times of fre-
quency switching are 

( )−⋅=
i f

j
i

jj
i

jj
tr fRfRRRNN |),(),(|),( 00 δδ  

Integer programming is a NP-complete problem, and need a heuristic algorithm. 
Since we have not formed too many regions, we just enumerate all the cases.  

Here, we need form communication regions and computation regions, and then we 
need the execution time T(Ri, f) and the transition number N(R0,Ri). Since the fre-
quency adjustment has time overhead, the frequency switching between the regions 
with too short execution time often cannot obtain energy savings. We analyze the pro-
grams by compiler, and if two communication regions are spaced by a computation 
region with too short execution time, we combine two communication regions and the 
computation region. By instrumentation and execution, we obtain T(Ri, f) and 
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N(R0,Ri).Then, we solve the 0-1 integer programming problem and get the optimal 
frequency configuration. Finally, we insert the frequency adjustment functions into 
the boundary of the regions. The related techniques are as follows. 

4.1   Select the Region Size 

The basic communication region is formed by a single MPI communication function. 
Next, we analyze the condition that two regions can be combined. Suppose two re-
gions are spaced by a computation region. If we take two communication regions as 
independent regions, then the execution time of the middle computation region is 
T+2*Ttr, where T is the execution time of the computation region on maximum fre-
quency, and Ttr is the time overhead of voltage adjustment. Or else, we combine two 
communication regions and the middle computation region. If we assign x percent of 
the maximum frequency to the combined region within the limit of performance loss 
and the combined region uses a single frequency, then the longest execution time of 
the original computation region is T/x. In order to obtain energy savings, we have the 
inequality T+2*Ttr ≤ T/x. That is to say, T ≥ 2*Ttr /(1/x-1). Here, we have the minimum 
execution time of the middle computation region. 

Next, we need give an estimation of x. Here, we use the average method. If we 
confine the performance loss to no more than p percent of the execution time on 
maximum frequency, the average frequency of the whole program can be set to 
1/(1+p) of maximum frequency. We approximate x with 1/(1+p), and therefore, we 
have T ≥ 2*Ttr /p. 

Generally speaking, the minimum frequency should be less than 1/(1+p) of maxi-
mum frequency. Our approximation can lead to combine more communication re-
gions, and obtain much larger communication regions. The combination assists in 
reducing the effect of voltage adjustment overhead, and decreases the region number. 

4.2   Estimate the Execution Time of the Computation Intervals 

Combining the communication regions need estimate the execution time of the com-
putation region. In high performance parallel system, the hardware features and appli-
cation characteristics make it impossible to statically analyze the execution time by 
compiler, and the time estimation must integrate profiling with compiler techniques. 
Fortunately, although we need the execution time, the accurate time estimation is not 
necessary. We just need a time estimation technique that has moderate precision. 
Saavedra-Barrera proposed a time estimation method based on the time estimation of 
FORTRAN source language constructs [19]. A FORTRAN construct set was summa-
rized that consisted of arithmetic operators with local/global operands, conditional 
and logical operators, execution control and array access operators, and intrinsic func-
tions. The execution time of the basic language constructs was tested directly or indi-
rectly on the destination system. From the execution time of the basic constructs and 
application characteristics, the running time of a given benchmark on a give machine 
was predicted with good accuracy. 

We use the time estimation technique from Saavedra-Barrera. We give a C language 
construct set and use the similar classification. In order to estimate the execution time 
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of an application, we need to know the exact number of loop iterations and the taken 
ratio of condition branch. We obtain the information by profiling techniques. In GCC 
compiler, there is a test coverage tool GCOV. GCOV can give the execution number 
of the program source code line. With some command line parameter related to 
GCOV, GCC compiler compiles the MPI applications. The executable program is 
executed in final parameters, and outputs some execution profiles. After GCOV proc-
esses the outputs, we get the execution number of source code line and the taken ratio 
of condition branch. Using the information, we finally get the average iteration num-
ber of each loop and the taken ratio of each condition branch. Integrating the language 
and application characteristics, we can obtain the time estimation by compiler. For 
our applications, the time estimation precision is between 50~100%, which is lower 
than that of the original paper (less than 20%). Despite the lower precision, it is 
enough for our demand. Moreover, the estimation technique is fast, and is proper to 
estimate the time of large parallel applications. 

4.3   Form the Communication Regions 

We form the communication regions on syntax tree of parallel applications. Using the 
time estimation technique, we give the time of computation region. If the execution 
time is smaller than 2*Ttr /p, we combine two communication regions into one region.  

Computation
region

Communication
region

(a) (b) (c)  

Fig. 4. The program structures. (a) Sequence; (b) Condition; (c) Loop. 

By scanning the syntax tree, we search for all the communication function calls, 
and form the initial communication regions. We analyze the neighboring program 
structure of each communication region, estimate the corresponding computation 
time, and judge whether they can be combined into one region. Now we analyze three 
program structure, as shown in Figure 4. Here, the circles represent the computation 
regions that do not include communication directly or indirectly, and the squares are 
the communication regions. For the sequence of two communication regions, we 
estimate the middle computation region, and combine the two communication regions 
if the execution time of the computation region is less than 2*Ttr /p. For the condition 
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structure, if the execution time of the computation interval in the condition structure is 
less than 2*Ttr /p, we form the condition structure into one region. For the communi-
cation region included in a loop, we estimate the computation time of the whole loop, 
and if the time is less than 2*Ttr /p, we let the loop as a single region. We do not stop 
the process until we cannot find out any region that can be combined. From the analy-
ses, we can see that a communication region is a code segment that has only one  
entrance and one exit. We tag each region with a unique number, and insert instru-
mentation codes at the beginning and end of the communication region, which accu-
mulate the execution time and the transition number. 

4.4   Compiler-Directed Energy-Time Tradeoff  

We give the course of compiler-directed energy-time tradeoff. Using the GCC/GCOV 
tools, we compile and run MPI applications, and get the profiles on the iteration num-
ber of loops and the taken probability of branch structures. Using the profile informa-
tion and the database of the execution time of high-level language structure, we form 
the communication regions on syntax tree and instrument the applications. Then, we 
execute the instrumented applications at each frequency, and get the execution time 
and transition number of each region. According to the information, we solve the 
integer-programming problem within the limit of performance loss, and get the opti-
mal frequency assignment for each region. Finally, the compiler sets the optimal fre-
quencies, and output the final object files. 

5   Experiments 

Parallel simulation for large applications is often impossible since the simulation time 
is too long. We select four small MPI parallel applications. Three of them come from 
the Osiris library, which are FFT, BITONIC, and raytrace(RT). FFT is a MPI version 
of Fast Fourier Transform, BITONIC is a MPI version of fast bitonic sort, and ray-
trace is a MPI version of ray trace. The last application is IS, which comes from NPB 
suite. The final region number of four applications is listed in Table 2. Since the 
communication often give more chance to reduce frequency, we further investigate 
the ratio of the execution time of the communication functions versus the whole ap-
plications in NPB suite in a cluster. 

Table 2. The number of the regions 

App No. of regions App No. of regions 
FFT 5 RT 3 

BITONIC 4 IS 5 

5.1   The Energy-Time Tradeoff 

We set 5% performance loss, and present the energy and time variation on 16 nodes 
in Figure 5. Here, FFT, BITONIC, and raytrace have used three input data set: 1024, 
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Fig. 5. The energy and time variation within the limit of 5% performance loss 

4096, and 8192, and IS uses the small data set. As shown in Figure 5, with some mi-
nor performance loss, all applications obtain large energy savings. The savings of 
FFT, BITONIC, and IS have exceeded 40%. Raytrace also gets 20% energy savings. 
Moreover, the performance loss is confined in user-defined limit. For the FFT appli-
cation, some minor performance improvement is observed, which means that the 
imbalance of computation node versus memory and network performance deteriorates 
system efficiency. 

5.2   The Ratio of Execution Time of Communication Functions 

We investigated the ratio of execution time of communication functions in NPB suite. 
The applications are executed in a cluster that includes 32-node SMP system. Each 
node consists of two P4 Xeon 3.4 GHz processors, and all the nodes are connected in 
G-bit Ethernet. The number of the supported maximum process is 64. NPB suite is 
often used to investigate the performance of MPI library of parallel systems, includes 
eight applications (BT, CG, EP, FT, IS, LU, MG, SP), and each application has four 
input data sets (S,A,B,C), which represent different sizes. The investigated object 
regions mainly include communication functions, and combine some communication 
functions spaced by small computation regions sometimes. 
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Fig. 6. The ratio of the execution time of the communication functions on 16 nodes 

We present the ratio of the execution time of communication functions versus the 
whole applications on 16 nodes, as shown in Figure 6. Many applications have the 
high ratio of communication, and so it is proper to define the communication as an 
independent region. With the enlargement of the input data set, the ratio of communi-
cation will decrease, and the ratio of computation will increase. 

6   Conclusions 

In this paper we investigate compiler-directed energy-time tradeoff. Based on the 
analyses of computation and communication characteristics, we divide the applica-
tions into computation and communication regions by compiler, and investigate the 
effect of frequency adjustment by instrumentation and execution. We assign the opti-
mal frequency to different regions, and obtain the minimum energy consumption 
within the limit of performance loss. The results from simulations and experiments 
show the techniques can effectively make energy-time tradeoff. 
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Abstract. This paper presents a fast 2-D/3-D rigid registration method using a
GPGPU approach, which stands for general-purpose computation on the graph-
ics processing unit (GPU). Our method is based on an intensity-based registra-
tion algorithm using biplane images. To accelerate this algorithm, we execute
three key procedures of 2-D/3-D registration on the GPU: digitally reconstructed
radiograph (DRR) generation, gradient image generation, and normalized cross
correlation (NCC) computation. We investigate the usability of our method in
terms of registration time and robustness. The experimental results show that our
GPU-based method successfully completes a registration task in about 10 sec-
onds, demonstrating shorter registration time than a previous method based on a
cluster computing approach.

1 Introduction

Image registration technique [1,2] plays an increasingly important role in computer-
aided surgery. For example, as illustrated in Fig. 1, 2-D/3-D registration technique al-
lows us to align a preoperative 3-D CT volume with an intraoperative 2-D fluoroscopy
image, giving us point correspondences between the coordinates in the virtual world
and those in the real world. These precise correspondences are necessary to exactly
perform a preoperative plan in the real world, which is carefully developed using the
preoperative volume in advance of surgery. However, naive CPU implementations take
several minutes to complete a registration task due to a large amount of computation.
Therefore, some acceleration techniques are required to use this technique for surgical
assistances, where response time is strictly limited in a short time.

One emerging computational platform is the graphics processing unit (GPU), namely
commodity graphics hardware, which is rapidly increasing performance beyond Moore’s
law [3]. For example, nVIDIA’s GeForce 6800 provides approximately 120 GFLOPS at
peak performance, which equals to six 5-GHz Pentium 4 processors [4]. Furthermore,
recent GPUs provide programmability to users, making themselves a more flexible plat-
form as compared with earlier non-programmable GPUs, which deal only with render-
ing tasks of 3-D objects. Therefore, many researchers are trying to apply the GPU to a
variety of problems such as a fluid dynamics simulator [5], numerical application [6],
data clustering application [7], and so on.

The objective of our work is to achieve fast 2-D/3-D registration by means of a
general-purpose computation on the GPU (GPGPU) approach [8]. We implement the

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 939–950, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



940 F. Ino et al.

ID: Digitally reconstructed

      radiograph (DRR)

Rendering

source

Rendering

source

z

x

y

z

x

y

V: Preoperative

     CT volume

Virtual

world

Real

world

X-ray

source IF: Intraoperative X-ray image

Position of real

patient can be

estimated when

DRR matches

X-ray image

T: Transformation

Fig. 1. Overview of 2-D/3-D registration

key procedures of a registration algorithm [9] on the GPU: 1) digitally reconstructed
radiograph (DRR) generation; 2) gradient image generation; and 3) normalized cross
correlation (NCC) computation. The main contribution of our work is the GPU imple-
mentation for procedures 2) and 3) based on that for procedure 1) [10]. We compare
our GPU-based method with a cluster-based method [9] in terms of performance and
robustness. Our method differs from prior methods [10,11], which employ different
strategies to implement a part of the three procedures on the GPU.

The rest of the paper is organized as follows. We begin in Section 2 by introducing
the 2-D/3-D registration algorithm, and then show an overview of GPU architecture in
Section 3. We then present our GPU-based method in Section 4. Section 5 shows some
experimental results. Finally, Section 6 concludes the paper.

2 2-D/3-D Registration Algorithm

The problem of 2-D/3-D registration is to compute the rigid transformation parameter
T that relates the coordinate system of a 3-D volume V and that of a 2-D image IF

(usually, a fluoroscopy image).
We first describe a single-image version of the registration algorithm for easier un-

derstanding of the biplane-image version [12]. Our method is based on an intensity-
based algorithm [1,13], which resolves the registration problem into an optimization
problem. The algorithm optimizes a cost function C associated with transformation pa-
rameter T, where T represents the translation and rotation of V . The cost function C
here represents the similarity between an image IF and a DRR ID produced by projec-
tion of V . The optimization is done by the steepest descent optimization technique [14]
in a coarse-to-fine manner.
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According to an empirical study [13], we currently use gradient correlation (GC) for
the cost function C. Given two 2-D images, A and B, GC G(A, B) between them is
given by:

G(A, B) =
1
2

[
N

(
∂A

∂x
,
∂B

∂x

)
+ N

(
∂A

∂y
,
∂B

∂y

)]
(1)

where N represents NCC between two images, ∂A/∂x and ∂A/∂y (∂B/∂x and ∂B/∂y)
are the horizontal and the vertical gradient images of A (B, respectively). NCC N(A, B)
between n× n pixel images A and B is given by:

N(A, B) =
SAB − SASB/n2√

SA2 − (SA)2/n2
√

SB2 − (SB)2/n2
, (2)

where SA and SA2 (SB and SB2) represent the sum and the squared sum of A (B),
respectively, and SAB represents the multiplied sum of A and B.

The gradient images are produced by the first derivative of a Gaussian. This filter en-
hances the outline of objects with reducing and smoothing noise in images. Therefore, it
contributes to improve the robustness of registration. Given an image A, the horizontal
gradient image ∂A/∂x and the vertical gradient image ∂A/∂y are given by:

∂A

∂x
(x, y) =

∑
−R≤i,j≤R

−i

2πσ4
e−

i2+j2

2σ2 A(x + i, y + j), (3)

∂A

∂y
(x, y) =

∑
−R≤i,j≤R

−j

2πσ4
e−

i2+j2

2σ2 A(x + i, y + j), (4)

where σ and R represent the standard deviation and the kernel size of the filter, respec-
tively. We currently use σ = 3 and R = 9.

In summary, the single-image algorithm optimizes the cost function G(IF , ID) with
respect to the transformation T. On the other hand, our biplane-image version opti-
mizes the sum of two cost functions, each computed for one of the biplane images.
The three procedures, namely 1) DRR generation, 2) gradient image generation, and 3)
NCC computation, are repeated until finding a local optimum.

3 GPGPU: GPU as a Computational Engine

The original purpose of the GPU is to project 3-D polygonal objects on the 2-D screen.
To accelerate this rendering task, the GPU employs a parallel architecture [4] that con-
sists of two different programmable processors: vertex processors (VPs) and fragment
processors (FPs), as shown in Fig. 2. Since FPs in modern GPUs provide much higher
performance than VPs, most GPGPU implementations use FPs as a computational en-
gine in the GPU [15].

Such implementations employ the stream programming model [16], which exploits
the data parallelism inherent in the application by organizing data into streams and
expressing computation as kernels that operate on streams. Streams here are usually
stored as texture data on the video memory, which can be fetched to FPs. A kernel is
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Fig. 2. GPU architecture

implemented as a FP program. The computed results can be transferred (readback) from
the video memory to the main memory by using graphics APIs such as OpenGL [17].

In addition to the parallelization mentioned above, vectorization is also necessary to
maximize the performance on the GPU. FPs support 4-length vector operations because
they are designed to deal with pixels, which are four-component RGBA data represent-
ing red, green, blue colors and opacity. Since FPs apply vertor operations to a pixel, we
must adapt data structure to obtain 400% speedup.

One concern about the GPGPU approach is that the GPU seems not be rigorous with
computational errors [18], though it supports the IEEE floating-point representations
[19]. Therefore, we should check computational results to verify if the error is acceptable.

4 2-D/3-D Registration on the GPU

Fig. 3 shows an overview of our GPU-based method. The key points of our design are
as follows:

– (P1) Performance bottlenecks on the CPU should be implemented on the GPU with
an algorithm suitable to the GPU architecture;

– (P2) The amount and frequency of communication between the CPU and the GPU
should be minimized to achieve full acceleration on the GPU.

We think that the suitable algorithm mentioned above is an algorithm that (P1-a) re-
solves the target problem into a rendering problem, which is naturally accelerated by
the GPU, or (P1-b) has fully data parallelism so that FPs can simultaneously process
different pixels on the image (namely, texture), and if possible, with vector operations.

According to point (P1), we have decided to implement the three procedures on
the GPU: DRR generation; gradient image generation; and NCC computation. These
procedures take 99% of execution time on a sequential implementation.

1) DRR generation. As LaRose has presented in [10], this procedure can be natu-
rally implemented on the GPU, because the principle of X-ray propagation is similar
to that of object projection required for volume rendering. Therefore, we use a texture-
based volume rendering method [20] for DRR generation in order to maximize the
efficiency on the GPU. This method can be efficiently implemented on the GPU, be-
cause the texture-mapping and the alpha-blending procedures are hardware-accelerated
on the GPU. Thus, our implementation for DRR generation satisfies point (P1-a).
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Fig. 3. Overview of 2-D/3-D registration on the GPU

Our method differs from LaRose’s method in using 3-D textures instead of 2-D
textures. As compared with 3-D textures, 2-D textures cannot produce higher quality
DRRs, because 2-D textures cannot always be perpendicular to the view direction.

2) Gradient image generation. We implement a two-pass 1-D filter to reduce the
time complexity of the 2-D filter:

Px1(x, y) =
∑

j

e−j2/2σ2
p(x, y + j) (5)

Px2(x, y) =
∑

i

−i

2πσ4
e−i2/2σ2

p(x + i, y) (6)

Py1(x, y) =
∑

j

−j

2πσ4
e−j2/2σ2

p(x, y + j) (7)

Py2(x, y) =
∑

i

e−i2/2σ2
p(x + i, y) (8)

This filter has fully data-parallelism, so that FPs in the GPU are allowed to simultane-
ously process different pixels in the image. Furthermore, vectorization can be applied
to Eqs. (5) and (7) (Eqs. (6) and (8), also), because these computations (1) have no
data dependence between them and (2) require pixels on the same location p(x, y + j).
Therefore, the horizontal gradient image and the vertical gradient image can be pro-
duced simultaneously by vectorization. To enable this, we use two of four (RGBA)
components to process the 1-D filters at the same time. Our vectorization can be repre-
sented as follows:
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⎤
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where Pxy1 and Pxy2 represent two-component data containing pixels of gradient im-
ages after applying the first-pass filter and the second-pass filter, respectively, and p
represent a vectorized pixel. Thus, our implementation for gradient image generation
satisfies point (P1-b).

NCC computation. Finally, Eq. (2) indicates that there is no data-parallelism in NCC
computation, because pixel values are merged into a single value (NCC). Therefore,
a naive method may process this procedure on the CPU. However, this is not recom-
mended from the viewpoint of (P2). That is, if the CPU takes the responsibility for
NCC computation, we have to transfer the DRR from the GPU to the CPU at every
optimization step. This communication may result in a lower performance, because the
DRR is 2-D data. To tackle this problem, we decompose the computation into two parts:
reduction operations on the GPU and the remaining operations on the CPU. This allows
us to transfer only five floating point numbers, SA, SA2 , SB , SB2 , and SAB, instead
of the 2-D DRR. Then, the CPU computes NCC using these numbers according to Eq.
(2). Thus, although parallelization cannot be applied to the entire computation, we can
parallelize reduction operations with reducing the amount of communication between
the CPU and the GPU.

Given an image of n × n pixels, the parallel reduction can be done in at most log n
steps, as shown in Fig. 3. Although this sequence of steps must be serially processed,

void runReduction(Region &region, // Region for drawing
TextureObject *rtexture, // Initialized texture object
RenderTexturePBuffer *pbuffer, // Initialized pixel buffer
BufferSpecifier &rtextureBuffer, // Input buffer, namely gradient images
BufferSpecifier &drawBuffer) // Output buffer

{
cgGLEnableProfile(vertexProfile and fragmentProfile);
cgGLBindProgram(vertexProgram and fragmentProgram); // See Fig. 5
glDrawBuffer(drawBuffer); // Specify output buffer
rtexture->bindTexture(); // Bind texture
pbuffer->bindTexImage(rtextureBuffer); // Bind input buffer
glClear(GL COLOR BUFFER BIT); // Clear output buffer
glRecti(region); // Draw specified region
glFlush(); // Flush issued OpenGL commands
pbuffer->releaseTexImage(rtextureBuffer);
cgGLDisableProfile(vertexProfile and fragmentProfile);

}

Fig. 4. CPU program for parallel reduction



A GPGPU Approach for Accelerating 2-D/3-D Rigid Registration of Medical Images 945

// Data structure for passing coordinates data from VPs to FPs
struct ReductionCoords {

float4 position : POSITION; float2 coord0 : TEXCOORD0; float2 coord1 : TEXCOORD1;
float2 coord2 : TEXCOORD2; float2 coord3 : TEXCOORD3; float2 coord4 : TEXCOORD4;
float2 coord5 : TEXCOORD5; float2 coord6 : TEXCOORD6; float2 coord7 : TEXCOORD7;

};
// Coordinates computation for parallel reduction of 3×3 pixels
ReductionCoords reductionVertex9(float4 position : POSITION, // Vertex coordinates in range [0.33, 0.66]

uniform float4x4 modelViewProjMatrix : state.matrix.mvp) // Transformation matrix
{

ReductionCoords output;
output.position = mul(modelViewProjMatrix, position); // Update volume position
output.coord0 = position.xy * 3 - 1.0f; // Adjust output range [0.33, 0.66] to input range [0, 1]
output.coord1 = output.coord0 + float2(1.0, 0.0); output.coord2 = output.coord0 + float2(0.0, 1.0);
output.coord3 = output.coord0 + float2(1.0, 1.0); output.coord4 = output.coord0 + float2(0.0, 2.0);
output.coord5 = output.coord0 + float2(2.0, 0.0); output.coord6 = output.coord0 + float2(1.0, 2.0);
output.coord7 = output.coord0 + float2(2.0, 1.0);
// Address for pixel (2, 2) cannot be precomputed due to limited number of VP registers
return output;

}
(a)

// Parallel reduction of 3×3 pixels
float3 reductionSum9RGB(ReductionCoords input,

uniform samplerRECT sampRect : TEXUNIT0) : COLOR
{

float2 coord8 = input.coord0 + float2(2.0, 2.0); // Address for pixel (2, 2)
float3 output = texRECT(sampRect, input.coord0).rgb; // Fetch pixel (0, 0)
output += texRECT(sampRect, input.coord1).rgb; output += texRECT(sampRect, input.coord2).rgb;
output += texRECT(sampRect, input.coord3).rgb; output += texRECT(sampRect, input.coord4).rgb;
output += texRECT(sampRect, input.coord5).rgb; output += texRECT(sampRect, input.coord6).rgb;
output += texRECT(sampRect, input.coord7).rgb;
output += texRECT(sampRect, coord8).rgb; // Reduction for (2, 2)
return output;

}
(b)

Fig. 5. GPU programs for parallel reduction. (a) Vertex program and (b) fragment program reduce
3 × 3 neighbor pixels (0, 0)−(2, 2) into a single pixel (0, 0). Except for (2, 2), all of coordinates
addresses are precomputed by VPs instead of by FPs in order to reduce computational amount.
See [22] for details.

each step can be parallelized according to point (P1-b). In our current implementation,
we have empirically determined that each of FPs merges nine pixels into a single pixel
at a step. Furthermore, we apply vectorization to reduction operations. That is, four of
the five sums are computed at the same time.

Note here that Chisu also have presented parallel reduction in [11]. However, this
method may suffer in computational (round-off) error, because it uses mipmap textures
to compute averages of pixels at each step. Since this error increases with the number
of steps, the amount of communication cannot be reduced into optimal five numbers
in most cases. Thus, their method has a tradeoff relation between the communication
amount and the computational error. In contrast, our method computes sums of pixels,
preventing computational error. Therefore, the DRR is fully reduced at the GPU side
without any errors.

According to the designs mentioned above, we have implemented the method us-
ing the C++ language, the OpenGL library [17], and the Cg (C for graphics) toolkit
[21]. Fig. 4 and Fig. 5 show an overview of the CPU and GPU programs implemented
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for the parallel reduction procedure. Basically, the remaining procedures also can be
implemented in the same way.

In this example program, 3× 3 neighbor pixels are merged into a single pixel. Before
performing rendering operations, the CPU program in Fig. 4 binds a vertex program and
a fragment program, which express how a pixel should be computed through the ren-
dering pipeline. For example, the vertex program in Fig. 5(a) computes the coordinates
of neighbors in order to pass them to FPs. Then, the fragment program in Fig. 5(b) re-
ceives the coordinates from VPs and fetches the corresponding pixels to reduce them
into a pixel. These rendering operations are activated by glRecti() in the CPU program
and are terminated by glFlush(). After this, glReadPixels() is called to transfer compu-
tation results from the video memory to the main memory.

5 Experimental Results

To evaluate the usability of our GPU-based method, we compare it with a cluster-based
method [9] in terms of the registration time and the target registration error (TRE) [23].
The GPUs employed for experiments are summarized in Table 1. On the other hand, the
cluster consists of 32 PCs each with a Pentium 3 1-GHz CPU. PCs are interconnected
by a Myrinet 2000 switch [24], which yields a bandwidth of 2 Gb/s. Note here that the
cluster-based method employ a ray casting method for DRR generation. Therefore, the
base algorithm is slightly different from our GPU-based method.

Registration is performed using two datasets: the real spine and the femur phantom
(see Fig. 6). Because our experiments focus on the comparison of implementation meth-
ods, we use DRRs instead of fluoroscopy images. That is, we first generate a DRR from
a viewing point, and then use the DRR as an input image IF to estimate the point from
a randomly selected point.

Table 2 shows the timing results with breakdowns. Our GPU-based method com-
pletes a registration task within 10 seconds, which is permissible time for surgical
assistances. We can also see that the method successfully reduces the time for DRR

Table 1. Experimental environment. Notations CS and CP are serial and parallel CPU environ-
ment, respectively. The remaining are GPU environments: G1 is a laptop PC; G2 and G3 are
desktop PCs with a previous generation GPU and a current generation GPU, respectively.

Environment CS CP G1 G2 G3

# of nodes 1 32 1

CPU
Pentium 4 Pentium 3 Pentium M Pentium 4 Pentium 4
2.8 GHz 1.0 GHz 2.0 GHz 2.8 GHz 3.4 GHz

GPU

—

Quadro FX Quadro FX GeForce
Go 1400 3400 7800 GTX

Core clock (MHz) 125 350 430
Memory clock (MHz) 332 900 1200
Memory bandwidth (GB/s) 19.4 28.8 38.4
Fill rate (Gpixels/s) 2.2 4.2 10.3
Network — Myrinet 2000 —
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(a) (b)

(c) (d)

Fig. 6. Biplane images of real spine and femur phantom datasets

Table 2. Timing results. Total time is the product of time per step and 300 steps.

Real spine Femur phantom
V : 512 × 512 × 204 voxels V : 256 × 256 × 367 voxels

Breakdown ROI: 300 × 300 × 48 voxels ROI: 54 × 38 × 55 voxels
IF : 300 × 200 pixels IF : 300 × 200 pixels

CS CP G1 G2 G3 CS CP G1 G2 G3

DRR generation 2940 142 38.6 26.4 17.1 810 31 26.7 14.1 5.8
Gradient image 142 7 8.4 5.2 1.7 197 7 8.4 5.3 1.7
NCC computation 9 46 57.6 5.3 2.7 3 14 55.7 5.3 2.7

Reduction — — 7.9 4.9 2.4 — — 7.9 4.9 2.4
Data transfer — — 49.6 0.2 0.2 — — 47.7 0.2 0.2

Time per step (ms) 3091 195 104.6 36.9 21.5 1010 52 90.8 24.7 10.2
Total steps 300
Total time 15 m 58 s 31 s 11 s 6 s 5 m 15 s 27 s 7 s 3 s

and gradient image generation, as compared with the sequential method (CS). It also
demonstrates further acceleration against the cluster-based method (CP ).

The parallel reduction for NCC computation reduces the amount of communication
from 56 KB to 20 B. This reduction effect is significant for the laptop PC platform
G1, because such platforms do not have high-speed graphics bus between the CPU and
the GPU. Even in desktop platforms, the data transfer time is reduced from 9 ms to
0.2 ms.
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Table 3. Robustness results in terms of TRE (mm). Registration is done ten times for each. “Pass”
represents the number of successful registration in ten trials.

Initial Real spine Femur phantom
TRE GPU single GPU biplane CPU biplane GPU single GPU biplane CPU biplane
(mm) TRE Pass TRE Pass TRE Pass TRE Pass TRE Pass TRE Pass
2– 4 2.37 4 0.10 10 0.27 10 7.05 0 0.53 10 1.13 8
4– 6 3.38 2 0.13 10 0.25 10 5.49 1 0.45 10 1.63 6
6– 8 3.98 3 0.09 10 0.24 10 6.04 1 0.51 10 3.27 2
8–10 6.84 0 0.09 10 1.70 9 7.18 0 0.94 9 12.71 1

10–12 5.10 3 1.46 8 3.12 8 8.48 0 0.68 9 9.34 0
12–14 7.48 0 1.11 7 8.92 4 6.63 0 0.73 9 11.19 1
14–16 12.41 1 5.87 4 7.25 5 6.91 0 1.86 9 15.18 1
16–18 13.73 2 7.09 4 13.73 2 7.09 0 5.37 5 16.46 0
18–20 19.88 0 11.13 2 13.17 3 7.19 0 4.83 5 22.63 0
20–22 10.84 1 10.71 2 18.48 1 8.72 0 6.58 5 22.23 0

Table 4. Robustness results obtained by the mipmap-based method [11]. In this experiment, we
perform biplane registration with GPU-based DRR generation for the mipmap-based method,
which originally performs single-image registration using the CPU-based DRR generation.

Intial Real spine Femur phantom
TRE TRE Pass TRE Pass
2– 4 2.09 2 1.22 10
4– 6 1.85 1 1.17 10
6– 8 3.37 1 6.12 5
8–10 6.20 0 9.86 1

10–12 10.74 0 11.98 0
12–14 8.24 0 11.27 0
14–16 19.47 0 15.96 0
16–18 19.39 0 14.50 0
18–20 16.98 0 19.31 0
20–22 20.18 0 21.04 0

By comparing G2 with G3, we can see that the growth of GPU speed. That is, the
current generation G3 achieves almost double performance as compared with the pre-
vious generation G2. This result is reasonable because GPU performance has doubled
every six months [5].

We also investigate the robustness of our GPU-based method. Table 3 summarizes
the alignment results. We repeat registration tasks ten times with different initial points.
The registration is regarded as successful if the final TRE is less than 0.5 voxels, namely
0.66 mm for the spine data and 1.56 mm for the femur data.

As we can see in Table 3, our GPU-based method returns successful results if the ini-
tial TRE is less than 10 mm. There is no significant difference between the cluster-based
method and the GPU-based method in terms of robustness. The results also show that
using biplane images instead of a single image is necessary to obtain precise alignments
in the depth direction.
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Finally, we compare our method with a mipmap-based method [11], which we men-
tioned in Section 4. Table 4 summarizes the registration results. By comparing this
table with Table 3, we can see that our method provides more robust results against
the mipmap-based method. Furthermore, the registration performance of the mipmap-
based method is almost the same as that of our method. Thus, we think that mipmap
textures are not suited to parallel reduction due to computational error.

6 Conclusion

We have presented a fast 2-D/3-D registration method for biplane images using a
GPGPU approach. Our method reduces registration time by eliminating performance
bottlenecks on the CPU: DRR generation; gradient image generation; and NCC com-
putation. Our method performs reduction operations on the GPU in order to minimize
the amount of communication between the CPU and the GPU.

The experimental results show that our GPU-based method successfully completes a
registration task in ten seconds. This timing result on the GPU is faster than that on the
32-node cluster. With respect to registration errors, the method demonstrates similar
results as compared with CPU implementations. Thus, we think that our GPU-based
method is useful for computer-aided surgery in terms of performance and robustness.
As compared with the cluster-based method, we also think that the GPU-based method
provides more attractive solution to medical doctors, because it needs less maintenance
cost and less power consumption with higher fault tolerance.
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Bañuls, Mari-Carmen 682
Barrachina, S. 760
Basagiannis, Stylianos 317
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Meng, Hai Ning 573
Min, Dugki 329
Min, Geyong 171
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Püschel, Markus 818

Qi, Yong 573
Quintana, E. 760

Rana, Omer F. 51
Rauber, Thomas 618
Recio-Lara, M. 439
Robles, Oscar D. 869
Rodero-Merino, Luis 660
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