
A Repair Mechanism for Fault-Tolerance for
Tree-Structured Peer-to-Peer Systems

Eddy Caron1, Frédéric Desprez1, Charles Fourdrignier2,
Franck Petit2, and Cédric Tedeschi1

1 LIP Laboratory
UMR CNRS-ENS Lyon-UCB Lyon-INRIA 5668
46 Allée d’Italie, 69364 Lyon Cedex 07, France

frederic.desprez@ens-lyon.fr
2 LaRIA Laboratory
University of Picardie

5, rue du Moulin Neuf, 80000 Amiens, France
cedric.tedeschi@ens-lyon.fr

Abstract. Facing the limits of traditional tools of resource manage-
ment within computational grids (related to scale, dynamicity, etc. of
the platforms newly considered), new approaches, based on peer-to-peer
technologies are emerging. The resource discovery and in particular the
service discovery is concerned by this evolution. Among the solutions,
a promising one is the indexing of resources using trie structures and
more particularly prefix trees. The major advantages of trie-structured
approaches is the capability to support search queries on ranges of val-
ues with a latency growing logarithmically in the number of nodes in
the trie. Those techniques are easy to extend to multicriteria searches.
One drawback of using tries is its inherent poor robustness in a dy-
namic environment, where nodes join and leave the network, leading to
the split of the tree into a forest, which results in the impossibility to
route requests. Within most recent approaches, the fault-tolerance is a
prevention mechanism, often replication-based. The replication can be
costly in term of resources required. In this paper, we propose a fault-
tolerance protocol that reconnects subtrees a posteriori, after crashes, to
have again a connected graph and then reorder the nodes to rebuild a
consistent tree.

1 Introduction

These last few years have seen the development of large scale grids connect-
ing distributed resources (computation resources, storage facilities, computation
libraries, etc.) in a seamless way. This is now an efficient alternative to supercom-
puters to solve large problems such as high energy physics, simulation, bioinfor-
matic, etc. However, existing middlewares used in grids require most of the time
a stable and centralized infrastructure. They usually loose their performance on
dynamic and large scale platforms without centralized management of resources.

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 171–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

172 E. Caron et al.

To cope with the characteristics of these emerging kind of platforms, it has been
suggested to use peer-to-peer technologies within computational grids [8].

Peer-to-peer technologies offer algorithms allowing the search and retrieval of
objects over the net (data items, files, services, etc.). Among these technologies,
Distributed Hash Tables (DHT) were initially designed for very large scale plat-
forms, for example to share files over the Internet. However, DHTs have several
major drawbacks. Among them, their discovery mechanism usually works on
exact searches of a given key. Some work has then been done to allow complex
requests to be submitted over DHTs or more generally in structured peer-to-
peer systems, i.e. systems based on request routing. Some of these works are
based on tries (also called prefix trees). A trie structure supports range queries
in a logarithmic time in the number of nodes of the trie.

Fault-tolerance is a mandatory feature for peer-to-peer systems to avoid the
loss of data stored on nodes and to allow a correct routing of messages. The crash
of one or several nodes in a trie leads to the loss of objects references stored in
the trie and to the split of the trie into several subtries, also called a forest. Fault-
tolerance within structured peer-to-peer systems usually uses replication. Using
such an approach, each node and each link of the trie would have to be duplicated
k times, k being the replication factor. Keeping such structure up is costly, mainly
in terms of resources used. Afterward, the purpose is to find for the value of k
the right trade-off between the replication cost and the robustness of the system.
In this paper, we study an alternative to the replication approach based on
the reconnection of the subtries and the a posteriori reordering of a consistent
trie. When the trie is disconnected, a first solution consists in rebuilding a trie
adding nodes of remaining subtries one by one. This naive method can lead
to a prohibitive cost when the number of remaining nodes is large (which is
usually the case in peer-to-peer systems). For example, loosing one node can
lead to a complete reconstruction of the trie. A second approach consists in
reconnecting the subtries to get the original trie back at a minimum cost. This is
this kind of algorithm we describe in this paper in a distributed and asynchronous
environment. It can also be used to complete the replication process.

A brief history of peer-to-peer technologies is provided in Section 2, followed
by the formal description of the particular trie structure we use (Section 3) and of
the distributed system we place ourselves. We focus our study on fault-tolerance
mecanisms related to them. Then, in Section 4 we present the repair algorithm
we designed and give its proof before a conclusion and future work Section.

2 Related Work

With the spread of the peer-to-peer technologies going along with the file sharing
over the Internet, purely decentralized search systems have emerged. Such tools
first took the shape of unstructured mechanisms, i.e., based on the flooding
of search requests [10, 9]. These mechanisms resulted in overloading the net-
work while providing non-exhaustive responses. Addressing both the scalability
and the exhaustiveness issues within peer-to-peer systems, the distributed hash

A Repair Mechanism for Fault-Tolerance for P2P Systems 173

tables [13, 14, 18, 20], a.k.a., the structured peer-to-peer group, are highly scal-
able in the sense that the number of logical hops required to route and the local
state grows logarithmically with the number of nodes participating in the system.
Moreover, DHTs prevent from loosing routing paths and objects’ references by
use of replication and periodic scans. Unfortunately, DHTs present several ma-
jor drawbacks (homogeneous capacity assumptions, topology awareness, etc.).
Among them, the rigidity of the requesting mechanism, i.e., exact match on a
given key hinders its use over real search systems.

A series of work gives the opportunity to allow flexible meanings of retrieval
over structured peer-to-peer networks. First achievement in this way has been
the ability to describe resources with semi-structured language, such XML, as de-
scribed in [3]. [19] enhances DHTs with traditional database operations. Several
approaches, based on space filling curves, such as Squid [15] or [17] support multi-
dimensional range queries. [1] maps one-dimensional data space to d-dimensional
Cartesian space by using the inverse Hilbert mapping. Built on top of multiple
DHTs, SWORD [11] is an information service aiming at discovering computing
resources on the grid by answering multi-attribute range queries.

We focus in this work on trie-structured retrieval solutions, also supporting
range queries but outperforming previous approaches in the sense that logarith-
mic (or constant if we assume an upper bound on the depth of the trie) latency
is achieved by parallelizing the resolution of the query in the several branches of
the trie. Prefix Hash Tree (PHT) [12] builds a trie of the entire key-space on top
of a DHT. The purpose of this architecture is to use the trie as a logical layer
allowing complex searches on top of any DHT-like network. The architecture
of PHT results in the multiplication of the complexities of the trie and of the
underlying DHT.

The Skip Graphs structure proposed in [2] is similar to a trie but is built
with the skip lists technology, allowing the use of their inherent fault-tolerance
properties. But again, the complexity of the number of messages generated to
process range queries is in O(m log(n)), m being the number of nodes pertained
by the range and n the total number of nodes in the graph.

Other approaches propose to rely on a trie for each purpose, i.e., indexing
the key-space, mapping the nodes of the trie on the network, and routing the
requests. Among them, Nodewiz [4] assumes a set of static reliable nodes to
host the trie, which is unfortunately hard to ensure on peer-to-peer platforms.
P-Grid [7] builds a trie on the whole key-space (i.e., the whole set of potential
keys). Each leaf of this trie corresponds to a subset of the key-space. The fault-
tolerance is achieved by probabilistic replication.

As a more general consideration, none of these approaches address the topol-
ogy/physical locality awareness issue, i.e., no information about the underlying
network is taken into account to build the logical (overlay) network, what can
raise a significant performance problem, physical locality being broken when the
logical network is built. Moreover, the several fault-tolerance solutions are mostly
replication-based, or DHT-based, also involving heavy replication mechanisms.

174 E. Caron et al.

Initially designed for the purpose of service discovery over dynamic computa-
tional grids and attempting to solve the above drawbacks of existing approaches,
we recently developed a novel architecture, based on a logical Greatest Common
Prefix Tree formally described in Section 3, that is dynamically built as objects
(services, but extensible to data items, files, etc.) are declared.

3 Preliminaries

Greatest Common Prefix Tree. Let an ordered alphabet A be a finite set of
letters. Denote ≺ an order on A. A non empty word w over A is a finite sequence
of letters a1, . . . , ai, . . . , al, l > 0. The concatenation of two words u and v,
denoted u◦v or simply uv, is equal to the word a1, . . . , ai, . . . , ak, b1, . . . , bj, . . . , bl

such that u = a1, . . . , ai, . . . , ak and v = b1, . . . , bj , . . . , bl. Let ε be the empty
word such that for every word w, wε = εw = w. The length of a word w, denoted
by |w|, is equal to the number of letters of w—|ε| = 0.

A word u is a prefix (respectively, proper prefix) of a word v if there ex-
ists a word w such that v = uw (resp., v = uw and u �= v). The Great-
est Common Prefix (resp., Proper Greatest Common Prefix) of a collection
of words w1, w2, . . . , wi, . . . (i ≥ 2), denoted GCP (w1, w2, . . . , wi, . . .) (resp.
PGCP (w1, w2, . . . , wi, . . .)), is the longest prefix u shared by all of them (resp.,
such that ∀i ≥ 1, u �= wi). A [Proper] Greatest Common Prefix Tree ([P]GCP
Tree, also a particular kind of trie) is a labeled rooted tree such that both fol-
lowing properties are true for every node of the tree:

1. The node label is a proper prefix of any label in its subtree;
2. The node label is the Proper Greatest Common Prefix of all its son labels.

In the following we use the word trie to designate our PGCP tree.

Distributed Lexicographic Placement Table. The distributed system considered
in this paper consists of a set of asynchronous physical nodes organized in a
Distributed Hash Tables (DHT). Each physical node maintains one or more nodes
of the logical PGCP Tree. Note that a DHT is used, but it can be replaced by
any system, distributed or not, allowing the retrieval of any node from any other
node. We also consider that the potential existing fault-tolerance mechanisms
provided by this layer are not used within our architecture. We propose in this
paper a fault-tolerance mechanism at the PGCP Tree level.

When one wants to insert an object labeled o into the trie, a message is
generated containing o, according to which the message is routed within the trie
until reaching the node labeled v such that v is the smallest label in the trie
that shares with o the greatest common prefix of any node of the trie with o.
More formally, if L denotes the whole set of label currently in the trie, the set
U = {l ∈ L | GCP (l, o) = p} where p = max|m|{m = PGCP (l, o), l ∈ L). The
label of the target node is t = min|w|{u ∈ U | u = pw}. Once found, the target
node performs the insertion. If t �= o, node(s) are created. If o = tu (u �= ε),
a new node labeled o is created as a new son of the node labeled t. If t = ou

A Repair Mechanism for Fault-Tolerance for P2P Systems 175

(u �= ε), a new node is created as the father of the node labeled by t. Finally,
if none of these conditions are satisfied, it means that o and t must be siblings
but no node in the trie is labeled by their common prefix. Thus two nodes are
created, a node labeled GCP (o, t), father of the node labeled by t and also father
of the other newly created node labeled by o. The distributed routing algorithm
(that also performs the creation and the mapping of nodes) requires a number
of hops bounded by twice the depth of the trie [5].

Physical nodes communicate by message passing. We assume two sending
functions. The former, simply referred to SEND, is used by any physical node
to send a message to another node asynchronously, i.e., without waiting any ac-
knowledgement. The latter, called SYNC-SEND, waits for an acknowledgement
for each message sent. We assume that each physical node may crash. So, when
a physical node crashes, one or more logical nodes are lost.

4 Protocol

In this section, we give a detailed explanation of how the protocol works. We di-
vide the algorithm code in two parts. The former shows the first phase developed
with our technique during which a unique trie is recovered without considering
any lexicographic property. During the second phase, the trie is reorganized to
eventually form a distributed greatest common prefix tree.

4.1 Trie Recovery

After a node p detects the loss of its father (p.father), it searches for a new
father to link on. Making a traversal of the DHT, Node p collects in Variable
PN all the addresses of each remaining physical node. Collecting the addresses
in PN , p builds the set of logical nodes stored by the physical nodes in PN .
Next, using a PIF (Propagation of Information with Feedback) Protocol [6, 16],
p computes T , the set of logical nodes in its subtrie, which is made of its “real”
descendants and its “temporary” relinked descendants. This first step of the
recovery protocol ends when p chooses a temporary father (p.tmpfather) in the
subset N \ T . When, a node q is linked to a node p, then p considers q as a
temporary son—stored in p.tmpsons. Note that Variable p.tmpsons is required
to compute T using a PIF in the subtrie of p. If N \T = ∅ (i.e., there is no node
for which p may link on), then p is considered as the root of the trie.

The above technique suffers of a drawback: Several nodes without father may
make which could become a “bad” choice. In particular, they can choose as a
temporary father a node belonging to the subtrie of another node being in the
same situation. By doing this in parallel, cycles may appear. Our strategy is to
detect and to break a posteriori such cycles as follows.

After the choice of its temporary father tf , a node p sends a message “HELLO”
with its ID (p.id) to tf . In the next step, tf transmits the message to its own
father, and so on. Step by step, one of the two following situations eventually
arises:

176 E. Caron et al.

1. The “real” root of the trie receives the message “HELLO”. In that case, the
root notifies p that it is not involved in a cycle.

2. The message is received by a “false” root, i.e., a node having also lost its
own father. the false root propagates the message to its temporary father.

Note that, in the above latter case, due to asynchrony of the network, it is
possible that the false root receives the message “HELLO” sent by p before it
executed its own recovery phase. In that case, the false root is still without a
temporary father. The message “HELLO” is then delayed until the false root
chooses its own temporary father.

Therefore, the message “HELLO” sent by p keeps circulating among its an-
cestors, carrying the list of false roots’ IDs which were met during its traversal.
Upon receipt of a message “HELLO”, if the first item of the list carried by the
message is equal to the ID of the receiver, then a cycle is detected. In that case,
a leader election is computed among the IDs of the list—e.g., by choosing the
smallest ID. The leader becomes the root of the subtrie, breaks its link which its
father, and executes the recovery phase again. (The other “false” roots involved
in the cycle remain connected to the subtrie rooted by the leader.) Note that a
cycle may be created again. However, in the worst case, at each relaunching of
the recovery phase, at least one subtrie becomes the subtrie of one false root. In
other words, the number of cycles is periodically divided by at least 2. Therefore,
the system eventually contains one (rooted) trie only.

4.2 Trie Reorganization

The trie reorganization is initiated once the trie recovery is done. Each node
p having a temporary son q—i.e., q is a false root with its subtrie—initiates a
routing mechanism closed to the original key insertion [5]. Let us consider the
following cases:

1. The value p.val is a prefix of the value of q—Figure 1, Case (i). In that case,
q (and its subtrie) is placed in the subtrie of p following one of the four cases
shown in Figure 1, Cases (a) to (d).

2. The value p.val is not a prefix of the value of q. Then, p moves q to its father
which now has the responsibility to place q.

Note that new services may keep inserting during the trie reconstruction.
So, a new subtrie may have been created at the same place where the false
root initially was. Thus, our method requires to take in account that any false
root being placed in the trie can meet a node having the same value. In that
case, the two tries must be merged. That is the aim of the merging protocol,
initiated by the sending of a message “MERGE”. Upon receipt of this message,
a node p executes Procedure Gluing(q), which moves the sons of q to p before
withdrawing q from the trie (including the sons of q’s father). Then, if necessary,
p restarts recursively merging and placements among its sons, in order to merge
both subtries eventually.

A Repair Mechanism for Fault-Tolerance for P2P Systems 177

Algorithm 1 Recovery Protocol for each node p

1.01 upon receipt of <Disconnected from Father> do
1.02 PN := Physical Node Set in the DHT (collected by a DHT traversal);
1.03 N := Logical Node Set in PN (collected by polling the nodes in PN);
1.04 T := Logical Node Set in my subtrie (collected using a PIF wave)
1.05 using p.sons ∪ p.tmpsons;
1.06 if p.tmpfather �=⊥ then send <DISCONNECT> to p.tmpfather;
1.07 if N \ T = ∅
1.08 then //I am the root
1.09 p.father :=⊥; p.tmpfather :=⊥;
1.10 else p.tmpfather := random choice among N \ T ;
1.11 send-sync <LINK> to p.tmpfather;
1.12 send <HELLO,p.id> to p.tmpfather;
1.13 endif
1.14 upon receipt of <HELLO,list> from q do
1.15 if First(list) = p.id
1.16 then //A cycle is detected
1.17 leader := LeaderElection(list);
1.18 if p = leader
1.19 then Executes “upon receipt of <Disconnect from Father> do”,
1.20 except PN and N ;
1.21 endif
1.22 elseif p.Father �=⊥
1.23 then send <HELLO,list> to p.father;
1.24 elseif p.tmpfather �=⊥
1.25 then list := list + p.id;
1.26 send <HELLO,list> to p.tmpfather
1.27 elseif p.father =⊥
1.28 then // Both father and tmpfather are unknown, i.e.,
1.29 I am a false root which is still not linked
1.30 Executes “upon receipt of <Disconnect from Father> do”
1.31 if it is still not working;
1.32 if tmpfather �=⊥
1.33 then list := list + p.id;
1.34 send <HELLO,list> to p.tmpfather;
1.35 else send <NOCYCLE> to First(list);
1.36 else // I am the real root, so there is no cycle.
1.37 send <NOCYCLE> to First(list);
1.38 endif
1.39 upon receipt of <NOCYCLE> from q do
1.40 send <MOVE,p> to p.tmpfather;
1.41 send-sync <UNLINK> to p.tmpfather;
1.42 p.tmpfather :=⊥;
1.43 upon receipt of <LINK> from q do
1.44 tmpsons := tmpsons ∪ {q};
1.45 upon receipt of <UNLINK> from q do
1.46 tmpsons := tmpsons \ {q};

178 E. Caron et al.

Algorithm 2 Reorganization Protocol for each node p

1.01 upon receipt of <MOVE,fs> from q do
1.02 if fs.val = p.val

1.03 then //I send to myself that a fusion is needed.
1.04 send <MERGE,fs> to p

1.05 elseif p.val = prefix(fs.val)
1.06 then if ∃s ∈ p.sons| s.val = prefix(fs.val)
1.07 then // fs is in the subtrie of s, Case (a) in Figure 1
1.08 send <MOVE,fs> to s;
1.09 elseif ∃s ∈ p.sons| fs.val = prefix(s.val)
1.10 then // s is in the subtrie of fs, Case (b) in Figure 1
1.11 p.sons := p.sons ∪ {fs}; p.sons := p.sons \ {s};
1.12 send <MOVE,s> to fs;
1.13 elseif ∃s ∈ p.sons | p.val < PGCP (s.val, fs.val)
1.14 then // fs and s have a PGCP which is greater than p.val

1.15 // Case (c) in Figure 1
1.16 Newnode(PGCP (fs.val, s.val), s, fs); p.sons := p.sons \ {s};
1.17 else // fs is one of my sons, Case (d) in Figure 1
1.18 p.sons := p.sons ∪ {fs};
1.19 endif
1.20 else if p.father �=⊥
1.21 then send <MOVE,fs> to p.father

1.22 else if fs.val = prefix(p.val)
1.23 then // I am in the subtrie of fs

1.24 send <MOVE,p> to fs;
1.25 else // p and fs are brothers
1.26 p.sons := p.sons ∪ Newnode(PGCP (fs.val, f.val), fs, p);
1.27 endif
1.28 endif
1.29 endif

2.01 upon receipt of <MERGE,fs> from q do
2.02 Gluing(q);
2.03 Sorting of p.sons in the lexicographic order in Table ts;
2.04 for i = 0 to ts.length() do
2.05 if ts[i].val = ts[i + 1].val

2.06 then send <MERGE,ts[i + 1]> to ts[i];
2.07 i := i + 1;
2.08 elseif ts[i].val = prefix(ts[i + 1].val)
2.09 then send <MOVE,ts[i + 1]> to ts[i];
2.10 p.sons := p.sons \ {ts[i + 1]};
2.11 i := i + 1
2.12 elseif p.val < PGCP (ts[i].val, ts[i + 1].val)
2.13 then p.sons := p.sons ∪ Newnode(PGCP (ts[i].val, ts[i + 1].val),
2.14 ts[i], ts[i + 1]);
2.15 p.sons; = p.sons \ {ts[i], ts[i + 1]};
2.16 i := i + 1;
2.17 endif
2.18 done

A Repair Mechanism for Fault-Tolerance for P2P Systems 179

p

q s ss
1 ki

(i) p.val = prefix(q) and p.val = PGCP (s1, . . . , sk).
p

q s s s
1 i k

(a) There exists si such that
si.val = prefix(q.val).

p

q s ss
1 ki

(b) There exists si such that
q.val = prefix(si.val).

p

q

newsons s

s

1 k

i

(c) There exists si such that
PGCP (q.val, si.val) > p.val.

p

s s sq=s
1 i kk+1

(d) p.val = prefix(q.val).

Fig. 1. A false root q is linked to a node p such that p.val = prefix(q.val)

4.3 Correctness Proof

In this subsection, we discuss the correctness of our protocol. In order to do this,
we first need to make the realistic assumption that under the considered context,
the crash frequency is low enough to make the trie fully built sometime. (In the
opposite way, the trie could never be built and unusable most of the time. More
generally it is impossible to say anything about termination otherwise.) In other
words, we fairly assume that no crash occurs after a crash until the trie is fully
built, i.e., no two consecutive crashes interfere each other, at one given time.

Assuption 1. If a node crashes at time t, then for every t′ > t, no crash occurs.

Lemma 1. Under Assumption 1, the recovery protocol (Algorithm 1) termi-
nates, and when this occurs, the system contains one trie only.

Proof. The validation mainly consists in showing that the protocol terminates
and that the reorganization of the trie is eventually initiated (by sending a
message NOCYCLE).

Assume by contradiction that under Assumption 1, no node eventually sent
a message NOCYCLE. So, neither Line 1.35 nor Line 1.37 in Algorithm 1 is
executed. Note that in the first case (Line 1.35), the node becomes the “real”
node after the crash of its father. So, in both cases, this means that NOCYCLE
never reaches the “real” root of the trie. The height of the trie being finite,

180 E. Caron et al.

this means that every Message HELLO traverses cycles only. When a message
HELLO is received by its initiator, the cycle is broken by the node which is
elected among the false roots participating in the cycle—Lines 1.16 to 1.21.
Therefore, cycles are created infinitely often. Let C be the number of created
cycles. In the worst case, a cycle is made of at least two nodes. So, C is initially
bounded by F/2, where F is the number of false root created by the crash. When
a cycle is broken, at most one leader is elected. So, at most C/2 leaders are able
to link another node again. In the next phase, the number of cycles is less than or
equal to C/2. Since under Assumption 1, cycles may be created only when false
roots are linked to other nodes (executing Lines 1.10 and 1.11), C never grows
and is eventually equal to 0. This contradicts that cycles are created infinitely
often.

We now consider the phase of trie reorganization shown in Algorithm 2.

Lemma 2. Under Assumption 1 and assuming that the system contains one
trie only, the reorganization protocol (Algorithm 2) terminates, and when this
occurs, the trie is a PGCP tree.

Proof. Clearly, each trie of the forest following the crash of a node is a PGCP
tree. So, its remains to show that executing Algorithm 2, the whole trie eventu-
ally satisfies the condition to be a PGCP tree.

From the algorithm, it is easy to observe that, in the absence of merging,
there are only two cases to consider depending on the value of Node p and its
false son fs :

1. The value of p is a prefix of fs’s value—Line 1.05. In that case, following the
four cases described in Figure 1, fs is eventually placed at the right place in
the subtrie of p—refer to Lines 1.06 to 1.19. The resulting trie is a PGCP
tree.

2. The value of p is not a prefix of fs. Again, there are two cases to consider:
(a) Node p has no father (p.father =⊥)—Line 1.22 to 1.28. In that case, if

fs.val is a prefix of p, then p (and its subtrie) becomes the node to be
placed in fs—Line 1.24. Otherwise, p and fs become the two sons of a
new root node q such that q.val = PGCP (p, fs)—Line 1.26. The trie is
then clearly a PGCP tree.

(b) Node p has a father. Then, fs is moved to the father of p—Line 1.21. By
induction of the above discussion, either fs eventually moves on a node
q such that q.val = prefix(fs.val) or fs eventually reaches the root of
the trie. The former case is equivalent to Case 1, the latter to Case 2a.

If p and fs merge, then there are four cases to consider after p and fs glued
together into p:

1. There exists a pair of sons si, sj of p such that si.val is a prefix of sj .val.
Then, sj is moved toward si—Lines 2.08 to 2.11. This case is similar to the
above Case 1 (Cases (a) or (b) in Figure 1).

A Repair Mechanism for Fault-Tolerance for P2P Systems 181

2. There exists a pair of sons si, sj of p such that PGCP (si, sj) > p.val.
Then, si and sj become the two sons of a new son q of p such that q.val =
PGCP (p, fs)—Lines 2.12 to 2.16. This case is also similar to the above
Case 1 (Case (c) in Figure 1).

3. There exists a pair of sons si, sj of p such that si.val = sj .val. This case
is solved by initiating a recursive merging between si and sj—Lines 2.05
to 2.07. This case is solved by induction on si and sj .

4. There exists no pair of sons si, sj of p satisfying either Case 1, 2, or 3. In
that case, the subtrie of p clearly satisfies the properties of a PGCP tree.

From Lemmas 1 and 2 follows:

Theorem 1. Under Assumption 1, Algorithm 1 and Algorithm 2 provide a
PGCP tree reconstruction after the crash of a physical node.

5 Conclusion and Future Work

In this paper, we have presented a fault-tolerant protocol in case of node crashes
in a Proper Common Greatest Prefix tree search system. This protocol can be
coupled with a replication strategy to lower the costs related to high replication
factors. This protocol allows the reconnection and repair of subtries after the
crash of one or more nodes. This algorithm guarantees to recover a consistent
PGCP tree after a finite time and thus to avoid partially replication.

Our future work will consist in connecting the two mechanisms (replication
and repair) in order to minimize the cost of fault-tolerance on dynamic platforms.
We will also develop and validate experimentally the mechanisms exposed in this
paper on the Grid’5000 platform of the french ministry of research. The aim of
such experimentation will be to see the performance of the repair algorithm and
to see its capacity to answer clients’ requests facing different levels of dynamicity.
Moreover, we will be able to see starting from which level of dynamicity the repair
mechanism is no more efficient alone, and then how we can progressively inject
some replication as the dynamicity level increases.

References

1. A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries for Grid Information
Services. In Peer-to-Peer Computing, pages 33–40, 2002.

2. J. Aspnes and G. Shah. Skip Graphs. In Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 384–393, January 2003.

3. M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine: A Scalable Peer-to-
Peer Architecture for Intentional Resource Discovery. In Proceedings of Pervasive
2002, 2002.

4. S. Basu, S. Banerjee, P. Sharma, and S. Lee. NodeWiz: Peer-to-Peer Resource
Discovery for Grids. In 5th International Workshop on Global and Peer-to-Peer
Computing (GP2PC) in conjunction with CCGrid, May 2005, 2005.

182 E. Caron et al.

5. E. Caron, F. Desprez, and C. Tedeschi. A dynamic prefix tree for the service
discovery within large scale grids. In IEEE, editor, The Sixth IEEE International
Conference on Peer-to-Peer Computing, P2P2006, Cambridge, UK., September 6-8
2006.

6. E.J.H. Chang. Echo Algorithms: Depth Parallel Operations on General Graphs.
IEEE Trans. on Software Engineering, SE-8:391–401, 1982.

7. A. Datta, M. Hauswirth, R. John, R. Schmidt, and K. Aberer. Range Queries in
Trie-Structured Overlays. In The Fifth IEEE International Conference on Peer-
to-Peer Computing, 2005.

8. I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence of Peer-to-Peer
and Grid Computing. In IPTPS’03, pages 118–128, 2003.

9. Gnutella. http://www.gnutella.com.
10. KaZaA 2005. The KaZaA Web Site. http://www.kazaa.com.
11. D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Distributed Resource

Discovery on PlanetLab with SWORD. In Proceedings of the ACM/USENIX Work-
shop on Real, Large Distributed Systems (WORLDS), December 2004.

12. S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker. Prefix Hash
Tree An indexing Data Structure over Distributed Hash Tables. In Proceedings
of the 23rd ACM Symposium on Principles of Distributed Computing, St. John’s,
Newfoundland, Canada, July 2004.

13. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Adressable Network. In ACM SIGCOMM, 2001.

14. A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-To-Peer Systems. In International Conference on
Distributed Systems Platforms (Middleware), November 2001.

15. C. Schmidt and M. Parashar. Enabling Flexible Queries with Guarantees in P2P
Systems. IEEE Internet Computing, 8(3):19–26, 2004.

16. A. Segall. Distributed Network Protocols. IEEE Transactions on Information
Theory, IT-29:23–35, 1983.

17. Y. Shu, B.-C. Ooi, K.-L. Tan, and A. Zhou. Supporting Multi-Dimensional Range
Queries in Peer-to-Peer Systems. In Peer-to-Peer Computing, pages 173–180, 2005.

18. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A Scal-
able Peer-to-Peer Lookup service for Internet Applications. In ACM SIGCOMM,
pages 149–160, 2001.

19. P. Triantafillou and T. Pitoura. Towards a Unifying Framework for Complex Query
Processing over Structured Peer-to-Peer Data Networks. In DBISP2P, 2003.

20. B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.
Tapestry: A Resilient Global-scale Overlay for Service Deployment. IEEE Journal
on Selected Areas in Communications, 22(1):41–53, January 2004.

	Introduction
	Related Work
	Preliminaries
	Protocol
	Trie Recovery
	Trie Reorganization
	Correctness Proof

	Conclusion and Future Work
	References

