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Message from the Program Chair

Welcome to the proceedings of the 13th International Conference on High-Performance
Computing!

This year, we were delighted to receive 335 submissions from 5 continents and
39 different countries. Eventually, 52 submissions from 19 different countries were se-
lected for presentation at the conference and publication in the conference proceedings.

This large number of submissions led us to use the same two-phase selection process
as for HiPC 2005. First, all submitted papers were carefully considered by the Program
Chair and Vice-Chairs to check their consistency with the minimal requirements for ac-
ceptance. At the end of this first stage, we were left with 282 submissions, which were
further considered by the Program Committee. Each of these papers was reviewed by
three Program Committee members. As many as 837 reviews were collected (2.97 per
paper on the average), and each paper was discussed at the on-line Program Commit-
tee meeting. Finally, 52 out of 282 papers(18.4%) were accepted for presentation and
publication in the proceedings.

These figures show that the selection process was highly competitive. We congrat-
ulate all authors of accepted papers for their success. Also, we would like to thank all
authors of submitted papers for their interest in the conference, and we strongly encour-
age them to submit their work to forthcoming issues of HiPC.

Two outstanding papers were selected as “Best Papers”; one in the Algorithms and
Applications area (“Algorithmic Ramifications of Prefetching in Memory Hierarchy,”
by Akshat Verma and Sandeep Sen), and the other in the Software area (“A Cache-
Partitioning Aware Replacement Policy for Chip Multiprocessors,” by Haakon Dyb-
dahl, Per Stenstrom, and Lasse Natvig). They were presented in a separate plenary
session and each paper was awarded a prize sponsored by InfoSys.

In the conference program, we were pleased to accommodate ten parallel techni-
cal sessions of high-quality contributed papers, plus the special plenary “Best Papers”
session. In addition, this year’s conference also featured three Tutorials, six Keynote
Addresses, a Panel Session, a Poster Session, Industrial Exhibits, six Workshops and a
Mini-Symposium.

It was a pleasure putting together this program with the help of six excellent Pro-
gram Vice-Chairs and their 89 Program Committee members. The hard work of all the
Program Committee members is deeply appreciated. I especially wish to acknowledge
the dedicated effort put forth by the Vice-Chairs: Srinivas Aluru (Algorithms), John
Morrison (Applications), Bradley Kuszmaul (Architecture), Yuanyuan Yang (Commu-
nication Networks), Stéphane Ubéda (Mobile and Sensor Computing), and Sanjay Ra-
jopadhye (Systems Software).

Without their help and timely work, the quality of this program would not be as
high, nor would the process have run so smoothly.

I thank the other organizers who contributed in assembling this program, including
those who organized the keynotes, tutorials, workshops, awards, poster session, industry
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exhibits, and those who performed the administrative functions that were essential to
the success of this conference. The work of Sushil K. Prasad in putting together the
conference proceedings is also acknowledged, as well as the support provided by the
Cyber Co-chairs, Sumir Chandra and Vijay Bhat.

I express heart-felt thanks to our General Co-chairs, Manish Parashar and Rama-
murthy Badrinath; Steering Chair, Viktor Prasanna; and to the Vice-General Co-chairs,
Rajendra V. Boppana and Rajeev Muralidhar; for all their useful advice. Lastly, I thank
the Steering Chair and General Co-chairs for allowing me to serve our community as
the Program Chair of this high-quality international conference. It has been a rewarding
experience, and a pleasure to correspond with so many of you.

December 2006 Yves Robert
Ecole Normale Supérieure de Lyon, France



Message from the General Co-chairs and the Vice
General Co-chairs

On behalf of the organizers of the 13th International Conference on High-Performance
Computing (HiPC), it is our pleasure to welcome you to Bangalore. I do hope you will
find these proceedings exciting and rewarding.

Several new events made HiPC 2006 a special and exciting meeting. The call for
papers included, for the first time, a separate track on Mobile and Sensor Comput-
ing. HiPC 2006 also featured a mini-symposium on High-Performance Computing
Technologies, Applications and Experience aimed at bringing together the users and
providers of HPC. Finally the HiPC Student Challenge brought together student teams
from Indian institutions in a competition to design and develop distributed solutions to
respond to and effectively manage national emergencies. These new events were com-
plemented by the keynotes presented by internationally renowned research, the posters
session presenting hot off-the-press research results, and the industry and research ex-
hibits. As always, the meeting was preceded by a set of tutorials and was followed by
workshops highlighting new and emerging aspects of the field.

The HiPC call for papers, once again, received an overwhelming response, attracting
335 submissions from 39 countries and establishing another record. For this, we would
like to specially thank Yves Robert, Program Chair, who with remarkable dedication
put together an outstanding technical program consisting of the 52 papers that appear in
these proceedings. We would also like to thank the Program Committee for their efforts
in assembling such an excellent program and the authors who submitted the high-quality
material from which that program was selected. Finally, we would like to thank the
presenters of the keynotes, posters and tutorials, the organizers of the workshops, and
all the participants.

Arranging an exciting meeting with a high-quality technical program is easy when
one is working with an excellent and dedicated team and can build on the practices and
levels of excellence established by a quality research community. HiPC 2006 would not
have been possible without the tremendous efforts of the many volunteers. We would
like to acknowledge the critical contributions of each one. We would especially like to
thank Viktor Prasanna, Chair of the HiPC Steering Committee, for his leadership, sage
guidance, and untiring dedication. We would also like to welcome our new volunteers
to the team - your efforts are critical to the continued success of this conference. Finally,
we would like to gratefully acknowledge our academic and industry sponsors includ-
ing the IEEE Computer Society, ACM SIGARCH, EATCS, IFIP, NASSCOM, MAIT,
Infosys, DELL, HP, IBM, Microsoft, Satyam, Sun, Intel, AMD and Cray.

Manish Parashar Rajendra V. Boppana
Rutgers University, USA University of Texas at San Antonio, USA
Ramamurthy Badrinath, HP, India Rajeev Muralidhar, Intel, India
General Co-chairs Vice General Co-chairs



Message from the Steering Chair

It is my pleasure to welcome you to the proceeding of the 13th International Conference
on High-Performance Computing held in Bangalore, the IT capital of India.

This conference would not be possible without the dedicated effort of many vol-
unteers over the past year. First, I would like to single out the contributions of Yves
Robert, Program Chair, for his outstanding contributions in putting together an excellent
technical program. I appreciate his efforts in handling a large number of submissions
in a timely manner and his overall coordination to ensure a quality program. Rama-
murthy Badrinath and Manish Parashar as General Co-chairs provided the leadership
in resolving numerous meeting-related issues and putting together the overall meeting
program including the workshops and tutorials. They were ably assisted by Rajendra
Boppana and Rajeev Muralidhar, Vice General Co-chairs. The poster/presentation ses-
sion was organized by Rajeev Thakur. The meeting offers scholarships for India-based
students. These scholarships were administered by Anu Bourgeois and Madhusudhan
Govindaraju.

We have several continuing as well as new workshops. These workshops were coor-
dinated by Manimaran Govindarasu. Rama Govindaraju put together the tutorials. His
efforts in securing additional funding for tutorial speakers is appreciated. The Web site
was maintained by Viraj Bhat and Sumir Chandra. The local arrangements were han-
dled by C. Kalyana Krishna. Sushil Prasad liased with the authors and Springer to bring
out the proceedings. Rajeev Raje, Bo Hong, and Manisha Dhanke handled the publicity
for us. Susamma Barua acted as the Registration Chair.

Ramamurthy Badrinath with assistance from Raghuram Tupuri of AMD put to-
gether the Mini-Symposium on High-Performance Computing Technologies, Applica-
tions and Experience. It expands our HPC Users meeting that was organized in 2005.
The intent of the mini-symposium is to provide a forum for vendors as well as HPC
users in India to present the technologies and user experiences. In addition, Vijay Mann
and Raghuram Tupuri coordinated the industry exhibits.

I would like to thank all our volunteers for their tireless efforts. The meeting would
not be possible without the enthusiastic commitment of these individuals.

Major financial support for the meeting was provided by several leading IT compa-
nies and multinationals operating in India. I would like to acknowledge the following
individuals and their organizations for their support:

N. R. Narayana Murthy and Kris Gopalakrishnan, Infosys
Harish Grama, IBM India
P. Gopalakrishnan, IBM India Research Lab
Daniel Dias, IBM India Research Lab
H. P. Raghunandan, IBM India Software Lab
Pratap Pattnaik, IBM T.J. Watson Research Center
Manish Gupta, IBM T.J. Watson Research Center
June GL Ng, IBM T.J. Watson Research Center
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Subramanian Kannan, IBM T.J. Watson Research Center
Raghuram Tupuri, AMD
Vittal Kini and Kiran Panesar, Intel Research, India
Dinkar Sitaram and Faisal Paul, HP India
Jaideep Sen, Microsoft
B. Rudramuni, Dell India
Reza Rooholamini, Dell
V. Sridhar, Satyam
Venkat Ramana, Hinditron Infosystems

Finally, I would like to thank Animesh Pathak at USC for his continued assistance
and enthusiasm in organizing the meeting.

December 2006 Viktor K. Prasanna
University of Southern California, USA
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(IRISA), France
Yanos Sazeides, University of Cyprus, Cyprus
Hans Vandierendonck, University of Ghent, Belgium
Craig Zilles, University of Illinois at Urbana-Champaign, USA

Communication Networks

Jiannong Cao, Hong Kong Polytechnic University, China
Kartik Gopalan, Florida State University, USA
Lisandro Granville, Federal University of Rio Grande do Sul, Brazil
Qianping Gu, Simon Fraser University, Canada
Mathieu Latapy, LIAFA Paris, France
Xing Li, Tsinghua University, China
Bin Liu, Tsinghua University, China
Olav Lysne, Simula Research Laboratory, University of Oslo, Norway
Yavuz Oruc, University of Maryland at College Park, USA
Mohamed Ould-Khaoua, University of Glasgow, UK
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Thomas Noel, Université de Strasbourg, France
Stephan Olariu, Old Dominion University, USA
Christian Prehofer, DoCoMo Euro-Labs, Munich, Germany
Pedro Ruiz, University of Murcia, Spain
Stefan Weber, Trinity College Dublin, Ireland
Yang Yu, Motorola Research Laboratory, USA

Systems Software

Rumen Andonov, Institut National de Recherche en Informatique (INRIA), France
Eduard Ayguade, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
Scott Baden, University of California at San Diego, USA
Pedro Diniz, University of Southern California, Information Sciences Institute

(ISI), Marina Del Rey, USA
Ramaswamy Govindarajan, Indian Institute of Science (IISc), Bangalore, India
Manish Gupta, IBM Yorktown Heights, USA
Ben Juurlink, Delft University of Technology, Netherlands
Uday Khedker, Indian Institute of Technology, Mumbai, India
Mitsuhisa Sato, Tsukuba University, Japan
Siang Wun Song, São Paulo University, Brazil
Michelle Strout, Colorado State University, USA
Chau-Wen Tseng, University of Maryland at College Park, USA
Frédéric Vivien, Institut National de Recherche en Informatique (INRIA) and Ecole

Normale Supérieure de Lyon (ENS Lyon), France
Cho-Li Wang, Hong Kong University, China
Jingling Xue, University of New South Wales, Sydney, Australia

Workshop Organizers

Workshop on New Horizons in Compilers

Co-chairs

R. Govindarajan, IISc, Bangalore, India
Uday Khedker, IIT Mumbai, India
Rahul Simha, The George Washington University, USA
Bhagi Narahari, GWU, Washington, USA

Workshop on Many Core Computing

Co-chairs

S.K. Nandy, IISc, Bangalore, India
Vittal Kini, Intel Research, Bangalore, India



XVI Organization

Workshop on Global Environment for Network Innovations (GENI): India

Chair

Vishal Mistra, Columbia University, NY, USA

Workshop on High-Speed DSP Architectures

Co-chairs

Serene Banerjee, Texas Instruments, India
C. P. Ravikumar, Texas Instruments, India

Workshop on Cutting-Edge Computing

Co-chairs

Harish K. Grama, IBM Software Lab., India
Albee Jhoney, IBM Software Lab., India

Workshop on Next-Generation Wireless Networks

Co-chairs

C. Siva Ram Murthy, IIT Madras, India
B. S. Manoj, University of California, San Diego, USA

Tutorials

Getting Going with the Grid and Its Applications

Mark Baker, The University of Reading, UK

MPI - Portable Scalable Programming for High-Performance Computing

Ewing (“Rusty”) Lusk, Argonne National Labs, USA

Cluster and Parallel File Systems for High-Performance Computing
Clusters

Gautam Shah, IBM Systems Development Lab., Poughkeepsie, NY, USA



Organization XVII

List of Reviewers

In addition to the 95 PC members, the following colleagues provided reviews for HiPC
2006 papers. Their help is gratefully acknowledged.

Afrand Agah
Vijay Agneeswaran
Habib Ammari
Marcos Assuno
Isabelle Augé-Blum
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Navigability of Small World Networks

Pierre Fraigniaud

University Paris Sud, France

Abstract. The “Small World Phenomenon” a.k.a. “Six Degree of Separation Be-
tween Individuals” was identified by Stanley Milgram at the end of the 60s. Mil-
gram’s experiment demonstrated that letters from arbitrary sources and bound to
an arbitrary target can be transmitted along short chains of closely related in-
dividuals based solely on some characteristics of the target (occupation, state of
leaving, etc.). In his seminal work, Jon Kleinberg modeled and analyzed this phe-
nomenon in the framework of “augmented networks”. A network is navigable if it
can be augmented by random links so that greedy routing performs in a polyloga-
rithmic expected number of steps between any pair of nodes. This talk will survey
the recent results in this field. In particular, the connections between navigability
and low doubling dimension will be described. The possible use of the concept of
navigable networks in the framework of Grid Computing and P2P networks will
also be discussed.

Biography: Pierre Fraigniaud received the M.Sc. in Mathematics from UJF-Grenoble
(1987), and the Ph.D. degree in Computer Science from ENS Lyon (1990). He is Di-
recteur de Recherches at CNRS, leading the research group “Graph Theory and Funda-
mental Aspects of Communications” (GraFComm) at the Computer Science Dep. of U.
Paris Sud. His research interests include several aspects of communication networks,
parallel and distributed systems, and telecommunication systems. He is particularly
interested in routing algorithms, information dissemination problems (e.g., multicast-
ing, broadcasting, etc.), peer-to-peer networks, and the algorithmic for mobile agents
(e.g., exploration, gathering, rendezvous, etc.). He is currently member of the Edito-
rial Board of Theory of Computing Systems (TOCS) and Journal of Interconnection
Networks (JOIN). He recently acted as Program Chair for the 19th Int. Symp. on Dis-
tributed Computing (DISC 2005) and the 13th ACM Symp. on Parallel Algorithms and
Architectures (SPAA 2001).
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Opportunities and Challenges for Future Generation
Grid Research

Dennis Gannon

Professor of Computer Science & Science Director - Pervasive Computing Labs
Indiana University

Abstract. Grid systems are now a standard approach to solving problems in large
scale, multidisciplinary scientific endeavors. These research groups are often geo-
graphically distributed, and to conduct their research, they need to share access to
physical resources such as supercomputers, large databases, on-line instruments
and distributed applications. Grid infrastructure helps solve their problems be-
cause it can provide a layer of middleware that virtualizes the access to these
resources. The users see a single coherent computer system instead of a com-
plex network of distributed resources. In most cases, users enter the grid though
a ”gateway” portal, which may be a web portal or a ”thick” desktop client. The
gateway gives the user a way to browse metadata about computational experi-
ments to access data products, to monitor active workflows and to run applica-
tions and share results. The user can focus on the problems of science and not
computer systems. All of this is made possible because of the Service Oriented
Architecture (SOA) that underlies the core Grid middleware.

In this presentation, we will look at several examples of successful Scientific
Grids and Gateways. We will also describe the fundamentals of the web service
SOAs that works best in Grid systems. We will illustrate these ideas with an ex-
ample called LEAD which is a Grid designed to improve our ability to predict
meso-scale weather events such as hurricanes, typhoons and tornadoes. We will
also describe how this entire approach to service virtualization is now being used
in industry to better use the resources of a single, but distributed business enter-
prise. While a great deal of progress has been made there are many exciting and
unsolved problems. As we go through the talk, we will highlight these challenges
and research opportunities.

Biography: Dr. Gannon is a professor of Computer Science in the School of Informat-
ics at Indiana University. He is also Science Director for the Indiana Pervasive Technol-
ogy Labs. He received his Ph.D. in Computer Science from the University of Illinois
in 1980 and his Ph.D. in Mathematics from the University of California in 1974. From
1980 to 1985, he was on the faculty at Purdue University. From 1997-2004 he was
Chairman of the Indiana Computer Science Department. His research interests include
software tools for high performance parallel and distributed systems and problem solv-
ing environments for scientific computation. His current work includes the design of
software component architectures for multi-core and distributed systems and web ser-
vice architectures for Grids and Grid Portals. He has been program chair or general
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chair of a number of conferences including the International Conference on Supercom-
puting, Frontiers of Massively Parallel Computing, PPoPP, HPDC, Java Grande and the
International Grid Conference. He was a co-founder of the Java Grande Forum and a
Steering Committee member of the Global Grid Forum where he co-chaired the Open
Grid Computing Environments and Open Grid Service Architecture working groups.
He is one of the original architects of the Common Component Architecture and a
founder of the CCA Forum.



Software Challenges for Multicore Computing

Kenneth Kennedy

John and Ann Doerr University Professor of Computational Engineering, Department of
Computer Science

Rice University

Abstract. Current technological trends have led chip manufacturers to move to
designs that include multiple processors, or cores, on each chip. In some cases,
these processors are homogeneous (e.g., Intel, AMD) and in others they are het-
erogeneous (e.g., Cell). It is clear is that these designs represent the future of
computational chips and they will effect enormous changes in the way software
is designed and implemented to take advantage of their power. In this talk, I will
survey issues that will be critical to making systems, particularly HPC systems
based on multicore chips usable by application developers. The talk presents a
series of “big questions” (not to be confused with “grand challenges”) about soft-
ware, particularly compilers and programming tools, for multicore chips. Topics
include utilization of bandwidth (both on and off chip), on-chip memory hierar-
chy (shared versus separate caches), methods for exploitation of parallelism (data
parallelism versus pipelining), and inter-core synchronization mechanisms. The
talk will also address the special challenges presented by on-chip heterogeneous
parallelism such as that found on the IBM Cell chip and planned for future Intel
designs. I will conclude with a discussion of my own group’s preliminary re-
search on compilers and tools for systems based on multicore chips and future
research directions for the computer science community as a whole.

Biography: Ken Kennedy is the John and Ann Doerr University Professor of Com-
putational Engineering and Director of the Center for High Performance Software Re-
search (HiPerSoft) at Rice University. He is a fellow of the Institute of Electrical and
Electronics Engineers, the Association for Computing Machinery, and the American
Association for the Advancement of Science. He was elected to the National Academy
of Engineering in 1990 and to the American Academy of Arts and Sciences in 2005.
From 1997 to 1999, he served as co-chair of the President’s Information Technology
Advisory Committee (PITAC). For his leadership in producing the PITAC report on
funding of information technology research, he received the Computing Research As-
sociation Distinguished Service Award (1999) and the RCI Seymour Cray HPCC Indus-
try Recognition Award (1999). Prof. Kennedy has published two books and over two
hundred technical articles and supervised thirty-seven Ph.D. dissertations on program-
ming support software for high-performance computer systems. His current research
focuses on programming languages tools to improve the productivity of scientists and
engineers developing technical applications for complex platforms, particularly scal-
able parallel computers and the Grid. In recognition of his contributions to software for
high performance computation, he received the 1995 W. Wallace McDowell Award, the
highest research award of the IEEE Computer Society. In 1999, he was named the third
recipient of the ACM SIGPLAN Programming Languages Achievement Award.
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Imaging-Based Systems Biology

Gene Myers

Howard Hughes Medical Institute
Maryland, USA

Abstract. Arguably the most significant contribution of the human genome
project is that we can now build a recombinant construct of every gene and every
promotor in C. elegans (worm), D. melanogaster (fly), M. musculus (mouse), and
H. sapiens (human). These include fluorescent proteins and other markers that can
be induced at controlled time points via a change in temperature, light, or chem-
istry. Combined with tremendous advances in light and electron microscopy in
recent years, I believe we are now poised to visualize the meso-scale of the cell,
and development and small organs (e.g. a fly’s brain) at the resolution of indi-
vidual cells. Toward this end, my group is working on a number of preliminary
imaging projects along these lines. These include (a) studies of development and
gene expression in worms and flies, (b) neural patterning in flies and mice, and
(c) the interpretation of signals from a new sub-wavelength resolution light mi-
croscope. We describe preliminary results on limited data sets and extrapolate on
what we might be able to infer from such data. We further speculate on the po-
tential implications of such work for the future of molecular biology.

Biography: Gene Myers is one of the seven initial investigators to sign on as group
leaders at the new Janelia Farm Research Campus of the Howard Hughes Medical In-
stitute. Gene comes to the JFRC from UC Berkeley where he was on the faculty of
Computer Science starting in 2003. He was formerly Vice President of Informatics
Research at Celera Genomics for four years where he and his team determined the
sequences of the Drosophila, Human, and Mouse genomes using the whole genome
shotgun technique that he advocated in 1996. Prior to that Gene was on the faculty of
the University of Arizona for 18 years and he received his Ph.D in Computer Science
from the University of Colorado in 1981. His research interests include design of al-
gorithms, pattern matching, computer graphics, and computational molecular biology.
His most recent academic work has focused on algorithms for the central combinatorial
problems involved in DNA sequencing, and on a wide range of sequence and pattern
comparison problems. Among the tools he has developed are Blast – a widely used
tool for protein similarity searches, FAKtory – a system to support DNA sequencing
projects, Anrep – a pattern matching language for applications in molecular biology,
and Mac- & PC-Molecule – a molecular visualization tool for Apple and Wintel com-
puters He was awarded the IEEE 3rd Millenium Acheivement Award in 2000, the New-
comb Cleveland Best Paper in Science award in 2001, and the ACM Kanellakis Prize
in 2002. He was voted the most influential in bioinformatics in 2001 by Genome Tech-
nology Magazine and was elected to the National Academy of Engineering in 2003. In
2004 he won the International Max-Planck Research Prize.
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Advanced Scientific Computing: An Extraordinary Tool
for Extraordinary Science

Jeffrey Wadsworth

Oak Ridge National Laboratory
USA

Abstract. Work is under way throughout the world to realize the promise of
petascale computing and to complete the emergence of simulation as the third
leg of science, joining theory and experiment. By the end of this decade, our
ability to attack previously unsolvable problems will provide the basis for trans-
formational advances in science and engineering that will enable us to address
global challenges in energy, environment, and national security. In the United
States, three government agencies are pursuing petascale initiatives: the Defense
Advanced Research Projects Agency, the National Science Foundation, and the
U.S. Department of Energy (DOE). I will describe the new capability for high-
end science that is being fielded by DOE’s Leadership Computing Facility at Oak
Ridge National Laboratory and discuss how this capability will be applied to such
computationally challenging problems as climate modeling and prediction, astro-
physics, nuclear fusion, systems biology, and materials design at the nanoscale.

Biography: As Director of Oak Ridge National Laboratory, Jeffrey Wadsworth is re-
sponsible for the management of the U.S. Department of Energy’s largest multi-purpose
science and energy laboratory, with a staff of 4150 and an annual budget of more than
$1 billion. Previously, he worked at Stanford University, Lockheed Missiles and Space
Company, and Lawrence Livermore National Laboratory. He earned baccalaureate and
doctoral degrees from the University of Sheffield in England, which has also awarded
him a D. Met. for published work and an honorary D. Eng. Dr. Wadsworth has pub-
lished more than 275 papers in the open scientific literature on a wide range of ma-
terials science and metallurgical topics. He is the author of Superplasticity in Metals
and Ceramics (Cambridge, 1997) and holds four U.S. patents. He is an elected Fellow
of the American Association for the Advancement of Science, ASM International, and
The Minerals, Metals & Materials Society (TMS) and a member of the Materials Re-
search Society and the American Ceramic Society. He holds honorary professorships
at Central South University, Changsha, China, and the University of Science and Tech-
nology Beijing, China. In January 2005, he was elected to membership in the National
Academy of Engineering.

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, p. 6, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



High-Performance Computing for the Masses

Zhiwei Xu

Institute of Computing Technology, Chinese Academy of Sciences
Beijing, China

Abstract. In this talk, the speaker will review the history and trends of high-
performance computing from the users’ viewpoint. Evolutional milestones in
workload, usage modes, programming models and systems architectures will be
identified. Essential challenges and bottlenecks will be analyzed. He will high-
light the newly formed e-Nation strategy for China of 2006-2020, and summarize
R & D efforts in China to provide a high-performance computing infrastructure
that could benefit half of the population of China.

Biography: Zhiwei Xu received his Ph.D. degree from University of Southern Califor-
nia in 1987. He is a professor and deputy director at Institute of Computing Technol-
ogy, Chinese Academy of Sciences. His research areas include distributed computing,
net-centric operating system, and high-performance computing architecture. He is on
the editorial boards of Journal of Grid Computing, Journal of Parallel and Distributed
Computing, and IEEE Transactions on Computers.
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Conquering Complexity in Information Systems

Harrick Vin

Tata Research, Development and Design Center
Tata Consultancy Services

Pune, India

Abstract. The complexity of large-scale “information plants” - consisting of a
number of hardware and software components - has been increasing rapidly and
is fast approaching a barrier. I argue that continuous “evolution” is a key con-
tributor to this complexity. Information plants evolve to accommodate new soft-
ware functionalities, hardware technology, application and user requirements, as
well as changes in operating conditions (workload, faults, etc.). Today, evolving
information plants in a timely manner while maintaining desired levels of per-
formance, stability, and security is an art; system evolution tasks are manual and
intuition-based. In this talk, I will illustrate, through examples, the complexity
resulting from evolution in modern information systems, and advocate a broad
research agenda in computing to conquer this complexity through managed evo-
lution.

Biography: Dr. Harrick Vin is the head of the Systems Research Lab (SRL) at the
Tata Research, Development and Design Center (TRDDC) in Pune, India. TRDDC is
an R&D division of Tata Consultancy Services (TCS). Harrick’s research interests are
in the areas of networks, operating systems, distributed systems, and multimedia sys-
tems. Harrick received his Ph.D. in Computer Science from the University of California
at San Diego. He has co-authored more than 100 papers in leading journals and con-
ferences. Harrick is a recipient of several awards including the Faculty Fellow in Com-
puter Sciences, Dean’s Fellowship, National Science Foundation CAREER award, IBM
Faculty Development Award, Fellow of the IBM Austin Center for Advanced Stud-
ies, AT&T Foundation Award, National Science Foundation Research Initiation Award,
IBM Doctoral Fellowship, NCR Innovation Award, and San Diego Supercomputer Cen-
ter Creative Computing Award. He has served on the Editorial Board of ACM/Springer
Multimedia Systems Journal, IEEE Transactions on Multimedia, and IEEE Multime-
dia. He has been a guest editor for IEEE Network. He has served as the program chair,
the program co-chair, and a program committee member for several conferences.
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Algorithmic Ramifications of Prefetching in
Memory Hierarchy

Akshat Verma1 and Sandeep Sen2,�

1 IBM India Research Lab
akshatverma@in.ibm.com

2 Dept of Computer Science and Engineering, IIT Delhi
ssen@cse.iitd.ernet.in

Abstract. External Memory models, most notable being the I-O Model
[3], capture the effects of memory hierarchy and aid in algorithm design.
More than a decade of architectural advancements have led to new fea-
tures not captured in the I-O model - most notably the prefetching ca-
pability. We propose a relatively simple Prefetch model that incorporates
data prefetching in the traditional I-O models and show how to design
algorithms that can attain close to peak memory bandwidth. Unlike (the
inverse of) memory latency, the memory bandwidth is much closer to the
processing speed, thereby, intelligent use of prefetching can considerably
mitigate the I-O bottleneck. For some fundamental problems, our algo-
rithms attain running times approaching that of the idealized Random
Access Machines under reasonable assumptions. Our work also explains
the significantly superior performance of the I-O efficient algorithms in
systems that support prefetching compared to ones that do not.

1 Introduction

Algorithm analysis and design are based on models of computation that must
achieve a balance between abstraction and fidelity. The incorporation of mem-
ory hierarchy issues in the traditional Random Access Machine (RAM) model
took some time [1,2,4,3,14,11], eventually culminating in the I-O model of Ag-
garwal and Vitter[3]. The I-O model derives wide acceptance from its simplicity.
It manages to redress the lack of distinction among the memory access times of
the different tiers of memory in the RAM model and has been used extensively
in the design of various external memory algorithms [3,18,9]. Further work in
this direction led to the Cache model of Sen, Chatterjee and Dumeer [20] that
addresses the algorithm design issues under the constraints of limited associa-
tivity in memory hierarchy. These results show an inherent gap in complexities
of several problems between the RAM and the I-O models.

� Part of the research done when the author was visiting University of Connecticut
and supported by NSF Grant ITR-0326155.
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1.1 Motivation

The I-O models report their results in terms of the number of I-Os thus making
an implicit assumption that every I-O has same cost. Dementiev and Sanders [9]
present an efficient sorting algorithm in terms of the I-O time thus moving to to a
more practical metric. However, all these models assume that the cost of I-O (in
terms of time) is a fixed constant. A close look at memory access reveals that I-O
cost can be broken into latency (time spent in seeking to the right location) and
the transfer time (time spent in actual transfer of the block). Hence, a latency L is
incurred before the start of the transfer of a block. A large number of techniques
(like increase in bus bandwidth, advances in semiconductor technology) have led
us to a stage where primary memory bandwidth is approaching processor speed.
Similarly, the disk transfer times have significantly improved over the years where
packing density and disk rotation speeds have greatly increased. Techniques
like using parallel disks have also been useful to ensure that I-O bandwidth
approaches processor speed [23,9,6]. Unfortunately the access latencies for both
primary and secondary memory have not reduced in tandem with increase in
memory bandwidth and processor speed, and I-O bottleneck is dominated by it.

The traditional approach for speeding up memory access has been to minimize
the number of I-O’s to reduce the total latency and its parallelization on multiple
disk architectures. Pipelining and Prefetching support in contemporary architec-
tures (including Pentium IV) [7,10] present another possibility, namely, overlap-
ping access latencies (For a survey on system-level prefetching support, refer to
[19] and references therein). Similarly, read-ahead caches on disks prefetch data
in advance to hide the latency component. Also, disk scheduling algorithms like
SCAN hide latency of queued requests while serving a block. Because of the huge
difference in magnitude between latency and transfer times, the potential sav-
ings in I-O times are immense. As an example, consider a scenario where we read
1, 000, 000 10KB blocks sequentially where each read has a latency of 10 ms and
transfer time of 0.1 ms per block. In the traditional I-O model we would incur
a latency for each read and the total I-O time would be approximately 3 hours,
whereas, with prefetching the total time is less than 2 minutes as we incur the
latency only for the first block. On current systems with system-level prefetching
[19], such sequential reads take significantly less time than predicted by the I-O
model (Section 5). Moreover, many recently proposed disk scheduling algorithms
strive to compensate for the lack of prefetching-awareness in algorithms by idle
waiting at a head position or waiting to build large batches of requests before
sending them to the disk controller [15,17]. In [15], the controller waits for more
contiguous requests to be issued after serving a request, thus introducing idling.
If such requests are issued before time using prefetching, such idling is elimi-
nated thus increasing disk efficiency directly. Hence, incorporating prefetching
in the I-O model not only ensures that the I-O times predicted by the model are
meaningful but may also improve disk efficiency.

Moreover, algorithms designed for single cost I-O models [3,12,5] may not
translate to optimal algorithms in a 2-cost prefetch model. Note that algorithms
in the I-O model do not specify the relative order in which blocks are fetched.
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Hence, such algorithms need to find an ordering of I-Os that is prefetch efficient
(formally defined in Section 4). More importantly, computing a prefetch-efficient
order of blocks ahead of time for certain problems (e.g. sorting) necessitates
devising new techniques. Our experimental studies in Section 5 confirm that
algorithms optimal in traditional I-O models but not prefetch aware may perform
very poorly as compared to prefetch-aware algorithms.

1.2 Relationship with Other Models

In order to take advantage of prefetching, we work with a two-level memory
model where the I-O cost is in terms of two parameters - L is the time to access
the memory location and BM is the transfer time for a memory block of size
B. The request for accessing a block from the slower memory can be sent out
prior to its actual use and moreover several such requests can be pipelined. This
model has some similarities to [2] where L = f(x�) is a (monotonic) function
of the last address x� in a block transfer and additional cost 1 thereafter. The
authors had derived bounds for different families of the function f . By choosing
a step function L (left open by [2]), in conjunction with other parameters of the
I-O model our algorithms exploit features hitherto not analyzed. We would like
to note that some of the recent experimental studies of external sorting [9] make
extensive use of parallel threads which may invoke prefetching at a system level.
In another approach the authors [6] look at oblivious sorting algorithms on a
multi-disk machine where prefetching could turn out to be extremely relevant.

The design of cache-oblivious [12] algorithms has drawn a lot of attention and
it may be pertinent to mention that it does not automatically take care of the is-
sue addressed by us. The basic algorithm should be inherently recursive in nature
and must be aware of the size of the internal memory to pipeline memory ac-
cess. This is to avoid latency for every block of a (sufficiently large) sub-problem
that can fit inside the internal memory. It is an interesting question, if every
cache-oblivious algorithm can be converted into a prefetch-efficient algorithm by
adding an extra (cache-aware) pipelined memory transfer step. A related area of
study that has attracted a great deal of attention is the design of efficient system-
level prefetching techniques independent of the algorithm running on the system
[19,16]. These techniques identify regular data access patterns amongst the I-O
requests and prefetch data accordingly. However, if the algorithms running on
such systems are unaware of prefetching, the system-level prefetchers may not be
effectively used. Hence, we design algorithms that efficiently use such prefetching
support to reduce I-O times.

2 The Prefetch Model and Some Preliminaries

Aggarwal and Vitter [3] proposed an I-O model for an input of size N that
reads blocks of size B, can transfer D blocks concurrently and works with a
fast memory of size M . We formalize an extension of the I-O models to capture
prefetching by introducing the following additional parameters -
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– BM as the time1 to transfer one block of memory, where BM/B ≥ 1.
– L as the normalized latency in transferring from slow memory to fast mem-

ory. We always use L to denote read latency unless otherwise stated. In cases
where we deal with both read and write latency, Lr denotes read latency and
Lw denotes write latency.

– There is an explicit prefetch instruction and the Prefetch Latency is L.

A large block-size does not reduce the Prefetch Model to I-O model as the
algorithms for BM = L may not be optimal. To simplify our presentation, we
initially ignore the parameter D from the prefetch model and propose optimal
algorithms in a single disk prefetch model. In this paper we make the following
assumptions that are consistent with the existing architectures. (i) N > M > B
(ii) (M/B)BM > L 2 (iii) N, M, B are of the form 2i to simplify analysis -
the asymptotic bounds are not affected. The fast memory size (be it cache or
registers) M is typically much larger than the size of the cache line B. Moreover,
the latency incurred, L, is typically much smaller than the time to load the
internal memory completely (= M

B BM ). Prefetch latency is typically same as
the memory latency L or may differ from it by one or two cycles.

Definition 1. The latency li of block i is defined as the additional latency
that is incurred because of block i. Hence, if reads for block (i − 1, i) are
given at (ti−1, ti) and the blocks are available at times (ei−1, ei), then li =
ei − max{ti, ei−1}, where ei’s are ordered.

Note that for blocking reads, this definition of latency is the same as li = ei − ti,
which is the one commonly used. We modify the usual definition in order to
define cumulative latency of a m − block Lm simply as sum of the latency of the
m blocks, where an m − block denotes a set of m consecutive blocks.

We make a note here that complete control over prefetch is not realistic and,
in practice, prefetching is constrained by the number of prefetch buffers, limita-
tions due to associativity (in a Cache Model) and a streaming behavior in data
access required for most forms of prefetching. Our results can be extended in a
model that includes (a) limited prefetch buffers (b) small associativity (c) lim-
ited streams support for prefetching and (d) parallel disks, for which the reader
is referred to [21].

Running time
We analyze the algorithms in terms of the total time that includes computation
time and the I-O time. This is normalized with respect to the instruction cycle
that takes unit time. The only I-Os (reads/writes) that we consider are I-Os to
slow memory. Access to fast memory is counted along with the number of I-O
operations. Since memory bandwidth is now within a small constant factor (2 to
4) of the processor speed, the running times that we derive have a multiplicative
factor of BM/B, which is O(1) when BM = cB for some constant c.

1 All the timing parameters are normalized wrt to the instruction cycle.
2 Many of the technical results revolve around this assumption - c.f. Section 4.
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2.1 Lower Bounds in the Prefetch Model

In the prefetch model, a block that has not been prefetched takes time BM + L,
whereas a block that has been prefetched takes BM time. It is easy to see that if
k is the minimum number of I-Os needed to solve a problem A, then kBM +L is
the lower bound on total time in the prefetch model. The bound is obtained by
assuming that there exists a prefetch algorithm that prefetches all but the first
block. Similarly, if there exists an algorithm that uses k I-Os, then k(L + BM )
is the upper bound on the I-O time by multiplying the number of I-O’s by the
time to transfer each block without prefetching. This upper bound is same as
the lower bound on I-O time in the traditional I-O models and differs from the
lower bound of the prefetch model by a factor of L/BM (a factor of 1000s for
typical disks). This general lower bound and (M/B)BM > L combined with the
bound on the number of I-Os for individual problems [3] yields the following
bounds in our prefetch model. For D disks, the bounds are divided by D.

Theorem 1. The worst case I-O time required to sort N records and to compute
any N-input FFT digraph or an N-input permutation network is Ω

(N log(1+N/B)
log(1+M/B)

BM

B ).

Theorem 2. The worst case I-O time required to permute N records is
Ω(min{NBM , N log(1+N/B)

log(1+M/B)
BM

B }).

Theorem 3. The worst case I-O time required to transpose a matrix with p rows
and q columns, stored in row major order under the assumption that M > B2 ,
is Ω(N BM

B ).

3 Prefetch Model and PDM Algorithms

We now investigate similarities between algorithms in a Parallel Disk Model
(PDM) and algorithms in the proposed Prefetch Model. We observe that both
class of algorithms exploit essentially the same features in memory access. One
may note that if a prefetch model algorithm can perform M/B I-Os in a pipelined
fashion and hide the latency of all but the first of these M/B blocks, it would be
efficient, i.e., it would take O(BM ) time to perform a block I-O (since L <
(M/B)BM )). Similarly, a PDM algorithm with M = DB (D is number of
disks) needs to perform M/B I-Os concurrently and hence needs to predict the
next M/B blocks required. Moreover, in both of these models, if the algorithm
performs the minimal number of I-Os possible while maintaining the O(M/B)
pipelining or parallelism respectively, the algorithm is optimal in the respective
models. This general idea has also been proposed in [22] to design efficient se-
rial algorithms from parallel versions. We now present an emulation scheme to
generate Prefetch Model algorithms from PDM algorithms using this insight.

3.1 PDM Emulation

We restrict PDM algorithms to only those parallel disk algorithms that deal
with the case M = DB. The emulation works in the following manner. The
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sequential algorithm with prefetching performs I-O in blocks of D. It emulates
the D disks as contiguous locations in D zones of the single disk. For every
parallel I-O pi performed by the PDM algorithm, let Si be the set of D I-Os
that the PDM algorithm performs concurrently. The emulation algorithm starts
the prefetch of all these |Si| blocks together. When all the |Si| blocks are available
in the fast memory, the emulation algorithm starts prefetch of the blocks in Si+1
corresponding to the next parallel I-O pi+1. We show the following result (all
proofs are omitted for lack of space and the reader is referred to [21]).

Theorem 4. If the PDM algorithm performs k parallel I-Os, the corresponding
sequential prefetching algorithm takes an I-O time of O(kDBM ).

A similar emulation scheme is obtained for parallel disk prefetch algorithms
with the number of parallel disks D′ < D. In a parallel disk prefetch model, we
make the additional assumption that the fast memory available per disk is large
enough to hide the latency for that disk, i.e., M

D′B BM > L. Each of the D′ disks
now emulate D/D′ disks and we have the following result.

Theorem 5. If the PDM algorithm performs k parallel I-Os, the corresponding
parallel prefetching algorithm with D′ disks takes an I-O time of O(kD/D′BM ).

The above emulation scheme allows us to convert existing optimal PDM algo-
rithms to algorithm optimal in our prefetch (sequential or parallel disk) model.
It is easy to see that if a PDM algorithm is optimal in the number of parallel as
well as block I-Os (i.e., it performs the minimal number of parallel I-Os as well
as the total number of block I-Os across all the disks is minimum), the corre-
sponding emulated prefetch algorithm is optimal in the prefetch model. Since the
lower bound for most common problems in a PDM model is a factor D′ (number
of disks used) less than the lower bound in a sequential I-O model, an optimal
PDM algorithm is also typically optimal in the traditional single disk I-O model.
Hence, in most likelihood, such optimal PDM algorithms can be directly used
to generate an optimal prefetch algorithm.

A drawback of the emulation strategy described here is that it is not easy to
design theoretically optimal PDM algorithms (for D = Ω(M/B)). Further, direct
design often leads to simpler algorithms and also allows overlapping computation
with memory access (which could save up to a factor of two).

4 Designing Optimal Algorithms Directly

The different techniques (from prediction sequence balancing to sequence preser-
vation) employed for direct design of algorithms have a common underlying
strategy: perform minimal number of I-Os in a prefetch-efficient manner, i.e.,
hide latency for all blocks other than the first.

Definition 2. An algorithm that performs k I-Os is prefetch efficient if it takes
I-O time O(L + kBM ).
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We make a note here that the assumption L < (M/B)BM dictates the techniques
that we use in designing algorithms. Observe that if L = lBM , then a prefetch-
efficient algorithm needs to prefetch l blocks in advance. Our assumption of a
large l (= M/B) covers real systems but requires our algorithms to be intelligent
enough to predict the next M/B blocks and start prefetching for them. On the
other hand, consider the extreme (though unrealistic) case of l = O(1), where
an optimal algorithm does not need to prefetch any blocks and any existing I-O
optimal algorithms are optimal in this model.

We have essentially devised three techniques for designing optimal algorithms.
We prove a general result for a class of algorithms called sequence-preserving
algorithms and use it to design optimal algorithms for all straight-line algorithms
considered (e.g., matrix transpose, permutation and FFT). We have devised a
technique for dynamic re-balancing of prefetched data for algorithms that merge
constant number of sequences (2-way sorts) and prediction sequence balancing
for algorithms that merge large number of sequences (M/B-way sorts). We first
present results for sequence-preserving algorithms and show its applications.

4.1 Sequence Preserving Algorithms

We define a class of straight-line algorithms that we call sequence-preserving al-
gorithms and prove that in this class of algorithms, prefetching can hide latency.
We will show later that many straight-line algorithms fall in this class. We begin
with a technical lemma and some definitions.

Lemma 1. For any set of k pre-determined block reads, the total time needed
is O(L + kBM ).

Definition 3. An instruction Ii precedes Ij in an algorithm A (i.e. Ii < Ij), iff
Ii is executed before Ij in A.

We define Iw,i and Ir,i as the ordered sets consisting of all the instructions that
write and read respectively from memory location si, where the order is based
on their usage time in A.

Definition 4. The neighbourhood set NI is defined as a set containing all the
tuples of the form {I1, I2} such that I1, I2 ∈ {Iw,i ∪ Ir,i, Iw,j ∪ Ir,j} for some i, j
and � ∃ I3 : I3 ∈ (Iw,i ∪ Ir,i ∪ Ir,j ∪ Iw,j) and I1 < I3 < I2 or I2 < I3 < I1.

The neighbourhood set of an algorithm A consists of tuples {I1, I2} of instruc-
tions such that I1 and I2 access (read or write) memory locations si and sj

at times T1 and T2 respectively. Also, none of the instructions in A executed
between T1 and T2 access either of the two memory locations. We also define
for all instructions of the form Im ∈ Iw,j, ∗Im as the last instruction in Ir,j s.t.
∗Im < Im and I∗m as the first instruction in Ir,j s.t. Im < I∗m.

Definition 5. A straight-line algorithm A is sequence preserving iff for all I1
and I∗1 , s.t.(i) ∃{∗I2, I1} ∈ NI or ∃{∗I2,

∗ I1} ∈ NI and (ii) ∗I2 < I1; then
(a)I2exists, (b){I1, I2} ∈ NI (c) I1 < I2 ⇔ I∗1 < I∗2 .
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Essentially, a sequence preserving algorithm reads data in the same order as it
had last written them, if it had written them earlier. Moreover, before reading
any data that had been written earlier, all the reads before that write should
also be written back. For the cases where any of the {I∗1 , I∗2} or {I1, I2} are not
defined, the corresponding precedence relation is assumed to hold by default.
Using a constructive proof ([21]) of the following lemma, we convert existing I-O
optimal sequence-preserving algorithms to prefetch-efficient algorithms.

Lemma 2. For any I-O optimal sequence-preserving straight-line algorithm A,
there exists a sequence-preserving algorithm A′ such that if a write of block si

of slow memory is made at time t, the read to block si of slow memory is made
after at least M/B block I-Os. Also, A′ performs no more I-Os than A and hence
is also I-O optimal.

We now state the key result for straight-line algorithms.

Theorem 6. Any sequence-preserving straight-line algorithm that uses k I-Os
has an equivalent algorithm that takes I-O time O(L + kBM ).

Corollary 1. A sequence of k pre-determined reads, k ≥ M/B, takes time
O(kBM ).

Corollary 2. A sequence of k pre-determined reads and writes, k ≥ M/B, such
that no writes follow reads, i.e., there does not exist a pair I1, I2 ∈ {Iw,i, Ir,i}
s.t.I1 < I2 for some i, takes time O(kBM ).

We have now characterized a class of algorithms such that prefetching is able
to hide the latency in reading the blocks. We now specify a writing order for
various I-O optimal algorithms and use Theorem 6 to devise algorithms optimal
in the prefetch model.

Matrix Transpose Algorithm: We show that the following transposition-by-
blocks algorithm is sequence-preserving. The algorithm transposes sub-matrices
with B rows and B columns. It transposes the B rows by taking M/B rows
at a time and computing the partial transposes. While writing them back, the
algorithm ensures that it writes them in the order they need to be read. It
then iterates till the transposition is complete. After computing all the block
transposes, it rearranges the blocks in the required order taking linear time. Our
writing order immediately ensures that our algorithm is sequence-preserving. If
M/B > B, then the algorithm needs only one pass of the data to compute the
block transposes. This leads to the following corollary of Theorem 6.

Corollary 3. The total time to transpose a matrix with p rows and q columns,
stored in row major order, is Θ(BM

B N)

Note that even in the case that M < B2, the above algorithm is sequence
preserving. Moreover, the number of I-Os required in that case matches the lower
bound of Aggarwal and Vitter for the general case [3] . Hence, the algorithm runs
in time equal to the lower bound for the problem.
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General Permuting Algorithm: Note that permuting is a special case of
sorting. The algorithm for permuting is thus based on the M/B-way merge-sort
algorithm of [3]. The algorithm has two phases. In the first phase, we permute
the elements within runs of size M . Later, we merge the permuted runs taking
them M/B at a time. The difference from merge sort though is that the the
next set of blocks needed is known a priori in this case. We have the following
theorem for permuting.

Theorem 7. The total time required to permute N records is Θ(min{NBM ,
N log(1+N/B)
log(1+M/B)

BM

B })

We have also shown that the algorithm of Cormen et al. [8] for bit-matrix-
multiply/complement (BMMC) permutation is sequence preserving and hence
optimal in I-O time. Similarly, the inner loop of the algorithm for FFT and
Permutation network in [3] is sequence-preserving and hence optimal.

4.2 Dynamic Rebalancing: Merge Sort

We illustrate the technique of dynamic rebalancing of prefetched data (balancing
the amount of data being prefetched across all runs) using 2-way merge sort and
show that it matches the I-O time to the Compute Time, i.e., O(N log N).

Merge Sort Algorithm: The merge sort algorithm is identical to the standard
2-way merge sort. Our prefetching strategy is the one that achieves the bounds
needed. We describe our prefetching algorithm for the merging procedure of
merge-sort first. We define A1 and A2 with sizes n1 and n2 as the two sorted
arrays that are to be merged. Without loss of generality, we assume that n1 = n2.

Case (i) n1 > M/2: The prefetch algorithm prefetches M/(2B) blocks
of both the arrays and labels them from 1 to M/(2B). It then prefetches
the next block from A1, if the last element of block 1 of A1 is smaller than
the last element of block 1 of A2. Otherwise, it prefetches the next block
of A2. If it prefetches from A1, then it decrements the label on each block
of A1 by 1. Otherwise, it does the same for A2. The prefetching evalua-
tion is performed every BM cycles and either of A1 or A2 is prefetched
depending on the evaluation. If at any time there are no blocks of A1
left to be prefetched, the next block to be prefetched is from A2 and vice
versa. If both A1 and A2 have no blocks left to be prefetched, case (ii)
is followed.
Case (ii) n1 ≤ M/2: The prefetch algorithm prefetches (M/2B) blocks
each from both the arrays and labels them from 1 to M/2. It then
prefetches the next set of arrays as the blocks of A1 or A2 are written
out to slow memory, i.e., at most once every BM cycles.

Note that the data manipulation in merge-sort is done only in the merging
procedure. Hence, the reads are done just prior to merging. The merge-sort is
performed in this manner. We initially load M/B blocks of the array and merge-
sort them. We do this for all the (N/M) M/B − blocks. Hence, after this step,
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we have (N/M) M/B −blocks that are all sorted and have to be merged taken 2
at a time, with the size doubling in each iteration of merge-sort. The prefetching
algorithm for merging described earlier is then used for the remaining iterations.
We have the following optimality result for merge sort.

Theorem 8. The total time required to sort N numbers using 2-way merge sort
in the prefetch model is O(BM

B · N log N).

4.3 Randomized Merge Sort with Prediction Sequence Balancing

Although the two way mergesort has Θ(N log N) running time, it does performs
more passes than an I-O optimal algorithm. It is easy to verify that the standard
M/B-way Merge Sort [3] is unable to hide the latency for most blocks because
an adversary may force it to prefetch blocks out of order of their use. Since it
has only constant memory available per run (as opposed to 2-way Merge Sort
that had M/2 memory available), it can hide latency only for a constant fraction
of blocks. The strategy of using a prediction sequence [9] used for parallel disks
works either for small N (N/B < M) or requires the complication of forming
large meta-blocks a priori, which additionally increases the constants. Similarly,
Columnsort algorithm [6] uses some novel techniques to ensure that data access
is deterministic but the algorithm is not defined for large N .

We also pursue the idea that if an algorithm A could predict the order in which
blocks are needed in any merge phase of the merge sort algorithm, A would be
prefetch efficient, i.e., A would take O(kBM ) time to perform k I-Os. We show
([21]) that an O(M) sized sliding window sample of the prediction sequence
is sufficient for predicting, with high probability, the order in which blocks are
needed, if (a) the prediction sequence is balanced across all the runs being merged
and (b) the input is randomized. Using the above result, the algorithm maintains
one prediction sequence block from each of the M/B runs being merged in
memory and uses it to prefetch blocks in advance. Hence, the technique is in
some sense, a refinement of balancing prefetched data, the difference being that
instead of balancing data over runs (as in Sec. 4.2), we now balance the in-
memory prediction sequence across runs. For further details of the optimal
M/B-way merge sort (optimalSort) algorithm and proof of its optimality, please
refer to [21].

Theorem 9. optimalSort sorts N records in an I-O time of O(N log(1+N/B)
log(1+M/B)

BM

B )

5 Experimental Results

We conducted a large number of experiments to study the relative performance of
algorithms optimal in traditional I-O models ([3]) but prefetch-unaware as com-
pared to algorithms that are prefetch-efficient. Matrix transpose and merge sort
were used as sample problems to demonstrate the importance of incorporating
prefetching when designing the algorithms. Matrix transpose represents the class
of problems where the prefetch-optimal algorithm is derived from the optimal
algorithm in the I-O model by finding a prefetch-efficient ordering, whereas, the
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standard M/B-way merge sort does not lead to any prefetch-efficient ordering
and other algorithms (e.g. 2-way sort with dynamic rebalancing) need to be de-
vised in prefetch model. We use the disksim simulation environment to study the
performance of various algorithms [13]. Disksim has been used in a large number
of studies and approximates the behavior of a modern disk closely. We chose the
disk model of Seagate cheetah4LP disk that has been validated against the real
disk and matches its average response time to within 0.8%. Seagate Cheetah4LP
supports sequential prefetching using readahead buffers. C-SCAN was chosen
as the scheduling algorithm, N was 640000, and B was 512 Bytes.
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Fig. 1. Performance of (a) Prefetch-efficient and (b) Random Matrix Transpose with
increasing M/B (Note that scales are different)

We performed three sets of experiments with the optimal I-O model matrix
transpose. In the first set, prefetching was disabled and the algorithm picked the
B × B sub-matrices in a random order. For the second set, the same algorithm
was run with prefetching enabled. In the third set, the algorithm had a prefetch-
efficient order (i.e. it was aware of the prefetching order and read the sub-matrices
to match this order). We found that the first two sets showed no statistical
difference with the second set performing marginally better in a few cases. Hence,
we report only the second and third set of experiments. One may note that the
random ordering of sub-matrices (Set 2), even though optimal in traditional
I-O models ([3]), is not implemented in practice. We use such an ordering to
demonstrate the inability of I-O models to differentiate between algorithms that
have very different I-O times on real systems. Note that the I-O model predicts
the running time of all the 3 sets as the running time of second set but it is
clear (Fig. 1) that prefetch-efficiency makes a huge difference in performance.
In fact, the performance improvement (ratio of Prefetch-Unaware disk I-O time
to prefetch-efficient disk I-O time) is fairly close to the maximum achievable
theoretically for this disk. The disk can prefetch up to 282 blocks ahead and
hence the performance improvement due to prefetching alone is bounded by
282. However, random block accesses not only leads to more disk accesses but
the cost of each disk access is also higher. We looked at the logs generated by
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DISKSIM and noticed that average positioning time for random block accesses
is higher than that for prefetched access. Hence, we notice that the performance
improvement even exceeds the bound of 282 for large m. One may also note
that prefetch-unaware algorithms (Fig. 1 (b)) fails to improve the performance
with additional memory as they do not use it for prefetching whereas we use the
additional memory to hide the latency of more blocks.
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Fig. 2. Performance of (a) 2-way and (b) M/B-way Mergesort with increasing M/B

To evaluate the impact of prefetching on sorting, we studied the M/B-way
mergesort that is optimal in the number of I-Os ([3]) but oblivious to prefetch-
ing. We compared it with the performance of our proposed 2-way mergesort
that dynamically rebalances data and the standard 2-way mergesort. Prefetch-
ing was enabled for all the three algorithms. As a control experiment, we ran
a prefetch-disabled 2-way mergesort (2-way sort with prefetching disabled). We
observed that both the prefetch-enabled 2-way mergesorts comprehensively out-
performs the M/B-way mergesort (Fig. 2). Note that the performance improve-
ment for sorting does not approach the bound of 282. This is because 2-way
mergesort performs more I-Os than the M/B-way mergesort. For the chosen
value of parameters, a 2-way mergesort performs about 10 times more I-Os than
M/B-way mergesort (evident from I-O time of Prefetch-disabled 2-way merge-
sort (Fig. 2(b)) as well). Hence, even though a 2-way mergesort has to perform a
much larger number of I-Os, prefetching is not only able to compensate for it but
allows it to outperform the prefetch-unaware algorithm by a significant margin.
We also noticed that the average positioning time for the algorithms are almost
same. Hence, prefetching alone attributes for the performance improvement of
the 2-way sorting algorithm. We note that even the standard 2-way mergesort
approaches the behavior of the rebalanced sort we propose and comprehensively
outperforms the M/B-way mergesort. This is attributed to the fact that the sim-
ple 2-way mergesort naturally uses the sequential prefetching present in disks
due to readahead caches. This may be an explanation as to why the naturally
prefetch-efficient standard 2-way mergesort performs better than the more so-
phisticated prefetch-unaware M/B-way mergesort on many real systems.
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Abstract. Chip multiprocessors (CMPs) usually employ shared, last-
level caches to use on-chip memory resources effectively. Unfortunately,
conventional replacement policies applied to shared caches fail to par-
tition memory resources among cores to achieve an optimal execution
throughput. This paper presents a novel replacement policy that dynam-
ically estimates how many misses would be eliminated if one more block
per set would be allocated to a certain processor taking into account the
extra misses for some other processor. Our implementation makes novel
use of shadow tags for the estimation. We show that it can yield 50%
higher execution throughput on a 4-way CMP and in contrast to previ-
ously proposed schemes, we did not observe any noticeable degradation
of performance for any application in the SPEC2000 we used.

1 Introduction

The first levels of cache in a chip multiprocessor (CMP) are often private to
each processor whereas the last-level cache is usually shared. A shared cache can
shield the long (and increasing) memory latency more effectively as it leverages
the sharing of data among cores. However, conventional replacement policies,
such as LRU, blindly victimize blocks regardless of which processor it belongs
to. As the following experiment reveals, this can lead to lower than optimal
global performance.

Figure 1 shows cache behavior for a limited sample period for some benchmark
applications from SPEC2000. For the mcf application, the accesses either result
in a cache hit in the most recently used (MRU) cache block in the set, or the
accesses cause a cache miss. Even though the simulated cache is 16-way, all hits
are to the MRU block, and hence the other 15 blocks per set are not needed.
However, in a sharing situation, all the cache misses will evict cache blocks
for other processors. Putting a constraint on the number of cache blocks per
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processor for each set may prevent this from happening. crafty behaves similarly
although it needs two cache blocks in each set. gzip and gcc do not need any
constraints as there are few misses. Since they are reusing the cache blocks, they
do not evict cache blocks for other processors.

An LRU algorithm augmented with balancing of cache partitions between
processors can clearly improve performance as this can restrict one processor
from using too much cache space. Partitioning cache resources across processors
for shared caches have been studied before [1, 2] with algorithms based on moni-
toring the number of cache blocks allocated to each processor in the whole cache.
Taking mcf and crafty as examples, this approach can erroneously victimize the
most recently used blocks in a set. In fact, we have noticed that it provides mixed
performance results.

In this paper, we take a radically different approach by monitoring and re-
stricting the number of cache blocks allocated to a certain processor for each
set. Our cache partitioning aware replacement policy associates with each block
the ID of the processor that fetched the block into the cache. Additionally, a
shadow tag per processor is associated with each set. When a block fetched by
a processor is evicted, it will be kept track of by the shadow tag for that proces-
sor and set. With this basic infrastructure, the replacement policy dynamically
monitors how many misses could be avoided if a processor had one more block
by simply counting the hits to the LRU block and to the shadow tag for each
processor. The new replacement algorithm victimizes the block associated with a
processor that needs fewer blocks in favor of a processor that needs more blocks.
Suh et al. [3, 4] also use counters for choosing a victim but do not use shadow
tags to estimate what would be the potential gain of allocating more blocks to
a processor.

Our detailed evaluation, based on most of the applications in SPEC2000,
reveals that the new policy can increase the execution throughput of independent
applications run on each processor core by up to 50%. Moreover, we did not
see any noticeable degradation in performance with respect to any application.
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Fig. 1. The cache misses and hits in different LRU stack positions in the last-level
cache for selected applications. Each access is either a hit in a position in the LRU stack
or a cache miss (top line in the graph). Position 1 represents the most-recently-used
(MRU) cache block in that set, position 2 is a hit in the second MRU position and
so on.
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We also found that making decisions on a per-set granularity usually works
better than making it on a per-cache granularity as previous work suggested.
Additionally, our scheme can be implemented with modest storage overhead.

The new scheme is described in Section 2. Sections 3 and 4 present the eval-
uation methodology and the results, respectively. Related work is discussed in
Section 5 and we conclude in Section 6.

2 The New Scheme

Earlier work on partitioning cache resources in shared caches have used the total
number of cache blocks per processor as a parameter for sharing [2] or other
parameters for each processor such as miss rate and IPC rate [1]. Even though
we also consider the total number of blocks allocated per processor, we noticed,
and show in this paper, that this provides mixed results. Therefore, we present
in this section a novel technique that uses the number of blocks per processor
for each set as a basis for replacement decisions.

The new replacement policy is based on two guiding principles. First, we use
the notion of overbooking of resources to increase utilization of all blocks in a set.
Therefore, the number of blocks allocated to processors per set is larger than the
number of blocks in the set. Second, the cache partitioning aware replacement
policy aims at maximizing the total throughput, i.e. the number of instructions
committed per time unit, by minimizing the total number of cache misses. If the
total throughput is expected to increase by reducing the size of the partition for
one processor and increasing it for a different processor, the change is done. In
the next four sections, we present the infrastructure needed (Section 2.1), the
replacement policy (Sections 2.2 and 2.3), and an analysis of the implementation
costs (Section 2.4).

2.1 Structure

The hardware structures needed for the new scheme for a four core CMP are
shown in Figure 2. Each cache block is extended with processor identification as
shown in Figure 2(a). This field is updated with the value from the requesting
processor every time a cache block is installed in the cache. When a cache block
is evicted, the tag of the block is stored in the shadow tag table for the processor
that fetched the block, see Figure 2(b). The last block that was evicted for
processor 2 in set 1 is the block with tag f. Accesses that miss in the cache, but
have a tag match in the shadow tag table, would hit in the cache if the partition
had one more block in this set. This event is counted by the shadow tag’s hit
counter, see Figure 2(c). For example if processor 1 requests the block with tag
a in set 0, the counter for the shadow tag’s hits will increase from 10 to 11. The
other counter, hits in the LRU blocks, is increased when a request hits in the
LRU block for the involved processor in the cache. This number represents the
increase in number of misses as a result of reducing the cache size by one block
per set.
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Index Tag LRU data Cache line data Processor ID
.. .. .. .. ..

(a) Each cache block is extended to include processor ID.

Set number Processor 1 Processor 2 Processor 3 Processor 4
0 a b c d
1 e f g h
.. .. .. .. ..

(b) This is the structure with the shadow tags. Each cache set has one shadow tag per
processor.

Counter Processor 1 Processor 2 Processor 3 Processor 4
Hits in the LRU blocks 2 3 2 3
Hits in the shadow tags 10 11 9 2

(c) There are two global counters per processor.

Description Processor 1 Processor 2 Processor 3 Processor 4
Max. no. of blocks in set 2 3 2 3

(d) The partitioning parameters (one per processor) used by the replacement policy.

Fig. 2. The extra storage requirements for the new scheme

A constraint is associated with each processor that limits the maximum num-
ber of blocks that can be in each set, see Figure 2(d). These values are used by
the replacement algorithm to select a cache line for eviction.

2.2 The Partitioning Aware Replacement Policy

Algorithm 1 describes the new replacement policy for sharing cache space with
the constraints from Figure 2(d). The search for a victim block starts at the
bottom of the LRU stack (step 2) and steps the LRU stack towards the MRU
block. If the processor that owns the cache block has too many cache blocks
within the set (step 4), this block is chosen for eviction (step 5). If no block is
found, the LRU cache block is evicted (step 8).

Algorithm 1. Pseudo code for finding a block for eviction. The function returns
the position of the block to evict.
1: function Find Block To Evict
2: for LRU stack pos ←number of blocks per set, 1 do
3: proc id ← get processor that owns block(LRU stack pos)
4: if max no of blocks in set[proc id] < no of blocks in set(proc id) then
5: return LRU stack pos
6: end if
7: end for
8: return position of LRU block
9: end function
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2.3 Balancing the Cache Partition Sizes

The algorithm reevaluates the partition sizes per processor (see Figure 2(d)) on a
regular basis. In our experiments we use 2000 cache misses in the last-level cache
to trigger a reevaluation. The processor with the highest gain for increasing the
cache size, i.e. the processor with most hits to its shadow tags (see Figure 2(c)),
is compared to the processor with the lowest loss of decreasing cache size, i.e.
the processor with the fewest hits to its LRU block. If the gain is higher than the
loss, one cache block (per set) is given to the processor with the highest gain.
The counters are reset after each reevaluation period.

In the initial partitioning, the total cache capacity is shared equally among all
processors. Additionally, each processor receives two extra blocks per set. This
overbooking of resources provides slack in case processors do not distribute their
data uniformly.

A different approach used by Kim et al. [1] is changing the partitioning and
measuring the performance difference, and then roll back if the performance
was not increased. This might work for a two processor CMP, but complexity
and uncertainty grow fast with increasing processor count since all processors
influence the performance of each other. We have therefore not perused this
technique.

2.4 Implementation Cost

The storage requirement for the new scheme used with the architecture presented
in the evaluation section is 152 kbit. This is an increase of 0.5% in the storage
requirement for the last-level cache. The storage is used for shadow tags (16%)
and processor IDs in the blocks (84%). The evaluation section presents a CMP
architecture with 4 processors, 4 MByte 16 way last-level cache with 4096 sets
and 24 bits tag (we assume a 32 bit architecture). The shadow tags require s∗p∗t
bits where s is number of sets, p is number of processors, t is bits per tag, and
for our architecture this is 384 kbit. However, shadow tags are not needed for
all sets as shown in later in Section 4.4. We find that monitoring only 6% of
the sets is sufficient for estimating cache sizes with almost no degradation of
performance, and the number of bits is reduced downto 24 kbit. The field for the
ID of the processor that fetched the block requires log2 p bits per block, and this
ID is required for every block. Our architecture with 4096 ∗ 16 blocks requires
totally 128 kbit for this field. Finally, the storage for the two counters and one
register per processor, sums up to 96 bits (p ∗ 3 ∗ w) if each register/counter (w)
is 8 bit.

Most of the required logic is simple and can be allowed to be rather slow since
accesses to main memory take hundreds of clock cycles. The fastest logic required
is for indicating hits in the LRU block which requires access to the processor ID
of all blocks in the set. The cycle time for this logic has to be as fast as a cache
hit, but the logic can be pipelined (there is no need to immediately update the
counter).

The physical placement of the shadow tags could be close to the cache tags.
However, the latency requirement for these tags is more relaxed than for the
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cache tags. The shadow tags can therefore be moved further away from the
processor and may operate at a lower voltage and hence consume less power.

3 Methodology

Simulation is used to compare the efficiency of the new scheme with a conven-
tional LRU scheme and to earlier cache partitioning methods. The simulated
architecture is shown in Figure 3. The baseline chip multiprocessor (CMP) ar-
chitecture has four processors that share the last-level cache. We use a detailed

Out-of-order
processor

L1 instruction
cache

L1 data
cache

Main memory  (DRAM)

L2 instruction
cache

L2 data
cache

Out-of-order
processor

L1 instruction
cache

L1 data
cache

L2 instruction
cache

L2 data
cache

L3 Unified cache, with different schemes

...

Fig. 3. Simulated architecture

pipeline-level clock cycle-accurate out-of-order execution model simulator with
non-blocking caches to get statistics on improvements in instructions-per-cycle
(IPC). The model is based on SimpleScalar version 3 [5], but is extended to
simulate the new schemes and CMP configurations including congestion to main
memory.

The baseline parameters for the simulator are shown in Table 1. All of the
SPEC2000 benchmark applications were used as workload with the reference
data sets except for two. The simulator had compatibility problems with vortex
and sixtrack, and they are not included in the experiments.

We create multiprogrammed workloads for our CMP architecture as follows.
In each experiment, four randomly picked applications are run in parallel. Each
application is randomly forwarded with cache system enabled between 0.5 and
1.5 billion instructions and then two hundred millions cycles are simulated.

4 Evaluation

Several of the SPEC2000 applications have a small working set which more or
less fits into the L1 and L2 cache. These applications are not sensitive to en-
hancements of the last-level (L3) cache. The goal of our scheme is to improve
performance for the applications which are sensitive to the performance of the
last-level cache. Additionally, the scheme should be robust and should not de-
grade the performance for any application. We first classify the applications with
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Table 1. Parameters for the simulated processors

Parameter Value
Register Update Unit Size 128 instructions
Load Store Queue 64 instructions
Fetch queue size 4 instructions
Fetch, Decode, Issue and 
Commit width

4 instructions/cycle

Functional Units 4 INT ALUs, 4 FP ALUs, 1 INT Multiply/Divide, 1 FP Multiply/Divide
Branch Predictor Comb., Bimodal 4K table, 2-Level 1K table, 10-bit history table, 4K Chooser
Branch Target Buffer 512-entry, 4 way
Mispredict Penalty 7 cycles
L1 Instruction/Data Cache 64K, 2-way (LRU), 64 B Blocks, 2/3 cycle latency 
L2 Instruction/Data Cache 128/256K, 4-way (LRU), 64 B Blocks, 7/7 cycle latency 
L3 Cache 4 MByte unified, 16-way (LRU), 64 B Blocks, 19 cycle latency

Main Memory
250 cycles first chunk, 4 cycles inter chunk. Chunk size 8 bytes. 9 GBytes/s 
teoretical limit for 4.5 GHz processor

I-TLB/D-TLB 128-entry, fully associative, 30 cycles miss penalty
Chip multiprocessor 4 processors sharing the L3 cache

respect to their sensitivity to last-level cache performance in Section 4.1. We
then consider the performance improvements and robustness of the new scheme
in Sections 4.2 and 4.3, respectively. The last part of the evaluation is concerned
with sensitivity analysis and comparisons with related schemes.

4.1 Classification of Workloads

The number of cache accesses to the last-level cache is generated by forty experi-
ments with random configurations of four applications. The numbers of accesses
per application for all experiments are averaged and shown as a logarithmic plot
in Figure 4. We classify the applications as (a) either being last-level cache in-
tensive or (b) not depending on the last-level cache. The applications with more
than 2 million last-level cache accesses are classified as last-level cache intensive.
The number of cache misses could have been used to classify the applications as
well, but then the applications that work very well for conventional LRU would
not have been included in the evaluation of the new scheme. If the new scheme
degraded performance for these applications it might not have been detected.

4.2 Throughput Improvements

This subsection evaluates the throughput improvements (i.e. total number of
instructions committed) for the last-level cache intensive applications found in
the previous section. The configuration is a four processor CMP. Each processor
has 200 million clock cycles simulated (the clock is synchronized with the other
processors) after warm up. Sixty different experiments were run with the last-
level cache intensive applications. Each application is represented 18 times on
average in these experiments. The total number of instructions committed for
each application for the new scheme divided by the total number of instructions
committed by the conventional scheme is shown in Figure 5. Positive speedups
(i.e. > 1) are shown for all of the applications and the best numbers are for
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Fig. 4. Average number of last-level cache accesses for each application in a logarithmic
plot
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Fig. 5. Speedups for last-level cache intensive applications

vpr, twolf and art with speedups of 1.51, 1.30 and 1.29 respectively. Not all
applications benefit from slightly larger caches which is one reason why not all
applications run much faster with the new scheme.

Instead of considering improvements per application, improvement per ex-
periment (that is four randomly picked applications run together) is shown in
Figure 6 as average speedup. The total number of committed instructions for all
experiments is increased by 7% for the new scheme compared to the conventional
scheme. All experiments have a performance gain, i.e. the sum of committed in-
struction for the four benchmarks run in parallel is increased. This shows that
the new scheme provides a robust and improved performance across different
experiments.

A computer system is often bound by the slowest running application. In
these cases, the harmonic mean is more important than the average mean [6]. The
harmonic speedup in Figure 6 is the harmonic mean of the four applications with
the new scheme divided by the harmonic mean of the same four applications with
the conventional scheme. The highest speedup on the right hand side of the graph
is 2.0. This shows that the new scheme is not only increasing performance for
the fastest running applications, but also improves performance for the slowest
running applications. This is not surprising since the goal of the scheme is to
reduce the total number of cache misses and the slowest running application
often has most cache misses.
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Fig. 6. The speedup for each experiment summing up all instructions committed per
core in the CMP. The applications used are the last-level cache intensive category. The
results are sorted on average speedup.

4.3 Robustness

Even though the new scheme works well for the last-level cache intensive applica-
tions, the new scheme should not degrade performance when other applications
are included. Including applications that are not that memory intensive results
in less stress on the last-level cache because these applications do not access
the L3 frequently. In some of the experiments this means inserting sharing con-
straints in a system that should not have any constraints because none of the
processors are using too much last-level cache space. However, as shown in Fig-
ure 7, the new scheme works impressively well in this setting. The figure shows
speedups when combining both categories of the SPEC2000 benchmarks. Even
though there are some degradation of performance of about 1% for facerec and
0.5% for wupwise, speedups of 13%, 10%, 5% and 4% are provided for twolf, vpr,
parser and art respectively.

The increase in number of committed instructions per experiment is shown
in Figure 8. Even though there are some experiments with fewer committed
instructions, in most cases the performance is improved. The total number of
committed instructions is 0.8% higher with the new scheme compared to a con-
ventional architecture. By comparing this graph to the graph for the applications
which are intensive to the last-level cache (Figure 6), we see that the performance
gain is now reduced. This is due to the lower competition of the cache since many
applications do not require much cache space in L3 and hence there is less room
for improvement. The bandwidth required in and out of the chip is also reduced
and the effect of this bottleneck becomes less significant.

4.4 Reducing Number of Shadow Tags

The experiments in the previous sections were done with four shadow tags for
every set to predict marginal gains of increasing cache size for the processors.
However, it is not necessary to implement shadow tags in all sets. Previous work
has revealed that monitoring the sets with the lowest index works well and better
than randomly generated subsets or subsets based on prime numbers [7]. The
result of monitoring 1/16 of the sets with lowest index is shown in Figure 9. As
shown, the median performance is slightly increased by only having shadow tags
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Fig. 7. Total number of instructions committed per application with the new scheme
divided by the number of instructions committed per application with a conventional
scheme
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Fig. 8. The speedup for each experiment summing up all instructions committed per
core in the CMP. Combination of both categories SPEC2000 applications are used.

in a subset of all cache sets. We conjecture that it is due to the higher contention
and congestion in the sets with the lowest number. This makes monitoring these
sets more important, and hence improves performance. There is one experiment
however where reducing the number of shadow tags causes a penalty of 24%. The
total number of committed instructions are reduced by 0.2% for all experiments
when reducing the number of shadow tags. LRU hits are counted for in all sets,
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Fig. 9. The speedup of monitoring all sets vs. monitoring only 1/16 of the sets
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Fig. 11. Two different replacement policies: Counting blocks in the whole cache per
processor vs. per set

but the numbers are normalized when compared to shadow tag hits. The cost
of monitoring only 1/16 ≈ 6% of the sets is not very high and is discussed in
Section 2.4.

4.5 Cache Size Sensitivity

The speedup of the new scheme when using both categories SPEC2000 appli-
cations for 2, 4 and 8 MByte L3 caches is shown in Figure 10. We see a higher
gain for a 2 MByte than for a 4 MByte cache. This is due to more conflicts in
a smaller cache and more room for improvements. For the 8 MByte cache the
gains are slightly lower, as expected, and some experiments show degradation of
performance of up to 3%. An 8 MByte cache is quite large for the SPEC2000
applications making constraints less effective.

4.6 Comparison with Earlier Work

Different Granularity of the Cache Constraints. Earlier attempts to parti-
tion the cache dynamically have been partitioning the cache globally and counted
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the total number of blocks used per processor [1, 2]. In the new scheme we count
the number of blocks per processor per set when finding the block for eviction. In
Figure 11 the new scheme is compared to a modified new scheme where counting
is done globally. Lower performance is seen when counting globally for a con-
figuration with a 16 way cache. Experiments with a 4 way cache result in lower
performance for the new scheme. This is because there is no room for constraints
with so few blocks in each set.
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S
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ed
up

Shadow tags, counting cache blocks within set for each processor

Predicting gain, counting all cache blocks for each processor

Fig. 12. Two different schemes: (a) Predicting the marginal gains with counting blocks
in the whole processor and (b) the new scheme (shadow tags and counting blocks within
set)

Not Using Shadow Tags. Earlier work did not use the extra shadow tags for
calculating gains. Suh and Rudolph have looked at dynamic cache partitioning
[2], and instead of shadow tags they used counters for hits to the LRU and
second LRU cache blocks, and a formula for estimating the marginal gains:
M(p) = 2 ∗ H(p) − Q(p), where M(p) is the marginal gain for increasing the
cache size for processor p with one block per set, H(p) is the number of hits in
the LRU cache blocks for all sets and Q(p) is the number of hits in the second
LRU cache blocks in all sets. The results from this approximation combined with
counting globally are shown in Figure 12. Even though this approximation shows
speedup for some experiments, the overall result is a degradation of performance.
The figure includes a graph for the new scheme, and as shown the new scheme
results in a much more stable performance for the same experiments.

5 Related Work

Chishti et al. proposed a scheme where cache blocks evicted for one processor
can be stored in the cache storage for other processors if free space is available
[8]. Zhang and Asanovic [9], and Chang and Sohi [10] evaluate a combination
of shared and private caches. The goal is to have the size of the shared cache
available to all processors with the speed of the local cache. None of these studies
have provided constraints on capacity usage as in our scheme nor have they
considered the marginal gains/loss for different cache partitioning.
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6 Conclusion

Conventional chip multiprocessors do not consider cache usage per processor
when deciding which cache block to evict. The scheme proposed in this work
establishes constraints on the number of cache blocks in each set that each
processor can allocate. We have shown that our new scheme outperforms the
LRU replacement policy in almost every case and hence increases performance
compared to conventional architectures. Compared to previous work it has much
better robustness. This is due to two contributions: (a) our use of shadow tags
which is an accurate measure of increased performance for increased cache sizes
and (b) putting constraints within each single set instead of across all sets.

Methods for increasing the overall performance can lead to starvation for the
slowest processors. i.e. the processors with highest miss rate. However, since the
goal of the scheme is to minimize the total number of cache misses, this does
not happen with our scheme.
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Abstract. High quality of security is increasingly critical for applications 
running on heterogeneous distributed systems, where processors operate at 
different speeds and communication channels have different bandwidths. 
Although there are a few scheduling algorithms in the literature for 
heterogeneous distributed systems, they generally do not take into account of 
security requirements of applications. In this paper, we propose a novel 
heuristic scheduling algorithm, or SATS, which is conducive to improving 
security of heterogeneous distributed systems. First, we formalize a concept of 
security heterogeneity for our scheduling model in the context of distributed 
systems. Next, we devise the SATS algorithm aiming at scheduling tasks to 
maximize the probability that all tasks are executed without any risk of being 
attacked. Empirical results demonstrate that with respect to security and 
performance, the proposed scheduling algorithm outperforms existing 
approaches for heterogeneous distributed systems.  

Keywords: Security heterogeneity, heterogeneous distributed system, schedu-
ling, degree of security deficiency, risk-free probability. 

1   Introduction 

Over the last decade, heterogeneous distributed systems have been emerging as 
popular computing platforms for computationally intensive applications with diverse 
computing needs [6]. To date they have been applied to security sensitive 
applications, such as banking systems and digital government, which require new 
approaches to security. Inherently, distributed systems are more vulnerable to threats 
than centralized systems, since it is difficult to control processing activities of the 
distributed systems and information can be accessed over networks. A variety of 
techniques like authentication [8] and access control [12] are widely used to secure 
distributed systems. Although these techniques can be applied to distributed systems, 
the conventional security techniques lack the ability to express heterogeneity in 
security services. Our study is intended to introduce a concept of security 
heterogeneity, which provides a means of measuring overhead incurred by security 
services in the context of heterogeneous distributed systems. 
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Scheduling algorithms play a key role in obtaining high performance in parallel 
and distributed systems [10][18]. The objective of scheduling algorithms is to map 
tasks onto sites and order their execution in a way to optimize overall performance. In 
this work we consider the issue of dynamic task scheduling. Nowadays, a wide 
variety of scheduling algorithms for distributed systems have been reported in the 
literature [1][3]. Peng and Shin proposed a new scheduling algorithm for tasks with 
precedence constraints in distributed systems [9].  Arpaci-Dusseau introduced two 
key mechanisms in implicit coscheduling for distributed systems [1]. The above 
algorithms were designed for homogeneous distributed systems. 

In recent years, the issue of scheduling on heterogeneous distributed systems has 
been addressed and reported in the literature [5][16]. Ranaweera and Agrawal 
developed a scalable scheduling scheme called STDP for heterogeneous systems [11]. 
Srinivasan and Jha incorporated reliability cost, defined to be the product of processor 
failure rate and task execution time, into scheduling algorithms for tasks with 
precedence constraints [15]. A. Dogan and F. Özgüner studied reliable matching and 
scheduling for tasks with precedence constraints in heterogeneous distributed 
systems. Due to the lack of security awareness, these algorithms are not suitable for 
security-sensitive distributed computing applications. On the other hand, however, an 
increasing number of mission-critical applications with high demands of quality of 
security service have been emerging in various distributed systems [4][7][13][14]. For 
example, in a real-time stock quote update and trading web service system, each 
incoming request from business partners and each outgoing response from an 
enterprise’s back-end application have deadlines and security requirements, which 
have to be dealt with by a server located between the business partners and enterprise 
backend applications [17]. Furthermore, the server can judiciously select a suitable 
security level from the range of security service levels, which are predefined 
combinations of transport and message security mechanisms. Typical security levels 
in a real-time quote and trading system are [17]: Routing + message security; Routing 
+ SSL; Routing + SSL + message security; Routing + SSL + client authentication and 
Routing + SSL + message security + client authentication. 

In our previous work, we proposed a family of dynamic security-aware scheduling 
algorithms for a cluster [18] and a Grid [19]. Unfortunately, these scheduling 
algorithms only support homogeneous computing applications, thus limiting their 
applicability to heterogeneous distributed systems. Hence, we are motivated in this 
study to formalize the security heterogeneity concept, and to propose a scheduling 
algorithm to improve security of heterogeneous distributed systems while minimizing 
computational overhead. 

2   Modeling Tasks and Their Security Requirements 

In this study, we consider a queuing architecture of an n-site distributed system in 
which n heterogeneous sites are connected via a network to process independent tasks 
submitted by m users. Let M = {M1, M2, …, Mn} denote the set of heterogeneous sites. 
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2.1   System Model 

The system model, depicted in Figure 1, is composed of a task schedule queue, STAS 
task scheduler, and n local task queues. The function of STAS is intended to make a 
good task allocation decision for each arrival task to satisfy its security requirements 
and maintain an ideal performance in conventional performance metrics such as 
average response time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. System model of the SATS strategy 

A schedule queue is used to accommodate incoming tasks. SATS scheduler then 
processes all arrival tasks in a First-Come First-Served (FCFS) manner. After being 
handled by SATS, the tasks are dispatched to one of the designated site Mi ∈ M for 
execution. The sites, each of which maintains a local queue, can execute tasks in 
parallel. The main component of the system model above is SATS, which is 
composed of five modules: (1) Execution time manager; (2) Security overhead 
manager; (3) Degree of security deficiency (DSD) calculator; (4) Security-adaptive 
window controller; and (5) Task allocation decision maker. Since execution time of 
each task can be estimated by code profiling and statistical prediction [2], we assume 
that the execution time of each arrival task for each site is a prior and this information 
is managed in the execution time manager module. Similarly, we assume that the 
security overhead for each arrival task on each site is a prior, and this information is 
maintained in the security overhead manager module. The DSD calculator is used to 
calculate discrepancies between an arrival task’s security level requirements and the 
security levels that each site offers. The function of security-adaptive window 
controller is to vary size of the window to discover a suitable site for the current 
arrived task so that (1) its security demands can be well met; (2) the total execution 
time can be as small as possible.  

After retrieving information like execution time on each site, security overhead on 
each site, degree of security deficiency on each site and the size of security-adaptive 
window for the current task from the corresponding modules, the task allocation 
decision maker will decide which site will be assigned to the task. 
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Each site in the system model above is inherently heterogeneous in both 
computation and security. Computational heterogeneity means that for each task the 
execution time on different sites is distinctive. While each task has an array of 
security service requests, each site offers the security services with different levels. 
The level of a security service provided by a site is normalized in the range from 0.1 
to 1.0. Suppose site Mj, offers q security services, Pj = ( 1

jp , 2
jp , …, q

jp ), a vector 

of security levels, characterizes the security levels  provided by the site. k
jp  is the 

security level of the kth security service provided by Mj. To meet security 
requirement, security overhead of the task will be considered. Security heterogeneity 
suggests that the security overhead of a task varies on each site. 

2.2   Modeling Tasks with Security Requirements  

We consider a class of heterogeneous distributed systems where an application is 
comprised of a collection of tasks performed to accomplish an overall mission. It is 
assumed that tasks are independent of one another. Each task requires a set of security 
services with various security levels specified by a user. Values of security levels are 
normalized in the range from 0.1 to 1.0 as well. For example, a task specifies in its 
request security level 0.7 for the authentication service, 0.3 for the integrity service, 
and 0.8 for the encryption service. Note that the same security level value in different 
security services may have various meanings. 

Suppose there is a task Ti submitted by a user, Ti is modeled as a set of rational 
parameters, e.g., Ti = (ai, Ei, fi, li, Si), where ai and fi are the arrival and finish times, 
and li denotes the amount of data (measured in MB) to be protected. Ei is a vector of 
execution times for task Ti on each site in M, and Ei = ( 1

ie , 2
ie , …, n

ie ). Suppose Ti 

requires q security services, Si = ( 1
is , 2

is ,…, q
is ), a vector of security levels, 

characterizes the security requirements of the task. k
is  is the security level of the kth 

security service required by Ti. Please note that a way of quantitatively measuring 
security is still an open question to be answered. Still, we believe that the proposed 
security requirement model is of help in this research because of the following two 
reasons. First, although the measurements of security requirements and security levels 
are not completely objective, performance improvements of the SATS algorithm 
compared with the two existing approaches in terms of security (i.e., risk-free 
probability and degree of security deficiency) are still valid because the performance 
of the three algorithms is evaluated using an identical set of criteria under the same 
circumstance. Second, quantitatively modelling security requirements and security 
levels makes it possible for us to compare the security performance of different 
algorithms and perceive the performance discrepancies among them. 

A security-aware scheduler has to make use of a function to measure the security 
benefits gained by each arrival task. In particular, the security benefit of task Ti is 
quantitatively modeled as a function of the discrepancy between security levels 
requested and the security levels offered. The security benefit function for task Ti on 
site Mj is denoted by DSD: (Si, Pj) → ℜ, where ℜ is the set of non-negative real 
numbers: 
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where 10 ≤≤ k
iw , 

=

=
q

k

k
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1

1 .  

Note that k
iw  is the weight of the kth security service for task Ti. Users specify in 

their requests the weights to reflect relative priorities given to the required security 
services. Degree of Security Deficiency, or DSD, is defined to be a weighted sum of q 
discrepancy values between security levels requested by a task and the security levels 
offered by a site. For each task, a small DSD value means a high satisfaction degree. 
Zero DSD value implies that a task’s security requirements can be perfectly met. That 
is, there exists at least one site Mj in M that can satisfy the following condition: 
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Let Xi be all possible schedule for task Ti, ii Xx ∈  be a scheduling decision of Ti. 

Given a task Ti, the degree of security deficiency value (DSDV) of Ti is expected to be 
minimized: 
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where k
ji

k pxp =)(  if the task is allocated to site j. A security-aware scheduler 

strives to minimize the system’s overall DSDV value defined as the sum of the degree 
of security deficiency of submitted tasks (See Equation 1). Thus, the following DSDV 
function needs to be minimized: 
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where T is a set of submitted tasks. Substituting Equation 2 into 3 yields the following 
security objective function. Thus, our proposed SATS scheduling algorithm makes an 
effort to schedule tasks in a way to minimize Equation 4: 
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Since the degree of security deficiency for task Ti merely reflects the security 
service satisfaction degree experienced by the task, it is inadequate to measure quality 
of security for Ti during its execution. Therefore, we derive in this section the 
probability ),( jirf MTP that Ti remains risk-free during the course of its execution. 

The quality of security of a task Ti with respect to the kth security service is 
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kth security service, and )( l
i

l
ij sc  is the security overhead experienced by the task on 

site j. The risk rate is expressed as: 

( ).)1(exp1 k
i

k
i s−−−= αλ  (5) 

Note that this model assumes that risk rate is a function of security levels, and the 
distribution of risk-free for any fixed time interval is approximated using a Poisson 
probability distribution. The risk rate model is just for illustration purpose only. Thus, 
the model can be replaced by any risk rate model with a reasonable parameter α. 

The quality of security of task Ti on site Mj can be obtained below by considering 
all security services provided to the task. Consequently, we have: 
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Using equation 6, we obtain the overall quality of security of task Ti in the system 
as follows, 
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where pij is the probability that Ti is allocated to site Mj. Given a task set T, the 
probability that all tasks are free from being attacked during their executions is 
computed based on Equation 7. Thus, 
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By substituting the risk rate model into Equation 8, we finally obtain Prf(X) as 
shown below: 
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In summary, DSD values show us security service satisfaction degrees experienced 
by tasks, while risk-free probability measured by Equation 9 defines quality of 
security provided by a heterogeneous distributed system. In Section 5 these two 
metrics are used to evaluate security of distributed systems. 

2.3   Heterogeneity Model  

The computational weight of task Ti on site Mj (e.g., j
iw ) is defined as a ratio between 

its execution time on Mj and that on the fastest site in the system. That is, we have 
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=
= . The computational heterogeneity level of task Ti, referred to as 
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C
iH , can be quantitatively measured by the standard deviation of the computational 

weights. Formally, C
iH  is expressed as: 
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The computational heterogeneity of a task set T can be computed by 
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There are three types of security heterogeneities. (i) Security heterogeneity of a 
particular task Ti indicates the difference of security requirements in the q security 
services requested by the task (see Equation 11). (ii) Security heterogeneity of a given 
security service provided by each site in a distributed system reflects the discrepancy 
of the offered security levels of the service in the system (see Equation 12). (iii) 
Security heterogeneity of a particular site Mj shows the deviation of the q security 
levels provided by the site (see Equation 13). 

Given a task Ti and its security requirement Si = ( 1
is , 2

is ,…, q
is ), the heterogeneity 

of security requirement for Ti is measured by the standard deviation of the security 
levels in the vector. Thus, 
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The security requirement heterogeneity of a task set T can be computed by 

∈
=

TT

S
i

S

i

H
T

H
||

1 . 

The heterogeneity level of the kth security service in a distributed system is  
defined as: 
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Using Equation 12, the heterogeneity of security services can be written as 
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Finally, the heterogeneity level of security services in site Mj is defined to be: 
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2.4   Security Overhead Model   

Now we consider security overhead incurred by security services. The following 
security overhead model includes three services, namely, encryption, integrity, and 
authentication [18]. The security overhead model can be easily extended to 
incorporated more security services. 
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Suppose task Ti requires q security services, which are provided in sequential 
order. Let k

is  and )( k
i

k
ij sc  be the security level and overhead of the kth security 

service, the security overhead ijc  experienced by Ti on site Mj can be computed using 

Equation 14. In particular, the security overhead of Ti with security requirements for 
the three services above is modelled by Equation 15. 
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where )( e
i

e
ij sc , )( g

i
g
ij sc , and )( a

i
a
ij sc  are overheads caused by the authentication, 

encryption, and integrity services [18]. Our security level assignment is reasonable 
because a security mechanism providing higher quality of security imposes higher 
overhead than mechanisms offering lower security. 

The encryption overhead e
ic  of Ti on Mj is computed using Equation 16, where 

e
iπ  is the CPU time spent in encrypting security sensitive data. 
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The integrity overhead can be calculated using the following equation, where li is 
the amount of security sensitive data, and )( g

i
g sμ  is a function mapping a security 

level into its corresponding integrity service performance. 
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The security level of a security mechanism can be quantitatively measured by the 
amount of cost needed to successfully break the mechanism. However, quantitatively 
measuring the security level of a security mechanism is a nontrivial research issue, 
and it is out of the scope of this work. 

3   The SATS Algorithm 

For task Ti, the earliest start time on site Mj is esj(Ti), which can be computed by 
Equation 18: 
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where rj represents the remaining overall execution time of a task currently running 

on the jth site, and 
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+
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)( is the overall execution time (security overhead 

is factored in) of waiting task Tl assigned to site Mj prior to the arrival of Ti. Thus, the 
earliest start time of Tl is a sum of the remaining overall execution time of the running  
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1.for each task Ti submitted to the schedule queue do 
2.      for each site Mj in the system do 
3.           Use Eq.18 to compute esj(Ti), the earliest start time of Ti on site Mj; 
4.           Use Eq.19 to compute ecj(Ti), the earliest completion time of Ti on Mj; 

5.      end for 

6.     Sort all sites in earliest completion time in a non-decrease order 
7.     for each site in the security-adaptive window do 
8.  Use Eq.1 to compute )( isDSD  /* Compute DSD for each site*/ 

9.     end for 
10.    Select the site Mr that can offer the smallest DSD value and assign Ti on it 
11.    Update site Mr’s earliest available time esj   
12.    Use Eq.6 to compute risk-free probability for task Ti 
13.    Record start time and completion time for task Ti 
14.end for

task and the overall execution times of the tasks with earlier arrival on site Mj.  

Therefore, the earliest completion time for task Ti on site Mj can be calculated as: 
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Fig. 2. The SATS algorithm 

The SATS algorithm is outlined in Figure 2. The goal of the algorithm is to deliver 
optimal quality of security while maintaining high performance for tasks running on 
heterogeneous systems. To achieve the goal, SATS manages to minimize degree of 
security deficiency (see Equation 1) of each task (see Step 10 in Fig. 2) without 
performance deterioration. Before optimizing the degree of security deficiency of task 
Ti, SATS sorts all the sites in a non-decrease order in Ti’s total execution time based 
on the information retrieved from the execution time manager and the security 
overhead manager (see Figure 1). Step 7 computes the degree of security deficiencies 
for the task on each site in the light of the security deficiency calculator. Combining 
the input from the security-adaptive window controller, the task allocation decision 
maker decides a site to which the task is allocated. 

4   Simulations 

Using extensive simulation experiments based on San Diego Supercomputer Center 
(SDSC) SP2 log, we evaluate in this section the potential benefits of the SATS 
algorithm. The real trace was sampled on a 128-node (66MHz) IBM SP2 from May 
1998 through April 2000. To simplify our experiments, we utilized the first three 
months data with 6400 parallel tasks in simulation. Since the trace was sampled from 
a homogenous environment, to reflect the heterogeneity of the simulated distributed 
system, we translated the “execution time” of each task from a single value to a vector 
with n (number of sites) elements based on the heterogeneity model described in 
Section 2.3. In purpose of revealing the strength of SATS, we compared it with two 
well-known scheduling algorithms, namely, Min-Min and Sufferage [14]. Min-Min 
and Sufferage are non-preemptive task scheduling algorithms, which schedule a 
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stream of independent tasks onto a heterogeneous distributed computing system. The 
two algorithms are briefly described below. 

(1) MINMIN: For each submitted task, the site that offers the earliest completion time 
is tagged. Among all the mapped tasks, the one that has the minimal earliest 
completion time is chosen and then allocate to the tagged site. 
(2) SUFFERAGE: Allocating a site to a submitted task that would “suffer” most in 
terms of completion time if that site is not allocated to it. 

Table 1. Characteristics of system parameters 

4.1   Simulator and Simulation Parameters   

The parameters of sites in the simulated distributed system are chosen to resemble 
real-world workstations like IBM SP2 nodes. Table 1 summarizes the key configu-
ration parameters of the simulated distributed system used in our experiments. 

We modified the trace by adding a block of data to be secured for each task in the 
trace. The size of the security-required data assigned to each task is controlled by a 
uniform distribution (see Table 1). Although “task number”, “submit time”, and 
“execution time” of tasks submitted to the system are taken directly from the trace, 
“size of data to be secured”, “number of sites”, “computational heterogeneity”, and 
“security heterogeneity” are synthetically generated in accordance with the above 
model since they are not available in the trace. The performance metrics we used 
include: risk-free probability (see Equation 9), degree of security deficiency (see 
Equation 1), site utilization (defined as the percentage of total task running time out of 
total available time of a given site), makespan (the latest task completion time in the 
task set), average response time (the response time of a task is the time period 
between the task’s arrival and its completion and the average response time is the 
average value of all tasks’ response time),  slowdown ratio (the slowdown of a task is 
the ratio of the task’s response time to its service time and the slowdown ratio is the 
average value of all tasks’ slowdowns). 

4.2   Overall Performance Comparisons   

The goal of this experiment is two fold: (1) to compare the proposed SATS algorithm 
against the two heuristics, and (2) to understand the sensitivity of SATS to the size of 
security-adaptive window.  

Parameter Value (Fixed) - (Varied) 

Number of tasks (6400)  

Number of sites (16) – (8, 16, 32,64,128) 

Task arrival rate Decided by the trace  

Size of security-adaptive window (8) – (1, 2, 4, 8, 16) 

Site security level (uniform dist.) (0.1 – 1.0) 
Task security level (uniform dist.) (0.1 – 1.0) 

Weights of security services Authentication=0.2, Encryption=0.5, Integrity =0.3 
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      (a) Risk-free probability     (b) Degree of security deficiency          (c) Site utilization 
 

(d) Makespan (e) Average response time (f) Slowdown ratio 

Fig. 3. Performance impact of size of security-adaptive window 

Figure 3 shows the simulation results for the three algorithms on a distributed 
system with 16 sites. Since MINMIN and SUFFERAGE do not have a security-
adaptive window, their performance in all six metrics keeps constant. We observe 
from Figure 3a that SATS significantly outperforms the two heuristics in terms of 
risk-free probability, whereas MINMIN and SUFFERAGE algorithms exhibit similar 
performance.  

5   Summary and Future Work 

In this paper, we considered the security requirements of applications in the context  
of task scheduling in heterogeneous distributed systems because an increasing number 
of applications running on heterogeneous distributed systems requires not only 
descent scheduling performance but also high quality of security. To solve this 
problem, we proposed a security-adaptive scheduling heuristic that is based on  
the concept of security heterogeneity. Experimental results demonstrate that our 
strategy outperforms existing approaches in both security and performance. In future 
research, the heuristic will be extended to schedule parallel applications.  
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Abstract. Scheduling stochastic workloads is a difficult task. We ana-
lyze minimum average response time of computational grids composed of
nodes with multiple processors when stochastic workloads are scheduled
to the grids. We propose an algorithm to achieve minimum average re-
sponse time of grids. We compare the minimum average response time of
grids with the average response time of grids with load balancing schedul-
ing in different cases. Specifically, we analyze the impact of differential
processor speeds, the number of processors per node, and utilization rate
of the grids on the difference between these two scheduling strategies.
These analysis provide deeper understanding of average response time
of grids, which will allow us to design more efficient algorithms for Grid
workload scheduling.

1 Introduction

In order to take advantage of the idle nodes connected to the Internet and to
meet the increasing demand of computation, especially in the field of scientific
computation, Grid Computing was proposed in mid 1990s [1], [2], [3]. Availability
of high performance network nodes and interconnects has enabled development
of computational grids[4]. It is well known that computers on the Internet are
often idle or lightly loaded. The goal of computational grids is to better utilize
the computing power of all nodes over the Internet[1], [2], [3].

However, grid researchers still face challenges, such as security, resource allo-
cation, and task scheduling[5]. Because there are numerous distributed hetero-
geneous computers and jobs in a grid, one important challenge is how to assign
jobs to nodes efficiently. The scheduling problem involves organize, integrate,
and manage the whole grid efficiently to maximize throughput or minimize com-
pletion time for the stream of jobs. The nature of variability of processing power
in grid environments increases the difficulty of the scheduling problem.

Different schedulers may focus on different metrics, such as load balancing and
average response time. From the point of the view of systems, load balancing
is an important metric. On the other hand, from the view of users, average
response time (ART) of grids is more important. However, we cannot achieve
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load balancing (LB) state and minimum average response time (MinART) state
at the same time in heterogeneous grids. The ART of grids with LB scheduling
may be poor in some cases. If ART of grids is poor, grids are less attractive
because use of a grid may even slow down job execution. In addition, most grid
designers utilize the relative processing speed of each node to do scheduling and
to analyze the performance of schedulers[6], [7]. This method is good for LB
scheduling, but it may make ART of grids worse when some nodes have multiple
processors.

In order to be efficient, some grid schedulers must be given a time estimate of
each submitted job. This assumption is not always realistic, as the duration of a
job is rarely known before its completion. Indeed, this duration may depend on
its parameters and input data. It also requires users to run or measure their jobs
beforehand and provide durations to schedulers. In our work, we use stochastic
processing to indicate that the duration of each job is not known but is given
by a random variable with a fixed mean following the exponential distribution.
Moreover, we do not assume that the submission times of jobs are known in
advance. We suppose that the arrival time of each job is also drawn with a
random variable following the Poisson distribution. This probabilistic approach
is driven by the dynamic nature of grids, where it is not always possible to
predict both the duration and arrival time of jobs.

In this paper, we study a randomized algorithm to obtain MinART by stat-
ically scheduling stochastic workload to heterogeneous grids. Unlike the work
in [6] where jobs are allocated to a computing node proportional to its relative
processing speed, we focus on MinART of grids. First we present how to obtain
MinART by constructing an optimization problem. Then based on the result,
the solution of the optimization problem is proposed. Finally, we compare the
difference of ARTs of grids between MinART scheduling and LB scheduling from
the work in [6]. In addition, we present impacts of differential processor speeds,
the number of processors per node and utilization rate of grids on the difference.
The contribution of this paper is an extensive analysis of the MinART behavior
of heterogeneous computational grids.

The remainder of this paper is organized as follows. In section 2, we present
our model and then propose a optimization model to obtain minimum average
response time. Section 3 describes our theoretical analysis, solution, and case
study. Section 4 presents initial simulation results from our theoretical analysis.
Section 5 describes the related research. Section 6 gives our conclusions and
plans for future work.

2 Problem Formulation

2.1 Model of Computation

Considering a heterogeneous grid as shown in Figure 1, we assume there are
N nodes in the heterogeneous grid. To simplify the model, we assume network
latencies and transfer times are negligible. In addition, we assume every job is
independent from the others and can be processed only sequentially. In the grid,
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there is a central scheduler which can reach every node in the grid. Every job is
initially submitted to the scheduler. The scheduler would randomly dispatch the
submitted jobs to nodes, but with a distribution of probability based on some
rules such as the capacity of the different nodes. We assume that the arrival rate
of jobs follows the Poisson distribution and that the processing times of jobs
are exponentially distributed. From Figure 1, we notice the whole system mixes
up multiple M/M/k models where k ≥ 1. Because we assume that every node
is locally homogeneous in our model, each node ni has m (m ≥ 1) processors
each with relative processing speed si, which is the relative processing speed
compared to a reference processor.

Fig. 1. A Heterogeneous Grid

Every job is nonpreemptive. Without loss of generality, we assume the job j
has an execution time lj , which is the time required by a reference processor for
processing the job. Therefore, a processor with relative speed si would spend lj

si

units of time on processing the job.

2.2 Mathematical Model

In this section, we construct an optimization problem to obtain the MinART
of the model. We assume our model has N nodes. ni (i ∈ [1..N ]) represents
the number of processors inside node i and si (i ∈ [1..N ]) refers to the relative
processing speed of a single processor inside node i. The total job arrival rate
of the system is λ which follows the Poisson distribution. In our model, jobs
are randomly dispatched, but with a distribution of probability to minimize the
average response time of jobs. Therefore, the goal of the problem is to assign
the appropriate stream of jobs to the node i with flow rate λi (i ∈ [1..N ]) to

obtain MinART, where λ =
N∑

j=1
λj . Because our model is a queueing model,

without loss of generality, the response time of job k with execution time ek is
rk = ek + wk. wk is the waiting time of job k. Hence the average response time
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of m jobs is W (m) =

m

k=1
rk

m . The average response time of the whole system is
W = limm→+∞ W (m). In our model, every node is an M/M/ni (ni ≥ 1) system
with arrival rate λi, and the processors each with the job service rate μi = si

E(l)
(l is the random variable of the job execution time which follows the exponential
distribution). Therefore, for node i, the average response time is as follows [8]:

Wi =
( λi

μi
)ni ·P0

μi·ni·ni!(1−( λi
ni·μi

)2)
+ 1

μi
, where P0 = (

ni−1∑
k=0

λk
i

μk
i ·k! + λ

ni
i

μ
ni
i ·ni!·(1− λi

ni·μi
)
)−1

Usually the computational power of grids is greater than the workload. Hence we
assume the utilization rate of grids is always less than 1, which means λ

N

i=1
μi·ni

<

1. The problem of minimizing the average response time of jobs can be written
as follows:

Min W (β) =

N

i=1
λi·Wi

λ
where β = (λ1, λ2, · · · , λN ), subject to

N∑
j=1

λj = λ, (1)

λi ≥ 0, (i ∈ [1..N ]) (2)
λi

ni·μi
< 1, (i ∈ [1..N ]) (3)

Then a nonlinear optimization problem is shown as above. Inequation (3) de-
scribes M/M/n (n ≥ 1) models must have the system utilization rate less than
1. Otherwise, average response times of the models are infinity. Inequation (2)
illustrates that the job arrival rate of every node cannot be negative. Equation
(1) means the total job arrival rate of the system should be equal to the sum of
sub job arrival rates of all nodes.

3 Theoretical Analysis

In this section, we discuss properties of the optimization problem as shown in
the previous section through theoretical analysis. Then we present the solution.
Finally, we compare the ART difference between LB and MinART via case study
and theoretical analysis.

3.1 Existence and Uniqueness of Solutions

Although, for M/M/1 queueing system models, overall optimization problems
have been obtained[9], to the best of our knowledge, there are few solutions
to M/M/n models for n > 1, published [10]. Usually two main properties of
nonlinear optimization problems are concerned: Does the nonlinear optimization
problem have any optimal solution? Is the solution global and unique?
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Lemma 1. For 0 ≤ λi

ni·μi
< 1, (i ∈ [1..N ]), the W (β) is strictly convex.

Proof. Because every term λi · Wi in the function W (β) has the same format of
the formula and is independent from the other terms, without loss of generality,
we inspect the second derivative of W (β) with respect to λi as follows:

∂2W (β)
∂λ2

i
= ∂2(λi·Wi)

∂λ2
i

= 2 · ∂Wi

∂λi
+ λi · ∂2Wi

∂λ2
i

From [11], the average response time Wi is strictly increasing in ρ where ρ =
λi

ni·μi
. Hence Wi is also strictly increasing in λi. Therefore, the first term is

positive. In addition, from [12], we have ∂2Wi

∂λ2
i

> 0 for 0 ≤ λi

ni·μi
< 1, (i ∈ [1..N ]).

Therefore, the second term is also positive. Finally,

∂2W (β)
∂λ2

i
= ∂2(λi·Wi)

∂λ2
i

= 2 · ∂Wi

∂λi
+ λi · ∂2Wi

∂λ2
i

> 0

We have ∂2W (β)
∂λ2

i
> 0 (i ∈ [1..N ]) which means W (β) is strictly convex.

Theorem 1. The nonlinear optimization problem Min(W (β)) has the unique
global optimal solution.

Proof. Since W (β) is a strictly convex function, the unique global optimal solu-
tion to the minimizing problem on W (β) exists. [13]

3.2 Solution

We use the Lagrange multiplier method to solve the problem. The problem can
be rewritten to remove inequation constraints as follows:

Min W (β) =
N∑

i=1
λi · Wi

where β = (λ1, λ2, · · · , λN ), subject to

λ −
N∑

j=1
λj = 0, (4)

s2
i − λi = 0, (i ∈ [1..N ]) (5)

si, (i ∈ [1..N ]) is a slack variable. The multiplier[14], L(β, ω, η) is defined as

L(β, ω, η) =
N∑

i=1
λi · Wi + ω · (λ −

N∑
j=1

λj) +
N∑

j=1
ηj · (s2

i − λi)

and we must solve ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂L
∂λi

= ∂(λi·Wi)
∂λi

− ω − ηi = 0 (6)
∂L
∂si

= 2ηi · λi · si = 0 (7)

∂L
∂ω = λ −

N∑
j=1

λj = 0 (8)

∂L
∂ηi

= s2
i − λi = 0 (9)
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The equations (7) and (9) indicate that{
λi = si = 0, ηi ≥ 0
λi = s2

i ≥ 0, ηi = 0

From above constraints, we know the last term of the multiplier L(β, ω, η) (
N∑

j=1
ηj ·

(s2
i − λi)) is always equal to zero in the optimal solution so that equation (6)

can be rewritten as ∂L
∂λi

= ∂(λi·Wi)
∂λi

− ω = 0. And λi can be divided into two

1) Sort nodes by the relative speed of processors
Use a basic sorting algorithm to obtain an array k1 . . . kN where

sk1 ≥ sk2 ≥ · · · ≥ skN

2) Group nodes with the same relative speed of processors
j=1
Create a group gj and put sk1 into gj

for i=2 to N do
begin

if (ski−1 = ski)
Put ski into group gj

else
j=j+1
Create a group gj and put ski to group gj

end
3) Compute the new solution for the selected groups

for m=1 to j do
begin

if (λ <
m

i=1
(
p∈gi

nkp · μkp)) (where μi = si
E(l) )

begin
Find the solution by solving equations (6) and (8) with
λkp > 0 (∀p ∈

t∈[1..m]
gt) and λkh

= 0 (h /∈
t∈[1..m]

gt)

if (m = j) or (
∂(λkp ·Wkp )

∂λkp
≤ 1

μkq
) (∀p ∈

t∈[1..m]
gt and ∀q ∈ gm+1)

STOP, MinART is obtained
end

end

Fig. 2. The MinART Algorithm

sets: Φ = {λi|λi > 0, i ∈ [1...N ]} and Θ = {λi|λi = 0, i ∈ [1...N ]}. For λi ∈ Φ,
∂(λi·Wi)

∂λi
= ω, which means all the first partial derivatives are equal to the same

value. Therefore, with equation (8), we can solve the problem with a given Φ
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and Θ if the inverse function of ∂(λi·Wi)
∂λi

is available. We can obtain the optimal
solution by solving the problems with all possible Φ and Θ.

However, in the worst case, there are 2N different Φ and Θ. We notice that
λk · Wk is a convex function in λk ≥ 0 so that ∂(λk·Wk)

∂λk
is also a monoton-

ically increasing function. Therefore, the minimum value is at λk = 0 where
∂(λk·Wk)

∂λk
|λk=0 = Wk|λk=0 = 1

μk
. On the other hand, λk = 0 (k ∈ Θ) means

∂(λk·Wk)
∂λk

|λk=0 = 1
μk

≤ ω for node k. It indicates that if sk ≤ sj and λk > 0, we
must have λj > 0. Hence, in the worst case, the number of the possible sets Φ
and Θ can be reduced to N if all nodes are sorted by the relative speed of their
processors.

Based on the above analysis, the proposed algorithm is shown as in Figure 2.
In the algorithm, we have to find the inverse functions of ∂(λi·Wi)

∂λi
to solve the

equations. However, the inverse functions may not have a closed-form expression
when the number of processors inside one node is greater than 2. Hence it is
hard to solve the equations (6) and (8). On the other hand, we notice that
every temporary solution inside step 3) has λkp > 0 (p ∈

⋃
t∈[1..m]

gt) which

means the temporary solution is a local minimum inside the feasible region of
λkp (p ∈

⋃
t∈[1..m]

gt)[14]. It implies that we can obtain the solution by Newton’s

method with feasible initial point instead of solving the equations for every
loop inside step 3). To use Newton’s method, the constraint (4) of minimization
problem can be eliminated by expressing one λkp (p ∈

⋃
t∈[1..m]

gt) by the others.

Specifically, for each node i with an M/M/1 model, we have ∂(λi·Wi)
∂λi

=
μi

(μi−λi)2
. Because ∂(λki

·Wki
)

∂λki
=

∂(λkp ·Wkp )
∂λkp

(p, i ∈
⋃

t∈[1..m]
gt) in every solution

of step 3), λi of each M/M/1 system with λi > 0 can be expressed by λp, where
p is one of the most powerful M/M/1 nodes. Therefore, we can simply the op-
timization problem by expressing job flow variables of all M/M/1 nodes with a
single variable.

3.3 Comparison Between Load Balancing and MinART

It is well known that the average response time is an important metric for grids. A
lower ART means jobs are processed faster, implying that the utilization of grids
is more efficient and grids exhibit more power. Different scheduling strategies
may result in different ARTs on the same system. On the other hand, another
important metric is load balancing. Although in homogeneous systems LB state
and MinART state are the same state, they are different states in heterogeneous
environments. In this section, we compare the difference of ARTs between LB
state and MinART state through case study and theoretical analysis.

In some works [6], authors consider grids are utilized efficiently when LB state
of heterogeneous grids is achieved. In general, LB state of grids is the state where
every node has the same utilization rate. Usually LB scheduling is considered to
be able to increase throughput of grids and decrease average response time of
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grids because workloads are dispatched into grids evenly. However, LB state is
not the same as the MinART state in heterogeneous grids. The ART difference
between two states is sometimes large. Especially in some cases with M/M/n
models where n > 1, the difference may become larger.

In our model, LB state can be expressed as follows:

λi = λ · ni·si
N

j=1
nj ·sj

, (i ∈ [1..N ])

Therefore, ρi = λi

ni·μi
= λ·E(l)

N

j=1
nj ·sj

, (where μi = si

E(l) ) (i ∈ [1..N ])

From the above formulas, we notice the utilization rate of every node is equal
to the utilization rate of the whole system. Hence every node is utilized evenly.
We inspect ARTs of grids at LB state and MinART state via the following case
study.

In this case, we assume a grid has two nodes (n1 and n2) each with an M/M/1
model. Therefore, we have μ1 = s1

E(l) and μ2 = s2
E(l) . For LB state, we obtain

λ1 = μ1
μ1+μ2

· λ and λ2 = μ2
μ1+μ2

· λ according to λ1
μ1

= λ2
μ2

. The ART of the grid
at LB state can be easily obtained as follows:

ARTLB = 1
λ · ( λ1

μ1−λ1
+ λ2

μ2−λ2
) = 2

μ1+μ2−λ

Then in order to obtain MinART state, we construct an optimization problem
first as follows:

Min W (λ1) = 1
λ · ( λ1

μ1−λ1
+ λ−λ1

μ2−(λ−λ1))
subject to 0 ≤ λ1 < μ1 and 0 ≤ λ − λ1 < μ2

Here we replace λ2 with λ − λ1 so that the equation constraint is eliminated in
this case.

Therefore, we obtain the solution of the optimization problem as follows:

∂W (λ1)
∂λ1

= μ1
(μ1−λ1)2 − μ2

(μ2+λ1−λ)2 = 0

⇒ λ1 = μ1·
√

μ2+
√

μ1·λ−μ2·
√

μ1√
μ1+

√
μ2

However, the solution must be inside the feasible region:

0 ≤ λ1 < μ1 and 0 ≤ λ2 < μ2
⇒ max

{
μ2 − √

μ1 · μ2, μ1 − √
μ2 · μ1

}
< λ < μ1 + μ2

Without loss of generality, we assume μ1 ≤ μ2. Therefore, for 0 ≤ λ ≤ μ2 −√
μ1 · μ2, the solution is λ1 = 0 and λ2 = λ. The MinART of the grid is

MinART = 1
λ · (2·λ−(

√
μ1−

√
μ2)2

μ1+μ2−λ ), (μ2 − √
μ1 · μ2 < λ < μ1 + μ2)

MinART = 1
μ2−λ , (0 < λ ≤ μ2 − √

μ1 · μ2)

Therefore, the relative difference of ARTs between two states is
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ΔT
ARTLB

= ARTLB−MinART
ARTLB

= (
√

μ1−
√

μ2)2

2·λ , (μ2 − √
μ1 · μ2 < λ < μ1 + μ2)

ΔT
ARTLB

= ARTLB−MinART
ARTLB

= μ2−μ1−λ
2·(μ2−λ) , (0 < λ ≤ μ2 − √

μ1 · μ2)

From the above formulas, we obtain the range of the relative difference as follows:

(
√

μ1−
√

μ2)2

2·(μ1+μ2) < ΔT
ARTLB

< μ2−μ1
2·μ2

Therefore, we notice if μ1 = μ2, which means the grid is a homogeneous system,
we obtain

ARTLB−MinART
ARTLB

= 0 and λ1LB = λ1MinART = λ
2

This indicates LB state and MinART state are the same state. However, in
heterogeneous grids, the relative difference of ARTs between LB and MinART
decreases gradually to the minimum extremum (

√
μ1−

√
μ2)2

2·(μ1+μ2)
with the steady in-

crease of the system load. On the other hand, when the system load decreases,
the relative difference increases gradually to the maximum extremum μ2−μ1

2·μ2
.

This implies that ART of LB state may be undesired when the difference of
computational powers between two nodes is large or system load is not heavy.

4 Numerical Experiments

In previous sections, we proposed an algorithm to obtain the MinART. In addi-
tion, we have analyzed the difference of ARTs between LB and MinART state
through theoretical analysis and a case study. In order to explore and validate
the behavior of ART differences of heterogeneous grids between MinART and
LB, we present more complicated cases and data in this section. In order to
simplify experiments, we only inspect two nodes cases in this paper.

4.1 Two Nodes with M/M/1 Models

From the above section, we obtain formulas for two nodes cases with M/M/1
models. Therefore, we can compare ART differences among different cases ac-
cording to these formulas.

Figure 3 illustrates the relative difference of ARTs between LB and MinART
states (ARTLB−MinART

ARTLB
). In this experiment, we fix the service rate of one node

(node 1) to 1 and increase the service rate of the other node (node 2) from
2 to 5 gradually. From Figure 3 we notice, with the differential of the service
rate between two nodes increasing, relative differences of ARTs are also enlarg-
ing. Although relative differences of ARTs go down with the increase of the
system load, they would converge to different minimum extrema which are not
equal to zero eventually. Before the point (ρ = λ

μ1+μ2
= μ2−

√
μ1·μ2

μ1+μ2
), relative

differences decrease quickly from different maximum extrema with the system
load increasing. However, after the point, the decrease of relative differences is
slow. Moreover, with the enlargement of differential of processor speeds, relative
differences go down slower when the system load becomes heavy. We find out
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Fig. 3. Relative differences of ARTs in
the cases of different system utilization
rates and differential processor speeds

Fig. 4. Rate of load difference of node 1
between LB and MinART states with dif-
ferent system utilization rate and differ-
ential processor speeds

relative differences are very large in some cases such as the cases of 1:5 and 1:4
as shown in Figure 3. Figure 4 demonstrates the rate of the load of node 1 in
MinART state to the load of node 1 in LB state(rate = λ1MinART

λ1lb

, node 1). With
the increase of the system load, the relative load difference of node 1 between
two states becomes smaller and would converge to the same value eventually.
Because the utilization rate of every node should be less than 1 (otherwise the
average response time would be infinite), loads of node 1 at LB state and Mi-
nART state are very close when the system load is heavy. Moreover, we notice
that the relative load difference of node 1 becomes large with the increase of the
differential of service rates between two nodes.

4.2 Two Nodes with M/M/n Models

Then in the next experiment, we inspect the impact of M/M/n (n > 1) models.
Similar to previous experiments we study only the case of two nodes. We let
node 1 have only one processor (M/M/1), while node 2 has multiple processors
(M/M/n, n > 1). We fix the service rate of node 1 to 8 and the total service
rate of node 2 to 4.

Relative ART differences (ARTLB−MinART
ARTLB

) in the cases of different numbers
of processors inside node 2 are shown in Figure 5. With the number of processors
increasing, relative differences are also rising. Relative differences are high when
system load is light and moderate. Relative differences go down with the increase
of the system load and would converge to the minimum extremum of M/M/1
models eventually.

From Figure 5, we notice that relative differences are very high when the
system load is light. Relative differences in some M/M/n models are over 30%
in Figure 5. The reason for high relative differences is that LB scheduling ignores
the power of a single processor inside nodes, which can deteriorate ARTs of grids
in some cases. Because we fix the total service rate of node 2 to 4 and service rate
of node 1 to 8, with the number of processors increasing, the power of a single
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Fig. 5. Relative differences of ARTs in
the cases of different system utilization
rate and different numbers of processors
inside node 2

Fig. 6. Relative differences of ARTs in
the cases of different system utilization
rate and different numbers of processors
inside node 1

processor inside node 2 goes down. This leads the power difference between two
processors from different nodes to increase, which results in relative differences
of ARTs rising.

However, in some other cases, increasing the number of processors may de-
crease the difference of powers of processors from different nodes. Now we still
fix the service rate of node 1 and node 2 to 8 and 4. But node 1 has multiple pro-
cessors (M/M/n model) and node 2 only has one processor (M/M/1 model).
Because the power of node 1 is larger than node 2, increasing the number of
processors inside node 1 may decrease the power difference of processors from
different nodes.

Figure 6 demonstrates relative differences of ARTs between MinART and LB
states. We notice some interesting phenomena from it. When node 1 has two
processors, which means the power difference among all processors is zero, the
relative difference starts from zero and increases gradually to the maximum ex-
tremum which is the minimum extremum of M/M/1 models. When the number
of processors of node 1 is three and four which means the power difference of
processors rises, relative differences of ARTs are very high in the light system
load state. However, relative differences drop to zero rapidly with the system
load increasing gradually. Then relative differences rise slowly and converge to
the same value which is the minimum extremum of M/M/1 models eventually.

We think the reason for the phenomena is that the impact of the power dif-
ference of processors from different nodes counteracts the impact of the power
difference of nodes. When system load is light, the impact of the power differ-
ence of processors dominates. However, the trend is reversed with the system
load increasing. Therefore, relative differences of all cases would converge to the
minimum extremum of the M/M/1 model eventually.

From above experiments, we notice that there are two impacts on scheduling
stochastic workload in heterogeneous grids: the power difference of processors
and power difference of nodes. These two impacts can counteract or enhance
each other. Ignoring one of them may result in undesired ARTs of grids.
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5 Related Work

The scheduling problem on grids has been widely studied[15], [16]. Different
models and algorithms were proposed to handle heterogeneous grids [6]. Models
of some other works are also similar to grid environments [7], [17], [18]. Although
the models of some works may appear theoretical and far from actual applica-
tions, the models are realistic in some particular cases and starting with a simple
model is the traditional approach to tackle hard problems[6].

In [6], the authors proposed a model of heterogeneous grids very similar to
ours. In their model, nodes with more power should process more jobs. An algo-
rithm was proposed to achieve the LB state. Then they showed several important
metrics of the model such as queue length and ART. In addition, they analyzed
the case where the utilization rate of grids is greater than 1. They also measured
the algorithm with several different distributions. However, due to the hetero-
geneity of grids, load balancing schedulers may deteriorate the ART of grids.
Therefore, the power of heterogeneous grids cannot be utilized efficiently.

Models of some other works are similar to heterogeneous grids. In [17], au-
thors constructed a general model of heterogeneous distributed systems. And an
algorithm based on the Lagrange multiplier to obtain MinART was proposed.
However, their model missed the constraints for M/M/1 models, so that the
global optimal solution may be inside infeasible regions. In [18], the model and
algorithm based on Newton’s method is similar to the work in [17], except for
the goal of the algorithm, which is to minimize the sojourn time of each job.
Compared to MinART, which is a global optimal state to maximize the system
performance, it can be considered as an individual optimal state to maximize the
individual performance. Nevertheless, such state cannot be stable and may even
deteriorate the system performance [19]. In addition, Newton’s method cannot
handle any constraint so that the solution may be not available by this method.

6 Conclusions and Future Work

We analyzed how to obtain the minimum average response time of heterogeneous
grids. Scheduling is one of the key services required for enabling performance on
distributed and heterogeneous platforms. A goal of heterogeneous grids is to
speed up the job processing time, which is related to ART. We compared the
difference of ARTs between load balancing state and MinART state. Moreover,
we explored the impacts of the heterogeneity of grids on ART difference through
theoretical analysis and case study. We found that the ART of load balancing
state may be far away from MinART in some case. And the difference of ARTs
between two states in different cases was studied. The range of relative ART
differences was found in some cases.

Our future works are directed toward more complex cases: decentralized
scheduling, mixed dynamic and static scheduling, and estimating the load of
nodes. These new constraints will more than likely make our analysis more dif-
ficult. We also want to extend our work toward fault tolerance and reliability by
adding witness and replica mechanism.
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Abstract. A Task Graph (TG) is a model of a parallel program that
consists of many subtasks that can be executed simultaneously on differ-
ent processing elements. Subtasks exchange data via an interconnection
network. The dependencies between subtasks are described by means
of a Directed Acyclic Graph. Unfortunately, due to their characteris-
tics, scheduling a TG requires dedicated or uninterruptible resources.
Moreover, scheduling a TG by itself results in a low resource utilization
because of the dependencies among the subtasks. Therefore, in order to
solve the above problems, we propose a scheduling approach for TGs
by using advance reservation in a cluster environment. In addition, to
improve resource utilization, we also propose a scheduling solution by
interweaving one or more TGs within the same reservation block and/or
backfilling with independent jobs.

1 Introduction

A Task Graph (TG) is a model of a parallel program that consists of many
subtasks that can be executed simultaneously on different processing elements
(PEs). Subtasks exchange data via an interconnection network. The dependen-
cies between subtasks are described by means of a Directed Acyclic Graph
(DAG). Executing a TG is determined by two factors: a node weight that denotes
the computation time of each subtask, and an edge weight that corresponds to
the communication time between dependent subtasks [1]. Thus, to run these
TGs, we need a target system that is tightly coupled by fast interconnection
networks. Typically, cluster computers provide an appropriate infrastructure for
running parallel programs.

Scheduling TGs in a cluster environment is a challenging process because of
the following constraints: Firstly, a TG requires a fixed number of processors for
execution. Hence, a user needs to reserve the exact number of PEs. Secondly, due
to communication overhead between the subtasks on different PEs, each subtask
must be completed within a specific time period. Finally, each subtask needs to

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 60–71, 2006.
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wait for its parent subtasks to finish executing in order to satisfy the required
dependencies.
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Fig. 1. Illustration of a task graph (left) and its schedule (right) on 3 PEs

Scheduling a TG on a resource can be visualized by a time-space diagram as
shown in Figure 1. In this figure, a TG consists of 9 subtasks (T 0 − T 8), and as
an example it was scheduled using 4 target processing elements (TPEs). Each
subtask has a node weight of 1 time unit, and its edge weight is also shown on
Figure 1 (left) in a number next to the arrow line. In order to minimize the
schedule length (overall computation time) and the communication costs of a
TG, its subtasks must be assigned to appropriate PEs and they must be started
after their parent subtasks. In this example, T 6 depends on T 4 and T 5, so it
must wait for both subtasks to finish and it will be scheduled on PE0 in order
to minimize the communication cost. However, this schedule does not make an
efficient use of the given TPEs. Although this schedule assigned the subtasks to
3 PEs, only 2 PEs are actually needed. In general, the right number of schedule’s
PEs can not be determined in advance. Thus, the resulting schedules might not
be able to make an efficient use of the available PEs. Therefore, in this paper, we
will talk about how this problem can be improved upon by means of an advanced
reservation-based scheduling.

If we consider DAGs with different node and edge weights, the general schedul-
ing problem is NP-complete [2]. Thus, in practice, heuristics are most often
used to compute optimized (but not optimal) schedules. Unfortunately, time-
optimized algorithms do not make an efficient use of the given PEs. In this
context, the efficiency is measured by the ratio of the total node weight in re-
lation to the overall available processing time. As an example, in Figure 1, the
efficiency of this TG schedule is 9/18 or 50%, which is quite low because PE1
and PE2 are mostly idling. If there are no idle PEs at all time, then the efficiency
can be said to be optimal (100%).

In [3], a comprehensive test bench (comprised of 36,000 TGs with up to 250
nodes), is used to evaluate the schedule’s efficiency of several popular heuristics,
such as such as DLS [4], ETF [5], HLFET [6] and MCP [7]. Essentially, it reveals
that the efficiency of the DAG-schedules is mostly below 60%, which means a
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lot of the provided computing power is wasted. The main reason is due to the
constraints of the schedule as demonstrated in the previous example.

The contribution of this paper is as follows. We propose an approach to sched-
ule TGs by using advance reservation in a cluster environment. Moreover, to
improve the efficiency or to maximize the CPU utilization, we also propose a
scheduling solution by interweaving one or more TGs within the same reserva-
tion block and/or backfilling with other independent jobs.

The rest of this paper is organized as follows. Section 2 mentions some related
work in this area. Section 3 describes the proposed model, whereas Section 4
evaluates the effectiveness of the scheduling solution. Finally, Section 5 concludes
the paper and gives some future work.

2 Related Work

Some systems are available for running DAG applications in the Grid or cluster
computing environment, such as Condor [8, 9], GrADS [10], Pegasus [11], Tav-
erna [12] and ICENI [13]. However, only ICENI provides a reservation capability
in its scheduler [14]. In comparison to our work, the scheduler inside ICENI does
not consider backfilling other independent jobs with the reserved DAG applica-
tions. Hence, ICENI resource scheduler does not consider the efficiency of the
reserved applications towards CPU utilization.

With regards to the efficiency analysis of functional parallel programs, i.e.
executing two or more tasks concurrently, there are only few works done so far.
In [15], the authors analyze the efficiency of TG schedules, such as ECPFD [16],
DLS [4] and BSA [17] with respect of different Communication-to-Computation
(CCR) values. The authors report that a resource efficiency drops down if the
CCR value is increased and it also depends on the network topology. Moreover,
they find that for coarse grained parallel programs (low CCR), the efficiency
achieved is lower than 50%. In [15], the efficiency is defined as speedup of a TG
schedule divided by number of processors, where the speedup denotes a ratio of
measured parallel execution time to sequential execution time. However, it can
be easily shown that this definition of efficiency is equivalent to the one already
given in the previous section. Hence, the above findings are similar with [3] as
mentioned earlier, except that in [15], the experiments were conducted on a real
system because the model accuracy should be evaluated. Therefore, the main
goal of our work is to increase the scheduling efficiency of these TGs.

3 Description of the Model

3.1 System Model

Figure 2 shows the open queueing network model of a resource applied for our
work. In this model, there are two queues: one is reserved for TGs while the other
one is for parallel and independent jobs. Each queue has a finite buffer with size
S to store objects waiting to be processed by one of P independent CPUs or
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PEs. All PEs are connected by a high-speed network. PEs in a resource can be
homogeneous or heterogeneous. For this paper, we assume that a resource has
homogeneous PEs, each having the same processing power.

Resource
Scheduler

PE 0

PE 1

PE n

Job queue

TG queue

Resource

Job

  
  

TG

Fig. 2. Overall model where a user submits a set of task graphs on a resource

In this model, as shown in Figure 2, we assume that we have already known
the optimal schedules for each TG in the queue and that their run times are also
identified. With this assumption, the resource scheduler only needs to reserve and
run these TGs. Moreover, the resource scheduler can perform futher optimization
methods that will be discussed later on.

3.2 User Model

A user provides the following parameters during submission:

– TG = {T 1, T 2, ..., Tn} : Task Graph (TG) that consists of a set of dependent
subtasks, where each subtasks has a node and edge weight.

– List = {TG1, TG2, ..., TGk} : a collection of TGs.
– PE : number of CPUs requested.
– start : reservation start time.
– finish : reservation finish time.

A user needs to make a reservation by specifying a tuple < PE, start, finish>
to a resource. Once a reservation has been confirmed, then the user sends List
to the resource before the start time, otherwise the reservation will be cancelled.
More details on the states of Advance Reservation can be found on [18].

3.3 Scheduling Model

The aim of our reservation-based scheduler is to improve the efficiency of each
TG. Therefore, for executing TGs, we propose the following approaches:

1. Rearranging subtasks: This is done by rearranging all subtasks in a TG
based on the total number of subtasks executed on each PE. For example,
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Fig. 3. Scheduling a task graph. The shaded subtasks denote the before (a) and after
(b) a moving operation.

0 1 2 3 4 5 6

Time

PE 0

PE 1

T1

T0 T2 T3 T4

0 1 2 3 4 5 6

Time

PE 2

PE 3 D0

}
D1

D2 D3

D4

0 1 2 3 4 5 6

Time

PE 0

PE 1

T1

T0 T2 T3 T4

D2

D1 D4

D3D0

Fig. 4. Combining the execution of two TG by interweaving

we relocate all subtasks of PE0, PE1 and PE2 as depicted in Figure 1 to
PE2, PE0 and PE1 respectively as shown in Figure 3(a). This fundamental
step is required as a basis for the next step.

2. Moving subtasks: This is done by moving one or more subtasks from one
PE to another as long as there are empty slots. For example, we move T 1
and T 8 as mentioned in Figure 3(a) from PE0 to PE1 and PE2 respectively
as shown in Figure 3(b). With this approach, the best case scenario would
result in the reduction of the schedule’s PEs (SPEs). Hence, the available
PEs can be used to run another TG by interweaving and/or backfilling with
independent jobs as discussed in the next step.

3. Interweaving TGs: This can be done by combining two or more TGs from
List and still keeping the original allocation and dependencies untouched.

For example, in Figure 4, two TGs that require the same number of PEs
are interlocked. In general, the number of PEs do not matter. Each TG has
an earliest task to start with. Without the loss of generality, this TG can
be placed on a PE that will be availabe next. Due to the time relation in
a schedule, we can now look if the second earliest TG “row” can be placed
on another PE. If yes, we can proceed in this way until the second TG is
completely placed. If there are no PEs available to fit the time relations, we
delay all the previously placed task rows of that schedule appropriately. Of
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course this will create gaps of idle processor-cycles. But these gaps can be
hopefully closed by the following backfilling step.

4. Backfilling a TG or remaining gaps between interweaved TGs: This
can be done if there are smaller independent jobs that can be fit in and ex-
ecuted without delaying any of the subtasks of a TG.

In this step, we try to close the gaps by using (independent) jobs from
another queue. In contrast to the interweaving step, the best fitting jobs
should be selected out of this queue. We start with the first gap and look for
the job that has an estimated schedule length lower or (best) equal to the
gap’s length. Jobs that can not be used to fill enough gaps must be scheduled
after all the parallel programs are executed. As an example, there is enough
gap on PE0 in Figure 4 to put 2 small independent jobs, each runs for 1
time unit.

4 Performance Evaluation

In order to evaluate the performance of our advanced reservation-based scheduler
(AR), we compare it with two standard algorithms, i.e. First Come First Serve
(FCFS) and EASY backfilling (Backfill) [19]. We use GridSim toolkit [18] to
conduct the experiment with different parameters. We simulate the experiment
with three different target systems that consist of clusters with varying number
of processors, i.e. 16, 32 and 64 PEs. Then, we run the experiment by submitting
both TGs and other jobs (taken from a workload trace) into these systems.

4.1 Experimental Setup

Test Bench Structure. In this experiment, we use the same test bench (cre-
ated by a task graph generator), as discussed in [1] and [3], to evaluate the
performance of our scheduler. Therefore, we briefly describe the structure of the
test bench. More detailed explanation of the test bench can be found in [1].

TGs with various properties are synthesized by a graph generator whose input
parameters are varied. The directory tree that represents the structure of test
bench are shown in Figure 5. The total number of TGs at each level within a
path of the tree is shown on the right side. The parameters of a TG is described
as follows (from top to bottom level in Figure 5):

– Graph Size (GS): denotes the number of nodes or subtasks for each TG. In
Figure 5, The parameters of a generated TG are grouped into three cate-
gories: 7 to 12 nodes (GS7 12), 13 to 18 nodes (GS13 18) and 19 to 24 nodes
(GS19 24).

– Meshing Degree (MD) or Number of Sons (NoS): denotes the number of de-
pendencies between the subtasks of each TG. When a TG has a low, medium
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Fig. 5. Structure of the test bench

and strong meshing degree, the NoS in Figure 5 are NoS Low, NoS Avg and
NoS High respectively. TGs with random meshing degrees are represented
as NoS Rand.

– Edge Length (EL): denotes the distance between connected nodes. When a
TG has a short, average and long edge length, Figure 5 depicts the notation
as EL Short, EL Avg and EL Long respectively. TGs with random edges are
represented as EL Rand.

– Node- and Edge-weight: denotes the Computation-to-Communication Ratio
with a combination of heavy (H), light (L) and random (R) weightings for
the node and edge.

From this test bench, we also use the optimal schedules for the branches
of GS7 12 and GS13 18 for both 2 and 4 TPEs. Each branch contains 2,400
task graphs, hence the maximum number of task graphs that we use is 9,600.
These optimal schedules were computed and cross-checked by two independent
informed search algorithms (branch-and-bound and A∗) [1]. Note that at the time
of conducting this experiment, the optimal schedules of GS19 24 for 4 TPEs are
not yet completed. Therefore, we do not incorporate the schedules of GS19 24
for 2 TPEs into the experiment for consistency.

Workload Trace. We also take two workload traces from the Parallel Work-
load Archive [20] for our experiment. We use the trace logs from DAS2 fs4 (Dis-
tributed ASCI Supercomputer-2 or DAS in short) cluster of Utrecht University,
Netherlands and LPC (Laboratoire de Physique Corpusculaire) cluster of Uni-
versite Blaise-Pascal, Clermont-Ferrand, France. The DAS cluster has 64 CPUs
with 33,795 jobs, whereas the LPC cluster has 140 CPUs with 244,821 jobs. The
detailed analysis for DAS and LPC workload traces can be found in [21] and [22]
respectively. Since both original logs recorded several months of run-time period
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with thousands of jobs, we limit the number of submitted jobs to be 1000, which
is roughly a 5-days period from each log. If the job requires more than the total
PEs of a resource, we set this job to the maximum number of PEs.

In order to submit 2,400 TGs within the 5-days period, a Poisson distribution
is used. 4 TGs arrive in approximately 10 minutes for conducting the FCFS and
Backfill experiments. When using the AR scheduler, we set the limit of each
reservation slot to contain only 5 TGs from the same leaf of the test bench tree
from Figure 5. Hence, only 480 reservations were created during the experiment,
where every 30 minutes a new reservation is requested. If there are no available
PEs, then the resource scheduler will reserve the next available ones.

4.2 Results

Figure 6 and 7 show a huge gain for using AR scheduler for the total completion
time on 4 TPEs for both the DAS and LPC trace respectively, especially on a
resource that has 16 PEs. Note that for 2 TPEs, the results are similar, hence
they are being omitted in this paper.
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Fig. 6. Total completion time on the DAS trace with 4 TPEs (lower is better)
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Table 1. Average percentage of reduction in a reservation duration time

Task Graph 2 TPEs (% reduction) 4 TPEs (% reduction)
Parameters GS7 12 GS13 18 Avg GS7 12 GS13 18 Avg
MD Low 2.06 2.15 2.10 14.99 22.80 18.89
MD Avg 6.59 7.73 7.16 13.68 19.87 16.78
MD High 9.66 9.61 9.64 12.33 16.55 14.44
MD Rand 5.35 4.68 5.02 15.80 23.54 19.67
EL Long 0.21 0.00 0.11 9.52 11.85 10.69
EL Short 11.92 13.99 12.96 16.89 23.04 19.96
EL Avg 3.64 3.03 3.34 13.83 22.55 18.19
EL Rand 7.89 7.15 7.52 16.55 25.32 20.94

LNode LEdge 4.02 3.99 4.00 8.42 10.94 9.68
LNode HEdge 6.80 8.01 7.41 9.73 12.62 11.17
HNode LEdge 5.75 5.47 5.61 23.74 25.72 24.73
HNode HEdge 7.57 6.69 7.13 18.78 26.31 22.55
RNode REdge 5.67 6.05 5.86 12.26 24.60 18.43

Table 2. Average of total backfill time on the DAS trace (in seconds)

Task Graph 2 TPEs 4 TPEs
Parameters GS7 12 GS13 18 Avg GS7 12 GS13 18 Avg
MD Low 1,089.00 432.00 760.50 711.33 209.67 460.50
MD Avg 4,499.00 2,301.33 3,400.17 2,121.33 2,585.33 2,353.33
MD High 598.67 145.00 371.83 197.67 614.33 406.00
MD Rand 943.33 1,041.67 992.50 698.67 644.33 671.50
EL Long 2,834.67 1,627.33 2,231.00 1,574.33 491.33 1,032.83
EL Short 1,811.33 1,114.00 1,462.67 467.33 2,469.33 1,468.33
EL Avg 2,263.67 379.67 1,321.67 777.33 329.00 553.17
EL Rand 220.33 799.00 509.67 910.00 764.00 837.00

LNode LEdge 1,760.67 865.33 1,313.00 981.33 329.67 655.50
LNode HEdge 602.67 74.67 338.67 436.67 9.33 223.00
HNode LEdge 620.67 102.00 361.33 201.67 146.67 174.17
HNode HEdge 1,259.67 382.00 820.83 509.33 962.67 736.00
RNode REdge 2,886.33 2,496.00 2,691.17 1,600.00 2,605.33 2,102.67

There are two main reasons that the AR scheduler manages to complete much
earlier. The first reason is because a set of TGs in a single reservation slot can
be interweaved successfully, as shown in Table 1. For TGs on a GS7 12 branch
fot 4 TPEs, the initial reservation duration time is reduced up to 23.74% on the
HNode LEdge branch. For TGs on a GS13 18 branch for 4 TPEs, the maximum
reduction is 26.31% on the HNode HEdge branch. In constrast, the reduction is
much smaller for 2 TPEs on the same branches. The reduction in the reservation
duration time can also be referred to as an increase in the efficiency of scheduling
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Table 3. Average of total backfill time on the LPC trace (in seconds)

Task Graph 2 TPEs 4 TPEs
Parameters GS7 12 GS13 18 Avg GS7 12 GS13 18 Avg
MD Low 2,451.67 1,640.67 2,046.17 1,136.00 815.67 975.83
MD Avg 883.00 474.00 678.50 718.00 2,874.33 1,796.17
MD High 1,902.33 1,916.67 1,909.50 2,334.00 678.00 1,506.00
MD Rand 2,474.67 1,698.67 2,086.67 2,172.00 1,020.33 1,596.17
EL Long 2,018.67 1,611.33 1,815.00 1,889.00 1,419.33 1,654.17
EL Short 1,830.67 1,835.00 1,832.83 1,610.00 1,846.33 1,728.17
EL Avg 2,469.00 1,213.67 1,841.33 1,218.33 455.00 836.67
EL Rand 1,393.33 1,070.00 1,231.67 1,642.67 1,667.67 1,655.17

LNode LEdge 1,578.33 978.00 1,278.17 1,459.33 1,419.00 1,439.17
LNode HEdge 1,126.33 1,051.33 1,088.83 1,387.67 541.67 964.67
HNode LEdge 2,114.33 683.00 1,398.67 828.00 940.33 884.17
HNode HEdge 1,121.67 1,529.33 1,325.50 838.00 1,011.00 924.50
RNode REdge 1,771.00 1,488.33 1,629.67 1,847.00 1,476.33 1,661.67

TGs in this experiment. Overall, these results show that the achievable reduction
depends on the size of the TGs and their graph properties as well.

The second reason is because there are many small independent jobs that can
be used to fill in the “gaps” within a reservation slot, as depicted in Table 2
and 3. However, on average, the AR scheduler manages to backfill more jobs
from the LPC trace into the reservation slot compare to the DAS trace. This is
due to the characteristics of workload jobs themselves. The first 1000 jobs from
the LPC trace are primarily independent jobs that require only 1 PE with an
average runtime of 23.11 seconds. In contrast, the first 1000 jobs from the DAS
trace contain a mixture of independent and parallel jobs that require on average
9.15 PEs with an average runtime of 3676.70 seconds. These phenomena also
explain why the total completion time on the DAS trace took much longer than
the LPC one.

An interesting observation to note from Figure 6 and 7 is that, the total
completion time for the AR scheduler is the same for a resource with 16, 32 and
64 PEs. The FCFS and Backfill algorithm only manage to finish within the same
time as the AR scheduler when a resource has 64 PEs. Hence, the AR scheduler
executes these jobs and TGs more efficiently.

5 Conclusion and Future Work

In this paper, we have presented a novel approach to schedule TGs by using
advance reservation in a cluster environment. In addition, to improve resource
utilization, we proposed a scheduling solution (AR scheduler) by interweaving
one or more TGs within the same reservation block and/or backfilling with other
independent jobs.
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The results showed that the AR scheduler performs better than the standard
FCFS and Easy backfilling algorithms for reducing both the reservation duration
time and the total completion time. The AR scheduler managed to interweave
a set of task graphs with a reduction of up to 23.74% and 26.31% on 7–12
nodes and 13–18 nodes with 4 target processing elements (TPEs) respectively.
However, much smaller reduction is noticed for 2 TPEs on same nodes. These
results also showed that the achievable reduction depends on the size of the task
graphs and their graph properties as well. Finally, the results showed that when
there are many small independent jobs, the AR scheduler accomplished to fill
these jobs into the reservation blocks.

An extension to this work is to consider scheduling task graphs with an econ-
omy model in order to see how efficient the AR scheduler is in terms of resource
profits and user costs. Moreover, the AR scheduler can be extended to interweave
task graphs from different reservation slots within a specified time block.
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Abstract. Grid computing holds the great promise to effectively share
geographically distributed heterogeneous resources to solve large-scale
complex scientific problems. One of the distinct characteristics of the
Grid system is resource heterogeneity. The effective use of the Grid re-
quires an approach to manage the heterogeneity of the involved resources
that can include computers, data, network, etc. In this paper, we pro-
posed a de-centralized and adaptive load balancing algorithm for het-
erogeneous Grid environment. Our algorithm estimates different system
parameters (such as job arrival rate, CPU processing rate, load at pro-
cessor) and effectively performs load balancing by considering all neces-
sary affecting criteria. Simulation results demonstrate that our algorithm
outperforms conventional approaches in the event of heterogeneous en-
vironment and when communication overhead is significant.

Keywords: Grid systems, Heterogeneous environment, Load balancing,
Average response time, Communication overhead, Migration.

1 Introduction

One of the primary goals of the Grid computing [6,8] is to share access to geo-
graphically distributed heterogeneous resources in a transparent manner. With
its multitude of resources, a proper scheduling and efficient load balancing across
the Grid can lead to improved overall system performance and a lower turn-
around time for individual jobs. Many load balancing algorithms have been pro-
posed for traditional distributed systems. However, little work has been done
to cater the following unique characteristics for the Grid computing environ-
ment: heterogeneous resources, considerable communication delay and dynamic
network topology. The present work is targeted to the Grid model where hetero-
geneous resources are connected through arbitrary topology and network band-
width also varies from link to link.
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Load balancing involves assigning to each processor work proportional to its
performance, thereby minimizing the execution time of a job. But there are a
wide variety of issues that need to be considered for heterogeneous Grid envi-
ronment. For example, capacities (in terms of processor speed) of the machines
differ because of processor heterogeneity. Also their usable capacities vary from
moment to moment according to load imposed upon them. Further, in Grid
computing, as resources are distributed in multiple domains in the Internet,
not only the computational nodes but also the underlying network connecting
them is heterogeneous. The heterogeneity results in different capabilities for job
processing and data access. For instance, typical bandwidth in Local Area Net-
work (LAN) vary from 10Mbps to 1Gbps, whereas it is few kbps to Mbps for
Wide Area Network (WAN). Also network bandwidth across resources varies
from link to link for large-scale Grid environments. Further, network topology
among resources is also not fixed due to dynamic nature of the Grid. The focus
of our work is to present load balancing algorithm adapted to heterogeneous
Grid computing environment which considers all necessary factors such as load
at processor, processor heterogeneity and job migration cost for load balancing.
The conventional parallel processing scheduling and load balancing methods can
not be applied directly to the Grid system due to its unique characteristics. In
this paper, we attempt to formulate an adaptive, decentralized, sender-initiated
load balancing algorithm for heterogeneous Grid environments which is based on
ELISA [7]. Below we highlight some key contributions from the literature that
are relevant to the context of our paper.

1.1 Related Works

One problem that is critical to effective utilization of computational grids is
the efficient scheduling of jobs. Many job scheduling algorithms [1,3,4,5,9] have
been proposed to deal with the heterogeneity and dynamic nature of distributed
systems so as to optimize some figure of merit, for instance, minimize average
job response time or better resource utilization. Martin [9] studied the effects
of communication latency, overhead and bandwidth in cluster architecture to
observe the impact on application performance. Shan et al. [3] considered het-
erogeneity in the system as well as in workload to optimize execution time in
which sender processor collects status information about neighboring processors
by communicating with them at every load balancing instant. This can lead to
frequent message transfer. For large-scale Grid environment where communica-
tion latency is very large, status exchange at each load balancing instant can
lead to large communication overhead. In our approach, the problem of frequent
exchange of information is alleviated by estimating load, based on system state
information received at sufficiently large interval of time. Arora et al. [5] proposed
a decentralized load balancing algorithm for heterogeneous Grid environment.
Although this work attempts to include communication latency between two
nodes during triggering process on their model, it did not consider the actual
cost for job transfer which is a significant factor in load balancing decision.
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Our approach for load balancing in heterogeneous Grid environment is based
on periodic status exchange concept of ELISA [7]. In ELISA, load balancing
decision is taken based on queue length only. But due to unique characteristic
of heterogeneous Grid environment, load balancing decision should consider all
affecting factors which are current load at processor, processor heterogeneity and
migration cost of a job. In the rest of the paper, we have used terms “Processor”,
“Resource” and “Node” interchangeably.

1.2 Our Contributions

In [2], it was pointed out that serious performance degradation will occur for
slower networks such as for Grid environment if data migration cost is not con-
sidered when scheduling jobs. Further, to minimize total execution time of a job,
load should be assigned to each processor proportional to its performance, taking
into account processor heterogeneity in terms of its speed. In a heterogeneous
Grid environment, performance of the system is largely affected by resource het-
erogeneity, considerable communication delay, dynamic changing environment
etc. In this work, we have proposed a dynamic, de-centralized, sender-initiated
load balancing algorithm which is applicable to heterogeneous Grid environ-
ments. One of the important characteristics of our algorithm is to estimate sys-
tem parameters such as job arrival rate, processing rate and to perform proactive
job migration. We study the effects of several influencing factors such as job size,
arrival rate, number of migrations, and processor heterogeneity to show the be-
havior of our algorithm.

The paper is organized as follows: In Section 2, we present our Grid system
model and problem definition. In Section 3, we provide design of our load bal-
ancing algorithm. In Section 4, we describe reference algorithms which are used
to compare the results of our algorithms. Performance of our algorithm and dis-
cussion of results are presented in Section 5. Finally, Section 6 concludes the
paper.

2 System Model and Problem Definition

Our Grid system model consists of a set of M heterogeneous resources, labeled as
P1, P2, ..., PM , connected by a communication network. The resources may be of
different hardware architecture and processing speed can be different for different
resources. There is no possibility of dropping of a job due to unavailability of
buffer space as we assume that each resource has an infinite capacity buffer.
For any resource Pi, jobs are assumed to arrive randomly at the processors, the
inter-arrival time being exponentially distributed with average 1/λi. The jobs
are assumed to require service time that are exponentially distributed with mean
1/μi. All jobs are assumed to be mutually independent and can be executed
on any node. Thus, each node is modeled as a M |M |1 Markov chain, with
the number of jobs queued up for processing at each node representing the
state of the system. Job size is assumed to have normal distribution with a
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given mean and variance. This job size includes both program and data size.
As Grid is dynamic in nature, there is no fixed network topology. In our model,
we consider arbitrary network topology to capture this constraint. Also data
transfer rate is not same for each link connecting two resources. Nodes which
are directly connected to a node constitute its buddy set. We also assume that
each node has knowledge about its buddy nodes (in terms of processor speed and
communication latency between them) and load balancing is carried out within
buddy sets only. It may be noted that two neighboring buddy sets may have few
nodes common to each set. Job arrival rates and service rates are such that for
some node (say Pi), λi > μi (that is Pi is unstable), but whole system always
remains stable, that is

∑M
i=1 λi <

∑M
i=1 μi.

Fig. 1. System Model

Before presenting the exact problem statement, we first describe notations
and terminology that are used throughout the paper below (refer to Table 1).
We will now introduce certain key performance metrics of interest considered in
this paper.

2.1 Performance Metrics

We have considered two performance metrics of relevance in our study. The
response (or turnaround) time is probably the single most important measure
for an individual submitting a job. If N jobs are processed by the system, then
Average Response Time (ART) of the system can be calculated as follows:

ART =
1
N

N∑
i=1

(FTi − ATi) (1)

where ATi is the time at which the ith job arrives and FTi is the time at which
it leaves the system. The delay due to job transfer, waiting time in queue and
processing time, together constitute the response time.

At the system level, we consider total execution time as performance metric to
measure algorithm’s efficiency. It indicates time at which all N jobs get finished.

Thus, our objective is to design an adaptive, de-centralized load balancing
algorithm which minimizes the Average Response Time (ART) of the jobs for
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Table 1. List of notations and terminology

M Number of heterogeneous processors (P1, P2, ..., PM )
N Number of jobs to be processed
λi Actual arrival rate for Pi (Poisson distribution)
1/μi Actual mean service time for Pi (Exponential distribution)
CST Current System Time
Ts Status exchange period
Te Load estimation period
ERT j

i Estimated Run Time of job j on Pi

EFT j
i Estimated Finish Time of job j on Pi

Ai(t) Actual number of job arrivals for Pi in time t
Di(t) Actual number of job departures for Pi in time t
EAi(t) Expected number of job arrivals for Pi in time t
EDi(t) Expected number of job departures for Pi in time t
α Arrival rate estimation factor
β Service rate estimation factor
λ̃i(T ) Estimated arrival rate for Pi at time T
μ̃i(T ) Estimated service rate for Pi at time T
L̃i(T ) Estimated load on Pi at time T
L̃k,i(T ) Estimated load on buddy processor Pk calculated by Pi at time T
Qi(T ) Number of jobs waiting in queue for Pi at time T

heterogeneous Grid environments. Our algorithm is highly adaptive in nature in
the sense that number of job migration for execution of N jobs triggers by avail-
able network bandwidth, processor heterogeneity and current load at processor.

3 Design of Load Balancing Algorithm

In any distributed systems, even simple load sharing policies yields significant
improvements in performance over the no sharing case. But in heterogeneous
Grid environment, where data size is very large or network bandwidth is low,
it is critical to consider data transfer overhead when making job migration de-
cision. Further, when resources are heterogeneous, we need to assign jobs to
processors according to its performance. Our algorithm is based on ELISA and
does parameter estimation and information exchange at regular intervals. We
shall first describe how each Pi estimates its parameters and then will elaborate
how load balancing is carried out in our algorithm.

As shown in Fig. 2, at each periodic interval of time Ts, called the status
exchange interval, each Pi in the system calculates its status parameters which
are estimated arrival rate, service rate and load on processor using following
relationships:

λ̃i(Tn−1) = α ∗ λ̃i(Tn−2) + (1 − α) ∗ (Ai(Ts)/Ts) (2)
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μ̃i(Tn−1) = β ∗ μ̃i(Tn−2) + (1 − β) ∗ (Di(Ts)/Ts) (3)

L̃i(Tn−1) = Qi(Tn−1)/μ̃i(Tn−1) (4)

Thus, in the above relationship, by changing value of the parameter α (0 ≤
α ≤ 1), one can vary the estimate. A value of 0.5 for α would mean that an equal
weight has been considered for the current period and the previous estimate of
the arrival rate. Similarly, we tune the parameter β (0 ≤ β ≤ 1) for service rate
estimation.

Fig. 2. Estimation and status exchange intervals

Each Pi in the system exchanges its status information with the processors
in its buddy set. In Fig. 2, Tn−1 and Tn represent the status exchange instant.
Each status exchange period is further divided into equal subintervals called
estimation interval Te. These points are known as estimation instants. In Fig.
2, t1, t2,...,tm−1 represent estimation instants. As each processor balances the
load within its buddy set, every processor estimates the load in the processors
belonging to its buddy set at each estimation instants by following equations:

L̃k,i(Tn−1 + ti) = ((EAk(Te) − EDk(Te))/μ̃k(Tn−1)) + L̃k,i(Tn−1 + ti−1) (5)

where i = 1, 2, 3, ...., m − 1 and
EAk(Te) = a such that

a∑
x=0

e(−λk(Tn−1)∗Te) ∗ (λ̃k(Tn−1) ∗ Te)x

x!
∼= 1 (6)

EDk(Te) = d1 such that

d∑
x=0

e(−μk(Tn−1)∗Te) ∗ (μ̃k(Tn−1) ∗ Te)x

x!
∼= 1 (7)

Depending on the accuracy required, computations of EAk(Te) and EDk(Te)
can be terminated after computing a sufficiently large number of terms in (6)
1 Note that number of job departures can not be greater than number of job arrivals.

That is,
EDk(Te) ≤ (EAk(Te) + Lk,i(Tn−1 + ti−1) ∗ μk(Tn−1))
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and (7). The status exchange instants and the estimation instants together con-
stitute the set of transfer instants (Tn−1, t1, t2, ..., tm−1, Tn) in Fig. 2. At the
transfer instants, rescheduling of jobs is carried out. By making the interval
between status exchange instants large, and by restricting the exchange of infor-
mation to the buddy set, the communication overheads are kept at a minimum.

Based on this calculated buddy load, each processor calculates average load
in its buddy set. Pi will take decision of job migration if its load is greater than
an average load in its buddy set and will try to distribute its load such that load
on all buddy processors get finished at almost same time taking into account
node’s heterogeneity in terms of processor speed. This average buddy load can
be calculated using following relationships.

Let Si denote the weight of a processor Pi which is a normalized measure of
its speed. So a value of 2 for Si means Pi will take half amount of time to execute
job than time taken by reference2processor having value of 1 for Si. Here, each Pi

will calculate normalized buddy average load (NBLavg) using value of L̃k,i(T )
and Si by following equation:

NBLavg =

∑
kεbuddyseti

Sk ∗ L̃k,i(T )∑
kεbuddyseti

Sk
(8)

NBLavg indicates average load for reference processor. Pi is considered as a
sender processor, if NBLavg < Si ∗ L̃i(T ). Now Pi will try to transfer its extra
load to all receiver processors Pk such that they receive extra load based on their
current load (L̃k,i(T )) and processor weight (Sk). After determining how much
load Pi can transfer to Pk, as shown in Fig. 3, Pi will calculate expected finish
time of job j on buddy processor (Pk) by estimating load on Pk at time CST +tjc
(where tjc is migration time for job j from Pi to Pk). Job will be migrated to Pk

only if EFT j
k < EFT j

i ,
where

EFT j
i = Qi(CST )/μ̃i(Tn−1) + ERT j

i (9)

EFT j
k = max( (L̃k,i(CST )+(EAk(tjc)−EDk(tjc))/μ̃k(Tn−1)), tjc )+ERT j

k (10)

In (10), first term which is maximum of two values - approximate wait time of
job j on Pk and job transfer time - indicates expected starting time of job j
on Pk. We assume that these activities can be performed simultaneously. So job
will be migrated only if its expected finish time on destination processor is less
than expected finish time on source processor. Figure 4 shows complete working
of our load balancing algorithm.

4 Reference Algorithms

We have used two algorithms, which are relevant to our context, as reference
algorithms to compare results of our algorithm.

2 This could be an abstract processor within the system.
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Fig. 3. Job migration decision

Fig. 4. Load balancing algorithm

4.1 Load Balancing Based on Queue Length

This approach is similar to ELISA [7]. In ELISA, each processor estimates queue
length of its buddy processor at estimation instant using information exchanged
at status exchange instant. Here, each processor will exchange estimate of arrival
rate, service rate and queue length at each status exchange period Ts. At Te,
each processor will calculate queue length of its buddy processors by estimat-
ing number of job arrivals and departures. Pi will transfer its job to destination
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processor (Pk) if its queue length is greater than average queue length in its
buddy set. Interested readers can refer to [7] for more details.

4.2 Load Balancing Based on Load and Processor Speed

Owing to resource heterogeneity, queue length is not always best criteria for
determining load imbalance. Instead, product of average processing time of a job
and queue length provides better load index for balancing load. In this approach,
load balancing is done based on load (in terms of expected time to execute all
jobs waiting in queue) rather than based on queue length. Here, Pi will take
decision of job migration if its load is greater than an average load in its buddy
set and will try to distribute its load such that load on all buddy processors get
finished at almost same time on all buddy processors taking into account node’s
heterogeneity in terms of processor speed.

5 Performance Evaluation and Discussions

Here we present the results of our simulation study and compare the performance
of our proposed algorithm with other algorithms discussed in Section 4. In our
simulation model, we have considered 16 heterogeneous processors connected by
communication channels assuming an arbitrary topology generated by a graph
generator tool as shown in Fig. 5. Weight on each link indicates data transfer
rate in Mbps. Various parameter values used for simulation are shown in Table 2.
These parameter values are used for all cases unless otherwise stated explicitly.

We have used following notations for our algorithms for this section:

LBQL - Load Balancing based on Queue Length
LBLS - Load Balancing based on Load and processor Speed
LBALL - Load Balancing considering All criteria (Our proposed algorithm)

Table 2. Parameter values

Parameter Value
Mean inter-arrival time Exponentially distributed in [1, 4]
Mean service time Exponentially distributed in [1, 4]
N 10000
Ts 20
Te 5
α 0.5
β 0.5
Job Size Normal distribution with μ=5MB and σ=1MB
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Fig. 5. Network topology and bandwidth across link

5.1 Performance for Heterogeneous Case

For heterogeneous case, we considered different data transfer rate for each link as
shown in Fig. 5. We also considered resource heterogeneity by setting value of Si

to 2 for randomly half of processors. Our algorithm gives better performance for
ART as can be seen from Fig. 6(a). As from Fig. 6(c), total number of migration
performed by our algorithm is less than other reference algorithms as it is not
always advisable to perform migration in event of low data transfer rate and
resource heterogeneity.

5.2 Performance for Homogeneous Case

This is a special case to our heterogeneous environment. In this case, we have
considered all nodes are homogeneous, that means Si is set to 1 for all processors.
Also, network bandwidth is fixed and it is 10Mbps for all links. As shown in Fig.
7(a) and 7(b), ART and total execution time are almost same for all algorithms.
Even number of migration performed for execution of N jobs is also identical as
can be seen from Fig. 7(c). This observation indicates that our algorithm gives
as good performance as given by LBQL or LBLS in case of homogeneous case.

5.3 Effect of Job Size

Our algorithm also takes into account job migration cost and as job size largely
affects job migration cost, it will be very interesting to measure performance of
algorithms by varying job size. In this set of experiments, we varied job size from
5MB ± 1MB to 50MB ± 20MB. From Fig. 8(a) and 8(b), as we increase job
size, performance of our algorithm is far better than other referenced algorithms
in terms of decrease in ART and total execution time. As from Fig. 8(c), for
our algorithm, total number of migration gets decreased as we increase job size
whereas it remains almost constant for LBQL and LBLS irrespective of large
communication overhead due to increase in job size.
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Fig. 6. Heterogeneous case Fig. 7. Homogeneous case

Fig. 8. Effect of job size



Estimation Based Load Balancing Algorithm 83

6 Conclusions

Grid computing environment has many unique characteristics such as resource
heterogeneity, communication overhead and dynamic nature that makes it dif-
ferent from the traditional distributed systems. These characteristics have a
significant impact on the performance of load balancing. In this paper, we have
proposed a de-centralized, distributed and adaptive load balancing algorithm to
cater for these characteristics. Our algorithm estimates different types of system
parameters and effectively does load balancing to improve performance of the
system. Through simulation experiments, it is found that when communication
overhead is significant and resources are heterogeneous, performance of our load
balancing algorithm is far better than other reference algorithms.

Although we have considered resource heterogeneity in terms of processor
speeds, it can be extended to heterogeneity in other dimensions such as, machine
architecture, operating system, available storage space, etc. and can measure the
performance of the algorithm.
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Abstract. A key component for networks with Quality of Service (QoS)
support is the egress link scheduler. The table-based schedulers are sim-
ple to implement and can offer good latency bounds. Some of the latest
proposals of network technologies, like Advanced Switching and Infini-
Band, define in their specifications one of these schedulers. However,
these schedulers do not work properly with variable packet sizes and
face the problem of bounding the bandwidth and latency assignments.

We have proposed a new table-based scheduler, the Deficit Table
(DTable) scheduler, that works properly with variable packet sizes. More-
over, we have proposed a methodology to configure this table-based sche-
duler that partially decouples the bandwidth and latency assignments.

In this paper we propose a method to improve the flexibility of the
decoupling methodology. Moreover, we compare the latency performance
of this strategy with two well-known scheduling algorithms: the Self-
Clocked Weighted Fair Queuing (SCFQ) and the Deficit Round Robin
(DRR) algorithms.

1 Introduction

Current packet networks are required to carry not only traffic of applications
such as e-mail or file transfer, which does not require pre-specified service guar-
antees, but also traffic of other applications that require different performance
guarantees. The best-effort service model, though suitable for the first type of
applications, is not so for applications of the other type [10]. A key component
for networks with QoS support is the output scheduling algorithm, which selects
the next packet to be sent and determines when it should be transmitted, on
the basis of some expected performance metrics.

An ideal scheduling algorithm implemented in a high performance network
with QoS support should satisfy two main properties: good end-to-end delay and
simplicity. The design of a traffic scheduling algorithm involves an inevitable
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trade-off among these properties. Many scheduling algorithms have been pro-
posed. Among them, the “sorted-priority” family of algorithms are known to
offer very good delay [13]. These algorithms assign each packet a service tag
and transmit packets in an increasing order of service tag. However, their com-
putational complexity is very high, making their implementation in high-speed
networks rather difficult.

In order to avoid the complexity of the sorted-priority approach, the Deficit
Round Robin (DRR) algorithm [11] has been proposed. In the DRR algorithm,
a list of flow1 quantums is visited sequentially, each quantum indicating the
amount of data that can be transmitted from the flow in question. The sum of
all the quantums is called the frame length. The main problem of this algorithm
is that its delay and fairness depend on the frame length. Depending on the
situation, the frame can be very long, and thus, the latency and fairness would
be very bad.

On the other hand, in the table-based schedulers instead of serving packets of
a flow in a single visit per frame, the service is distributed throughout the entire
frame. This approach is followed in [3] and in two of the last high performance
network interconnection proposals: Advanced Switching [1] and InfiniBand [5].
These table-based schedulers can provide a good latency performance with a
low computational complexity [3, 9, 2]. However, these schedulers do not work
properly with variable packet sizes, as is usually the case in current network
technologies. Moreover, they face the problem of bounding the bandwidth and
latency assignments [9, 2]. This may involve a waste of resources because the
flows with the highest latency requirements are probably going to be assigned
more bandwidth than they actually require.

In [7] we reviewed these problems and proposed a new table-based scheduler
that works properly with variable packet sizes. Moreover, we proposed a method-
ology to configure this scheduler in such a way that it permits us to decouple
partially the bounding between the bandwidth and latency assignments. We
called this new scheduler Deficit Table scheduler, or just DTable scheduler. As
we stated in [7], the latency performance of the DTable scheduler depends on the
maximum amount of data that is allowed to be transmitted per table entry. The
more information is allowed to be transmitted the worse latency performance we
get. Therefore, this maximum amount of data should be kept as small as possi-
ble. However, one of the parameters that our configuration methodology uses to
increase the decoupling between the bandwidth and the latency assignments is
indeed this value.

In this paper we propose and evaluate a method to increase the decoupling
between the bandwidth and the latency assignments without increasing too much
the maximum amount of data that is allowed to be transmitted per table entry.
Moreover, we compare the latency performance of the DTable scheduler with the
latency performance of two well-known scheduling algorithms: the Self-Clocked
Weighted Fair Queuing (SCFQ) [4] and the DRR algorithms. We have chosen

1 In this paper we will use the term flow to refer both to a single flow or an aggregated
of several flows with similar characteristics.
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the SCFQ algorithm as an example of “sorted-priority” algorithm and the DRR
algorithm as one of the simplest scheduling mechanism proposed in the literature.

The structure of the paper is as follows: In Section 2, we review the DTable
scheduler and our methodology to decouple the bandwidth and latency assign-
ments. In Section 3, we propose a method to improve the latency performance of
the DTable scheduler. Details on the experimental platform and the performance
evaluation are presented in Section 4. Finally, some conclusions are given.

2 The Deficit Table Scheduler

In [7] we proposed a new table-based scheduling algorithm that works properly
with variable packet sizes. We called this algorithm Deficit Table scheduler, or
just DTable scheduler, because it is a mix between the already proposed table-
based schedulers and the DRR algorithm. The scheduler works in a similar way
than the DRR algorithm but instead of serving packets of a flow in a single visit
per frame, the service is distributed throughout the entire frame.

The DTable scheduler defines an arbitration table in which each table entry
has associated a flow identifier and an entry weight. Moreover, each flow has
assigned a deficit counter that is set to 0 at the start. When scheduling is needed,
the table is cycled through sequentially until an entry assigned to an active flow is
found. A flow is considered active when it stores at least one packet and the link-
level flow control, if exists, allows that flow to transmit packets. When a table
entry is selected, the accumulated weight is computed. The accumulated weight
is equal to the sum of the deficit counter for the selected flow and the current
entry weight. The scheduler transmits as many packets from the active flow as
the accumulated weight allows. When a packet is transmitted, the accumulated
weight is reduced by the packet size.

The next active table entry is selected if the flow becomes inactive or the
accumulated weight becomes smaller than the size of the packet at the head of
the queue. In the first case, the remaining accumulated weight is discarded and
the deficit counter is set to zero. In the second case, the unused accumulated
weight is saved in the deficit counter, representing the amount of weight that the
scheduler owes the queue. Note that, if this scheduler is employed in a network
with a credit-based link-level flow control, like Advanced Switching, the weights
are usually expressed in flow control credits.

We set the minimum value that a table entry can have associated to the
Maximum Transfer Unit (MTU) of the network. This is the smallest value that
ensures that there will never be necessary to cycle through the entire table several
times in order to gather enough weight for the transmission of a single packet.
Note that this consideration is also made in the DRR algorithm definition [11].

In [7] we have also proposed a methodology to configure the DTable scheduler
to decouple, at least partially, the bounding between the bandwidth and latency
assignments. With this methodology we set the maximum distance between any
consecutive pair of entries assigned to a flow depending on its latency require-
ment. By fixing this separation, it is possible to control the maximum latency of
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a network element crossing. This is because this distance determines the maxi-
mum time that a packet at the head of a flow queue is going to wait until being
transmitted. Therefore, given a maximum number of hops, we can control the
maximum end-to-end latency [2].

Moreover, we set the weights of the table entries assigned to a flow depending
on its bandwidth requirement. With this methodology we can assign the flows
with a bandwidth varying between a minimum and a maximum value that de-
pends not only on the number of table entries assigned to each flow, but also on
two table configuration parameters. We have called these parameters w and k.

Supposing an arbitration table with N entries in a network with a certain
MTU , the w parameter determines the maximum weight M that can be assigned
to a single table entry in function of the MTU : M = MTU×w. The k parameter
determines the total weight that can be distributed between all the table entries.
We call this value the bandwidth pool : pool = N × MTU × k. The total number
of weight units (as stated before, a weight unit is usually equivalent to a flow
control credit) from the bandwidth pool that the table entries of a flow have
assigned fixes the bandwidth that the flow has actually assigned.

Note that k, w ≥ 1 because, as stated before, the minimum weight that can
be assigned to a table entry is the MTU . Note also that k ≤ w because the
bandwidth pool cannot be larger than the theoretical maximum weight among
all the entries (N × M).

The w and k parameters fix the minimum bandwidth minφi and the maximum
bandwidth maxφi that can be assigned to the ith flow depending on the number
of table entries ni that it has assigned:

minφi =
ni × MTU

pool
=

ni × MTU

N × MTU × k
=

ni

N
× 1

k

maxφi =
ni × M

pool
=

ni × MTU × w

N × MTU × k
=

ni

N
× w

k

Summing up, the DTable scheduler is a table-based scheduler that is able to
deal properly with variable packet sizes and considers the possibility of a link-
level flow control mechanism. Moreover, with our configuration methodology
we can provide a flow with latency and bandwidth requirements in a partially
independent way.

3 Improving the Latency Performance of the DTable
Scheduler

As stated before, using the DTable scheduler and our methodology, we can assign
each flow a bandwidth between a minimum and a maximum that depends on the
number of table entries and the two decoupling table parameters. When choosing
the value of these parameters some considerations must be made. Note that the
objective for this methodology is to decrease the minimum bandwidth that can
be assigned to a flow and to increase the maximum bandwidth assignable in
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order to be as flexible as possible. In order to be able to assign a small amount
of bandwidth the k parameter must be high. However, the higher k is, the smaller
the maximum bandwidth that can be assigned. And thus, the flexibility to assign
the bandwidth decreases. We can solve this by increasing the value of w.

Table 1 shows two different scenarios, each one with a different pair of values
for the w and k parameters: DTable4 (k = 2, w = 4) and DTable8 (k = 4, w = 8).
Note that we refer the different DTable scenarios according to the w value used
in each case. This table shows the minimum and maximum bandwidth that can
be assigned to seven flows (referred to as Virtual Channels, VCs) with different
number of table entries. This number of table entries correspond to 7 flows with
different latency requirements, and thus, different distances between any pair of
consecutive entries in the arbitration table. We have called these flows D2, D4, D8,
D16, D32, D64, and D64’, indicating the distance between any pair of consecutive
table entries. As we can see, when we increase the k parameter, the minimum
bandwidth decreases. However, to maintain the same maximum bandwidth in the
two scenarios, we have had to increase the w parameter in the same proportion.

Table 1. Table configuration. N = 64, MTU = 32.

DTable4 DTable8
k = 2, w = 4 k = 4, w = 8

VC #entries %entries minφi maxφi minφi maxφi

D2 32 50 25 100 12.5 100
D4 16 25 12.5 50 6.25 50
D8 8 12.5 6.25 25 3.125 25
D16 4 6.25 3.125 12.5 1.5625 12.5
D32 2 3.125 1.5625 6.25 0.78125 6.25
D64 1 1.5625 0.78125 3.125 0.390625 3.125
D64’ 1 1.5625 0.78125 3.125 0.390625 3.125
Total 64 100 50 200 25 200

However, increasing the value of the w parameter has two disadvantages.
First of all, the memory resources to store each entry weight are going to be
higher. Secondly, the latency of the flows is going to increase, because each
entry is allowing more information to be transmitted, and thus, the maximum
time between any consecutive pair of table entries is higher.

Our objective is to have a good flexibility when assigning the bandwidth to the
flows but without increasing too much the w parameter. In order to achieve this
we propose to use different MTUs for the different flows, instead of considering
the general network MTU that the technology fixes for all the flows. Note that
this means that some flows are going to have a specific MTU smaller than the
general MTU. The use of different MTUs for different flows can be done at the
communication library level.

The advantage of having a flow with a specific MTU smaller than the general
MTU is that we can assign a table entry a minimum weight equal to the new
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MTU. When we use the general MTU for all the flows we cannot do this. As
stated before, in this case, the general MTU is the smallest value that ensures
that there will never be necessary to cycle through the entire table several times
in order to gather enough weight for the transmission of a single packet. Being
able to assign the table entries of a flow with a weight smaller than the general
MTU allows to decrease the minimum bandwidth that can be assigned to that
flow. If the ith flow uses a specific MTU of size MTUi, the maximum bandwidth
that can be assigned to that flow is the same, but the minimum bandwidth
depends on the proportion between the specific MTU and the general MTU:

minφi =
ni × MTUi

pool
=

ni × MTUi

N × MTU × k
=

ni

N
× MTUi

MTU
× 1

k

Note that varying the w and k parameters affect the minimum and maximum
bandwidth that can be assigned to all the flows. However, assigning a specific
MTU to a flow only affects that flow minimum bandwidth.

Note that with this method we can achieve small minimum bandwidths with
a low value for the k parameter. Note also that now k can be even lower than 1.
This allows to use a small w and still getting big maximum bandwidths.

Table 2 shows two different scenarios, each one with a different pair of values
for the w and k parameters: DTable1 (k = 0.5, w = 1) and DTable2 (k = 1,
w = 2). If we compare these values with the values in Table 1, we can see that
now we can assign a small amount of bandwidth to those flows with lots of
entries with a small w parameter.

Table 2. Table configuration with different MTUs. N = 64, MTU = 32.

DTable1 DTable2
k = 0.5, w = 1 k = 1, w = 2

VC #entries %entries MTUi minφi maxφi minφi maxφi

D2 32 50 MTU/32 3.125 100 1.5625 100
D4 16 25 MTU/32 1.5625 50 0.78125 50
D8 8 12.5 MTU/16 1.5625 25 0.78125 25
D16 4 6.25 MTU/8 1.5625 12.5 0.78125 12.5
D32 2 3.125 MTU/4 1.5625 6.25 0.78125 6.25
D64 1 1.5625 MTU/2 1.5625 3.125 0.78125 3.125
D64’ 1 1.5625 MTU 3.125 3.125 1.5625 3.125
Total 64 100 14.0625 200 7 200

When a message from a given flow arrives at the network interface, if its
size is greater than its specific MTU, the message is splitted in several packets
of a maximum size given by the specific MTU of the flow, as can be seen in
Figure 1. A possible disadvantage of assigning specific MTUs smaller than the
general MTU could be that the bandwidth and latency overhead of fragmenting
the original message in several packets could probably affect performance of the
flows. However, most restrictive latency flows (for example network control or
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voice traffic) usually present low bandwidth requirements, and small packet size.
For example, in [14] several payload values for voice codec algorithms are shown.
These values range from 20 bytes to 160 bytes. In that way, if we fix a small
MTU for these flows, no fragmentation will be usually necessary because, in fact,
the packets of those flows are already smaller than the new MTU. Therefore, the
cornerstone of this proposal is to tune the specific MTU of each flow according
to the specific characteristics of the flows.

Fig. 1. Process of message fragmentation into packets

In the performance evaluation section we are going to use the same kind of
traffic (with the same average packet size) for all the flows in order to make a
fair comparison. Moreover we are going to assign smaller specific MTUs to those
flows with more table entries in order to decrease the minimum bandwidth that
can be assigned. Therefore, results are going to show the negative effect of an
excessive packetization.

4 Performance Evaluation

In this section, we evaluate the latency performance of the DTable scheduler. For
this purpose, we have developed a detailed simulator that allows us to model
the network at the register transfer level, following the Advanced Switching
(AS) specification. Note, however, that our proposals can be applied to any
interconnection network technology.

We compare the performance of the different scenarios with a different w
parameter showed in the previous section (DTable1, DTable2, DTable4, and
DTable8) and the SCFQ and DRR schedulers. We have chosen the SCFQ al-
gorithm as an example of “sorted-priority” algorithm and the DRR algorithm
because of its very small computational complexity. In order to simulate these
algorithms we use the credit aware versions of both algorithms (SCFQ Credit
Aware and DRR Credit Aware respectively) that we proposed in [8] for being
used in networks with a link-level flow control network like AS.

4.1 Simulated Architecture

We have used a perfect-shuffle Bidirectional Multi-stage Interconnection Net-
work (BMIN) with 64 end-points connected using 48 8-port switches (3 stages of
16 switches). In AS any topology is possible, but we have used a MIN because it
is a common solution for interconnection in current high-performance environ-
ments. The switch model uses a combined input-output buffer architecture with
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a crossbar to connect the buffers. Virtual output queuing has been implemented
to solve the head-of-line blocking problem at switch level.

In our tests, the link bandwidth is 2.5 Gb/s but, with the AS 8b/10b encoding
scheme, the maximum effective bandwidth for data traffic is only 2 Gb/s. We
are assuming some internal speed-up (x1.5) for the crossbar, as is usually the
case in most commercial switches. AS gives us the freedom to use any algorithm
to schedule the crossbar, so we have implemented a round-robin scheduler. The
time that a packet header takes to cross the switch without any load is 145 ns,
which is based on the unloaded cut-through latency of the AS StarGen’s Merlin
switch [12].

A credit-based flow control protocol ensures that packets are only transmitted
when there is enough buffer space at the other end to store them, making sure
that no packets are dropped when congestion appears. AS uses Virtual Channels
(VCs) to aggregate flows with similar characteristics and the flow control and
the arbitration is made at VC level. The MTU of an AS packet is 2176 bytes,
but we are going to use 2048 bytes (a power of two) for simplicity but without
loosing generality. The credit-based flow control unit is 64 bytes, and thus, the
MTU corresponds to 32 credits.

The buffer capacity is 32768 bytes (16×MTU) per VC at the network inter-
faces and 16384 bytes (8×MTU) per VC both at the input and at the output
ports of the switches. If an application tries to inject a packet into the net-
work interface but the appropriate buffer is full, we suppose that the packet is
stored in a queue of pending packets at the application layer. Regarding the la-
tency statistics, a packet is considered injected when it is stored in the network
interface.

4.2 Simulated Scenario and Scheduler Configuration

As stated before, we are going to compare the performance of the DTable sched-
uler using different values for the w parameter (DTable1, DTable2, DTable4, and
DTable8) with the performance of the SCFQ and DRR algorithms. Note that all
the scenarios have the same maximum bandwidth values, differing only in the
minimum bandwidth values (see Tables 1 and 2). Table 3 shows the amount of
bandwidth φi that we have actually assigned to each VC. This table also shows
the configuration of the different DTable scenarios and the SCFQ and the DRR
schedulers. Specifically, in the case of the DTable scheduler, this table shows the
total weight (T. w.) that we have distributed among the table entries of each VC
and the weight assigned to each table entry (E. w.) of each VC. For example,
in the DTable1 case, the bandwidth pool is 1024 credits (k = 0.5), and thus, in
order to assign 25% of bandwidth to this VC, 256 credits must be assigned to
it. Therefore, 8 credits have been assigned to each one of its 32 table entries.

We are going to inject an increasing amount of traffic of all the VCs and study
the throughput and latency performance of the different possibilities at different
network load levels. The traffic load is composed of self-similar point-to-point
flows of 1 Mb/s. The destination pattern is uniform in order to fully load the
network. The packets’ size is governed by a Pareto distribution, as recommended
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in [6]. In this way, many small-sized packets are generated, with an occasional
packet of large size. The minimum payload size is 56 bytes, the maximum 2040
bytes, and the average 176 bytes, which represents enough packet size variability.
The AS packet header size is 8 bytes. The periods between packets are modelled
with a Poisson distribution.

Table 3. Bandwidth configuration of the DTable scheduler scenarios

DTable1 DTable2 DTable4 DTable8 SCFQ DRR
VC φi E. w. T. w. E. w. T. w. E. w. T. w. E. w. T. w. Weight Quantum

D2 25 8 256 16 512 32 1024 64 2048 0.25 256
D4 25 16 256 32 512 64 1024 128 2048 0.25 256
D8 25 32 256 64 512 128 1024 256 2048 0.25 256
D16 12.5 32 128 64 256 128 512 256 1024 0.125 128
D32 6.25 32 64 64 128 128 256 256 512 0.625 64
D64 3.125 32 32 64 64 128 128 256 256 0.3125 32
D64’ 3.125 32 32 64 64 128 128 256 256 0.3125 32
Total 100 1024 2048 4096 8196 1 1024

4.3 Simulation Results

The figures of this section show the average values and the confidence intervals
at 90% confidence level of ten different simulations performed at a given input
load. For each simulation we obtain the normalized average throughput, the
average message injection latency, and the maximum message injection latency
of each flow. Note that in the DTable1 and DTable2 scenarios we use specific
MTUs for the VCs that are smaller than the general MTU. Therefore, in these
cases, a message can be splitted in several packets. In the rest of cases (DTable4,
DTable8, SCFQ, and DRR) a mesage is going to be transmitted in only one
packet. Note that in the DTable1 and DTable2 scenarios we consider the latency
of the message as a whole. This means that, in these cases, to calculate the
latency of a message we consider the time since we inject the first packet of a
message into the network interface up to the last packet of the message arrives
at its destination. Note that this may suppose a certain overhead. No statistics
on packet loss are given because, as has been said, we assume a credit-based
flow control mechanism to avoid dropping packets. We obtain statistics per VC
aggregating the throughput of all the flows of the same VC, obtaining the average
value of the average latency, and the maximum latency of all the flows. Note that
the maximum latency shows the behavior of the flow with the worst performance.

Figure 2 shows the normalized injection rate of the aggregated of flows as-
sociated with each VC and the normalized throughput results per VC of the
DTable1 scenario. The rest of scenarios for the DTable scheduler and the DRR
and SCFQ schedulers obtain similar throughput results. As we can see, when the
load is low, all the VCs obtain the bandwidth they inject. However, when the
load is high (around 95%) the VCs do not yield a corresponding result, obtaining
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a bandwidth proportional to their assigned bandwidth. Note that the VCs do
not obtain all the bandwidth that they were supposed to have assigned because
the network is not able to provide 100% throughput.
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Fig. 2. Normalized injection rate and throughput per VC

Figure 3 shows the average latency performance. When the load is very low,
all the VCs present a similar low latency. This is because at this load level
there are few packets being transmitted through the network, and thus, there
are few conflicts between them. However, when the load increases, the latency
also increases because some packets must wait in the buffers until others have
been transmitted. It is at this point when the scheduling algorithm assumes
an important role and the VCs obtain a different latency depending on the
scheduler configuration. However, when the load of the VC begins to outstrip
its throughput, the latency of the scheduler starts to grow very fast. This is
because the buffers used for that VC begin to be full. Finally, the buffers become
completely full and the latency stabilizes at a given value which depends on the
buffers’ size and the bandwidth assigned to that VC.

Note that when using the SCFQ algorithm those VCs that have assigned the
same bandwidth (in this case the D2, D4, and D8 VCs, and the D64 and D64’
VCs) obtain the same latency performance. In the case of the DRR algorithm, all
the VCs obtain a similar latency performance until a VC reaches the point when
its load begins to outstrip its throughput. In that point, the latency of that VC
grows very fast and obtains a different latency performance. This happens for all
the VCs as load grows. When using the DTable scheduler, all the VCs, including
those with the same bandwidth assignment, obtain a different latency perfor-
mance depending on the separation between any consecutive pair of their table
entries. The smaller the distance, the better latency performance they obtain.

These different latency performance behaviors are explained by the fact that
the maximum time that a packet at the head of a VC queue is going to wait until
being transmitted is different depending on the scheduler algorithm. In the case
of the SCFQ algorithm, this time is proportional to the assigned bandwidth. In
the case of the DTable scheduler, we can control this time by controlling the
maximum separation between any consecutive pair of entries assigned to the
same VC. In this way, we provide some VCs with a better latency performance
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Fig. 3. Average latency per VC of the different scheduling scenarios

and other VCs with a worse latency performance. In the case of the DRR algo-
rithm, the latency performance depends more on the frame length than on the
quantum that each VC has been assigned. This is because when the quantum for
a VC has been expended sending packets, all the frame must be cycled through
before sending more packets of the same VC.

Finally, Figure 4 shows the percentage of improvement on average latency of
the SCFQ algorithm over the four possibilities of the DTable scheduler and the
DRR algorithm. Analyzing this figure we can compare the DTable performance
comparing it not only with the SCFQ scheduler, but also with the DRR sched-
uler. Moreover, we can compare the difference between using the same general
MTU for all the VCs or using specific MTUs for the VCs. This figure shows that
in general, the SCFQ algorithm provides a better latency performance than the
DTable scheduler in all the cases. However, this algorithm is the most complex.
The DRR provides a worse performance for the most latency restrictive VCs
and better for the less latency restrictive VCs than the DTable scheduler. This
is because with the DTable scheduler we can provide a different level of latency
performance to the VCs, priorizing those VCs with higher latency requirements.
This is not possible with the DRR algorithm. Regarding the different scenarios
of the DTable scheduler we can see that DTable1 provides a better latency per-
formance than DTable2, and DTable4 than DTable8. This is because in general,
the higher the value of the w parameter, the worse the latency performance.
However, the effect of splitting the messages in several packets must also be
taken into account.

Table 4 shows the bandwidth overhead per VC that is produced by using
smaller specific MTUs than the general MTU. This packetization also has effect
on the latency of the message. Note that each packet must be processed by the
network elements (routing, scheduling, etc.). Moreover, if a table entry allows us
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Fig. 4. Average latency improvement of the SCFQ algorithm over the other schedulers
considered

to transmit a small number of packets of the new MTU size, it is possible that in
order of transmitting all the packets belonging to the same message more than
one table entry must be used, and thus, the latency increases. Figure 4 shows
clearly the first effect when considering a low load for the D2 and D4 VCs. In
this case, the latency of the DTable1 and Dtable2 scenarios is rather worse than
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for the others cases. We obtain a better latency for DTable1 and Dtable2 than
DTable4 and Dtable8 when the latency is high for the D2, D4, and D8 VCs.
However, for the rest of VCs we obtain a worse latency because the specific
MTUs are higher and the weight assigned to the table entries lower. Note that
this bad effect of the excessive packetization would disappear in a real case if
the MTU of each VC is selected on the basis of the specific average message size
of the flows that would use the VC.

Table 4. Packetization bandwidth overhead per VC with average packet size of 176
bytes

VC D2 D4 D8 D16 D32 D64 D64’

MTUi (bytes) 64 64 128 256 512 1024 2048
Overhead (%) 11.7 11.7 3.82 1 0.4 0.06 0

Summing up, the DTable scheduler, which has a quite good computational
complexity, provides the most preferential VCs (those which have been assigned
a shorter distance between any consecutive pair of entries) with a better latency
performance than the DRR algorithm. However, it provides the least preferen-
tial VCs with a worse latency than the DRR algorithm. Our proposal of using
different specific MTUs increments the flexibility of our decoupling methodology
without the need of increasing the w parameter too much. Note that increasing
this parameter would entail more hardware requirements to store and process
the table entries and a worse latency performance. However, the excessive pack-
etization of the messages may produce a negative effect on the performance of
the flows. Therefore, the specific MTUs should be assigned taking into account
the characteristics of the traffic, specifically, the size of the packets.

5 Conclusions

A key component for networks with QoS support is the output scheduling al-
gorithm, which selects the next packet to be transmitted. An ideal scheduling
algorithm should satisfy two main properties: good end-to-end delay and sim-
plicity. Table-based schedulers try to address these two characteristics. However,
they have several problems that we try to solve with a new table-based scheduler,
the DTable scheduler, and several proposals to configure it.

The DTable scheduler is a simple algorithm that properly configured may
provide the flows with different levels of latency performance. Moreover, given a
flow or aggregated of flows with some latency requirements, we can assign a cer-
tain amount of traffic to that flow in a flexible way. The decoupling methodology
that allows us to do this relies on two table configuration parameters. One of
these parameters, the w parameter, determines the maximum weight that can be
assigned to a single table entry, and thus, the maximum data that can be trans-
mitted per table entry. The other, the k parameter, determines the maximum
weight that can be distributed among all the table entries.
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In this paper we have proposed a method to increase this flexibility. This
method consists in using different MTUs for the different flows. This allows us
to employ smaller values for the k parameter, and thus, for the w parameter.
This is quite positive because a high value for the w parameter entails higher
hardware requirements and worse latency performance. However, the specific
flow MTU must be assigned taking into account the characteristics of the traffic
flow. A too small specific MTU may decrease the latency of the flow.

In a real case the w parameter is probably going to be fixed by the network
technology. The network manager should then choose an appropiate value for the
k parameter and the specific MTUs. In order to do this, the characteristics of the
traffic and the proportion of each kind of traffic must be taken into account. Note
that different flows can exhibit very different message sizes. As future work we are
focusing our attention on applying our proposals to a multimedia environment
with different kind of traffics.

References

1. Advanced Switching Interconnect Special Interest Group. Advanced Switching core
architecture specification. Revision 1.0, December 2003.

2. F. J. Alfaro, J. L. Sánchez, and J. Duato. QoS in InfiniBand subnetworks. IEEE
Transactions on Parallel and Distributed Systems, 15(9):810–823, September 2004.

3. H. M. Chaskar and U. Madhow. Fair scheduling with tunable latency: A round-
robin approach. IEEE/ACM Transactions on Networking, 11(4):592–601, 2003.

4. S. J. Golestani. A self-clocked fair queueing scheme for broadband applications. In
INFOCOM, 1994.

5. InfiniBand Trade Association. InfiniBand architecture specification volume 1. Re-
lease 1.0, October 2000.

6. R. Jain. The art of computer system performance analysis: Techniques for experi-
mental design, measurement, simulation and modeling. John Wiley and Sons, Inc.,
1991.

7. R. Mart́ınez, F.J. Alfaro, and J.L. Sánchez. Decoupling the bandwidth and la-
tency bounding for table-based schedulers. International Conference on Parallel
Procesing (ICPP), August 2006.

8. R. Mart́ınez, F.J. Alfaro, and J.L. Sánchez. Implementing the advanced switching
minimum bandwidth egress link scheduler. IEEE International Symposium on
Network Computing and Applications (IEEE NCA06), July 2006.

9. R. Mart́ınez, F.J. Alfaro, and J.L. Sánchez. Providing Quality of Service over
Advanced Switching. International Conference on Parallel and Distributed Systems
(ICPADS), July 2006.

10. K. I Park. QoS in Packet Networks. Springer, 2005.
11. M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin.

In SIGCOMM, pages 231–242, 1995.
12. StarGen. StarGen’s Merlin switch, 2004. http://www.stargen.com/products/

merlin switch.shtml.
13. D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis of

traffic scheduling algorithms. IEEE/ACM Transactions on Networking, 1998.
14. A. Tyagi, J. K. Muppala, and H. de Meer. VoIP support on differentiated services

using expedited forwarding. In IEEE International Performance, Computing, and
Communications Conference (IPCCC), February 2000.



Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 98 – 110, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Cache-Pinning Strategy for Improving Generational 
Garbage Collection 

Vimal K. Reddy, Richard K. Sawyer, and Edward F. Gehringer 

Department of Electrical and Computer Engineering 
Box 7911, North Carolina State University 

Raleigh, NC 27695-7911, USA 
{vkreddy, rksawyer, efg}@ncsu.edu 

Abstract. In generational garbage collection, the youngest generation of the 
heap is frequently traversed during garbage collection. Due to randomness of 
the traversal, memory access patterns are unpredictable and cache performance 
becomes crucial to garbage-collection efficiency. Our proposal to improve 
cache performance of garbage collection is to “pin” the youngest generation 
(sometimes called the nursery) in the cache, converting all nursery accesses to 
cache hits. To make the nursery fit inside the cache, we reduce its size, and, to 
prevent its eviction from the cache, we configure the operating system’s page-
fault handler to disallow any page allocation that would cause cache conflicts to 
the nursery. We evaluated our scheme on a copying-style generational garbage 
collector using IBM VisualAge Smalltalk and Jikes research virtual machine. 
Our simulation results indicate that the increase in frequency of garbage collec-
tion due to a smaller nursery is overshadowed by gains of converting all nursery 
accesses to cache hits. 

1   Introduction 

Generational garbage collected systems [19] manage the heap as several subheaps, 
known as generations, based on age of the objects. An object is allocated in the 
youngest generation, sometimes called the nursery, and is promoted to an older gen-
eration if its lifetime exceeds the threshold of its current generation. Since most ob-
jects die, i.e. become garbage young, the nursery is the region most likely to produce 
garbage. Hence, garbage collection is mostly done on the nursery and extensive, 
global garbage collection is only resorted to if memory reclaimed from the nursery is 
insufficient. 

When the nursery cannot satisfy a memory allocation request, garbage collection is 
invoked on it. The garbage collector begins with a root set of pointers, usually live 
program variables, and traverses each of the objects pointed to, scanning them recur-
sively for more pointers until a closure of live objects is reached. Memory is either 
explicitly reclaimed, like in a mark-sweep garbage collector, or implicitly reclaimed 
by copying over live objects to a new heap region, like in copying garbage collectors. 
The main overhead of the garbage collector is in the transitive traversal of the live ob-
ject set. Since the nature of objects pointing to other objects is random, the traversal 
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leads to access patterns that are unpredictable and hard to capture with traditional 
cache prefetching algorithms. 

Our proposal to reduce garbage-collection time is to satisfy all garbage-collection 
memory requests within the cache hierarchy. To do so, we reserve a portion of the L2 
cache for the nursery and pin it in cache, so that cache lines belonging to the nursery 
are never evicted. To pin the nursery, we reduce its size to fit inside the cache and 
modify the page-placement policy of the operating system to only allow nursery 
pages to reside in page frames that map to the reserved cache region. This ensures 
there are no cache conflicts to the nursery. 

In this paper, we focus on a copying-style garbage collector where the nursery is 
segregated into two generations, the new space and the old space. Allocation requests 
are satisfied by the new space until it is exhausted, at which time garbage collection is 
invoked. The garbage collector traverses the live object set in the new space and in 
the process, copies each live object over to the old space. The copied objects are re-
cursively scanned for more pointers and the process continues until a closure of live 
objects is reached. As a result, by the end of a garbage-collection cycle all live objects 
are relocated from new space into old space, which now becomes a compacted new 
space where memory allocation continues. 

Aside from poor cache performance due to the random, transitive traversal, there 
are additional overheads associated with copying collectors that motivate cache-
pinning. Writing live objects to the temporally idle old space causes write misses and 
eviction of dirtied dead objects from the cache causes unnecessary write backs to 
main memory. Since garbage collection halts the user program, any perceived over-
head affects overall program performance. 

The nursery is usually much larger than contemporary L2 caches. It must be re-
duced in size to make it suitable for cache-pinning. Since a smaller nursery fills up 
faster, it increases the garbage-collection frequency. Despite this, the overall time of 
garbage collection decreases, since all accesses to the nursery are converted to cache 
hits. Moreover, since each garbage collection scans less memory, pause times for 
nursery collections are markedly reduced, leading to less annoyance for users and 
greater ability to meet real-time deadlines. 

Our cache pinning strategy is a novel way to mitigate disruptions caused by gar-
bage collection without increasing execution time. A small nursery would reduce the 
pause time for a single garbage collection, but the overall garbage collection time 
would increase due to the increase in garbage collection frequency. On the other hand, 
a large nursery would reduce the garbage collection frequency, but lead to a big pause 
time and cause noticeable annoyance to a user. Pinning a small nursery in the cache 
frees garbage collection from cache miss overheads and leads to a negligibly small 
pause time. The increase in garbage collection frequency is not perceived due to the 
small pause time, and for the same reason, the overall garbage collection time is also 
not increased. In fact, our results indicate that pinning can decrease overall garbage 
collection time, leading to less interfering and better performing garbage collection. 

The remaining sections in the paper are organized as follows. Section 2 introduces 
our cache-pinning strategy on direct-mapped and set-associative caches. Section 3 
discusses simulation methodology and benchmarks used in this study. Section 4 pre-
sents results from IBM VisualAge Smalltalk and the Jikes research virtual machine. 
Section 5 discusses related work and Section 6 concludes the paper. 
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2   Cache-Pinning Strategy 

The idea is to “pin” the nursery in the L2 cache; that is, arrange the virtual-to-physical 
memory mapping so that there will be no conflict misses to lines from the nursery. 
We reduce the size of the nursery to a suitable size to fit inside the L2 cache. A por-
tion of the cache is reserved for the nursery, and the page-fault handler is modified to 
ensure that only pages from nursery are placed in these “reserved” frames. This pre-
vents conflicts to the nursery in the cache, so it stays pinned. The cache policies them-
selves remain unmodified. Next, we look at the mapping strategy for direct-mapped 
caches (Section 2.1) and set-associative caches (Section 2.2). 

2.1   Direct-Mapped Caches 

In direct-mapped caches, we reserve a portion of the cache that is just large enough to 
hold the nursery. For example, we might reserve the bottom (highest numbered) few 
lines of the cache. Next, we identify page frames whose memory maps to the reserved 
cache lines. The physical address space can be viewed as a set of regions, each of 
which is exactly as large as the cache. The bottom few page frames in each region 
map to the reserved region of the direct-mapped cache, as shown in Fig. 1. These 
page frames are said to form a “bucket." Each region contains its own bucket. The 
goal of our strategy is to place the nursery into page frames within these buckets. For 
a direct-mapped cache, each bucket’s size is equal to the size of the nursery. Let us 
assume that one of these buckets is used to hold the nursery (this assumption makes it 
easy to see what is happening, but it is stronger than necessary, and will be relaxed 
later). Then the other buckets cannot be used by this process, though they certainly 
can be used by other processes. The page-placement logic must operate this way: 

• A nursery page should be placed in a page frame belonging to one of the buckets. 
• A non-nursery page should not be located in a page frame belonging to one of the 

buckets. 

 

Fig. 1. “Pinning” a region of memory in the cache 
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Fig. 2 shows this strategy applied to a 1MB direct-mapped cache on a system with 
a physical address space of 4096 page frames, each 4KB large. A nursery of size 256 
KB will require 64 pages for storage. We reserve the bottom 256 KB (8192 lines) of 
the cache for the nursery. A bucket consists of the last 64 page frames occurring in 
any 1MB (= size of the cache) region of physical address space. Only one of these 
buckets is chosen to contain the nursery, the choice being left to the page fault han-
dler. The remaining buckets are unused to avoid conflicts. The list of buckets and the 
page frames they contain are passed to the page-fault handler to implement the re-
placement policy described above. 

 

… 

*  Reserved for  
new space  
(8192 lines or  
64 pages) 

Cache 
  

(1MB, 
32 bytes/line) 

Region 0

(1 MB, 
frames 0–255)

Bucket 0

Bucket 
15

Region 15

(1 MB, frames
4031–4095)

…

Main memory

* 

 

Fig. 2. Mapping strategy for a 1MB direct-mapped cache with 32-byte lines, to reserve a 
256KB nursery in the cache 

2.2   Set-Associative Caches 

If the cache is set associative, we have two options for reserving space in it. The first is 
to reserve a certain number of “ways” of an n-way set-associative cache. This approach 
requires the cache hardware to be modified to ensure that a reserved cache line is filled 
only with a memory block from the nursery [16]. So, rather than reserve “ways” for the 
nursery, we reserve sets. This is consistent with our policy for direct-mapped caches, 
where we reserved lines, since each line in a direct-mapped cache is a set. 

We choose to reserve the bottom few sets of the cache for the nursery. Again, we 
view the physical address space as divided into regions that are the same size as the 
cache. A bucket in each region contains lines that map to reserved sets in the cache. 
However, unlike the direct-mapped case, the size of a bucket is not equal to that of the 
nursery. Rather, a certain number of buckets, equal to the associativity of the cache, 
make up the nursery, as shown in Fig. 3. The other buckets remain unused by this 
process. The process of selecting a page frame from one of the buckets remains the 
same. The only difference is that the page-placement can use frames from more than 
one bucket for pages of the nursery. The page-placement logic must operate this way: 
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• A nursery page should be placed in a page frame belonging to one of k buckets, 
where k is the associativity of the cache. 

• A non-nursery page should not be placed in a reserved page frame. 

In reality, it is not necessary for all page frames used by the youngest generation to 
come from just k buckets. The page frames can be drawn from more than k buckets, 
as long as no more than k page frames map to the same sets in the cache. This will 
still prevent conflict misses for the nursery. Relaxing this restriction means that it is 
not necessary to select contiguous page frames to hold the nursery. This allows the 
memory manager and page-fault handler much greater freedom in where to place the 
nursery pages in memory. Similarly, for direct-mapped caches, page frames can be 
drawn from more than one bucket as long as they do not conflict in the cache. 

Fig. 3 shows how this strategy can be applied to a 1MB, 4-way set-associative 
cache with 32-byte lines, for a system with a physical address space containing 4096 
page frames, each 4KB large. The bottom 2048 sets (256KB) of the cache are re-
served for the nursery. As shown in Fig. 3, a bucket consists of the bottom 256KB of 
a 1MB region, and contains 2048 lines, or 16 pages. Four such buckets make up the 
nursery, and the remaining buckets go unused (by this process). 
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Fig. 3. Mapping strategy for a 32-byte line, 4-way, 1 MB set-associative cache to reserve a 256 
KB large youngest generation in the cache 

3   Simulation Methodology and Benchmarks 

For Smalltalk experiments, we ran IBM VisualAge Smalltalk (VAST) [12] on top of 
Shade [6]. Shade simulates only the cache hierarchies and not the entire memory sub-
system. Specifically, paging is not simulated. To achieve the effect of pinning the 
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nursery in the L2 cache, we made modifications to Shade so that virtual addresses of 
the nursery were translated to another address space with the following properties: 

• All nursery addresses map to the reserved portion of the cache. 
• Non-nursery addresses do not map to the reserved portion of the cache. 

For Java experiments, we used Dynamic SimpleScalar version 1.0.1 [10] that simu-
lated a Jikes research virtual machine (RVM). The functional cache simulator (sim-
cache) was used to calculate miss-rate improvements, and the cycle-based simulator 
(sim-outorder) was used to calculate speedup. A virtual-to-physical page mapping 
was added – virtual addresses are translated to physical addresses and the physical 
address is passed to the cache simulator. Also, sim-cache was modified to be a single-
pass cache simulator [11]. 

For Smalltalk benchmarks, we used a collection of Smalltalk programs shown in 
Table 1, as there is no real benchmark suite available for Smalltalk. For Java bench-
marks we used memory intensive benchmarks from the DaCapo [8] suite shown in 
Table 2. 

A point to note is that our base runs, which do not use pinning, have the advantage 
of indexing the cache with virtual addresses. In real systems, it is possible for two ad-
jacent virtual pages to be mapped to physical addresses that compete for the same 
cache lines. The assumption that physical address equals virtual address tends to un-
derestimate the contention for L2 cache lines. This gives our base case, which does 
not use pinning, better performance than would be seen in a real system. 

Table 1. Smalltalk Benchmarks 

Benchmark Description 
Swim Solves a system of shallow water equations using finite difference approximations. 
Tomcatv Vectorized mesh generation program. 
Bench Collection of programs performing basic tasks: sorting, matrix multiplication, etc. 
Xml parser A tree-based SAX (Simple API for XML) parser from IBM VAST. 
ES compiler Compiler for IBM VAST. 

Richards Simulates the kernel task dispatcher of an operating system. 

Table 2. DaCapo Benchmarks 

Benchmark Description 
antlr Parses one or more grammar files and generates parser and lexical analyzers. 
batik Renders a number of SVG files. 
bloat Performs a number of optimizations and analysis on Java bytecode files. 
chart Uses JFreeChart to plot a number of complex line graphs and renders them as PDF. 
Fop Takes an XSL-FO file, parses it and formats it, generating a PDF file. 

hsqldb Executes a JDBC-like in-memory benchmark, executing a number of transactions 
against a model of a banking application. 

jython Interprets a series of Python programs. 
pmd Analyzes a set of Java classes for a range of source code problems. 
ps Reads and interprets a PostScript file. 
xalan Transforms XML documents into HTML. 
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4   Results 

To put the cache pinning strategy into perspective, we first discuss the overhead of 
garbage collection by referring to the graphs in Fig. 4a and Fig. 4b. These statistics 
were gathered using a program analysis tool available in IBM VAST [12], which also 
uses a generation copying-garbage collector like Jikes RVM. The runs were carried 
out on a native Sun UltraSPARC system. 

As seen in Fig. 4a, garbage collection of the nursery (shown as scavenge time) is a 
significant component of overall execution time. For small nursery sizes, the number 
of garbage collections is high, as shown in Fig. 4b, and the total collection time is 
high. For big nursery sizes, number of garbage collections is fewer and the total gar-
bage collection time is smaller. 
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Fig. 4a. Components of execution time for Swim on IBM VAST virtual machine. Note that 
scavenge (i.e. garbage collection of the nursery) time tracks the total execution time. GGC re-
fers to global garbage collection. Nursery size is twice the new space size. 
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Fig. 4b. Number of scavenges for Swim on the IBM VAST virtual machine 

Some interesting insights can be drawn from these graphs. Firstly, since the pin-
ning strategy increases garbage collection frequency, a significant reduction in gar-
bage collection pause time is needed due to pinning, so that overall performance is 
better than just having a large nursery. Secondly, the garbage collection pause time 
increases with the size of the nursery. For instance, a 512KB new space has almost 
the same overall garbage collection time as a 256KB new space, though number of 
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garbage collections are far fewer for a 512KB new space. For real-time performance, 
small and deterministic pause times are more desirable. 

In the next few experiments, we try to find out if our hypothesis will work: the cost 
of increasing the frequency of garbage collection due to a smaller nursery will be 
overcome by benefits of converting nursery accesses to cache hits and at the same 
time, pause times will be minimal and deterministic for real-time performance.  

To find the optimum portion of a cache to reserve for the nursery, we ran experi-
ments both on Jikes RVM and IBM VAST by setting aside 12.5%, 25% and 50% of 
the cache. Fig. 5 shows the global miss-rate (i.e., fraction of accesses that went to 
memory) improvements for {1, 2, 4, 8, 16}-way caches averaged across all bench-
marks in the DaCapo suite. Overall, a reduction in the global miss rates is seen across 
all configurations. 
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Fig. 5. DaCapo: Percentage improvement in global cache miss rate when 12.5% and 25% of the 
L2 cache is reserved for the nursery 

Fig. 6 shows global miss rates for DaCapo on 4-way set-associative caches. In few 
cases, global miss rate increases due to pinning. This is due to increase in cache pres-
sure on the user program due to pinning. The effect is prominent with 50% reserva-
tion in small caches, as seen in Fig. 6. Reserving 12.5% and 25% of the cache for the 
nursery seem to provide good benefits. For the remaining experiments, we choose 
25% of L2 cache to be reserved for the nursery. 

For Smalltalk benchmarks, the global cache miss rate for direct-mapped caches is 
shown in Fig. 7. There is a significant decrease in global miss-rate. The average im-
provement is between 35% and 40%. However, we noticed that returns diminish sig-
nificantly with increased associativity. On 2-way associative L2 caches the average 
speedup was between 4% and 25% across configurations. For highly associative and 
large caches (2MB or more), speedups were smaller or none. 

The Smalltalk programs used in this study are small and not memory intensive, 
thus invoking garbage collection fewer times. Hence, the gains due to pinning are not 
significant with set-associative caches where associativity itself captures most of the 
conflicts to the youngest generation. The diminishing trend is also visible in the 
DaCapo suite, but pinning is still able to achieve modest gains, as these benchmarks 
are more memory intensive than the Smalltalk programs.  
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Fig. 6. DaCapo: Global miss-rate improvements for reserving 12.5%, 25% and 50% of a 4-way 
set-associative L2 cache 

 

Fig. 7. Smalltalk: Global miss-rate improvement for reserving 25% of a direct-mapped L2 
cache 
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Fig. 8 and Fig. 9 show the effect of pinning on garbage collection time for the 
DaCapo suite. As seen in Fig. 8, pinning significantly decreases pause times of the 
garbage collector. The garbage collection time reduces by a factor of 5 on average and 
up to a factor of 10 due to pinning. Fig. 9 shows that pinning makes pause times de-
terministic. This is useful in real-time programs where interference from the garbage 
collector is undesirable. 

  

Fig. 8. DaCapo: Pause times for nursery col-
lections with and without pinning 

Fig. 9. DaCapo: Variance of nursery pause 
times with and without pinning 

  

Fig. 10. DaCapo: Speedup for 2-way associa-
tive caches 

Fig. 11. DaCapo: Speedup for 4-way associa-
tive caches 
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Fig. 12. DaCapo: Speedup for 8-way associa-
tive caches 

Fig. 13. DaCapo: Speedup for a future genera-
tion configuration: 4 MB, 32-way associative 
cache with memory latency of 400 cycles 

 



108 V.K. Reddy, R.K. Sawyer, and E.F. Gehringer 

We finally evaluate speedups due to pinning on a contemporary superscalar proc-
essor with memory latency of 200 cycles. We present results only for the DaCapo 
suite. We compare results with page coloring [15], which also improves cache per-
formance by mapping consecutive virtual pages to consecutive physical page frames. 
Mapping in this manner takes advantage of spatial locality of memory accesses and 
can reduce conflict misses in the cache.  

As seen in Fig. 10, Fig. 11 and Fig. 12, pinning achieves a speedup of 5%-7% on a 
2-way associative cache and up to 4% on higher associative caches. We also evalu-
ated a future generation configuration that used a 32-way, 4 MB L2 cache with 400 
cycle memory latency. Gains of up to 5% are seen, as shown in Fig. 13. 

5   Related Work  

Wilson, Lam, and Moher [20] investigated the effects of generational copying gar-
bage collection in Scheme 48. They found that direct-mapped caches outperformed 
set-associative caches when the cache size was near the size of the nursery. For 
caches sizes larger than the nursery, set-associative caches performed better. They 
found majority of misses in a cache larger than the young generation were conflict 
misses. This paper expands upon concepts in Wilson, Lam, and Moher by pinning the 
youngest generation in the L2 cache. 

Boehm [4] also had the goal of reducing cache misses of garbage collected pro-
grams. Boehm reduced cache misses for a non-copying collector using two strategies: 
“prefetch-on-grey” and “lazy sweeping”. The former strategy prefetches data during 
the mark phase to improve cache performance. The latter strategy postpones the 
sweep phase until allocation time, so that when reallocation occurs the allocated block 
is already in the cache because it was just accessed during the sweep. 

Similar to Boehm, Reinhold [17] used a non-copying collector in his research. 
Reinhold found that caches perform best with infrequent garbage collection. How-
ever, his studies only included direct-mapped caches, which now are almost extinct. 

Chilimbi and Larus [5] studied a real-time profiling technique to improve locality 
of heap objects in order to reduce the cache miss rate and improve execution time. 
Their researched focused on longer-lived objects.  Although this paper focuses on the 
short-lived young generation objects, it is possible to use their strategy in conjunction 
with pinning. 

Diwan, Tarditi, and Moss [9] examined the effect of generational garbage collec-
tion on various cache structures. Their studies used the Standard ML of New Jersey 
compiler. They found that the best performance was achieved when the cache had a 
sub-block placement (write-validate) coupled with a write-allocate policy. 

The Standard ML of New Jersey compiler was also used by Cooper, Nettles, and 
Subramanian [7]. Their goal was to reduce page faults by modifying the page-fault 
handler. Ideally, pages that no longer contained useful information during garbage 
collection were not written back to secondary storage. The goal of this paper, how-
ever, is to reduce cache misses.  
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6   Conclusion 

Garbage collection time can be diminished by reserving a portion of the L2 cache for 
the nursery in a generational garbage-collected system. Results from Java and Small-
talk benchmarks show a decrease in global cache miss rates for direct-mapped and 
set-associative caches. This in turn translates to reduced garbage collection pause 
times and modest decreases in execution times even when using highly set-associative 
caches. More importantly, pinning leads to a deterministic garbage collection pause 
time which is desirable for real-time performance of garbage collected programs. 
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Abstract. Recent advances in trapped ion technology have rapidly accelerated
efforts to construct a near-term, scalable quantum computer. Micro-machined
electrodes in silicon are expected to trap hundreds of ions, each representing
quantum bits, on a single chip. We find, however, that scalable systems must
be composed of multiple chips and we explore inter-chip communication tech-
nologies. Specifically, we explore the parallelization of modular exponentiation,
the substantially dominant portion of Shor’s algorithm, on multi-chip ion-trap
systems with photon-mediated communication between chips.

Shor’s algorithm, which factors the product of two primes in polynomial time
on quantum computers, has strong implications for public-key cryptography and
has been the driving application behind much of the research in quantum com-
puting. Parallelization of the algorithm is necessary to obtain tractable execution
times on large problems. Our results indicate that a 1024-bit RSA key can be fac-
tored in 13 days given 4300 (each of area 10 by 10 centimeters) ion-trap chips in
a multi-chip system.

1 Introduction

Although quantum computers may have an exponential advantage over classical com-
puters, the challenges in manipulating and preserving quantum data require substantial
performance and design optimization to allow large problems to remain tractable. One
of the most celebrated large-scale quantum applications is Shor’s algorithm for finding
non-trivial factors of a large composite number in polynomial time [1], which leads to
the ability to break the RSA public key cryptosystem. A classical computer may take
millions of years for factoring numbers as large as 1024 bits, and even on a quantum
computer such a calculation may take hundreds of years to complete. Consequently,
this study focuses on effective parallelization of quantum computations on practical
quantum architecture systems such as the Quantum Logic Array microarchitecture [2],
which can improve large-scale execution times to useful levels. In particular, we find
that area and reliability constraints require scalable systems to be constructed from
multiple chips. Algorithms must then be designed to account for substantially different
intra- and inter-chip communication bandwidth, much as in the classical multiprocessor
domain.

The primary difficulty in the realization of quantum computation is that quantum
data is inherently very unstable as it constantly interacts with the environment: a pro-
cess called decoherence. To enable computation with such unreliable components, a
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rich theory of quantum fault-tolerance has been proposed [3, 4, 5]. Our previous work
builds on these theories and the physical implementations of quantum computers, to de-
sign a scalable and reconfigurable Quantum Logic Array (QLA) architecture [2]. The
QLA is a data-path based, reconfigurable architecture design that offers an efficient way
of structuring circuits with the much advanced trapped-ion technology [6, 7]. The QLA
design supports the execution of quantum algorithms such as Shor’s factoring algorithm
both flexibly and scalably through the complete overlap of computation and communi-
cation. We find, however, that the area requirements for building a single QLA chip
to perform Shor’s algorithm for numbers as large 1024 bits would require unrealistic
technological milestones to be met. To relax these requirements we explore multi-chip
solutions with the QLA architecture that make such large-scale problems feasible for
discussion.

The focus of this paper is the evaluation of quantum modular exponentiation, which
is by far the most computationally intensive part of Shor’s factoring algorithm. Previous
studies in this area have devised extensive quantum adder circuits that implement mod-
ular exponentiation [8, 9, 10, 11, 12]. However, this has been done with little regard to
feasibility, or implementation on an existing quantum architecture models such as the
QLA. We leverage the existing work on quantum adders to study and evaluate current
and novel adder circuits on a multi-chip version of the QLA architecture. In particular,
we show a circuit which through serialization requires the least possible area on a sin-
gle QLA chip, and demonstrate that even maximal serialization yields area too great to
physically overcome, in addition to unreasonable execution time. We introduce a dis-
tributed quantum parallel prefix adder based on the classical parallel prefix adder [13],
and evaluate its communication and computation requirements on the multi-chip QLA
architecture.

The paper is organized as follows: Section 2 provides a high-level description
of the Quantum Logic Array architecture model, and a brief description of the logi-
cal and inter-chip interconnect technology. Sections 3 and 4 introduce Shor’s algorithm
and give a simple, spatially-optimized design. Our multi-chip solutions are introduced
and compared in Section 5. Finally results and conclusions are discussed in Section 6
and Section 7 respectively.

2 Quantum Computation and the QLA Architecture

Quantum mechanical systems such as the different electronic spins of an atom, or the
polarization states of a photon can be used to hold and manipulate binary information
just as the old vacuum tubes or the modern semiconductors do. Unlike classical binary
bits, however, the fundamental units of quantum information, qubits, always exist in a
superposition of the binary 0 and 1 states with some probability of obtaining one or the
other upon observation. Measuring a quantum state not only yields the measured result
with some probability, but forces the state to be in the measured value. A collection
of N qubits exists in a superposition of 2N different states at any given time denoted
by the binary bit-strings representing the numbers 0 through 2N−1. Logic gates are
implemented as 2N dimensional, complex valued, unitary matrices which act on the
system state vector.



A Realizable Distributed Ion-Trap Quantum Computer 113

Our prior work, the QLA architecture [2] is designed to support large-scale quantum
computation through the efficient manipulation of arbitrarily large number of qubits.
The major components of the QLA are: fault-tolerant logical qubits denoted with the
letter Q, trapped atomic ions as the basic implementation technology at the bottom of
the architecture and a teleportation based logical interconnect controlled.

The most important restriction on quantum circuits is the inability to form a sequence
of gates that copies the state of a qubit, also known as the no-cloning theorem [14].
For a two-qubit operation the qubits must be brought together, and we cannot simply
propagate the state of one to the other - we must physically transport each qubit. At
inter-logical qubit distances ballistically moving the each ion-qubit holding valuable
quantum data is too risky and will destroy the state.

2.1 Single-Chip Logical Interconnect

At small distances, the ballistic direct channels are enough for the communication re-
quirements within logical qubits. However, the execution of any algorithm will depend
of the efficient interaction among logical qubits. The concept of quantum teleportation
[15] is utilized within each processor to provide high-speed, low-latency, fault-tolerant
network interconnection between the logical qubits.

Quantum teleportation utilizes two qubits that have been previously prepared in an
Einstein-Podolsky-Rosen (EPR) state [16]. The drawback is that these EPR qubits still
have to be physically moved. However EPR pairs are replaceable and with enough
resources we can establish entanglement between the source and the destination just in
time for the communication to be completed.

1 2 3 4 5 6

A BC1 C2

Fig. 1. A schematic of a single bandwidth channel between the logical qubits of our ion-trap pro-
cessor. Rather than distributing an EPR pair of qubits directly from the source to the destination,
the channel is divided into islands (here denoted as C1, and C2), that can be used to expand the
entanglement over the entire channel.

In the intra-chip interconnect, our quantum processor solves the EPR transport prob-
lem by combining the concepts of quantum repeaters [17] and entanglement purifica-
tion [18, 19, 17]. The quantum repeaters are islands that are strategically placed in the
channels between the logical qubits to limit the distance traveled by each EPR pair.
EPR pairs only travel to two neighboring islands, whose entanglement can then be ef-
ficiently purified using the purification protocols with some additional ancillary EPR
pairs. Figure 1 the concept of quantum repeaters by showing a simple schematic of the
channel between the logical qubits. The channel shown has a bandwidth of 1 physical
bit at a time, and the ancillary EPR qubits are pipelined to the two opposing islands as
they purify the data EPR pairs. EPR pairs (1, 2), (3, 4), and (5, 6) can be distributed and
purified in parallel over the channel separating the source (A), and the destination (B).
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The arrows in Figure 1 show how teleporting each individual pair, entanglement can be
distributed between the source and the destination for one final teleportation stage.

2.2 Multi-chip Interconnect

The above scheme however is not good enough when designing a multi-chip quantum
network. The inter-chip distances, the difficulty in chip alignment, and the high failure
rates at such conditions make it impossible to use the highly refined physical traps
that make up the chips themselves. Instead of physically transporting ions encoded
as an EPR pair between chips, two remote ions can establish entanglement through
photon mediation [20, 21]. Photons emitted by the ions are collected with an optical
fiber and sent to entangling stations to perform a collective measurement on the ions
without knowing which ion sent which photon beam. The two ions are then projected
into the two qubit entangled state The application of an X gate on the second qubit
easily converts this state to the familiar EPR pair. The communication process is then
completed by teleporting the source ion to the other side as described above.

Q Q Q Q

Q Q Q Q

Q Q

BS

D1 D2Single Chip

Laser Beams

Optical Fiber

Imaging Lens

ION

To Next Chip

Fig. 2. Each chip has a connection pad on its sides with evenly distributed optical fiber locations.
Remote trapped ions at each location on two opposing chip pads are entangled using photons
emitted by the ions.

The ion-photon mapping method of creating entanglement between remote qubits
is not possible inside the processors, because of the complex classical control required
for quantum computation. However, outside of the processors it allows us to make an
arbitrary quantum network by connecting adjacent processors as shown in Figure 2.
Each chip has a connection pad on its sides with evenly distributed optical fiber lo-
cations. The bandwidth between two chips is defined by the number of optical fibers
connecting them, which is limited by the chip dimensions. Due to the size of the optics,
the fibers must be spaced at least 700μm apart [22], where a time of approximately
600μs for the entanglement operation in order to achieve near unit fidelity. The inherent
entanglement purification of this channel [23] makes it much faster than the quantum
repeater channel, thus we will not observe added latency when jumping from one chip to
the next.
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3 Shor’s Algorithm

Shors’ algorithm is widely studied due to its exponential advantage over conventional
algorithms and due to its application to crytography. Shor’s algorithm can be used to
factor a product of two primes in polynomial time and comprises of the quantum fourier
transform and quantum modular exponentiation. Although Shor’s insight was in eval-
uating the quantum fourier transformation in polynomial time, it is the modular expo-
nentiation that consumes many times greater computational resources than the rest of
the algorithm. In other words, if an ion trap processor that was 1 meter long on each
side, could be built, it would take about 45 days to perform a heavily parallelized ver-
sion of modular exponentiation. Whereas the same processor would be able to solve the
quantum fourier transform in 0.5 days [2].

Performing Modular Exponentiation: A considerable amount of work has been done
in developing implementations of adders for modular exponentiation [8, 10, 9, 12].
Nonetheless, the actual technology for quantum computing and the issue of fault-
tolerance have not been considered in depth. Our previous work [2] develops a de-
tailed architecture for a fault-tolerant, ion-trap based quantum processor. We employed
a fast quantum carry-lookahead adder developed by [12] to efficiently perform modular
exponentiation. The drawback of this design was the size of the quantum processor. It
would need to be about 0.9m2 to accommodate all the required qubits. The next two
sections address this very issue of size.

Table 1. Increase in area (in cm2) with the number of logical qubits

Number of Logical Qubits Area of processor
100 2.65 cm2

200 5.31 cm2

300 7.963 cm2

350 9.29 cm2

400 10.617cm2

4 Single-Chip Solution

Our goal in this section is to design a circuit for modular exponentiation that is spatially
optimized. The tradeoff is going to be extra time. From table 1, we determine that if we
needed a processor that was less than 10cm2 it would restrict us to 350 logical qubits
for the entire processor.

4.1 Serialized Adder

For performing addition in a small space, we choose the quantum ripple carry adder
by Vedral et.al [8], which analogous to its classical counterpart, needs minimum extra
qubits for an addition. Fig 3(a) shows a quantum circuit for determining sum and carry
given inputs a and b and carry-in cin. The left-part of Fig 4 shows the original Vedral
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Fig. 3. (a) Standard method of computing carry and sum. (b) Using a majority (MJ) block and a
reverse majority and add (RA) block to get the same result [11].

adder [8]. Note that the adder circuit has two carry blocks for the same inputs. The
second block (on the right hand side of the circuit) performs the reverse computation,
to erase the ancilla bits.

The Vedral adder can be improved if the reverse computations with the computations
of the carry could be combined. This can be done using the MJ and RA blocks as shown
in 3(b) as proposed by [11]. The MJ block computes the majority of three bits in place.
The RA block adds two bits and reverses the majority. This allows us to save the n extra
qubits that were needed for the Vedral ripple carry adder.

In Shor’s algorithm, a can be as large as n2. Thus we need 2n qubits to store a. An-
other n qubits are needed to store the result (xa mod n). The circuits of Vedral et.al use
addition to perform modular addition; modular addition to perform controlled modu-
lar multiplication and finally modular exponentiation from repeated controlled modular
multiplication. Modular addition, multiplication and exponentiation each require n tem-
porary qubits. Our modified Vedral adder needs 1 temporary qubit. This gives a total
of 6n + 1 qubits. We can reduce this requirement by observing that during addition,
n qubits hold classical values only and thus can be eliminated. Also during modular
addition, a set of n temporary qubits holds either 0 or 2i mod n. These n qubits can

Vedral Ripple Adder Modified Ripple Adder

Fig. 4. 4-bit adder circuits using components from Figure 3(b) and Figure 3(a). The modified
ripple carry adder requires n − 1 fewer qubits for adding two n qubit numbers.
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be replaced by n classical bits and one qubit to keep track of entanglement. Our total
required qubit count is now 4n + 2. To this we add another 6 qubits which are required
to perform a fault-tolerant toffoli gate; giving us a final count of 4n+8 qubits. The cost
of keeping the required number of qubits low is that we have to perform all operations
in serial order. They cannot be parallelized.

Table 2. Time and area for a serialized adder

N Area in cm2 ECC steps Total Time

128 14.068 6.64 e9 3074 days
512 54.839 4.28 e11 542.87 years
1024 109.202 3.43 e12 4350.58 years

Table 2 shows the total area and time required for one complete modular exponentia-
tion. In the table, ECC steps refers to the number error correction steps required. As can
be seen, total area for the serialized version of the adder for the modular exponentiation
of a 1024 bit number is quite large, 109.202cm2. At the other end, while the area for
a 128 bit number is acceptable, the time it would take is approximately 8 years. The
next section shows how we can reduce both the time and space requirements by using
a parallel implementation of an adder.

5 Multi-chip Solutions

To exploit parallelism, we explore the performance of larger quantum systems com-
posed of multiple interconnected chips, which we shall refer to as Qchips. Specifically,
we evaluate distributed quantum adder designs and the cost of inter-chip communica-
tion on a multi-chip system.

5.1 Carry-Select Adder

Let n = g ∗ k, where n is size of the number to be factored in bits, which is divided
into g groups of k bits each [10]. Thus there are g Qchips each of which is responsible
for adding k bits. We then use a carry-select adder spread out over these Qchips. Let
the Qchips be Qc0, Qc1, ..., Qcg. Each Qchip computes the sum and carry for its k bits
in parallel. Since Qci does not have the carry out from Qci−1, it computes for both
possibilities, the carry out being 0 and 1. When the carry from Qci−1 is available, a
multiplexer is used to select the correct value from the ones Qci calculated. In this
manner, most of the computation can be done in parallel, except for the multiplexer.
Two useful properties of such an adder are that the only communication between Qci

and Qci−1 is one bit, the carry from Qci−1, and that Qci communicates with Qci−1 and
Qci+1. Finally, we have to return the ancilla to their original state. This can be done by
using an extra k qubits in each Qchip.

As outlined in [10], each Qchip will require about 6k qubits for the complete mod-
ular exponentiation. In order to perform parallel fault-tolerant toffoli’s we conserva-
tively increase it to 7k per Qchip. To calculate the time it would take for a complete, if
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Table 3. Number of Qchips of fixed area required for a given problem size

Carry Select Adder Parallel Prefix Adder

N 4 cm2 8 cm2 10 cm2 N 4 cm2 8 cm2 10 cm2

128 5 2 2 128 11 5 4
512 23 11 9 512 51 25 20
1024 47 23 19 1024 109 54 43

A0

B0

A2
B2

A3

B3

B1

A1

Fig. 5. Circuit of a parallel prefix adder for 4 bits. For reasons of clarity and space the reverse and
sum computations are not shown.

inter-Qchip communication was free, we replace our parallel carry-select adder into the
Vedral circuit. We also implement improvements suggested by van Meter and Itoh [10]
namely using a lookup table to reduce the number of multiplications and their modulo
adder block. Unlike their approach however, we only use one multiplier; this allows us
to keep the area requirements within manageable levels.

For the carry-select adder, let M1i be a message from Qci to Qci+1. This is the carry
out that Qci generated. When the ancilla have to be reset, Qci will receive the same
qubit as message M2i from Qci+1. While all M1 messages cannot be parallelized, all
M2j messages can be overlapped with M1j+1 messages. Thus if we have g Qchips,
the total communication cost we incur will only be g messages.

5.2 Parallel Prefix Adder

We now introduce our third adder which is a distributed parallel prefix adder. In a clas-
sical parallel prefix adder, partial information about the incoming carry is utilized to
avoid ripple-carry computation. Let C[i, j] denote the carry status on the interval [i, j].
It can have three possible values: k: kill, g:generate or p:propagate.

When adding ai and bi, we can determine something about the outgoing carry, ci+1,
without knowing ci. If ai = bi = 0 then the ci+1 = 0 and C[i, i + 1] = k. Similarly,
if ai = bi = 1, then carry is generated and ci+1 = 1. Also C[i, i+1] = g. If ai �= bi then
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(a) (b)

Fig. 6. Prefix graphs for Parallel-Prefix Adders [13]. Diagonal lines show communication be-
tween qubits at each stage. Each diagonal line carries two messages. Vertical line is Qchip bound-
ary. The tradeoff lies between amount of communication and ”fan-out”. (a) The [2,2,1,1] scheme.
(b) The [1,1,1,1] scheme.

we cannot determine ci+1 and the carry is said to have ”propagated”. C[i, i + 1] = p.
The calculation of carry status is both associative and idempotent, which allows us to
merge intervals. For any i < k < j,

p[i, j] = p[i, k] · p[k, j] (1)

g[i, j] = g[k, j] ⊕ (g[i, k] · p[k, j]) (2)

The second expression is possible because g[i, k] and p[i, k] cannot both be 1 simulta-
neously.

Knowles [13] has shown that in the first stage of addition, each pair of qubit calcu-
lates its p and g values, the last stage calculates the sum while the intermediate stages all
compute the carry status. There can be many approaches to communicating the p and
g stages between qubits as shown by the prefix graphs in Figure 6. Each line represents
two bits of data, p and g. Since we have to return the ancilla to their original state, these
bits would also have to travel in the opposite direction at a later stage. Thus each lat-
eral line in the graph, that crosses the Qchip boundary (represented by the dashed line),
represents four messages. For our distributed adder, a scheme like [8, 4, 2, 1] would re-
duce the amount of inter-chip communication while increasing ”fan-out”. Since it is
not possible to do ”fan-out” in a quantum processor [24], we would be forced to do
those computations in a serial fashion. On the other hand, a [1, 1, 1, 1] scheme (Figyre
6(b)) increases the amount of communication. For our adder we settle on a [2, 2, 1, 1]
scheme (Figure 6(a). A quantum circuit of the parallel prefix adder for 4-qubits, based

Table 4. Time (in years) for a complete Modular Exponentiation when per message time is 800
E-6 sec

N 4 cm2 8 cm2

Carry Select Par. Prefix Carry Select Par. Prefix

128 0.10 0.22 0.19 0.29
512 2.99 0.34 2.99 0.43
1024 19.9 1.35 15.64 1.69
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Fig. 7. (a) Shows when the multi-chips solutions outperform the serial version. (b) Performance
of the Carry-Select and the Parallel-Prefix Adders.

on [2, 1] scheme, is shown in Figure 5; reverse and sum computations are not included.
Communication requirements of our parallel prefix adder will increase with the number
of stages in the addition (This is primarily due to our choice of the [2, 2, 1, 1] scheme).
Messages sent, between two Qchips, at stage i can be given by Mi = Mi−1 + 2i−1

6 Results

Results for all our designs were obtained by hand calculations. Figure 7(a) shows the
cost per message at which the multi-chip solutions outperform the single Qchip. Since
the number of messages between Qchips increases rapidly for the parallel prefix adder
(while staying constant for the carry select), the cross-over point is at 35 sec/message;
and almost 1800 sec/message for the carry select. In Figure 7(b), we compare the multi-
chip solutions with message costs of ≤ 1sec. We can see that the parallel prefix will
clearly be the best solution as message costs decrease. To arrive at Table 4, we employ
ideas from Section 2.2 and let cost/message equal 800μsec.

To optimize the parallel prefix solution further, we consider the effects of having
larger bandwidth and a greater number of multipliers for modular exponentiation. In-
creasing the bandwidth involves using the interconnect ideas from Section 2.2. Since
one Toffoli gate takes at least 0.8 sec [2], while sending an EPR pair between two Qchips
takes only 600μsec [22], given enough bandwidth we can easily pre-communicate all
EPR pairs while the computation is in progress. Additional multipliers allow us to in-
crease concurrency in the algorithm while requiring more Qchips. Figure 8 shows that
it would take almost 13 days to factor a 1024-bit number if we could employ 4300
Qchips, and send 10,000 messages simultaneously between two Qchips. Each of these
4300 Qchips is 10cm2 in area.
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7 Conclusion

The technology for quantum computation has made extraordinary progress towards
a practical quantum computer. The key to constructing a scalable system from these
technologies, however, lies in classical principles of system design, parallelism, and
communication. Our results indicate that a multi-chip implementation of ion-trap quan-
tum computation is an attractive design point for the near future. Inter-chip commu-
nication through photon-mediated interaction allows low-latency and reasonable band-
width. With careful partitioning of algorithms such as modular exponention, classically
intractable problems can be solved by exploiting parallelism without overwhelming
inter-chip bandwidth. Our hope is that this approach will facilitate practical implemen-
tation of future quantum algorithms as they arise.
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Abstract. On chip caches in modern processors account for a sizable
fraction of the dynamic and leakage power. Much of this power is wasted,
required only because the memory cells farthest from the sense amplifiers
in the cache must discharge a large capacitance on the bitlines. We reduce
this capacitance by segmenting the memory cells along the bitlines, and
turning off the segmenters to reduce the overall bitline capacitance.

The success of this cache relies on accessing segments near the sense-
amps much more often than remote segments. We show that the access
pattern to the first level data and instruction cache is extremely skewed.
Only a small set of cache lines are accessed frequently. We exploit this
non-uniform cache access pattern by mapping the frequently accessed
cache lines closer to the sense amp. These lines are isolated by segmenting
circuits on the bitlines and hence dissipate lesser power when accessed.

Modifications to the address decoder enable a dynamic re-mapping
of cache lines to segments. In this paper, we explore the design-space of
segmenting the level one data and instruction caches. Instruction and
data caches show potential power savings of 10% and 6% respectively on
the subset of benchmarks simulated.

1 Introduction

A fundamental shift is occurring in microprocessor design. The unending quest
for performance has led to an unquenchable thirst for power. The focus is shift-
ing from pure performance to power-efficient performance. As this shift occurs,
architects take a new look at existing structures. We take another look at the
design of a cache.

Caches have traditionally been designed such that each element in the cache
is accessed in the same amount of time, requiring the same amount of power. In
reality, all elements within the cache are not accessed equally, so a cache should
be designed to exploit the patterns that emerge in an application. In essence,
this is merely an extension of the original idea of caches. The basic hypothesis
is that a subset of the memory has locality, and that a cache can exploit this
locality. Temporal and spatial locality are exploited by storing recently used
data items, and data in the successive memory locations, in the cache. Once an
item is placed in the cache, however, it becomes equal to all other elements in
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the cache. This assumes there is no locality within the cache, an assumption
that wastes an opportunity for optimization. We propose designing the cache
such that the position within the cache determines the power consumption for
accessing that set. This offers the opportunity to partition the cache at the circuit
level into different power domains and explore micro-architectural techniques to
remap the memory accesses into the appropriate power domain to save power.
In order to implement a low-overhead segmented bitline cache, we exploit two
key characteristics in the design of modern caches. We first observe that caches
require more power on the bitlines because every element must drive the signal
along the whole length of the bitline, irrespective of its physical location in the
cache. We exploit this by placing segmenters on the bitline, requring an element
to drive only the distance from its segment to the output, resulting in a lower
power to attain the same performance.

In this paper, we present a segmented bit line cache implementation that min-
imizes the overhead of segmenting. We develop a power model of the segmented
bitline cache using CACTI [8] and HSPICE. We then describe and evaluate two
methods to dynamically map sets to bitline segments of the cache to take advan-
tage of different power domains based on the access pattern. Finally, we evaluate
these methods in the context of level one instruction cache and data caches on
a subset of integer and floating point SPEC2000 benchmarks.

The rest of the paper is organized as follows. We begin by describing related
work in power efficient cache design in Section 2. We provide empirical evidence
for the non-uniform access patterns in Section 3, which provides motivation
for the work. Section 4 describes the implementation of our segmented bit line
cache, followed by the clustering and mapping algorithms in Section 5. Evalua-
tion methodology and results are presented in Section 6. Finally, we outline our
future work and conclusions in Section 7.

2 Related Work

In this section we discuss several related research projects. In particular, two
important areas of research are related to this work: circuit level optimizations
of the bitlines for power savings and architectural techniques for power efficient
caches.

At the circuit level, bitline isolation has been extensively studied. Kamble
and Ghose [4] propose a local bitline for segments which are then connected to a
common line across isolating switches. Higher metal layers are used to implement
the common bitline. Since these layers have a lower capacitance, it reduces the
overall bitline capacitance and hence saves dynamic power.

Yang and Kim propose a low power SRAM using a hierarchical bitline and
local sense amplifiers (HBLSA-SRAM) [9]. The conventional SRAM bitline is
divided into a several sub-bitlines each with its local sense amplifier. The sub-
bitlines are connect to the read/write/pre-charge circuits through a common
bit line. The HBLSA-SRAM reduces the write power in bitlines without noise
degradation by applying a low swing signal to the bit line and a full swing
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Fig. 1. Histogram: L1 Instruction Cache

signal to the sub-bitline. Yang and Falsafi [10] note that significant energy is
wasted in statically pulling up the bitlines in all cache sub-arrays. They show the
potential leakage power savings in not pre-charging the unaccessed sub-arrays.
The authors study the energy and performance trade-offs of bitline isolation,
and propose prediction techniques to exploit its full potential.

3 Motivation

In order for us to gain power savings from our segmented bitline cache, the
frequently accessed sets must be mapped to the lower-powered segments. Non-
uniform cache access patterns in caches are critical to the success of this design.
This section provides preliminary data which demonstrate these patterns.

We simulated an out-of-order processor using Simplescalar [3]. The cache pa-
rameters were taken from the Itanium L1 cache [2]. The instruction and data
caches are 4-way set associative, 16KB caches with a 64B set size. A subset of the
SPEC2000 benchmark suite was run to completion to generate detailed access
distribution data.

Figures 1 and 2 give histograms showing the number of sets and the frequency
at which they were accessed for L1 instruction and data caches. There were a
total of 64 sets. A uniform access pattern would have resulted in about 1.6% of
access to each set.

We can see that for the L1 Instruction cache shown in Figure 1, mcf , gcc,
and equake have 1-3 cache sets that account for at least 10% of the accesses
each. For mcf , about 78% of the sets are accessed less than 1% of the time.
These applications are good candidates for our approach. For some applications,
like bzip, most cache sets are accessed at the mean access rate. They will be
poor candidates.
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In the data cache shown in Figure 2, the accesses are not quite as skewed.
Only one application has sets taking more than 10% of the total accesses. In
addition, two applications, mcf and equake, have the bulk of their accesses near
the mean rate.

4 Segmented Bitlines

Data and tag arrays in caches are typically partitioned into banks and further di-
vided into blocks and sub-blocks. A detailed evaluation of various configurations
can be found in [1]. The different partitions give different power-performance
trade-offs. In this paper, since we primarily explore level 1 caches, we use the
lowest access time configuration as given by CACTI [8] We then add segmenters
to the bitline and study two, four and eight segment bitline. Although this ap-
proach adds delay to the critical path of the bitline segment furthest from the
sense amplifiers, it reduces the length of the bitline for the nearest cache rows
thereby reducing the capacitance which has to be discharged, and hence the
bitline power.

Cache Design and Operation. In a standard SRAM cache a physical bitline
is one continuous wire segment that connects many SRAM cells to the sense
amplifier (SA), precharge and write circuitry. Every time the bitline voltage
levels need to be changed, either for a read or a write, the entire bitline must be
charged or discharged. As CMOS processes continue to scale down, the parasitic
interconnect capacitance begins to dominate overall cache energy. Bitlines could
consume up to 50% of the total cache power [4]. When accessing an SRAM cell
that is physically close to the read/write/precharge circuitry, energy is wasted
by charging/discharging the other end of the bitline. To prevent this waste of
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energy we use a segmented bitline shown in Figure 3. BL is the bitline and nBL is
its complement. WL refers to a wordline. Each box has 16 SRAM cells connected
between the bitline and its complement. The block diagram shows the bitline
broken into 4 segments. We define a segment to be a portion of the bitline that
can be isolated from any other bitline segment. The bitline can easily be divided
into 2, 8, or any other combination of segments. Each segment is separated by a
segmenter, which consists of a full CMOS transmission gate. Each transmission
gate has a control signal (SC), which is operated each cycle according to the
address of the data being accessed. When the clock is low all segmenters are
turned on to enable the precharge of the entire bitline. Although it would take
less power to pre-charge only part of the bitline up to the segment being accessed,
in high performance caches, pre-charging overlaps address decoding and hence
the segment address may not be decoded during pre-charge.
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Power Model. The power model was developed using of CACTI and HSPICE.
The only difference between a conventional cache and a segmented bitline cache
are the additional segmenters along the bitline. Hence, the power consumption
of the rest of the cache is assumed to be as given by CACTI. A column with
64 SRAM cells was simulated in HSPICE using TSMC 0.18μm technology to
obtain the bitline power dissipation. The bitlines with two, four and eight seg-
ments were simulated to account for the delay and power consumption of the
segmenters. Figure 4 plots the total cache power dissipation for accessing the
different segments for a two, four and eight segmented bitline cache at 100MHz
and 1.7V voltage. As seen from the figure, for the two segment case, the power
dissipated to access the second segment is slightly higher than the unsegmented
cache power. Similarly, in the four segment case, the third and fourth segments
require higher power. Thus, our gains will be constrained by the percentage of
accesses to the higher-power segments.

5 Clustering and Mapping

In a segmented bitline cache, the cache is divided into two, four or eight bitline
segments. We define clustering as determining which cache sets can be parti-
tioned together into a cluster. These clusters are then mapped to the bitline
segments. Clustering and mapping introduce several challenges.

First, we do not have perfect knowledge of which sets will be accessed. Second,
even if we had perfect knowledge, it would not necessarily be feasible to allow
arbitrary permutation of sets to clusters. This would require a more complex
logic to decode a set in the cache, increasing access times eroding some of our
gains due to the shorter bitlines. We need a balance between flexibility in which
cache lines may be clustered together and the speed of finding elements in the
cache. Finally, access patterns change with time requiring re-mapping at regular
intervals. Performing a re-mapping can be an extremely high-overhead operation.
Either the sets that need to be re-mapped must be copied to their new locations,
or those sets must be flushed from the cache. Swapping cache lines can be very
expensive in terms of power consumption, and flushing the sets from the cache
would result in an increased miss-rate. In this paper, we propose to limit the
re-mapping to context switches. We assume that during a context switch, much
of the state in the cache is lost, so invalidating the cache will incur a negligible
performance penalty.

Clustering can be done either statically or dynamically. With static clustering,
a single clustering is used across all applications and throughout the run-time of
the application. Alternately, the clustering could be changed at run time, which
is called dynamic clustering.

The simplest implementation of static clustering is to cluster the cache lines
based on most significant address bits. With 64 cache lines, for instance, 6 bits are
required to determine the row address. Now, a subset of these bits determine the
segments and the others the line in the segment. For example, with 4 segments 2
MSBs determine the segment and 4 bits determine which line within the segment
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is being accessed. A configuration register stores the mapping of the clusters to
the segments. The address bits control the mux (in this case, two 4:1 muxes
are required.), which selects the new segment address. The only increase in the
critical path of the decoder is the multiplexer delay.

Once we have a clustering scheme, we need to map the cluster into bitline
segments. The basic idea is to map the most frequently accessed clusters into
the lowest power segments. We associate a counter with every cluster and in-
crement it each time the cluster is accessed. We study two versions of mapping:
static mapping and dynamic re-mapping. In static mapping, a single mapping of
clusters to segments, obtained by profiling, is used throughout the application.

The dynamic re-mapping uses the access counters to re-map at regular in-
tervals. Two versions of dynamic re-mapping are explored in this paper. In the
first version, the segment access information of only the previous interval is used
for re-mapping. We refer to this case as ’dynamic counter flush’ or dcf because
the counters used for re-mapping are flushed each time a re-mapping occurs.
In this second case called ’dynamic no counter flush’ or dncf , the cumulative
access counts to the cluster from the beginning of the application to the current
interval is used to decide re-mapping.

6 Results

Simulations were run with Simplescalar. Counters were added to generate cache
line access statistics and re-mapping was implemented on every 1 million cycles.
The experiments were run on a subset of the SPEC2000 benchmarks, drawn
from both the floating-point and integer suites, using a 16KB 4-way set asso-
ciative cache for integer and data caches. We used SimPoint3.0 [7] to reduce
the simulation time. SimPoint provides representative intervals and weights for
each application Multiple standard simulation points each 100 million instruc-
tions long were simulated. For each benchmark, all the intervals were simulated,
and the results were weighted using the interval weights given by SimPoint. The
weighted percentage of access to each segment was then used as an activity factor
to scale the power of the corresponding segment.

We perform a series of experiments to evaluate the benefits of these techniques.
The graphs show the total cache power savings relative to an unsegmented cache.
First, we compare static mapping based on a profile and dynamic re-mapping,
with that of a dynamic clustering. We then vary the number of segments from 1
to 8 segments. The operation of a segmented bitline cache at higher frequency
is discussed.

6.1 Static vs Dynamic Re-mapping

Figures 5 and 6 compare three choices of mapping:static, dynamic with cumu-
lative counters, and dynamic with counters that reset each interval. We present
the results for eight segments. and compare with that of a best case dynamic
clustering labeled as oracle.
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Fig. 5. Static vs. Dynamic: Instruction Cache
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Fig. 6. Static vs. Dynamic: Data Cache

For the instruction cache, the average power savings from a static mapping
is 6.3% while the two dynamic re-mapping techniques provide approximately
7.6% average power savings. The dynamic clustering indicates that there is a
potential to save up to 10% power on average. For some applications like applu,
the dynamic techniques achieve close to maximum power savings, while others
like gzip indicate that the potential is much more than what is obtained by the
current dynamic re-mapping techniques. Also, note that maximum power sav-
ings are obtained for applications like mcf and gcc for which access patterns are
most-skewed. The data caches have less power savings. Static mappings provide
about 4% savings, whereas dynamic re-mapping performs slightly better at 4.5%
power savings. The dynamic clustering results indicate a potential power savings
of about 5.7% on average.This is consistent with the more uniform access distri-
bution we noted earlier for data caches. Again, as noted earlier, we see a direct
relation between power savings and non-uniformity of the access distribution.
Applications like mcf and equake give least power savings because most of their
cache sets are accessed at about the mean rate.
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Fig. 8. Number of Segments: Data Cache

6.2 Number of Segments

The number of segments is an interesting design trade-off. With more segments,
you can save more from the low-power segment, but you lose more from the high-
power segment. We vary the number of segments from 2 through 8. Since the
dynamic remapping with counter resetting performs better than static mapping
and does not require prior knowledge, we present only the dcf results. Figures 7
and 8 show the results for the instruction cache and the data cache respectively.

For instruction caches, increasing the number of segments increases the power
savings. While eight segments gives about 7.6% power savings on average, the
savings reduce slightly to 7.4% and 4.1% for 4 and 2 segments respectively.
This is because instruction caches showed greater non-uniformity in their access
patterns, allowing them to greatly benefit from the extra segments. The data
caches show a good inflection point giving best power savings at four segments.
A more uniform access pattern of the data cache leads to more accesses to the
high-power segments, decreasing power savings for eight segments.
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I Cache: 100MHz vs 500 MHz
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Fig. 9. Increased frequency: Both Caches
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6.3 Increasing Frequency

The results presented in the previous sections are at 100 MHz where the seg-
menter delay was small compared to the clock cycle. As the frequency is in-
creased, the voltage to which the bitline (or its complement) discharges is re-
duced. Adding segmenters to this bitline, further increases the bitline delay,
thereby reducing the discharge voltage of segments even more.

This reduces the power savings obtained by segmentation because the power
dissipated on the bitlines is directly proportional to the voltage to which the bit-
line discharges. Its effect on the applications is shown in Figure 9 for 8 segments
for the dcf .

The decrease in bitline discharge also potentially reduces the reliability of seg-
ments further away from the sense-amp circuitry since reduced swing increases
the likelihood of sense-amp failure. We assume that reliability is inversely pro-
portional to the discharge voltage of the bitline.

So using our remapping techniques, if most accesses are limited to these seg-
ments, an overall higher reliability is possible. Even so, in the eight segment case,
half the cache has a lower reliability than an unsegmented bitline. To reduce the
low reliable cache area we simulated unequal segments in our bitline. Three cases
of unequal segments are considered in this paper: First, a two segment bitline,
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Fig. 12. Unequal Segments: Instruction Cache

with eight rows in the first segment and 56 in the second segment. Second, a
three segment bitline, with eight rows in the first segment, 16 in the second and
40 rows in the third segment. Third, a five segment bitline, with eight rows each
in the first four segments, and a fifth segment with the remaining 32 rows.

We quantify reliability in terms of ’Reliability Indicator’ (RI) which is in-
versely proportional to the final voltage to which the bitline discharges. A typi-
cal sense-amp requires a differential voltage of 0.5V [6] between the bitline and
its compliment.The reliability of a segment is thus inversely proportional to the
lowest voltage on the bitline. For instance, if the bitline discharges to 1.2 V (with
Vdd = 1.7V), the RI is 0, and if the bitline discharge is to 0V, the RI indicator
is 1. Figure 10 compares the reliability of unequal segment configurations with
that of an unsegmented cache and an eight segment bitline cache. First, we ob-
serve that an unsegmented cache itself has a reduced RI at higher frequency.
The eight segment bitline has segments with very low RI. This is improved with
unequal segments, where only one segment has a RI lower than an unsegmented
bitline. We compute the reliability of an application as the sum of, product of
segment RI and its percentage access for each configuration. The reliabilities thus
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obtained for all segment configurations is plotted in Figure 11 for the instruction
cache with dcf mapping. It is clear from the figure that all cache configurations
provide much better reliabilities than an unsegmented cache. Clearly, this is due
to the effectiveness of the re-mapping techniques. Similar results were obtained
for the data cache.

The power savings due to these unequal segment configurations is compared to
that of eight and four segment bitlines, for the dcf mapping for an instruction
cache, in Figure 12.As seen from the figure in both the data and instruction
caches, for most applications, power savings are between those of an eight and
a four segment bitline. Similar results were obtained for the data cache.

7 Conclusions

In this paper, we present architectural techniques that are combined with simple
circuit modifications of a cache. We exploit the non-uniform access patterns of
different applications to obtain dynamic power savings. We explore partitioning
the cache lines into clusters and mapping them to segments dissipating differ-
ent power. A re-mapping occurs on a context switch to limit the performance
and power overhead. Instead, the re-mapping could be guided by the changing
program phases. SimPoint has tools to detect phase changes in applications at
runtime [5]. By integrating these tools clusters could be re-mapped only during
the phase changes.
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Abstract. CMOS downscaling trends, manifested in the use of smaller transis-
tor feature sizes and lower supply voltages, make microprocessors more and 
more vulnerable to transient errors with each new technology generation. One 
architectural approach to detecting and recovering from such errors is to 
execute two copies of the same program and then compare the results. While 
comparing only the store instructions is sufficient for error detection, register 
values also have to be compared to support fault recovery. In this paper, we 
propose novel checkpoint-assisted mechanisms for efficient fault recovery that 
dramatically reduce the number of register values to be compared for detecting 
soft errors and perform comprehensive investigation of these and other exist-
ing recovery schemes from the standpoint of performance, power and design 
complexity.  

1   Introduction and Motivations 

The continuous downscaling of CMOS technology leads to smaller transistor feature 
sizes and the use of lower skupply voltages with each new process generation, making 
the microprocessor chips more vulnerable to soft (or transient) errors. These transient 
errors, also known as “single event upsets”, occur for various reasons, for example 
when cosmic alpha particles energize or discharge internal nodes of logic or SRAM 
bitcells, resulting in incorrect operation. It is projected that the rate at which the tran-
sient errors occur will grow exponentially [14] and will soon represent one of the 
most significant issues in the design of future generation high-performance micro-
processors. 

One popular approach to addressing these challenges is to execute two copies of 
the same program and then compare the sequence of results generated by each thread 
[1, 4, 5, 6, 7, 8, 10, 11]. Any discrepancy between the two result sequences indicates 
the occurrence of a transient error. Such redundant execution can be implemented in 
the framework of a superscalar processor. However, despite the well-known fact that 
the execution of just a single thread leaves the processor resources fairly underuti-
lized, running two simultaneous copies while sharing all resources results in very 
significant performance degradations [1, 6, 9]. 
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Alternatively, a Simultaneous Multithreaded (SMT) processor naturally provides 
multiple contexts that can be used to execute two copies of the same program (which 
we call the main thread and the verification thread) with less impact on performance 
[4, 7, 8, 11]. Several solutions have been proposed in recent literature to employ SMT 
support for redundant multithreading, including the schemes that just detect the tran-
sient errors [7] as well as those that support recovery capabilities [11]. 

The key to avoiding performance loss in the redundant multithreaded environment 
is to use staggered execution, i.e. to delay the execution of the verification thread by a 
number of instructions (defined as slack in the rest of the paper) behind the main 
thread. With growing memory latencies, a larger amount of slack between the two 
threads can help in hiding the memory access delays experienced by the main thread. 
To take advantage of the staggered execution, the slack is built and maintained during 
the normal execution and it is consumed (the verification thread catches up with the 
main thread) on L2 cache misses. Another advantage of maintaining a sufficient 
amount of slack is that the actual branch outcomes supplied by the main thread can be 
used by the verification thread instead of branch predictions.  This, in turn, eliminates 
the execution of the wrong-path instructions from the verification thread, further in-
creasing the execution efficiency and reducing the contention for the use of shared 
datapath resources. 

The basic scheme to provide the transient fault detection capabilities in an SMT 
processor, called SRT (Simultaneously and Redundantly Threaded processor) was 
introduced in [7]. In SRT, only the results (addresses and data) of the store instruc-
tions are compared, because any faults in the registers eventually propagate through 
the dependency chains to a store. However, if the capability to recover from such 
faults is also essential, then not only the values to be stored into the memory, but also 
all values written into the register file need to be verified. Otherwise, the recovery to a 
precise verified state following a transient error may be impossible, as such a state 
may never exist.  

In this paper, we perform a comprehensive study of the trade-offs in the design of 
fault recovery schemes, encompassing the issues of performance, energy and design 
complexity. These schemes include the previously published methods, as well as the 
ones that are proposed here. We begin by describing the architecture of the baseline 
SRT machine used for fault detection. 

2   Baseline Architecture 

The baseline redundant multithreaded processor that we use for our evaluations is 
based on the SRT model of [7] for transient fault detection. We assume that both main 
and verification threads perform separate register allocations, so that the register file 
is also protected. 

To introduce the slack between the execution of the two threads, we implemented 
the slack fetch mechanism described in [7]. The address and data of each store in-
struction are verified before the store is permitted to update the memory. To verify the 
address and data of store instructions, an ordered non-coalescing queue, called the 
store buffer (SB) is used, as in [7]. The SB is shared between the threads to synchro-
nize and verify store values as they retire in program order. Data from the store buffer 
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is forwarded to subsequent loads only when the store is retired in the thread issuing 
the load. The work of [7] proposes two alternatives for the input replication of load 
data. We implement the load value queue (LVQ) – which was shown to provide supe-
rior performance [7]. When a load commits from the main thread, it writes both its 
address and data into the LVQ. Subsequently, when the same load issues in the verifi-
cation thread, the address is verified and the data is read from the LVQ (i.e., the veri-
fication thread does not access the D-cache). This increases performance because the 
verification thread does not experience cache misses and does not compete for the 
cache ports. 

Finally, to eliminate the wrong-path instructions in the verification thread, we use 
the branch outcome queue (BOQ) [7]. This buffer delivers the committed branch 
outcomes from the main thread to the verification thread, effectively providing near 
oracle branch prediction for the verification thread (except in the case where a tran-
sient fault causes an incorrect branch resolution in the main thread).  

3   Transient Fault Recovery Schemes for SMT 

In this section, we describe several possible transient fault recovery schemes that 
provide recovery capabilities on top of SRT. 

3.1    SRT+: Augmenting SRT with Full Register Checking 

The first technique that we consider is a trivial augmentation to SRT to check all 
register values in addition to the data and the addresses of all store instructions. To 
reduce the pressure on the register file, this requires the addition of a queue (called 
Register Value Queue – RVQ), where the register results produced by the main thread 
are written after they are committed. These results are removed from the RVQ only 
after they are verified by the trailing thread. In this scheme, all register values are 
checked and an instruction that caused the transient fault can be identified precisely at 
the earliest possible opportunity. However, a large RVQ is needed to support sizable 
slack and significant energy is expended in the course of verifying all of the produced 
register values – those that have to be written to the RVQ, read from it, and compared. 

3.2   SRTR and Dependence-Based Checking Elision (DBCE) 

The next technique that we examine is called SRTR (SRT with Recovery) and it was 
introduced in [11].  In addition to checking the store instructions, the SRTR scheme 
also validates register values, but in contrast to SRT+ it does so selectively. To reduce 
the pressure on the RVQ and the number of verifications, the authors of [11] also 
proposed Dependence-Based Checking Elision (DBCE) – a mechanism to limit veri-
fications to only the instructions at the end of short dependency chains, avoiding (or 
eliding) the verification of the other register values.  As reported in [11], about 35% 
of all register checks are avoided (elided) on the average across SPEC 95 benchmarks 
using the DBCE scheme.  

The original SRTR scheme requires that the result verification occurs prior to in-
struction commitment (using the writeback-to-commit time), thus putting a limit on 
the amount of slack that can be maintained. To accommodate a relatively short slack, 
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the SRTR scheme uses the branch predictions (rather than the branch outcomes as in 
SRT) from the main thread to feed to the verification thread. As a result of the small 
slack and the use of branch prediction in the verification thread, the SRTR scheme has 
some performance overhead compared to the SRT design and also incurs some addi-
tional changes in the datapath mainly stemming from the need to support speculative 
instructions in the verification thread. The performance challenges faced by the SRTR 
scheme will only be exacerbated in the environments with lower branch prediction 
accuracies and/or D-cache hit rates as well as higher memory latencies. 

We observe that it is possible to move the verification actions in the SRTR/DBCE 
scheme to the post-commit stages by committing the instructions from the main 
thread and establishing the RVQ entries at that time, just as in SRT+ scheme. The key 
is not to allow the commitment of any instruction from a dependency chain in the 
verification thread until the entire chain is verified. The state of the verification thread 
then can be used to restart the execution following the detection of a fault. This modi-
fication allows the DBCE scheme to be used with larger slack and use branch out-
comes instead of branch predictions to avoid the execution of wrong-path instructions 
by the verification thread. 

3.3   Checkpoint-Assisted Fault Recovery Schemes 

In this paper, we propose novel schemes to further reduce the number of register val-
ues that need to be verified to guarantee recovery to a safe state compared to what is 
proposed by the DBCE scheme.  The philosophy of the DBCE is to support a rollback 
to the latest checked and committed instruction following the detection of a fault and 
to begin the re-execution from that point. While such an approach completely avoids 
unnecessary re-executions of already verified instructions, the datapath complexities 
and performance overheads involved are non-negligible. In essence, from the stand-
point of precise state reconstruction, the SRTR scheme treats transient faults like 
branch mispredictions or exceptions because it maintains the results of all unchecked 
instructions, just as the results of all speculative instructions are maintained for branch 
misprediction recovery or interrupt handling.  

However, even in current and future technologies, the absolute rate at which tran-
sient faults will occur is very low, several orders of magnitude smaller than, for ex-
ample, the rate of branch mispredictions or exceptions.  Therefore, it is unnecessary to 
start the re-execution at the exact instruction that caused transient fault; even if the 
rollback occurs to a point which requires several tens of thousands of instructions to 
be re-executed, there is almost no impact on performance. The key question here is 
not how far to rollback and how many instructions to re-execute (within reasonable 
distance), but how to guarantee that a precise and completely verified register and 
memory state is always available and can be constructed at any point. In the rest of 
this section, we describe two checkpoint-based mechanisms to facilitate such a recov-
ery. After the detection of an error, the processor state is rolled back to a complete 
and fully-verified register and memory state checkpoint and the execution restarts. 

3.3.1   Lifetime-Based Checking Elision (LBCE) 
It has been noticed by several researchers that most of the register instances in a 
datapath are short-lived [19]. A value produced by the instruction X is short-lived 
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(SL) if the architectural register allocated as a destination of X has been renamed 
again before the value generated by X is committed. In [20], it was shown that about 
84% of all produced values are short lived. Using this notion of short-lived values, 
[20] proposes lifetime-based checking elision (LBCE) in which the verifications of 
control-independent short-lived (CISL) values are avoided. Only the non-CISL results 
are saved within the RVQ after the instruction commitment and are verified against 
similar values produced by the verification thread. 

To support the capability to recover to a precise and completely verified state fol-
lowing a detection of a transient fault, LBCE relies on the creation of the periodic 
register and memory state checkpoints. To buffer a large number of store instructions 
between two consecutive checkpoints, we use the approach described in [21] and also 
used in a few others works. The memory updates received between two consecutive 
checkpoints are stored within the local cache hierarchy, but their propagation to the 
main memory is avoided until it is safe to do so. Each cache line updated in this man-
ner is marked as volatile, using one extra bit for each cache line. When a processor 
needs to rollback to a checkpoint, all cache lines marked volatile are invalidated using 
a gang-invalidate signal.  When the new checkpoint is created, all volatile bits set 
since the creation of previous checkpoint are cleared. A recent paper [23] also de-
scribes how to correctly incorporate caches with the volatile lines into a multiproces-
sor system. 

Since transient faults are very infrequent events, we can create checkpoints at very 
large intervals. In fact, a checkpoint can be created on demand, when one of the sets 
within the cache has all its lines in Volatile status and a cache miss occurs that targets 
this set. At this point, the creation of a new checkpoint is initiated and, once the 
checkpoint is created, the volatile bits can be cleared. However, as the percentage of 
volatile lines in the cache increases, the victim selection algorithm becomes less 
flexible (the volatile lines cannot be replaced). In the worst case, this effectively trans-
forms the cache into direct-mapped structure and degrades the cache hit rates. In order 
to avoid such performance degradations caused by the lower D-cache hit rates, we 
also force the checkpoint creation every 100000 instructions. Therefore, 100000 in-
structions are re-executed after transient fault detection in this scheme in the worst 
case. In the result section, we quantify the percentage of checkpoints created for these 
various reasons. We also show that the average number of instructions between two 
consecutive checkpoints is generally very large. A recent paper [24] also showed that 
in commercial workloads the I/O operations could occur more frequently, effectively 
requiring the creation of a checkpoint at that instant. To support these situations, in 
the results section we also evaluate the performance of the LBCE scheme with 
smaller checkpointing periods, as low as 500 instructions. 

For more details of the LBCE technique, including the hardware implementation to 
detect the CISL values, we refer the reader to [20]. 

3.3.2   An RVQ-Free Recovery Scheme (RVQ_F) 
We will now describe the checkpoint-assisted recovery scheme that completely elimi-
nates the RVQ from the datapath. In this scheme, the decision to create a checkpoint 
can be triggered at the time of committing an arbitrary instruction from the main 
thread. At this point, the main thread is stalled and the verification thread is allowed to 
completely catch up (consume the slack). At that time, the contents of the architectural 
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register state from both threads can be compared against each other, and if any mis-
match occurs, then a transient fault is detected. Otherwise, new checkpoints of the 
register file and commit-time rename table can be created. Also, the volatile bit in the 
cache can be cleared. 

Table 1. Comparison of the key features of the transient fault recovery schemes. Quantitative 
comparisons are provided in the results section. 

 SRT+ SRTR LBCE RVQ_F 
Checkpoints required No No Yes Yes 
RVQ required Large Medium Small None 
Additional Logic Needed None Track and form dependency 

chains 
Detect short-lived values None 

Transient-Fault Detection 
Latency 

Short Short Short to medium Large 

# of register verifications All register 
values 

~65% of register values ~ 30% of register values Only on checkpoint 
creation 

Useful work lost on every 
fault 

None None Small to medium High 

Reasons for stalling the main 
thread 

RVQ is full RVQ is full RVQ is full Checkpoint creation 

While this scheme simplifies the datapath compared to the LBCE technique from 
the previous section, it incurs some performance overhead. First, the main thread 
needs to stall during the checkpoint creation – that is not required by the LBCE. Sec-
ond, the bulk-comparison of the architectural registers will require a number of cycles 
to be wasted: for example, for 64 architectural registers (as in the Alpha ISA), the 
comparisons will consume 16 cycles (if 4 comparisons can be performed per cycle). 
For small checkpointing periods, these overheads can be significant; we evaluate the 
sensitivity of these schemes to the checkpointing frequency in the results section. 
Finally, the RVQ_F scheme is likely to delay the detection of transient errors, as the 
detection can only occur during the checkpoint creation.  In the next section, we com-
pare all of the described techniques in terms of their performance, energy consump-
tion, complexity and other metrics. Table 1 summarizes the key features of the four 
transient fault recovery schemes examined in this paper. A detailed quantitative com-
parison of the schemes follows later.  

Table 2. Simulated processor configuration 

Parameter Configuration 
Machine width 4-wide fetch, 4-wide issue, 4-wide commit 
Window size 64 entry issue queue, 64 entry load/store queue, 128-entry ROB 
Pipeline Depth 5 cycles fetch to dispatch, 3 cycles issue to execute 
Function Units and 
Lat (total/issue) 

4 Int Add (1/1), 2 Int Mult (3/1) / Div (20/19), 2 Load/Store (2/1), 4 FP Add (2), 
2 FP Mult (4/1) / Div (12/12) / Sqrt (24/24) 

Phys. Registers 300 combined integer and floating-point  
L1 I–cache 64 KB, 4–way set–associative, 32 byte line 
L1 D–cache 64 KB, 4–way set–associative, 32 byte line 
L2 Cache unified 1 MB, 8–way set–associative, 128 byte line 
Memory latency 100 cycles 
TLB 64 entry (I), 128 entry (D), fully associative 
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4   Simulation Methodology 

For estimating the performance impact of the schemes described in this paper, we 
used M-Sim [12] – a significantly modified version of the Simplescalar 3.0d simulator 
[1] that separately models pipeline structures such as the issue queue, re-order buffer, 
and physical register file, both for superscalar and SMT machines [5,6]. The SRT 
model described in Section 2 was implemented in this framework. The details of the 
studied processor configuration are shown in Table 2. 

We simulated a total of 24 integer and floating point benchmarks from the SPEC 
2000 suite [3], using the precompiled Alpha binaries available from the Simplescalar 
website [1]. Predictors and caches were warmed up for the first 1 billion instructions 
and the statistics were gathered for the next 100 million instructions.  

5   Results and Discussions 

Figure 1 compares the performance of the transient fault recovery schemes that rely 
on the RVQ. Results are presented in terms of harmonic means across all simulated 
SPEC 2K benchmarks. The first variation is the SRT scheme which only supports 
fault detection – this represents an upper bound on the performance, as there is no  
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recovery overhead. The other lines correspond to the SRT+, the DBCE scheme, and 
the LBCE scheme with various checkpointing periods. The number next to the LBCE 
label in the ledged signifies the checkpointing period (number of instructions) used 
for the corresponding configuration. 

For these experiments, the target slack of 256 instructions (shown to be optimal in 
[7] and also confirmed by our experiments) was used. Because not all instructions are 
verified through the RVQ (loads, stores and branches are not), the performance satu-
rates for all schemes at the RVQ size of 128 entries, with the saturation in the LBCE 
scheme occurring at much smaller RVQ sizes. The SRT+ scheme results in significant 
performance losses compared to simple SRT at smaller RVQ sizes. For example, the 
average performance losses are 21%, 19% and 15% for the RVQ sizes of 16, 32 and 
64 entries respectively. The DBCE reduces the performance overhead of SRT+ and 
lowers the performance degradations to 18%, 16%, and 4.9% respectively for 16, 32 
and 64-entry RVQ compared to the SRT+ design. Next, the LBCE scheme with the 
small checkpointing period of 500 lowers these percentages further to 10%, 5% and 
1.6%. Finally, the LBCE scheme with a large checkpointing period of 100,000 in-
structions lowers these percentages to 1.4% 0.5% and 0.3%. Notice that the LBCE 
scheme with larger checkpointing periods provides better performance as the over-
head of checkpoint creation is small. In summary, a 16-entry RVQ with the LBCE 
scheme provides almost the same performance as the SRT without any recovery 
overhead or as the SRT+ with 128-entry RVQ. 

The reason for the performance improvements in both the DBCE and the LBCE 
schemes for small RVQ sizes is that many of the register verifications are elided and 
therefore fewer instructions require entries in the RVQ. Figure 2 presents the percent-
age of register verifications that are elided using the LBCE and DBCE schemes. 
While the LBCE scheme elides 76.1% of the verifications, the DBCE scheme elides 
about 32% of the verifications for the Spec2000 benchmarks (the results in [11] 
showed 35% for the Spec95 benchmarks). The larger percentage of register value 
checks that are elided by LBCE are manifested in higher IPCs. 

Table 3. Number of cycles when the leading thread stalls because the RVQ is full 

 16-entry RVQ 32-entry RVQ 64-entry RVQ 128-entry RVQ 256-entry RVQ 
SRT+ 81700029 79098756 72103164 32808131 281531 
DBCE 75477795 72893922 53269057 8252604 38 
LBCE_10K 36841417 24369222 6297368 315680 0 

Table 4. Average number of read and write ports to the RVQ used by the various schemes 

 # RVQ write ports used per cycle # RVQ read ports per cycle 
SRT+ 2.9447 2.9447 
DBCE 2.0505 2.0505 
LBCE_100K 0.4898 0.4898 
LBCE_10K 0.5045 0.5045 
LBCE_5K 0.5219 0.5219 
LBCE_1K 0.6417 0.6417 

The size of the RVQ has a profound influence on the overall performance of the 
schemes that require a RVQ, as shown in Table 3. Whenever the RVQ is full, the 
main thread is stalled and the verification thread is run, preventing further progress of 
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the main thread momentarily.  As seen from Table 3, the LBCE scheme has a signifi-
cant advantage over the others that use a RVQ, as it stores only the non-CISL values. 
At about an RVQ size of 256 entries, both DBCE and LBCE avoid any stalls of the 
main thread. In contrast, some stalls still occur for the SRT+ scheme at this RVQ size. 
Therefore, a smaller RVQ size is sufficient for the LBCE scheme to provide similar 
performance. 

Next, we examine the impact on dynamic power dissipation within the RVQ of our 
technique. We compare two configurations that achieve the same performance, spe-
cifically a 32-entry RVQ with LBCE scheme and 128-entry RVQ with SRT+ scheme. 
The savings in dynamic power of LBCE scheme comes from two sources. First, much 
fewer access to the RVQ are performed because 76% of the checks are elided, and 
second the size of the RVQ is significantly smaller. Combined, these two artifacts 
result in 89.1% savings in dynamic power within the RVQ compared with the SRT+ 
design. Of course, additional power would be dissipated in the auxiliary datapath 
structures required by the LBCE scheme, which will somewhat lower these reported 
savings. However, if the point of comparison is the DBCE mechanism, then it also 
requires additional power to detect and form the dependency chains in both threads. A 
more detailed power related analysis of these mechanisms is beyond the scope of this 
paper. 
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Fig. 3. Harmonic mean of commit IPC for various transient fault recovery schemes for various 
checkpointing intervals 

Additionally, because many of the register verifications are elided, fewer reads and 
writes to the RVQ are performed each cycle with the LBCE scheme compared to the 
DBCE and SRT+ techniques. Table 4 presents the average number of read ports and 
write ports used per cycle to the RVQ for the various transient fault recovery 
schemes. The SRT+ technique, with allocates an RVQ entry for each and every regis-
ter value, uses nearly 3 read ports and 3 write ports each cycle on average. Compara-
tively, the DBCE scheme uses only 2 read ports and 2 write ports on average each 
cycle and the LBCE technique uses less than one. This allows for a reduction in the 
number of ports to the RVQ with the LCBE scheme in addition to the reduction in 
RVQ size – which provides additional energy and power savings. 

Now, we examine the checkpoint-based transient fault recovery solutions. Figure 3 
presents the harmonic mean of commit IPC for the RVQ_F and LBCE schemes (the 
only two schemes that rely on checkpointing) for various checkpointing periods. The 
SRT scheme that does not provide recovery is also shown for comparison. For the 
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small checkpointing periods, LBCE outperforms RVQ_F because the overhead of the 
frequent checkpoint creations offsets the advantages offered by the RVQ_F scheme. 
For example, the LBCE scheme with a 32-entry RVQ outperforms the RVQ_F 
scheme by 4% for a checkpointing period of 1000 instructions and 8% for the check-
pointing period of 500 instructions.  On the other hand, for large checkpointing peri-
ods, the RVQ_F scheme provides better performance. For the period of 100K instruc-
tions, the RVQ_F scheme outperforms the LBCE scheme by 1.5%. 
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Fig. 4. Effective slack length measured in number of instructions at commitment 

The RVQ_F is quite efficient for large checkpointing frequencies because it elides 
most of the register checks (other than the ones that are needed for checkpoint crea-
tion) by the nature of the scheme. For example, for checkpointing period of 100000 
instructions, 99.8% of all register verifications are elided. For 500-instruction check-
pointing period, the percentage of elided checks is about 80%. 

The next metric that we examine is the effective slack length as measured at 
commit time. The results for the 64-entry RVQs are presented in Figure 4. For this 
configuration, the LBCE scheme achieves a slack of 207 instructions, on the average – 
more than twice that of the processor with the basic SRT+ which achieves a slack of 
only 101 instructions. The DBCE scheme achieves the slack of 135 instructions. 
These results show that the LBCE technique can maintain a large slack, and take 
advantage of it, with a small RVQ size. In fact, the amount of the effective slack in 
the LBCE scheme even with 16-entry RVQ is almost the same as the effective slack 
of the SRT+ scheme with infinite RVQ (again, the results of Figure 1 can be used to 
understand why that is the case). Finally, the RVQ_F scheme achieves an average 
slack of 210 instructions. 
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Fig. 5. Breakdown of the percentage of checkpoints created periodically versus the percentage 
of forced checkpoints due to cache behavior for the LBCE and RVQ_F schemes. Results are 
presented for the checkpointing period of 100000 instructions. 
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Next, we evaluate the impact of the checkpointing mechanism used by LBCE and 
RVQ_F in order to support recovery from transient faults. Recall that there are two 
triggers for the creation of checkpoints in these schemes. Checkpoints are created 
periodically, or when required due to the absence of non-volatile data in the cache set 
for victim selection. Figure 5 presents the data on the percentage of checkpoints cre-
ated due to each of these triggers. As seen from the graph, 69% of the created check-
points are induced periodically. The percentage of checkpoints that are created due to 
the absence of non-volatile lines in the accessed set of the cache is relatively small on 
the average, but can be quite high for the memory bound programs. For example, 
applu, art, swim, and twolf all experience high levels of memory traffic and therefore 
incur more such checkpoints. 

It is conceivable that the use of volatile bits in the cache can somewhat degrade the 
cache hit rates because of the additional constraints imposed on the cache replacement 
policies. However, our results indicate that this impact is minimal. On the average, the 
L1 D-cache hit rates decreased from 94.6% to 94.5%, and the largest decrease was 
2.3% observed on ammp. 

6   Related Work 

A popular approach for concurrent error detection and recovery is to execute two 
copies of the same program and then compare the results [1,4,5,6,7,8,10,11]. Ray, 
Hoe, and Falsafi [6] propose mechanisms for performing such redundant execution 
within a superscalar processor. Smolens et. al. [9] study the performance impact of 
redundant execution and identify the various bottlenecks that limit the performance in 
such environments. The DIVA design of [1] supplemented the out-of-order core with 
simple in-order checker logic. 

The fault-tolerant architectures in [4,7,8,11] use the inherent hardware redundancy 
in SMT and CMP architectures for concurrent error detection. While the SRT scheme 
described in [7] only aims at detecting transient faults using the SMT support, the 
follow up study of [11] augments the work of [7] by adding the recovery capability. 
The resulting scheme, called SRTR (SRT with Recovery) is perhaps the closest in 
spirit to the proposal. We extensively discussed the SRTR scheme and contrasted it to 
techniques proposed here throughout the paper. 

RMT explored the design space of using multithreading for fault detection [15], 
and was extended by CRTR [16] to provide fault recovery using CMPs. 

The concept of partial soft error coverage was introduced in [5], where the redun-
dant execution is only performed during the low-ILP phases of the main program, 
when the resources are sufficiently underutilized. In [2], the execution of the redun-
dant thread only happens when the main thread experiences the L2 cache miss or the 
verification buffer is full. 

Several industrial designs support fault tolerance. The Compaq NonStop Himalaya 
[12] employs off-the-shelf microprocessors in lock-step fashion and compares the 
outputs every cycle. The IBM S/390 [18] uses replicated, lock-stepped pipelines 
within the processor itself. 
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7   Summary and Concluding Remarks 

The choice of the best transient fault recovery scheme is dictated by the checkpointing 
interval as well as datapath complexities that can be tolerated. We can expect aggres-
sive modern out-of-order processors to use checkpoint-based recovery mechanisms.  
Some of the schemes studied in this paper assume the existence of such a facility.  
There is always a tradeoff between the performance, the complexity, and the energy 
consumption that guide the choice of the soft error detection and recovery scheme. 
The main conclusions of our study, in the light of such considerations, are as follows. 

If large checkpointing intervals can be tolerated, then the RVQ_F scheme provides 
the best performance because of the least number of register values comparisons – 
only the architectural register values need to be compared at the time of checkpoint 
creation. Furthermore, RVQ_F scheme eliminates the need for an RVQ and all asso-
ciated overhead. However, at smaller checkpointing intervals, the LBCE mechanism 
is more attractive because it achieves better performance for a smaller RVQ size rela-
tive to SRT+ and DBCE. Furthermore, the data on the usage of read and write ports 
shows that the LBCE technique can not just use a smaller RVQ compared to SRT+, 
but it can also use fewer register file ports, thereby reducing the overall power dissi-
pation (and the overall complexity) of the verification logic.  If a large RVQ can be 
supported, then schemes that do not rely on checkpointing, such as SRT+ and DBCE, 
are both reasonable choices. 
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Abstract. Speculative multithreading is a technique that has been used
to improve single thread performance. Speculative multithreading archi-
tectures for Chip multiprocessors (CMPs) have been extensively studied.
But there have been relatively few studies on the design of speculative
multithreading for simultaneous multithreading (SMT) processors. The
current SMT based designs - IMT [9] and DMT [2] use load/store queue
(LSQ) to perform dependence checking. Since the size of the LSQ is
limited, this design is suitable only for small threads. In this paper we
present a novel cache-based architecture support for speculative simulta-
neous multithreading which can efficiently handle larger threads. In our
architecture, the associativity in the cache is used to buffer speculative
values. Our 4-thread architecture can achieve about 15% speedup when
compared to the equivalent superscalar processors and about 3% speedup
on the average over the LSQ-based architectures, however, with a less
complex hardware. Also our scheme can perform 14% better than the
LSQ-based scheme for larger threads.

1 Introduction

With increasing amount of resources available for the processor, architects are
going for multithreading-based designs like CMPs and SMTs. At present, these
architectures are mainly used to improve the processor throughput. Using these
multithreaded architectures to improve single thread performance still poses a
challenge. Speculative multithreading [5, 11] is one way to utilize the multiple
threads to improve single thread performance. Here, threads are automatically
extracted from a sequential program by a compiler and executed in parallel
to improve its execution time. Architecture support is needed to detect any
dependence violation, and also to buffer the results created by speculatively
created threads.

Existing SMT based speculative multithreading approaches either use com-
plex hardware [7] or use limited resources like LSQs [9, 2] to buffer specula-
tive results, and to record load addresses to check for dependence violations.
The advantage of LSQ-based method is that the LSQs are already available to
the processor, so the technique does not need any major modifications to the
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processor architecture as in the case of [7]. Also, in the LSQ, entries are created
for each load and store operations, so the dependence checking granularity is at
the byte level. At the byte level, there could be no false dependences. But the
LSQ entries for speculative threads are not cleared till the thread commits. So
the main disadvantage in using LSQs is their limited size since it is not cost
effective (or power efficient) to have large LSQs. Due to this consideration, LSQ
based architectures can support only small threads. But our research [14] shows
that if we need to consider a more realistic overhead of forking a thread, it be-
comes more difficult to justify at small granularities. Hence, it is important to
support larger threads.

In this paper, we propose a novel cache-based architecture to implement
speculative multithreading in SMT processors that only requires a few extra
bits to each cache line in existing L1 cache in SMT. Also our approach can han-
dle large threads since now the entire cache can be used to buffer results and to
check for dependences.

The rest of the paper is organized as follows: section 2 discusses related work,
section 3 discusses our cache-based architecture to support speculative multi-
threading, section 4 discusses results and in section 5 we conclude the paper.

2 Related Work

Speculative multithreading architectures have been studied intensely during the
past decade. Earlier architectures were based on special hardware structures for
dependence checking like the address resolution buffer (ARB) in [4], and the
memory disambiguation table (MDT) in [5]. These special hardware structures
are of limited size and need extra cycles to access them. To avoid these limita-
tions cache-based architectures like speculative versioning cache (SVC) [13] and
STAMPede[10] were proposed.

When compared to speculative multithreading on chip multiprocessors
(CMPs), there are very few studies on supporting speculative multithreading for
SMTs. In [7], private L1 cache for each context is used to buffer speculative values
and do dependence checking. In DMT [2] and in IMT [9] an enhanced LSQ is used.

The main limitation of the LSQ-based approach is the limited size of the
queue. To overcome this limitation we propose a cache-based scheme in this
paper. We draw many ideas from the cache architectures proposed for CMPs.
The difference is that the CMP-based architectures have private L1 cache for
each core and is used to buffer results. The dependence checking hardware is
also distributed among different L1 caches. In our approach, all the contexts in
the SMT share the same cache.

Concurrent to our work, Stampede [11] has extended the cache protocol de-
scribed in [10], to support shared cache architectures. Their technique was stud-
ied in the context of multi-core processors using shared cache. In [3], shared L2
cache based technique was used to speculatively parallelize database applica-
tions. Though they mention that it could be applied to SMT processors all their
results and conclusions are for CMPs, while our scheme is specifically aimed at
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SMT processors. Also we propose a novel two-thread scheme and our four-thread
scheme uses fewer bits per cache line than their scheme. A detailed comparison of
our technique with the STAMPede technique is beyond the scope of this paper.

3 Speculative Simultaneous Multithreading

3.1 Basic SMT Architecture

We consider a SMT architecture where many resources like fetch queue and issue
queue are fully shared [12]. Fig. 1 gives a block diagram of the SMT architecture.
To implement speculative multithreading, we need hardware support to buffer
results from speculative threads, detect dependence violation between threads,
and synchronize threads to communicate register values. The only modifications
we need are the signal table and the modified L1 data cache. Our inter-thread
register synchronization scheme is very similar to [15].

Fig. 1. SMT Block Diagram

We use a novel cache-based scheme to support buffering of speculative values
and to enforce memory dependences. In section 3.2, we first present a simplified
scheme that supports only one speculative thread, and in section 3.3 we extend
this scheme to four (or more) threads.

3.2 Simplified Two-Thread Scheme

In this section, we consider a SMT processor with only two threads. Here, we only
need to introduce two extra states to each cache line - Speculative Valid (SV) and
Speculative Dirty (SD). Each cache line also needs two extra bits - Speculative
Load (SL) and Speculative Modified (SM) to support data dependence checking.
In the proposed scheme, all of speculative data are kept only in the shared L1
cache, and all of the data stored in L2 cache are non-speculative. Fig. 2 presents
the cache-line state transitions in this scheme. In fig. 2 the transitions are of the
form ’Command from processor / Action taken’.

Speculative value buffering. When a speculative thread writes, the value is stored
in the shared L1 data cache with the SM bit of the cache line set and the cache
line transitions to the SD state. The value stays in the cache till the thread is
committed or squashed. Thus, the L1 D-cache acts as a store buffer that buffers
speculative updates.
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Fig. 2. Two Thread Scheme - Cache State Transitions

Dependence Violation Detection. When a speculative thread issues a load opera-
tion, it first checks if a speculative thread has already written the value. However,
by having just one SM (speculative modified) bit for each cache line, we cannot
be sure which word in a particular cache line was written by the speculative
thread. To allow more precise dependence information, we could maintain one
SM bit (SMi) for each word in the cache line. If the SMi bit is not set, the SL
(speculative load) bit will be set and the cache line transitions to SV (specula-
tive valid) state, as this load could cause a possible dependence violation, when
a non-speculative write arrives later.

Here, when a non-speculative thread writes into a cache line, if the SL bit is
already set, it indicates that the speculative thread has read a stale value. The
speculative thread will be squashed and restarted.

Non-speculative thread execution. If the state of the cache line being written to
is SD (speculatively dirty), the non-speculative thread writes the value directly
to L2 cache. Also, it writes the portion of the data non-overlapped with the
speculatively modified data (indicated by SMi bits) into the L1 cache. This
merging is done, so that the speculative thread can get the most recent non-
speculative value from L1 cache. Also this simplifies the commit operation. Reads
by a non-speculative thread to a speculatively modified line (SD) are treated as
a cache miss and the value is directly taken from the L2 cache.

Replacement policy. Speculatively modified cache lines or the lines with the SL
bit set cannot be evicted from the cache. If evicted, we lose information which
can lead to incorrect execution. When we have to replace a line, a line which has
none of the SL and SM bits set is selected. If a non-speculative thread needs to
replace a line and couldn’t find a clean line, the speculative thread is squashed to
relinquish its lines. This is done to avoid blocking the non-speculative thread and
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thus avoiding deadlock. In case of speculative thread, the thread is suspended
till it becomes non-speculative.

Commit and Squash. When a thread commits, both the SL and SMi bits are
cleared. Unlike other schemes where every speculative value needs to be written
to the cache at the point of commit (which could potentially take hundreds of
cycles), the commit operation can be done in just one cycle in our scheme by
gang-clearing both SL and SMi bits.

When a thread squashes, the SL bit in all cache lines is cleared (gang-clear).
The valid bit for a cache line is also cleared if the SM bit is set. This is like the
conditional gang-clear operation used in Cherry[8].

3.3 Four-Thread Scheme

When executing more than one speculative thread, the L1 D-cache needs to
buffer results from two or more threads, so the two-thread scheme cannot be
directly applied. In this section we propose a scheme which can efficiently handle
more than one speculative thread. The basic idea is to use the entire set in the
cache to buffer different versions of the same line created by the different threads.
We will use a 4-thread system to simplify our explanation.

(a) Method (b) Example

Fig. 3. Speculative Store Handling

Speculative Buffering. The L1 D-cache has to buffer results from multiple
threads, so we introduce Owner bits (OW) (one for each thread) which keep
the speculative thread id that wrote into the cache line. For a non-speculative
cache line, the OW bits are cleared. Buffering of speculative values is explained
in Fig 3(a). Fig 3(b) shows an example where thread 2 tries to write a new
version of A to a set which already contain versions from thread 1 and thread 3.

Speculative Load Execution. A cache line can be read by any of the four threads,
so a single SL bit is not sufficient to indicate which thread has caused dependence
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violation. We introduce a SL bit for each thread on each line of cache (4 bits for
4 threads). The execution of a speculative load instruction is explained in fig 4.
We can see that the speculative load can either load from its own version (i.e.,
a hit), from predecessor thread’s version (i.e., a partial hit) and from L2 cache
(i.e., miss - fig. 4(b)). of the cache line.

(a) Method (b) Miss

Fig. 4. Speculative Load Handling Example

Dependence Detection. When a store executes, it checks whether the versions
of the cache line belong to any of its own successor threads. If SL bit is set for
any of the successor threads, the successor thread is squashed along with its
successors. The oldest squashed thread is then restarted.

Non-Speculative Thread Execution. Execution of non-speculative load and store
is very similar to the speculative thread execution. But the non-speculative
thread does not set any SL, OW or SMi bits. Also, the non-speculative store
writes the portion of the data non-overlapped with speculatively modified data
(SMi bits) into all versions in the L1 cache. This merging is done so that the
speculative threads will get the most recent non-speculative version.

Commit and Squash. To squash a thread, the SL[thread id] is cleared for all of
the lines in the cache. This can be done as a gang-clear operation. Also the line
is invalidated if any of the SMi bit is set. This is accomplished by a conditional
gang-clear operation as in two-thread scheme.

To commit a thread, the SL [thread id] bit and the SMi bits of the thread are
cleared. The commit must ensure two things. It should make sure that there is
only one non-speculative version present in L1 cache. If a cache line to which
the current thread wrote has another version which is earlier than that of the
current thread, then that version needs to be written back and invalidated. Also,
in our scheme, we require that only the non-speculative thread can send values
to the successor threads. So once a thread becomes non-speculative, it has to send



154 V. Packirisamy et al.

its speculatively modified values to all successor threads. To ensure these two
conditions are met, we need to commit each cache line belonging to the current
thread whose SMi bit is set. To commit a cache line, we write-back and invalidate
any versions that belong to earlier threads, and we need to merge the modified
data with the versions belonging to successor threads. Though this step might
be time consuming, we can see that this is simple to implement, and we can
potentially overlap this with the execution of the next thread. Our simulation
shows that this overhead causes no potential performance degradation.

Implementation Issues. While executing a speculative load, we may have to
search the entire set in the cache to get the predecessor thread’s cache line.
Also, while detecting mis-speculation, we need to search the entire set to find if
any successor thread has set the SL bit. These operations can be implemented
by adding more logic to the tag matching hardware but it could increase cache
hit time. In our scheme, we assume there is special hardware that does these
”whole-set” operations, which is kept separate from the tag matching hardware.
We assume such special operations take 3 cycles.

As we see in the two-thread case, we cannot replace a line with SL or SM
bit set. If a speculative thread encounters a cache miss and if it is not able to
find a clean line to replace from the cache, it can either suspend and wait till
it becomes non-speculative or it can squash the successor threads and consume
its cache lines. A thread will be forced to wait if it has no successors to squash.
While waiting, a thread occupies shared resources like fetch queue, RUU and
LSQ. There may be a situation where all the resources are occupied by the
suspended thread and the non-speculation thread is unable to proceed, thus,
causing a deadlock. To avoid this scenario, the speculative thread will give up
its resources when it is stalled.

4 Experimental Results

4.1 Experimental Methodology

In our experiments, we used a detailed superscalar simulator based on Sim-
plescalar 3.0. We modified Simplescalar to a trace based simulator that accepts
Itanium traces. The trace for the input program is generated by Pin [6]. Traces
are collected for four threads at a time and the simulator is called to consume
the traces. Table 1 details the processor parameters used.

To generate parallel threads, we use a compiler framework based on Intel’s
ORC compiler [1]. The compiler selects loops in each benchmark that are suit-
able for parallel execution, performs optimizations such as code scheduling to
enhance overlap between threads. The compiler also generates synchronization
instructions for frequently occurred cross-iteration data dependences. Our com-
piler framework and the loop selection methodology are described in detail
in [14].
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Table 1. Processor Parameters

Fetch Width 4 Bundles ( 3 instructions each)
Decode, issue and commit width 8, 4 and 4 instructions
Function Units 4 integer, 4 floating point, 4 memory ports
Latency 1 cycle for integer, 12 cycle for floating point
Register Update Unit(ROB) 256 entries
LSQ size 128 entries
Branch predictor Bimod, 2K entries
L1D,I Cache 64K, 4 way associative, 32B blocksize, 1 cycle
Unified L2 1MB, 8 way associative, 64B blocksize, 18 cycles
Memory latency 120 cycles for 1st chunk, 18 cycles subsequent

chunks
Branch mis-prediction penalty 6 cycles

4.2 Results

Table 2 shows the details of benchmarks (from SPEC2000) used to evaluate
our scheme. Since our primary objective here is to evaluate our proposed cache
scheme when the SMT processor is executing in parallel mode, we only focus
our simulations on the parallel regions in each benchmark.

Table 2. Details of Benchmarks

Benchmark No of loops selected coverage of selected regions
Mcf 6 60%
Twolf 15 32%
Vpr (place) 3 65%
Equake 4 90%
Art 12 52%

We consider the following configurations:

Superscalar: This is an out-of-order superscalar processor with parameters
described in Table 1.
SMT-2: This is an out-of-order SMT processor which can support two threads
at a time using the two-thread scheme described in section 3.2. This configuration
has the same number of functional units as in the superscalar.Each line of cache
has 9 extra bits (8 SMi and 1 SL).
SMT-4: This SMT processor can support four threads using the four-thread
scheme described in section 3.3. It also has the same number of functional units
as in (1) and (2). Each line of cache has 16 extra bits (8 SMi, 4 SL and 4 OW
bits).
SMT-LSQ: This SMT processor supports 4 threads and uses the LSQ-based
mechanism as in [9][2]. It has the same number of functional units, but uses
extra space for enhanced LSQs that support speculation. Each thread has 128
LSQ entries.
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CMP: This is a multi-core based speculative processor using the Stampede
protocol[10]. This uses four identical cores and each core is a superscalar proces-
sor described in Table 1.

Fig. 5 shows the relative speedups of the different configurations over the super-
scalar configuration. From Fig. 5 we can see that the two-thread SMT scheme
achieves about 10% speedup over the superscalar version. The two-thread SMT
achieved this with very simple modifications to cache. The four-thread version
achieved 15% speedup over superscalar. This performs better than the two-
thread version but needed more complex hardware.

Fig. 5. Speedup of different configurations over the Superscalar configuration

Fig. 6 shows the execution time breakdown for the different configurations
normalized to the execution time of the superscalar configuration. The explana-
tion of the different categories are given in Table 3.

From Fig. 5, we can see that, usually the four thread configurations SMT-4
and SMT-LSQ perform better than SMT-2 configuration. This is because most
loops selected by our compiler have good thread level parallelism and can benefit
from more threads. However SMT-2 has the advantage of causing fewer squashes
because it has only one speculative thread. Due to this SMT-2 performs better
than SMT-4 and SMT-LSQ for the benchmark Art.

The CMP configuration performs about 15% better than the SMT-4 config-
uration. This is because the CMP uses four separate cores and, hence, has four

Fig. 6. Cycle breakdown normalized to the Superscalar configuration showing where
the execution cycles are spent for different configuration
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Table 3. Execution State Category

Category Explanation
Cache Miss Stall due to data cache miss
Idle Lack of threads to execute
Synchronization Thread is waiting for signal from predecessor
Squash Thread is squashed due to dependence violation
Buffer Overflow Thread made to wait due to lack space to buffer results
Others Thread stalled due to instruction cache miss, branch mis-prediction, etc.

times more functional units and cache capacity. From these results, we can see
that the performance of SMT-4 configuration is quite close to that of the CMP
configuration even with much limited resources.

Fig. 6 shows that the SMT-LSQ is stalled for a significant amount of time
in some benchmarks due to buffer overflow, thus making it slower than SMT-4
configuration. But in some loops, SMT-LSQ can perform better than SMT-4
configuration. This is because the SMT-LSQ has fewer squashes due to its fine
grained dependence checking mechanism. This effect is observed in the bench-
mark vpr. Also, some loops have large number of squashes, in this case it is more
beneficial to suspend the threads than to let them execute and later squash. This
is because the squashed threads waste resources which could have been allocated
to the non-speculative thread. In case of SMT-LSQ large threads are suspended
and hence do not waste resources. This effect is observed in some of the loops
in the benchmark twolf. The performance of SMT-4 can be improved if we have
runtime feedback information, so that we can selectively turn off speculative
threads on loops with frequent squashes.

In the SMT-LSQ configuration, we used an aggressive 128-entry per thread
LSQ which might be unrealistic to implement in reality. Even with this config-
uration, it is still not able to support some of the loops without overflowing the
queue. Fig. 6 shows that the SMT-4 scheme is able to achieve about 3% speedup
over such SMT-LSQ configuration. But for loops with an average thread size of
more than 150 dynamic instructions, the SMT-4 configuration performs about
14% better than SMT-LSQ configuration.

5 Conclusion

In this paper, we proposed a cache-based scheme to support speculative multi-
threading in SMT processors. Our two-thread scheme requires 9 bits to be added
to each cache line and with this simple modification we can achieve about 10%
speedup over the superscalar processors. Our four-thread scheme with slightly
more complex hardware can perform about 15% better than superscalar proces-
sors. Also, we showed that this cache-based approach can outperform the LSQ
based approach by 14% for large loops. From our paper it is clear that specula-
tive threads can be easily supported in SMT processors with minimal changes
in hardware.
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Abstract. This paper studies throughput maximization in networks with dynam-
ically changing congestion. First, we give a new and simple analysis of an existing
model where the bandwidth available to a flow varies multiplicatively over time.
The main contribution however is the introduction of a novel model for dynam-
ics based on concepts of network calculus. This model features a limited form
of amortization: After quiet times where the available bandwidth was roughly
constant, the congestion may change more abruptly. We present a competitive
algorithm for this model and also derive a lower bound.

1 Introduction

The problem of avoiding congestion in the Internet has been studied with zeal for many
years. The TCP congestion control mechanism of todays Internet successfully employs
a window-based scheme to prevent the Internet from being overloaded. Thereby, the
size of the so-called TCP congestion window is an approximation of the available net-
work capacity. When TCP suffers a packet loss, it assumes that the network is congested
and reduces the window’s size. Consequently, the sending rate is cut down, and the In-
ternet hosts collaboratively alleviate the load.

In the past, the transport layer and in particular the congestion problem was first
studied empirically, and later embraced by the queuing theory and control theory com-
munities. In order to analyze and compare protocols theoretically, a traffic model is
needed. Queuing and control theory researchers have refined their early Poisson traffic
models to an astonishing level of detail. However, probabilistic models are intricate to
analyze. Probabilistic models that are simple enough to be analytically tractable might
never model traffic accurately enough, as the nature of network traffic is self-similar
and bursty [18].

In their seminal paper Karp, Koutsoupias, Papadimitriou, and Shenker [10] have
proposed to study congestion control from a worst-case perspective instead. Karp et
al. model congestion control as an online game between a flow and an adversarial net-
work. In particular, the available bandwidth of the network changes over time and the
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flow gets only a limited feedback—namely, whether packets have been lost or not—
about the currently available bandwidth.

In this paper, we follow the algorithmic online approach proposed by Karp et al. [10]
to broaden our understanding of congestion control. We build upon [10] by focusing on
the dynamics of congestion. In particular, we integrate a notion of bursts happening in
a worst-case manner. Although we do not claim that our models accurately represent
what happens in the Internet, we believe that they are interesting and may ignite a further
discussion on future variants of congestion control.

Concretely, after a new analysis of a model by Karp et al., we introduce the burst
model: Instead of considering an adversary which always changes the bandwidth simi-
larly each round, our adversary may accumulate some power in quiet rounds and then
change the congestion more abruptly in later rounds. For this adversary, a lower as well
as an upper bound are derived for the competitive ratio.

The paper is organized as follows. Section 2 reviews related work and also gives a
short overview of the relevant network calculus concepts. After setting the stage in the
model section (Section 3), we study the case of multiplicatively changing congestion
in Section 4. In Section 5 our new model is presented in detail and analyzed. We state
open problems in Section 6 and conclude the paper in Section 7.

2 Related Work

TCP lies at the heart of today’s Internet, and many aspects of TCP are still subject to
active research. For a reference on TCP, we refer the reader to [17]. TCP congestion
control has been studied intensively, both from an empirical and from a theoretical
perspective. Due to space constraints, we are bound to concentrate on the closest related
work only.

In our work, we analyze congestion control from a worst-case perspective using
competitive analysis. Generally, we think that a better algorithmic (worst-case) under-
standing of the transport layer is necessary. Whereas all other layers have received quite
a lot of attention in the past (e.g., cf. [2] for the link layer, and [15] for the network
layer), there has been comparatively little algorithmic networking research about the
transport layer. Some notable exceptions are for instance adversarial queuing theory
[6], the study of the TCP ACK problem [9], or mechanism design [7].

Our model is due to Karp et al. [10] who define several optimization problems related
to congestion control. The authors investigate the issue of regulating the rate of a single
unicast flow when the bandwidth available to it is unknown and changes over time.
In our paper, we extend [10] in two respects: First, we provide a new analysis of a
model where the bandwidth changes multiplicatively; our analysis is simpler and gives
strict competitive bounds. Second, we enhance their model with bursts: Thereby, the
congestion may change more after a time of quiescence.

The work by Karp et al. has already had an interesting follow-up by Arora and
Brinkman [4] who study randomized algorithms for a dynamically changing conges-
tion. In particular, they propose an asymptotically optimal randomized online algo-
rithm against an adversary which may change the congestion by a constant factor in
every round. Unfortunately, they assume a fairly weak oblivious adversary (see also the
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discussion in Section 6): Their algorithm uses randomization only in the first round,
while the sending rate of all other rounds is computed deterministically. The adversary
however is not allowed to be adaptive in these deterministic rounds.

The idea that an adversary may accumulate power over time has already appeared in
the area of packet routing and is related to the adversarial queuing theory by Borodin
et al. [6]. The problem considered there is as follows: Given a packet switched net-
work and an adversary which continuously injects packets that have to be routed from
a source to a destination node, how much buffer space is needed at the nodes, and what
is the delivery time? In the paper by Aiello et al. [1], the adversary is allowed to inject
any sequence of packets into the network, as long as in any w consecutive rounds, the
total load created by the paths associated with the packets inserted in this time period
is at most wr on any edge, for some w ≥ 1, r ≤ 1. The adversary studied by Andrews
et al. [3] is similar to our adversary. Given two parameters b ≥ 1, r ≤ 1, for any T ≥ 1
consecutive time steps, the adversary may inject as many packets as it wants, as long
as the total load created by the paths associated with these packets is at most Tr + b
on any edge. These two adversary models have been compared by Rosén in [16]. A
contribution of our paper is to introduce a modified version of the adversary in [3] on
the transport layer.

Short Overview of Network Calculus. We now give a short introduction to those
concepts of network calculus which are relevant to our work. Network calculus is a
relatively new technique to analyze deterministic queuing systems found in communi-
cation networks. For a detailed introduction to network calculus, see [14].

In network calculus, there exists the notion of arrival curves which provide determin-
istic limitations to the network traffic sent by sources. Given that the data flows indeed
correspond to these limitations, it is possible to make statements about the deterministic
behavior of the network (maximal delays, maximal queue lengths, etc.).

Arrival curves are defined as follows. Let R be a data flow, and let R(t) be the total
number of bits R has sent until time t. Let α be an increasing function defined for all
times t ≥ 0. We say that R has an arrival curve α if and only if for all s ≤ t:

R(t) − R(s) ≤ α(t − s)

In other words, the total number of bits sent until time t by flow R may never exceed the
bits sent by R until some time s plus α(t−s). In this paper, we look at a so-called leaky
bucket arrival curve defined as α(t) = c1t + c2 for some non-negative constants c1, c2.
Figure 1 visualizes the constraints imposed upon a flow R by such an arrival curve: The
total number of bits sent may increase by c2 at once and with a rate c1 over time, unless
there is a conflict with a constraint from a previous round. Informally, the total number
of bits must always be less or equal the minimum constraint that arises if the curve α is
attached to all points of R(t).

Note that such an arrival curve incorporates a limited form of amortization: If flow
R only sends a few bits for several rounds, the constraints of earlier rounds get weaker
and allow R to send up to c2 bits at once in some later round.
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Fig. 1. Leaky bucket arrival curve: The number of bits sent by flow R may never exceed the
constraints from earlier times (dashed lines), i.e., ∀s ≤ t : R(t) ≤ R(s) + α(t − s)

3 Model

In the Internet, there is no central authority allocating bandwidth to hosts. On the con-
trary, individual hosts are responsible for setting their sending rate.1 In this paper, we
consider the problem of regulating the rate of a unicast flow from one host to another
such that the throughput is maximized. The bandwidth available to the flow thereby fluc-
tuates according to the varying requirements for bandwidth of other competing flows.
A host is not provided direct information about the competing demands for bandwidth
or the Internet topology, but does receive some limited information as to whether the
flow is experiencing packet drops, and must determine its transmission rate solely on
the basis of this information.

We assume that time is divided into infinitely many successive rounds and consider
a worst-case model where in every round t, an adversary ADV selects the available
bandwidth ut. Thereby, ut represents the maximum rate at which a host can transmit
without experiencing packet drops. The host on the other hand runs an algorithm ALG
which decides the sending rate xt of round t, and receives immediate feedback as to
whether packet drops have occurred, i.e., whether xt > ut. ALG can then choose the
rate xt+1.

We assume a severe cost model [10] where a host cannot transmit anything in round
t if xt > ut, but can transmit at a rate xt if xt ≤ ut. Formally, the gain of ALG in
round t is defined as follows:

gainALG(xt, ut) :=

{
xt , if xt ≤ ut

0 , otherwise

1 Usually, this is done automatically by TCP. However, by using the User Datagram Protocol
(UDP), selfish programs can try to maximize their own throughput and may have no incentive
to reduce congestion collaboratively. Although it is generally believed that routers are config-
ured to give priority to TCP packets [8]—with the consequence that UDP packets are dropped
first if the Internet gets congested—at least in theory it is possible to design networking soft-
ware from scratch that circumvents this restriction by sending UDP packets which look like
TCP packets.
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An optimal offline algorithm OPT knows the sequence {ut} in advance and achieves
a gain of

gainOPT (xt, ut) = ut

in round t. These gains reflect two major issues: The online algorithm experiences an
opportunity cost if its sending rate is smaller than the available bandwidth (case xt <
ut), and a retransmission overhead if its packets are dropped due to congestion (case
xt > ut).

We are in the realm of competitive analysis [5] and define the (strict) competitive
ratio ρ achieved by ALG as the total amount of data (over all rounds) sent by OPT
divided by the total amount of data sent by ALG (cf. Definition 3.1).

Definition 3.1. [ρ-competitive] We say that an algorithm ALG is (strictly)ρ-competitive
compared to an optimal offline algorithm OPT if for all input sequences I , it holds that

gainOPT (I) ≤ ρ · gainALG(I).

The goal of the online algorithm designer is to minimize ρ. Henceforth, we will assume
that ALG knows the initial bandwidth, i.e., x0 = u0.

Observe that an unrestricted adversary could frustrate every online algorithm by al-
ways selecting ut := xt − ε for some arbitrary small ε > 0. The natural way out
proposed by Karp et al. [10] is to assume that the available bandwidth does not change
too drastically over time. In this paper, we study different ways to restrict the adversary.
In Section 4, we consider the multiplicative model proposed by Karp et al. In Section
5, we extend this model to allow for changes with bursts.

We will call rounds t where the online algorithm successfully transmits its packets
without loss good rounds, and rounds t where xt > ut bad rounds, cf. Definition 3.2.

Definition 3.2 (Good and Bad Rounds). A round t where xt ≤ ut is called good, a
round t where xt > ut is called bad.

We defer the description of the different adversaries to the corresponding sections. How-
ever, we now define the following class of online algorithms.

Definition 3.3 (ALG(G, B)). Let ALG(G, B) be the online algorithm which chooses

xt+1 :=

{
G · xt , if xt ≤ ut

B · xt , otherwise

for some G ≥ 1 and B ≤ 1. That is, the algorithm ALG(G, B) increases the rate by a
factor G after a good round, and decreases it by a factor B after a bad round.

The sending rate xt+1 of an algorithm ALG(G, B) depends solely on the binary feed-
back whether its probing rate xt was larger than the available bandwidth ut in the pre-
vious round or not.
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4 Multiplicative Adversaries

In this section, we look at multiplicative changes of the available bandwidth. We first
consider a model where the adversary can increase the bandwidth at most by a factor
μ ≥ 1 per round and can decrease it arbitrarily (cf. Definition 4.1). Later, we will study
a model where also the reduction is constrained multiplicatively (cf. Definition 4.2).

So let’s look at the adversary ADVmult (cf. Definition 4.1) proposed by Karp et al.

Definition 4.1 (ADVmult). ADVmult may choose the new bandwidth ut+1 in the in-
terval [0, ut · μ], i.e.,

ADVmult : ut+1 ∈ [0, ut · μ],

for some given μ ≥ 1.

First, we restate the lower bound given in [10].

Theorem 4.1. [10] Against ADVmult, no online algorithm can achieve a competitive
ratio smaller than μ.

Proof. Consider the following adversary ADV : In every round t, it chooses

ut :=

{
μ , if xt ≤ 1
1 , otherwise

Thus, whenever an online algorithm ALG sends at a rate larger than one, all its packets
are dropped because of congestion. On the other hand, if ALG transmits at a rate of 1
or less, the rate of OPT is at least a factor μ larger. Moreover, since ADV changes the
available bandwidth at most by a factor of μ per round, it is indeed of type ADVmult.

In [10], it is shown that the algorithm ALG(μ,
√

μ√
μ+

√
μ−1 ) yields a competitive ratio of

ρ = (
√

μ +
√

μ − 1)2

against ADVmult. However, [10] uses a different definition for the competitive ratio
which allows for (possibly large) additive constants. By our strict definition (cf. Defini-
tion 3.1), the ratio can be much larger. To see this, assume an adversary which reduces

the available bandwidth in every round by a factor slightly larger than
√

μ+
√

μ−1√
μ . In this

case, ALG(μ,
√

μ√
μ+

√
μ−1 ) is only successful in the first round, and hence gainALG =

u0, while

gainOPT ≈ u0 ·
∞∑

i=0

(
√

μ
√

μ +
√

μ − 1
)i.

Therefore, the (strict) competitive ratio is

ρ =
gainOPT

gainALG
≈

√
μ +

√
μ − 1√

μ − 1
.

For small μ, ρ can get very large (for instance ρ > 100 if μ = 1.0001).
In the following, we give a simple proof that the algorithm ALG(μ, 1/2) has a strict

competitive ratio 4μ. According to Theorem 4.1, this is asymptotically optimal.
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Theorem 4.2. ALG(μ, 1/2) is 4μ-competitive against ADVmult.

Proof. First, we show by induction that in every good round t, ut ≤ 2μxt. For t = 0,
u0 = x0 and the claim holds. For the induction step, consider the round t−1 before the
good round t. There are two possibilities: either round t−1 has been bad (xt−1 > ut−1)
or good (xt−1 ≤ ut−1). If round t − 1 has been bad, we have xt = xt−1/2 and
ut ≤ ut−1μ < xt−1μ = 2μxt, hence ut/xt < 2μ, and the claim holds. If on the other
hand round t − 1 was good, the algorithm increases the bandwidth at least as much
as the adversary. Together with the induction hypothesis, the claim also follows in this
case.

Having studied the gain in good rounds, we now consider bad rounds. We show that
in the bad rounds following a good round t, the adversary can increase its gain at most
by 2μxt. So let t be the good round preceding a sequence of bad rounds, i.e., xt ≤ ut,
xt+1 > ut+1, xt+2 > ut+2, etc. We know that xt+1 = μxt, so—because it is a bad
round—ut+1 must be smaller than μxt. Furthermore, we have xt+2 = xt+1/2 = μxt/2
and hence ut+2 < μxt/2, xt+3 = μxt/4 and hence ut+3 < μxt/8, and so on. By a
geometric series argument, the gain of the adversary in the bad rounds is upper bounded
by 2μxt.

Therefore,

ρ=
gainOPT (good) + gainOPT (bad)

gainALG(good)

<
2μ · gainALG(good) + 2μ · gainALG(good)

gainALG(good)
<4μ.

To conclude this section, we give another kind of proof to show that the algorithm
ALG(μ, 1/μ3) has a good competitive ratio for small μ. For our analysis, we assume a
slightly more restricted adversary ADV∗

mult (cf. Definiton 4.2).

Definition 4.2 (ADV∗
mult). ADV∗

mult chooses the new bandwidth ut+1 from the inter-
val [ut/μ, ut · μ], i.e.,

ADV∗
mult : ut+1 ∈ [ut/μ, ut · μ].

Theorem 4.3. ALG(μ, 1/μ3) is (μ4 + μ)-competitive against ADV∗
mult.

Proof. The fact that ALG reduces its rate by a factor μ3 after a bad round implies
that the next round is always good: Assume, for the sake of contradiction, that round
t + 1 is the first bad round following another bad round t, which—by the induction
hypothesis—follows a good round t − 1. Hence, xt−1 ≤ ut−1. Moreover, observe that
ut+1 ≥ ut/μ ≥ ut−1/μ2, but on the other hand, xt+1 = xt/μ3 = μxt−1/μ3 =
xt−1/μ2. Therefore, xt+1 ≤ ut+1. Contradiction!

We now first analyze the gain of a good round t and show that ut < μ4xt. There are
two cases: Either round t − 1 has also been good, or not. If it has been a good round,
then round t is at least as competitive as round t − 1 because xt = μxt−1. If on the
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other hand round t − 1 has not been good, we have ut−1 < xt−1, xt = xt−1/μ3 and
ut ≤ μut−1. Therefore, xt = xt−1/μ3 > ut−1/μ3 ≥ ut/μ4, and the claim follows.

Next, we study the gains in a bad round t. In this case, it holds that ut < μxt−1:
Since xt−1 ≤ ut−1, xt = μxt−1 and ut < xt, and hence ut < μxt−1.

Therefore,

ρ=
gainOPT (good) + gainOPT (bad)

gainALG(good)

<
μ4 · gainALG(good) + μ · gainALG(good)

gainALG(good)
= μ4 + μ.

Since ADV∗
mult is a special case of ADVmult, Theorem 4.2 also applies for

ADV∗
mult. Hence, it is possible to run ALG(μ, 1/μ3) against ADV∗

mult if μ is small,
and ALG(μ, 1/2) otherwise, which yields the following corollary.

Corollary 4.4. There is a deterministic online algorithm which is min {μ4 + μ, 4μ}-
competitive against ADV∗

mult.

5 Network Calculus Adversary

5.1 Description of ADVnc

In this section, we introduce the adversary ADVnc which is based on network cal-
culus [14] concepts. We will extend the model introduced in Section 4 by a form of
limited amortization which allows for more drastic bandwidth changes after times of
quiescence.

ADVnc has two parameters: A rate μ ≥ 1 and maximum burst factor B ≥ 1.
In every round, the available bandwidth ut varies according to these parameters in a
multiplicative manner. More precisely, ADVnc can select the new bandwidth ut+1 from
the interval

ADVnc : ut+1 ∈ [
ut

βtμ
, ut · βt · μ],

that is, the available bandwidth can change by a factor of at most βtμ. Thereby, βt is
the burst factor at time t. This burst factor is explained next.

On average, the available bandwidth can change by a factor μ per round. However,
there can be times of only small changes, but then the bandwidth changes by factors
larger than μ in later rounds. This is modeled with the burst factor βt: At the beginning,
βt equals B, i.e., β0 = B. For t > 0, the burst factor βt is computed depending on βt−1
and the actual bandwidth change ct−1 that has happened in round t−1. More precisely,

βt = min{B, βt−1
μ

ct−1
}

where

ct :=

{
ut+1
ut

, if ut+1 > ut

ut

ut+1
, otherwise
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This means that if the available bandwidth has changed by a factor less than μ in round
t, i.e., ct < μ, the burst factor increases by a factor μ/ct, and hence the bandwidth can
change more in the next round—and vice versa if ct > μ.

In other words, the adversary can save adversarial power for forthcoming rounds.
However, this amortization is limited as βt never becomes larger than B for all rounds
t. Also note that ∀t : βt ≥ 1, as ct ≤ μβt by the definition of ADVnc.

5.2 Analysis

At first sight, it seems that ADVnc has roughly the same power as ADV∗
mult: In order

to change the bandwidth with a factor larger than μ, ADVnc must have changed the
bandwidth by a factor less than μ in previous rounds.2 However, as we will see in the
following, an online algorithm cannot exploit these quiet rounds sufficiently, and the
competitive ratio does depend on B.

Theorem 5.1. The competitive ratio is at least Ω
(
μ
√

B/ logB
)

against ADVnc.

Proof. Consider the following adversary ADV . ADV will select ut = 1 whenever the
burst factor βt is not maximal in a round t, i.e., if βt < B. If βt = B, ADV continues
choosing ut = 1 until xt ≤ 1 for the first time. Then, if xt ≤ 1 and βt = B, it selects
ut = μ

√
B but immediately sets the available bandwidth back to ut+1 = 1 in the next

round. Therefore, no online algorithm can ever transmit at a rate larger than 1. Since
ADV must be of type ADVnc, it can do this trick at most every �log B/ log μ� rounds:
After these two bursts (from 1 to μ

√
B and from μ

√
B back to 1), the burst factor

becomes 1, and it takes �log B/ logμ� rounds to increase it again to B: μi ≥ B ⇔ i ≥
log B/ logμ.

Let us call the time period between two rounds where ADV raises the bandwidth
from 1 to μ

√
B a phase. In every phase, ALG has a gain of at most

gainALG ≤ 2 + �log B/ log μ� .

On the other hand, the optimal algorithm’s gain is at least

gainOPT ≥ 1 + �log B/ log μ� + μ
√

B.

Hence,

ρ=
gainOPT

gainALG
≥ 1 + �log B/ logμ� + μ

√
B

2 + �log B/ logμ� ∈ Ω

(
μ

√
B

log B

)
.

Note that the lower bound given in Theorem 5.1 even holds for online algorithms which
get perfect (instead of only binary) feedback about the bandwidth of the previous round.

Although we were not able to find an algorithm which yields a tight upper bound, it
can be shown that ALG(μ 3

√
B, 1/2) comes close to the bound of Theorem 5.1.

2 Except for the first rounds of course, where a burst B comes “for free”. However, as mentioned
in Section 3, we consider infinite games only.
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Theorem 5.2. The competitive ratio of ALG(μ 3
√

B, 1/2) is O
(
μ3/2B2/3

)
against

ADVnc.

Proof. We use again the proof technique of Section 4. First, we analyze the missed gain
in bad rounds:

gainOPT (bad)≤
∞∑

i=0

(
1
2

)i

· μ
3
√

B · gainALG(good)

≤2μ
3
√

B · gainALG(good) ∈ O
(
μ

3
√

B
)

· gainALG(good)

Next, the good rounds are tackled. Let t be the last bad round before a good round
t + 1. Hence, xt > ut, xt+1 = xt/2 ≤ ut+1, and xt+2 = μ 3

√
Bxt/2.

There are two cases: Either round t + 2 is also good, or not. If round t + 2 is good,
ut+2 ≤ μ2Bxt. We have

ρ≤ ut+1 + ut+2

xt+1 + xt+2
≤ μB + μ2B

1/2 + μ 3
√

B/2
∈ O

(
μB2/3

)
More good rounds would reduce this ratio, because ALG grows faster than ADV .

If round t + 2 is not good, it holds that xt > ut and xt+2 = μ 3
√

Bxt/2 > ut+2.
Now observe that ut+1 < μ3/2B2/3xt. Assume, for the sake of contradiction, that
ut+1 ≥ μ3/2B2/3xt. Then the burst factor in round t + 1 is at most βt+1 ≤ 3

√
B/

√
μ,

and thus

ut+2 ≥ ut+1

μβt+1
≥

μ3/2B2/3 · √μ
3
√

B · μ
xt = μ

3
√

Bxt > xt+2.

Contradiction. Hence,

ρ≤ ut+1

xt+1
≤ μ3/2B2/3xt

xt/2
∈ O

(
μ3/2B2/3

)
Thus, in conclusion,

ρ=
gainOPT (good) + gainOPT (bad)

gainALG(good)

≤
O

(
μ3/2B2/3

)
· gainALG(good) + O

(
μ 3
√

B
)

· gainALG(good)

gainALG(good)

∈ O
(
μ3/2B2/3

)

6 Open Research Questions

Karp et al. have already pointed out several future research directions, for instance the
study of different cost models. In this paper, we have extended their work by a novel
model for the dynamics of the available bandwidth.
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We believe that our network calculus model opens up many exciting questions. For
example, the lower bound and the upper bound we presented are not tight. It would
be interesting to know if there are asymptotically better online algorithms, or whether
our lower bound is too pessimistic. Another challenge is the design of randomized on-
line algorithms. In fact, Arora and Brinkman [4] have addressed this problem for the
multiplicative adversary ADVmult and presented an algorithm with competitive ratio
O(log μ). By using Yao’s minimax principle [5], it can be shown that this is asymptot-
ically optimal. However, the authors assume a weak oblivious adversary: Their scheme
uses randomization only in the first round, while all later rounds are deterministic. But
the adversary is not allowed to be adaptive even in these deterministic rounds! The case
of a stronger adversary is still an open problem. It is straight-forward to extend the al-
gorithm by Arora and Brinkman for ADVnc: Over-pessimistically, we can assume that
ADVnc changes the bandwidth by a factor B ·μ in every round, which yields a compet-
itive ratio of O(log(Bμ)). However, also here, it would be interesting to study a more
powerful adversary which can be adaptive in deterministic rounds.

Finally, we believe that our network calculus adversary is an interesting model for
dynamics in completely different fields of research.

7 Conclusion

This paper has studied online algorithms which aim at maximizing throughput in the
presence of dynamic bandwidth changes. We have derived an asymptotically optimal
algorithm for a multiplicative model. Moreover, a novel model for the congestion dy-
namics has been presented together with a lower and an upper bound for the competitive
ratio. We hope that our models will give an impetus for future research. Generally, we
believe that a better algorithmic (worst-case) understanding of the transport layer is
necessary. Whereas all other layers have received quite a lot of attention in the past, the
transport layer has always been a step-child of algorithmic networking research.
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Abstract. Facing the limits of traditional tools of resource manage-
ment within computational grids (related to scale, dynamicity, etc. of
the platforms newly considered), new approaches, based on peer-to-peer
technologies are emerging. The resource discovery and in particular the
service discovery is concerned by this evolution. Among the solutions,
a promising one is the indexing of resources using trie structures and
more particularly prefix trees. The major advantages of trie-structured
approaches is the capability to support search queries on ranges of val-
ues with a latency growing logarithmically in the number of nodes in
the trie. Those techniques are easy to extend to multicriteria searches.
One drawback of using tries is its inherent poor robustness in a dy-
namic environment, where nodes join and leave the network, leading to
the split of the tree into a forest, which results in the impossibility to
route requests. Within most recent approaches, the fault-tolerance is a
prevention mechanism, often replication-based. The replication can be
costly in term of resources required. In this paper, we propose a fault-
tolerance protocol that reconnects subtrees a posteriori, after crashes, to
have again a connected graph and then reorder the nodes to rebuild a
consistent tree.

1 Introduction

These last few years have seen the development of large scale grids connect-
ing distributed resources (computation resources, storage facilities, computation
libraries, etc.) in a seamless way. This is now an efficient alternative to supercom-
puters to solve large problems such as high energy physics, simulation, bioinfor-
matic, etc. However, existing middlewares used in grids require most of the time
a stable and centralized infrastructure. They usually loose their performance on
dynamic and large scale platforms without centralized management of resources.
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To cope with the characteristics of these emerging kind of platforms, it has been
suggested to use peer-to-peer technologies within computational grids [8].

Peer-to-peer technologies offer algorithms allowing the search and retrieval of
objects over the net (data items, files, services, etc.). Among these technologies,
Distributed Hash Tables (DHT) were initially designed for very large scale plat-
forms, for example to share files over the Internet. However, DHTs have several
major drawbacks. Among them, their discovery mechanism usually works on
exact searches of a given key. Some work has then been done to allow complex
requests to be submitted over DHTs or more generally in structured peer-to-
peer systems, i.e. systems based on request routing. Some of these works are
based on tries (also called prefix trees). A trie structure supports range queries
in a logarithmic time in the number of nodes of the trie.

Fault-tolerance is a mandatory feature for peer-to-peer systems to avoid the
loss of data stored on nodes and to allow a correct routing of messages. The crash
of one or several nodes in a trie leads to the loss of objects references stored in
the trie and to the split of the trie into several subtries, also called a forest. Fault-
tolerance within structured peer-to-peer systems usually uses replication. Using
such an approach, each node and each link of the trie would have to be duplicated
k times, k being the replication factor. Keeping such structure up is costly, mainly
in terms of resources used. Afterward, the purpose is to find for the value of k
the right trade-off between the replication cost and the robustness of the system.
In this paper, we study an alternative to the replication approach based on
the reconnection of the subtries and the a posteriori reordering of a consistent
trie. When the trie is disconnected, a first solution consists in rebuilding a trie
adding nodes of remaining subtries one by one. This naive method can lead
to a prohibitive cost when the number of remaining nodes is large (which is
usually the case in peer-to-peer systems). For example, loosing one node can
lead to a complete reconstruction of the trie. A second approach consists in
reconnecting the subtries to get the original trie back at a minimum cost. This is
this kind of algorithm we describe in this paper in a distributed and asynchronous
environment. It can also be used to complete the replication process.

A brief history of peer-to-peer technologies is provided in Section 2, followed
by the formal description of the particular trie structure we use (Section 3) and of
the distributed system we place ourselves. We focus our study on fault-tolerance
mecanisms related to them. Then, in Section 4 we present the repair algorithm
we designed and give its proof before a conclusion and future work Section.

2 Related Work

With the spread of the peer-to-peer technologies going along with the file sharing
over the Internet, purely decentralized search systems have emerged. Such tools
first took the shape of unstructured mechanisms, i.e., based on the flooding
of search requests [10, 9]. These mechanisms resulted in overloading the net-
work while providing non-exhaustive responses. Addressing both the scalability
and the exhaustiveness issues within peer-to-peer systems, the distributed hash
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tables [13, 14, 18, 20], a.k.a., the structured peer-to-peer group, are highly scal-
able in the sense that the number of logical hops required to route and the local
state grows logarithmically with the number of nodes participating in the system.
Moreover, DHTs prevent from loosing routing paths and objects’ references by
use of replication and periodic scans. Unfortunately, DHTs present several ma-
jor drawbacks (homogeneous capacity assumptions, topology awareness, etc.).
Among them, the rigidity of the requesting mechanism, i.e., exact match on a
given key hinders its use over real search systems.

A series of work gives the opportunity to allow flexible meanings of retrieval
over structured peer-to-peer networks. First achievement in this way has been
the ability to describe resources with semi-structured language, such XML, as de-
scribed in [3]. [19] enhances DHTs with traditional database operations. Several
approaches, based on space filling curves, such as Squid [15] or [17] support multi-
dimensional range queries. [1] maps one-dimensional data space to d-dimensional
Cartesian space by using the inverse Hilbert mapping. Built on top of multiple
DHTs, SWORD [11] is an information service aiming at discovering computing
resources on the grid by answering multi-attribute range queries.

We focus in this work on trie-structured retrieval solutions, also supporting
range queries but outperforming previous approaches in the sense that logarith-
mic (or constant if we assume an upper bound on the depth of the trie) latency
is achieved by parallelizing the resolution of the query in the several branches of
the trie. Prefix Hash Tree (PHT) [12] builds a trie of the entire key-space on top
of a DHT. The purpose of this architecture is to use the trie as a logical layer
allowing complex searches on top of any DHT-like network. The architecture
of PHT results in the multiplication of the complexities of the trie and of the
underlying DHT.

The Skip Graphs structure proposed in [2] is similar to a trie but is built
with the skip lists technology, allowing the use of their inherent fault-tolerance
properties. But again, the complexity of the number of messages generated to
process range queries is in O(m log(n)), m being the number of nodes pertained
by the range and n the total number of nodes in the graph.

Other approaches propose to rely on a trie for each purpose, i.e., indexing
the key-space, mapping the nodes of the trie on the network, and routing the
requests. Among them, Nodewiz [4] assumes a set of static reliable nodes to
host the trie, which is unfortunately hard to ensure on peer-to-peer platforms.
P-Grid [7] builds a trie on the whole key-space (i.e., the whole set of potential
keys). Each leaf of this trie corresponds to a subset of the key-space. The fault-
tolerance is achieved by probabilistic replication.

As a more general consideration, none of these approaches address the topol-
ogy/physical locality awareness issue, i.e., no information about the underlying
network is taken into account to build the logical (overlay) network, what can
raise a significant performance problem, physical locality being broken when the
logical network is built. Moreover, the several fault-tolerance solutions are mostly
replication-based, or DHT-based, also involving heavy replication mechanisms.
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Initially designed for the purpose of service discovery over dynamic computa-
tional grids and attempting to solve the above drawbacks of existing approaches,
we recently developed a novel architecture, based on a logical Greatest Common
Prefix Tree formally described in Section 3, that is dynamically built as objects
(services, but extensible to data items, files, etc.) are declared.

3 Preliminaries

Greatest Common Prefix Tree. Let an ordered alphabet A be a finite set of
letters. Denote ≺ an order on A. A non empty word w over A is a finite sequence
of letters a1, . . . , ai, . . . , al, l > 0. The concatenation of two words u and v,
denoted u◦v or simply uv, is equal to the word a1, . . . , ai, . . . , ak, b1, . . . , bj, . . . , bl

such that u = a1, . . . , ai, . . . , ak and v = b1, . . . , bj , . . . , bl. Let ε be the empty
word such that for every word w, wε = εw = w. The length of a word w, denoted
by |w|, is equal to the number of letters of w—|ε| = 0.

A word u is a prefix (respectively, proper prefix ) of a word v if there ex-
ists a word w such that v = uw (resp., v = uw and u �= v). The Great-
est Common Prefix (resp., Proper Greatest Common Prefix ) of a collection
of words w1, w2, . . . , wi, . . . (i ≥ 2), denoted GCP (w1, w2, . . . , wi, . . .) (resp.
PGCP (w1, w2, . . . , wi, . . .)), is the longest prefix u shared by all of them (resp.,
such that ∀i ≥ 1, u �= wi). A [Proper ] Greatest Common Prefix Tree ([P]GCP
Tree, also a particular kind of trie) is a labeled rooted tree such that both fol-
lowing properties are true for every node of the tree:

1. The node label is a proper prefix of any label in its subtree;
2. The node label is the Proper Greatest Common Prefix of all its son labels.

In the following we use the word trie to designate our PGCP tree.

Distributed Lexicographic Placement Table. The distributed system considered
in this paper consists of a set of asynchronous physical nodes organized in a
Distributed Hash Tables (DHT). Each physical node maintains one or more nodes
of the logical PGCP Tree. Note that a DHT is used, but it can be replaced by
any system, distributed or not, allowing the retrieval of any node from any other
node. We also consider that the potential existing fault-tolerance mechanisms
provided by this layer are not used within our architecture. We propose in this
paper a fault-tolerance mechanism at the PGCP Tree level.

When one wants to insert an object labeled o into the trie, a message is
generated containing o, according to which the message is routed within the trie
until reaching the node labeled v such that v is the smallest label in the trie
that shares with o the greatest common prefix of any node of the trie with o.
More formally, if L denotes the whole set of label currently in the trie, the set
U = {l ∈ L | GCP (l, o) = p} where p = max|m|{m = PGCP (l, o), l ∈ L). The
label of the target node is t = min|w|{u ∈ U | u = pw}. Once found, the target
node performs the insertion. If t �= o, node(s) are created. If o = tu (u �= ε),
a new node labeled o is created as a new son of the node labeled t. If t = ou
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(u �= ε), a new node is created as the father of the node labeled by t. Finally,
if none of these conditions are satisfied, it means that o and t must be siblings
but no node in the trie is labeled by their common prefix. Thus two nodes are
created, a node labeled GCP (o, t), father of the node labeled by t and also father
of the other newly created node labeled by o. The distributed routing algorithm
(that also performs the creation and the mapping of nodes) requires a number
of hops bounded by twice the depth of the trie [5].

Physical nodes communicate by message passing. We assume two sending
functions. The former, simply referred to SEND, is used by any physical node
to send a message to another node asynchronously, i.e., without waiting any ac-
knowledgement. The latter, called SYNC-SEND, waits for an acknowledgement
for each message sent. We assume that each physical node may crash. So, when
a physical node crashes, one or more logical nodes are lost.

4 Protocol

In this section, we give a detailed explanation of how the protocol works. We di-
vide the algorithm code in two parts. The former shows the first phase developed
with our technique during which a unique trie is recovered without considering
any lexicographic property. During the second phase, the trie is reorganized to
eventually form a distributed greatest common prefix tree.

4.1 Trie Recovery

After a node p detects the loss of its father (p.father), it searches for a new
father to link on. Making a traversal of the DHT, Node p collects in Variable
PN all the addresses of each remaining physical node. Collecting the addresses
in PN , p builds the set of logical nodes stored by the physical nodes in PN .
Next, using a PIF (Propagation of Information with Feedback) Protocol [6, 16],
p computes T , the set of logical nodes in its subtrie, which is made of its “real”
descendants and its “temporary” relinked descendants. This first step of the
recovery protocol ends when p chooses a temporary father (p.tmpfather) in the
subset N \ T . When, a node q is linked to a node p, then p considers q as a
temporary son—stored in p.tmpsons. Note that Variable p.tmpsons is required
to compute T using a PIF in the subtrie of p. If N \T = ∅ (i.e., there is no node
for which p may link on), then p is considered as the root of the trie.

The above technique suffers of a drawback: Several nodes without father may
make which could become a “bad” choice. In particular, they can choose as a
temporary father a node belonging to the subtrie of another node being in the
same situation. By doing this in parallel, cycles may appear. Our strategy is to
detect and to break a posteriori such cycles as follows.

After the choice of its temporary father tf , a node p sends a message “HELLO”
with its ID (p.id) to tf . In the next step, tf transmits the message to its own
father, and so on. Step by step, one of the two following situations eventually
arises:
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1. The “real” root of the trie receives the message “HELLO”. In that case, the
root notifies p that it is not involved in a cycle.

2. The message is received by a “false” root, i.e., a node having also lost its
own father. the false root propagates the message to its temporary father.

Note that, in the above latter case, due to asynchrony of the network, it is
possible that the false root receives the message “HELLO” sent by p before it
executed its own recovery phase. In that case, the false root is still without a
temporary father. The message “HELLO” is then delayed until the false root
chooses its own temporary father.

Therefore, the message “HELLO” sent by p keeps circulating among its an-
cestors, carrying the list of false roots’ IDs which were met during its traversal.
Upon receipt of a message “HELLO”, if the first item of the list carried by the
message is equal to the ID of the receiver, then a cycle is detected. In that case,
a leader election is computed among the IDs of the list—e.g., by choosing the
smallest ID. The leader becomes the root of the subtrie, breaks its link which its
father, and executes the recovery phase again. (The other “false” roots involved
in the cycle remain connected to the subtrie rooted by the leader.) Note that a
cycle may be created again. However, in the worst case, at each relaunching of
the recovery phase, at least one subtrie becomes the subtrie of one false root. In
other words, the number of cycles is periodically divided by at least 2. Therefore,
the system eventually contains one (rooted) trie only.

4.2 Trie Reorganization

The trie reorganization is initiated once the trie recovery is done. Each node
p having a temporary son q—i.e., q is a false root with its subtrie—initiates a
routing mechanism closed to the original key insertion [5]. Let us consider the
following cases:

1. The value p.val is a prefix of the value of q—Figure 1, Case (i). In that case,
q (and its subtrie) is placed in the subtrie of p following one of the four cases
shown in Figure 1, Cases (a) to (d).

2. The value p.val is not a prefix of the value of q. Then, p moves q to its father
which now has the responsibility to place q.

Note that new services may keep inserting during the trie reconstruction.
So, a new subtrie may have been created at the same place where the false
root initially was. Thus, our method requires to take in account that any false
root being placed in the trie can meet a node having the same value. In that
case, the two tries must be merged. That is the aim of the merging protocol,
initiated by the sending of a message “MERGE”. Upon receipt of this message,
a node p executes Procedure Gluing(q), which moves the sons of q to p before
withdrawing q from the trie (including the sons of q’s father). Then, if necessary,
p restarts recursively merging and placements among its sons, in order to merge
both subtries eventually.
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Algorithm 1 Recovery Protocol for each node p

1.01 upon receipt of <Disconnected from Father> do
1.02 PN := Physical Node Set in the DHT (collected by a DHT traversal);
1.03 N := Logical Node Set in PN (collected by polling the nodes in PN);
1.04 T := Logical Node Set in my subtrie (collected using a PIF wave)
1.05 using p.sons ∪ p.tmpsons;
1.06 if p.tmpfather �=⊥ then send <DISCONNECT> to p.tmpfather;
1.07 if N \ T = ∅
1.08 then //I am the root
1.09 p.father :=⊥; p.tmpfather :=⊥;
1.10 else p.tmpfather := random choice among N \ T ;
1.11 send-sync <LINK> to p.tmpfather;
1.12 send <HELLO,p.id> to p.tmpfather;
1.13 endif
1.14 upon receipt of <HELLO,list> from q do
1.15 if F irst(list) = p.id
1.16 then //A cycle is detected
1.17 leader := LeaderElection(list);
1.18 if p = leader
1.19 then Executes “upon receipt of <Disconnect from Father> do”,
1.20 except PN and N ;
1.21 endif
1.22 elseif p.Father �=⊥
1.23 then send <HELLO,list> to p.father;
1.24 elseif p.tmpfather �=⊥
1.25 then list := list + p.id;
1.26 send <HELLO,list> to p.tmpfather
1.27 elseif p.father =⊥
1.28 then // Both father and tmpfather are unknown, i.e.,
1.29 I am a false root which is still not linked
1.30 Executes “upon receipt of <Disconnect from Father> do”
1.31 if it is still not working;
1.32 if tmpfather �=⊥
1.33 then list := list + p.id;
1.34 send <HELLO,list> to p.tmpfather;
1.35 else send <NOCYCLE> to F irst(list);
1.36 else // I am the real root, so there is no cycle.
1.37 send <NOCYCLE> to F irst(list);
1.38 endif
1.39 upon receipt of <NOCYCLE> from q do
1.40 send <MOVE,p> to p.tmpfather;
1.41 send-sync <UNLINK> to p.tmpfather;
1.42 p.tmpfather :=⊥;
1.43 upon receipt of <LINK> from q do
1.44 tmpsons := tmpsons ∪ {q};
1.45 upon receipt of <UNLINK> from q do
1.46 tmpsons := tmpsons \ {q};
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Algorithm 2 Reorganization Protocol for each node p

1.01 upon receipt of <MOVE,fs> from q do
1.02 if fs.val = p.val

1.03 then //I send to myself that a fusion is needed.
1.04 send <MERGE,fs> to p

1.05 elseif p.val = prefix(fs.val)
1.06 then if ∃s ∈ p.sons| s.val = prefix(fs.val)
1.07 then // fs is in the subtrie of s, Case (a) in Figure 1
1.08 send <MOVE,fs> to s;
1.09 elseif ∃s ∈ p.sons| fs.val = prefix(s.val)
1.10 then // s is in the subtrie of fs, Case (b) in Figure 1
1.11 p.sons := p.sons ∪ {fs}; p.sons := p.sons \ {s};
1.12 send <MOVE,s> to fs;
1.13 elseif ∃s ∈ p.sons | p.val < PGCP (s.val, fs.val)
1.14 then // fs and s have a PGCP which is greater than p.val

1.15 // Case (c) in Figure 1
1.16 Newnode(PGCP (fs.val, s.val), s, fs); p.sons := p.sons \ {s};
1.17 else // fs is one of my sons, Case (d) in Figure 1
1.18 p.sons := p.sons ∪ {fs};
1.19 endif
1.20 else if p.father �=⊥
1.21 then send <MOVE,fs> to p.father

1.22 else if fs.val = prefix(p.val)
1.23 then // I am in the subtrie of fs

1.24 send <MOVE,p> to fs;
1.25 else // p and fs are brothers
1.26 p.sons := p.sons ∪ Newnode(PGCP (fs.val, f.val), fs, p);
1.27 endif
1.28 endif
1.29 endif

2.01 upon receipt of <MERGE,fs> from q do
2.02 Gluing(q);
2.03 Sorting of p.sons in the lexicographic order in Table ts;
2.04 for i = 0 to ts.length() do
2.05 if ts[i].val = ts[i + 1].val

2.06 then send <MERGE,ts[i + 1]> to ts[i];
2.07 i := i + 1;
2.08 elseif ts[i].val = prefix(ts[i + 1].val)
2.09 then send <MOVE,ts[i + 1]> to ts[i];
2.10 p.sons := p.sons \ {ts[i + 1]};
2.11 i := i + 1
2.12 elseif p.val < PGCP (ts[i].val, ts[i + 1].val)
2.13 then p.sons := p.sons ∪ Newnode(PGCP (ts[i].val, ts[i + 1].val),
2.14 ts[i], ts[i + 1]);
2.15 p.sons; = p.sons \ {ts[i], ts[i + 1]};
2.16 i := i + 1;
2.17 endif
2.18 done
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(d) p.val = prefix(q.val).

Fig. 1. A false root q is linked to a node p such that p.val = prefix(q.val)

4.3 Correctness Proof

In this subsection, we discuss the correctness of our protocol. In order to do this,
we first need to make the realistic assumption that under the considered context,
the crash frequency is low enough to make the trie fully built sometime. (In the
opposite way, the trie could never be built and unusable most of the time. More
generally it is impossible to say anything about termination otherwise.) In other
words, we fairly assume that no crash occurs after a crash until the trie is fully
built, i.e., no two consecutive crashes interfere each other, at one given time.

Assuption 1. If a node crashes at time t, then for every t′ > t, no crash occurs.

Lemma 1. Under Assumption 1, the recovery protocol (Algorithm 1) termi-
nates, and when this occurs, the system contains one trie only.

Proof. The validation mainly consists in showing that the protocol terminates
and that the reorganization of the trie is eventually initiated (by sending a
message NOCYCLE).

Assume by contradiction that under Assumption 1, no node eventually sent
a message NOCYCLE. So, neither Line 1.35 nor Line 1.37 in Algorithm 1 is
executed. Note that in the first case (Line 1.35), the node becomes the “real”
node after the crash of its father. So, in both cases, this means that NOCYCLE
never reaches the “real” root of the trie. The height of the trie being finite,
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this means that every Message HELLO traverses cycles only. When a message
HELLO is received by its initiator, the cycle is broken by the node which is
elected among the false roots participating in the cycle—Lines 1.16 to 1.21.
Therefore, cycles are created infinitely often. Let C be the number of created
cycles. In the worst case, a cycle is made of at least two nodes. So, C is initially
bounded by F/2, where F is the number of false root created by the crash. When
a cycle is broken, at most one leader is elected. So, at most C/2 leaders are able
to link another node again. In the next phase, the number of cycles is less than or
equal to C/2. Since under Assumption 1, cycles may be created only when false
roots are linked to other nodes (executing Lines 1.10 and 1.11), C never grows
and is eventually equal to 0. This contradicts that cycles are created infinitely
often.

We now consider the phase of trie reorganization shown in Algorithm 2.

Lemma 2. Under Assumption 1 and assuming that the system contains one
trie only, the reorganization protocol (Algorithm 2) terminates, and when this
occurs, the trie is a PGCP tree.

Proof. Clearly, each trie of the forest following the crash of a node is a PGCP
tree. So, its remains to show that executing Algorithm 2, the whole trie eventu-
ally satisfies the condition to be a PGCP tree.

From the algorithm, it is easy to observe that, in the absence of merging,
there are only two cases to consider depending on the value of Node p and its
false son fs :

1. The value of p is a prefix of fs’s value—Line 1.05. In that case, following the
four cases described in Figure 1, fs is eventually placed at the right place in
the subtrie of p—refer to Lines 1.06 to 1.19. The resulting trie is a PGCP
tree.

2. The value of p is not a prefix of fs. Again, there are two cases to consider:
(a) Node p has no father (p.father =⊥)—Line 1.22 to 1.28. In that case, if

fs.val is a prefix of p, then p (and its subtrie) becomes the node to be
placed in fs—Line 1.24. Otherwise, p and fs become the two sons of a
new root node q such that q.val = PGCP (p, fs)—Line 1.26. The trie is
then clearly a PGCP tree.

(b) Node p has a father. Then, fs is moved to the father of p—Line 1.21. By
induction of the above discussion, either fs eventually moves on a node
q such that q.val = prefix(fs.val) or fs eventually reaches the root of
the trie. The former case is equivalent to Case 1, the latter to Case 2a.

If p and fs merge, then there are four cases to consider after p and fs glued
together into p:

1. There exists a pair of sons si, sj of p such that si.val is a prefix of sj .val.
Then, sj is moved toward si—Lines 2.08 to 2.11. This case is similar to the
above Case 1 (Cases (a) or (b) in Figure 1).
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2. There exists a pair of sons si, sj of p such that PGCP (si, sj) > p.val.
Then, si and sj become the two sons of a new son q of p such that q.val =
PGCP (p, fs)—Lines 2.12 to 2.16. This case is also similar to the above
Case 1 (Case (c) in Figure 1).

3. There exists a pair of sons si, sj of p such that si.val = sj .val. This case
is solved by initiating a recursive merging between si and sj—Lines 2.05
to 2.07. This case is solved by induction on si and sj .

4. There exists no pair of sons si, sj of p satisfying either Case 1, 2, or 3. In
that case, the subtrie of p clearly satisfies the properties of a PGCP tree.

From Lemmas 1 and 2 follows:

Theorem 1. Under Assumption 1, Algorithm 1 and Algorithm 2 provide a
PGCP tree reconstruction after the crash of a physical node.

5 Conclusion and Future Work

In this paper, we have presented a fault-tolerant protocol in case of node crashes
in a Proper Common Greatest Prefix tree search system. This protocol can be
coupled with a replication strategy to lower the costs related to high replication
factors. This protocol allows the reconnection and repair of subtries after the
crash of one or more nodes. This algorithm guarantees to recover a consistent
PGCP tree after a finite time and thus to avoid partially replication.

Our future work will consist in connecting the two mechanisms (replication
and repair) in order to minimize the cost of fault-tolerance on dynamic platforms.
We will also develop and validate experimentally the mechanisms exposed in this
paper on the Grid’5000 platform of the french ministry of research. The aim of
such experimentation will be to see the performance of the repair algorithm and
to see its capacity to answer clients’ requests facing different levels of dynamicity.
Moreover, we will be able to see starting from which level of dynamicity the repair
mechanism is no more efficient alone, and then how we can progressively inject
some replication as the dynamicity level increases.
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Abstract. Random Early Detection (RED) is effective in decreasing
losses on responsive flows but performs poorly with User Datagram Pro-
tocol (UDP) traffic since these do not react to congestion notification.
However, it is important to address UDP flows’ requirements since UDP
traffic forms a considerable part of Internet traffic. This paper shows
how Value-Based Utility (VBU) with RED manages UDP flows. VBU
allows packet dropping and queueing decisions to be more sensitive to
UDP traffic packet loss requirements. Three RED variations incorporat-
ing VBU were developed. Results indicate adoption of VBU with RED
enhances management of UDP traffic. This results in the equitable dis-
tribution of loss based on the UDP flows’ requirement.

Keywords: RED, buffer management, packet loss utility.

1 Introduction

Random Early Detection (RED) [1] is one of the most popular algorithms that is
used to detect and avoid congestion. The idea behind RED is that it randomly
notifies the connections of incipient congestion. RED allows occasional burst
traffic by maintaining a regular, evenly spaced interval when marking packets.
It avoids global synchronization by randomly dropping packets.

RED is mainly designed to be used in conjunction with Transport Control
Protocol/Internet Protocol (TCP/IP) but it could still be used by other pro-
tocols in the transport layer. However, this claim is refuted by some studies
showing that RED is ineffective on non-responsive flows [4, 5]. Since these flows
do not back off in response to congestion notification, they will experience drops
imposed by RED’s policies.

2 Utility-Based Enhancement of RED

Value-Based Utility (VBU) [6] is a framework for measuring the level of satisfac-
tion (happiness) or dissatisfaction (unhappiness) of users. Its definition is given
by:

Ui,QoS,m,Δt(p, b) = G/N − (N − G)/N ∗ p/q (1)
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where U is the utility of a flow i for the required Quality of Service (QoS), taken
at point m during the interval Δt = (t2 − t1)

p is the target percentage of packets meeting the required QoS
b is the target QoS bound
G is the number of packets that satisfy the requirements of a certain flow
N is the total number of packets of a flow
q is the allowed percentage of error and is equal to 1 − p

VBU was used to manage a First-In-First-Out (FIFO) buffer based on utility
thresholds [6] while in this research, VBU is used to enhance the performance of
RED with the addition of enabling the ‘gentle’ [2,3] and ‘wait’ parameters which
are used to make RED less aggressive in dropping packets. We implement three
algorithms namely RED with VBU (R1), RED with VBU using three logical
buffers (R2) and RED with VBU, logically partitioned buffers and adaptation
of thresholds (R3).

2.1 R1: RED with VBU

In R1, we interrupt the original flow of RED’s algorithm by adding the use of
VBU. When the average queue size, avg is between the minimum threshold,
minth and twice the maximum threshold, maxth, the Utility of the flow is com-
puted with an incremented N1. If the Utility measured is less than 0, then the
packet is enqueued. Otherwise, the original RED algorithm is followed.

We use VBU instead of just using the dropping probability function to be able
to differentiate the satisfied flows from the unhappy ones. Using VBU would aid
in increasing the number of happy flows since flows are now treated according
to their needs.

We have classified the flows into three categories2 in order to cover a wide range
of loss requirements. The flows are classified as High Expectation Flows (HEFS),
Medium Expectation Flows (MEFS), and Low Expectation Flows (LEFS). This
classification is similar to the study in [6] wherein HEFS are flows that have the
strictest requirement with loss as the target QoS metric3; the MEFS with the less
stricter loss requirement and the LEFS with the least strict loss requirement.

2.2 R2: RED with VBU Using Three Logical Buffers

We implemented two versions of R2, R2+ and R2-, to check if VBU will have an
effect on a partitioned buffer. The buffer is now logically partitioned into three
in order to differentiate the three different types of flows. The largest buffer is
dedicated to HEFS, the next largest to MEFS and the smallest to LEFS. R2+
uses VBU while R2- does not.

After computing and comparing the average queue size of the entire buffer to
the minth and maxth of the entire buffer, the average queue size of the flow a
1 N is the total number of transmitted packets.
2 This classification will be used in all the schemes and experiments.
3 QoS metrics could be other measurements aside from packet loss.
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packet which arrived belongs to is computed. This is compared to the maxth of
that type of flow’s buffer. If avg is less than the maxth of that class’ buffer, then
the packet is a candidate for enqueueing. Otherwise, the packet is dropped.

2.3 R3: RED with VBU, Logically Partitioned Buffers and
Adaptation of Thresholds

R3 improves on R2+ by dynamically changing the maximum threshold of the
logical buffers. The total happiness4 of each of the three types of flows are com-
puted after some time t since the last change of the maxth of the buffers. These
are then ranked in decreasing order. The maximum threshold of the flow that is
last in rank is increased by getting resources from the flow that is first or second
in rank. If there are no extra resources from either flow, then the maximum
threshold of the flow which is last in rank will not be adjusted. Moreover, we
adjust the maximum thresholds of the types of flows in an attempt to increase
the utilities of the HEFS while minimizing the negative effect on the other types
of flows. Thus, this adjustment favors HEFS, the MEFS and lastly the LEFS.
However, the needs of each flow is still respected by ranking the total happi-
ness of each type of flow. Eventhough the LEFS are our last priority, we still
increase the maximum threshold of the LEFS if they are the last in rank in total
happiness. The same is also done with the MEFS.

2.4 R3 and Some RED Variants

R3’s design is different from previous implementations of RED. The Utilities
from VBU are used to differentiate flows and dynamically tune flow’s maximum
thresholds. This is different from Adaptive RED (ARED) [7] where there is
no flow differentiation. Moreover, maxp

5 is dynamically changed based on the
fluctuations of the average queue size while in R3, the maximum thresholds of
the logically partitioned buffers are dynamically tuned based on the obtained
utilities. R3 is also different from RED with Dynamic Thresholds (RED-DT) [8]
which aims to penalize unresponsive flows while R3 aims to treat these flows
according to their needs. Adjusting parameters in RED-DT is a function of the
number of active flows and each flow’s buffer occupancy while in R3, adjusting
of the thresholds is a function of the happiness of each type of flow. Lastly, R3 is
different from RED with in/out bit (RIO) [9] which preferentially drops ‘out’6

packets while R3 drops packets primarily based on whether a flow is happy or not.
R3 also offers a minimum level of protection to each type of flow by allocating
buffer space to each one of them while in RIO ‘out’ packets are enqueued if there

4 The Total Happiness of a type of flow is measured by dividing the number of the
utilities which are greater than or equal to zero to the total number of flows of that
type.

5 maxp is a RED parameter that holds the maximum value for the initial packet-
marking probability.

6 ’out’ packets are packets that do not meet a certain specified profile.
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is still available space after enqueueing ‘in’7 packets. Lastly, R3 also allows flows
to share resources depending on their level of happiness while in RIO, sharing
of resources does not necessarily happen.

3 Experimental Environment

Experiments were performed using Network Simulator 2 (NS2) on a single hop
model with the length of each simulation equal to 800 seconds. The observation
window is from 200 seconds to 800 seconds to remove the effect of the start
up phase and to acquire enough samples. There are initially 9 sources. This
number was later increased to 36 sources to test the scalability of the system.
Each source generates UDP traffic that uses the exponential distribution for
the traffic’s packet interarrival time. Each source connected to the router uses
a 10Mbps link to ensure that no packet is lost in this link and that packet
transmission delay is minimal. The propagation delay is set to 1msec which is
negligible. The router has a buffer size equivalent to 50 packets. Values used
for the bandwidth of the link connecting the router to the sink node are 750,
850 and 950 kbps for 9 sources and 3.2, 3.4 and 3.6Mbps for 36 sources. In
the experiments, we changed the bandwidth to see the effect of having larger
link capacities. Flows as mentioned earlier are classified into HEFS, MEFS and

Table 1. Expectation Levels

Class of Flows p8

High Expectation Flows (HEFS) 0.99
Medium Expectation Flows (MEFS) 0.9

Low Expectation Flows (LEFS) 0.8

Table 2. Traffic Mix

Name No. of Sources No. of HEFS No. of MEFS No. of LEFS
mix 1 9 3 3 3
mix 2 36 12 12 12
mix 3 36 24 8 4
mix 4 36 8 24 4
mix 5 36 4 24 8
mix 6 36 8 4 24
mix 7 36 4 8 24

LEFS. These are shown in Table 1. Traffic mix is varied to see the effect of
having more flows of a particular type over the other types of flows (Table 2).

7 ’in’ packets are packets that meet a certain specified profile.
8 p is the target percentage of packets meeting the loss requirement of flows.
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Utility measurements9 are yet another form of measuring packet loss in this
study. In the Utilities, packet losses are associated to the flow’s requirements.
We determine the Total Happiness Plot of each class of flows by getting the ratio
of the number of utilities of each class which are greater than or equal to zero,
to the total number of flows per class. As an example, at certain time T , for a
total of X HEFS, if there are Y HEFS having utility greater than or equal to
zero, then the measured and plotted utility at time T is Y/X .

4 Baseline Experiments on RED

Initial experiments on RED, like in FIFO, show that the packet loss requirement
of flows is not addressed as shown in Fig. 1. The LEFS got the highest number
of satisfied flows while the HEFS got the lowest number of satisfied flows. As
already mentioned, this will be addressed by R3 scheme.
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Fig. 1. For a RED queue, Total Happiness Plots of HEFS, MEFS and LEFS. This is
the same scenario we got from FIFO. The LEFS have the highest Utility while the
HEFS the lowest.

For the rest of the experiments, since RED has several parameters - maxth,
minth, maxp and wq

10, preliminary experiments were performed to isolate the

9 Utilities could also be measured on delay or jitter.
10 wq is a RED parameter for the queue weight.
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cases that are significant. We will get the parameter combination that gave
two of the highest Utilities, one of the lowest Utilities and a random case. The
experimental values used are shown in Table 3. Some of these values are recom-
mendations from [1] which we will use to cover a range of experiments.

Table 3. Experimental Values

RED Parameters Values
maxp 0.02, 0.1, 0.5
wq 0.002, 0.02, 0.2

maxth 10, 20, 30,40
minth 5, 10, 15, 20, 25

Shown in Table 4 are cases used in this study. Cases 2 and 4 gave the highest
Utility for HEFS while case 1 gave one of the lowest. Case 3 is used to examine
conditions for Utilities of HEFS in between the extremes.

Table 4. RED Parameters’ Setting

cases maxp wq maxth minth

case 1 0.1 0.002 40 25
case 2 0.02 0.002 30 20
case 3 0.02 0.2 30 10
case 4 0.02 0.002 40 25

5 Results on Using VBU with RED

When we compare RED and R1 for all cases and for all traffic mixes, RED’s
performance is enhanced11 due to the additional information provided by the
Utility. Shown in Fig. 2a is the graph of the Total Happiness Plots of HEFS
taken from one of the best enhancement produced by R1. This is the result from
mix 3 of case 3.

We can see from Fig. 2a that R1 improved the Utility of HEFS. Although there
are cases when the Utilities of HEFS are not equal to 1, the Utilities produced
by R1 are higher than those produced by RED. In some cases, differentiation
of flows provided by VBU does not improve the Utility of HEFS. This may
be due to limited bandwidth, buffer space or some traffic mixes that use more
HEFS than the other types of flows. Moreover, improving the Utility of HEFS
did not degrade the performance of the LEFS and MEFS except for some cases
in MEFS. This is due to more HEFS being enqueued in the buffer using the flow
differentiation offered by VBU.
11 In this study, we base a queueing mechanism’s performance primarily on the Utility

of the HEFS.
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Looking at the aggregated losses of each type of flow in Figs. 2b to 2c, we can
see that using VBU, less drops occur in HEFS but more drops are experienced
by MEFS and LEFS. This shows that packet losses are redistributed using VBU
making it possible for HEFS to be more satisfied. If we look closely at the total
loss in Fig. 2d, we can see that the total losses in R1 is less than that of RED.
This means that the big decrease in the losses of HEFS negated the effect of
increased losses in MEFS and LEFS.

On the other hand, when we compare R1 and R2-, we saw that R2- is better
than R1 except when there are more HEFS in the system. This means that a
partitioned buffer is still better than using a single buffer except when there are
more HEFS in the system. However, the disadvantage of buffer partitioning is an
increase in the total losses since there are now three limited buffers as compared
to a single limited buffer. Figs. 3a to 3b show the graphs from case 1 of mix 4.

When we compare R2+ and R2-, R2+ showed an improvement in the Utilities.
This is another manifestation that the additional information provided by VBU
improves the performance of an algorithm.

Fig. 2a. Fig. 2b.

Fig. 2c. Fig.2d.
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Lastly, when comparing R3 and R2+, Utilities of R3 either increased or
showed no significant change when compared to those of R2+. This means that
adjusting the thresholds in response to the level of happiness of each type of
flow proved beneficial in increasing the Utilities of HEFS. Shown in Figs. 4a
to 4b are graphs from case 4 mix 3. Using a 5% level of significance in T -test,
we get t = 28.848 which means that HEFS’ Utility for R3 is higher than that of
R2+. On the other hand, when we look at the graph of total packet loss, we see
that total packet loss of R2+ is higher than that of R3. Again, this shows that
dynamically changing the thresholds aided in increasing the Utilities.
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6 Summary of Results

The use of VBU in differentiating flows enhanced the performance of RED.
RED is unable to differentiate flows according to their requirements. As a result,

Fig. 3a. 4Fig. 3b.

Fig. 4a. Fig. 4b.
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many HEFS were not satisfied since these flows have the strictest requirements
compared to the other types of flows. With the use of VBU, packets are enqueued
or dropped in response to the loss requirement of the flow it belongs to. If
dropping of a newly arrived packet will make the flow it belongs to unhappy,
then this packet will be enqueued. Thus, this scheme resulted to having more
satisfied HEFS.

Allocating buffer space for each type of flow while using VBU proved effec-
tive in addressing the requirements of the flows. Pre-assigning of buffer space to
each type of flow gave additional protection to each of them. Flows that have
stricter requirements will now have greater chances of being appropriately ad-
dressed since each type of flow will not have to compete with the other types of
flow for buffer space. As a result, there were more satisfied HEFS in the system.
However, constraining each type of flow to a limited buffer will cause more drops
when too much flows of the same type compete with each other for space. The
impact of these packet drops is more pronounced particularly with HEFS since
these have the strictest loss requirement than with MEFS and LEFS. This case
was illustrated with the decrease of the Utilities of HEFS when the system load
consists of a considerable number of HEFS compared to the other types of flows.
In the case where there are more MEFS in the system, the decrease in the Utility
of MEFS is smaller than with the decrease in HEFS. Also, when there are more
LEFS, the Utility of LEFS was not affected but caused LEFS to lose more pack-
ets. This means that nothing much can be done in an environment wherein the
resources are limited especially for HEFS whose requirement is harder to meet.

Lastly, adapting the maximum thresholds in response to the measured Utility
gave further improvement in the Utility of HEFS while minimizing the negative
effects on the other types of flows. The use of VBU in dynamically tuning the
thresholds gave the necessary feedback for the scheme to know which type of flow
can share resources. However, working in a limited environment proved that the
effect of this adaptation is not highly significant since there are no more spare
resources to share.

These solutions improved RED’s algorithm. However, a necessary consequence
of the schemes’ effort to increase the Utilities of HEFS is the increase of the total
packet loss. This is due to more flows of other types giving up more resources to
make more HEFS satisfied.

7 Conclusions

The solutions developed could provide a new framework for congestion control
and avoidance mechanisms wherein both the problems of congestion and meet-
ing flows’ requirements are addressed. Protection of non-TCP flows, which have
their own requirements, is also offered by these solutions. The solutions devel-
oped could be used to properly address the current trend in the Internet where
some flows are penalized (e.g. UDP flows) because of their non-responsiveness
to congestion notifications. UDP flows and all the other types of flows could
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declare on the outset their requirements and base on this information, each class
of flows will be dealt with accordingly.

In order to deliver a better than best-effort service, the developed solutions can
be applied in a DiffServ environment. In this environment, aggregate of flows are
provided different levels of prioritization depending on the contracted agreements
between the user and the service provider. This service is an improvement on
what the Internet can offer wherein guarantees of any sort is not to be expected.
In using VBU with RED, we have shown that flows were treated according to
their loss requirements. Flows were differentiated and higher priority is given to
those flows which have higher expectation. VBU can then be used in providing
different levels of service to each class of flows.

Finally, R3 can be implemented at the edge of the network instead of at the
core to decrease the processing time and complexity inside the network. R3 could
then be used as the traffic conditioner in a DiffServ environment at the boundary
nodes. The Utility could be used to gauge the satisfaction of the incoming flows
and based on this information, perform marking, shaping, dropping of packets
or adjusting of the thresholds.
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Abstract. In this paper, we envision a solution to the problem of capturing an 
intruder in a product network. This solution is derived based on the assumed 
existing algorithms for basic member graphs of a graph product. In this 
problem, a team of cleaner agents are responsible for capturing a hostile 
intruder in the network. While the agents can move in the network one hop at a 
time, the intruder is assumed to be arbitrarily fast in a way that it can traverse 
any number of nodes contiguously as far as no agents reside in those nodes. 
Here, we consider a version of the problem where each agent can replicate new 
agents. Hence, the algorithm start with a single agent and new agents are 
created on demand. 

1   Introduction 

One of the important problems concerning the distributed system is the network 
security. The reports show that a huge amount of money is spent annually to recover 
the information which is lost due to the attack of worms and viruses. Spywares and 
cookies are some other example of software agents which often enter the hosts 
without permission and gain unauthorized access to the information which may later 
be used for undesirable purposes. 

Here we only assume a general kind of such threat namely a piece of software 
(e.g., a virus) which moves in the network from node to node; we will call such an 
element, the intruder. We assume we have a team of software agents that collaborate 
in order to protect the network and thus have the goal of neutralizing the intruder and 
cleaning the entire network. The intruder is also considered to be a software agent. 
We assume that, the intruder can only escape the cleaner agents and although it can be 
harmful to the hosts, it cannot damage or stop the cleaner agents. Furthermore, in 
order to consider the worst case problem, we assume that given a situation the 
intruder always chooses the best possible move. The purpose of our algorithm then is 
to move and replicate the cleaner agents in the network such that the intruder is finally 
captured by the former agents. Number of agents to be involved, number of moves the 
agents have to perform, and time are some of measures of efficiency for an intruder 
capturing algorithm. The problem of intrusion capturing is studied both in general and 
also on a number of well-known network topologies in [17, 15, 1, 2, 8, 4]. 

Our model takes the assumption that agents are able to replicate; i.e. they can 
create a copy of themselves whenever needed. Hence, without loss of generality, we 
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assume that there exists only a single agent at the beginning and other agents are 
created gradually as the algorithm proceeds. All the agents are identical, hence we do 
not distinguish the agents by any names or labels, and when discussing the position of 
the agents we are only interested to know which nodes are occupied by the agents 
rather than being concerned with the cell where a particular agent resides. 

A possible strategy is to start with a single agent from an arbitrary point (called 
home) and replicate new agents and move existing agents for checking the presence of 
the intruder, in such a way that no gap is created for the intruder to enter an already 
cleaned part of the network. In this way, the intruder will eventually be discovered. 

Our algorithm does not discuss the position of the initial agent in the network since 
it only takes some constant steps (in terms of hops) for the agent to move to any other 
node of the network which is often negligible. This assumption does not threat the 
validity of our model because this constant in the worst case is in the order of network 
diameter while the total number of movements required by the algorithm is almost 
always in a higher order. Even for a network whose search number is equal by 1, i.e. 
the network can be searched using a single agent, the total number of required moves 
will be in the order of network diameter in the best case. As one may expect, in our 
model each agent can only move to a neighboring node and that can be done via the 
links connecting the two nodes.  

Cartesian product networks encompass a large class of interconnection networks 
which are practically used nowadays. Many important topologies such as meshes, 
tori, k-ary n-cubes, hypercubes, generalized hypercubes, and hyper petersen networks 
are examples of such product networks. Hence, it comes as no surprise to see that 
product networks have been vastly studied in the literature as in [Bao98, 5, 6, 7, 9, 
Sabidussi59].  

In the context of graph theory, the Cartesian product is considered as an effective 
method for constructing large graphs from several specified smaller graphs. The 
graph constructed in this way contains its basic graphs as subgraphs and can preserve 
many desirable properties of the basic graphs, such as regularity, vertex-transitivity, 
Hamiltonicity, etc. The study of product networks is interesting in the sense that many 
parameters of the network, such as node degree, diameter, network size, bi-section 
width, chromatic number [12, 13], domination number [10], fault diameter [16,3], 
edge disjoint spanning trees [14] can be easily calculated from the same parameters in 
their underlying basic graphs. This close relationship between the properties of the 
product graph and its basic graphs helps us to extend and generalize the same graph 
algorithms and problem solutions which were put forth for the basic graphs for their 
products as well. 

In this paper, assuming intruder capturing algorithms for some graphs, we try to 
derive algorithm for intruder capturing in a graph product of the former graphs, 
accordingly. This work can be considered as an effort in generalizing the existing 
algorithms for more complex network topologies; in a way that the algorithm for the 
new structure (graph product) is performed in some high-level macro steps each 
consisting of some basic steps of lower level algorithms.  

The rest of this paper is organized as follows. In section 2, we define the 
terminology and definitions that we will use later throughout the paper. In section 3, 
we probe into the problem of constructing spanning trees for graph products where we 
propose a novel method for obtaining a spanning tree in a product graph using a new 
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product operator over graphs. Next, we introduce a spanning tree presentation for 
each intruder capturing algorithm using the notion of spanning search trees in section 
4. Section 5 chiefly deals with our main problem, i.e. capturing an intruder in product 
networks and it is where we propose our two algorithms namely, dimension order and 
dimension priority for capturing an intruder in product networks. Finally, we conclude 
the paper in section 6. 

2   Terminology and Definitions 

The Cartesian product of two graphs G1 and G2, denoted by G1×G2, is a graph with 
vertex set V(G1)×V(G2). An edge joins a vertex x =(x1,x2) to another y = (y1,y2) (xj, yj ∈ 
V(Gj), j = 1, 2) if and only if either x1 = y1 and (x2,y2) ∈ E(G2) or x2 = y2 and (x1,y1)∈ 
E(G1). Hereafter, for the sake of simplicity, we refer to Gi graphs, i = 1, 2, as basic 
graphs and to any Cartesian product of some Gi’ s as a product graph. 

Let A={a1,…, ak} be the set of searcher agents employed to neutralize the network 
G. It is quite obvious that the total number of agents, denoted by |A|, is not constant 
over the run-time of the algorithm because we presumed that the searcher agents are 
created on demand. Throughout this paper we often refer to a “searcher agent” as 
“cleaner agent” or simply as “agent”. Based on the premise that the intruder can only 
hide in the nodes, at any given instant an agent can only move to a neighboring node. 
The agents move in a way that the intruder cannot enter a node which has already 
neutralized, i.e. we are dealing with a contiguous node search problem. Let C(t)∈V(G) 
denote the set of clean nodes at an instant t, then we can easily conclude that C is 
growing over the time; i.e. ∀k>0, C(t)⊆C(t+k).  

Let us build a graph H ⊆ G whose vertex set is C and each two ci and cj vertices of 
C are connected if and only if <ci , cj> ∈ E(G). As the clean nodes do not get 
contaminated again and the agents can only move to their neighboring nodes, we may 
simply infer that H is a connected graph at any instant t. We call H the clean territory 
hereafter. I=G\H is the part of G that has not been cleaned yet, hence we call it the 
intruder territory. It is also obvious that for some v∈H, v is incident to some vertex in 
I. Let ( )H∂  be the entire set of such vertices, we call this set the battle front of H. The 

battle front should always be occupied by the agents or the intruder will be able to 
expand its territory. We assume that each agent can only sense whether or not its 
neighboring nodes are clean and performs its actions according to this limited 
information provided about its neighboring nodes. A searcher agent in our model at 
any discrete time instant is capable of doing one the following two actions: 

• Move: It can move to any of its neighboring nodes in order to extend the 
clean territory. 

• Replicate: It can produce a new cleaner agent and inject it into a neighboring 
node. 

Definition 1. Given a network G and a cleaner agent a in vertex v of G, the set of 
actions that a performs during the run-time of an algorithm while it is in v is called a 
step of the algorithm for agent a. It is easily seen that each step of the intrusion 
capturing algorithm for a, consists of some replication actions and a single optional 
movement. Let us denote by ra(v,u), the action corresponding to the replication of a 
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new agent by agent a in v to a neighboring vertex u and by ma(v,u) the movement of a 
from v to a neighboring vertex u. Then, one step of algorithm for agent a in v can be 
represented by the set stG(a,v)={r(v,u1),…,r(v,um),m(v,w)}, where u1,…,um and w are 
some arbitrary neighbors of v and w ui, 1  i  m. 

The way that the deployment of the cleaner agents change in the network as  
dictated by the algorithm, is crucial to the validity and performance of the algorithm. 
Given a graph G, the way that the agents are distributed in G at an intermediate step of 
the algorithm is named the configuration of the agents in G. Each such configuration 
can be displayed by a binary configuration vector C of length |V(G)|. An element Ci of 
the vector is 1 iff vi is occupied by an agent. By extending this notation to the case of 
product graphs, a binary |V(G1)|×…×|V(Gn)| configuration matrix results. 

3   Constructing Spanning Trees in a Product Network 

The problem of constructing a spanning tree in a graph product has been studied in 
the literature. In [14], an algorithm for deriving edge disjoint spanning trees in graph 
products has been envisioned. 

In this section, we propose a novel approach for constructing a spanning tree for a 
graph product based on the assumed spanning trees in its basic member graphs. We 
later use this approach of building spanning tree for generalizing our intruder 
capturing algorithms for product networks. 

Definition 2. Given two graphs G and H, the injective product of G and H on the 
vertex v∈V(G) denoted by 

v
G H× , is a graph defined by 

( ) ( )
v

V G H V G H× = × , 

[ ] [ ]1 1 2 2 1 2 1 2 1 2 1 2( ) {( , ),( , ) | ( , ) ( ) ( ) ( , ) ( ) ( ) }
v

E G H u v u v u u E G v v v v E H u u v× = ∈ ∧ = ∨ ∈ ∧ = =  

Clearly, 
v

G H× is a subgraph of G×H; yet, the definition of
v

G H× demands that two 

vertices in two different subgraphs homogeneous to G can be connected if and only if 
the first element in their vertex pair is a special vertex v of G. Hence, ( )

v
E G H× can be 

rewritten as 1 1 2 2 1 2 1 2( ) {( , ), ( , ) ( ) | }
v

E G H u v u v E G H u u u u v× = ∈ × = = = . As an 

example, the injective product of two cycle graphs of length 4 on an arbitrary vertex 
v, 4 4

v
C C× , is depicted in figure 1. 

Theorem 1. [11] Given two graphs G and H and a vertex v of G, the following 
properties are observable for

v
G H× : 

I. If G and H are connected then 
v

G H× is connected for any given v in V(G). 

II. ( ) ( ) . ( ) ( )
v

E G H E G V H E H× = + . 

III. 
v

G H× consists of one H component and |V(H)| separate G components. 

IV. Each vertex u of 
v

G H× is contained in some subgraph homogenous to G, yet u 

may or may not be contained in a graph homogenous to H. 
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The definition of injective product can be further extended so that the graph product 
includes more than one H component. 

 a) b) 

v

 

Fig. 1. The injective product of two cycles on v. a) The basic C4 graphs. b) 4 4v
C C . 

Definition 3. Given two graphs G and H, the injective product of G and H on the 
vertex set s⊆V(G), 

s
G H× is a graph defined as 

( ) ( )
s

V G H V G H× = × , 

[ ] [ ]1 1 2 2 1 2 1 2 1 2 1 2 1 2( ) {( , ),( , ) | ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) }
s

E G H u v u v u u E G v v v v E H u u u u s× = ∈ ∧ = ∨ ∈ ∧ = ∧ ∈  

Clearly, if s= V(G), we can conclude
s

G H× =G×H. 

 
Theorem 2. Given a product graph 1 2 nG G G G= × × × , let 1,..., nST ST  and 

r1,r2,…,rn  be the spanning trees created on G1 ,…, Gn and roots of the spanning trees, 
respectively. The spanning tree built on G denoted by ST is a tree with the root 
r=(r1,r2,…,rn) and it can be constructed as

1 2 1
1 2

n
n

r r r
ST ST ST ST

−

= × × × . 

Proof: As STi’s are connected, using the property I in theorem 1 and induction, we 
can state that ST is connected as well. On the other hand, as STi has the same number 
of vertices as Gi, by definition, the injective product of them would have 

1

( )
n

i
i

V G
=
∏ vertices, which is equal to the number of vertices in G. To prove that ST is a 

spanning tree for G, it is enough to prove that there cannot be a cycle in ST, i.e. it is a 
tree. Let us assume that there exists some cycle C in ST. Two different cases are 
possible for the vertices of C. Either, they have a fixed vertex v in some ith element of 
their vertex, i.e. they all belong to the same STi component, or the vertices of C are 
chosen from at least two different components STi and STj. The former case cannot 
happen since we assumed that STi’s are trees and thus they cannot contain any cycles. 
In the latter case, we assume that the vertices in C belong to exactly two STi and STj 
components. Then, there should be at least two vertices in C such that at least two of 
the vertices in their n vertex set does not match, i.e. they belong to different STx basic 
components, 1  x  n. Let >=< nji uuuuuu ,...,,...,,...,, 21  and >=< nji uuuuuv ,...,',...,',...,, 21  be 
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two such vertices which are contained in STi and STj components, respectively. As u 
and v are both in the cycle, there should be exactly two discriminated paths between 
them. It is while according to the definition of the injective product each such a path 
should pass from a node >< nji urruu ,...,',...,,...,, 21  which means that there cannot exists 

more than one paths between u and v. Thus, there is no such a cycle in ST. In the 
same way, we can conclude that the vertices in C cannot be chosen from more than 
two different STx basic components, 1  x  n. Therefore, ST has no cycles and the 
theorem is proved. The construction of a spanning tree in a 5×5 mesh using the 
injective product is shown in figure 2. 

r1

r2

(r1,r2)

H

G

a) b)

 

Fig. 2. Embedding an spanning tree in a) Basic graphs b) Graph product, Mesh 5×5 

Definition 4. A given vertex v in ST is called an m-intersection of ST if it has 
neighboring vertices in m different Gi basic graphs, 1  i  n. It is obvious that most 
of the vertices in ST are 1- intersection nodes while the root node r=(r1,r2,…,rn) along 
with the vertices in the subgraph homogeneous to Gn are n- intersections. 

4   Spanning Tree Presentation of the Algorithm 

In this section, we envision a new presentation for the intruder capturing algorithm 
using the spanning trees. As we shall see later, this novel presentation will change our 
look to the problem, from an algorithmic viewpoint to a more tangible graph 
theoretical standpoint. Let A be a known contiguous algorithm for capturing an 
intruder in a graph G. As we saw before, A consists of some steps for each agent in 
some vertices of G. As we have the goal of cleaning the entire graph and knowing that 
the only way for a cleaner to capture an intruder is to be in the same vertex as the 
intruder, we can easily state that for each given vertex v of G, there exists some agent 
a such that a does some action in v during the run time of the algorithm. This is true 
since the cleaner should sweep the entire nodes in the network. Moreover, as A is 
contiguous, once a node is cleaned it need not to be rechecked. On the other hand, the 
path that each agent takes in the graph is a connected subgraph of G. From all the 
arguments stated above, we can conclude that the paths through which the agents 
move and replicate build a spanning tree for G. 
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Definition 5. Given a graph G and an algorithm A for capturing an intruder in G, 
spanning search tree for A denoted by SST is a spanning tree constructed from A in 
the following way: 

• The root of SST is the home vertex in G. 
• If during the runtime of the algorithm, some agent a performs a movement action 

ma(u,v), then we draw an edge between u and v and label it m. 
• If during the runtime of the algorithm, some agent a performs a replication action 

ra(u,v), then we draw an edge between u and v and label it r. 
• Each edge of the tree is also assigned a number which indicates the order of 

performing that particular action with respect to the other actions; e.g. an action 
which is performed first is labeled 1 and so on. Two edges with the same number 
correspond to concurrent steps of the algorithm. 
Numbers on the edges define the way of searching the spanning tree, with the 
exception that some edges may be traversed in parallel. Whenever the actions 
which are defined for an agent in each vertex v of SST are performed 
consecutively, we can simply assign the numbers to the vertices instead of 
labeling the outgoing edges with consecutive numbers. It is easily seen that for 
any given vertex v of the tree, only a single edge with label m can exist; i.e. all of 
the other exiting edges should be labeled r. This is true since each vertex in the 
battle front is occupied by a single agent and the additional required agents for 
the next stage of the algorithm should be created with replication operations 
corresponding to the edges which are labeled r. Figure 3 shows a spanning search 
tree corresponding to an algorithm for capturing an intruder in a 5×5 mesh. 

5   Capturing an Intruder in Product Networks 

In this section, we propose an algorithm for capturing an intruder in a product 
network based on the known algorithms for capturing an intruder in the basic member 
graphs of the graph product. Given P=G1×G2×…×Gk as the graph product, we are 
interested in finding an algorithm A for capturing an intruder in P. We assume that 
there are known algorithms for capturing an intruder in Gi graphs. In particular, we  
 

 

Fig. 3. Spanning search tree for M5×5 
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denote each such an algorithm for Gi by Ai and the corresponding spanning search tree 
by SSTi. We also presume that each Ai algorithm demands Na(Gi) cleaner agents and it 
can decontaminate Gi in Ns(Gi) steps. In an attempt to obtain simple yet more scalable 
capturing algorithms, we try to utilize the inherent recursive structure of the graph 
products in as much as possible. That is, in order to obtain an algorithm for capturing 
an intruder in a graph product, we decompose the product graph into a set of 
subgraphs homogenous to a basic member graph Gi and perform the intruder 
capturing algorithm in each of those subgraphs independently as if it is the only graph 
we are dealing with. Hereafter, we call any such subgraph homogeneous to Gi, a Gi 
component of P. 

Theorem 3. [11] Let P=G1×G2×…×Gk and v be a vertex in P, then v is contained in 
exactly k different subgraphs 1 2, ,..., kG G G′ ′ ′ of P homogeneous to G1,G2,…,Gk, 

respectively. 

5.1   Dimension Order Algorithm 

The first algorithm which we propose for capturing an intruder in the product 
network, replicate agents so that the root node of the spanning trees created over all of 
the G1 components of the graph product be occupied by agents. These agents in  
turn will initiate the intruder capturing algorithm in their corresponding G1 
components. Cleaning all of the G1 components of P then it would be tantamount to 
decontaminating the entire network. In particular, the dimension order algorithm 
consists of two phases: 1) Replication phase, and 2) Searching phase.  

The replication phase starts with a single agent in the root of the constructed 
spanning tree on P. This agent replicates new agents and injects them to its 
neighboring n-intersections which in turn replicate new agents to their neighboring n-
intersections until all the vertices in the one, and only Gn component of P be occupied 
by agents. In the next phase, the agents in the n-intersections which are the roots of 
Gn−1 components, replicate new agents to their neighboring n−1-intersections which in 
turn replicate new agents to lower levels of the spanning trees. This process continues 
until all the vertices in all of the Gn−1 components are occupied by the agents. These 
vertices are the root vertices of the spanning trees built on Gn−2 components of P and 
hence can replicate new agents to all of the vertices in Gn−2 components of P. 
Proceeding with this approach at some stage, vertices in G3 components replicate new 
agents to all of the vertices in G2 components. These vertices are the root nodes of the 
spanning trees constructed on G1. In the searching phase, having one agent in the root 
node of each spanning tree on a G1 component, these agents would run the intruder 
capturing algorithm on G1 for the corresponding G1 component and this would 
decontaminate the whole vertices in the product network.  

The spanning search tree which corresponds to this algorithm is obtained by 
labeling all of the edges in components other than G1 with r and labeling the spanning 
trees for each of the G1 components according to the assumed intruder capturing 
algorithm on G1. 

Theorem 4. [11] The number of agents that the dimension order algorithm demands, 
denoted by Na(P), is obtained as 
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1
2

( ) ( ) | ( ) |
k

a a i
i

N P N G V G
=

= ∏ . 

Theorem 5. The number of steps it takes for the dimension order algorithm to 
complete on a product graph P, denoted by Ns(P), is obtained as 

1

( ) ( )
k

s s i
i

N P N G
=

=  

where Ns(Gi) denotes the number of steps required for Ai to complete on Gi. 

Proof: To obtain the total number of steps, we sum the number of steps which the 
algorithm takes for each phase. In the replication phase, it takes Ns(Gi) steps for an 
i+1-intersection node to replicate the agents to i-intersections which are included in 
Gi components. Hence, the total number of steps of the replication phase is 

2

( )
k

s i
i

N G
=

. In the searching phase, all the agents can search their corresponding G1 

component in parallel and in Ns(Gi) steps. The total number of steps of the algorithm 
is calculated as the sum of the number of steps for these two phases which is equal to 
the proposed equation. 

5.2   Dimension Priority Algorithm 

Although the dimension order algorithm is quite simple, the number of steps that is 
needed for the algorithm to complete might not be minimal. Our second algorithm, for 
each cleaner agent in a k’-intersection, vertex v of H performs the intruder capturing 
algorithm in k’ different components of P which encompass v. As these k’ subgraphs 
include all neighboring nodes of the agent in SST, this technique assures that no node 
of the network is missed by the algorithms. The only issue that may arise is that each 
of the k’ different algorithms are acting on the agent simultaneously. Hence, we 
should guarantee that the actions that an agent performs according to an algorithm Ai 
does not conflict the actions that some other algorithm Aj advises for that agent. 

As we discussed before, in our scenario we assume that the cleaner agents are  
capable of performing two kinds of actions, i.e. moving to a neighboring node or 
replicating a new cleaner agent and injecting it into a neighboring node. Obviously, each 
of the k’ algorithms can do the replication in its own subgraph without having to be 
worried about the other subgraphs, as it only changes the configuration of the nodes 
which are exclusively in that subgraph. Hence, this does not make any conflicts between 
the k’ different algorithms. Moving the agents, on the other hand, changes the 
configuration of the nodes which are mutually shared by some of the k’ subgraphs. Thus, 
it changes the configuration of other subgraphs as well and this may result in a conflict. 
In particular, the problem which arises in the movement action is that if the algorithm  
for subgraph Gi moves the agent in v, there would not be any agents available in v for  
the other algorithms if they were to move the agent. In order to cope with this issue,  
we demand each agent to move in just one of its subgraphs. This can be safely done  
by letting one algorithm Ai out of k’ algorithms run as ordinarily while replacing  
each movement action in all of the remaining k’−1 algorithms by an equivalent replic-
ation action. We call the m edge which is not affected by the replacements, the free edge. 
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Theorem 6. Given an agent a, let ,1 ,2 ,( , ) { ( , ), ( , ),..., ( , ), ( , )}
i iG i i i m isp a v r v u r v u r v u m v w=  

be one step of the intruder capturing algorithm for Gi in an arbitrary  

k’-intersection v, 1  i  k’. We define ( , )
iGsp a v  to be the same step as 

iGsp but with 

the exception that each movement action ( , )im v w of a in ( , )
iGsp a v  is replaced  

by an equivalent replication action ( , )ir v w ; Hence, ( , )
iGsp a v  can be derived as 

,1 ,2 ,( , ) { ( , ), ( , ), , ( , ), ( , )}
ii i i i m iGsp a v r v u r v u r v u r v w= . One step of the algorithm for 

capturing an intruder in P, the graph product of Gi s, for a in v is then obtained as 
'

1,

( , ) ( , )
ji

k

p GG
i i j

sp a v sp a v sp
= ≠

=  

for some arbitrary j such that ( , )
jGsp a v has a movement action.  

( , )Psp a v  can equivalently be written as 

1 '1,1 1, 1 ,1 , ',1 ', '( , ) { ( , ),..., ( , ), ( , ),..., ( , ),..., ( , ), ( , ),..., ( , ),..., ( , ), ( , )}
j kP m i j m j k k m ksp a v r v u r v u r v w r v u r v u mv w r v u r v u r v w= . 

Proof: It is easy to see that the replacement of the movement actions with replication 
actions can not endanger the validity of the algorithms. Hence, after the replacement 
of the moves any algorithm Ai would still run as desired on any Gi graph, but perhaps 
it demands more agents. To see that the algorithms can run in parallel, it is to see that 
the equation for ( , )Psp a v step of the algorithm consists of k’−1 steps without 

movements and a single step 
jGsp which could have at most one movement. Hence, 

each such ( , )Psp a v step consists of at most one movement actions. As ( , )Psp a v was 

chosen arbitrarily, we can conclude that the k algorithms can run in parallel. 
The only problem which is still remained unsolved is in which order the  

algorithm should move/replicate the agents. In order to avoid any gap in the battle 
front, our algorithm lets the vertices in higher dimensions have priority over those in 
the lower dimensions. In particular, an i-intersection has priority in performing its 
actions over the i−1-intersection nodes and so on. Between the vertices which have 
the same priority in their dimensions, say i-intersections, a node which is further from 
the root node of SPi has the highest priority. If this also comes to be equal between 
some nodes, the distance from the root node in the next lower dimensions are taken 
into account. If after these two rules, some nodes have the same priority, then these 
nodes can safely performs their actions in parallel. In more specific level, for each 
vertex v, the replication actions always have priority over the movement actions. The 
details of the algorithm for capturing an intruder in a product network are as follows. 

 
Algorithm Dimension-Priority-Intruder-Capturing--DPIC() 

a) Starting from the home node h in P where the one and only agent a initially 
occupies, perform step ( , )Psp a h  of the algorithm for capturing an intruder as 

described in theorem 6. This can be done by running steps ( , )
jGsp a h  of the 

algorithms in each of the k’ subgraphs of P that contain h. 



 Capturing an Intruder in Product Networks 203 

 

b) Let ( )H∂ be the battle front for P. At any intermediate stage of the algorithm, 

for each node v in ( )H∂ and agent a in v, perform step ( , )Psp a v  of the 

algorithm for capturing an intruder. If ( , )Psp a v =∅ that is a does not have any 

actions to do (e.g v is leaf node), proceed with another node of ( )H∂ . 

c) Repeat step b until ∀v∈ ( )H∂ , we obtain ( , )Psp a v =∅. 

Corollary 1. Given a graph G, let A and SST be an algorithm for capturing an intruder 
in G and the corresponding spanning search tree, respectively. The total number of 
agents required by A denoted by Na(G) can be obtained as Na(G)=Nr(G)+1, where 
Nr(G) is the number of edges labeled r in SST. 

Theorem 7. [11] The number of agents required by the algorithm for capturing an 
intruder in the product network can be obtained as 

( )1
22 1

( ) ( ) ( ) ( ) ( ) ( )
k kk

a r i r j m j i
ji i j

N P N G V G N G N G V G
== = +

= + +∏ ∏ . 

where Nm(Gi) denotes the number of edges labeled m in SSTi. 

Theorem 8. The number of actions that is required to be preformed by the agents 
according to A in order to clean the entire graph product is obtained as 

1

( ) | ( ) | 1
k

m r i
i

N P V G+
=

= −∏ . 

Proof: The total number of the actions that is demanded by the A algorithm for 
decontaminating the network equals the number of edges in SST. As SST is a spanning 
tree, it consists of all vertices in the network and as it is a tree the number of edges is 
simply obtained as the number of nodes in the network minus one which is the 
proposed equation. 

6   Conclusions 

In this paper, we investigated the problem of capturing an intruder in a product 
network based on the assumed existing algorithms for intruder capturing in its basic 
member graphs. We proposed a novel approach for deriving a spanning tree in a 
product network using the newly defined injective product operation which is put 
forth as a general case of the well-known Cartesian product. Later, we modeled each 
intrusion capturing algorithm with a new tree structure, namely the spanning search 
tree. Finally, we reduced the problem of algorithms for capturing an intruder in a 
product network to finding the spanning search tree for the graph product using the 
existing spanning search trees for intruder capturing in its basic member graphs. We 
proposed two different algorithms based on the discussed method. The proposed 
algorithms and ideas presented in this paper are quite general and can be applied to 
intruder capturing in any product network, while the notion of the spanning search 
tree is considered as a simple yet general solution to the problem of intrusion 
capturing in any general network.  
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Abstract. Recently, applications in which relational data is generated
in a distributed and streaming manner have emerged from diverse do-
mains. Processing queries on such data has become very important. In-
network evaluation of a query is a technique in which the query is eval-
uated in the network without transferring all the data to a central loca-
tion. So far, algorithms for in-network of evaluation of a single query have
been proposed. They are not designed to exploit common computations
across multiple queries. There is a need to develop techniques for efficient
in-network evaluation of multiple queries. We consider the problem of in-
network evaluation of multiple queries on relational data generated on a
distributed network of machines. We present a novel algorithm based on
an algorithm for dynamic regrouping of queries.

1 Introduction

We are witnessing the emergence of a new class of applications in which the data
is generated by data sources distributed over a large distributed network (often
of the scale of WANs) [2]. Applications querying such data have become popu-
lar in diverse domains such as sensor networks, publish-subscribe systems, and
financial services [16,7, 1]. There are many applications in which the generated
data is in relational form [11]. In this paper, we consider continuous versions of
SQL queries over such distributed, relational, streaming data.

Platforms which expose a simple programming model to build applications
which work on distributed, streaming, relational data are becoming popular [7,
14]. The user writes continuous version of an SQL query. The platform compiles
the query into an equivalent execution tree. Each node of the execution tree
represents a logical relational operator. In order to carry out computation, it
can also communicate with its parents and children which could be executing at
different locations of the network. Such an execution tree is called as operator
tree. Note that placing the entire operator tree at one location is a valid way of
evaluating the query which transfers the entire data to that location. In-network
evaluation aims to efficiently evaluate the output of the operator tree by placing
the nodes of the operator tree at appropriate locations in the network so as to
minimize communication.
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Note that, multiple queries can be represented by combining the individual
operator trees corresponding to individual queries as one global operator tree.
Such a representation of multiple queries does not exploit the possibility of shar-
ing common computations. In this paper, we consider the problem of evaluating
multiple queries on a distributed network of machines by sharing common com-
putations at appropriate locations in the network. We observe that, in order
to share computation, the global operator tree has to be reorganized into an
equivalent tree in which common sub-expressions are exploited. The main dif-
ference between our problem and the problem considered by recent papers on
in-network evaluation of a single query is that they do not consider the possibility
of reorganizing the global operator tree to achieve efficiency.

Ahmad and Cetintemel [1] consider the problem of in-network evaluation of
a single operator tree on a distributed network. They consider the problem of
minimizing the end-to-end delay. Furthermore, they assume that all the output
tuples are delivered at a single location called the proxy. In comparison, we do
not impose the restriction of accessing the output of all the queries from a single
location. They propose a heuristic which traverses the operator tree in the post-
order and at each step, places the currently visited node at one of the following
locations: (i) one of its children’s locations, (ii) the proxy location, and (iii) the
node and the subtree below it are placed at a common location. The heuristic
picks one of the three choices greedily. To focus on the communication aspect of
the problem, they assume the processing cost of each node to be zero. Srivastava
et.al [16] consider the same problem as Ahmad and Cetintemel in which the
processing costs of the nodes can be non-zero. They consider the special case
when the machines form a tree. They give an approximation algorithm for the
problem based on dynamic programming. They view each operator as a filter
and introduce the novelty of modeling network links as special filters. Each step
of the dynamic programming involves solving a pipelined set-cover problem [9].

Pandit et.al [10] consider different efficiency measures for in-network evalua-
tion of an operator tree. They formulate the end-to-end delay minimization as a
a facility location problem and propose (and evaluate) a local search heuristic.
They also consider the problem of computing load balanced placement in which
the total communication across the network is minimized. They propose an al-
gorithm based on minimum cost multi-way balanced partitioning of a graph.

Although in-network evaluation of multiple queries has not been studied be-
fore, multi-query optimization is a well studied problem [13, 12, 15] in database
literature. Early work on multi-query optimization [12,15] focused on finding the
optimal query plan for a very small number of queries using exhaustive search
techniques. These approaches are very expensive for large number of queries typi-
cally expected in the domain of applications highlighted before. Roy [13] proposes
important heuristics to reduce the cost of the exhaustive search algorithms and
applies these techniques for materialized view selection and maintenance. All
these algorithms were designed for centralized databases. They do not deal with
the trade-offs introduced by the network delays in the optimization. Further-
more, applications like financial services would require in-network evaluation of
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a large number of queries, thus resulting in a very large search space. So, there is
a need to develop new techniques to solve the problem considered in this paper.

We observe that the problem of in-network evaluation of multiple queries has
to deal with reorganizing the global operator tree in order to share computa-
tions as well as place the transformed operator tree efficiently on the network
of machines. These two aspects of the problem are closely inter-related. We de-
velop a framework motivated by an algorithm for dynamically regrouping queries
proposed by Chen and Dewitt [3]. Our algorithm is based on a bottom-up traver-
sal of the operator tree. At each level, it considers the possibility of exploiting
common sub-expressions depending on whether the resulting tree can be placed
efficiently on the network of machines.

2 Problem Formulation

2.1 Motivation

Consider two queries Q1 = (A � B) � C and Q2 = B � C which are represented
as a global operator tree as shown in Figure 2(a). The inputs A, B, and C are
the streaming relations, also called as base relations. Each box computes the join
of its two input relations and its output is treated as a streaming relation. The
output of a box which does not represent any of the queries, for example, the
output of the box computing A � B, is called as intermediate relation. Suppose
the cost of A � (B � C) and (A � B) � C are equal, then, the optimal way
of evaluating the two queries on a single machine is to evaluate Q2 as B � C
and to evaluate Q1 as A � (B � C) as shown in Figure 2(b). Multi-query
optimization techniques presented in [13] are designed to exploit such common
sub-expressions to optimize the performance of a centralized database.

In case of distributed query processing, there are other considerations which
influence the optimization. Firstly, a given base relation may be available only at
the location where it is produced. If it is involved in a computation at a different
location, it has to be transferred there. Similarly, the results of a query has to be
attached to the location of the end-user. The cost of transferring results to the
attached location has to be considered as well. In general, we consider the base
relations and the final queries as tied to specific locations in the network. As
observed in the previous papers on in-network query processing [1], the commu-
nication cost dominates the cost of local processing. We consider the following
example to illustrate the trade-offs introduced by the distributed setting which
is absent in centralized setting.

Figure 1 shows two scenarios of evaluating the queries Q1 = (A � B) � C) and
Q2 = B � C on a network of two machines, M1, and M2. In both the scenarios,
the set of base relations and final queries tied to each machines is specified as
shown. Consider Figure 1(a). Any attempt to share the computation of Q2 results
in increased communication cost and it is beneficial not to reorganize the global
operator tree. Whereas, in Figure 1(b), it is beneficial to reorganize the global
operator tree to share the computation of Q2. Thus, the optimizations carried
out are not only dependent on the common sub-expressions in the queries, but
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also depend on the way the relations and views are attached in addition to the
network delays in transferring intermediate results.

(b)

M1 M2

C, Q2A, B, Q1

M1 M2

A B, C, Q1, Q2(a)

Fig. 1. Example Scenarios

2.2 Operator Tree and Topology Graph

The operator tree of a query is given by Q = (J, R, I, O). R represents the set of
base relations and O represents the different final views that the query computes.
I represents the set of intermediate relations of Q. J is the set of operator nodes
of the operator tree. Suppose i1 ∈ R ∪ I and i2 ∈ R ∪ I are the two inputs to a
node j ∈ J , then the output of j is i1 Op i2 where Op is the relational operator
corresponding to j. The incidence graph of the query is a tree. Suppose there are
n user queries which have already been compiled into operator trees Q1, . . . , Qn.
Then, the main query Q is essentially the union of all the queries, Q = ∪i=n

i=1 Qi.
An equivalent query of Q is an operator tree QF = (JF , R, IF , O) such that it
computes the same set of final views as Q. The base relations in R are called as
producers and the final views in O are called as consumers.

Chen et.al [4] showed that an effective heuristic for optimizing large number
of continuous queries with similar join operator is to pull up the select operators
over the join operators. As a first step towards efficient multi-query in-network
evaluation we consider the problem of efficient evaluation of multiple queries
consisting of only join operators [3], i.e, all the operator nodes in J are joins.
It is a common practice in database literature to consider the operator tree to
be left-deep. In our context, a tree is left-deep when at least one of the inputs
of every node is a base relation. So, the inputs of a node at level i are a base
relation, and the output of a node at level (i−1). In our formulation, we assume
Q1, . . .Qn to be left-deep while the main query Q itself may not be left-deep.

Suppose we represent a base relation by a unique symbol. Let us associate a
string of symbols with the output of a join node as follows. If s1 and s2 represent
the strings corresponding to the inputs of a join node j ∈ J , the output of
j is denoted by concat(s1, s2). Note that, in case of a left-deep tree, s2 is a
symbol corresponding to a base relation. So, a string of symbols can be used to
unambiguously specify a left-deep tree. We shall use this way of conceptualizing
an intermediate or a final view wherever it simplifies the exposition.

The distributed network of machines is given by G = (V, E) where V is the
set of machines and E is the set of communication links. Each link e ∈ E has
an attributed called cost which is an estimate of the delay across it. The cost of
an edge between two nodes u, v is denoted by cu,v and by ce when the edge in
question is unambiguous. The producers and consumers are tied to the machines
where they are generated and consumed respectively.
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2.3 Cost Model

In traditional databases, statistics of the static tables are used for estimating
cost. In our setting, we use the rate of arrival and rate of output as the main
cost estimates. Suppose a node has two inputs with rates r1, r2 and a selectivity
factor of s, then, the processing cost of the node is r1 · r2 and its output rate is
equal to D(s · r1 · r2) where D is a function dependent on the scheduling policy
at the node. Suppose a node j1 ∈ J with output rate r1 is assigned to machine
M1 in G. Suppose the output of j1 is input to a node j2 ∈ J which is assigned to
machine M2 in G. The communication cost of the data transfer between j1 and
j2 is given by r1 · l(M1, M2) where l(M1, M2) denotes the length of the shortest
path from M1 to M2. Given an assignment function A : (J ∈ Q) → (V ∈ G),
the communication cost between nodes j1 and j2 is denoted by CSA(j1, j2).

Estimating the output rate of nodes is essential in order to compute costs.
When the joins are correlated, i.e, the probability of two tuples joining at a
node depends on the path they have taken, estimating the output rate is a hard
problem [16]. Instead, we work with a simpler but, limited model. For every
intermediate view in the global tree, we assume that its join selectivity with
each of the base relations is given. The input has to specify |R| · |I| explicit
selectivity factors corresponding to the I intermediate views. This augmented
selectivity information is sufficient for the purpose of our algorithm.

2.4 Objective Function

In-network query evaluation is specified by the global operator treeQ=(J, I, R, O)
and the topology graph G = (V, E). The goal is to compute a global operator tree
QF = (JF , I, RF , O) equivalent to Q and an assignment function A : JF → V .
The cost of a solution (QF , A) is given by

C(QF , A) =
∑

s∈R,t∈O

∑
(j1,j2)∈SP (s,t)

CSA(j1, j2).

SP (s, t) denotes the shortest path from s to t. If a pair (s ∈ R, t ∈ O) is
not connected, then the communication cost between them is assumed to be
zero. We call this problem as distributed, continuous, multi-query optimization
(DCMQOPT). The problems considered in [16,1,10] differ from our formulation
as they assume that QF will be same as Q. In other words, they do not consider
reorganizing the operator tree to save processing and communication costs.

3 Algorithm

Previous algorithms for in-network query evaluation did not consider the trade-
offs discussed in Section 2.1. Chen and Dewitt [3] considered the problem of
sharing computations across multiple dynamic queries. They showed the efficacy
of their approach when the number of queries is large. As our algorithm is
motivated by their ideas, we briefly summarize their work.
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A query (or an intermediate view) x is said to be a sub-query of another query
y if x is defined over a subset of producers over which y is defined. For example,
BC is a sub-query of ABC. In other words, y contains x. In an operator tree Q,
if the output of a join node j is input to a join node p, then, the output of the
node p contains the output of j. The node j is called a child of the node p. The
children of the same parent are called as siblings.

(b)

AB

Q1 = ABC

A B C

Q2 = BC AB

Q1 = ABC

A B C

Q2 = BC

(a)

Fig. 2. Capturing sub-query relationships

Algorithm 1 briefly summarizes their approach. It is designed to exploit com-
mon sub-expressions in a top-down manner. The main component is the heuristic
Minimize Graph. It retains a minimum subset of views at level i which is suf-
ficient to compute the set of views retained at level i + 1.

Algorithm 1. Chen and Dewitt Algorithm
Pass 1

1: for i = 2 to num level do
2: Reflect all the sub-query relations between the nodes at level i and level i + 1 as

shown by the dotted edge from Q2 to Q1 in Figure 2.
3: end for
Pass 2

1: for i = num level − 1 to 2 do
2: Use a heuristic called Minimize Graph to retain a minimum subset of relations,

say, Ii at level i such that every relation at level i + 1 has a sub-query in Ii.
3: end for

DCMQOPT poses a complex trade-off involving the processing cost and the
communication cost. So, we consider an algorithmic approach which systemati-
cally decouples these two costs. Specifically, we are interested in traversing the
operator tree in a specific order to identify common sub-expressions to save pro-
cessing cost. At each stage, we share the identified common sub-expressions if
only they can be computed in a communication-efficient manner. We first point
out the difficulty in extending their algorithm in such a way.

Consider invoking a procedure to place the modified operator tree after step
2 in each iteration of Pass 2. The modified tree is accepted if the placement
cost is lesser than before. But, when the set of views to be retained at level i is
decided (so that all views at level i + 1 can be computed), the set of views to
be retained at level i − 1 is not yet decided. So, there is uncertainty about the
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inputs (and hence, input rates) to the transforms at level i. So, estimating the
processing cost and communication cost (See Section 2.3) of the transforms at
level i is difficult. Thus, during a top-down traversal, it is difficult to estimate
the impact of the decisions made at each step.

Alternatively, let us consider a bottom-up traversal of the operator tree. When
a decision is made on the set of views to be retained at level i is made, the same
decision has already been made regarding views at all the levels below i. Now, it
is easy to observe that the input rates of the transforms at all the levels can be
computed using the augmented selectivity information (See Section 2.3). Thus,
we can traverse the tree in such a way that the impact of the decisions made
at each step (regarding the shared sub-expressions) on the overall cost can be
reasonably estimated. The details are presented in Algorithm 2.

Algorithm 2. Bottom-up Regrouping Placement(BRP)
1: QC = Q
2: for i = 2 to num level − 1 do
3: Cost1 = Place Single Query(QC)
4: QN = QC

5: Add dotted edges between nodes in levels i and i + 1 of QN which capture
sub-query relations (as shown in Figure 2).

6: Fi(QN) = Fi(QC)
{Fi(Q) denotes the set of final views of Q at level i.}

7: Let IN
i be minimum cost subset of Ii(QC) such that every node of QN at level

i + 1 has a sub-query in Ri(QN) = IN
i ∪ Fi(QN).

{Ri(Q) and Ii(Q) are defined similar to Fi(Q). In effect, the previous two steps
are identifying common sub-expressions.}

8: For every node of QN at level i + 1 add an edge to its cheapest sub-query in
Ri(QN).

9: Cost2 = Place Single Query(QN)
10: if Cost2 < Cost1 then
11: QC = QN

12: end if
13: end for

In step 5, we exploit the existing sub-query relations by creating new dotted
edges which represent shareable sub-expressions. After this step, there may be
many alternative ways of computing a view at level i + 1. However, the cost
of taking each alternative can be estimated using the augmented selectivity in-
formation described in Section 2.3. In steps 7 through 9, we identify a set of
beneficially shareable sub-expressions at level i.

Figure 3 shows the example considered in Section 2. For Q = Q1∪Q2, the two
trees placed in steps 3 and step 9 are shown in the figure. If (Cost2 < Cost1), then
the tree is modified to share the computation for Q2. Otherwise, the operator
tree is not modified.
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Cost1 (Step 3)

A B C A B C
A B C

ABC

BC

ABC

AB BC AB BC

ABC

Cost2 (Step 9)

Fig. 3. Illustration of BRP Algorithm

Time Complexity. During an iteration, if there are x nodes at level i and y
nodes at level i + 1, then, Step 5 takes O(xy) time. Thus, over all levels, Step
5 takes O(n3) time where n is the number of nodes in Q. At Step 7, we select
a subset of non-final nodes Ii at level i so that all the nodes at level i + 1 have
a sub-query in Fi ∪ Ii. The main trade-offs involved are (i) retaining a non-final
node which is a sub-query of many nodes at i + 1 and (ii) retaining non-final
nodes whose output rates are not too high. This can be formulated as a set cover
problem which is NP-Complete [5]. The natural greedy heuristic is known to give
the best approximation and we use it to compute Ii. Over all levels it runs in
O(n2 log n) time. At Steps 3 and 9, we use the placement algorithm proposed
in [1]. Note that our framework is not tied to any particular placement and any of
the algorithms proposed in [10,16] can also be used. Our algorithm runs in time
O(n3 + n · P (t)) where P (t) denotes the time taken by the placement module.

4 Experimental Evaluation

We now carry out empirical evaluation of our algorithm on a simulation frame-
work developed by us. The framework can be used to generate operator trees
which contain common sub-expressions so that they can be reorganized to share
computation. It can be used to generate topology graphs with properties of
large, distributed networks. We can tie streams and views to specific machines
of the topology graph. Our algorithm is integrated with the framework. It also
computes a normalized cost which is indicative of the average end-to-end delay.

On programming platforms like [7, 14], it is possible to obtain real instances
of queries written by different users which contain enough computational redun-
dancy. One of the disadvantages of our framework is that it is currently not
integrated with such a platform. So, it has to generate instances of global op-
erator trees in which it is possible to reorganize the tree to share computation
across multiple final views. We briefly discuss how to generate such instances.

An operator tree can be thought of as a set of paths from the streams to final
views. Each edge in these paths satisfies the sub-query relationship between its
end-points. Intuitively, common sub-expressions are those intermediate or final
views through which many paths can pass through. Consider an operator tree
Q = (J, R, I, O). Let TO be the tree defined by the data flow from the streams
in R to the final views in O via intermediate views I. Let nO = |I|. Let TA

be the augmented graph on the nodes in R ∪ I ∪ O reflecting the data flow of
the query and containing additional edges to reflect all the sub-query relations
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(refer to Section 3). Let P be a set of paths in TA from the nodes in R to
the set of final views in O such that they pass through as few intermediate
nodes as possible. Let nA be the number of intermediate nodes that paths in
P pass through. An instance Q with lot of shareable computations satisfies
the property that nA is much smaller than nO. We modify the algorithm by
Melançon and Philippe [8] to generate random operator trees which contain
sufficient computational redundancy.

We also generate random topologies for the network of machines on which the
computed operator tree QF is placed. As mentioned in the introduction, the data
sources are distributed over very large networks like WANs and the Internet.
So, we are interested in generating random graphs which satisfies properties
exhibited by such networks. We use an iterative algorithm similar to the Markov
Chain simulation based generators proposed by Gkantsidis et. al [6] to generate
the topology graphs with realistic edge costs for our experiments. It is possible
to programmatically tie the streams and views of the operator tree to specific
machines of the topology graph.

Our experimental set-up is as follows. We generate a random topology of
machines and an operator tree which is known to be an instance that can be
reorganized to share computations. The streams and the final views of the op-
erator tree are tied randomly to different machines of the topology graph. We
then compute placement by three algorithms: Random Placement(RP), Greedy
Placement(GP) and our Bottom-up Regrouping Placement(BRP). In RP, every
node of the operator tree is randomly assigned to one of the machines while the
streams and final views are tied to their respective locations. In GP, the greedy
placement algorithm proposed in [1] is used to compute the placement. BRP is
our algorithm described in Section 3. A normalized integer score indicative of the
end-to-end delay is computed for each placement. We present both experimental
results and qualitative results. As the greedy heuristic was originally proposed
for a single query with all the final views accessed from a single proxy, we discuss
how we implement it for our purposes.

The main point to be emphasized about the algorithm in [1] is that it does
not reorganize the operator tree. We modify the input so that it meets the input
specification of their algorithm. In the operator tree, from every final view, we
create a dummy operation whose output is marked as a final view. The original
final views are now intermediate views tied to their respective machines. We add
a new proxy machine into the topology graph. For an original final view v, let
m(v) denote the machine it is tied to. For every original final view v, we add an
edge of cost zero from m(v) to the proxy machine. This modified input meets
the input specification of their algorithm.

Figure 4 shows a comparison of the three algorithms. The first column shows
the details of the different operator trees considered for optimization. For each
query Q, the number of nodes in the query, the number of base relations in the
query, and the number of shareable common sub-expressions(CSE)s are men-
tioned. For each tree, the experimental results for topology graphs of different
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sizes are given in the second column. Specifically, the cost of the objective func-
tion under the assignment computed by the three algorithms are given.

Observations: The experimental results in Figure 4 indicate the efficacy of
our approach. Let us emphasize some important observations. On a single ma-
chine, sharing computations is always beneficial. The results on Q3, Q4, Q5 show
that on a single machine, we do get improved performance. On queries Q3, Q4
which contain high degree of redundant computations, our algorithm computes
very efficient placements. It shows that in realistic scenarios of evaluating large
number of queries with highly redundant computations, our algorithm can im-
prove the performance significantly. Currently, we manually count the number
of maximum shareable sub-expressions. Although, we have tested our algorithm
on larger instances, we have presented results on only those cases for which we
could compute the maximum number of shareable sub-expressions.

In Section 2.1 we argued that, an optimal evaluation of multiple queries may
chose not to share a sub-expression even though it can be shared. Qualitatively, it
is important to verify that our algorithm does make such decisions on non-trivial

Operator Tree Experimental Results

Tree #Nodes in Q #BaseRels #CSEs
Q1 11 5 1

#Nodes in G RP GP [1] BRP
5 50 43 35
10 109 68 26
20 103 98 54

Tree #Nodes in Q #BaseRels #CSEs
Q2 16 6 3

#Nodes in G RP GP [1] BRP
5 102 68 64
10 200 115 59
20 226 197 138

Tree #Nodes in Q #BaseRels #CSEs
Q3 26 7 3

#Nodes in G RP GP [1] BRP
1 40 40 28
2 40 40 28
5 280 213 78
10 303 186 97
20 745 439 259

Tree #Nodes in Q #BaseRels #CSEs
Q4 31 10 8

#Nodes in G RP GP [1] BRP
1 40 40 36
2 40 40 36
5 283 164 109
10 228 140 40
20 995 521 278

Tree #Nodes in Q #BaseRels #CSEs
Q5 41 16 4

#Nodes in G RP GP [1] BRP
1 82 82 75
5 723 430 430
10 1204 547 488
20 4810 2803 2352

Fig. 4. Experimental evaluation of different algorithms
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Fig. 5. An example where the algorithm chooses not to share computation based on
the topology graph and how the streams and views are attached

examples. Figure 5(a) shows an example. The boxes represent transforms which
compute views represented by the strings inside them. Views are indexed by the
integers adjacent to the boxes. As shown in Figure 5(b), computation of the view
ABCDE can be reused to reduce the number of transforms by one. Figure 5(c)
shows a network of six machines with edge costs and a specific attachment of
streams and views of the example operator tree. In this case, any assignment
which shares the computation of the view ABCDE incurs a higher cost than
an assignment which does not do so. Indeed, our algorithm chooses to keep the
operator tree as it is. In this example, in addition to the augmented selectivity
information, we input the selectivity of the join between AB and CD. On larger
examples, our algorithm decides to share smaller number of sub-expressions than
what is possible.

5 Future Work

We show that in-network evaluation of multiple queries involves dealing with
issues which are not addressed by previous work on single query evaluation.
We present a novel algorithm for in-network evaluation of multiple queries and
provide empirical evidence of its efficacy. Our work can be extended in several
directions. Our algorithm needs to be extended when other relational operators
are present and the selectivities of operator nodes are correlated. It also has to
be extended for the case when individual query trees can be bushy instead of
being left-deep. In future, we intend to demonstrate the efficacy of our algo-
rithm in practice by integrating it with distributed publish-subscribe systems
like [7].
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Abstract. This paper presents an approach to optimal design of composite 
structures using Island Model Parallel Genetic Algorithm (IMPGA) with a 
probabilistic migration strategy and in conjunction with 3D Finite Element 
Method (FEM). The subject problem is computationally intensive and 
consumes large amount of computer space-time; an attempt has been made to 
spawn a variable number of processes at each node of IMPGA for FEM 
analysis. Comparison shows that integrated IMPGA-FEM module outperforms 
SGA-FEM module with respect to convergence as well as computational time 
significantly. The present study observes that the speed-up obtained from 
IMPGA-FEM module is better than the theoretical speed-up. It has also been 
observed that the incorporation of a probabilistic migration strategy in the 
IMPGA lead to a much faster and improved converged solution. Results show 
that for optimization with IMPGA there exists a minimum size of sub-
population on each processor below which the performance deteriorates. 

Keywords: Island Model Parallel Genetic Algorithm, Optimization, FRP 
Composites. 

1   Introduction 

Though Genetic Algorithms (GAs) have demonstrated the potential to overcome 
many of the problems associated with gradient-based methods and are most effective 
when the design space is large, high computational time and storage requirement 
often forces us to work with a reduced design space. This some times limits the 
efficacy of GAs in achieving global optimal solutions. This dilemma could be solved 
by implementing GA in a parallel computing environment, where full advantage can 
be taken of the low communication requirements of GAs, and to use specialized 
models allowing sufficiently detailed representation without excessive computational 
requirements. Island model GA [1, 2] is ideally suited for parallel computing 
environment leading to IMPGA. Bryce Bockman [3] has mentioned two important 
algorithms for effective implementation of IMPGA. One is the Stepping Stone 
algorithm, which is the core of the migration routine, and another one is the 
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development of precedence matrix to avoid any possible deadlock between the 
processes. Tanese [4] studied the advantages of distributed GA over conventional GA 
and the effect of migration strategies on the performance of distributed GA. It was 
observed that distributed GA consistently performed better than conventional GA. 
Mühlenbein et. al. [5] implemented the island model with rank-based selection to act 
as function optimizers and concluded that parallel search pays off only if the search 
space is large and complex. Norman [6] tested parallel GA using randomly 
communicating subpopulations with different migration strategies. Literature review 
reveals that parallel GA enjoys distinct advantages over SGA both in terms of reduced 
computational time as well as improved converged fitness. A preliminary attempt has 
been made by the present authors [7], which showed the efficacy of IMPGA in 
optimization of composite laminates and its superiority over SGA. However, detailed 
studies in terms efficiency, speedup, scalability, effectiveness, of different migration 
strategies, and combined effect of IMPGA and spawned set of processes, at each node 
of IMPGA, on computational time have not been reported. 

By appropriate selection of stacking sequence and material of each lamina, the 
designer can impart directional strength in FRP laminates. This allows the designer to 
achieve a reduced weight/cost of the component while ensuring the required safety. 
Therefore, an important issue in the design of laminated FRP structures is the optimal 
selection of number of plies, fiber angle of each ply, material of each ply, thickness of 
each ply and thus the laminate thickness. From the manufacturing constraints, ply 
angle and ply thickness are to be elected from a set of discrete values and the 
optimum design of laminated FRP structure becomes a discrete optimization problem. 
GAs are non-deterministic, has the ability to work in a discrete search space and in 
the recent time have been successfully applied to the problem of composite design 
optimization [8, 9, 10, 11]. Qu et. al. [12] used deterministic and reliability based 
designs of composite laminates for cryogenic environments. Multi-objective 
optimization of hybrid composite laminates using SGA and FEM has also been 
reported for static and dynamic loading [13,14]. 

Since the optimization of laminated FRP composite structures involves large 
number of design variables and a complex search space, use of distributed genetic 
algorithm seems to be a promising tool for achieving faster and better convergence in 
search of optimal laminate. Therefore, in the present work, IMPGA has been 
implemented in a distributed memory platform for optimization of symmetric and 
balanced laminates in order to study its effectiveness by varying the number of 
processors as well as the population size in each processor. A 3D Finite Element 
Analysis (FEA) has been used for assessing the impact-induced failure [15, 16, 17] of 
the laminate along with the IMPGA. Also, each processor of IMPGA spawns number 
of processes to distribute the organism among spawned process for carrying out FEA 
on a sequential basis. Both deterministic as well as probabilistic migration strategies 
have been implemented in the parallel island model in order to study their influence in 
the converged fitness. Impact induced delamination and matrix cracking has been 
used as failure criteria for the optimization of laminate. A design problem for  
weight optimization of a transversely impacted Graphite/Epoxy(T300/5208)-Aramid/ 
Epoxy(Kevlar 49) hybrid composite plate has been carried out. 
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2   The Parallel Genetic Algorithm 

Optimization of laminated FRP composites using GA is computationally intensive, 
consuming large amounts of computer space and time. The need to speed up the 
computational process has guided to the implementation of Parallel GA. Among 
several paradigms for how populations are evolved in parallel GA, one common 
method is known as the Island Model approach, which ideally suits the problem under 
consideration. 

The principle of IMPGA is based on the hypothesis that several competing sub-
populations could be more search-effective than a wider one in which all the members 
were held together. Therefore, it's not surprising that a distributed model for GA 
exists, which is inspired by these biological observations. This model is called the 
multi-population large-grained GA, or just the Island Model. In the Island Model, the 
overall population of chromosomes is partitioned into a number of sub-populations. 
Each sub-population evolves independently for optimizing the same objective 
function. Some logical topology for how the populations are interconnected is defined 
and periodically each sub-population replaces its chosen chromosome, as per 
migration strategy, with the best of its neighbor’s. 

The migration of string between subpopulations is a key feature of the IMPGA. 
Since each processor starts with a different initial population, genetic drift will tend to 
drive these populations into different directions. By introducing migration the island 
model is able to exploit differences in the various subpopulations. This variation 
represents a source of genetic diversity. However, migration of large number of 
individuals too often may drive out any local differences between islands, thus 
destroying global diversity. On the other hand, if migration occurs not often enough, 
it may lead to premature convergence of the subpopulations. 

3   Optimum Design of Laminated Composite 

In the present work, weight minimization of Graphite/Epoxy-Aramid/Epoxy hybrid 
composite plate, while subjected to transverse impact, has been considered as the 
optimization problem. The design variables are, ply angle, ply material and ply 
thickness of each ply along with the total number of plies in the laminate and hence 
the thickness of laminate. The objective functions for weight minimization is: 

=
×=

N

i
iiplywt tBLtfMinimize

1

)(),( ρρ  (1) 

Where t, , L and B represent ply thickness, ply material density, length and breadth 
of the plate respectively. The combined effect of critical matrix cracking (eM) and 
delamination (eD) at interface, both proposed by Choi et al [16, 17], has been taken as 
the failure criterion. Whichever occurs first is taken as the cause of failure. The failure 
criterion is: 

Failure Index: F.I = max{eD , eM}; fails if either eD or eM  1                (2) 
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Whenever a laminate satisfies above criterion (Eq.2), it is removed from the GA 
population by imposing heavy penalty in the fitness calculation, whereas laminates, 
which do not fail under above criterion, is being accepted with proportional bonus in 
the fitness calculation for the next generation. 

4   Numerical Results and Discussions 

In the present work, a computer code has been developed in ‘C’, which has two 
distinct modules viz. the FEM module and the parallel GA module. The FEM module 
consists of transient dynamic analysis and appropriate failure criteria for assessing the 
failure of laminated composites under impact loading [15]. The IMPGA module uses 
Message Passing Interface (MPI-1 and MPI-2) libraries as well as migration routines 
for optimization of laminated composite structures. The IMPGA module runs with a 
definite size of sub-population on different processors and on each processor FEA is 
carried out on a sequential basis. Also, each processor of IMPGA can spawn number 
of processes (2 No. of Spawned Process  Sub-Population) to distribute the organism 
among spawned process for carrying out FEA on sequential basis. The code has been 
run on a parallel platform, PARAM Padma, which is having one Teraflop peak 
computing power and having Power4 RISC processors.  

A square laminated plate (0.0762m×0.0762m) with arbitrary ply orientations and 
thicknesses, clamped along all the edges, subjected to transverse impact (of an 
aluminum spherical impactor [7, 15]) at the center has been considered for the 
analysis. The symmetric laminate may have any number of plies and each ply may be 
made of either Aramid/Epoxy or Graphite/Epoxy. The ply orientation of each ply 
could be between -90o and 90o with increments of 15o. The ply thickness of each ply 
can vary between 0.1mm to 0.5mm with increments of 0.1mm. The laminated plate 
has been impacted by 0.0127m diameter aluminum sphere with initial impactor 
velocity of 9m/s. Numerical experimentations have been done with different genetic 
parameters for studying the convergence of both sequential as well as parallel GAs 
and the tuned probabilities of the various operators are shown in Table 1.  

Table 1. Probabilities of the GA Operators 

Operators Probability 

Crossover 1.00 
Ply Orientation Mutation (Gene Swap) 0.75 
Ply Angle Mutation 0.05 
Ply Thickness Mutation 0.10 
Ply Material Mutation 0.05 

In the present work, the GA employs the selection schemes of elitist and binary 
tournament selection. The GA implementation of the present problem uses a string of 
genes to represent one forth of a balanced symmetric laminated composite plate, 
mainly to reduce the search space and to expedite the convergence. The length of the 
gene string is kept fixed throughout the optimization process. Although the gene 
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string length is fixed, having empty plies makes it possible to change the laminate 
thickness during the optimization process. 

To accommodate two or more materials, three strings of genes have been 
introduced, namely ply orientation, ply material and ply thickness with provision for 
thickness alterations [7]. Genes in the second and third string will once again 
determine whether the ply location is empty or filled with a ply of prescribed 
material/thickness. Corresponding genes in the first string determine the ply 
orientation if the ply is present. By employing separate ply material gene strings, the 
number of materials that may be used in the stacking sequence may be changed easily 
by adjusting the size of the material gene string. The design variables i.e. the ply 
thickness, ply material, ply orientation and the number of plies have been initially 
chosen using random initialization. The initial population starts with laminates having 
randomly chosen number of plies and corresponding to each ply, ply thickness, ply 
material and fiber orientation are also chosen at random. 

Single point crossover is the main genetic operator while mutation induces random 
changes in the genes and prevents the search from getting stuck in a local optimum. 
Gene swap is used to swap the positions of two genes on the hybrid chromosome. In 
all these, only one forth of the actual gene strings has been presented for carrying out 
the genetic operations by exploiting the fact that the search is for balanced as well as 
for symmetric laminates. 

In addition to the existing GA operators, in the IMPGA implementation, migration 
routine has been used to facilitate the exchange of chromosomes among the 
subpopulations at different processors. 

In the present study two migration strategies have been considered. In the first 
migration strategy (MS1), the fittest laminate in a subpopulation migrates to a 
neighbour and replaces the least fit laminate of the subpopulation. In second 
migration strategy (MS2), laminates are accepted when their fitness is better than the 
fittest laminate with probability 1.0. Laminates which are just as fit as the least fit 
laminate are accepted with probability P0 = 0.1. Laminates with fitness between the 
best and least fit laminate are accepted with probability P1, where P1 is a linear 
interpolation between P0 and 1.0. In all the cases, the migration frequency has been 
unity. 

Table 2. Comparison of SGA and IMPGA CPU Time for different number of processor for 500 
generations 

Processors (n) Time (tp) Speedup Actual  
(s = ts/tp) 

Speedup 
Theoretical 

Efficiency  
(E = s/n) 

1 (Serial) ts= 715729.61s - - - 

4 161691.97s 4.43 4 1.10 
5 119092.67s 6.01 5 1.20 
8 64347.58s 11.12 8 1.39 
10 47142.99s 15.18 10 1.51 
16 31720.28s 22.56 16 1.41 
20 42363.03s 16.90 20 0.84 
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Fig. 1 shows the convergence of the weight minimization problem with 10 
processor IMPGA and 80-population size for two different migration strategies (MS1 
and MS2). In comparing the two migration strategies, five numbers of runs has been 
given corresponding to each migration strategy. Fig. 1 shows the results 
corresponding to the best convergence in each case. It could be observed from Fig. 1 
that MS2 gives faster convergence with lighter laminate compared to that in case of 
MS1. This is due to the fact that in the case of MS1, premature convergence takes 
place due to selective pressure. Therefore, in the present work, MS2 has been used in 
the IMPGA for optimization of laminated composites. 

 

Fig. 1. Comparison of optimum laminate weight of MS1 with MS2 for weight minimization 
problem using 10 numbers of processors for a population size of 80 

On one of the nodes of PARAM Padma platform, optimization of the laminated 
plate subjected to impact has also been carried out using SGA corresponding to same 
genetic parameters and population. To show the efficacy of parallelism, for the same 
weight minimization problem, speedup, s (= ts/tp) which is the ratio of sequential run 
time ts and parallel run time tp has been compared with the theoretical time reduction 
1/n, where ‘n’ represents number of processors. It has been observed that actual time 
reduction outperforms the theoretical time reduction as evident from Table 2. Fig. 2 
shows the theoretical time reduction and the actual time reduction (speed-up) with 
increasing number of processors. It is clearly visible form Fig. 2 that the ratio ‘s’ 
increases almost linearly up to 10 processors and marginally declines in the increasing 
trend beyond 10 processors, which is due to the increase in communication time with 
increasing number of processors. The efficiency of parallelism E = s/n with 
increasing number of processors has also been presented in Table 2 and is plotted in 
Fig. 3. It shows nearly linear increase of efficiency up to 10 processors. The decline in 
efficiency beyond 10 processors indicates increase in communication time with the 
increase of number of processors. It is important to note that in all the cases presented 
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Fig. 2. Comparison of actual speedup with theoretical reduction in time for weight minimization 
problem using different number of processors for a population size of 80 

 

Fig. 3. Efficiency plot for weight minimization problem using different number of processors 
for a population size of 80 

in Table 2, the efficiency is greater than 1.0, which shows the superior computational 
performance of IMPGA over SGA. 

Further, to understand the behaviour of the algorithm with increasing number of 
population, keeping number of processors fixed, scalability analysis has been carried 
out and the same is compared with sequential algorithm.  The CPU time taken by 
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IMPGA and SGA has been tabulated in Table 3. The study of the plot in Fig. 4 shows 
sharp increase in SGA CPU time relative to IMPGA CPU time with increase in 
number of population. 

Table 3. Scalability Analysis; Comparison of SGA and IMPGA CPU Time for different number 
of populations for 200 generations 

Population Size Parallel Algorithm (sec);  
10 Processors 

Serial Algorithm (sec) 

20 - 129165.99 s 
40 - 267289.91 s 
50 13193.79 s 350693.11 s 
80 18449.28 s 571108.98 s 
100 25024.53 s 715000.00 s 
120 30446.63 s 868000.00 s 
140 35632.34 s 1040000.00 s 
160 38113.66 s 1205000.00 s 
180 47213.07 s 1390000.00 s 
200 53645.23 s 1583000.00 s 

 

 

Fig. 4. Comparison of SGA CPU time with IMPGA CPU time for weight minimization problem 
using 10 numbers of processors for a population size of 80 

In the weight minimization problem considered in present case, both SGA and 
IMPGA start with some maximum number of plies having arbitrary thickness and ply 
orientations. As the laminates converge towards optimum, the number of plies 
reduces in successive generation. Further, the rate of ply deletion in-turn is faster with 
IMPGA than SGA. The superior computational performance of IMPGA can be 
attributed to better mixing of genes, leading to faster convergence to optimal solution. 
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The reason of the above observation lies in the fact that thickness mutation operator 
evokes ply deletion which causes reduction in number of plies which in-turn reduces 
the finite element computational time for the laminate. The same is reflected in 
efficiency and scalability analysis which depicts the significant difference in 
computational time between integrated IMPGA-FEM module and SGA-FEM module. 
Since the optimization process using GA starts with a randomly generated initial 
population, it is possible that a solution or two may not attain satisfactory level. 
Hence, in the present work convergence has been tested with five different initial 
populations for each optimization problem and the best laminate obtained out of five 
such runs of the same problem has been presented as the converged near optimal 
solution in Table 4 along with the mean and standard deviation corresponding to each 
case. 

Table 4. Comparison of Optimum laminates obtained by IMPGA and SGA for weight 
minimization 

Processors Fitness Laminate Weight  Laminate Thickness 

1 

9.5529x10-1   

x  = 9.5461x10-1  
σ = 4.3430x10-4 

4.6916x10-2 kg 

x  = 4.8310x10-2 kg 
σ = 8.2690x10-4 kg 

0.0058 m 

x  = 0.0058 m 
σ =  0 m 

4 

9.652824x10-1  

x  = 9.652109x10-1  
σ = 4.050670x10-5 

3.632509x10-2 kg 

x  = 3.632509x10-2 kg 
σ = 0 kg 

0.004600 m 

x  = 0.004600 m 
σ =  0 m 

8 

9.878926x10-1 

x  = 9.708914x10-1  
σ = 9.815632x10-3   

1.263481x10-2 kg 

x  = 3.040252x10-2 kg 
σ = 1.025819x10-2kg 

0.001600 m 

x  = 0.003850 m 
σ = 1.299038x10-3 m 

10 

9.878926x10-1   

x  = 9.709083x10-1  
σ = 9.805880x10-3 

1.263481x10-2 kg 

x  = 3.040252x10-2 kg 
σ = 1.025819x10-2kg 

0.001600 m  

x  = 0.003850 m 
σ = 1.299038x10-3 m   

16 

9.652808x10-1   

x  = 9.649430x10-1  
σ = 5.823054x10-4 

3.632509x10-2 kg 

x  = 3.664096x10-2 kg 
σ = 6.317400x10-4kg 

0.004600 m 

x  = 0.004640 m 
σ = 8.000000x10-5 m 

20 

9.652788x10-1 

x  = 9.649600x10-1  
σ = 5.578570x10-4 

3.632509x10-2 kg 

x  = 3.664096x10-2 kg 
σ = 6.317400x10-4kg 

0.004600 m 

x  = 0.004640 m 
σ = 8.000000x10-5 m 

To show the performance of the parallel algorithm with increasing number of 
processors, for a fixed population size of 80, convergence pattern for weight 
optimization has been studied and the results obtained are presented in Table 4. Fig. 5 
shows the convergence of weight minimization problem with increasing number of 
processors. 
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Fig. 5. Comparison of optimum laminate weight of SGA with IMPGA for weight minimization 
problem using different number of processors for a population size of 80 

Table 4 shows the comparison of the laminates obtained using IMPGA on parallel 
platform and the SGA for the weight minimization problem discussed above. It could 
also be observed from the Table 4 that the efficacy of the IMPGA increases with 
increased number of processors up to 10 processors and the optimum laminate is 
much lighter and thinner compared to that obtained from SGA. But beyond 10 
processors, when the same optimization has been carried out with 16 and 20 
processors, the optimal laminates have been observed to be inferior though they are 
still lighter and thinner compared to that obtained from SGA. The reduction in fitness 
value or the increase in weight has been observed to be more pronounced with the 
increase in number of processors for a fixed population. This increase in 
weight/thickness beyond 10 processors in the present case shows that at each node, 
IMPGA requires a minimum size of subpopulation (critical sub-population size) 
below which the performance deteriorates. A laminate having higher value of failure 
index is given a penalty in the fitness calculation and the one with lower failure index 
is provided with bonus. 

To observe the reduction in computational time for weight optimization, a fixed 
population size of 25 (5 at each node of IMPGA) has been run for 10 number of 
generations and observations are presented in Table 5.  

Table 5 shows comparison of CPU time between IMPGA-FEM modules, one in 
which FEA is carried out sequentially at each node of IMPGA and other in which 
FEA is carried out at spawned processes (spawned at each node of IMPGA).  From 
Table 5, nearly 4.76 times reduction in computational time has been observed which 
is quite close to the maximum theoretical reduction. The slight deviation from the 
maximum theoretical reduction is because of increased communication among 
processes.  
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Table 5. Comparison of IMPGA-Sequential FEA (at each node of IMPGA) CPU Time with 
IMPGA-Sequential FEA at spawned processes (at each node of IMPGA) CPU Time using 5 
number of processors and population size of 25 for 10 generations 

FEA at Each Node of IMPGA Total CPU Time (sec) 

Sequential FEA 2221.36 sec 
Sequential FEA at spawned processes 466.61 sec 

5   Conclusion 

The integrated module comprising of IMPGA and FEM gives faster convergence 
along with lighter balanced symmetric laminate as compared with those obtained 
from integrated FEM and SGA module. Further, it has been observed that the speed 
up obtained from the present module is better than the possible theoretical speed up. 
A probabilistic migration strategy has been found to yield better convergence 
compared to the deterministic one. It has also been observed that for efficient working 
of IMPGA, a minimum size of sub population on each processor is a necessary 
requirement. Also, by spanning number of processes (at each node of IMPGA) for 
computation of FEA sequentially, it is possible to achieve near maximum theoretical 
computational time reduction. In summarizing, the IMPGA with an improved 
migration strategy in searching optimal laminates outperforms the SGA in terms of 
reduced computational time and better-converged solution. 
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Abstract. Emerging scientific and engineering simulations often require the cou-
pling of multiple physics models and associated parallel codes that execute inde-
pendently and in a distributed manner. Realizing these simulations in distributed
environments presents several challenges. This paper describes experiences with
wide-area coupling for a coupled fusion simulation using the Seine coupling
framework. Seine provides a dynamic geometry-based virtual shared space ab-
straction and supports flexible, efficient and scalable coupling, data redistribu-
tion and data streaming. The design and implementation of the coupled fusion
simulation using Seine, and an evaluation of its performance and overheads in a
wide-area environment are presented.

1 Introduction

Scientific and engineering simulations are becoming increasingly sophisticated as they
strive to achieve more accurate solutions to realistic models of complex phenomena. A
key aspect of these emerging simulations is the modeling of multiple interacting phys-
ical processes that comprise the phenomena being modeled. This leads to challenging
requirements for coupling between multiple physical models and associated parallel
codes that execute independently and in a distributed manner. Coupled systems provide
the individual models with a more realistic simulation environment, allowing them to
be interdependent on and interact with other physics models in the coupled system and
to react to dynamically changing boundary conditions. For example, in plasma science,
an integrated predictive plasma edge simulation couples an edge turbulence code with
a core turbulence code through common grids at the spatial interface [11].

However, achieving efficient, flexible and scalable coupling of physics models and
parallel application codes presents significant algorithmic, numerical and computational
challenges. From the computational point of view, the coupled simulations, each typi-
cally running on a distinct parallel system or set of processors with independent (and
possibly dynamic) distributions, need to periodically exchange information. This re-
quires that: (1) communication schedules between individual processors executing each
of the coupled simulations are computed efficiently, locally, and on-the-fly, without
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requiring synchronization or gathering global information, and without incurring sig-
nificant overheads on the simulations; and (2) data transfers are efficient and happen
directly between the individual processors of each simulation. Furthermore, specifying
these coupling behaviors between the simulation codes using popular message-passing
abstractions can be cumbersome and often inefficient, as they require matching sends
and receives to be explicitly defined for each interaction. As the individual simulations
become larger, more dynamic and heterogeneous and their couplings more complex,
implementations using message passing abstractions can quickly become unmanage-
able. Clearly, realizing coupled simulations requires an efficient, flexible and scalable
coupling framework and simple high-level programming abstractions.

This paper presents experiences with wide-area coupling for a coupled fusion simu-
lation using the Seine [6] coupling framework. The objective of this paper is to evaluate
the ability of Seine to support the coupling requirements of the recent CPES 1 DoE
SciDAC Fusion Simulation Project. Seine provides a semantically specialized virtual
shared space coupling abstraction and efficient, flexible and scalable mechanisms for
data coupling, redistribution and transfer [6]. The Seine shared space abstraction is de-
rived from the tuple space model. It presents an abstraction of a transient interaction
space that is semantically specialized to the application domain. The specialization is
based on the observation that interactions in the target applications can be specified on
an abstract spatial domain that is shared by the interacting entities, such as a multi-
dimensional geometric discretizations of the problem domain (e.g., grid or mesh). Fur-
ther, the interactions are local in this domain (e.g., intersecting or adjacent regions).
The shared spaces provided by Seine are localized to these regions of interaction, which
are sub-regions of the overall abstract domain. This allows the Seine abstraction to be
efficiently and scalably implemented and allows interactions to be decoupled at the ap-
plication level [6].

The Seine coupling framework differs from existing approaches in several ways.
First, it provides a simple but powerful abstraction for interaction and coupling in the
form of a virtual semantically-specialized shared space. This may be the geometric dis-
cretization of the application domain or an abstract multi-dimensional domain defined
exclusively for coupling purposes. Processes register regions of interest, and associa-
tively read and write data associated with the registered region from/to the space in
a decoupled manner. Registering processes do not need to know of, or explicitly syn-
chronize with, other processes during registration and computation of communication
schedules. Second, it supports efficient local computation of communication schedules
using lookups into a directory, which is implemented as a distributed hash table. Fi-
nally, it supports efficient and low-overhead processor-to-processor socket-based data
streaming and adaptive buffer management. The Seine model and the Seine-based cou-
pling framework complement existing parallel programming models and can work in
tandem with systems such as MPI, PVM and OpenMP.

This paper presents the coupling, data redistribution and data transfer requirements
of the coupled fusion simulations, and describes a prototype implementation of these
simulations using Seine. The paper then describes experiments with wide-area cou-
pling and demonstrates that the Seine-based implementation can potentially meet the

1 Center for Plasma Edge Simulation.
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data coupling requirements of the project. The experiments investigate the behavior
and performance of Seine-based coupling between simulations running at Oak Ridge
National Laboratory (ORNL) in TN, and Rutgers University (RU) in NJ, and measure
the time required for data redistribution and streaming as well as throughputs achieved
for different distribution patterns and data sizes. These experiments are intended to be a
proof-of-concept to demonstrate the feasibility of using the Seine coupling framework
to support data coupling in real Fusion simulations.

The rest of the paper is organized as follows. Section 2 presents related work. Sec-
tion 3 presents an overview of the Seine coupling framework. Section 4 describes the
coupled fusion simulations. Section 5 presents the Seine-based prototype implementa-
tion and experimental evaluation of the simulations. Section 6 presents conclusions and
outlines future directions.

2 Background and Related Work

Parallel data redistribution (also termed as the MxN problem) is a key aspect of the
coupling problem. It addresses the problem of transferring data from a parallel program
running on M processors to another parallel program running on N processors. Differ-
ent aspects of this problem have been addressed by recent projects such as MCT [4],
InterComm [3], PAWS [2], CUMULVS [1], DCA [5], DDB [9] etc., with different foci
and approaches. These systems differ in the approaches they use to compute communi-
cation schedules, the data redistribution patterns that they support, and the abstractions
they provide to the application developer. Most of these existing systems gather dis-
tribution information from all the coupled models at each processor and then locally
compute data redistribution schedules. This implies a collective communication and
possible global synchronization across the coupled systems, which can be expensive
and limit scalability. Further, abstractions provided by these systems are based on mes-
sage passing, which requires explicit definition of matching of sends and receives and
synchronized data transfers. Moreover, expressing very general redistribution patterns
using message passing type abstractions can be quite cumbersome.

The Seine geometry-based coupling framework provides a simple but powerful high-
level abstraction, based on a virtual associative shared space, to the application devel-
oper. Communication schedules are computed locally and in a decentralized manner
using a distributed directory layer. All interactions are completely decoupled and data
transfer is socket-based and processor-to-processor, and can be synchronous or asyn-
chronous. The Seine framework is introduced below.

3 The Seine Geometry-Based Coupling Framework

Seine is a dynamic geometry-based interaction/coupling framework for parallel scien-
tific and engineering applications. Note that the geometry may be based on the geomet-
ric discretization of the application domain or an abstract multi-dimensional domain
defined exclusively for coupling purposes. Seine spaces can be dynamically created
and destroyed. They complement existing parallel programming models and can co-
exist with them during program execution.
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3.1 The Seine Geometry-Based Coupling Model

Conceptually, the Seine coupling/interaction model is based on the tuple space model
where entities interact with each other by sharing objects in a logically shared space.
However there are key differences between the Seine model and the general tuple space
model. In the general tuple space model, the tuple space is global, spans the entire ap-
plication domain, can be accessed by all the nodes in computing environments, and
supports a very generic tuple-matching scheme. These characteristics of the general tu-
ple model have presented several implementation challenges. In contrast, Seine defines
a virtual dynamic shared space that spans a specific geometric region, which is a sub-
set of the entire application domain, and is only accessible by the dynamic subset of
nodes to which the geometric region is mapped. Further, objects in the Seine space are
geometry-based, i.e. each object has a geometric descriptor that specifies the region in
the application domain that the object is associated with. Applications use these ge-
ometric descriptors to associatively put and get objects to/from a Seine space. These
interactions are naturally decoupled.

The Seine API consists of a small set of simple primitives as listed in Table 1. The
register operation allows a process to dynamically register a region of interest, which
causes it to join an appropriate existing space or create a new space if one does not
exist. The put operator is used to write an object into the space, while the get operator

Table 1. Primitives provided by the Seine framework

Primitives Description

init(bootstrap-server-IP) Uses a bootstrap mechanism to initialize the Seine
runtime system.

register(object-geometric-descriptor) Registers a region with Seine.
put(object-geometric-descriptor, object) Inserts a geometric object into Seine.
get(object-geometric-descriptor, object) Retrieves and removes a geometric object from Seine.

This call will block until a matching object is put.
deregister(object-geometric-descriptor) De-registers a region from Seine.

Applications

Seine Interaction Space Access Interface

Load Balance Protocol
Space Management

Protocol

Consistency Protocol

Storage Layer
Directory Layer

Space Mapping Unit (SFC)

Communication Layer (TCP Socket)

Operating System

Supporting
Environment

for Other
Parallel

Programming
Models
(MPI/

OpenMP)

Fig. 1. Architectural overview of the Seine framework
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retrieves a matching object from the space, if one exists. If no matching object exists, it
will block until a matching object is put into the space. The deregister operation allows
a processor to de-register a previously registered region.

3.2 Design of the Seine Geometry-Based Coupling Framework

A schematic overview of the Seine architecture is presented in Figure 1. The frame-
work consists of three key components: a directory layer, a storage layer, and a com-
munication layer. The distributed directory layer enables the registration of spaces
and the efficient lookup of objects using their geometric descriptors. It detects geo-
metric relationships between shared geometry-based objects and manages the creation
of shared spaces based on the geometric relationship detected, the lifetime of shared
spaces including merging or splitting, and the destruction of shared spaces. The storage
layer consists of the local storage associated with registered shared spaces. The storage
for a shared space is distributed across the processors that have registered the space.
The communication layer provides efficient data transfer between processors. Since
coupling and parallel data redistribution for scientific application typically involves
communicating relatively large amounts of data, efficient communication and buffer
management are critical. Further, this communication has to be directly between the
individual processors. Currently Seine maintains the communication buffers at each
processors as a queue, and multiple sends are overlapped to better utilize available
bandwidth. Adaptive buffer management strategies are being integrated.

To share an object in the space, the geometric region of the object first needs to be reg-
istered with Seine. During registration, the Seine runtime system first maps the region
defined in the n-dimensional application space to a set of intervals in a 1-dimensional in-
dex space using the Hilbert Space Filling Curve (SFC) [8]. The index intervals are then
used to index into the Seine directory to locate the processor(s) to which the region is
mapped. Note that the mapping is efficient and only requires local computation.

A new registration request is compared with existing spaces. If overlapping regions
exist, a union of these regions is computed and the existing shared spaces are updated
to cover the union. Note that this might cause previously separate spaces to be merged.
If no overlapping regions exist, a new space is created. After registration, objects can
be put/get to/from the shared space. When an object is put into the space, the update
has to be reflected to all processors with objects whose geometric regions overlap with
that of the object being inserted. This is achieved by propagating the object or possibly
corresponding parts of the object (if the data associated with the region is decomposable
based on sub-regions, such as multi-dimensional arrays) to the processors that have reg-
istered overlapping geometric regions. As each shared space only spans a local commu-
nication region, it typically maps to a small number of processors and as a result update
propagation does not result in significant overheads. Further, unique tags are used to en-
able multiple distinct objects to be associated with the same geometric region. Note that
Seine does not impose any restrictions on the type of application data structures used.
However, the current implementation is optimized for multi-dimensional arrays. The
get operation is simply a local memory copy from Seine’s buffer to the application’s
buffer. Further details of Seine can be found in [6,7].
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3.3 Coupling Parallel Scientific Applications Using Seine

Developing coupled simulations using the Seine abstraction consists of the following
steps. First, the coupled simulations register their regions of interests, either in the geo-
metric discretization of the application domain or in an abstract n-dimensional domain
defined exclusively for coupling purposes. The registration phase detects geometric re-
lationships between registered regions and results in the dynamic creation of a virtual
shared space localized to the region and the derivation of associated communication
schedules. Coupling between the simulations consists of one simulation writing data
into the space and the other simulation independently reading data from the space. The
actual data transfer is point-to-point between the corresponding source and destination
processors of the respective applications.

4 Coupling Requirements in the CPES SciDAC Fusion Simulation
Project

4.1 An Overview of the CPES Fusion Simulation Project

The CPES DoE SciDAC Fusion project is developing a new integrated predictive plasma
edge simulation code package that is applicable to the plasma edge region relevant
to both existing magnetic fusion facilities and next-generation burning plasma experi-
ments, such as the International Thermonuclear Experimental Reactor (ITER) [10]. The
plasma edge includes the region from the top of the pedestal to the scape-off layer and
the divertor region bounded by a material wall. A multitude of non-equilibrium physical
processes on different spatio-temporal scales present in the edge region demand a large
scale integrated simulation. The low collisionality of the pedestal plasma, magnetic X-
point geometry, spatially sensitive velocity-hole boundary, non-Maxwellian nature of
the particle distribution function, and particle source from neutrals, combine to require
the development of a special, massively parallel kinetic transport code for kinetic trans-
port physics using a particle-in-cell (PIC) [12] approach. However, a fluid code is more
efficient in terms of computing time, for studying the large scale MHD phenomena,
such as Edge Localized Modes (ELMs) [12]. Furthermore, such an event is separable
since its time scale is much shorter than that of the transport. The kinetic and MHD
codes must however be integrated together for a self-consistent simulation as a whole.
Consequently, the edge turbulence PIC code (i.e., XGC [13]) will be connected with
the microscopic MHD code (i.e., M3D) using common grids at the spatial interface to
study the dynamical pedestal-ELM cycle.

4.2 Data Coupling in the CPES Fusion Simulation Project

The coupled parallel simulation codes, XGC and M3D, will be run on different num-
bers of processors on different platforms. The overall workflow illustrating the cou-
pling between XGC and M3D code is shown in Figure 2. The coupling begins with
the generation of a common spatial grid. XGC then calculates two dimensional density,



Experiments with Wide Area Data Coupling Using the Seine Coupling Framework 235

Density,
Temperature, V,

Diffusion
Coefficient,

Electric Field,
Viscosity,
Resistivity

Yes

XGC MHD-L
Mesh/

Interpolation

Stable?
Yes

No

XGC MHD
Mesh/

Interpolation

Stable?

Mesh/
Interpolation

No

(xi, vi)

2d data 3d data

3d data

3d data2d data

(xi, vi)

Monitor

Fig. 2. Workflow illustrating the coupling between XGC and M3D

temperature, bootstrap current, and viscosity profiles in accordance with neoclassical
and turbulent transport, and sends these to M3D. The input pressure tensor and current
information are used by M3D to evolve the equilibrium magnetic field configuration,
which it then sends back to XGC to enable it to update its magnetic equilibrium and
to check for stability. During and after the ELM crash, the pressure, density, magnetic
field and current will be toroidally averaged and sent to XGC. During the ELM calcu-
lation, XGC will evaluate the kinetic closure information and kinetic Er evolution and
send them to M3D for a more consistent simulation of ELM dynamics. The XGC and
MHD codes [12] use different formulations and domain configurations and decomposi-
tions. As a result, a mesh interpolation module (referred to as MI) is needed to translate
between the mesh/data used in the two codes.

Challenges and Requirements. In the CPES project, XGC will be running on a large
number of processors while M3D will typically run on 128 or fewer processors. As a
result, coupling these codes will require data redistribution. Note that in this case, the
redistribution is actually MxPxN, where the XGC code runs on M processors, the inter-
polation module (MI) runs on P processors, and the M3D code runs on N processors.

The fusion simulation application imposes strict constraints on the performance and
overheads of data redistribution and transfer between the codes. Since the integrated
system is constructed so as to overlap the execution of XGC with stability check by
M3D, it is essential that the result of the stability check is available by the time it is
needed by XGC, otherwise the large number (1000s) of processors running XGC will
remain idle offsetting any benefit of a coupled simulation. Another constraint is the
overhead that the coupling and data transfer imposes on the simulations.
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4.3 A Prototype Coupled Fusion Simulation Using Seine

Since the CPES project is at a very early stage, the scientists involved in the project are
still investigating the underlying physics and numerics, and the XGC and M3D codes
are still under development. However, the overall coupling behaviors of the codes are
reasonably understood. As a result, this paper uses synthetic codes, which emulate the
coupling behaviors of the actual codes but perform dummy computations, to develop
and evaluate the coupling framework. The goal is to have the coupling framework ready
when the project moves to production runs. The configuration of the mock simulation
using the synthetic codes is shown in Figure 3. In the figure, the coupling consists of
two parts, the coupling between XGC and MI and the coupling between MI and M3D.

put (data 2)
XGC

(data 1 with domain
decomposition 1)

M3D
(data 2 with domain

decomposition 2)

Mesh
Interpolation

(data 1, 2)

M Processors N ProcessorsP Processors

put(data 1)

get (data 2)get (data 2)

register (data descriptor 1);
while(loop_continue){
     put(data 1) to Mesh Interpolation;
     computation;
     get(data 1) from Mesh Interpolation;
     computation;
}

register (data descriptor 1);
register (data descriptor 2);
while(loop_continue){
     get(data 1) from XGC;
     Mesh Interpolation to convert data 1 to data 2;

 put(data 2) to M3D;

get(data 2) from M3D;
     Mesh Interpolation to convert data 2 to data 1;

 put(data 2) to M3D;
}

register (data descriptor 2);
while(loop_continue){
     get(data 2) from Mesh Interpolation;
     computation;
     put(data 2) to Mesh Interpolation;
     computation;
}

Fig. 3. Configuration of the mock coupled fusion simulation

Domain decompositions: The entire problem domain in the coupled fusion simulation
is a 3D toroidal ring. The 3D toroidal ring is then sliced to get a number of 2D poloidal
planes as the computation domains. Each plane contains a large number of particles,
each of which is described by its physical location using coordinates and a set of physics
variables. Each 2D poloidal plane is assigned to and replicated on a group of processors.
Since XGC and M3D use different domain decompositions, the numbers of planes in
the two codes are different, and MI is used to map the XGC domain decomposition to
the M3D domain decomposition.

Coupled fusion simulations using Seine Shared Spaces: Recall that coupling in Seine
is based on a spatial domain that is shared between the entities that are coupled. This
may be the geometric discretization of the application domain or may be an abstract
multi-dimensional domain defined exclusively for coupling purposes. The prototype
described here uses the latter.

Given that the first phase of coupling between XGC and M3D is essentially based
on the 2D poloidal plane, a 3D abstract domain can be constructed as follows: The X-
axis represents particles on a plane and is the dimension that is distributed across the
processors. The Y-axis represents the plane id. Each processor has exactly one plane
and may have some or all the particles in that plane. The Z-axis represents application
variables associated with each particle. Each processor has all the variables associated
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with each particle that is mapped to it. Using this abstract domain, Seine-based cou-
pling is achieved as follows. Each XGC processor registers a region in the 3D abstract
domain based on the 2D poloidal plane and the particles assigned to it, and the variables
associated with each particle. The registered region is specified as a 6-field tuple and
represents a 2D plane in the 3D abstract domain, since each processor is assigned par-
ticles on only one poloidal plane. Each processor running MI similarly registers its cor-
responding region in the 3D abstract domain. Note that since MI acts as the “coupler”
between XGC and M3D, these processors register regions twice - once corresponding
to the XGC domain decomposition and the second time corresponding to M3D domain
decomposition. Once the registration is complete, the simulations can use the operators
provided by Seine, i.e., put and get, to achieve coupling.

5 Prototype Implementation and Performance Evaluation

The schematic in Figure 4 illustrates a prototype implementation of a Seine-based cou-
pled simulation. Note that, while the figure illustrates a MxN coupled simulation, the
configuration for a coupled MxPxN simulation is similar. The Seine implementation re-
quires a Seine-proxy, which is a local daemon process that resides on each processor
using Seine. The Seine distributed directory layer deterministically maps the shared ab-
stract domain onto the Seine infrastructure processors. The Seine distributed directory
runs on X processors, which may or may not overlap with the M, P and N processors run-
ning XGC, MI and M3D respectively. The Seine-proxy at each processor is initialized
by the init call within the application code. Once the Seine-proxy is initialized, it handles
all the processor interaction with Seine including register, put and get operations.

Fig. 4. A prototype schematic of coupling and data redistribution using the Seine framework

5.1 Experiments with Wide-Area Coupling Using the Prototype Seine-Based
Fusion Simulation

The experiments presented in this section were conducted between two sites: a 80 nodes
cluster with 2 processors per node at Oak Ridge National Laboratory (ORNL) in TN,
and 64 node cluster at the CAIP Center at Rutgers University in NJ. The synthetic XGC
code ran on the ORNL cluster and the MI module and the synthetic M3D code ran on
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the CAIP cluster. That is, in the MxPxN coupling, site M was at ORNL and sites P and
N were at CAIP. The two clusters had different processors, memory and interconnects.
Due to security restrictions at ORNL, these experiments were only able to evaluate the
performance of data transfers from ORNL to CAIP, i.e., XGC pushing data to the MI
module, which then pushes the data to M3D.

In the experiments below, the XGC domain was decomposed into 8 2D poloidal
planes, while the M3D problem domain was decomposed into 6 2D poloidal planes.
The number of particles in each plane was varied in the different experiments. Each
particle is associated with 9 variables. Since the get operation in Seine is local and
does not involve data communication, the evaluations presented below focus on the put
operation, which pushes data over the network. The experiments evaluate the operation
cost and throughput achieved by the put operation.

Cost of the put operation: In this experiment, 7,200 particles were used in each poloidal
plane resulting in an abstract domain of size 7,200x8x9 between XGC and MI and
7,200x6x9 between MI and M3D. The number of processors at site M, which ran the
XGC code, was varied. As the number of processors at site M increased, the absolute
time for the register and put operations decreased since operation costs are directly
affected by the size of the region. The decrease in absolute time cost is because the
size of the entire abstract domain is fixed and as the number of processor increases,
each processor registers/puts a smaller portion of this domain, resulting in a decrease
in the absolute operation cost. Since the size of the region varies in the above metric,
a normalized cost for the operations is calculated by dividing the absolute cost of an
operation by the size of region involved. The normalized cost increases as the system
size increases. Several factors contribute to this increase, including blocked-waiting
time within a register operation, and message and data transfer costs associated with a
register or put operation. A detailed analysis of this behavior can be found in [7].

Throughput achieved: The goal of this experiment is to measure the per processor
throughput that can be achieved during wide-area data coupling for different system
and abstract domain sizes. In the experiment, the number of particles per poloidal plane
was varied to be 7,200, 14,400, and 28,800, and the number of processors running
XGC at site M were varied to be 8, 16, 32, 64 and 128. Throughput per processor in this
experiment was calculated as the ratio of the average data size used by a put operation
to the average cost of a put operation. Note that data transfers from the processors at
site M occur in parallel and the effective application level throughput is much higher.
The per processor throughput at site M is plotted in Figure 5(a), and the estimated
effective system throughputs computed assuming different levels of concurrency for
the data transfer are plotted in Figure 5(b) and (c). Two observations can be made from
Figure 5(a). First, the per processor throughput at site M decreases with the number of
processors used at site M for all the abstract domain sizes tested. This is because the
wide-area link is shared and when the number of processors increases the bandwidth
available to each processor decreases, resulting in a lower throughput on each processor.
Second, for the same number of processors at site M, in most cases, the per processor
throughput for smaller abstract domain sizes is higher than the throughput for larger
abstract domain sizes. This is because, for larger abstract domain sizes, the size of data
to be redistributed is correspondingly larger, resulting in a more congested network.
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Fig. 5. (a) Per-processor throughput for XGC at site M; (b) Estimated effective system throughput
assuming a data transfer overlap of 35%; (c) Estimated effective system throughput assuming a
data transfer overlap of 50%

Further, the processors at site P are connected to the processors at both site M and site
N. Consequently, site M processors have to compete with site N for connections with
site P, which further causes the throughput to decrease for larger abstract domain sizes.

In the CPES Fusion project, site M (running XGC) throughput is a key requirement
that must be met by the coupling framework. An initial estimate for the transfer rate
from XGC to MI is 120Mbps. The estimated effective system throughput, based on the
per processor bandwidth measured above and assuming 35% and 50% overlap in the
per processor data transfer respectively, are plotted in Figure 5(b) and (c). Assuming
that the system running XGC has 32 IO nodes, as seen from these plots, the estimated
effective system throughputs are 34 - 42Mbps assuming a 35% overlap and 50 - 60Mbps
assuming a 50% overlap. While these figures are still not close to the Fusion throughput
requirement, we believe that these are conservative numbers and that Seine can support
the required throughput when used in a real production scenario. This is because (1)
these experiments assumed an extreme case where data was continuously generated by
XGC, which is not realistic, and (2) these experiments use the Internet for the wide-
area data-transfers while a real production run would use a dedicated and customized
high-speed interconnect.
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Fig. 6. (a) put operation cost at site M and P for different data generation rates; (b) Per processor
throughput at site M for different data generation rates

Effect of data generation rates: This experiment evaluated the effect of varying the
rate at which data was generated by XGC at site M. In this experiment, XGC generated
data at regular intervals, between which, it performed computations. It is estimated by
the physicists that on average, XGC requires 3 times the computation as compared to
MI and M3D. As a result, the experiment used three sets of computes times for XGC,
MI and M3D of (1) 0, 0 and 0 seconds (corresponding to the previous experiments),
(2) 30, 10 and 10 seconds, and (3) 60, 20 and 20 seconds respectively. The results are
plotted in Figure 6. The plots show that, as expected, the cost of the put operation and
the throughput per processor improves as the data generation rate reduces.

6 Conclusion

The paper presented experiments and experiences with wide area coupling for a fusion
simulation using the Seine coupling framework. The goal of these experiments is to
evaluate the ability of Seine to support the coupling requirements of the ongoing CPES
DoE SciDAC Fusion Simulation Project. Seine presents a high-level semantically spe-
cialized shared space abstraction to application and provides efficient and scalable data
coupling, data redistribution and data transfer services. The experimental results using a
prototype coupled fusion simulation scenario demonstrate the performance, throughput
and low simulation overheads achieved by Seine.

Note that the experiments presented here are a proof-of-concept and demonstrate
feasibility. As the project progresses and real codes and more detailed requirements
become available, the Seine framework and abstractions will have to be tuned to ensure
that it can support true production runs.
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Abstract. The paper presents a tool that ports ScaLAPACK programs designed 
to run on massively parallel processors to Heterogeneous Networks of 
Computers. The tool converts ScaLAPACK programs to HeteroMPI programs. 
The resulting HeteroMPI programs do not aim to extract the maximum 
performance from a Heterogeneous Networks of Computers but provide an easy 
and simple way to execute the ScaLAPACK programs on such networks with 
good performance improvements. We demonstrate the efficiency of the 
resulting HeteroMPI programs by performing experiments with a matrix 
multiplication application on a local network of heterogeneous computers. 

1   Introduction 

In this paper, we present a tool, which ports conventional parallel programs that are 
designed to run on massively parallel processors (MPP) such as Scalable Linear 
Algebra Package (ScaLAPACK) programs [1] to Heterogeneous Message Passing 
Interface (HeteroMPI) programs [2] for Heterogeneous Networks of Computers 
(HNOCs). The resulting HeteroMPI programs do not aim to extract the maximum 
performance from a heterogeneous network but provide an easy and simple way to 
execute the conventional parallel programs on HNOCs with good performance 
improvements. Before we describe the details of the porting procedure, we present 
briefly the ScaLAPACK and HeteroMPI packages. 

ScaLAPACK is a well-known standard package of high-performance linear 
algebra routines for distributed-memory message passing MIMD computers and 
networks of workstations supporting PVM [3] and/or MPI [4]. It is a continuation of 
the LAPACK project [5], which designed and produced analogous software for 
workstations, vector supercomputers, and shared-memory parallel computers. Both 
libraries contain routines for solving systems of linear equations, least squares 
problems, and eigenvalue problems. 

HeteroMPI is an extension of MPI for programming high-performance 
computations on heterogeneous networks of computers. The main idea of HeteroMPI 
is to automate the process of selection of a group of processes, which would execute 
the heterogeneous parallel algorithm faster than any other group.  
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The first step in this process of automation is the specification of the performance 
model of the heterogeneous parallel algorithm in a performance model definition 
language. Performance model is a tool supplied to the programmer to specify his or 
her high-level knowledge of the application in a generic form. This knowledge is used 
by the HeteroMPI runtime system to find the most efficient implementation of the 
heterogeneous parallel algorithm on HNOCs.  

The second step involves the writing of a HeteroMPI application. A typical 
HeteroMPI application consists of the following steps: 

1. Accurate determination of the platform parameters using HeteroMPI characterization 
API; 

2. Optimal data partitioning using HeteroMPI data partitioning API. This step of 
heterogeneous decomposition is parameterized by the platform parameters 
determined in the first step; 

3. Determination of the optimal algorithmic parameters using HeteroMPI estimation 
API; 

4. Efficient mapping of processes to the computers of the executing heterogeneous 
network. HeteroMPI group management operations automate this step.  

5. Finally the execution of the HeteroMPI program using the HeteroMPI’s command 
line interface. 

The tool that we present in this paper mainly assists scientists trying to port their 
homogeneous parallel algorithms to HNOCs. It is usually a difficult design task to 
come up with a practical and efficient heterogeneous counterpart of a homogeneous 
parallel algorithm on HNOCs. The problem of optimal heterogeneous data 
distribution has proved to be NP-complete even for such a simple linear algebra 
kernel as matrix multiplication on HNOCs [6]. Once the heterogeneous parallel 
algorithm is designed, its portable and efficient implementation on heterogeneous 
platforms requires writing of a lot of complex code to automate several tedious and 
error-prone tasks [7]. The scientists can use this tool for porting their homogeneous 
parallel algorithms for HNOCs without any rewriting or redesigning. It can be seen as 
a first step towards the realization of a ScaLAPACK for HNOCs. 

The tool takes two inputs. The first input is a ScaLAPACK program containing the 
homogeneous parallel algorithm that solves the problem on MPPs. The other input is 
the performance model of the homogeneous parallel algorithm employed in the 
ScaLAPACK program described in HeteroMPI’s performance model definition 
language. It generates a HeteroMPI program, which uses a multiprocessing algorithm 
consisting of the following steps: 

• The whole computation is partitioned into a large number of equal chunks; 
• Each chunk is performed by a separate process; 
• More than one process is allowed to be run on each processor. During the creation 

of a HeteroMPI group of processes, the mapping of the parallel processes in the 
group is performed such that the number of processes running on each processor is 
as proportional to its relative speed as possible.  

In other words, while distributed evenly across parallel processes, data and 
computations are distributed unevenly over processors of the heterogeneous network, 
and this way each processor performs the volume of computations as proportional to 
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its speed as possible. At the same time during the creation of a HeteroMPI group of 
processes, the mapping algorithm invoked tries to arrange the processors along a 2D 
grid so as to optimally load balance the work of the processors.  

We start with literature survey on the multiprocessing approaches to solving 
parallel problems and proposals for heterogeneous ScaLAPACK. Then we describe 
the details of the porting procedure of the ScaLAPACK programs to HeteroMPI 
programs. This is followed by experimental results with a matrix multiplication 
application on a local network of heterogeneous computers demonstrating the 
efficiency of the resulting HeteroMPI programs. We conclude the paper by outlining 
our future research goals. 

2   Literature Survey 

The section surveys related papers from the literature. The papers surveyed are 
mainly: papers presenting proposals for heterogeneous ScaLAPACK and papers 
presenting multiprocessing approaches to solve parallel problems on HNOCs. 

Beaumont et al. [8] discuss data allocation strategies to implement matrix products 
and dense linear system solvers on heterogeneous computing platforms as a basis for 
a successful extension of the ScaLAPACK library to heterogeneous platforms. They 
show that extending the standard ScaLAPACK block-cyclic distribution to 
heterogeneous 2D grids is difficult. In most cases, a perfect balancing of the load 
between all processors cannot be achieved and deciding how to arrange the processors 
along the 2D grid is a challenging NP-complete problem. They formally state the 
optimization problem to be solved and present both an exact solution (with 
exponential cost) and a heuristic solution. 

Kalinov and Lastovetsky [9] analyze two strategies:  

• HeHo - heterogeneous distribution of processes over processors and homogeneous 
block distribution of data over the processes;  

• HoHe - homogeneous distribution of processes over processors with each process 
running on a separate processor and heterogeneous block cyclic distribution of data 
over the processes.  

Both strategies were implemented in the mpC language [10, 11]. The first strategy 
is implemented using calls to ScaLAPACK; the second strategy is implemented with 
calls to LAPACK and BLAS [12]. They compare the strategies using Cholesky 
factorization on a network of workstations. They show that for heterogeneous parallel 
environments both the strategies HeHo and HoHe are more efficient that the 
traditional homogeneous strategy HoHo (homogeneous distribution of processes over 
processors and homogeneous distribution of data over the processes as implemented 
in ScaLAPACK). The main disadvantage of the HoHe strategy is non-Cartesian 
nature of the data distribution. This leads to additional communications that can be 
essential in the case of large networks. The HeHo strategy is easy to accomplish. It 
allows the reuse of high-quality software, such as ScaLAPACK, developed for 
homogeneous distributed memory systems in heterogeneous environments and to 
obtain a good speedup with minimal expenses.  
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Kishimoto and Ichikawa [13] adopt a multiprocessing approach to estimate the best 
processing element (PE) configuration and process allocation based on an execution-
time model of the application. The execution time is modeled from the measurement 
results of various configurations. Then, a derived model is used to estimate the 
optimal PE configuration and process allocation. Kalinov and Klimov [14] investigate 
the HeHo strategy where the performance of the processor is given as a function of 
the number of processes running on the processor and the amount of data distributed 
to the processor. They present an algorithm that computes optimal number of 
processes and their distribution over processors minimizing the execution time of the 
application. 

3   Porting a Legacy ScaLAPACK Program 

This section is divided into three sub-sections. We start with the legacy ScaLAPACK 
program that is to be ported. This is followed by description of the homogeneous 
parallel algorithm used in the ScaLAPACK program in HeteroMPI’s performance 
model definition language. In the second sub-section, we explain the structure of the 
HeteroMPI program output by the porting procedure. Finally we explain the issues 
involved in the porting procedure and how they are resolved. 

3.1   Inputs 

There are two inputs provided to the tool. The first input is the ScaLAPACK program 
computing matrix multiplication using the routine PDGEMM. There are four basic 
steps involved in calling a ScaLAPACK routine. The reader is directed to the 
ScaLAPACK users’ guide [15] for more details.  

The second input is the performance model definition pdgemm of the matrix 
multiplication routine PDGEMM. HeteroMPI allows application programmers to 
describe a performance model of their implemented homogeneous algorithm. This 
model allows specification of all the main features of the underlying parallel 
algorithm that have an essential impact on application execution performance on 
HNOCs. These features are: 

• The total number of processes executing the algorithm.  
• The total volume of computations to be performed by each of the processes in the 

group during the execution of the algorithm, 
• The total volume of data to be transferred between each pair of processes in the 

group during the execution of the algorithm, and 
• The order of execution of the computations and communications by the involved 

parallel processes in the group, that is, how exactly the processes interact during 
the execution of the algorithm. 

HeteroMPI provides a small and dedicated model definition language for specifying 
this performance model. This language uses most of the features in the specification 
of network types of the mpC language. A compiler compiles the description of this  
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Fig. 1. Specification of the performance model of the homogeneous algorithm employed by 
PDGEMM in the HeteroMPI’s performance definition language  

performance model to generate a set of functions. The functions make up an 
algorithm-specific part of the HeteroMPI runtime system. 

The tool takes as input the performance model definition pdgemm shown in Figure 1. 
This performance model definition describes the simplest scenario performed by the 
pdgemm routine in ScaLAPACK, which uses outer-product algorithm using the 
logical LCM hybrid algorithmic blocking strategy [16]. The performance model 
definition describes the parallel matrix-matrix multiplication of two dense square 
matrices A and B of size n×n. The distribution blocking factor b used in the matrix-
matrix multiplication is assumed to be equal to the algorithmic blocking factor. The 
performance model definition also assumes that the matrices are divided into whole 
number of blocks of size equal to distribution blocking factor, that is, (n%(b×p)) 
and (n%(b×q)) (see explanation of variables below) are both equal to zero.  

The reader is referred to [11,17] for explanation of the main constructs, namely 
coord, parent, node, link, and scheme, used in a description of a performance 
  

/* 1 */ algorithm pdgemm(int n, int b, int t, int p, int q) 
/* 2 */ { 
/* 3 */   coord I=p, J=q; 
/* 4 */   node {I>=0 && J>=0: bench*((n/(b*p))*(n/(b*q))*(n/t));}; 
/* 5 */   link (K=p, L=q) 
/* 6 */   { 
/* 7 */      I>=0 && J>=0 && I!=K : 
/* 8 */        length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))  
/* 9 */              [I, J]->[K, J]; 
/* 10 */     I>=0 && J>=0 && J!=L: 
/* 11 */       length*((n/(b*p))*(n/(b*q))*(b*b)*sizeof(double))  
/* 12 */             [I, J]->[I, L]; 
/* 13 */   }; 
/* 14 */   parent[0,0]; 
/* 15 */   scheme 
/* 16 */   { 
/* 17 */     int i, j, k; 
/* 18 */     for(k = 0; k < n; k+=b) 
/* 19 */     { 
/* 20 */       par(i = 0; i < p; i++) 
/* 21 */          par(j = 0; j < q; j++) 
/* 22 */             if (j != ((k/b)%q)) 
/* 23 */               (100.0/(n/(b*q))) %% [i,((k/b)%q)]->[i,j]; 
/* 24 */       par(i = 0; i < p; i++) 
/* 25 */          par(j = 0; j < q; j++) 
/* 26 */             if (i != ((k/b)%p)) 
/* 27 */               (100.0/(n/(b*p))) %% [((k/b)%p),j]->[i,j]; 
/* 28 */       par(i = 0; i < p; i++) 
/* 29 */         par(j = 0; j < q; j++) 
/* 30 */           ((100.0×b)/n) %% [i,j]; 
/* 31 */     } 
/* 32 */   };    
/* 33 */ }; 
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Fig. 2. The most relevant fragments of generated HeteroMPI code computing matrix-matrix 
multiplication using PDGEMM on heterogeneous networks 

model. Briefly, Line 1 is a header of the performance model declaration. It introduces 
the name of the performance model pdgemm parameterized with the scalar integer 
parameters n, b, t, p, and q. Parameter n is the size of square matrices A, B, and C. It 
is assumed that the benchmark code multiplies two b×t and t×b matrices. Parameter 
b is the size of the distribution blocking factor. Parameters p and q are output 
parameters representing the number of processes along the row and the column in the 
process grid arrangement. Line 3 is a coordinate declaration declaring the coordinate 
system to which the processor nodes of the network are related. Line 4 is a node 
declaration. It relates the virtual processors to the coordinate system declared and 
specifies the (absolute) volume of computations to be performed by each of the 
processors. Lines 5-13 are a link declaration. This specifies the links between the 
virtual processors, the pattern of communication among the abstract processors, and 
the total volume of data to be transferred between each pair of virtual processors 
during the execution of the algorithm. Line 14 is a parent declaration. It specifies the 
coordinates of the parent processor node in a given coordinate system. Line 15 
introduces the scheme declaration. The scheme block describes how exactly virtual 
processors interact during the execution of the algorithm. 

int main(int argc, char **argv) { 
    static int p, q, n, t, input_p, output_p; 

  int* mdlparams; 
  HMPI_Group gid; 
  HMPI_Init(&argc, &argv); 
  // Estimation of speeds of the processors 
  if (HMPI_Is_member(HMPI_PROC_WORLD_GROUP) 
     HMPI_Recon(&dgemm, &input_p, 2, &output_p); 
  // Model parameter initialization 
  if (HMPI_Is_host()) 
     mdl_params[0] = n; mdl_params[1] = 64; mdl_params[2] = t; 
  // HMPI Group creation 
  if (HMPI_Is_host()) 
      HMPI_Group_heuristic_auto_create(&gid, &HMPI_Model_pdgemm,  
                                       &hfunc, mdl_params);    
  if (HMPI_Is_free()) 
      HMPI_Group__heuristic_auto_create(&gid, &HMPI_Model_pdgemm,  
                                        NULL, NULL);    
  // Execution of the algorithm 
  if (HMPI_Is_member(&gid)) { 
     MPI_Comm algocomm = *(MPI_Comm*)HMPI_Get_comm(&gid); 
     HMPI_Group_topology(&gid, &nd, &dp); 
     p = dp[0]; q = dp[1]; // optimal process grid arrangement 
     ictxt = Csys2blacs_handle(algocomm);   
     //Legacy ScaLAPACK program pdgemm code using ictxt 
  } 
  // HMPI Group Destruction 
  if (HMPI_Is_member(&gid)) 
     HMPI_Group_free(&gid);     
  HMPI_Finalize(0);      

} 
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3.2   Target HeteroMPI Program 

The HeteroMPI program shown in Figure 2 resulting from the porting procedure 
performs typically the following steps: 

1. The initialization of HeteroMPI runtime using the function HMPI_Init; 
2. This is followed by dynamic refreshment of the estimation of the processor speeds 

using the characterization function HMPI_Recon. The benchmark code used in the 
call to HMPI_Recon is a serial BLAS version of the parallel ScaLAPACK routine. 
In this case, the BLAS routine dgemm multiplying two dense matrices is used to 
dynamically refresh the processor speeds. The benchmark code allocates, multiplies, 
and frees two b×t and t×b matrices where b is the distribution blocking factor and t 
is is equal to the size of the matrix used in the parallel application divided by the 
square root of the total number of processes that are available for computation. This 
is a heuristic used because some of the processes may not be chosen by the mapping 
algorithm employed by the HeteroMPI group constructor function (presented 
subsequently) to participate in the execution the parallel application.  

3. Creation of a HeteroMPI group of processes using the group management function 
HMPI_Group_auto_create to obtain a handle to the HeteroMPI group of MPI 
processes. This function detects the optimal number of processes that can execute the 
parallel application, that is, finds the optimal arrangement of processes in a grid. 
During the creation of a HeteroMPI group of processes, the mapping of the parallel 
processes in the group is performed such that the number of processes running on 
each processor is proportional to its speed. At the same time, the processors are 
arranged along the 2D grid p×q so as to optimally load balance the work of the 
processors. The mapping algorithm is explained in detail in [11]. Since the number of 
2D process grid arrangements is large, the HeteroMPI program uses the HeteroMPI 
function HMPI_Group_heuristic_auto_create instead of the HeteroMPI function 
HMPI_Group_auto_create, which evaluates all the possible 2D process grid 
arrangements. The function HMPI_Group_heuristic_auto_create uses heuristics to 
reduce the number of process arrangements to evaluate. The design and 
implementation of the HeteroMPI group constructor functions are explained in detail 
in [17];  

4. The function HMPI_Group_heuristic_auto_create returns an HeteroMPI handle to 
the group of MPI processes in gid. The second parameter HMPI_Model_pdgemm 
is a handle that encapsulates all the features of the performance model. These 
features are in the form of a set of functions generated by the compiler from the 
description of the performance model. The third parameter hfunc is a heuristic 
function used to reduce the number of 2D process arrangements to evaluate. The 
fourth parameter mdl_params is an input parameter to the performance model, 
which consists of problem size to be solved, the algorithmic blocking factor used 
(which is equal to the distribution blocking factor) and the size of matrix used in 
the benchmark code. The only input provided by the application programmer is the 
problem size to be solved; 

5. Conversion of the handle to the HeteroMPI group of MPI processes obtained 
previously to an MPI communicator using the function call HMPI_Get_comm; 

6. Conversion of the MPI communicator to an integer BLACS handle, which can be 
passed into grid creation routine. This is done using the interim BLACS routine 
Csys2blacs_handle; 
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7. Creation of the BLACS context using the integer BLACS handle. This is done 
using the interim BLACS routine Cblacs_gridinit; 

8. The legacy ScaLAPACK code is then executed using the BLACS context 
obtained; 

9. This is followed by freeing the group using operation HMPI_Group_free and the 
finalization of HeteroMPI runtime system using operation HMPI_Finalize. 

It can be seen that the HeteroMPI program automates the most tedious and error-
prone tasks that are involved in porting a homogeneous parallel application. 

3.3   Porting Issues 

There are three important issues to be considered in the porting procedure. 

1. The total number of processes to be allocated to each participating computer when 
the user starts up the application. Some basic rules to choose the number of 
processes to allocate per each processor can be followed: 

• First of all, the number of processes running on each computer should not be less 
than the number of processors of the computer just to be able to exploit all the 
available processor resources. So the lower bound on the number of processes to be 
run on a computer is given by the number of processors on the computer. 

• The upper bound on the number of processes executed on each processor is 
roughly equal to the ratio of speed of the fastest processor to speed of the slowest 
processor on the executing network of computers. 

2. The blocking factor used to distribute the rows and the columns of the matrices 
involved in the computation. It is observed that for a process arrangement, 
execution times are the same no matter what algorithmic blocking factor is used. 
However to ensure efficient data distribution, ScaLAPACK [15] recommends that 
any blocking factor between 32 to 64 be used to distribute the rows and the 
columns of the matrices involved in the computation of the linear algebra kernel. 
The tool uses a value of 64; 

3. The optimal arrangement of processes in the grid. This is determined by the 
HeteroMPI group constructor functions HMPI_Group_auto_create or 
HMPI_Group_heuristic_auto_create. 

4   Experimental Results 

A local network of 15 different heterogeneous Linux workstations hcl01 to hcl15 is 
used in the experiments. The computers used in the experiments are connected to 
communication network, which is based on 2 Gbit Ethernet with a switch enabling 
parallel communications between the computers. The experimental results are 
obtained by averaging the execution times over a number of experiments. Figure 3 
shows the experimental results using the routine pdgemm performing parallel matrix-
matrix multiplication on this heterogeneous network. The speedup calculated is the 
ratio of the execution time of the ScaLAPACK program over the execution time of 
the HeteroMPI+ScaLAPACK program. The reader is referred to [17] for details on 
the execution of the HeteroMPI program using HeteroMPI’s command line interface. 
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Table 1. Optimal process grid arrangements (p,q) detected by the HeteroMPI group constructor 
function HMPI_Group_heuristic_auto_create. n is the size of the matrix. The third 
column gives the time taken to refresh the speeds of the processors at runtime. The fourth 
column gives the time taken to evaluate the process arrangements during the creation of the 
HeteroMPI group of processes that would execute the parallel application. The last column 
gives the execution time of the parallel application. 

N (p,q) 
Processor 

speed update 
time (sec) 

HeteroMPI 
Group 

creation time (sec) 

Execution time 
(sec) 

1024 (4,2) 0.09 1.29 17 

2048 (8,2) 0.10 2.59 20 

3072 (6,3) 0.21 1.38 21 

4096 (8,2) 0.26 1.32 26 

5120 (10,2) 0.31 2.70 30 

6144 (6,3) 0.37 7.02 41 

7168 (7,2) 0.44 1.76 53 

8192 (8,2) 0.51 2.83 69 

9216 (9,2) 0.58 5.33 100 

10240 (10,2) 0.67 7.85 138 

11264 (11,2) 0.76 6.36 215 

12288 (12,2) 0.88 48.19 266 

13312 (13,2) 1.18 10.73 312 

14336 (14,2) 3.41 23.64 354 

15360 (15,2) 8.97 54.65 405 

16384 (16,2) 11.78 34.83 513 

17408 (17,2) 14.28 23.99 772 

18432 (18,2) 24.15 100.94 956 

19456 (19,2) 30.49 32.45 1323 

20480 (8,4) 33.59 41.97 2063 

The absolute speeds of the processors are obtained based on serial version dgemm 
of the corresponding parallel routine pdgemm. The absolute speeds in million floating 
point operations per second (MFlop/s) is obtained by multiplication of two dense 
1536×1536 matrices for the processors. The absolute speeds are {2171, 2099, 1761, 
1787, 1735, 1653, 1879, 1635, 3004, 2194, 4580, 1762, 4934, 4096, 2697}. It can be 
seen that the fastest processor is hcl13 and the slowest processor is hcl08. It should be 
noted that a process is run per processor to obtain these measurements. The ratio of 
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absolute speed of the fastest processor to the absolute speed of the slowest processor is 
4934/1635 = 3. This is the number of processes run on each processor in the network 
during the execution of the parallel application. So the total number of processes 
available to the HeteroMPI+ScaLAPACK program for computation is 25×3 = 75 since 
there are 25 processors in the network. The HeteroMPI+ScaLAPACK program detects 
the optimal process grid arrangement from the set of all possible 2D process grid 
arrangements of 75 processes in a reasonable amount of time as presented in Table 1. 
The number of possible 2D process arrangements can be calculated to be 338 (using 
the formula m×(1+1/2+1/3+…+1/m) where m=75). The ScaLAPACK program uses a 
5×5 grid of processes (using one process per processor configuration). 

Table 1 shows the optimal process grid arrangements determined by the HeteroMPI 
group constructor functions for the problem sizes experimented. The second column 
gives the optimal process grid arrangements for the problem sizes shown in first 
column. The third column gives the time taken to refresh the speeds of the processors 
at runtime during the HMPI_Recon function call. The fourth column gives the time 
taken to evaluate the process arrangements during the creation of the HeteroMPI group 
of processes using the HMPI_Group_heuristic_auto_create function call. 
This time varies due to different number of process arrangements evaluated for a given 
values of n and b. The last column gives the execution time of the parallel application. 
It includes the processor speed update time and the group creation time. It can be seen 
that the processor speed refreshment time and the group creation time are much  
less than the actual execution time of the parallel application. The function 
HMPI_Group_heuristic_auto_create uses heuristics to reduce the number 
of 2D process grid arrangements (p,q) to evaluate. One such heuristic used is that one-
dimensional process arrangements where either p or q or both is equal to 1 are not 
evaluated.  

The speedups of the HeteroMPI+ScaLAPACK program over ScaLAPACK 
program for these problem sizes are shown in Figure 3. As can be seen from the 
results, the resulting HeteroMPI programs deliver good performance improvements 
on HNOCs for problem sizes beyond 12288. There are two reasons for such good 
speedups observed. First reason is the better load balance achieved through proper 
allocation of processes involved in the execution of the algorithm to the processors. 
During the creation of a HeteroMPI group of processes, the mapping of the parallel 
processes in the group is performed such that the number of processes running on 
each processor is as proportional to its speed as possible. In other words, while 
distributed evenly across parallel processes, data and computations are distributed 
unevenly over processors of the heterogeneous network, and this way each processor 
performs the volume of computations as proportional to its speed as possible. It can 
be seen that for problem sizes larger than 12288, more than 25 processes must be 
involved in the execution to achieve good load balance. Since only 25 processes are 
involved in the execution of the ScaLAPACK program, good load balance is not 
achieved. However just running more than 25 processes in the execution of the 
ScaLAPACK program would not resolve the problem. This is because in such a case 
the optimal process arrangement and the efficient mapping of the process arrangement 
to the executing computers of the underlying network must also be determined. This 
is a complex task automated by HeteroMPI. 
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Matrix multiplication (HeteroMPI+ScaLAPACK over 
ScaLAPACK)
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Fig. 3. Speedup of the HeteroMPI+ScaLAPACK program over the ScaLAPACK program 
employing matrix-matrix multiplication using the routine pdgemm 

The second reason is the optimal 2D grid arrangement of processes. During 
the creation of a HeteroMPI group of processes, the function 
HMPI_Group_heuristic_auto_create estimates the time of execution of the 
algorithm for each process arrangement evaluated. For each such estimation, it 
invokes mapping algorithm, which tries to arrange the processors along a 2D grid so 
as to optimally load balance the work of the processors. It returns the process 
arrangement that results in the least estimated time of execution of the algorithm. 

5   Conclusions and Future Work 

In this paper, we have presented a tool that ports ScaLAPACK programs to 
heterogeneous platforms. The tool converts the ScaLAPACK programs to HeteroMPI 
programs. These HeteroMPI programs do not aim to extract the maximum 
performance from a heterogeneous network but provide an easy and simple way to 
execute the conventional parallel programs on HNOCs with good performance 
improvements. We have taken the first step towards the realization of a heterogeneous 
ScaLAPACK for HNOCs. Our future work will involve the development of a 
Heterogeneous ScaLAPACK library, which will include dense linear solvers of   
ScaLAPACK redesigned for HNOCs. The design and implementation of this library 
will include: (a) Design of performance models for each of the level-1, level-2, and 
level-3 PBLAS routines; (b) Design of performance models for each of the dense 
linear solvers of ScaLAPACK routines. 
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Abstract. In this paper, a parallelizable computational technique for
singularly perturbed reaction-diffusion problems is analyzed and imple-
mented on parallel computer. In this technique, the domain is decom-
posed into non-overlapping subdomains, and boundary value problems
are posed on each subdomain with suitable boundary conditions. Then,
each problem is solved by the adaptive spline based difference scheme
on each subinterval on parallel computer. Detailed theoretical analysis is
provided to prove the convergence of the technique. To check the valid-
ity of the method, parallel implementation is performed on a numerical
example and results are presented.

1 Introduction

We consider the following singularly perturbed self–adjoint boundary–value
problem (BVP):

Lu(x) ≡ −εu′′(x) + b(x)u(x) = f(x), x ∈ D = (0, 1) (1)

u(0) = A, u(1) = B, (2)

where 0 < ε � 1 is a small parameter, b and f are sufficiently smooth functions,
such that b(x) ≥ β > 0 on D = [0, 1]. Under these assumptions, the BVP (1)-(2)
possesses a unique solution u(x) ∈ C2(D) ∩ C(D). In general, the solution u(x)
may exhibit two boundary layers of exponential type at both end points x = 0,
and x = 1.

Singular perturbation problems (SPPs) model convection - diffusion and re-
action - diffusion processes in engineering applications that arise in diverse areas,
including linearized Navier-Stokes equation at high Reynolds number and the drift-
diffusion equation of semiconductor device modelling. For ε � 1 the solution of
the BVP (1)-(2) has a boundary layer of thickness O(

√
ε) near the boundaries

x = 0, 1, and it is clear that a classical finite difference/element scheme on uni-
form mesh will not give a satisfactory numerical solution in this case. Therefore,
a separate treatment is necessary to deal with these types of problems.
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To solve the singularly perturbed reaction–diffusion BVP (1)-(2), various com-
putational techniques exist in the literature, for example one can refer the books
[FHM1, MOS1, RST1]. Most of them are of sequential type, only very few par-
allel computational methods exist. To cite a few, Paprzycki and Gladwell [PG1]
proposed a mesh chopping algorithm for solving singular perturbation prob-
lems. Boglaev [Bo1] proposed a domain decomposition iterative algorithm and
applied to singularly perturbed elliptic and parabolic problems. A numerical
method is proposed by Natesan et al. in [NVR1] for a class of singularly per-
turbed convection–diffusion problems. Vigo-aguiar and Natesan [VN1] developed
a parallel boundary–value technique for singular perturbation problems, which
will accommodate maximum number of processors for computation. Bawa and
Natesan [BN1] proposed a quintic spline based computational method for such
problems on sequential computer, which is very well suitable for parallelization.
Using a similar idea of domain decomposition and exploiting the layer resolving
nature of adaptive spline, Bawa [Ba1], proposed a simple and efficient computa-
tional domain decomposition based spline technique in which stretching of fast
moving component of solution required in using quintic spline can be avoided
and also maximum absolute error can be reduced to much extend in comparison
to applying it on whole domain. In this paper, we have analysed this technique
theoretically in detail and implemented on a parallel machine by solving a nu-
merical example.

More precisely, we divide D (the domain of definition of the BVP (1)-(2))
into three non-overlapping subdomains, and then pose suitable BVPs on each
subdomain, by taking the given differential equation with suitable boundary
conditions. To obtain the boundary values, we use the asymptotic expansion
solution of the BVP (1)-(2). Now, each BVP can be solved by the adaptive spline
difference scheme proposed by [St1]. Since all the BVPs are independent, it is
very well possible to use parallel processors to solve each BVP, as a consequence
one can save lot of CPU time. Speedup, and scalability of the present method
are discussed.

2 Computational Technique

Adaptive Spline Difference Scheme

Here, we present the adaptive spline scheme for the BVP (1)-(2).
Consider the whole domain D = [0, 1] with equally spaced knots xi = i/N, i =

0, · · · , N . Using the notation ui for approximation of u(x) at mesh point xi and
S(xi−1, qi−1) = ui−1, S(xi, qi) = ui as interpolatory constraints and following
[St1], the adaptive spline function S(x, q) can be defined as solution of the dif-
ferential equation:

−εS′′(x, q)+biS(x, q) =
(x − xi−1)

h
(−εMi+biui)+

(xi − x)
h

(−εMi−1+bi−1ui−1),

(3)
where xi−1 ≤ x ≤ xi, S′′(xi, q) = Mi and q =

√
b/εh.
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Solving this for S(x, q) and using the continuity of its first derivative at mesh
point xi, we get the following equation:

ui−1 − 2ui + ui+1 = h2
[
q−2
i−1Mi−1

(
1 − qi−1

sinh qi−1

)
+

+2q−2
i Mi

(
1 − qi

tanh qi

)
+ q−2

i+1Mi+1

(
1 − qi+1

sinh qi+1

)] (4)

Substituting Mi = (biui − fi)/ε in (4), we get the following tridiagonal finite
difference scheme, for i = 1, · · · , N − 1:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
1 − h2bi−1

q2
i−1ε

(
1 − qi−1

sinh qi−1

)]
ui−1 +

[
−2 + 2

h2bi

q2
i ε

(1 − qi

tanh qi
)
]

ui+

+
[
1 − h2bi+1

q2
i+1ε

(
1 − qi+1

sinh qi+1

)]
ui+1 = − h2

q2
i−1ε

(
1 − qi−1

sinh qi−1

)
fi−1+

+
2h2

q2
i ε

(
1 − qi

tanh qi

)
fi − h2

q2
i+1ε

(
1 − qi+1

sinh qi+1

)
fi+1.

(5)

For the purpose of theoretical analysis, this system can be expressed in the
following compact matrix form:(

J − h2QB̂
)

U = Ĉ + h2QF, (6)

where

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

· · ·
· · ·
· · ·

1 −2 1
1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
q2
1ε

(1 − q1
tanh q1

) 1
q2
2ε

(1 − q2
sinh q2

)

1
q2
1ε

(1 − q1
sinh q1

) −2
q2
2ε

(1 − q2
tanh q2

) 1
q2
3ε

(1 − q3
sinh q3

)

· · ·
· · ·
· · ·

1
q2
N−3ε

(1 − qN−3
sinh qN−3

) −2
q2
N−2ε

(1 − qN−2
tanh qN−2

) 1
q2
N−1ε

(1 − qN−1
sinh qN−1

)

1
q2
N−2ε

(1 − qN−2
sinh qN−2

) −2
q2
N−1ε

(1 − qN−1
tanh qN−1

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ĉ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A
[
1 − h2b0

q2
0ε

(
1 − q0

sinh q0

)]
0
·
·
·
0

−B
[
1 − h2bN

q2
N ε

(
1 − qN

sinh qN

)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
·
·
·

bN−2
bN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
·
·
·

fN−2
fN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Non-overlapping Decomposition of the Domain D = [0, 1]

We decompose the computational domain D = [0, 1] into three non–overlapping
subdomains as D = D1 ∪ D2 ∪ D3, where D1 = [0, k

√
ε], D2 = [k

√
ε, 1 − k

√
ε],

and D3 = [1 − k
√

ε, 1], k = σ ln(N), and σ > 0 is a parameter. Here N is the
number total number of intervals. Then, we solve the differential equation (1),
subject to suitable boundary conditions in each subdomain.

The BVPs corresponding to the three subdomains are given by

−εu′′(x) + b(x)u(x) = f(x), x ∈ D1 (7)
u(0) = A, u(k

√
ε) = A, (8)

−εu′′(x) + b(x)u(x) = f(x), x ∈ D2 (9)
u(k

√
ε) = A, u(1 − k

√
ε) = B, (10)

and

−εu′′(x) + b(x)u(x) = f(x), x ∈ D3 (11)
u(1 − k

√
ε) = B, u(1) = B. (12)

To determine the boundary conditions at the interfaces (transition points),
we take the zeroth–order asymptotic approximation of the BVP (1)-(2) given by

ũ(x) = u0(x) + v0(x) + w0(x),

where u0, v0, and w0 are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
u0(x) = f(x)/b(x),

v0(x) = [A − u0(0)] exp[−
√

b(0)/εx],

w0(x) = [B − u0(1)] exp[−
√

b(1)/ε(1 − x)].

The values of A, B are given by

A = ũ(k
√

ε), and B = ũ(1 − k
√

ε).

The BVPs (7)-(8), (9)-(10), and (11)-(12) can be solved by the adaptive spline
difference scheme (5).
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Parallel Computation

The BVPs (7)-(8), (9)-(10), and (11)-(12) are completely independent of each
other, because they have been defined on non–overlapping subdomains with
suitable boundary conditions. These BVPs can be solved in a parallel computer,
one can assign an individual processor for each BVP, which reduce the CPU
time adequately, and one has the possibility to use more number of nodes on
each subdomain.

3 Convergence Analysis

In this section, we provide some theoretical results, such as the truncation error,
stability and convergence results of the adaptive spline difference scheme (5).

First, we shall present the maximum principle, and the stability estimate.

Lemma 1. Let v be a smooth function satisfying v(0) ≥ 0, v(1) ≥ 0 and f(x) ≤
0, ∀x ∈ D. Then v(x) ≥ 0, ∀ x ∈ D. Further, we have the following uniform
stability estimate:

|v(x)| ≤ C[|v(0)| + |v(1)| + max
y∈D

|f(y)|], ∀ x ∈ D.

hereafter C denotes a positive constant independent of the parameter ε, the mesh
points xi, and the step size h.

Proof. One can prove this result following the method given in [FHM1, MOS1].
♣

Theorem 1. Let u be the solution of the BVP (1)-(2), and ui be the numerical
solution of the difference scheme (5). Then, we have

|u(xi) − ui| ≤ Ch2.

Proof. Replacing the the approximate solution U = (u1, · · · , uN−1)t by the
exact solution Ũ = (u(x1), · · · , u(xN−1))t in (6), we obtain(

J − h2QB̂
)

Ũ = Ĉ + h2QF + T̃ (h), (13)

where T̃ (h) = (t1(h), · · · , tN−1(h))t is the truncation error generated from this
replacement and is given by

‖T̃ (h)‖ = O

(
h4

ε

)
, (14)

where ‖ · ‖ is the matrix maximum norm.
Subtracting (6) from (13) and letting E = Ũ − U , we have(

J − h2QB̂
)

E = O

(
h4

ε

)
. (15)
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Following [Va1], it can be shown that,

‖
(
J − h2QB̂

)−1
‖ ≤ C

( ε

h2

)
. (16)

So, from (15), we have

‖E‖ ≤ ‖
(
J − h2QB̂

)−1
‖ ‖T̃ (h)‖. (17)

Thus, one can obtain
|u(xi) − ui| ≤ Ch2. ♣ (18)

Lemma 2. Let us consider the BVP:

−εu′′(x) + b(x)u(x) = f(x), x ∈ (c, d) (19)
u(c) = α, u(d) = β, (20)

and the same differential equation with a perturbation in the left and right hand
side boundary conditions, that is, to say u(c) = α + O(ε), and u(d) = β + O(ε).
We refer the second problem as a Perturbed BVP (PBVP). Let u1 and u2 be
respectively the solutions of these problems. Then we have the following estimate:

|u1(x) − u2(x)| ≤ Cε, ∀x ∈ [c, d],

Proof. Let w(x) = u1(x) − u2(x). Then w(x) satisfies the following BVP

Lw(x) = 0, x ∈ (c, d)
w(c) = O(ε), w(d) = O(ε).

Applying Lemma 1, to the previous BVP, we get |w(x)| ≤ C ε. ♣

The following theorem is the main result of this article, which conveys the re-
lation between the numerical solution using the transition boundary conditions
and the exact solution.

Theorem 2. Let u be the solution of the BVP (19)-(20) and ui be the numerical
solution of the respective PBVP by applying the difference scheme as given in
(5). Then,

|u(xi) − ui| ≤ C(ε + h2), ∀x ∈ [c, d].

Proof. We have

|u(xi) − ui| ≤ |u(xi) − u2(xi)| + |u2(xi) − ui|,

where u2(x) is the solution of the Perturbed BVP.
Applying Theorem 1 to the second part in the right hand side of the above in-

equality, we get |u2(xi)−ui| ≤ Ch2. Combining this with the result of Lemma 2,
we obtain the required estimate. ♣

By observing the facts that A = u(kε)+O(ε), and B = u(1− kε)+ O(ε), where
u is the solution of the BVP (1)-(2), we obtain the following result.
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Theorem 3. Let u be the solutions of the BVP (1)-(2), and ui be the numerical
solution of one of the subdomain problems in the boundary layers or in the regular
layer obtained by the difference scheme given in (5). Then,

|u(xi) − ui| ≤ C(ε + h2), ∀xi ∈ [0, 1].

4 Parallel Implementation

We have implemented the present method in parallel environment using Sun
Blade 150 servers on Solaris9 OS, 1GB memory using MPI (Message Passing
Interface) library optimized for this particular setup. An example has been taken,
which is generally used as a test example for these types of problems. From the
numerical tables, one can easily see the accuracy, and performance of the method
over other methods.

Example 1. Consider the singularly perturbed self–adjoint BVP:

−εu′′(x) + u(x) = − cos2(πx) − 2επ2 cos(2πx), x ∈ (0, 1)
u(0) = 0, u(1) = 0.

The exact solution is given by

u(x) =
[exp(−x/

√
ε) + exp(−(1 − x)/

√
ε)]

1 + exp(−1/
√

ε)
− cos2(πx).

The transition boundary condition is given by

ũ(x) = − cos2(πx) + exp(−x/
√

ε) + exp(−(1 − x)/
√

ε).

As mentioned earlier, we implement the computations with three processors.
For this, we divide the interval [0, 1] into three non–overlapping subdomains as
D = D1 ∪ D2 ∪ D3, where D1 = [0, k

√
ε], D2 = [k

√
ε, 1 − k

√
ε], and D3 =

[1 − k
√

ε, 1]. Here, we took k = 2 ln(N), in order to have distribution of mesh
points analogous to the well-known piece-wise uniform mesh namely, Shishkin’s
mesh and divide the job into the three processors using Master-Slave approach.
We repeat the procedure for different values of ε and N .

It should be noted that the length of the interval is D2 is bigger than D1 and
D3, as a consequence the workload is not properly divided into the processors.
This can be overcome by using more than three processors. In that case, the
interval D2 can be divided into more subintervals to attain a monotonic speedup.
This idea has been introduced in the paper of Vigo-Aguiar and Natesan [VN1].

The numerical results are given in terms of maximum point-wise errors in the
tables for various values of ε, and N . Table 1 shows the point-wise error for
three values of ε.

For comparison we took the numerical results by applying the spline scheme in
the whole domain and results are given in Table 2. It is clear that the proposed
scheme improves the results significantly.

The CPU time of both sequential and parallel computers have been given in
Figure 1 (a), which reveals the fact that the parallel computer reduces adequately
the CPU time. Figure 1 (b) shows the speedup of the present method.
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Table 1. Maximum error by applying spline scheme in whole domain D for Example 1

Domain N=32 N=64 N=128 N=256
ε = 10−06 [0, 1] 2.8793e-04 1.3446e-04 5.7463e-05 2.0412e-05
ε = 10−08 [0, 1] 3.0570e-05 1.5223e-05 7.5177e-06 3.6606e-06
ε = 10−10 [0, 1] 3.0748e-06 1.5401e-06 7.6955e-07 3.8384e-07

Table 2. Maximum error of proposed technique for Example 1

Domain N=32 N=64 N=128 N=256
D1 9.5512e-07 9.8008e-07 9.9223e-07 9.9273e-07

ε = 10−06 D2 0.0 0.0 0.0 0.0
D3 9.5512e-07 9.8008e-07 9.9223e-07 9.9273e-07
D1 9.5497e-09 9.7999e-09 9.928e-09 9.9718e-09

ε = 10−08 D2 0.0 0.0 0.0 0.0
D3 9.5497e-09 9.7999e-09 9.928e-09 9.9718e-09
D1 9.5498e-11 9.8003e-11 9.9230e-11 9.9711e-11

ε = 10−10 D2 0.0 0.0 0.0 0.0
D3 9.5498e-11 9.8003e-11 9.9230e-11 9.9711e-11
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Fig. 1. CPU time and Speedup in the parallel computer

5 Conclusions

A parallel computational technique for singularly perturbed BVPs of the form (1-
2) has been analysed and implemented in this article. Firstly, a non-overlapping
domain decomposition of the computational domain is devised, and then inde-
pendent BVPs on each subdomain are proposed. Suitable boundary conditions
have been supplied from the asymptotic approximate solution, which are not dif-
ficult to calculate either theoretically, or numerically. Stability, and truncation
error have been discussed, and error estimate has been obtained. It is observed
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that the implementation of proposed scheme reduces the maximum absolute
error and the CPU time to much extend.
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Abstract. The software development process for many real-world ap-
plications requires many experts from different domains to cooperate.
This is especially true for applications which are to be deployed in a
distributed and heterogeneous environment such as the service-oriented
Grid. In this paper, we present a collaborative synchronized Grid process
creation environment for the service-oriented Grid, in which experts from
different engineering and IT domains can interactively work on a single
application process model, to quickly and efficiently design applications
spanning multiple problem domains. An example application from the
engineering domain of metal forming is presented and the enabling tech-
nologies are discussed.

1 Introduction

Service-oriented Grid computing has gained tremendous interest in various appli-
cation domains. Many of those applications stem from an academic environment
and have traditionally been designed as monolithic solutions that are hard to
adapt, even to slight changes in the application requirements. Required adapta-
tions must be implemented by programmers specialized both in Grid middleware
and the applications. The paradigm shift to service-orientation in Grid middle-
ware opens the possibility to use a far more flexible software development ap-
proach, namely to compose applications from standard components, promising
easier development and modification of Grid applications. Even though, Grid
technology has only seen a slow adoption in commercial application domains
such as engineering. We see two main reasons for this slow adoption: On the
one hand, the inherent complexity of current service-oriented Grid middleware
systems is still prohibitive for everyday use by an application domain expert who
has no background in middleware development, Grid computing or even com-
puter science. On the other hand, an engineering solution to a concrete problem
is often a team effort undertaken by a number of involved engineers, and other
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non-IT personnel. Current support for collaborative software development is of-
ten limited to the use of CVS, email and conference calls. Such methods offer
only limited support to ease the entry of engineers not trained in formal software
development processes into the Grid.

The Business Process Execution Language for Web Services (BPEL) [16] has
gained much attention and broad adoption for composition of component based
business applications. The focus of the BPEL language is to enable the com-
position of basic web services into more complex applications. Its popularity in
the business application domain makes BPEL very promising and interesting
for process creation in the Grid domain, since many process execution, manage-
ment and creation tools are expected to be developed in the future or are even
currently under development.

In this paper, we present an engineering application from the domain of metal
forming and discuss how a novel collaborative Grid process creation environment
is used to support engineers in their Grid application development process. The
resulting process representation of the engineering Grid application is executed
by a Grid enabled BPEL process execution engine. The visualization of the
process in our distributed process editor helps to bridge the gap between Grid
application developers and domain experts by allowing them to interactively
refine the target application from a high level perspective down to the actual
executable code. A Grid extension to the BPEL language is proposed and im-
plemented to facilitate easy parallel execution of BPEL tasks in the Grid.

The term process is used in four different connotations throughout this paper.
First, the actual collaboration of engineers to solve a given engineering problem
is referred to as the engineering process. This paper describes a tool to support
the software development process that leads to the creation of a Grid applica-
tion. This Grid application is based on a process description, referred to as a
Grid process. The Grid process describes the orchestration of basic component
services into a more complex application. Finally, the actual activities during
the production of a cast metal part are referred to as casting process.

The paper is organized as follows. After an overview of related work in sec-
tion 2, a sample scenario from an engineering domain (casting as a sub-domain
of metal forming) is introduced in 3. The design and implementation of a collab-
orative Grid process editor that supports the software development process for
Grid experts and domain experts is presented in section 4. Section 5 describes the
collaborative development of the Grid application for the metal casting sample
scenario. Section 6 concludes the paper and outlines areas for future work.

2 Related Work

Supporting business processes with software systems and especially service-
oriented architectures realized with web services have received considerable at-
tention in both academia and industry. Several other research projects try to
cope with similar subjects in related fields.
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The Geodise project [24, 20] focuses on optimization, design and fluid dynam-
ics, especially in aerodynamics. Its main goal is to provide a distributed problem
solving environment (PSE) for engineers working in the mentioned fields by uti-
lizing e.g. MATLAB and adding Grid functionality to it. Although first Geodise
implementations were based on the Globus Toolkit version 2, the core Geodise
Toolbox is now part of the managed program of the Open Middleware Infras-
tructure Institute (OMII) [17].

A Grid-enabled problem solving environment for engineering design where
distributed parties are able to collaborate has been introduced by Goodyer et
al. [11]. The system makes use of the gViz Library [4] which allows collaborative
visualization on the Grid and provides the user to start Grid jobs on Globus
Toolkit based hosts. The main focus is put on collaborative application steering
and result visualization of given simulation problems.

The P-GRADE Portal [18] aims to be a workflow-oriented computational Grid
portal, where multiple clients can collaboratively participate in design, develop-
ment and execution of a workflow, and multiple Grids may be incorporated in
the workflow execution. The P-GRADE Portal is based on the Globus Toolkit
version 2 for file transfer operations and job execution, the workflow execution
is done by a proprietary implementation. P-GRADE neither uses Grid service
and business process standards such as BPEL, nor does the proposed collabora-
tive editing approach support real time collaboration on a process in an on-line
meeting style.

The GridNexus Project [5] is a GUI for workflow creation based on Ptolemy
II and JXPL, a XML scripting language based on Lisp, which it uses as a Grid
foundation. It allows a very fine grained algorithm design (right down to the
arithmetic operations) to be integrated with Grid service interactions, raising the
complexity of the resulting workflow. GridNexus does not allow the collaborative
creation of workflows nor does it support business standards such as BPEL.

The mentioned software systems are examples for the large variety of problem
solving environments, collaborative Grid application systems and collaborative
workflow development systems. However, none of the mentioned systems pro-
vides both a problem solving environment for engineering problems as well as
sophisticated support for the collaborative software development process for Grid
applications and their execution in a service-oriented Grid environment. Collab-
oration support often relies on out-of-band collaboration and synchronization
techniques such as exchanging e-mail or CVS like server based communication.

3 Sample Application

In this section, a simplified view on a sample application from an engineering
domain is presented to motivate the need for support in the distributed software
development process of a Grid software system for engineering applications. The
concrete use case comes from casting, a sub-domain of metal forming. Only those
parts relevant to the Grid are briefly sketched; they do not reflect the entire
complex field of metal forming. For more information regarding the complexity
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involved in collaborative engineering particularly in the field of metal forming
and casting, the reader is referred to e.g. [15, 23].

In the metal casting industry, customers’ quality requirements, e.g. allowed
tolerances in a casting product’s geometry compared to the specification, are
constantly increasing. Therefore, the use of numerical simulation and simulation-
based optimization is gaining importance, since the creation of prototypes is pro-
hibitively expensive and time consuming. The benefit of simulated prototyping
is constrained by the accuracy of the simulation environment. Both the cre-
ation and use of the simulation application require great expertise in the metal
casting domain. Furthermore, applying numerical simulation for this purpose
introduces an extremely high demand for computational capacity since a single
- sufficiently precise - simulation run typically lasts several hours up to days.
Since many small and medium sized engineering enterprises are not capable of
acquiring and maintaining high performance computing resources, outsourcing
of computational demanding tasks is necessary. Grid computing promises to of-
fer the infrastructural components to realize this outsourcing activity as easy as
plugging into the electrical power Grid. However, currently the implementation
of a Grid application still requires these firms to involve Grid specialists to adapt
and maintain their applications in a Grid environment.

To sumarize, the utilization of numerical simulation in the casting industry
requires a variety of competencies:

– knowledge about the physical properties of casting in industrial practice
(casting engineer)

– modeling a casting engineering process for simulation (casting engineers to-
gether with IT specialists)

– adapting existing simulation software to the Grid (Grid specialists consulting
the casting engineers)

– setting up and maintaining a simulation and/or optimization environment
for the engineers’ customers (Grid specialists, casting engineers and their
customers)

– interpreting a simulation’s result (casting engineer and customer).

These requirements lead to a software platform which enables the integration
of the aforementioned competencies and resources during the software design
process. Since most of the possible users of simulation in the casting industry
are small to medium enterprises (SME), lacking at least one of the requirements,
the Grid software platform must be able to facilitate both renting computational
resources on demand as well as the collaborative involvement of Grid experts,
casting engineers and their customers.

As a concrete sample scenario, we introduce the engineering process of col-
laborative development of a metal casting model. From a software development
point of view, the Grid relevant development cycle starts with a problem defini-
tion, expressed by the casting engineer and progresses through some iterations
of model definition, simulation and refinement. The given problem definition
is then modeled as an initial casting process model by a numerical simulation
expert. Usually, this expert is located in another company due to the already



Collaborative Grid Process Creation Support in an Engineering Domain 267

mentioned lack of personnel or know-how in small and medium engineering en-
terprises. The numerical simulation expert periodically discusses the evolution of
the initial model with the casting engineer during the design phase. Both experts
have to combine their expertise to successfully define an accurate model for the
casting process. To verify the accuracy of the resulting model, it typically is nu-
merically simulated. The results must be reviewed and compared to knowledge
about real casting processes held by the casting engineer. If this first simulation
run does not match reality, the model needs to be calibrated and further model
variants are created by the simulation expert and the casting engineer.

During this model calibration phase, an optimization expert is also involved
in creating model variants. When a single model is calibrated, the optimization
of the model begins by automatically generating a number of n new models by
varying the parameters in the casting process model. They can be evaluated in
parallel, and the results from the simulation runs flow back to the optimization
algorithm. This procedure iterates until the optimized casting process meets the
requirements set by the casting engineer. The simulation software, which runs
n instances in parallel, requires distributed computing resources and therefore
suggests the application of Grid technology.

In the next section, we will introduce a tool to support the different actors in
collaboration during the software development process for the final Grid appli-
cation allowing them to perform their engineering process for a concrete casting
process model. This development process brings together domain experts from
different engineering domains and IT experts from the Grid domain.

4 Collaborative Grid Process Creation Support

The main goal for a tool that supports collaborative Grid process creation is to
enable developers with only limited expertise in distributed application develop-
ment or programming for the Grid to create applications. Ideally, it should enable
domain experts without a computer science background to construct applications
as solutions to their domain specific problems that utilize the available Grid re-
sources. In our example descibed above, it is the Grid application supporting the
engineering process by providing distributed simulation and optimization func-
tionality. In the service-oriented Grid, the application consists of Grid services as
the basic components and a process description defining their orchestration to pro-
vide functionality for numerical simulation and optimization. In the sample appli-
cation, the casting engineer, the numerical simulation expert and the Grid expert
are the parties who collaborate to create the required Grid process. The two en-
gineering domain experts define and discuss a high level application flow before
involving the Grid expert who identifies and implements the necessary Grid com-
ponents and adapts the high level process definition to the pecularities of the Grid.

4.1 Design of the Grid Process Editor

Two main considerations drive the design of our proposed Grid process edi-
tor as a tool supporting fast development of Grid application from a high level
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perspective: It should provide the ability to adapt to the needs of different groups
of developers, allowing Grid middleware experts to inspect and manipulate fine
details of a Grid process (high-fidelity editing) while hiding complicated details
from application domain experts (low-fidelity editing). Furthermore, a Grid pro-
cess editor should foster collaboration among experts in a distributed environ-
ment. Ideally, it should support synchronized collaborative work (i.e. same-time,
different-place collaboration [8]) on the process under development, building on
the underlying communication infrastructure.

The overall design of our Grid process editor is based on a model driven ap-
proach. Figure 1(a) shows a conceptual overview of the core components of the
collaborative Grid process editor. A core model that can be shared among net-
worked nodes is used to represent a concrete process that in turn is presented
to the user through a view component with a corresponding controller, allowing
for editing operations. A target system mapping defines the transition into ac-
tually executable code for a concrete process execution environment. The model
sharing component propagates changes of the model to other editors currently
acting on the same shared model. This model sharing component must also be
able to lock the process model to prevent local modification when a distributed
coordination protocol requires this locking operation.

(a) Design overview showing the
component and layer separation.

(b) Internal dependencies between tar-
get system mapping (TSM), core model
and presentation contributions.

Fig. 1. Overall design of the collaborative process editor

The field of process execution for the Grid is a rapidly evolving field. Currently,
there is no standard for the expressive power of the core process models that
everyone agrees upon. This lack of a common standard and the greater flexibility
in implementing new constructs lead to the choice of the internal design shown
in figure 1(b). We chose the BPEL language for the core process standard since
there is currently no Grid process execution standard but BPEL is the de-facto
standard in the business process execution environment. Implementations of a
process execution target system may extend the core model and provide their
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contributions to the model and view components corresponding to their newly
introduced constructs.

4.2 Implementation of the Grid Process Editor

The previously introduced overall design has been used to implement a graph-
ical process editor for the Globus Toolkit 4 based MAGE [21] platform. The
implementation of this process editor is based on the Eclipse Graphical Editing
Framework (GEF) [10] for the presentation layer and the Eclipse Communication
Framework (ECF) [9] for the model sharing component.

Core Model. There are three basic types of elements in the core process model.
The base class of every model element is the class Element. Two direct descen-
dants of this base class are ContainerElement and Connection. Containers may
directly contain other model elements. An example for such a container is the
Sequence class that represents a BPEL sequence of activities. Sub-classes of the
connection class are used to represent links between activities in the process,
such as the links between activities in a BPEL Flow (a flow is not ordered like
a sequence but a collection of activities that are executed based on transition
conditions). A globally unique ID [13] is assigned to every element in the pro-
cess model, allowing to uniquely identify the elements even across different nodes
sharing a single process model through the model sharing component. Conceptu-
ally, every element of the process model represents a collection of attributes. The
Element class implements the IPropertySource interface allowing the Eclipse
platform to directly display the attribute values of a selected model element in
the standard property view. The root element of every proces model based on
this meta-model implementation is an instance of the Process class.

Every model element implements the IPropertySource interface. It defines
operations to retrieve a list of IPropertyDescriptors and access methods to
set the value of a particular property or to get a property value from the model
element. As a means of selectively displaying certain element properties, the core
process model allows to select a set of filter rules on the model instance. Before
returning the result list in the implementation of the getPropertyDescriptors
operation, the list is filtered by a PropertyVisibilityFilterfilter that removes
every property descriptor defined in the exclusion list defined for the element.
The property access methods of the element still provide access to filtered at-
tributes, allowing wizards that automate tasks for the user full access to every
element and property of the process model.

The model needs to be serialized and deserialized for storage and transmission.
Serialization of the model elements is handled by proxy classes that implement
the serialization capability for the core model elements. The proxy classes handle
storage of the model elements, therefore, they are referred to as storage proxies.
Every storage proxy instance holds a reference to an associated model object.
A storage proxy instance for a concrete instance of a model element can be
obtained from a factory that receives the model element object in the proxy cre-
ation request and constructs or returns the associated proxy instance. Storage
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proxies for child objects of a container model element are constructed recur-
sively. The default implementation of the storage proxy elements implement the
methods toDOMElement and fromDOMElement in the IStorageProxy interface.
These methods return or interpret a tree of XML elements representing the el-
ements and connections in the process model. The structure of the resulting
XML elements and attributes is governed by the concrete implementation of the
IStorageProxy instances returned by the proxy factory.

Similar to the regular serialization implementation for simple storage of the
process model, a concrete target system mapping implementation may perform
serialization of the model into the required process representation by providing
another proxy factory. The basic serialization implementations queries all ele-
ments for their unfiltered properties and serializes them into attributes and child
elements, enabling storage and retrieval of the complete model information.

Target System Mapping. A target system mapping for the MAGE process
execution environment has been implemented as a second set of storage proxies
with a corresponding factory. This MAGE process execution engine is based on
the ActiveBPEL [1] engine and introduces additional Grid specific concepts such
as a Grid-For-Each (GFE) construct. This construct supports the very common
case of carrying out a number of calculations on a separation of the input pa-
rameter domain. It encapsulates discovery of computational resources, splitting
of input parameters, collecting and merging of execution results. Contributions
to the core BPEL model, view and controller components of the process editor
have been implemented to represent the Grid specific extensions supported by
the MAGE process execution engine.

The storage proxy implementation for the process model element in the MAGE
target system mapping handles creation of all necessary process descriptions, de-
ployment descriptors and WSDL artifacts needed for the process execution en-
gine. The GFE enables non-Grid experts to easily model the parallel execution of
tasks in the Grid, since it hides the complexity of discovering nodes, deploying the
services, splitting the parameter range and executing the services. The engineers
only need to configure the GFE to a certain parameter range and define the sin-
gle node process, the rest is done by the MAGE process execution environment.
Providing such high level constructs representing complex yet common tasks in
the Grid is a vital step towards enabling the use of the Grid for non-Grid experts.

Presentation Layer. The process editor contributes an implementation of
a graphical editor as its presentation layer implementation. Its purpose is to
provide a graphical representation of the process model to the user that visualizes
the process structure and lets the user add, remove and rearrange components,
connect them and edit the properties associated with the process activities and
other elements.

Visualization of the process model elements is handled by corresponding view
elements, editing of the underlying model is performed by edit parts associated
with the model elements. The Eclipse platform abstracts the source of an opera-
tion as a request, actual modification of the model elements is then performed by
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a Command retrieved from the target edit part. During an editing operation, the
edit part also displays feedback (such as drag handles for move and resize oper-
ations) through the view elements to the user. Edit parts do not handle editing
directly, rather they delegate editing to edit policies associated with the part. Be-
fore returning a command or signaling approval to an edit request, the core model
is queried for any edit locks set on the model by the model sharing component.

An Eclipse workbench window shows a so called perspective that is a collection
of multiple views on the workspace of the user or currently selected elements. The
process editor uses the properties view in addition to the graphical representation
of the process model. The properties of a particular model element are accessible
to the user through a tree that allows editing of the individual properties. The
set of visible properties is determined by the previously described view filters.

Every view on a model element is updated if a property change occurs due
to a user interaction or a change received from the model sharing component.
This mechanism automatically integrates with the property view provided by
the Eclipse platform. Additionally, a property visibility filtering mechanism has
been implemented for the editor. This allows to adjust the level of detail in the
view presented to different groups of users.

Model Sharing. The model sharing implementation of the process editor uses
facilities provided by the Eclipse Communication Framework (ECF) [9]. In order
to collaborate, the users of the process editor join a collaboration channel (access
protection to the channel may be set up by the collaboration initiator). The node
of the collaboration initiator also acts as a coordinator to the collaboration.
After joining the collaboration, a new editing partner requests the model from
the channel. The initiating partner then serializes the model and transmits it to
the newly joining party. The model is then deserialized and used as input for
the graphical editor of the new collaboration partner.

The underlying communication channel implements a protocol that ensures
reliable message transmission to a selected partner or to all communication part-
ners in the channel. Actual update of the distributed model happens by relay of
the edit commands upon their execution.

For this purpose, every command is derived from a BaseCommand class that
triggers serialization of the command and transmission to other connected editors
in its execute method, if the editor is connected to a channel. Every command
implementation is required to call its super classes execute method to ensure
transmission of the command. Every command implements the IAdaptable in-
terface and returns a serializable and transmissible version of the command to
the model sharing component that transmits the command to other editors in
the channel. References to model elements are encoded using the globally unique
identifier of the element.

This model sharing enables the different actors in the application design, de-
velopment and usage phases to collaboratively work on the same process model,
each editing the model part which belongs to their area of expertise, while at the
same time being able to look at the big picture and get instant feedback from
colleagues.
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5 Collaborative Development of the Sample Application

As a first step towards the optimization process, the casting engineer and nu-
merical simulation expert join a collaborative process design session using the
distributed process editor described above. The distributed process editor al-
lows users to join the collaboration and create, delete, connect and move basic
activities concurrently. This interaction may be augmented by audio or video-
conferencing giving the participants an on-line meeting room environment for
their collaborative work. Figure 2(a) shows a snapshot of the distributed process
editor with the minimal core process for the Grid application being worked on.
The ability to concurrently edit the process model is a critical element in the
overall development process since communication difficulties between the differ-
ent experts can be quickly identified and solved. As stated before, they rely on
cooperation to apply their combined expertise to design an application that can
support the engineering process in a satisfactory manner. After finishing an ini-
tial sketch of the ideal application workflow from their domain perspective, they
involve a Grid expert to help them adapt their process to the Grid environment
and identify the necessary component services for their Grid process. The Grid
expert will introduce infrastructural requirements such as service discovery and
infrastructure management into the purely application oriented workflow of the
domain experts.

As a result of this second step, a process for the Grid application and the
specification of the required component services can be used by the Grid expert
to implement or select the basic components. A basic skeleton implementation of
the required services can be automatically generated using a model driven service
generator [19, 22] leading to fast availability of the component services. For the
metal casting sample application, the following two services were identified and
implemented:

The Distributed Polytop Service. This service is an implementation of the
distributed polytop optimization algorithm [2] (DPA) which belongs to the class
of direct search methods. It has its roots in the Complex algorithm [3], a pre-
decessor of the Nelder-Mead Simplex [14]. The DPA was designed regarding
efficiency and scalability in distributed systems.

During its runtime, it requires an a priori unknown number of evaluations of
both an objective function and corresponding constraint functions, in this case
calculated by the metal casting simulation software CASTS [12]. The service
has to save its state each time an evaluation request occurs, and it passes the
data set which is to be evaluated to the process execution engine instead of
directly invoking the simulation service. Considering these conditions, the service
was implemented by utilizing the Web Service Resource Framework (WSRF 1),
which allows the creation of stateful web service resources. Apart from a service
operation which allows a client to set necessary parameters needed by the polytop
algorithm, the only Grid service operation iterate(IterateRequest) takes care
of starting and restarting the algorithm at the appropriate position - according
1 http://www.globus.org/wsrf/
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(a) Screenshot of the graphical distributed
process editor window displaying the metal
casting process.

(b) Visualization window showing a
simplified model of a casted gas tur-
bine blade.

Fig. 2. Development and application environment: distributed process editor and en-
gineering application

to its internal state and according to the input data inside the IterateRequest
data structure. A resulting data set is returned immediately after invoking the
operation, telling the process execution engine if further evaluations are needed
or if the polytop algorithm reached a predefined stop condition.

The Casts Service. The main purpose of this service is to wrap the metal cast-
ing legacy software CASTS as a Grid service. However, the Casts Service does
not only provide a service-wrapped version of CASTS, but it also takes care of
the following operations: It is capable of modifying the input model of the casting
process according to a set of parameters passed to the service. This parameter set
is the input received from the distributed polytop algorithm.The service executes
the CASTS legacy application on a number of different execution platforms. In
this case, a 128 node cluster computer with two 64Bit AMD Opteron CPUs and
2GB main memory per node was utilized, leading the execution subsystem to
incorporate the local resource manager Torque [7] and the scheduling system
Maui [6]. The execution state of a cluster job is monitored and exposed by the
Casts Service. The execution subsystem is highly modularized so that the service
also works on single workstations without local queuing/scheduling. The service
also provides functionality to evaluate the simulation result (which is done by
CritCASTS, a legacy software system bundled with CASTS) and determining
the objective function value as well as the constraint function values.

Utilization of WS-GRAM 2 for running CASTS jobs in a Grid service wrapped
command line was inappropriate due to the complexity of the internal tasks of
2 http://www.globus.org/toolkit/docs/4.0/execution/wsgram/
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Fig. 3. Overview of the collaborative process creation scenario for the metal casting
application

the Casts Service. The chosen approach of a custom wrapper service exposes the
necessary information and results much cleaner to the process execution engine.
Using WS-GRAM would have required to create a sophisticated shell script as
a CASTS wrapper and the inclusion of logic in the Grid application process for
parsing the output of WS-GRAM, which truly belongs into the Casts Service.

The concurrent execution of many simulations has been modeled using the
Grid-For-Each construct, a Grid specific extension of the BPEL language. The
GFE construct neatly encapsulates details of the concurrent execution in the
simulation tasks, keeping middleware complexity from the domain experts.

An overall view of this collaborative and distributed development scenario is
shown in figure 3. The grey zones mark the network domains of the different
experts, they are geographically distributed, and their collaboration takes place
via the shared and synchronized process model. The distributed collaborative
process editor allows them to synchronously edit the model and directly see the
operations of other connected partners.

6 Conclusions

In this paper, we introduced a collaborative process creation environment in
which experts from different engineering and IT domains can interactively work
on a single synchronized Grid process model, to quickly and efficiently design
complex applications spanning multiple problem domains. We demonstrated the
feasibility of our approach using an engineering application for metal casting.
A new BPEL construct the Grid-For-Each (GFE) was used to facilitate the
adoption of Grid computing in the engineering community. The GFE can be used
to transparently split an input value set into distinct parameter ranges, distribute
processing jobs over multiple Grid nodes and then collect and merge the results.
The application process is executed by a Grid enabled BPEL process execution
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engine, which takes care of most of the Grid specific operations required to
execute an application in the Grid. The visualization of the application process
in our distributed process editor helps to bridge the gap between Grid application
developers and domain experts by allowing them to interactively refine the target
application from a high level perspective down to the actual executable code.
The resulting process model is very flexible allowing a standard application core
to be easily adopted to new problems, which is a common requirement in the
engineering field.

Future work includes the extension of the collaborative process creation envi-
ronment by further BPEL constructs to ease the distributed application devel-
opment and include utilities and wizards to further speed up the time to market
for legacy applications. Furthermore, the integration of a video conferencing soft-
ware into the platform would also increase the productivity of the development
environment without having to rely on external video conferencing solutions.

Acknowledgements

This work is partially supported by the German Ministry of Education and
Research (BMBF) (D-Grid Initiative, In-Grid Project), Siemens AG (Corporate
Technology, München) and IBM (Eclipse Innovation Grant). We would like to
thank Jürgen Jakumeit of ACCESS Materials + Processes for his involvement
in the design process of the Grid Casts application.

References

1. ActiveBPEL, LLC. ActiveBPEL - BPEL Execution Engine. http://www.
activebpel.org.

2. T. Barth. Verteilte Lösungsansätze für simulations-basierte Optimierungsprobleme.
Wissenschaftlicher Verlag Berlin, 2001.

3. M. Box. A New Method of Constrained Optimization and a Comparison with
Other Methods. Computer Journal, 8:42–52, 1965.

4. K. Brodlie, D. Duce, J. Gallop, M. Sagar, J. Walton, and J. Wood. Visualization in
Grid Computing Environments. Proceedings of IEEE Visualization, pages 155–162,
2004.

5. J. L. Brown, C. S. Ferner, T. C. Hudson, A. E. Stapleton, R. J. Vetter, T. Car-
land, A. Martin, J. Martin, A. Rawls, W. J. Shipman, and M. Wood. GridNexus:
A Grid Services Scientific Workflow System. International Journal of Computer
Information Science, 6:72–82, 2005.

6. clusterresources.com. Maui Cluster Scheduler. http://www.clusterresources.
com/pages/products/maui-cluster-scheduler.php.

7. clusterresources.com. Torque Resource Manager. http://www.clusterresources.
com/pages/products/torque-resource-manager.php.
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Abstract. A Bloom filter has been widely utilized to represent a set of
items because it is a simple space-efficient randomized data structure. In
this paper, we propose a new structure to support the representation of
items with multiple attributes based on Bloom filters. The structure is
composed of Parallel Bloom Filters (PBF) and a hash table to support
the accurate and efficient representation and query of items. The PBF is
a counter-based matrix and consists of multiple submatrixes. Each sub-
matrix can store one attribute of an item. The hash table as an auxiliary
structure captures a verification value of an item, which can reflect the
inherent dependency of all attributes for the item. Because the correct
query of an item with multiple attributes becomes complicated, we use a
two-step verification process to ensure the presence of a particular item
to reduce false positive probability.

1 Introduction

A standard Bloom filter can represent a set of items as a bit array using several
independent hash functions and support the query of items [1]. Using a Bloom
filter to represent a set, one can query whether an item is a member of the set
according to the Bloom filter, instead of the set. This compact representation is
the tradeoff for allowing a small probability of false positive in the membership
query. However, the space savings often outweigh this drawback when the false
positive probability is rather low. Bloom filters can be widely used in practice
when space resource is at a premium.

From the standard Bloom filters, many other forms of Bloom filters are pro-
posed for various purposes, such as counting Bloom filters [2], compressed Bloom
filters [3], hierarchical Bloom filters [4], space-code Bloom filters [5] and spectral
Bloom filters [6]. Counting Bloom filters replace an array of bits with counters
in order to count the number of items hashed to that location. It is very useful
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to apply counting Bloom filters to support the deletion operation and handle a
set that is changing over time.

With the booming development of network services, the query based on mul-
tiple attributes of an item becomes more attractive. However, not much work
has been done in this aspect. Previous work mainly focused on the represen-
tation of a set of items with a single attribute, and they could not be used to
represent items with multiple attributes accurately. Because one item has mul-
tiple attributes, the inherent dependency among multiple attributes could be
lost if we only store attributes in different places by computing hash functions
independently. There are no functional units to record the multiple attributes de-
pendency by the simple data structure expansion on the standard Bloom filters
and the query operations could often receive wrong answers. The lost of depen-
dency information among multiple attributes of an item greatly increases the
false probability. Thus, we need to develop a new structure to the representation
of items with multiple attributes.

In this paper, we make the following main contributions. First, we propose
a new Bloom filter structure that can support the representation of items with
multiple attributes and allow the false positive probability of the membership
queries at a very low level. The new structure is composed of Parallel Bloom
Filters (PBF) and a hash table to support the accurate and efficient represen-
tation and query of items. The PBF is a counter-based matrix and consists of
multiple submatrixes. Each submatrix can store one attribute of an item. The
hash table captures a verification value of an item, which can reflect the in-
herent dependency of all attributes for one item. We generate the verification
values by an attenuated method, which tremendously reduces the items colli-
sion probability. Second, we present a two-step verification process to justify the
presence of a particular item. Because the multiple attributes of an item make
the correct query become complicated, the verification in the PBF alone is insuf-
ficient to distinguish attributes from one item to another. The verification in the
hash table can complement the verification process and lead to accurate query
results. Third, the new data structure in the PBF explores a counter in each
entry such that it can support comprehensive data operations of adding, query-
ing and removing items and these operations remain computational complexity
O(1) using the novel structure. We also study the false positive probability and
algebra operations through mathematic analysis and experiments. Finally, we
show that the new Bloom filter structure and proposed algorithms of data op-
erations are efficient and accurate to realize the representation of an item with
multiple attributes while they yield sufficiently small false positive probability
through theoretical analysis and simulations.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the new Bloom filter structure, which is composed of the
PBF and hash table. Section 4 illustrates the operations of adding, querying and
removing items. In Section 5, we present the corresponding algebra operations.
Section 6 provides the performance evaluation and Section 7 concludes our paper.
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2 Related Work

A Bloom filter can be used to support membership queries [7], [8] because of
its simple space-efficient data structure to represent a set and Bloom filters have
been broadly applied to network-related applications. Bloom filters are used to
find heavy flows for stochastic fair blue queue management scheme [9] and sum-
marize contents to help the global collaboration [10]. Bloom filters provide a
useful tool to assist the network routing, such as route lookup [11], packet clas-
sification [12], per-flow state management and the longest prefix matching [13].

There is a great deal of room to develop variants or extensions of Bloom
filters for specific applications. When space is an issue, a Bloom filter can be an
excellent alternative to keeping an explicit list. In [14], authors designed a data
structure called an exponentially decaying bloom filter (EDBF) that encoded
such probabilistic routing tables in a highly compressed manner and allowed for
efficient aggregation and propagation.

In addition, network applications emphasize a strong need to engineer hash-
based data structure, which can achieve faster lookup speeds with better worst-
case performance in practice. From the engineering perspective, authors in [15]
extended the multiple-hashing Bloom filter by using a small amount of multi-port
on-chip memory, which can support better throughput for router applications
based on hash tables.

Due to the essential role in network services, the structure expansion of Bloom
filters is a well-researched topic. While some approaches exist in the literature,
most work emphasizes the improvements on the Bloom filters themselves. Au-
thors in [16] suggested the multi-dimension dynamic bloom filters (MDDBF)
to support representation and membership queries based on the multi-attribute
dimension. Their basic idea was to represent a dynamic set A with a dynamic
s×m bit matrix that consists of s standard Bloom filters. However, the MDDBF
lacks a verification process of the inherent dependency of multiple attributes of
an item, which may increase the false positive probability.

3 Analytical Model

In this section, we will introduce a novel structure, which is composed of PBF
and a hash table, to represent items of p attributes. The hash table stores the
verification values of items and we provide an improved method for generating
the verification values.

3.1 Proposed Structure

Figure 1 shows the proposed structure based on the counting Bloom filters. The
whole structure includes two parts: PBF and a hash table. PBF and the hash
table are used to store multiple attributes and the verification values of items,
respectively. PBF uses the counting Bloom filters [2] to support the deletion
operation and can be viewed as a matrix, which consists of p parallel submatrixes
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Fig. 1. The proposed structure based on counting Bloom filters

in order to represent p attributes. A submatrix is composed of q parallel arrays
and can be used to represent one attribute. An array consists of m counters and
is related to one hash function. q arrays in parallel are corresponding to q hash
functions. Assume that ai is the ith attribute of item a. We use H[i][j](ai)(1 ≤
i ≤ p, 1 ≤ j ≤ q) to represent the hash value computed by the jth hash function
for the ith attribute of item a. Thus, each submatrix has q × m counters and
PBF composed of p submatrixes utilizes p × q × m counters to store the items
with p attributes.

The hash table contains the verification values, which can be used to verify
the inherent dependency among different attributes from one item. We measure
the verification values as a function of the hash values. Let vi = F (H[i][j](ai))
be the verification value of the ith attribute of item a. The verification value of
item a can be computed by Va =

∑p
i=1 vi, which can be inserted into the hash

table for future dependency tests.

3.2 Role of Hash Table

The fundamental role of the hash table is to verify the inherent dependency
of all attributes for an item and avoid the query collision. The main reason
for the query collision in terms of multiple attributes is that the dependency
among multiple attributes is lost after we insert p attributes into p independent
submatrixes, respectively. Then, the PBF only knows the existence of attributes
and cannot determine whether those attributes belong to one item. Meanwhile,
the verification based on PBF itself is not enough to distinguish attributes from
ne item to another. Therefore, the hash table can be used to confirm whether
the queried multiple attributes belong to one item.
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Thus, if a query receives answer True, the two-step verification process must
be conducted. First, we need to check whether queried attributes exist in PBF.
Second, we need to verify whether the multiple attributes belong to a single item
based on the verification value in the hash table.

3.3 Verification Value

Traditionally, the hash values computed by hash functions are only used to
update the location counters in the counting Bloom filters. In the proposed
structure, we utilize the hash values to generate the verification values, which
can stand for existing items.

The basic method of generating the verification value is to add all the hash
values and store their sum in the hash table. For example, the value of variable
vi is vi = F (H[i][j](ai)) =

∑q
j=1 H[i][j](ai) for the ith attribute of item a. In this

case, the function F is a sum operation. Then, the verification value of item a
is Va =

∑p
i=1

∑q
j=1 H[i][j](ai). Thus, Va can be inserted into the hash table and

stands for an existing item a. However, in the basic method, the values computed
by different hash functions are possible to be the same and their sums might be
the same, too. Thus, different items might hold the same verification values in
the hash table and this will lead to the verification collision.

The improved method utilizes the sequential information of hash functions
to distinguish the verification values of different items. We allocate different
weights to sequential hash functions in order to reflect the difference among
hash functions. As for the ith attribute of item a, the value from the jth hash
function in the ith submatrix is defined as H[i][j](ai)

2j , which is similar to the idea of
the Attenuate Bloom Filters [17]. In attenuate Bloom filters, higher filter levels
are attenuated with respect to earlier filter level and it is a lossy distributed
index. Therefore, as for the item a, the verification value of the ith attribute is
defined as vi = F (H[i][j](ai)) =

∑q
j=1

H[i][j](ai)
2j . The verification value of item a

is Va =
∑p

i=1
∑q

j=1
H[i][j](ai)

2j . This verification value of item a can be inserted
into the hash table.

4 Operations on Data Structure

Given a certain item a, it has p attributes and each attribute can be represented
using q hash functions as shown in Figure 1. We denote its verification value by
Va, which is initialized to zero. Meanwhile, we can implement the corresponding
operations, such as adding, querying and removing items, with a complexity of
O(1) in the parallel Bloom filters and the hash table.

4.1 Adding Items

Figure 2 presents the algorithm of adding items in the proposed structure. We
need to compute the hash values of multiple attributes by hash functions and
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then generate the verification values based on the improved method. Meanwhile,
the values of corresponding location counters in PBF are incremented and cor-
responding operations are denoted by PBF [H[i][j](ai)] + +. Finally, we insert
the verification value of item a into the hash table.

Add Item (Input: Item a)

Initialize Va = 0
for (i = 1; i ≤ p; i + +) do

for (j = 1; j ≤ q; j + +) do
Compute H[i][j](ai)

Va = Va +
H[i][j](ai)

2j

PBF [H[i][j](ai)] + +
end for

end for
Insert Va into the hash table

Fig. 2. The algorithm of adding an item with multiple attributes

4.2 Querying Items

Figure 3 shows the multi-attribute query algorithm, which realizes the two-step
verification process. After computing the hash values of multiple attributes, we
need to check whether the attributes exist in PBF. If any PBF [H[i][j](ai)] is 0 for
item a, the query returns answer False in order to show that the queried item a
does not exist. Otherwise, the hash values are added to generate the verification
value Va. If the value Va is also in the hash table, we can determine that item a
exists.

4.3 Removing Items

The operation of removing items needs to remove both the attributes in PBF
and the verification values in the hash table. Figure 4 shows the algorithm for
removing an item. As for an item a, we compute the hash values of its attributes
and subtract 1 from the values of corresponding location counters in order to
remove multiple attributes in PBF. Afterwards, the verification value of item a,
Va, is also removed from the hash table.

5 Algebra Operations

The algebra operations of Bloom filters are helpful to implement the represen-
tation and membership query of items from different sets. The operations, such
as union and intersection, are still applicative in the PBF structure. We first
introduce the union and intersection operations of standard Bloom filters and
then describe the corresponding operations of PBF and hash table. We illustrate
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Membership Query Item (Input: Item a)

Initialize Va = 0
for (i = 1; i ≤ p; i + +) do

for (j = 1; j ≤ q; j + +) do
Compute H[i][j](ai)
if PBF [H[i][j](ai)]==0 then

Return False
end if
Va = Va +

H[i][j](ai)

2j

end for
end for
if Va is in the hash table then

Return True
end if
Return False

Fig. 3. The algorithm for querying an item with multiple attributes

Remove Item (Input: Item a)

Initialize Va = 0
for (i = 1; i ≤ p; i + +) do

for (j = 1; j ≤ q; j + +) do
Compute H[i][j](ai)

Va = Va +
H[i][j](ai)

2j

PBF [H[i][j](ai)] −−
end for

end for
Remove Va from the hash table

Fig. 4. The algorithm of removing an item with multiple attributes

these operations in an example. Finally, we compare the false positive probability
of the standard Bloom filter and our proposed structure with respect to union
and intersection operations.

5.1 Standard Bloom Filter

A set S can be represented as a Bloom filter using a mapping relation: S →
BF (S). We use two Bloom filters BF (A) and BF (B) to represent sets A and B
with the same number of bits and hash functions.

Definition 1. The union of two Bloom filters, BF (A) and BF (B), can be rep-
resented as BF (A ∪ B) by logical OR operation of their bit vectors.

Theorem 1. The false positive probability of BF (A ∪ B) is larger than that of
BF (A) or BF (B).
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Proof. We use |A|, |B| and |A∪B| to represent the numbers of the sets A, B and
A ∪ B. Thus, we have |A ∪ B| ≥ max{|A|, |B|}. The false positive probability
of set A ∪ B is (1 − (1 − 1

m )k|A∪B|)k, which is larger than the false positive
probability of sets A or B, (1 − (1 − 1

m )k|A|)k or (1 − (1 − 1
m )k|B|)k.

Definition 2. The intersection of two Bloom filters, BF (A) and BF (B), can
be represented as BF (A ∩ B) by logical AND operation of their bit vectors.

Theorem 2. The false positive probability of BF (A ∩ B) is smaller than that
of BF (A) ∩ BF (B) with probability

(1 − (1 − 1
m

)k|A−(A∩B)|)(1 − (1 − 1
m

)k|B−(A∩B)|)

Proof. Intuitively, a bit is set in both filters if it is set by items in A ∩ B, or in
A − (A ∩ B) and B − (A ∩ B) [7]. In fact, we have

BF (A) ∩ BF (B) = BF (A ∩ B) ∪ BF (A − (A ∩ B)) ∩ BF (B − (A ∩ B))

Meanwhile, the items in A ∩ B produce the same bits for filters BF (A ∩ B)
and BF (A) ∩ BF (B). Thus, we can conclude that BF (A ∩ B) is smaller than
that of BF (A) ∩ BF (B) when BF (A − (A ∩ B)) ∩ BF (B − (A ∩ B)) = 1.

Given a standard Bloom filter and from the conclusion in [7], we know P (BF
(A − (A ∩ B)) = 1) = 1 − (1 − 1

m )k|A−(A∩B)|, and P (BF (B − (A ∩ B)) = 1) =
1 − (1 − 1

m )k|B−(A∩B)|. Thus, the event that the false positive probability of
BF (A ∩ B) is smaller than that of BF (A) ∩ BF (B) occurs with probability

(1 − (1 − 1
m

)k|A−(A∩B)|)(1 − (1 − 1
m

)k|B−(A∩B)|)

5.2 Practical Operations for PBF

Although the union and intersection operations of PBF are similar to those of
standard Bloom filters, they are different because PBF is counter-based filters.
The counter-based Bloom filters utilize the one-way hashed computation. Be-
cause we cannot accurately know the actual relationship between two data sets
represented by two Bloom filters, the union operation result is possible not to
exhibit the actual effects very accurately. Hence, we consider the conservative
viewpoint as the policy of our union operation in order to statistically display
the approximate result. The union operation in PBF obtains the bigger counter
values from two arrays in the corresponding positions. On the contrary, the in-
tersection operation in PBF obtains the smaller counter values.

Given the new structure to represent items with multiple attributes, the union
and intersection operations will get an updated hash table to store verification
values. The union operation integrates the verification values of two hash tables
into a new one. The intersection operation maintains the verification values,
which appear at both hash tables, in the new hash table. Figure 5(a) and (b)
show an example to realize the union and intersection operations of PBF and
hash tables respectively.
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Fig. 5. The union and intersection operations of PBF for multiple attributes

5.3 Comparisons of False Positive

We compare the false positive probability applying the union and intersection
operations in both the standard Bloom filter and the newly proposed structure.
We can compute the false positive probability of union and intersection oper-
ations for multiple attributes, which are shown in Figure 6 (Note that PBF
refers to the whole structure including PBF and the auxiliary hash table). We
carry out the comparison by the false positive probability of BF (A) ∪ BF (B)
minus that of PBF (A) ∪ PBF (B) in Figure 6(a) and BF (A) ∩ BF (B) mi-
nus PBF (A) ∩ PBF (B) in Figure 6(b) respectively. We set the parameters as
m = 1280 and k = 6.
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Fig. 6. The false positive probability of union and intersection operations for multiple
attributes

Figure 6(a) displays that the false positive probability of PBF (A)∪PBF (B)
is less than that of BF (A)∪BF (B), especially when the set size becomes larger.
Figure 6(b) displays that the false positive probability of PBF (A)∩PBF (B) is
also much lower than that of BF (A)∩BF (B). The PBF structure fully supports
algebra operations and maintains low errors. For example, we can realize the
intersection operation based on PBF in order to know the common items of two
data sets. Similarly, we use the union operation to get the total information of
two data sets.
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6 Performance Evaluation

We simulate the basic and improved methods of generating verification values
and compare the false positive probability for Standard Bloom Filter (SBF) and
PBF in terms of increasing number of items. In order to make the multi-attribute
operations feasible in the SBF, we can concatenate multiple attributes into one
parameter as the input to MD5 hash functions. Thus, the SBF in this paper
uses the concatenated multiple attributes as an input of hash functions and the
approach is an extension to the Bloom filters in [7] for items with multiple
attributes.

6.1 Verification Values

We compare the false positive probability of Basic Method (BM) with that of
Improved Method (IM) based on the same hash functions and available space
sizes. Each item has four attributes and each attribute is computed by six hash
functions, i.e., p = 4 and q = 6, respectively. Figure 7 illustrates the simulation
results. Compared with the basic method, the improved method can obtain
the smaller false positive probability under different space sizes. As a result of
considering the sequential information of hash functions, the improved method
can distinguish the hash values of attributes of items very well. Thus, the average
false positive probability of IM can be bounded by 0.002, which is much smaller
than BM.
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(b) Results when m = 640

Fig. 7. The false positive probability of Basic and Improved Methods

6.2 Parallel Bloom Filters

In this simulation, we use the MD5 as the hash function for its well-known
properties and relatively fast implementation. The value of an attribute can be
hashed into 128 bits by calculating the MD5 signature. Then, we divide the 128
bits into four 32-bit values and utilize the modulus of each 32-bit value by the
filter size m.
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(a) Results when m = 1280
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(b) Results when m = 2560

Fig. 8. The results of comparisons between SBF and PBF

Figure 8 shows the false positive probability of SBF and PBF in terms of
different space sizes. Note that PBF in this figure stands for the new data archi-
tecture, which consists of PBF and the hash table. We set three attributes for
each item and each attribute is computed by seven hash functions, i.e., p = 3
and q = 7. Meanwhile, the space sizes available are m=1280, 2560 counters,
respectively. It can be seen that given a certain number of items, the bounds on
the PBF are always smaller than the bounds on the SBF. The upper probability
of PBF is much smaller than that of SBF. Meanwhile, the variation trends of
PBF are smooth in terms of the increasing number of items. The main reason is
that the verification step based on the hash table can enhance the accuracy and
efficiency of PBF, which can support the operations with multiple attributes.
Therefore, although we use the simple method of attributes concatenation to
realize the attributes-based operations in SBF, the PBF shows that its false
positive probability is much lower than that of SBF.

7 Conclusion

Bloom filter is a kind of space-efficient data structure and can be widely used for
information representation and membership query in current network environ-
ments. The space efficiency is achieved with certain false positive probability in
membership query. The standard Bloom filter cannot efficiently support the rep-
resentation and query of multiple attributes for the burgeoning and higher-level
network services.

In this paper, we have presented a novel structure and practical algorithms
which outperform the conventional standard Bloom filters algorithms by using
the two-step verification process. Our proposed architecture extends the stan-
dard Bloom filters to efficiently support the membership query with multiple
attributes. By using the verification values in the hash table, we illustrate how
the false positive probability of the proposed structure can be reduced signifi-
cantly. Meanwhile, the operations on both Bloom filters and the hash table have
the complexity of O(1). Hence, the total complexity of our proposed structure
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is of the order O(1). Through theoretical analysis and simulations, we further
show that the novel architecture can be efficiently applied in network services
for its small space requirement and very low false positive probability.
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Abstract. With rapid advancements in Ethernet technology, Ethernet speeds 
have increased by 10 fold, from 1 to 10Gbps, in a period of 2-3 years. This sud-
den increase in speeds has outpaced the rate at which processor and memory 
speeds have been increasing, raising concerns that TCP/IP processing will not 
scale to these levels. As a result, applications running on commercial servers 
will not be able to take advantage of the increased Ethernet bandwidth. This has 
led to a flurry of activity in the industry and academia focused on finding ways 
to scale up TCP/IP processing to 10Gbps and beyond. In this paper, we propose 
a novel technique called "Receive Side Coalescing" (RSC) that increases 
TCP/IP processing efficiencies significantly. RSC allows NICs to identify 
packets that belong to same TCP/IP flow and coalesce them into a single large 
packet. As a result, TCP/IP stack has to process fewer packets reducing per 
packet processing costs. NIC can do this coalescing of packets during interrupt 
moderation time hence packet latency is not affected. We have collected packet 
traces and analyzed those to find out how much coalescing is possible in differ-
ent scenarios. Our analysis shows that about 50% reduction in number of pack-
ets is possible. We have prototyped RSC on Windows and Linux to understand 
the benefits, and the results show that 2-7% of savings in CPU utilization is 
possible at 1Gbps speeds. Projection models developed to estimate processing 
costs at 10Gbps show that RSC can save up to 20% of the CPU.  

Keywords: Receive Side Coalescing, RSC, TOE, TCP/IP acceleration, de-
fragmentation, receive offload. 

1   Introduction 

TCP/IP is the most commonly used protocol to process data both in enterprise data 
centers and on the Internet. However, TCP/IP processing is inherently very expensive 
and will not be able to scale to 10Gbps rates process packets unless a significant 
number of overheads are eliminated. We have measured TCP/IP performance on 
Intel® XeonTM processor (2.6GHz) based server platform running windows OS. 
Results shown in figure 1 highlight the fact that the transmit side can achieve higher 
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throughputs at lower CPU utilizations compared to that of the receive side processing. 
CPU utilizations shown in the graph are for two logical CPUs. At 65536 byte payload 
size, receive side throughput maxed out at 2Gbps with average CPU utilization across 
the two processors is around 65%. This highlights the fact that one CPU can barely 
achieve 2Gbps of receive throughput, which means multiple CPUs need to be ex-
pensed to achieve 10Gbps throughput. 

While the TCP/IP protocol portion [4] has been proven to be not much compute in-
tensive, there are significant number of other overheads that come into play when the 
entire processing (application to NIC) that happens is considered. Some recently pub-
lished papers shed more light [6], [21], [25], [14] on these overheads by analyzing 
their impact. 

 

Fig. 1. TCP/IP Performance 

Within TCP/IP processing, transmit side processing costs have been reduced sig-
nificantly over the years with the development of techniques such as zero copy trans-
mit and Large Segment Offload (LSO). With the help of these optimizations, today's 
CPUs can achieve throughputs of 7-8Gbps at close to 100% utilization. In addition, 
the transmit side processing scales well with the CPU speeds because it is not very 
memory intensive. On the other hand, receive side processing is much more difficult 
to optimize. Today's server platforms have to spare an entire CPU to achieve just 2-
3Gbps of throughput even when receiving large packets (> 1KB). CPU cycles re-
quired to receive and process a single byte of data, when transferring 8KB payloads, 
is in the order of 6 cycles. Reasons for such high cost of receive side processing are: 
descriptor and TCP/IP header processing, data copy from kernel to application buffer 
generate compulsory cache misses, per packet processing costs, OS overheads, etc.  
Since receive side processing is memory intensive and memory speeds increase rather 
slowly (as compared to CPU speeds), receive side performance does not scale as well 
with increases in CPU speeds. To address receive side processing challenge, several 
solutions have been proposed. These solutions range from techniques that target spe-
cific overheads [7] involved in receive side processing to new protocols like RDMA 
[12] to complete offload solutions like TOE [1]. These techniques are reviewed in 
section 3 of this paper.  

Our contribution in this paper is that we propose and evaluate a new technique, 
called Receive Side Coalescing (RSC), to accelerate TCP/IP receive side processing. 
RSC combines incoming packets of the same TCP connection into larger packets. 
This technique reduces number of packets that software has to process thus reducing 
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overheads involved in processing packets. Our analysis showed that up to 50% reduc-
tion in number of packets to be processed can be achieved.  

The rest of the paper is organized as follows: In section 2, we provide an overview 
of TCP/IP receive side processing and highlight various overheads involved. In sec-
tion 3, we review various techniques/solutions that have been proposed to solve re-
ceive side processing challenge. In section 4, we show data from our analysis on how 
much coalescing is possible in the network. In section 5, we describe how RSC 
works, provide details on RSC SW prototypes and show the results from these proto-
types. We conclude the paper with summary and future work.  

2   TCP/IP Receive Processing 

In this section we provide a high level overview of the processing that takes place 
from the time a NIC receives an Ethernet frame till the incoming data is handed over 
to the intended application. It is not our intention to provide a detailed description of 
this processing, but to provide sufficient context for readers while highlighting some 
major overheads involved in this processing. 

Receive-side processing begins when NIC hardware receives an Ethernet frame 
from network. NIC extracts Ethernet frame delineation bits and CRC value and vali-
dates the frame. Today’s NICs also perform checksum computations for the TCP and 
IP portions of the packet and compare those with checksum values TCP and IP head-
ers. In order to notify the software stack about incoming packets and their placement 
in the memory, NIC uses descriptors that are arranged in a circular ring fashion. De-
scriptor data structure is typically 16bytes and contains among other things, address of 
a memory buffer (NIC buffer) to store the incoming packet data. NIC copies the in-
coming data at the memory location specified in the descriptor using onboard DMA 
engine. Once the packet is placed in memory, NIC updates a status field inside the 
descriptor to indicate to the driver that this descriptor holds a valid packet and gener-
ates an interrupt. This kicks off the SW processing of the received packet.  

Figure 2 shows the overall flow for receive side processing. The Ethernet device 
driver reads the descriptor and makes sure that NIC has indicated that this is a valid 
packet. Driver then classifies the packet as either IP packet or some other. If it is an IP 
packet then it forwards it to the TCP/IP stack for further processing. Since this de-
scriptor was updated by NIC earlier, it results in invalidating processor’s copy (if 
found in cache). So the processor would have to fetch the descriptor from the main 
memory. If the descriptor size is 16 bytes then each cache line (64 bytes) can accom-
modate up to 4 descriptors. Similarly, accessing packet headers by TCP/IP stack also 
results in cache misses as this data was just placed in the memory by the NIC. TCP/IP 
headers combined, without any option fields, is 40 bytes long. So each packet header 
will result in one compulsory cache miss. The next step in processing is to identify the 
connection to which this packet belongs. TCP/IP software stores state information of 
each open connection in a data structure, called the TCP/IP Control Block (TCB). 
Since there can potentially be several thousand open connections, hence many TCBs, 
TCP/IP software uses a well known search mechanism called hashing for fast lookup 
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of the right TCB. The hash value is calculated by using the IP address and port num-
ber of both the source and destination machines. Several fields (sequence numbers for 
received/acknowledged bytes, application’s pre-posted buffers, etc.) inside the TCB 
are updated whenever a new packet is received. TCP/IP stack then needs to figure out 
where to copy the packet payload (data portion). It checks to see if the target applica-
tion has already posted a buffer to receive incoming data. If a buffer is available, stack 
copies the data from the NIC buffer into that buffer. Otherwise, it will wait for the 
application to provide a buffer. TCP/IP stack may be forced to copy the data into a 
temporary buffer if application didn’t provide one.  When the incoming data is first 
copied, source buffer results in compulsory cache misses as the data has to be read 
from main memory.  
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Fig. 2. Data Flow in Receive-Side processing 

3   Existing Techniques to Accelerate TCP/IP Receive Processing 

Over the years several solutions have been proposed to improve the performance of 
TCP/IP receive processing. Some of these are implemented in majority of the NICs 
that ship today.  

Interrupt Moderation 
Network interrupt processing is an expensive operation even on today’s machines. 
Interrupt moderation technique was developed to reduce the number of interrupts NIC 
generates. NIC instead of generating one interrupt for every incoming packet, it gen-
erates an interrupt after some number of packets are received. This interrupt modera-
tion is typically exposed as a configurable parameter on today NICs. This is a com-
monly available feature in today’s NICs. 
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Jumbo Frames 
Jumbo frames technology was developed to reduce number of network packets re-
quired to transfer larger payloads. Most of today’s NICs support multiple size jumbo 
frames. Jumbo frames not only reduce numbers of packets on the network but can 
also significantly reduce TCP/IP stack processing time hence CPU utilization. How-
ever, jumbo frames are not widely used because enabling jumbo frames on end ma-
chines is not sufficient - all the intermediate routers and switches need to enable 
jumbo frames as well. 

Receive Side Scaling 
Receive side scaling is relatively a new technique developed by Microsoft to allow 
NICs to distribute interrupts across multiple CPUs in a system. Without this feature, 
all the interrupts would go to one processor (typically CPU0). As a result, maximum 
receive throughput a machine can achieve depends on what a single CPU can achieve. 

TCP Offload Engines (TOE) 
TOE offloads entire TCP/IP processing from the main CPU. TOEs are typically im-
plemented on the NIC. TOEs are expensive, require changes to operating systems and 
face other problems that are described well in a recent paper [17]. Given these issues, 
it is not known yet how this idea will succeed in the market.  

Remote Direct Memory Access (RDMA) 
RDMA is a set of specifications developed by the RDMA consortium to solve the 
problem of directly placing incoming network data into user application buffers with-
out having to go through intermediary copies of that data. RDMA provides the ability 
of one computer to directly place information in another computer’s memory with 
minimal demands on memory bus bandwidth and CPU processing overhead, while 
preserving memory protection semantics. RDMA over TCP/IP defines the interoper-
able protocols to support RDMA operations over standard TCP/IP networks. 

Direct Cache Access (DCA) 
DCA [7] allows NIC to place incoming packet data directly into a processor’s cache. 
This can potentially eliminate compulsory cache misses that occur during packet 
processing. It also speeds up data copies as the incoming payload will be in proces-
sor’s cache instead of main memory. 

4   Receive Side Coalescing (RSC) 

RSC is a stateless and software transparent offload mechanism. RSC coalesces on the 
NIC packets that are for the same TCP/IP connection.  Thus RSC reduces number of 
packets that a TCP/IP stack needs to process. This will reduce per packet processing 
costs significantly. RSC, in concept, is exactly opposite of Large Segment Offload 
(LSO) [14] that happens on the transmit side. Figure 2 illustrates the effect of RSC. 
When there is no RSC, NIC sends all the packets it receives to the stack for process-
ing. With RSC, NIC sends fewer but larger packets. RSC requires NIC driver to allo-
cate large buffers (4KB or higher) so that it can place payload from more than one 
packet in each buffer. Coalescing of packets also leads to reduction in descriptor 
usage as well. NIC performs coalescing of incoming packets while waiting for the  
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Fig. 3. Illustration of RSC concept 

interrupt moderation timer to expire. As a result, RSC does not add any extra delay in 
delivering the packets to the processor.  

Coalescing TCP/IP packets is possible because TCP is a byte stream protocol and 
applications can’t make any assumptions about boundaries of a message. For exam-
ple, an application can receive tail end of a message and the beginning of the next 
message in the same ‘receive’ call.  

In order to perform coalescing, RSC needs to save some information (IP, TCP 
header info, descriptor number, number of packets and bytes coalesced, current 
checksum values, etc.) about each connection for which coalescing is in progress. 
This information is saved in a cache memory, called RSC cache on the NIC. Each 
coalesced packet takes up about 100 bytes in the cache. 

RSC logic on NIC extracts TCP/IP header fields from incoming packets and does a 
series of tests to determine whether to coalesce this packet or to stop existing coalesc-
ing. We are not listing the coalescing criteria that RSC uses here due to space con-
straints. 

If an incoming packet is the first packet for a TCP/IP connection, and RSC logic 
decides to start coalescing, then the packet’s TCP/IP header is removed and relevant 
information from the header is saved in the RSC cache. Packet’s payload is then cop-
ied (DMA) into a buffer provided by the NIC driver. RSC does not hold onto the 
payload while coalescing is in progress so it does not need any additional memory on 
NIC. When a second packet on the same connection comes and if it meets coalescing 
criteria, then the entries in the RSC cache are updated (how many bytes received, 
starting offset in the buffer for next packet’s payload, etc). TCP/IP headers are 
stripped from the packet and payload is copied next to the previous one in the same 
buffer. When the RSC logic decides to stop coalescing for a connection because an 
incoming packet does not meet coalescing criteria (out of order packet, payload does 
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not fit in the remaining space in the buffer, PSH flag in TCP header is set, etc.), then 
modified header in the RSC cache for that connection is written back to the memory 
at the location specified in the descriptor.   

At the time of interrupt all the headers from the RSC cache are written back. RSC 
can start coalescing again after the interrupt. As a result, RSC requires only a small 
amount of RSC cache (1-2 KB) to store information about 3-4 connections at a time.  

5   How Much Coalescing Is Possible? 

It is well known in the networking community that TCP/IP traffic is bursty in nature. 
Several studies have been conducted and multiple papers [2], [9], [22] have been 
published on this subject. RSC is mainly dependent on the existence of these bursts. 
RSC with a cache size of 2 or more entries does not require packets on a connection 
to come back to back to be able to coalesce those packets. It is sufficient if they come 
in close succession. In order to find out how much coalescing is really possible and 
how it varies with number of simultaneous flows (TCP/IP connections), RSC cache 
size, buffer size and interrupt moderation window, we have collected several sets of 
network packet traces and analyzed those. Results from this analysis are presented in 
this section.  

For all the experiments described below, we have used the following setup. We 
have set up a dual processor server machine as the receiver.  This receiver machine is 
connected to a number of client machines (senders) via two 1Gbps Ethernet switches. 
All the client and server machines used 1Gbps NICs and ran Chariot [26] (commer-
cially available network performance analyzer) scripts to transfer data. Each client 
machine sets up 1 connection with the receiver and starts transmitting data. We have 
used an open source program, called ethereal [5], to collect network packet traces on 
the receiving machine. We have then analyzed these packet traces using internally 
developed scripts to find out how much coalescing is possible in each scenario based 
on certain coalescing criteria. 

5.1   Simultaneous Connections 

The main purpose of this experiment is to find out how much coalescing is possible 
when there are multiple simultaneous TCP/IP connections.  We have assumed 8KB 
NIC buffer and a RSC cache with 4 entries. 8KB buffer allows us to coalesce up to 5 
full sized TCP/IP packets (1460 bytes each). Four entry deep RSC cache allows us to 
keep track of up to 4 different connections. After every 20 packets, we have stopped 
coalescing and flushed RSC cache and started all over again. This is same as simulat-
ing a 20 packet interrupt moderation window. Results from this experiment are shown 
in the graph in figure 4. On the x-axis, we are showing various payload sizes for 
which we have collected and analyzed packet traces. On the y-axis, we are showing 
number of packets that RSC is able to eliminate out of a total of ten thousand packets 
that were captured. The results show that about 50 to 80% coalescing is possible, and 
there is not much variation in achievable coalescing between 4, 8 and 16 connections. 
One exception though is at 8KB point where the number of coalesced packets with 
sixteen connections is slightly smaller than that of 4 and 8 connections. This is be-
cause with the 20 packet hard stop we have for stopping the coalescing activity, we 
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found ourselves often not able to coalesce the last packet (~890 bytes) of 8KB pay-
load.  But in case of 4 and 8 connections, more often we were able to coalesce all the 
packets (5 full + 1 partial) into one.  

 

Fig. 4. Amount of coalescing possible with 2, 
4 and 16 simultaneous connections 

 

Fig. 5. Data Flow in Receive-Side process-
ing 

Next, we ran another experiment with 16, 30, 60 and 90 clients, with as many con-
nections, sending data to a single receiver on a 1Gbps NIC. Results are shown in the 
graph in figure 5. These results confirm further that we can still achieve more than 
50% coalescing (50% reduction in number of packets) even when there are large 
number of connections on which packets are received.  

5.2   Sensitivity Studies 

Next we wanted to study how various key parameters such as RSC cache size, buffer 
size and interrupt moderation window can impact how much coalescing is possible. 

The graph in figure 6 shows sensitivity study results where we have varied number 
of entries in the RSC cache size. RSC cache size defines how many simultaneous 
connections for which coalescing can be in progress. The x-axis of the graph shows 
different cache sizes we have studied while the y-axis shows how much coalescing 
was possible. We have shown data for various payload sizes. These results point out 
RSC cache size of 3 entries allows us to achieve close to maximum coalescing. 

Next, we study sensitivity to receive buffer size; size of the buffer dictates how 
many individual packets we can coalesce. The analysis of captured packets is done 
assuming RSC cache size of 4 entries and 20 packet interrupt window.  There were 16 
active connections from 16 different clients. It is clear from the results shown in the 
graph in figure 7 that 8KB buffer yields more coalescing for payloads larger than 4KB. 

The last sensitivity study that we have done is to figure out the impact of varying 
interrupt moderation window. On today’s 1G NICs, it is around 250us, which is equal 
to roughly 25 full size packets (this is the default setting on Gigabit NICs from Intel 
Corp.). We found out from the data that we can achieve more than 50% coalescing 
even with a 16 packet window.  Increasing the interrupt moderation window from 16 
packets to 32 packets shows 5-10% improvement in coalescing, and no significant 
gain was observed beyond 32 packet window. 
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Packet Coalescing - Sensitivity to RSC Cache Size
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Fig. 6. Data Flow in Receive-Side processing 

Packet Coalescing - Sensitivity to Rx Buffer Size
 (Chariot workload, 1Gig port, 16 conn, 4 entry RSC)
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Fig. 7. Data Flow in Receive-Side processing 

These sensitivity studies prove that significant coalescing is possible on machines 
that receive significant amount of TCP/IP data. In the next section we show how this 
coalescing translates into CPU utilization reduction.  

6   RSC Performance 

Next step in RSC evaluation is to find out how much CPU savings that we can 
achieve with RSC. In order to find this out, we have implemented a software version 
of RSC in Ethernet driver code.  

To allow coalescing of multiple packets, we have forced the Ethernet driver to al-
locate larger buffers (4KB and 8KB). NIC does its normal processing of packets and 
sends them to the processor. In the Ethernet driver, we execute RSC code and decide 
which packets can be coalesced. We have varied the degree of coalescing to figure out 
how the benefits vary. We have used 3 different levels of coalescing and compared 
the results to a base case (denoted as “Regular” in the graphs) that does not have any 
coalescing. The three levels of coalescing used in our experiments are indicated in the 
graphs as “RSC2” (or “RSC_2”), “RSC3” (or “RSC_3”), and “RSC5” (or “RSC_5”) 
to mean at most two, three and five packet coalescing respectively.  

In all these tests, we have a used a fast client to transmit data to the receiver ma-
chine that is under the test. The client machine has enough capacity in terms of com-
pute power as well as network bandwidth so that it does not become bottleneck in any 
way.  

6.1   Results 

We have first implemented RSC functionality in Linux OS and took measurements 
with and without RSC. Results are show in the graph in figure 8. The x-axis in the 
graph shows different payload sizes (application buffers) that we have taken meas-
urements for. The y-axis shows measured CPU utilization and the secondary y-axis 
shows efficiency of processing in terms of cycles/byte. We have used ttcp [23] pro-
gram on both the client and server machines to generate TCP/IP traffic between them. 
Across all the payload sizes and configurations the system was able to achieve maxi-
mum possible throughput (~950Mbps) on a 1Gbps NIC.   



298 S. Makineni et al. 

 

Across all the payload sizes, RSC shows a benefit over the base case. Two packet 
coalescing (RSC_2) offers 2-4% savings in CPU utilization while five packet coalesc-
ing (RSC_5) saves about 5-7% of CPU when processing at 1Gbps speeds. You can 
also see from the cycles/byte comparison how RSC improves receive side processing 
efficiency. 

 

Fig. 8. RSC Performance on Linux at 1Gbps 
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Fig. 9. RSC Performance on Windows at 
1Gbps 

Next, we have repeated the same experiment on a server machine running win-
dows. We have modified the Gigabit Ethernet driver code and added RSC functional-
ity to it.  We have used a program, called ntttcp [23], to generate network traffic. 
Results are shown in the graph in figure 9. In this graph, we are showing on the sec-
ondary y-axis, the average number of packets that we were able to coalesce in each 
case. Results show that RSC offers benefit with windows stack too. If we consider the 
8KB payload data point, RSC_2 brings down CPU utilization from 39.5% to 37.8% 
and RSC_5 brings this further down to 32.6%.  We have also noticed that for 16KB 
payloads, RSC_2 CPU utilization turned out to be (0.1%) higher than the Regular 
case. This is due to the artifacts of running RSC in software (resulted in more cache 
pollution).   

We wanted to find out what the benefit would be when processing at multi gigabit 
per second rates. So we have experimented with a current generation 10Gbps NIC on 
a windows machine. We have modified the 10G Ethernet driver and added RSC sup-
port.  Even though we have used 10G NIC, the DP server system under test could 
only achieve 1.6Gbps throughput at 4KB payload size and 3.1Gbps at 65KB payload 
size with 100% CPU utilization. This test was conducted with 1 TCP/IP stream and 1 
CPU. RSC2 benefit now ranges from 4 to 12%. As expected, the benefits are higher 
(4-18%) with RSC3 and RSC5 configurations. From these results, it is clear that when 
receiving packets at true 10Gbps speeds, even two packet coalescing (RSC2) can 
bring down the CPU utilization by more than 20% points. 

7   Summary and Conclusions 

Scaling of receive side TCP/IP processing beyond the current 1-2 Gbps has become 
important as the bandwidth demands in enterprise data centers have grown signifi-
cantly in recent years. This requires that several overheads involved in receive side 
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processing need to be reduced drastically. In this paper, we have proposed a novel 
technique, called Receive Side Coalescing (RSC) that addresses per packet processing 
overheads by reducing the number of packets that need to be processed by the stack. 
We have shown collected network packet traces and analyzed those to prove that 
more 50% coalescing is possible with a 4 entry RSC cache, 20 packet (~200us) inter-
rupt moderation window and 8KB NIC buffers. In essence RSC offers similar benefits 
like that of 9KB Jumbo frames but without all the problems associated enabling the 
jumbo frames in the data centers. Next, we have shown results from our software 
implementation of RSC. These results showed that CPU utilization can be reduced by 
1-5% with RSC2 (2 packet coalescing) and 3-7% with RSC5 (5 packet coalescing) 
even when processing at 1Gbps speeds. We have also shown RSC benefits increasing 
significantly when processing at 2-3Gbps speeds. We believe that RSC will be a key 
technique that allows TCP/IP processing to scale better. Going forward, we would 
like to implement RSC in hardware and use it in real environments so we can measure 
the benefits it offers for some key real world applications. This also allows us to find 
out any changes that may be required to the TCP/IP stacks to fully support RSC. 
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Abstract. Traditional network file systems, like NFS, do not extend to wide-
area due to low bandwidth and high network latency. We present WireFS, a Wide
Area File System, which enables delegation of metadata management to nodes
at client sites (homes). The home of a file stores the most recent copy of the file,
serializes all updates, and streams updates to the central file server. WireFS uses
access history to migrate the home of a file to the client site which accesses the
file most frequently.

We formulate the home migration problem as an integer programming prob-
lem, and present two algorithms: a dynamic programming approach to find the
optimal solution, and a non-optimal but more efficient greedy algorithm. We show
through extensive simulations that even in the WAN setting, access latency over
WireFS is comparable to NFS performance in the LAN setting; the migration
overhead is also marginal.

1 Introduction

With economic globalization, more and more enterprises have multiple satellite offices
around the world. In such scenarios, network file systems provide a familiar interface
for data access and are used extensively. Traditionally, network file systems have been
designed for the local area networks, where bandwidth is ample and latencies are low.
Common networked file systems like NFS [1] and CIFS [2] transfer large amounts of
data frequently. All writes are transmitted to the server and require synchronous updates
to the files there. Apart from wasting bandwidth, typical networked file systems require
multiple round trips to complete a single file operation. The high network latency and
the chatty nature of the protocols make file access over WAN slow and unreliable.

To improve network bandwidth utilization and to hide wide area latencies, Wide Area
File Systems (WAFS) have been developed [3, 4]. These file systems reduce bandwidth
utilization by (i) aggregating file system operations to reduce bandwidth requirements,
and (ii) using content based persistent caching to eliminate duplicate block transfers.
Unfortunately, current Wide Area File Systems ignore the file system access patterns,
and are oblivious to the characteristics of the underlying network. An enterprise that
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deploys existing WAFS has no way to take advantage of temporal locality across sites,
e.g., different timezones and access patterns, or network diversity, which arises due to
distinct network paths between sites and data centers.

In this paper, we present WireFS, a wide area file system, that takes an organization-
centric view, enables data and meta-data sharing across multiple client sites, and min-
imizes metadata access latency in this system. WireFS takes advantage of temporal
locality in file access, and allows data and metadata sharing across client sites. Fig-
ure 1 shows the WireFS architecture. WireFS uses Redirectors (WFSRs), that act as file
servers for all clients that belong a site (island). These redirectors act as WAFS clients
and communicate with a server side Manager (WFSM), which acts as a WAFS server.
WFSM appears as the only client to the central file server which is the final authority
on file system contents. In WireFS, Redirectors communicate not only with the Man-
ager, but also with other Redirectors to allow data sharing, and cooperative metadata
management.

WireFS uses a home based approach to minimize metadata access latency. Each file
is assigned a home server, WFSR or WFSM, which controls access and serializes up-
dates to the file. The most recent copy of a file is cached at its home server. The home
maintains a single serialization point for all updates, therefore provides semantics and
consistency guarantees similar to a centralized file server. Fault tolerance is achieved
by maintaining a primary and a secondary home which maintain identical state. The
home is not statically assigned and can be migrated closer to the clients accessing the
file most frequently.

In this paper, we address the problem of home migration based on file system access
history. Intuitively, a file that is accessed frequently by a client is moved closer to it.
This is achieved by assigning the home of the file to the WFSR at the client site. Since
the number of files in a modern file system is large, assigning homes to individual
files is both inefficient and infeasible due to the overwhelming maintenance and lookup
overhead. Instead, we decompose the file system namespace into a number of sub-trees
and assign homes to these sub-trees. We formulate the problem of tree decomposition
and home assignment to redirectors as an integer programming problem. We propose a
dynamic programming algorithm to find the optimal solution in polynomial time. We
also present a greedy algorithm as a heuristic which works much faster than the dynamic
programming algorithm.
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The rest of the paper is organized as follows. Section 2 presents the WireFS archi-
tecture. The problem definition and algorithms for home migration are described in
Sections 3. Section 4 describes the WireFS implementation and Section 5 presents
the experimental setup and evaluation results. Section 6 describes the related work and
Section 7 concludes the paper.

2 WireFS

WireFS is a wide area file system which enables delegation of metadata management,
and uses content caching and duplicate elimination to reduce redundant data block
transfers. The WireFS architecture has two logical components which capture the typi-
cal behavior of network file systems: (i) the Data Access Layer (DAL), that enables fast
transfer of data across the WAN, and (ii) the Metadata Layer (MDL), that handles the
synchronous metadata operations, e.g. lookup. In this paper, we focus on the design of
algorithms for MDL to minimize the latency of metadata operations.

The MDL is composed of a set of WireFS redirectors, that serve all meta-data re-
quests including file and directory lookup, creation and deletion of files, and updates to
the file or directory metadata e.g. access time updates. The primary goal of MDL is to
reduce the latency of the above operations in WireFS. In the following, we describe the
architectural components of WireFS and the design of the meta data layer in detail.

2.1 WireFS Redirector

A WireFS redirector is deployed at each client site and has three main functions, (i) to
export a file system interface to the clients at the site, (ii) to maintain a content address-
able cache and communicate with other WFSRs or the WFSM to perform data transfers,
and (iii) to maintain operation logs, perform serialization of updates, and handle meta-
data queries for files it is the designated home. Figure 2 shows the architecture of a
WireFS redirector.

The file system interface (FSI) exported by the WFSR enables clients to communi-
cate using an unmodified file system protocol. This interface translates client requests
to WFS requests. On receiving the corresponding WFS reply, the FSI constructs the
response to the original client request and sends it to the client. A pending request map
is maintained by the FSI to match the responses to the corresponding requests. WireFS
can support multiple file system protocols by defining the appropriate FSI.
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Each WFSR maintains a large persistent content-cache that stores files as chunks
indexed by content hashes, which can be used across files. Chunks are non-overlapping
segments of file data whose extents are determined by content boundaries (breakpoints)
using a fingerprinting technique, and are indexed by the SHA-1 collision resistant hash
of the contents. WireFS associates a sequence of chunk indices in the file metadata
which augments the default file information, e.g. access times, permissions, access con-
trol lists, etc.

2.2 WireFS Manager

The WireFS manager is deployed at the server site has a specialized role in the WireFS
protocol. It communicates directly with the server and maintains a global view of the
file system namespace. It also assigns and maintains the WireFS specific attributes of
files like the home node, ownership information, generation numbers etc. The WFSM is
the home node for all files until it delegates this responsibility to a WFSR. The WFSM
is also responsible for the coordinated dissemination of commonly accessed files to
multiple WFSRs to warm up the WFSR caches. Finally, the WireFS manager periodi-
cally reorganizes the file system namespace by reassigning homes of files according to
the access history statistics.

2.3 WireFS Home

Each file in the file system namespace is assigned a home. The home is responsible for
maintaining file consistency, provides a serialization point for all updates, and performs
aggregation on file system operations to reduce network round trips. Homes maintain
not only the update logs and serialization, but also maintain the latest version of the file
metadata including access times, permissions, size, chunk indices, etc.

Each WFSR and the WFSM maintain a migration table, which contains a view of
the file system namespace, statistics and access history, and per-file WireFS metadata.
An entry in the migration table is indexed by the file identifier, and contains either the
home node identifier, or the WireFS metadata for the file. WireFS metadata contains
attributes defined in the file system, and a list of chunk indices, update logs, etc. The
migration table is updated locally, on each operation to maintain statistics and access
history, and remotely, by the WFSM.

On receiving a client request for metadata, for example file lookup, or data, for ex-
ample read or write, the WFSR identifies the home of the file using the migration table
and forwards the request to the home. The home provides the information and maintains
a timestamped record of all updates as update logs. The home node aggregates updates,
eliminates duplicate or redundant updates, and streams the update logs to the file server.

3 WireFS Meta-data Layer

3.1 Home Migration

We use a virtual namespace tree rooted at the directory “/” to model the file organization
in NFS. Our solution is based on the following observation: if most of the accesses into
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a subtree in the directory tree come from one site (through a WFSR), we will assign
the administration privilege of this subtree onto that site (WFSR). We call this task
delegation as a home migration, and that WFSR the home node of this subtree. Notice
home migrations can occur recursively in that a subtree migrated to one WFSR may
have its own subtree migrated to another WFSR node. Therefore, the directory tree is
decomposed into multiple sub-trees based on access statistics, and we want to design the
assignment scheme for home migrations so that the total access latency is minimized. In
addition, to allow fast (one-hop) resolution of home nodes, we will maintain a migration
table at WFSM, the central server side, which keeps one pointer (the address of the
home node) for each distinct migrated sub-tree. Figure 3 shows one example for home
migration.

Formally, we label the WFSM as R0, the n WFSRs as R1, R2, . . . Rn, and the net-
work latency (RTT) between Ri and Rj as LRiRj . When a file lookup from Ri traverses
a directory node Dx (1 ≤ x ≤ m, where m is the number of directory nodes), we call
it one access of Ri on Dx. For each node Dx in the directory tree, a stack of n registers
{CDxRi , i ∈ [0, n]} record the expected access times of each WFSR on Dx during the
next time period T 1.

Now we formulate access latency optimization as an integer programming problem:

min
m∑

x=1

n∑
i=0

IDxRi(
n∑

j=0

CDxRj LRjRi + MDxRi) (1)

subject to IDxRi ∈ 0, 1
n∑

i=0

IDxRi = 1

Where IDxRi = 1 if the subtree rooted at Dx will be migrated to Ri, 0 otherwise.
IDxRi(

∑n
j=0 CDxRj LRjRi) were the total access cost to the directory node Ri if we

migrated the subtree rooted at it to the home node Ri. MDxRi is the transfer cost of
migrating Dx from its current home node to Ri.

When there is no migration table size constraint, the optimal solution can be found
by deciding the best home node for each directory node individually. Next, we present

1 In the experiments we use an exponential weighted moving average (EWMA) counter to ap-
proximate the access register based on past historical information.
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the algorithm to compute the optimal solution of the optimization problem when we
have migration table size constraint.

3.2 Optimal Solution Under Constrained Migration Table

Let Pmax (< the directory size) be the maximal number of pointers that the migration
table can contain. Deciding the Pmax distinct subtrees is similar to many cache or filter
placement problems in the literature [5, 6]. To find the optimal solution in a bounded-
degree directory tree, we can solve the following problem using dynamic programming.

(i.) Let access(Dx, k, Hp(Dx)) be the optimal access cost for the directory (sub)tree
rooted at Dx given that there are k pointers left for this subtree and the home node
for the parent node of Dx is Hp(Dx). We start with access(“/′′, Pmax, R0) on the
root node and enumerate the rest of the nodes following breadth first search.

(ii.) At each directory node Dx, the optimal assignment is decided as
– If k = 0, all nodes in the subtree will be assigned to Hp(Dx) and

access(Dx, k, Hp(Dx))=
∑

z:nodesinsubtree S , where S=
∑n

j=0(CDzRj LRjRHp(Dx)

+ WDzRHp(Dx)).
– Otherwise, access(Dx, k, Hp(Dx)) =

min { min [ for all allocation schemes (z,Az) of k-1 pointers on children of Dx∑n
j=0(CDxRj LRjRy +WDxRy ) +

∑
z: child of Dx

access(z,Az, y) ∀y �= Hp(Dx)],
min [ for all allocation schemes (z,Az) of k pointers on children of Dx∑n

j=0(CDxRj LRjRHp(Dx) +WDxRHp(Dx))+
∑

z: child of x access(z, Az, Hp(Dx)) ]}
Next we present the analysis result on the dynamic programming algorithm.

Theorem 1. The dynamic programming algorithm finds the optimal solution in
O(PD

maxm2n) time, where D is the maximal degree in the directory tree.

Proof. The analysis is similar to the one for the k-median problems on trees [7] and is
skipped in the paper.

3.3 A Greedy Algorithm Under Constrained Migration Table

While we can find the optimal solution in polynomial time, the large directory tree size
m and large degree bound D makes it desirable to find a solution good enough and as
quickly as possible. We observe that on the file directory tree, the nodes close to the root
receive more lookup requests than the nodes close to the leaf nodes do. Therefore, when
deciding home migration we can take the top-down order and start from the nodes at
the top of the directory tree. For a set of candidate nodes, we will firstly pick the node
whose subtree has the most access requests (from all users) for the home migration
process. The cost of all nodes is assigned using a Depth First Search and the nodes are
maintained in an ordered list. We move from the highest cost node in the list and assign
the home for the subtree rooted at the node. This process continues until all k pointers
in the migration table are filled. The remaining nodes’ home is assigned to that of the
closest ancestor.

Theorem 2. The greedy algorithm finds an assignment scheme in O(m log(m) +
Pmaxm) time.
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Proof. The algorithm performs one tree traversal using the Depth First Search in O(m)
time. Operations on ordered list take O(mlog(m)) time, and for each node to added to
the migration table, checking ancestors for m nodes takes O(Pmaxm) time.

4 Implementation

WireFS is implemented by extending the Low Bandwidth File System (LBFS) [3].
LBFS provides content hashing, file system indexing, and chunk storage and retrieval.
WireFS extends the LBFS implementation by including the WFSR update logs. Unlike
the default LBFS, WireFS uses a modified NFS implementation which sends the file
system requests to the LBFS client at each WFSR. At the WFSM, the LBFS server sits
in front of the NFS server and is unmodified.

Figure 4 shows the WireFS implementation. In addition to the default LBFS, WireFS
includes additional functionality for home migration and maintaining update logs.
These are implemented as extensions to LBFS and use the SFS toolkit [8] to provide the
asynchronous programming interface. Finally, the interaction between the WFSRs is in-
dependent of the LBFS protocol. WireFS receives all NFS requests from the clients, and
uses the WFS protocol to identify the home node. The requests are passed on to LBFS
client at the home node which in-turn uses the content cache and the LBFS server to
service the requests.

WireFS associates additional metadata with each file system object. It is important
to note that this information is not visible to either the server or the clients, but is gener-
ated and maintained by the WireFS redirectors transparently. The additional attributes
enable WireFS specific optimizations over the wide-area-network. As shown in Fig-
ure 5, for each file, WireFS maintains a directory entry (dentry) which contains four
additional attributes, a chunk list, callback list, Home information for the parent and the
file itself, and Owner information. In addition to the extended attributes, update logs
are maintained for any updates in queue for the server. Finally, each WFSR maintains
a translation table which maps the file handles provided by the server at mount time to
the path name of the file on the server.

5 Evaluation

In this section, we present an evaluation of WireFS home migration using trace driven
simulation. We first describe our simulation methodology. We then show the behavior
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of the home based WireFS metadata access protocol and compare it against existing
network and wide area file systems. Finally, we show the benefits of home migration in
WireFSwhile comparing our two algorithms for reassignment.

5.1 Simulation Methodology

We use the publicly available NFSv3 traces from Harvard SOS project [9]. The Harvard
traces include up to three month real campus NFSv3 traffic in different deployment
scenarios. We choose the most diverse workload which is a mix of research, email and
web workload. In our simulation, traffic traces of two weeks are extracted to evaluate
WireFS performance under different configurations. The traces feature workload and
operation diversity where 993 thousand distinct files with 64 thousand directory files
are monitored. During the studied two week period, 384 million NFS RPC call/response
pairs are recorded. 75 distinct host IP addresses are identified from the traces and are
used for creating user groups.

To emulate an enterprise environment with branch offices, we partition the total 75
hosts into 10 groups (sites) with the access pattern following uniform or Zipf distribution.
The site geographic distribution is emulated based on the Ping project traces [10]: we
randomly picked 10 PlanetLab nodes scattered around the world, and emulated the wide-
area network latency between them by extracting the round-trip time (RTT) information
between them from the Ping project traces. The RTT between two sites varies from 2.4ms
to 358ms with the average value of 157ms. The time zone for each site is included in
our experiments by adding time offset to the trace data originating from that site.

We compare four network file systems in our simulated WAN setting. The first file
system is a wide-area deployment of the NFSv3 system, called WAN-NFS in the rest
of the paper. In WAN-NFS, all client groups access files from the remote central NFS
server via NFS RPC procedures. The second file system, called DHT file system, uti-
lizes the DHT based data management scheme (like SHARK [4]) that randomly dis-
tributes file objects among the participating sites. For simplicity, in the simulations we
assume a file lookup takes only one-hop searching for remote file object access. The
third file system is called WireFS-node, where home assignment is done on individual
files based on their access statistics. The fourth system is called WireFS-tree, where
home assignment is done based on the greedy algorithm described in Section 3.3.

In both WireFS-node and WireFS-tree, home migration decision is recomputed every
T minutes, and the number of accesses to a file f from a site x at the end of the i-th
period is calculated with an EWMA counter: Cx

f (i) = α×Cx
f (i−1)+(1−α)×nx

f (i),
where nx

f (i) is the total access number of x on f during the i-th period and Cx
f (0) = 0.

Unless explicitly stated, T = 60, α = 0.5, and a migration table with the size k =
50000 are used in the following.

5.2 Results

Figure 6 shows the average meta-data lookup latency distribution in the four file systems
where host grouping was based on Zipf distribution and time zone effect is considered.
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The NFS lookup latency performance in local area network (LAN NFS) is also included
as the baseline for all these schemes.

We observe that WireFS-tree performs close to NFS-LAN and outperforms the other
three schemes. The latency of more than 96% of the lookups in WireFS-tree is com-
parable to that in NFS-LAN; 92% of the lookups in WireFS-tree take less than 10ms,
compared with 75% of WireFS-node, less than 15% of DHT system, and 0 of WAN
NFS as all other sites are more than 10ms away from the central file server; only 2% of
the operations in WireFS-tree underperformed the other schemes due to its worst case
scenario with two-hop lookups. We repeat the above simulations with host grouping
based on uniform distribution, and the result (as shown in Figure 7) was similar to that
of Zipf distribution.

Figure 8 compares the performance of WFS-tree and WFS-node in terms of the dis-
tribution of local hit ratios (computed every T minutes) throughout the 2 weeks. We
observe that WFS-tree has a hit ratio over 95% most of the time, while WFS-node
experiences hit ratio oscillation during the experiment with average value less than
90%.

The performance difference between WireFS-tree and WireFS-node is caused by
the prefetching nature of the subtree-based migration and the caching nature of the
node-based migration. If file accesses from a site have a locality pattern within the
directory tree hierarchy, prefetching avoids “cold” misses, due to first-time accesses;
our experiment results clearly validated that assumption.

Figure 9 shows the time evolution of local hit ratios in WFS-tree. The aperiodic
deterioration of hit ratios is explained by the spikes of remote first-time-access file
ratios 2 , which are also shown in Figure 9.

Figure 10presents the time evolution of average lookup latency in WireFS-tree over the
two-week time period. The first-time-file access ratio is shown in Figure 10. We observe
that the latency spikes are consistent with the spikes of the first-time-access file ratios.

The effect of home migration is demonstrated by the immediate decline after each
latency spike in Figure 10. The drop in the access latency shows that home migration

2 Remote first-time-access file ratio is defined as the percentage of the files accessed by a remote
group for the first time out of all files accessed during a time period.
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reduces the wide-area accesses adaptively and quickly. Over the first 50 hours, most of
the files are accessed for the first time by remote sites, which makes the average lookup
latency oscillate dramatically. After this time, the latency stabilized until another first-
time-access spike changed the pattern.

Figure 11 presents the time evolution of home reassignment ratio in WFS-tree sys-
tem. Home reassignment ratio is defined as the percentage of the meta-data files whose
home nodes change. This ratio is used as a metric for home migration overhead as each
reassignment requires computation. The maximum 2.5% and average 0.1% home reas-
signment ratio demonstrates the marginal overhead home migration incurred after the
initial few delegations. Moving average (3 runs) remote first-time-access file ratios 3 are
also shown in Figure 11 to illustrate the main cause of home reassignments.

3 Moving average (m rounds) remote first-time-access file ratio is the average value of the re-
mote first-time-access file ratio in the consecutive m rounds. As we use an EWMA counter to
record the historical access information, remote accesses in the current (one) round might not
immediately affect the home assignment decision. Therefore, we pick m = 3 in Figure 11 to
better reflect the reason behind the home reassignment evolution.
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6 Related Work

Network file systems have been studied in the local area with stateless[1] and stateful
servers [11, 12, 13, 14]. Satyanarayanan presents an overview of several traditional dis-
tributed file systems [15]. Recently, there has been significant research activity in pro-
viding data access (object or file system based) over the WAN. Multiple peer-to-peer
architectures for decentralized data management have been proposed [16, 17, 18, 19].
However, the goal of such systems is to store large quantities of data, dispersed and
replicated across multiple clients to improve fault resilience and reduce management
overheads. In contrast, WireFS tries to improve performance of existing network file
systems for interactive workloads. While WireFS is capable of storing large data, repli-
cation, and disconnected operation, such characteristics are not the primary concern.

Shark [4] uses geographically distributed cooperative caching proxies which enable
fast parallel downloads in addition to difference elimination and content caching. Unlike
WireFS, Shark is designed for environments like PlanetLab [20] where multiple clients
are interested in the same large file concurrently e.g. for an experiment. Therefore, no
attempt to improve the metadata access performance as well as inter-site read-write
sharing is explored, which is the primary goal of WireFS.

7 Conclusions

In this paper, we presented home migration, a technique to minimize meta-data access
latency in wide-area file systems. We first described the design of WireFS a wide-area
networked file system. Next, a set of algorithms for home assignment and migration
were proposed in the context of WireFS to improve performance of metadata accesses.
Through trace driven simulations, we demonstrated that our technique improves the
latency of metadata operations with low management and network overheads.
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Abstract. Context information helps an application decide on what to
do in order to adapt to its user’s needs. To easily develop ubiquitous
applications, there has been increased research in the design and devel-
opment of frameworks called pervasive computing frameworks. Although
these frameworks help application developers create ubiquitous applica-
tions easily, interoperability has been a problem because of the different
representation of context information and protocols used. This research
attempts to solve this problem by creating a Context Information Medi-
ator (CIM) which will serve as a translation gateway between different
applications created using different frameworks. To test our system, we
developed two versions of an inventory system application that keeps
track of items inside a building. The idea here is to let these applications
communicate with each other and share information through the CIM.

1 Introduction

Pervasive computing is a computing paradigm that aims to make digital en-
vironments composed of ubiquitous applications that are sensitive, responsive
and adaptive to human needs without humans actually knowing what happens
in the background [1]. Creating ubiquitous applications is quite difficult since
different types of devices and different forms of data are to be processed and
should be able to work seamlessly. To simplify the creation of ubiquitous appli-
cations, several researches in the area of pervasive computing are focused on the
creation of pervasive computing frameworks such as the Aura Framework [2],
Context-Toolkit framework [5] and One.world framework [6]. These frameworks
aim to collect raw data from diverse devices and process the collected data into
context information. These context information are then disseminated to diverse
applications that run on different devices with the concern for security to avoid
unauthorized use of these information [7]. The problem now lies in the represen-
tation of context information in different frameworks. Different frameworks have
different formatting of context information which prevents them from sharing
information. The need for sharing of information among different frameworks is

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 313–325, 2006.
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important to provide interoperability which is one of the major goals of pervasive
computing.

The problem of interoperability has been present in several areas of comput-
ing and different types of mediator systems have been developed in order to
address this problem. The Context Interchange Architecture of Database sys-
tems (COIN) [8] architecture has tried to detect and reconcile semantic conflicts
among different database systems. The P2P gateway [9] has aimed to facilitate
information sharing among different peer-to-peer file sharing systems that uses
different protocols. The Internet architecture has been designed to facilitate the
sharing of computer resources present in different networks through the use of
the gateway.

This research aims to create a Context Information Mediator (CIM) which
is used to get information from different servers that uses different frameworks,
and convert these information into data which can be understood by the other
frameworks. The CIM framework is developed by using the Java 2 Platform API
and uses XML to represent the data in the system. The principles of the Internet
architecture were applied when designing the protocols of the CIM.

2 Design and Implementation

This section discusses the steps to achieve the goal of creating a Context Infor-
mation Mediator.

2.1 Inventory Application Implementation

The application that we have developed is an inventory system for an office area
which similar to the Smart Toolbox and Smart Tool Inventory of [11]. What
our inventory system application does is that, it keeps track of where a certain
item in the inventory is located inside a building. This is done by having sensors
monitoring certain areas of the building in order to know where certain items
are located. For the purpose of this research, we will simulate the environment
that contains the items and the sensors through a graphical user interface (GUI)
made using Java Swing. The GUI will show a building that contains three rooms,
wherein each room contains several inventory items. Dragging the items in our
simulator simulates movement of an item from one location to the next.

The inventory system is composed of two major components. The pervasive
inventory system which gets the location of the inventory items and stores this in-
formation, and the application interface which represents the client applications
that subscribes to the pervasive inventory system in order to get information
about the items. We have created two versions of this sample inventory applica-
tion. The first version was created using the Aura Contextual Service Interface
version 2.3 of the Aura framework. The second version was created using the
Context-toolkit framework 2003 release. The idea here is to let the two applica-
tions that are written using the two different frameworks communicate with each
other and share information through the Context Information Mediator (CIM).
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2.2 Context Information Mediator Implementation

The Context Information Mediator architecture consist of two general commu-
nicating components, the client and the CIM server. Figure 1 shows a general
view of the CIM architecture. Take note that although the figure shows only
two clients connected to CIM, the CIM server can handle many clients. We
have chosen to design our system base on the client-server model of computer
networks since it is already a well established model and is mostly used in net-
working today. The client-server model is a design in computer networks in which
client machines request and receive service by querying the server. The server
then sends the needed information to its clients. This model is especially effec-
tive when clients and server have their own special tasks that they routinely
perform.

Fig. 1. General view of the CIM architecture

CIM Client Interface. The CIM Client Interface sits below the client1 system
and is responsible for forwarding and receiving information to and from the CIM
server. In this part of the CIM architecture, we used the layering strategy that
is used in computer networks.

CIM Server. The CIM Server is responsible for gathering all the context
information and sends the converted information to its clients. Table 1 shows
the subcomponents of the CIM server and their functions.

CIM Data Packets. The CIM data packet contains the information sent be-
tween the clients and the CIM server. The CIM packet is divided into two main
sections, the header and the data section. The header section is further sub-
divided into two which is the packet type and the client type. The packet type
identifies what type of packet is sent while the client type identifies what type
of client has sent the packet. The data section contains the main data sent by
1 In this section, the term client refers to the different servers implemented in different

frameworks that requests and sends context information to the CIM server.
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the sender of the packet. Table 2 shows the different packet types and their
descriptions.

Table 3 shows the different types of senders supported by CIM. This helps
CIM distinguish from which type of sender the packet was from and helps it
decide on how to convert the data contained in the packet.

Table 1. CIM Server Subcomponents

SubComponent Name Function

Client Request Listener Responsible for listening to client requests to connect
to CIM. It grants the client’s request and transfers
the request to the Client Registration Manager.

Client Registration Manager Responsible for asking the client for registration
information such as client type (Aura or Context-
Toolkit) and is also responsible for assigning a
unique identifier to the client. Once the registration
process has been done, it assigns a Client Thread
Manager to that particular client and the client can
now send and receive context information from
the CIM server.

CIM Client Thread Managers Responsible for handling context information received
from a particular client assigned to it and stores the
data to a central repository. It is also responsible for
converting and sending context information that is
not present in the client. Aside from that it also
monitors if a client is still active by sending AYA (Are
You Alive) messages to the client. Once it has detected
the client has been disconnected, it informs the main
CIM server that which then terminates that client
thread manager.

The data section of the CIM packet contains data that is formatted in XML.
Although both Aura and Context-toolkit applications convert their data to
XML, they still have different representations of the information modeled in
XML.

Shown in Figure 2 is a snippet of the XML file in the Aura framework that
contains the item FAX with item ID number 10004 located at room MH 215
together with the time it was moved.

Shown in Figure 3 is a snippet of the XML file for the Context-Toolkit frame-
work that contains the item iMac with item ID number 10001 located at room
MH 215 together with the time it was moved.

CIM Translation. This section will describe how the data is translated from
the client to the CIM server and vice versa.
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Table 2. CIM Packet Types

Packet Type Description

REGREQ Sent by the CIM Server to request for registration
information from the client

REGOK Sent by the CIM Server to the the client if registration is
successful

REGFAILED Sent by the CIM Server to the client if registration failed
REGDETAILS Sent by the client as reply to the REGREQ packet. This

contains information regarding the client
GOODBYE Sent by client/server to signify termination
NEWCONTEXTINFO Sent by client/server that contains the new context

information
AYA Sent by client/server to ask if a client/server is still alive
IAA Sent by client/server as a reply to the AYA packet

Table 3. CIM Sender Types

Sender Type Description

AURACLIENT Sender is from the Aura Framework.
CTKCLIENT Sender is from the Context-Toolkit Framework.
CIMSERVER Sender is the CIM Server.

Fig. 2. XML format in Aura

Fig. 3. XML format in Context-Toolkit
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CIM Client Interface Sends Data to CIM Server. One of the responsibilities
of the CIM Client interface is to send new context information obtained by the
client system to the CIM server. Before it sends the new data to the CIM server, it
first extracts the DataObject (for Context-toolkit clients) or QueryResult object
(for Aura clients) that contains the new information from the client system. It
then starts to create a CIM packet that will be sent to the CIM server. The
CIM packet is created by first appending the necessary headers. The following
headers will be added to the packet: NEWCONTEXTINFO for the packet type
and AURACLIENT or CTKCLIENT header for the client type. Finally, the
XML form of the object extracted from the client is then appended to the data
section of the packet. The XML form of the DataObject of a Context-toolkit
client is created by using the XMLEncoder class of the Context-toolkit API. It
creates an XML form of the DataObject that contains the necessary tags and
inventory item information. For the XML form of the QueryResult object of an
Aura client, it is created by using the CimXMLEncoder class of the CIM API.
The CimXMLEncoder is adapted from the XMLEncoder of the Context-toolkit
API. After the packet has been created, it is then sent to the CIM server.

CIM Server Translation. After the CIM Server has received a packet of type
NEWCONTEXTINFO from its clients, it first determines the client type of the
packet. It then forwards the data section of the packet to the translator that
handles the translation of data for that certain client type. After the inventory
item information has been extracted from the packet, the inventory database
that contains all the inventory data gathered from the different clients are then
updated. After the inventory database has been updated, the CIM server will
create packets that contains the latest inventory information and will send it to
the other clients. In this case, since there are two types of clients currently sup-
ported by the CIM framework, the CIM server will create two types of packets,
one for the Aura clients and one for the Context-toolkit clients.

CIM Client Interface Receives Data from CIM Server. When the CIM Client
receives new context information from the CIM Server, it then extracts the data
from the packet and creates it into a DataObject (for Context-toolkit clients)
or QueryResult object (for Aura clients). Client applications have a choice of
calling several methods from the CimClient class to get the new data. Table 4
shows the methods and their description.

CIM Protocols. The CIM architecture has several protocols for establishing
connection between client and server, terminating a connection and the exchange
of data between client and server.

Establishing a Connection with the CIM Server. To establish a connection be-
tween the CIM Server and the CIM client, the client connects to the CIM Client
Request Listener, which then forwards the request to the CIM Client Registra-
tion Manager. The CIM Client Registration Manager asks the client for regis-
tration information. If the client has successfully sent all the requirements, the



Connecting Pervasive Frameworks Through Mediation 319

Table 4. CIM Client class data retrieval methods

METHOD DESCRIPTION

getNewItemListFromCim() This method returns a java.util.Vector object
that contains the list of items in the inventory.
This can be used by either an Aura client
or a Context-toolkit client.

getNewItemListFromCimForAura() This method returns a QueryResult object
that contains the list of items in the inventory.
This is for Aura clients only.

getNewItemListFromCimForCtk() This method returns a DataObject object that
contains the list of items in the inventory. This
is for Context-toolkit clients only.

CIM Client Registration Manager sends it a REGOK message that signifies its
successful connection to the CIM server. It then assigns a CIM Client Thread
manager that is responsible for communicating with the connected client. In
cases wherein a client was unable to satisfy the requirements, the CIM Client
Registration Manager sends the client a REGFAILED message and disconnects
the client.

Terminating a Connection with the CIM Server. In cases wherein the client
application leaves or if the CIM Server terminates, each sends a GOODBYE
message in order to signal the other that it is leaving. These scenarios show
cases wherein there is a clean termination of both client and server. However,
there are cases in which either of the two crashes and will not be able to send
a GOODBYE message. To resolve this problem, we have created the AYA (Are
you alive) packet that is constantly sent by both server and client to each other
in order to monitor if the other still exists. The client/server that receives this
type of message should reply with a IAA (I am alive) message in order to signify
that it is still alive. In cases wherein the client/server is unable to reply with an
IAA message, the sender of the AYA packet will terminate its connection with
the dead client/server.

Context-Information Exchange. The CIM client sends the CIM server new
context-information about its system. It does this by sending a packet of type
NEWCONTEXTINFO which contains the new information. When the CIM
server receives this type of information, it then updates its database and creates
packets containing the newly updated information for both Aura and Context-
toolkit clients. It then sends the packets to the other clients connected to CIM.

3 Performance Evaluation and Results

The experiments that we have conducted runs a single CIM server and one or
more CIM clients. The first batch of experiments have been done by using an
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Apple Powerbook, with a 1.5 Ghz PowerPC G4 processor and 512 MB DDR
SDRAM. All applications both client and server have been run in this single
computer. For the second batch of experiments, we run the CIM server in an
Intel PC, with a 2.66 GHz Pentium 4 processor and 512 MB RAM, while all the
clients run on the Apple Powerbook. The clients and server are connected via
a local area network (LAN). To start the experiments, we run the CIM server
which waits for clients to connect to it. We then run the environment simulator
that shows a graphical user interface of a building with three rooms, and the
eight inventory items. Each inventory item will be dragged from one room of the
building to the next to simulate movement of items. For the experiments that
we have done, we have focused on the following parameters that are relevant to
the analysis of CIM’s performance. These parameters are data size, number of
clients connected to the CIM Server and the variety of clients connected to the
CIM Server.

Data Sizes. To get the data sizes of the packets, we have written the data that is
sent by a client to the server to a file in order to get the number of bytes a single
packet contains. The packet size varies based on the type of client that creates
the packet (Aura or Context-toolkit), and it also varies based on the number of
inventory item information the client has stored in the packet. In order to test
how the packet gets bigger as the number of items increases, we have created
packets containing 0 items up to 8 items in the inventory. We have done this three
times in order to get the average data sizes of the packets sent. Figure 4 shows
the relationship of data sizes (in bytes) to the number of items that a packet
contains. The number of items here pertains to the number of inventory items
that a certain client has information about. The Y-axis describes the average
data sizes of packets in bytes. The X-axis shows the number of items contained
in a packet. The graph shows the data sizes in bytes for both Context-toolkit and
Aura client. Observe that as the number of inventory item information increases,
the data size of the packets also increases. Also observe that the Context-toolkit
data packet is bigger compared to the Aura data packet. This is because the
data of the Context-toolkit client which represents the XML file being sent has
more tags. The average data size of a single Context-toolkit packet is 528 bytes
per item, while for a single Aura packet, we have an average of 154 bytes per
item. There is a slight variation on the data size of each packet since there is no
standard size on the information inside a packet.

Translation Time. To get the translation time of the CIM server, we have done
a variety of experiments by changing the values of the data sizes sent, changing
the number of clients connected and changing the variety of clients connected.
To test the effect of data size to the translation time of the CIM server, we
iteratively moved items to a particular room monitored by a client one by one
every n-milliseconds. As this happens, the client sends its updated inventory
information for the room that it monitors to the CIM server. At this point,
we measure how long the CIM server can convert these information base on
the adding and removing of items. For this experiment, we got the average
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Fig. 4. Average data sizes of packets

translation time by running this test 5 times. We did this for both Aura clients
and Context-toolkit clients.

Translation Time vs. Data Sizes. The graph in Figure 5 shows the relationship
of the data size versus the time it takes to translate a certain packet for both
Context-toolkit and Aura clients. As seen in the graph for both clients, as the
data size gets bigger, the translation time also increases. The average translation
time per data item for a Context-toolkit client is about 52.59 msecs/item, while
for the Aura client we have 52.08 msecs/item. We can see that it takes more
time to translate data for a Context-toolkit client as compared to an Aura client,
however, the difference is very minimal.

Fig. 5. Average Translation Time vs. Data Sizes

Translation Time vs. Number of Clients connected. To test the effect of number
of clients to the translation time of the CIM server, we run several clients that
monitors different rooms and continuously sends information about the rooms
they monitor. The items are moved from one location to the next every n-
milliseconds. To get the total translation time, we add up all the translation
times for moving from the first room to the next and vice versa for all clients.
We then get the average translation time by doing this experiment 5 times. We
increase the number of clients as we did this experiment. We did this for 1, 2, 4,
8, 12 and 16 clients. We did the same experiments to test whether the variety
of clients has some effect on how CIM translates data. However, we also varied
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the types of clients connected to the CIM server and the number of clients per
variation. In Figure 6 we can see in the graphs, as the number of clients increases
from 1, 2, 4, 8, 12 to 16, the average translation time of the CIM server also
increases. The average translation time for one Context-Toolkit client is 211.5
msecs/client, while for the Aura client we have 208.63 msecs/client. The average
translation time of the Context-toolkit clients is higher as compared to the Aura
clients. This means that it takes longer time to translate the data given by the
Context-toolkit clients. This is due to the fact that the data of the Context-
toolkit client is more complicated as shown in section 2.2 as compared to the
data of the Aura clients.

Fig. 6. Comparing Average Translation Time of both Context-toolkit and Aura Clients

Translation Time vs. Variety of Clients. The graph shown in Figure 7 shows the
average translation time based on the variation of clients that the CIM server
has to deal with. Based on the graph, we observed that for the experiments that
has the same types of clients that CIM deals with, the Aura group of clients
has a lower translation time as compared to the Context-toolkit group of clients.
Comparing the results in which CIM has both a Context-toolkit and an Aura
client, the translation time is higher when there are more Context-toolkit clients
connected. We can see here that the variation of clients does not really affect
the translation time of CIM, however, it is greatly affected by the type of clients
that it has to deal with.

Scalability and Extensibility. The scalability of the CIM architecture is measured
in terms of the number of clients that the CIM server can accommodate. To test
the scalability of CIM, we have tried running 1, 2, 4, 8 and 16 clients connected
to CIM and measured CIM’s translation time given the number of clients. Please
refer to Figure 8 to see the average translation time of clients. As we have seen
in the graph, the translation time is doubled as the number of clients double
which means that there is an increase in translation time. However, since the
increase in translation time is minimal, the performance of the CIM server is not
greatly affected. For this experiment, we only tried up to 16 clients, however,
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Fig. 7. Average Translation Time vs. Variety of Clients

based on our observation on the increase of translation time, the CIM server can
accommodate more, especially if the CIM server is placed in a more powerful
computer.

The extensibility of the CIM architecture was measured in terms of how it
can be extended to support other frameworks. We have written two different
applications using the Context-toolkit framework and the Aura framework which
can interoperate using the CIM framework. CIM can support other types of
clients that are implemented using the Java platform.

Fig. 8. Average translation time is doubled as the number of clients double

Summary of Experiment Results. Based on the results of our experiments we
have the following observations: (1) The data size (in bytes) of packets increases
as the number of inventory item information increases. Packets coming from
Context-toolkit clients have a bigger data size than that of Aura clients. (2)
The translation time increases as the data size of packets increases. (3) The
translation time increases as the number of clients connected to the CIM server
increases. (4) The translation time of Context-toolkit clients is higher as com-
pared to the Aura clients. This means that it takes more time to translate data
coming from a Context-toolkit client as compared to Aura clients. (5) The va-
riety of clients connected to CIM has minimal impact on the translation time
of CIM. (6) The CIM framework is scalable in terms of the number of clients it
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deals with. (7) The CIM framework can be extended to support other types of
clients as long as they are using the Java platform.

4 Conclusion

The goal of this research is to create a Context-information Mediator which is
used to obtain information from different servers that use different frameworks,
and convert these information into data which can be understood by the other
frameworks. We have created a Context-information Mediator that serves as a
gateway between different frameworks in order for them to share information.
Even though CIM was designed to be a gateway for different frameworks, it can
still act as a server for clients of the same framework. This can serve as a server
for those clients so that they do not need to create their own servers in order to
pass information.

The CIM client interface serves as the link of a client to the CIM server which
abstracts the different protocols needed by the client in order to connect to CIM.
The CIM Server serves as the translator of different context-information that is
provided to the clients connected to it.

We applied the principles of the Internet architecture when designing the
protocols of the CIM. We used XML format for the representation of information
from the different clients. The choice for choosing XML to represent our data
is that it is already a well established standard and is mostly used by different
pervasive frameworks such as Context-toolkit, Aura and One.world frameworks.

5 Future Work

For further development of the Context-Information Mediator architecture, the
following ideas are suggested:

1. Translation at End Points and Hybrid Design. The current implementation
for the translation part of the CIM framework is by having the clients send
their own format of data to the CIM server and have the CIM server trans-
late and process the data. Another option for the implementation of the
translation part of our system is by having the end-points (clients) translate
their data into a standard format understood by the CIM server. When data
arrives at the CIM server, it does not have to do any translation. The advan-
tage for this design is having the burden of processing distributed among the
clients. However, for pervasive computing, we are not assured if the clients
have enough processing power since a client system can reside in any type
of device. Another option is to have a hybrid design in which a client can
choose if it wants to do its own processing or if wants the CIM server to do
the processing.

2. Support for other pervasive computing frameworks. Currently, the CIM
framework supports clients created using the Aura framework and the
Context-toolkit framework. CIM can be extended so that it will support
other pervasive computing frameworks as well.
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3. A network of CIM servers. Create several CIM servers that are connected
to each other and allow the sharing of information across different CIM
servers. This can help in distributing the processing of information for the
different clients connected to the different CIM servers. These CIM servers
can also act as data filterers wherein a client can choose not to share all of
its information to the other clients in connected to the system.
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Abstract. We consider the problem of video streaming for a critical private web 
cast, for a medium sized audience with heterogeneous nodes having different 
bandwidths and reliabilities. The nodes can distribute video in a peer-to-peer 
manner by forming a multicast tree at application level. A majority of the nodes 
in the network have low bandwidths and low reliability and can only receive the 
video stream. A simulation model has been implemented to compare single 
video streaming scheme with error resilience schemes with stream replication 
and Multiple Description Coding (MDC) [6][7]. Results indicate that MDC 
error resilience scheme provides lower average outage, better video quality and 
network utilization as packet loss percentage and node failure probability 
increases. We discuss the significance of path diversity in multiple multicast 
trees for error resilience and the number of multicast trees.  

Keywords: Video Streaming, Error Resilience, Multiple Description Coding 
(MDC), Path Diversity. 

1   Introduction 

Video streaming is used to web cast a live or recorded event using the Internet public 
infrastructure, for subscribers across the globe. In this work we look into the problem 
of web cast of a live critical private group event for a medium-sized group of 
heterogeneous nodes (numbering in hundreds or even thousands). The continuity of 
the video is important to the viewers. The event could be a private community event 
or a corporate lecture session with the viewers spread across the globe as shown  
in Fig 1. 

Internet TV like P2P TV [1] provides channels for public viewing across the 
globe. An application of this type cannot be used to web cast a private group event. 
Video conferencing is used for real time two-way communication between people  
at different locations via video. A web cast is one-way communication of video to 
groups of viewers over the Internet. We cannot broadcast stream from video server 
to all the nodes, since it will make the server heavily loaded. The recent trend is  
to organize the nodes in a cascade or tree structure. The stream is forwarded in  
a peer-to-peer manner. Each peer can receive as well as forward the stream to  
other peers.  
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Fig. 1. Video streaming session of a private critical corporate lecture session from head quarters 
in Banglore, India to other global parts of the corporation 

IP multicast cannot be used to form a multicast tree, since it has deployment 
problems from ISPs across the globe. Instead the nodes can form an application level 
multicast tree, which is an overlay network. Various application level protocols have 
evolved like ALMI (Application Level Multicast Infrastructure) [2], CoopNet [3], 
SplitStream [4] and Narada [5]. 

Application Level multicast can be used to deliver a private critical group event for 
which it is important to retain the continuity of video for the entire session. However, 
the network is prone to error conditions caused due to node and link reliability issues 
and bursty packet losses. A low reliability node or link can fail due to power or ISP 
connection failure. In a peer-to-peer video stream distribution using a single multicast 
tree organization, if a node or link goes down, its descendents in the tree will stop 
getting the video. They can rejoin the tree, but reconstructing the tree will be time 
consuming and will result in large outage. 

Error resilience can be achieved by providing alternate paths and data to each peer. 
Instead of a single multicast tree, two or more trees can be maintained. The original 
stream can be replicated on each tree. There is another encoding technique Multiple 
Description Coding (MDC) [6][7], which encodes stream into independent 
descriptions, each of which can be sent across independent paths. Each node receives 
descriptions from different paths and the quality of decoded video depends on the 
number of descriptions received by the node. CoopNet and SplitStream provide error 
resilience by maintaining multiple disjoint multicast trees. It uses MDC to send 
independent streams across different trees. 

Another important issue is tree management. The tree should be short in height, 
utilizing the outgoing bandwidths of all peers as much as possible. This will reduce 
the number of points of failures i.e. number of nodes in the path from the source to the 
leaf nodes. Multiple Multicast trees can be used to provide redundant paths for error 
resilience, and should be as diverse and disjoint as possible. CoopNet and SplitStream  
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use an Interior Node Disjoint Tree (INDT) algorithm. This is similar in nature to the 
MINK [8]. These assume that all nodes have forwarding capabilities and do not 
consider the reliability factor of nodes in tree construction.  

The network we have considered in this work is heterogeneous, with nodes having 
different bandwidths and reliabilities spread across the globe. A majority of the nodes 
are low-end nodes, which can only receive and not forward. The disjoint multicast 
tree algorithm should consider the heterogeneous bandwidth and reliability factors. 
Such a network would exist where the majority low-end nodes are in the emerging 
markets of developing countries. Multi Level Dual Disjoint Trees (MLDDT) [18] 
algorithm can be used to maintain dual disjoint trees for heterogeneous networks. 

In this work, we have developed a simulation model for sending video stream to a 
medium sized heterogeneous network. For error resilience two or more disjoint trees 
can be maintained. We compare the single video streaming scheme with error 
resilience schemes with dual multicast trees, with stream replication and MDC. The 
performance is compared in terms of video quality and network utilization. We 
discuss the significance of path diversity and tree construction algorithm for 
maintaining multiple disjoint trees for a heterogeneous network. 

The results indicate that for a critical, private web cast of a live event, the nodes 
can form an overlay network using an application multicast protocol. Dual multicast 
trees with MDC encoding provides better video quality in terms of lower outage, 
higher number of frames received and higher frame rate as error conditions get worse 
in a network. It has good network utilization. The MLDDT algorithm can further 
improve MDC scheme. We extend it to maintain multiple disjoint multicast trees for 
MDC. Average outage decreases, as there is increase in the MDC descriptions with 
each description sent across a unique multicast tree. 

Future plans are to further improve the tree construction algorithm for mixed set of 
reliabilities and bandwidths for larger networks. The deployment of an application for 
a private web cast for a medium sized heterogeneous network is also an area of 
interest. 

The rest of the paper is organized as follows. In section 2, the error resilience 
schemes have been discussed. Section 3 describes the path diversity issue for multiple 
multicast trees. Section 4 discusses the simulation model. In section 5 we give the 
results and finally conclude in section 6. 

2   Error Resilience 

Video stream can be sent across an application level multicast tree kind of topology. 
This is the traditional single description coding (SDC) stream case. Each node 
receives stream from a single parent along a single path in the multicast tree. 
Whenever there is a link or a node failure, its descendents in the multicast tree will 
also suffer. Tree reorganization can be time consuming resulting in outage or 
discontinuity of video on many nodes.  

Error resilience can be obtained by using alternate paths and data. Instead of a 
single multicast tree, two or more multicast trees can be maintained. Each node  
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receives video streams from two parent nodes along different paths. If one path fails, 
then the other path can provide the stream. With multiple paths each node will get to 
see an average network behavior and the probability of discontinuity in video will 
reduce. In our simulation we use dual multicast trees for comparing various video 
streaming schemes. The error resilience schemes are: Dual Trees with Stream 
Replication and Dual Trees with MDC. 

2.1   Dual Trees with Stream Replication 

The original single description video stream is replicated on both dual trees. Each 
node gets two identical streams from the two different paths (primary and secondary 
paths). Only one stream is active at a time, and is used to decode video.  The other 
serves as a backup. Whenever the active stream is interrupted, the node experiences 
outage and switches to the backup stream. The two streams should be synchronized, 
so that video is displayed uninterruptedly when switching takes place, without 
duplicating or loosing frames. We refer to this scheme as TWO SDC in our 
simulation. 

2.2   Dual Trees with MDC 

The video stream is encoded into two independent sub streams using MDC. Each sub 
stream is sent across a different multicast tree. The objective of MDC is to encode a 
source into two bit streams such that a high-quality reconstruction is decodable from 
the two bit streams together, while a lower, but still acceptable, quality reconstruction 
is achievable if only one stream is received. MDC with overlay networks has been 
used in Peer-to-Peer Based Television [1]. It uses MDC with SplitStream Application 
Multicast system and Bit Torrent bartering [9]. We refer this scheme as MDC in  
our simulation.  

3   Path Diversity 

Error resilience requires streams to be sent across redundant paths. Paths are prone to 
network error conditions like node and link failure, and packet loss. If the paths are 
diverse, the redundant paths will be independent. A network error will affect the paths 
independently. The node will get to see average network error losses, and the chances 
of at least one of the paths being error free will are high. A study of path diversity 
with MDC has been done in [8] [10] [11]. 

This paper considers a heterogeneous network, with nodes with different 
bandwidths and reliability. There are three types of nodes High-end nodes, Medium-
end nodes and Low-end nodes. High-end nodes (T1, E2, Cable) have high bandwidth 
and high reliability. Medium-end nodes (DSL) have medium bandwidth and 
reliability. Majority nodes are Low-end nodes (wireless) with low bandwidth and low 
reliability. Low-end nodes can only receive and cannot forward the stream further. 
These nodes will always be at the leaf level in all multicast trees. The High-end  
and Medium-end nodes can receive as well as forward stream. These are called the  
Server nodes. 
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Fig. 2. Sample dual multicast trees based on MLDDT algorithm for network size of 20 

CoopNet [3] and SplitStream [4] maintain multiple disjoint trees, using Interior 
Node Disjoint Tree (INDT) algorithm. A node is placed as an interior node in one 
tree, and as exterior node in rest of the trees. This property makes the trees inherently 
disjoint. A node failure will affect descendents in a single tree only. The nodes can 
have heterogeneous bandwidths, but each node should have the capability to receive 
as well as forward the stream further. 

Traditional INDT algorithm does not consider the heterogeneous node reliability 
factor and cannot be used for our problem. First, the Low-end nodes can never 
forward stream to other nodes. Hence they cannot be interior nodes in any tree. They 
can be present only at the leaf level in all the trees. Second, the algorithm does not 
consider the reliability factor of a node. In INDT algorithm, a High-end node will be 
placed at a higher level as interior node in one tree, and at low-level as exterior or leaf 
node in rest of the trees. The goodness of its high reliability is used in only one tree. 
Hence it is not an optimal algorithm. In [11] an optimal disjoint tree algorithm has 
been suggested in which the good paths should be allowed to be joint in all the 
multiple disjoint trees. This optimal disjoint tree algorithm also assumes that all nodes 
have forwarding capabilities. 

Multi Level Dual Disjoint Tree (MLDDT) [18] algorithm is an extension of INDT 
algorithm. It considers the significance of a nodes bandwidth and reliability factor in 
all disjoint trees. The nodes are placed level by level as per their bandwidth and 
reliability factor. We maintain dual multicast trees for comparing the error resilient 
video streaming schemes. 

In this work we have further investigated the impact of the increasing number of 
disjoint trees for error resilience with MDC video streaming. MLDDT algorithm 
maintains dual disjoint trees. We extend it further to support multiple disjoint 
multicast trees, as Multi Level Multiple Disjoint Trees (MLMDT). Each MDC 
description can be sent across a unique disjoint tree. The number of trees can be 
increased keeping in view the bandwidth available. 

4   Simulation Model 

A simulation for a heterogeneous network has been performed to compare the 
different video streaming schemes and tree construction algorithms. It has been  
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implemented using C and executed on a Linux machine. The video streaming 
schemes considered are: 1.Single Description Coding (SDC) 2. Dual multicast trees 
with stream replication (TWO SDC) 3. Dual multicast trees with MDC (MDC). The 
performance of the three streams is compared in terms of average outage, video 
quality and network utilization.  

A central controller as in ALMI maintains the tree rooted at the source. It 
maintains a single tree for SDC scheme and dual disjoint trees for TWO SDC and 
MDC. The source node sends the stream (dummy video frames) across the multicast 
tree organization of nodes. The duration of the simulation run is 10000 time units. 

Experiments have been performed for medium sized network model as mentioned 
in 4.1, by varying the reliabilities of the Server nodes, packet loss percentage and 
disjoint tree algorithm.  The video packet-encoding scheme is discussed in section 
4.2. The Error Model for the links is discussed in 4.3.  

4.1   Network Model 

The network model considered for simulation is heterogeneous, with 10% High-end 
nodes, 40% Medium-end nodes and majority 50% Low-end nodes. We consider the 
High-end nodes to have Cable connectivity, Medium-end nodes with DSL 
connectivity and low-end nodes being wireless. The nodes are spread across different 
geographic parts of the world. We consider a network size of 100 nodes for 
simulation. The video stream source sends out stream to first two nodes of the tree. 
The bandwidths and reliabilities considered for the three types of nodes in simulation 
are in Table 1. With video stream rate as 64 kbps and packet size as 500 bytes, the 
Cable nodes can have maximum out degree of 6, DSL out degree of 4 and wireless 
nodes with out degree 0. 

Table 1. Network Model for heterogeneous network 

Node Failure Probability %  Download  Upload 
Cable High  500kbps 500 kbps 
DSL Medium 250 kbps 250 kbps 
Wireless Low 140 kbps 0 

4.2   Video Packet-Encoding 

The video packet-encoding scheme is based on the MDC implementation in [12]. 
Video stream bandwidth considered is 64 kbps, 8 frames/sec, and with RTP packet 
size around 500 bytes. For single stream encoding, each frame is encoded into two 
packets. If one of the packets is lost, the other can be approximated using error 
concealment techniques. For MDC encoding, each frame is encoded into two 
descriptions, with one packet per description. Each description is sent across a 
different path. The MDC coder in [12] gives the video quality in terms of Peak Signal 
to Noise Ratio (PSNR), for SDC and MDC schemes, with and with out packet loss, 
for different packet loss percentage as in Table 2. These results have been used in  
our simulation. 
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Table 2. Average frame PSNR values of MDC coder using temporal prediction considered for 
simulation  

Packet loss   % MD no loss SD no loss MD w/ loss SD w/loss 
3 29.70  32.01 28.85 25.11 
4 29.61 31.92 27.00 23.47 
10 29.35 31.67 26.66 22.24 
20 28.94 31.2 24.93 21.31 

For multiple MDC descriptions we extend this scheme further and assume that 
each description consist of a single packet and is sent across a distinct tree. Each node 
gets each of the independent description from a distinct node.  

For the error resilience schemes comparison dual trees are used. The two streams 
should be synchronized. They may be out of sync due to different link delays on the 
two paths. The stream, which has frame ahead of the other stream, is the Ahead 
stream and the other is the Lag stream. For synchronization a circular video buffer is 
maintained to buffer each stream. The Ahead stream is buffered until the Lag stream 
is available. This will help in video being synchronized when node switches from 
active stream to another stream in TWO SDC. For MDC this will help in getting best 
video quality by decoding frames with both descriptions. When there is packet loss or 
outage, it is possible only one of the descriptions is available. Then the frame will be 
decoded with a single description at a lower quality. If both description packets are 
lost then the entire frame will be lost. 

4.3   Error Model 

The node and link, both are prone to error losses. The node can go down, due to 
power cut. The link has packet losses and can also go down if there is problem with 
the ISP. The effect of a node or a link loss is the same, i.e. discontinuity of video on 
its descendents. In this simulation, node loss and link packet loss error conditions 
have been considered.  

The node loss model considered is as an independent probability model. Each node 
has a failure probability % according to its type. The link packet loss model 
considered is two-state Gilbert–Elliot Model. The link can be in two states Good or 
Bad. The packet is lost when link is in Bad state. P (G, G) is the conditional 
probability of transition from Good to Good state and P (B, B) is the conditional 
probability from Bad to Bad state. Packet loss percentages 3, 4, 10 and 20 have been 
considered in our simulation. The corresponding two -state transition matrix is used to 
simulate the average bursty packet loss.  

5   Results 

The experiments are based on test cases by varying the packet loss percentage and the 
node reliabilities for different schemes and algorithms. The video streaming schemes 
are evaluated on the basis of average outage, network utilization and video quality 
[13] in terms of average frame PSNR, average frame rate and the number of frames 



 Error Resilient Video Streaming for Heterogeneous Networks 333 

 

received. PSNR (Peak Signal To Noise Ratio) is a widely used method to calculate the 
distortion introduced by the transformation of an input signal to an output. 

5.1   Effect of Packet Loss Percentage 

The impact of increasing packet loss percentage is observed for the three video 
streaming schemes as shown in Graph 1 (a), (b), and (c). The Server nodes failure 
probability is kept 0% ad the low-end node failure probability as 0.1%                                           

Overall the outage remains zero, since all the forwarding server nodes are up. The 
leaf nodes keep going down. But do not affect other nodes. Results indicate that 
average frame rate, average frame PSNR and network utilization decrease with 
increase in packet loss percentage. 

As compared to SDC, TWO SDC metric values are lower due to synchronization 
efforts between the two streams. At times there is a lag between the active and backup 
stream, when the node switching takes place. In that case the node has to wait for  
the backup stream to deliver frames starting from the last frame displayed from the  
first stream.  

MDC fairs better than SDC as packet loss increases. Each node gets the 
independent stream from different paths. It gets to see an average packet loss. The 
number of frames received and the frame rate is higher even for higher percentage 
packet loss. The difference between the PSNR values for SDC and MDC schemes 
decreases as packet loss percentage increases. The network utilization is low for TWO 
SDC scheme since only one of the streams is used actively. The network load is high 
since there are two trees maintained, but the usage is low resulting in lower network 
utilization. 

5.2   Effect of Medium-End Node Failure Probability  

The network model considers that High-end node to be more reliable compared to 
Medium-end nodes. We study the impact of increasing Medium-end node failure 
probability on the three video streaming schemes with 3% packet loss and 0.05% 
High-end node failure probability. Average outage of MDC and TWO SDC is lower 
compared to SDC, since there are alternate paths and streams available as shown in 
Graph 2 (a). MDC is better than TWO SDC, since both the streams contribute to the 
decoded video. If one description is unavailable, it can decode a lower quality video 
from one of them. Number of nodes outaged in MDC is also low comparatively. 
When outage is low then the average frame rate will also be high. A higher frame rate 
indicates higher number of the frames received as shown in Graphs 2(b). 

MDC experiments are based on two types of tree algorithms INDT and MLDDT. 
Since MLDDT algorithm places the Medium-end nodes below the High-end nodes in 
all the multicast trees, the impact of increase in failure probability of Medium-end 
nodes is less on MLDDT based experiments. It provides lesser outage and hence 
higher average frame rate as compared to INDT algorithm. 

5.3   Effect of Number of Trees 

We study the impact increasing the number of trees for MDC video streaming scheme. 
We assume that the number trees are equal to the number of MDC descriptions.  
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Each MDC description is sent across a unique tree. The experiments are based on 1,2,3 
and 4 trees. 

Graph 3. (a), (b) show the impact of medium-end node reliability for different 
number of trees. Packet loss is 3 % and High-end node failure probability low as 
0.01%. The average outage decreases with increase in the number of trees. Each 
MDC description traverses a distinct path. Hence the probability that all descriptions 
are lost is very less. As outage decreases the average frame rate and number of frames 
received increases. Graph 3. (c), (d) show the impact of packet loss for different 
number of trees with MDC scheme. The Server-end node failure probability is set a 
0%. The average frame PSNR and the average frame rate increases with the increase 
in the number of trees. A network error affects the disjoint paths independently. The 
average network error reduces with the increase in the number of trees. 
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Graph 1. Effect of Packet loss percentage for different video streaming schemes 
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Graph 2. Effect of Medium-end Node Failure Probability percentage for different video 
streaming schemes 

 

Graph 3. Effect of Medium-end node failure probability percentage and Packet loss percentage 
for different number of multicast trees with MDC scheme 
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6   Conclusion 

In this paper we have considered the problem of private web cast of a live  
critical event, to a medium sized heterogeneous network, using the Internet public 
infrastructure. The nodes can distribute the stream in a peer-to-peer manner using 
application level multicast protocol.  

We simulate and compare the traditional single description stream scheme (SDC) 
with error resilience schemes TWO SDC and MDC for the problem discussed. The 
results indicate that MDC gives lower average outage, as the Server node (High-end 
and Medium-end) failure probability increases. For MDC, the average frame rate and 
average number of frames received are comparatively high even for higher packet 
loss percentage. MDC fairs as well as SDC, in terms average frame PSNR as packet 
loss percentage increases. The network utilization is high in SDC and MDC and half 
in TWO SDC, since only one of the streams is used actively.  

The multiple multicast trees should be as diverse and disjoint as possible. The 
factor of bandwidth and reliability of nodes has great impact on disjoint tree 
organization. MLDDT algorithm is compared with INDT algorithm for MDC scheme 
with dual trees. It improves the performance of MDC by lowering average outage as 
node failure probability increases.   

MDC schemes can further be improved by increasing the number of descriptions 
and the number of trees, with each description being sent across a unique multicast 
tree. The average outage decreases, and the average frame rate and average frame 
PSNR increases as the number of trees are increased. However as the number of 
descriptions and trees are increased there is an overhead of maintaining trees and 
bandwidth constraints to support multiple descriptions. 

Implementation of application for private web cast is an area of interest. Lot of 
MDC techniques exit [17], but they are not publicly available. One of the feasible 
ways to implement MDC is using Unequal Error Protection with Erasure Codes 
[14][15][16]. We plan to improve the MMDDT algorithm. So far we consider that 
nodes with high bandwidth also have high reliabilities. Priority of bandwidth or 
reliability for tree robustness is an area that needs to be explored. A high bandwidth 
node placed higher in the tree will make the tree short and reduce points of failures 
from source to leaves. A high reliable node placed higher in the tree will improve the 
video continuity to its descendants.  The tree algorithm also needs to be extended for 
supporting dynamic trees for larger networks. 
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Abstract. Modern shared memory multiprocessor systems commonly
have non-uniform memory access (NUMA) with asymmetric memory
bandwidth and latency characteristics. Operating systems now provide
application programmer interfaces allowing the user to perform specific
thread and memory placement. To date, however, there have been rel-
atively few detailed assessments of the importance of memory/thread
placement for complex applications.

This paper outlines a framework for performing memory and thread
placement experiments on Solaris and Linux. Thread binding and lo-
cation specific memory allocation and its verification is discussed and
contrasted.

Using the framework, the performance characteristics of serial versions
of lmbench, Stream and various BLAS libraries (ATLAS, GOTO, ACML
on Opteron/Linux and Sunperf on Opteron, UltraSPARC/Solaris) are
measured on two different hardware platforms (UltraSPARC/FirePlane
and Opteron/HyperTransport). A simple model describing performance
as a function of memory distribution is proposed and assessed for both
the Opteron and UltraSPARC.

1 Introduction

Creation of scalable shared memory multiprocessor systems has been made possi-
ble by cc-NUMA (cache-coherent Non-Uniform Memory Access) hardware. This
approach uses a basic building block comprising one or more processors with local
memory and an interlinking cache coherent interconnect [5]. Unlike UMA (Uni-
form Memory Access) systems which comprise processors with identical cache
and memory latency characteristics, NUMA systems exhibit asymmetric mem-
ory latency and possibly asymmetric bandwidths between its building blocks.
On such platforms the operating system should consider physical processor and
memory locations when allocating resources (i.e. memory allocation and CPU
scheduling) to processes.
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Pthreads [6] and OpenMP [17] are two widely used programming models
which target shared memory parallel computers. Both, however, were developed
for UMA platforms, making no assumptions about the physical location of mem-
ory or where a thread is executing. Although there has been debate about the
merit of adding NUMA extensions to these programming models, this issue is
yet to be resolved [7]. In part the aim of the work presented here is to develop
the tools and protocols required for performing memory and thread placement
experiments that can be used to address this issue.

Linux and Solaris are two examples of operating systems that claim to be
“NUMA aware”. Exactly what this implies is not always well defined, but suf-
fice it to say that both Solaris and Linux provide application program interfaces
(API) that give the user some level of control over where threads are executed
and memory is allocated [11,14] and perform some form of default NUMA aware
placement of threads and data. While this is useful, for the programmer wish-
ing to explore NUMA issues it is also useful to have functions that will iden-
tify the CPU currently being used by that thread, and the physical location
that corresponds to an arbitrary (but valid) virtual address within an executing
process.

In this paper we compare the support provided for thread and memory place-
ment by Solaris and Linux, and also outline how a user can interrogate these
runtime environments to determine actual thread and memory placements. Using
this infrastructure the performance characteristics of two contemporary NUMA
architectures – the UltraSPARC [20] using the FirePlane interconnect [4] and
the Opteron [12] using HyperTransport [9] - are explored through a series of
latency, bandwidth and basic linear algebra (BLAS) experiments.

A novel placement distribution model (PDM) which describes performance
as a function of bandwidth and latency is presented and used to analyse perfor-
mance results. The PDM uses directed graphs representing processor, memory
and interconnect layout to aid in the enumeration of contention classes. The dis-
tribution of these contention classes permit qualitative analysis of performance
data from NUMA platform experiments.

The paper is structured into the following sections – thread and memory place-
ment on Solaris and Linux is discussed in section 2. The experimental hardware
and software platforms used are described in section 3 while section 4 outlines the
latency, bandwidth experiments and the placement distribution model. Section 5
covers related work and section 6 presents our conclusions.

2 Thread and Memory Placement

Conceptually, both Solaris and Linux are similar in their approach to abstract-
ing underlying groupings of processors and memory based on latency. Yet, the
mechanics of using the two NUMA APIs are quite different. Below we provide
a brief review of Solaris thread and memory placement APIs, before contrasting
this with the Linux NUMA support. We then consider placement verification for
both Solaris and Linux.
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2.1 Solaris NUMA Support

Solaris represents processor and memory resources as locality groups [11]. A lo-
cality group (lgrp) is a hierarchical DAG (Directed Acyclic Graph) representing
processor-like and memory-like devices, which are separated from each other by
some access-latency upper bound. A node in this graph contains at least one
processor and its associated local memory. All the lgrps in the system are enu-
merated with respect to the root node of the DAG, which is called the root lgrp.
Two modes of memory placement are available, next-touch1 and random2. The
former is the default for thread private data, while the latter is useful for shared
memory regions accessed by multiple threads as it can reduce contention.

A collection of APIs for user applications wanting to use lgrp information or
provide memory management hints to the operating system is available through
liblgrp [18]. Memory placement is achieved using madvise(), which provides
advice to the kernel’s virtual memory manager. The meminfo() call provides
virtual to physical memory mapping information. We also note that memory
management hints are acted upon by Solaris subject to resources and system
load at runtime.

Threads have three levels of binding or affinity – strong, weak or none which
are set or obtained using lgrp affinity set() or lgrp affinity get() respec-
tively. Solaris’ memory placement is determined firstly by the allocation policy
and then with respect to threads accessing it. Thus there is no direct API for
allocating memory to a specific lgrp, rather a first touch memory policy must
be in place and then memory allocated by a thread that is bound to that spe-
cific lgrp. Within an lgrp it is possible to bind a specific thread to a specific
processor by using the processor bind() system call.

2.2 Linux NUMA Support

NUMA scheduling and memory management became part of the mainstream
Linux kernel as of version 2.6. Linux assigns NUMA policies in its scheduling and
memory management subsystems. Memory management policies include strict3

allocation to a node, round-robin4 memory allocations, and non-strict preferred
binding to a node (meaning that allocation is to be preferred on the specified
node, but should fall back to a default policy if this proves to be impossible). In
contrast, Solaris specifies policies for shared and thread local data.

The default NUMA policy is to map pages on to the physical node which
faulted them in, which in many cases maximises data locality. A number of sys-
tem calls are also available to implement different NUMA policies. These sys-
tem calls modify scheduling (struct task struct) and virtual memory (struct
vm area struct) related variables structures within the kernel.
1 The next thread which touches a specific block of memory will possibly have access

to it locally i.e. if remote memory is accessed it will possibly be migrated.
2 Memory is placed randomly amongst the lgrps.
3 Memory allocation is to occur at a given node. It will fail if there is not enough

memory on the node.
4 Memory is dispersed equally amongst the nodes.
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Relevant system calls include mbind(), which sets the NUMA policy for a
specific memory area, set mempolicy(), which sets the NUMA policy for a spe-
cific process, and the sched setaffinity(), which sets a process’ CPU affinity.
Several arguments for these system calls are supplied in the form of bit masks,
and macros, which makes them relatively difficult to use. For the application
programmer a more attractive alternative is provided by the libnuma API. Al-
ternatively, numactl is a command line utility that allows the user to control
the NUMA policy and CPU placement of a entire executable5.

Within libnuma useful functions include the numa run on node() call to bind
the calling process to a given node and numa alloc onnode() to allocate mem-
ory on a specific node. Similar calls are also available to allocate interleaved
memory, or memory local to the caller’s CPU. In contrast to the Solaris memory
allocation procedure, numa alloc modifies variables within the process’ struct
vm area struct and the physical location of the thread that performs the mem-
ory allocation is irrelevant. The libnuma API can also be used to obtain the cur-
rent NUMA policy and CPU affinity. To identify NUMA related characteristics
libnuma accesses entries in /proc and /sys/devices. This makes applications
using libnuma more portable those that use the lower level system calls directly.

2.3 Placement Verification

Solaris provides a variety of tools6 to monitor process and thread lgroup map-
pings – lgrpinfo, pmadvise, plgrp and pmap. The lgrpinfo tool displays the
lgroup hierarchy for a given machine. The pmadvise tool can be used to apply
memory advice to a running process. The plgrp tool can observe and affect a
running thread’s lgroup; it can also give a diagrammatic representation of the
lgroup affinities. The pmap tool permits display of lgroups and physical memory
mapping for all virtual address associated with a running process.

Although libnuma provides a means for controlling memory and process place-
ment on Linux systems, it does not provide a means for determining where a
given area of memory is physically located. A kernel patch that attempts to
addresses this issue is provided by Per Ekman [15]. The patched kernel cre-
ates per-PID /proc entries that include, among other things, information about
which node a process is running on, and a breakdown of the locations of each vir-
tual memory region belonging to that process. While we found that this package
was generally sufficient as a verification tool it involved having to check quickly
the /proc entries while the program was running. We also found that under
some circumstance the modified kernel failed to free memory after a process had
terminated.

Based on the work of Ekman [15] we designed an alternative kernel patch that
provides a system call and user level function to return the memory locations
for each page in a given virtual memory range. This utility proved considerably
more convenient as it could be called from within a running application.
5 It can also be used to display NUMA related hardware configuration and configura-

tion status.
6 http://opensolaris.org/os/community/performance/numa/observability
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3 Experimental Platforms

Two NUMA platforms were used in this work: a twelve processor Sun Ultra-
SPARC V1280 [21] and a four processor AMD848 Opteron system based on the
Celestica A8448 [3] motherboard. We now briefly outline the NUMA character-
istics of each platform.

3.1 UltraSPARC/FirePlane

The V1280 has twelve 900MHz UltraSPARC III Cu processors each with a 32
Kb L1 instruction cache, 64 Kb L1 data cache and 8192 Kb L2 cache which
is off-chip. The system contains three boards which hold four processors each
and are linked using the FirePlane interconnect [4]. The system contains 8GB
of memory per board giving a total of 24GB for the entire system. The three
boards form a combined snooping based coherency domain. For larger systems,
i.e. > 24 processors, a directory based protocol is used at the point-to-point level.

A pair of processors and their associated memories are all linked using a
Dual CPU Data Switch (DCDS), i.e. there are four separate data paths each
running at 2.4 GB/s from processors or memories to the DCDS. The DCDSs
can sustain 4.8 GB/s to the board data switch. Since memory on the boards is
16-way interleaved across a board, a peak of 6.4 GB/s per board is achieved. The
point-to-point links among boards have a bi-directional bandwidth of 4.8 GB/s
per board, approaching a peak of 9.6 GB/s for the whole system. Since the four
processors on a board have similar memory access latencies, we will refer to it
as one node. A schematic illustration of the V1280 is given in Figure 1 (a).
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Fig. 1. (a) Schematic diagram of the V1280 UltraSPARC platform and (b) Celestica
Opteron platform

3.2 Opteron/HyperTransport

The Opteron system contains four 2.2Ghz AMD848 processors each with a 64
Kb L1 data and instruction cache and a 1024 Kb L2 cache. The Celestica A8440
motherboard is configured with 2GB of memory per processor giving a total
of 8GB for the entire system. The AMD848 Opterons have an on-chip memory
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controller and uses coherent HyperTransport to link processor coherency traffic.
The Opteron has two coherent HyperTransport links [9], each operating at 6.4
GB/s bi-directionally. The processors are arranged in a ring topology resulting
in processors having at most two hops to reach the most distant processor. A
schematic illustration of the Opteron system is given in Figure 1 (b).

3.3 Software Platform

While Solaris 10 was used on the V1280 system, the Opteron platform was ca-
pable of dual booting into either Solaris 10 or OpenSuSE 10. The Sun Studio 11
compilers were used on both Solaris platforms, while version 6.0 of the Portland
Group compilers were used under Linux. Compiler flags for the highest optimi-
sation levels were used on both compilers. To obtain accurate performance data
the PAPI library [2] was used to access hardware performance counters under
Linux whereas the libcpc [19] infrastructure was used under Solaris. The nu-
meric libraries used under Linux are the ACML (version 3.0) from AMD, ATLAS
(version 3.6) [23], GOTO BLAS [8] (version 1.00) while Sunperf (Sun Studio 11)
was used under Solaris.

4 Results

This section discusses observed memory latency, serial memory bandwidth and
parallel memory bandwidth for the two NUMA platforms.

4.1 Latency Characterisation

To determine the memory latency characteristics of the two platforms the lm
bench [13] memory latency benchmark was modified to accept memory and
thread placement parameters. Latencies to get data from level-one cache (L1) on
the Opteron and UltraSPARC were measured as 3 and 2 cycles respectively, while
accessing level-two cache (L2) took 20 cycles on both platforms. The latencies
recorded for a thread bound to a particular node accessing memory at a specific
location are given in Table 1. From these, the NUMA ratio7 of the Opteron sys-
tem is found to be 1.11 for one hop and 1.53 for two hops from any given proces-
sor, while on the V1280 there is only one NUMA level with a ratio of 1.2. While
these are NUMA machines with low NUMA ratios, the emphasis of this paper is
the sketching out and testing of the memory and thread placement framework
with the view of extending it to NUMA systems with higher NUMA ratios.

4.2 Bandwidth Characterisation

To determine the memory bandwidth characteristics of the two platforms the
Stream [10] benchmark was modified to accept memory and thread placement pa-
rameters. This benchmark performs four different vector operations, correspond-
ing to vector copy, scale, add, and triad. On the Opteron system there are four
7 NUMA ratio = RemoteLatency

LocalLatency
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Table 1. Main Memory latencies (Cycles). lmbench uses a pointer chasing benchmark
to determine memory latencies. Results were obtained for the Opteron and V1280
platforms by pinning a thread on a given node and placing memory on different nodes.

Memory Location
Thread Opteron V1280
Location 0 1 2 3 0 1 2

0 225 250 250 345 220 265 265
1 250 225 345 250 265 220 265
2 250 345 225 250 265 265 220
3 345 250 250 225 – – –

nodes and four physically distinct memory banks, while on the UltraSPARC sys-
tem there are three nodes and three memory banks. For a single thread it might be
expected that the “best” possible Stream performance would be obtained when a
thread is accessing vectors that are stored entirely in local memory. Conversely the
“worst” possible performance would correspond to a thread accessing data stored
in memory located as far away as possible.

Results for these two scenarios are given in Table 2. For the Opteron system
running Solaris we find performance differences between best and worst memory
placement that vary from a factor of 1.4 to 1.6. For Linux on the same platform
we find a some what larger variation with factors between 1.09 to 2.35. On the
V1280 system the effect is considerably less indicating relatively mild NUMA
characteristics. (We note that the superior performance of the copy operation
on the Opteron using Linux reflects the use of specialised instructions by the
PGI compiler to perform the memory moves).

Table 2. Serial Stream bandwidths (GB/s) for the Opteron and V1280 systems. A
single thread was pinned to a given node and had its memory placed on different
nodes. Best and Worst refer to thread and memory placements which are expected to
give the best and worst possible performance (See text for details).

Opteron V1280
Solaris Linux Solaris

Test Best Worst Best Worst Best Worst
Copy 2.17 1.99 4.68 3.14 0.72 0.71
Scale 2.50 1.58 2.35 1.47 0.79 0.74
Add 2.75 1.17 2.55 1.54 0.83 0.81

Triad 2.24 1.51 2.44 1.52 0.85 0.79

The Stream benchmark was modified to create multiple threads, that concur-
rently ran separate instances of the original Stream benchmark. Results for this
are presented in Table 3. In this case the worst case scenario on the Opteron
would correspond to node 0’s executing the Stream benchmark with all the data
being serviced from memory 3, while the opposite happens on node 3, and nodes
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1 and 2 are similarly exchanging data. Not surprisingly on both the Opteron
and V1280 system the difference between good and bad memory placement has
increased significantly over that observed for the serial benchmark.

Table 3. Parallel Stream bandwidths (GB/s). Threads were pinned to various nodes
and had its memory placed locally (“Best”) or remotely (“worst”). Four threads were
run concurrently for the Opteron which twelve threads were run concurrently for the
V1280 system.

Opteron V1280
Solaris Linux Solaris

Test Best Worst Best Worst Best Worst
Copy 8.98 2.53 16.55 4.22 4.89 3.56
Scale 9.98 2.67 9.60 2.67 4.91 3.46
Add 10.85 2.85 10.33 2.94 5.22 3.57

Triad 9.17 2.68 9.87 2.96 5.14 3.71

4.3 Placement Distribution Model

In the above we considered “best” and “worst” case scenarios for the various
Stream benchmarks. In the general case as well as on the Opteron system each
vector or data quantity used in a Stream benchmark could be located in the
memory associated with any one of the four available nodes. For the parallel
add and triad benchmarks, on the Opteron system, this means that there are a
total of 412∗4! possible thread/memory combinations8 while 48∗4! copy and scale
benchmarks are possible (add and triad benchmarks use 3 data quantities while
copy and scale use 2 data quantities). Obviously evaluating the performance
characteristics of each of these cases quickly becomes impossible for large NUMA
systems. Thus, it is useful to develop a simple performance model which gives
the probability of a given memory and thread placement experiments.

A placement distibution model (PDM) is developed to categorize the occur-
rence and type of possible placements. A directed graph of the NUMA platform
is given to the model along with the data quantities used per thread. Figures 1
(a), (b) can be interpreted as graphs where links entering and exiting nodes
are arcs. Traffic associated with each link can be modeled as weights along the
links between nodes. Nodes are assumed to route traffic to their local memory
controller or to other nodes along the most direct path. The model also as-
sumes concurrent execution of all defined threads accessing its data quantities
in tandem with other threads over the interconnect. This model can be used to
characterise the communication requirements for any given memory placement
experiment.
8 A given data quantity could reside in 4 possible memory locations and each thread

could run on 4 possible processors i.e. there are a total of 43 experiments for one
thread and three data quantities. For all the 4 threads in the system there are
43 ∗ 4 ∗ 43 ∗ 3 ∗ 43 ∗ 2 ∗ 43 ∗ 1 = 412 ∗ 4! possible combinations.
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4.4 Placement Distribution Algorithm

An algorithm for the placement distribution model is presented in Algorithm 1.
The PDM requires a graph G, which represents the layout of memory M, proces-
sor nodes N and a set I of ordered processor to memory or memory to processor
data movements for a set of data quantities D. These inputs are used to traverse
over all possible configurations per thread of both thread and memory placement

Algorithm 1. The Placement Distribution Model
1: N ← {node1, node2, . . . , nodei} The set of all processor nodes
2: M ← {mem1, mem2, . . . , memj} The set of memory nodes
3: L ← { link1, link2, . . . , linkk} The set of all links between nodes
4: T ← { data1, data2, . . . , datal} The set of data quantities
5: E ← N x M Cartesian product denoting data movement
6: G ←<E,L> Graph G representing memory and processor layout
7: D ←{<x, y> |x ∈ T, y ∈ M} A data quantity x resides in memory location y
8: I ← E x D Set of inputs for thread, memory placement
9: I ≡ {<e, f> | e =<n,m>∈ E, f =<x,y>∈ D}

10: W (l) | l ∈ L Weight matrix W
11: C(x, y) Cost matrix C

Require: <n,m>∈ E

12: procedure OptPath(<n,m>) Optimal path from n to m where n, m ∈ E

13: Use appropriate alogrithm or heuristic
14: return {<x,y> |x, y ∈ L} to get path between <n,m>
15: end procedure

Require: x ∈ D ∀x ∈ Q

Require: <x,y>∈ L ∀ <x,y>∈ P

16: procedure FlowSize(Q, P) Compute cost of moving data items across link P

17: cost ← 0
18: for all (link ∈ P) do
19: for all (qty ∈ Q) do
20: cost ← cost + | qty | ∗ W (link)
21: end for
22: end for
23: return cost
24: end procedure

25: procedure ComputeDistribution
26: Q′ ← {x | x ∈ D} Set of data quantities of interest
27: for all (i ∈ I) do Loop over input I (i ≡<e,f>)
28: links ← OptPath(e) where e ∈ i Get the optimal path for a given e
29: for all ((j ← links) ∧ (f ∈ i)) do Loop over links and use f ∈<e,f>
30: C(i, j) = C(i, j) + F lowSize(Q′, j)
31: end for
32: end for
33: end procedure
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for each data quantitity. A traversal implies data quantities are moved over a link
and this entails a cost W (l) per link l. Each traversal contributes to a cumulative
cost entry in cost matrix C. Three procedures are defined in Algorithm 1 namely
OptPath, FlowSize and ComputeDistribution. Procedure OptPath returns the op-
timal path, a set of ordered pairs of <x,y> between two end points <n,m> while
procedure FlowSize computes a cost associated with moving data quantities con-
tained in set Q over links contained in set P and procedure ComputeDistribution
uses a set of data quantities as used per thread for all threads in set Q′ and
computes the cost for these data quantites for an ordered set of inputs I.

A state machine was coded to perform walks along the links of graph G, for
all possible thread and memory placements given a specific processor/memory
topology and data quantities. These walks model link traffic moving from a
source node to a target node, traffic moving from a node to its local memory
and traffic moving from one memory bank to another. In the event that there
are two paths to the required destination of equal length, the traffic is split
equally along each path. This assumption is made as a simplification to avoid
complex specification of the underlying interconnect protocol. For example, if
a placement dictates that Node 1 will be continuously accessing memory from
Node 0, we increment variables belonging to each link along the route to record
the quantity of the data movement. This results in a tuple holding values for
link contention and node contention.

Using the PDM, for a given processor and memory layout, yields costs for
thread and memory placement which are distributed in ranges which we term
as link contention classes. The range of a link contention class gives the degree
of contention at a node. For each contention class obtained from the PDM,
20 random configurations were generated i.e. thread and memory placement for
all threads and data quantities which yields a link contention that lies in the
range of all observed link contention classes. These placement configurations are
subsequently used to perform copy and scale Streammeasurements. In effect this
process permits for a tractable analysis of possible performance characteristics
for the benchmarks without resorting to running all experiments for all possible
thread and memory placements.

Table 4 characterises the copy and scale Stream benchmarks according to the
maximum level of contention on any given link. This table shows, for example,
that on the Opteron system 51.9% of all possible memory placement configu-
rations have link contentions greater or equal to 3 but less than 4, while 0.1%
have a link contention of between 7 and 8. The ranges 3-4 and 7-8 are the link
contention classes. The results show that on the Opteron system given random
vector placement the probability of landing in a 3-4 link contention class is the
highest, and within this class you might expect to see a performance degradation
of about 20%. On the V1280 the effect is much less.

4.5 BLAS Experiments

Using the memory placement framework developed above, experiments were
conducted for level 2 (DGEMV – matrix vector) and level 3 (DGEMM – matrix



348 J. Antony, P.P. Janes, and A.P. Rendell

Table 4. Copy and Scale (GB/s) Stream benchmark results for the placement distri-
bution model. Contention classes denote the ranges of link contention for all the nodes
in the system. %Freq gives the frequency of occurance of a given class in percent.

Contention Solaris Linux
Class %Freq Copy Scale Copy Scale

Opteron
2-3 2.6 5.7 6.0 7.4 5.6
3-4 51.9 5.0 5.1 6.7 4.7
4-5 34.6 4.5 4.8 6.4 4.2
5-6 9.2 3.9 4.6 5.5 3.6
6-7 1.5 3.3 3.4 4.4 3.0
7-8 0.1 3.0 3.0 3.3 2.7

V1280
08-12 10.3 4.0 4.0
12-16 59.7 3.8 3.9
16-20 24.8 3.7 3.8
20-24 5.0 3.6 3.6

multiply) BLAS operations. Results obtained for square matrices of dimension
1600 using ACML on the Opteron and sunperf on the V1280 are given in Table 5.
In addition we also include results obtained from the triad Stream benchmark
as these are representative of level 1 BLAS operations. The results show greatest
NUMA effects on the Opteron system, where, as expected the variation is largest
for triad, less for level 2 BLAS and almost unnoticeable for level 3 BLAS. This

Table 5. BLAS Stream Triad, Level 2 BLAS, Level 3 BLAS (GigaFlops) results for
the placement distribution model. Results are averages for twenty random generated
configurations per contention class. Tr = Triad.

Contention Solaris Linux
Class %Freq Tr L2 L3 Tr L2 L3

Opteron
3-4 1.9 0.5 1.6 15.3 0.5 1.5 15.6
4-5 38.1 0.4 1.4 15.2 0.4 1.4 15.6
5-6 38.2 0.4 1.5 15.2 0.4 1.4 15.6
6-7 16.0 0.4 1.4 15.2 0.4 1.3 15.6
7-8 5.0 0.3 1.3 15.2 0.3 1.3 15.6

8-12 3.4 0.3 1.1 14.9 0.3 0.8 15.6

V1280
12-16 8.3 0.4 1.0 17.4
16-20 48.3 0.3 1.0 15.8
20-24 30.7 0.3 1.0 16.2
24-28 10.2 0.3 1.0 17.4
28-40 2.3 0.3 1.0 17.5
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Fig. 2. Serial Opteron DGEMM (C = A ∗ B) performance (MegaFlops) for square
matrices of dimension 1600 using ACML, ATLAS, GOTO and Sunperf libraries. A
total of 256 experiments were run for all possible thread and memory placements for
one thread and three data quantities A, B and C.

reflects the fact that a well written DGEMM will spend most of its time working
on data that is resident in the level 2 cache, but this is not possible for level 1
or level 2 BLAS where data must be streamed from memory to processor.

In Figure 2 we present floating point performance for serial DGEMM on the
Opteron system using four different BLAS libraries: i) ACML, ii) ATLAS , iii)
GOTO and iv) Sunperf. With three matrices and four different nodes on the
Opteron system there are a total of 256 different thread and memory placement
permutations. These have been ordered according to maximum contention on a
given link and then sorted by performance observed within that group. As this
is a serial matrix multiply, the link contention ranges from 1 to 3. Memory con-
tention of 1 occurs when the three matrices are located on adjacent nodes with
the compute thread is bound to the central node, i.e. the contention on the net-
work is actually reduced compared to the case when all three matrices are local
to the node accessing them (contention value of 3). Interestingly in some cases
the best performance is obtained for a link contention of 2 indicating that on an
idle machine non-local placement of some data quantities may be advantageous
if it leads to enhanced overall memory bandwidth. The performance also shows
considerable fine structure, especially for GOTO BLAS [8] which for most of
the time exhibits the best performance, but in some cases also shows the worst
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performance. At this point we believe the reason for these sudden performance
drops (of ≈16%) is cache line conflicts arising from slightly different memory
placements within a node.

5 Related Work

Brecht [1] evaluates the importance of placement decisions on NUMA machines
with different NUMA ratios. Application placement which mirrored hardware
is beneficial for application performance and its importance increased with the
NUMA ratio.

Robertson and Rendell [16] quantify the effects of memory bandwidth and
latency on the SGI Origin 3000 using lmbench and stream. Using a 2D heat
diffusion application, they stress the importance of good thread and memory
placement and show that relying on the operating system for thread and memory
placement is not always optimal.

Tikir and Hollingsworth [22] use link counters and a bus analyzer, on the
SunFire 6800 system to effect transparent page migration, without modification
to the operating system or application code. They are able to improve execu-
tion time of benchmarked applications by 16%. This is achieved by using a
combination of hardware counters, runtime instrumentation and madvise().

6 Conclusions

The support for thread binding and memory placement provided by Solaris and
Linux has been outlined and contrasted. For Linux, the kernel was modified in
order to provide a user API that could be used to verify binding and deter-
mine physical memory placement from a user supplied virtual address. Using
the various thread and memory placement APIs, a framework was outlined for
performing NUMA performance experiments. Detailed measurements of the
latency, bandwidth and BLAS performance characteristics of two different hard-
ware platforms were undertaken. These showed the Opteron system to be “more
NUMA” than the Sun system, despite the fact that it had only 4 processors. To
assist in the analysis of the performance data, a simple placement distribution
model of the NUMA characteristics for the two platforms was outlined. The
PDM uses directed graphs to represent processor, memory and interconnect lay-
out. It was found that if multiple level 1 or level 2 BLAS operations are run in
parallel on the Opteron system performance differences of up to a factor of two
were observed depending on memory and thread placement. For level 3 BLAS,
differences are much smaller as there is much better re-use of data from level 2
cache.

The use of the PDM shows node local allocation of memory is not always
the best strategy for the DGEMM kernel. The best peak results were obtained
for a link contention of 2 i.e. non-local placement of data. This highlights the
benefits of user-level discovery, at runtime, of processor and memory topologies
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and the use of this knowledge within the application to effect thread and memory
placement specific to its needs.
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Abstract. We propose a schedule named Low Power Heterogeneous Makespan 
(LPHM) that attempts to minimize makespan as well as power consumption in 
the execution of any directed acyclic task graph on heterogeneous processors. 
We combine the techniques of Heterogeneous Earliest Finish Time (HEFT) [9] 
and voltage scaling [4]. The processors used for execution are considered to be 
continuously voltage scalable within the range of operation. After initial sched-
uling for minimum makespan, the processors are voltage scaled down to reduce 
power consumption whenever there is an idle time. This voltage scaling is 
performed without violating the precedence relationships among tasks. The 
simulation results show power savings of 22% over HEFT with no increase in 
makespan. 

Keywords: DAG, Power, Scheduling, Makespan, Heterogeneous, Voltage 
Scaling. 

1   Introduction 

Heterogeneous computing uses diverse resources connected over high speed networks 
to support computationally intensive applications. These tasks may require to be 
scheduled in an optimum way so that the computation is done in minimum time con-
suming minimum resources. Task scheduling finds extensive use in ubiquitous com-
puting where resources are constrained.  

Scheduling tasks for minimum finish time using static, dynamic or hybrid schedul-
ing algorithms has been well researched. Real-time environments have constraints 
such as speed, power and memory. Hence, it is important to address such issues in 
scheduling. There is little research which addresses both makespan and power con-
sumption. Most of the work done to reduce the power consumption in a distributed 
system neglects the finish time. The power saving is obtained at the cost of longer 
execution time.  

The classification of low power research as described in  [8] is as follows: 

                                                           
* This work was supported in part by a grant from the National Science Foundation CCF 

0411540. 
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1. Power Estimation Techniques 

    - Entails power management  at instruction, architecture, and gate level 

2. Power Optimization Techniques 

- Hardware Optimization 

• Behavioral level: Entails transformation, scheduling, and resource allo-
cation 

• Architectural level: Use of low power flip flops, adders, etc. 
• Circuit level: Use of low power circuitry   

-      Software Optimization 

• Instruction-level: Low power compilation, Low power instructions, and 
scheduling 

• System-level: Dynamic power management, Low power memory man-
agement 

Power consumption is a limiting factor for the functionality of devices operating on 
batteries with rapidly increasing computing and communication costs.  There are 
many applications which require both low finish time and power consumption. Power 
consumption is a major issue in many real-time distributed systems such as real-time 
communication in satellites, as most applications running on power-limited systems 
inherently impose temporal constraints on finish time. A new area of interest is multi-
hop radio networks used for sensor data traffic. New wireless communication systems 
are expected to evolve using this system. These networks are distributed networks 
operating on power constraints also called as power-aware distributed systems 
(PADS). Hence there is need for scheduling algorithms which would effectively re-
duce the overall power consumption and yet attain the best possible makespan. 

LPHM addresses [10] both issues of minimizing makespan and reducing the power 
consumption. After the initial scheduling has been performed using HEFT for mini-
mum finish time, it performs voltage scaling to reduce power consumption without 
increasing finish time. Also care is taken to meet precedence relationships.   

The remainder of this paper is organized as follows. In the next section, we de-
scribe the necessary background on scheduling and related terminology. Different 
types of scheduling on homogeneous and heterogeneous processors have been dis-
cussed. Section 3 introduces the concepts in computing power. Section 4 discusses 
how voltage scaling can be used to reduce the power consumption of a processor. 
Section 5 details LPHM. Results have been discussed in Section 6. Section 7 presents 
conclusions and future work.  

2   Background 

In a distributed environment, an application can be decomposed into a set of computa-
tional tasks. These tasks may have data dependencies among them, thereby creating a 
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partial order of precedence in which the tasks may be executed. DAGs are an impor-
tant class of graphs having many applications such as those involving precedence 
among events.  An example of a task DAG is shown in Figure 1. 

 

Fig. 1. A sample task DAG graph 

In this paper, a DAG is represented by the tuple G=(V,E,P,T,C,W) similar to [1], 
where V  is the set of v nodes, E is the set of e edges between the nodes, and P is a set 
of p processors. E(vi, vj) is an edge between nodes vi and vj. T is the set of costs T(vi, 
pj), which represent the computation times of tasks vi on processor pj. C is the set of 
costs C(vi, vj), which represent the communication cost associated with the edges E(vi, 
vj). Since intra-processor communication is insignificant compared to inter-processor 
communication, C(vi, vj) is considered to be zero if vi and vj execute on the same proc-
essor. W is the set of costs W(vi, vj), which represent the power consumption costs of 
tasks vi on processor pj. The length of a path is defined as the sum of node and edge 
weights in that path. 

Node vp is a predecessor of node vi if there is a directed edge originating from vp 

and ending at vi. Likewise, node vs is a successor of node vi if there is a directed edge 
originating from vi and ending at vs. We further define pred(vi ) as the set of all prede-
cessors of vi and succ(vi ) as the set of all successors of vi. An ancestor of node vi is any 
node vp that is contained in pred(vi ), or any node va that is also an ancestor of any 
node vp contained in pred(vp ).  

The earliest start time of node vi on processor pj is represented as EST(vi, pj ). Like-
wise, the earliest finish time of vi on processor pj is represented by EFT(vi, pj ). EST(vi) 
and EFT(vi ) represent the earliest start and finish times on any processor respectively. 
T_avail [vi, pj] is defined as the earliest time that processor pj will be available to be-
gin executing task vi. Hence, 

EST(vi, pj) = max{ T_avail [vi, pj],
)(

max
ip vpredv ∈

 ( EFT(vp, pk)+C(vp, vi) ) } (1) 
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EFT(vi, pj)= T(vi, pj)+ EST(vi, pj) (2) 

The goal of LPHM is to minimize both makespan and total power consumption 
(makepower) which are defined as follows: 

makespan = max{ EFT(vi)}  
where vi is the exit node of the graph. 

(3) 

makepower = pj) ,(viW  (4) 

Schedule length (makespan)  is a major metric to measure the performance of a 
scheduling algorithm on a graph. Since a large set of graphs is used, it is necessary to 
normalize the schedule length with respect to its lower bound. Thus schedule length 
ratio (SLR) of an algorithm on a graph is defined as: 

}{min , jiQpCPn w

makespan
SLR

jMINi ∈∈
=  (5) 

The denominator is the summation of the minimum computation costs of tasks on the 
critical path. Thus, SLR of a graph cannot be less than one since the denominator is 
the lower bound.  

Scheduling of DAGs like applications to minimize finish time is a well researched 
NP-complete problem. Scheduling can be preemptive or non-preemptive. In this work 
we deal with non-preemptive scheduling. 

In a real-time distributed environment, the availability of computing resources var-
ies which results in both temporal as well as spatial heterogenity.  Heuristic-based and 
guided-random-search based algorithms are two principal approaches of scheduling 
DAGs. Heuristic algorithms are classified as list scheduling, cluster scheduling and 
task duplication based scheduling. Guided random search based algorithms can be 
classified as Genetic Algorithms, Simulated Annealing and Local Search Technique. 
List scheduling tries to minimize a predefined cost function by first making a list of 
all tasks based on their priorities and then selecting the appropriate processor based on 
the heuristic. List scheduling algorithms have usually low complexity and give good 
finish times. Examples of list scheduling algorithms are HEFT, Modified Critical Path 
(MCP)  [3], Dynamic Level Scheduling [2] and Mapping Heuristic  [5].  

Task duplication can minimize interprocessor communication and hence results in 
shorter finish times. HNPD  [1] was shown to give better makespan than HEFT. It 
combines the techniques of HEFT and Scalable Task Duplication Scheduling (STDS)  
[7]. It uses task duplication to minimize finish time, however this approach increases 
power consumption. We therefore chose to perform voltage scaling on HEFT. 

HEFT is an insertion-based algorithm, i.e, it tries to schedule a task between two 
already scheduled tasks. Tasks are ordered in the order of their upward rank, which 
for any task ni is recursively defined  as follows:    

))((max)(
___

,
)(

__

juji
nsuccn

iiu nrankcwnrank
ij

++=
∈

 (6) 
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where succ(ni) is the set of immediate successors of task ni, 
___

, jic  is the average com-

munication cost of edge(i, j) over all processor pairs, and 
__

iw  is the average of the 

computation cost of task ni over all processors. Since the rank is computed recursively 
by traversing the graph upward, starting from the exit task, it is called upward rank. 
For the exit task nexit, the upward rank is: 

_____
)( exitexitu wnrank = . (7) 

Basically, ranku(ni) is the length of the critical path from task ni to the exit task, ex-
cluding the cost of task ni.  

In HEFT the priority of each task is set to its upward rank. Next, the task list is 
sorted in decreasing order of upward rank.  Next, it tries to insert tasks in idle slots 
such that the insertion of any task does not violate any precedence relationship. It has 
an O(e x q) time complexity for e edges and q processors. For a dense graph, the 
number of edges is proportional to v2 (v is the number of tasks), the time complexity 
is O(v2 x p). 

3   Power Computation  

We know that  the processor clock frequency, f, can be expressed in terms of the sup-
ply voltage, Vdd, and the threshold voltage, Vt, as follows: 

ddtdd VVVkf /)( 2−= .  (8) 

Where k is a constant.  From eqn. (8), we derive Vdd as a function of f, F(f) as: 

22)
2

()
2

()( tttdd V
k

f
V

k

f
VfFV −+++== .  (9) 

The processor power, p, can be expressed in terms of the frequency, f, switching ca-
pacitance, N, and supply voltage, Vdd, as: 

22 )(
2

1

2

1
ffNFfNVp dd ==  (10) 

Given the number of clock cycles, i, for executing task i, its energy consumption, Ei, 
under supply voltage Vi and clock frequency, fi, is given by: 

)()/( iiii fpfE ∗= η  (11) 

4   Voltage Scaling 

Voltage scaling is technique in which the core power supply voltage of a system is 
varied depending on the processing load, to decrease the total power consumption. 
But reducing the power supply voltage also reduces the speed of execution. In some 
instances it is observed that with the reduction in supply voltage from 5.0V to 3.3V, 
there is about 56% reduction in power consumption [6].  
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Fig. 2. Voltage Scaling 

 

Fig. 3. An example of a power-delay optimization [4] 

Consider the example in Figure 2, where T2 and T3 must precede T6. Assume T2 and 
T3 take 20 and 15 seconds on their respective processors. So, the processor executing 
T2 has an idle time of 5 seconds which means it can operate at a lower speed, i.e., at a 
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lower supply voltage. Suppose T4 takes 15 seconds or less to complete. Now, the 
processor executing task T4 has some idle time and hence can operate at low power. 
Next, tasks T2 & T4 can be merged into a group (if they don’t have an off chip data 
transfer) so that they both can be dynamically voltage scaled at the same time as 
shown in Figure 2(c). Such merging decreases the number of times one must dynami-
cally switch the voltage. Thus given a voltage scaled schedule, tasks are merged 
wherever possible and then merged tasks which can operate at lower frequencies are 
determined. 

Consider Figure 3 which shows energy consumption vs. execution time for differ-
ent voltages and frequencies  [4]. It shows the advantage of voltage and frequency 
scaling. When a task is executed at 5V and 50MHz, it consumes 40J of energy. But if 
the power supply in the last quarter of the execution is scaled down to 2.5V and  fre-
quency to 25MHz, it meets the deadline and consumes only 32.5J of energy. If the 
power supply is scaled down 4V and frequency to 40MHz from the start, it still meets 
the deadline requirements and consumes only 25J of energy. 

5   Scheduling Algorithm 

In Figure 4 we detail our new algorithm, LPHM.  

Procedure LPHM 
 

1. Assign computation costs of tasks and edges with mean values over all 
processors. Assign power consumption of tasks on all processors.  

2. Compute upper rank of all tasks by traversing graph upward, starting from 
the exit task. 

3. Sort tasks in non-increasing order of upper rank. 
4. while there are unscheduled tasks do 

(i) Select the first task ni from the above sorted list 
(ii) for all processors Pj compute EFT(ni, Pj) using insertion based 

scheduling  
(iii) Schedule task ni on processor Pj that provides the minimum  

EFT (ni) 
5. endwhile 
6. for all k, m, i, j 

                 (i) If EFT (nk, Pi) + C (Pi, Pj)  > EFT (nm, Pj) then 
                                   EFT (nm, Pj) = EFT(nk, Pj) + C (Pi, Pj) 

// where nk is a node which is scheduled immediately before nm on 
//Pj  

7. endfor 
8. Sum power consumptions on all tasks using eqn. 10.  

 
End LPHM 
 

Fig. 4. Procedure LPHM 
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Using LPHM on the graph of Figure 5, we observe that if EFT(N1,P1)+ C(P1,P2) > 
EFT(N2,P2) we can increase EFT(N2,P2) because P2 has to anyway wait upon N1 be-
fore executing N4.  Idle time on P2, would be available if EFT (N2, P2) < EST(N4, P2). 
Checking  the above is equivalent to checking for any available idle time on all proc-
essors. Therefore, we replace lines 6 and 6.(i) in the above algorithm by the following 
which is less computationally intensive: 

if  EFT(nk, Pj) < EST (nm, Pj) then 
EFT(nk, Pj) = EST (nm, Pj) 

P1              P2 

 
Fig. 5. Example graph 

6   Simulation and Results 

For purposes of simulations, random weighted directed-acyclic-graphs were generated 
as described in  [1].  The following parameters were used:  

 
• Number of nodes in the graph, v. 
• Shape parameter (SP) of the graph, .  
• Mean out degree of a node, (out_degree) 
• Communication to computation ratio, (CCR)  
• Computation range,  

 
In each experiment, the above parameters are varied over the sets of values given be-
low: 

  
• SET (v)                = {10, 20, 40, 60, 80} 
• SET( )                 = {0.5, 1.0, 2.0} 
• SET(out_degree) = {1, 2, 3, 4, 5} 
• SET(CCR)           = { 0.1, 0.5, 1.0, 5.0, 10.0} 
• SET ( )                = {0.1, 0.25, 0.5, 0.75, 1.0} 

 
The above combinations give 1,875 different DAGs.  Assigning a number of input 
parameters and selecting each input parameter from a set of values generates diverse 
DAGs with a wide variety of characteristics.  Since we generated 25 random graphs in 
each study, the total number of graphs is 46,875.  Using these graphs, the performance 
of LPHM was compared with respect to various graph characteristics.  
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Figure 6 shows the percentage reduction in power consumption with respect to 
CCR. The power reduction increases with CCR. This is because, as CCR increases, 
the communication cost of tasks increase and thus more tasks are scheduled on same 
processor rather than choosing a new processor. This in turn, increases idle time be-
tween tasks which can be used for power reduction.  
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Fig. 6. Power reduction vs. CCR 

Figure 7 shows power reduction with respect to computation range. As computa-
tion range increases, heterogeneity among processors increases. In other words, dif-
ferent processors execute similar tasks at different speeds. Hence we can find more 
idle time between tasks. Hence, we see a slight increase in power reduction as compu-
tation range increases.  
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Fig. 7. Power reduction vs. computation range 
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7   Conclusions  

This work reports a new scheduling algorithm which tries to minimize both make-
span and power consumption. LPHM has been seen to obtain the same makespan as 
HEFT but with an average power savings of about 22%. The results are based on 
an experimental study using a large set of randomly generated graphs with various 
characteristics. 

This work can be improved to obtain more reduction in power consumption by 
slowing down all the tasks which do not interfere with the critical path. Also, power 
consumption should be calculated by slowing down all the tasks which comes at the 
expense of slightly higher finish time. This study can be used to find the best fre-
quency of operation for the best finish time and power consumption.  
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Abstract. Molecular Biologists frequently compute multiple sequence
alignments (MSAs) to identify similar regions in protein families. How-
ever, aligning hundreds of sequences by popular MSA tools such as
ClustalW requires several hours on sequential computers. Due to the
rapid growth of biological sequence databases biologists have to compute
MSAs in a far shorter time. In this paper we present a new approach to
reduce this runtime using graphics processing units (GPUs). To derive
an efficient mapping onto this type of architecture, we have reformulated
the computationally most expensive part of ClustalW in terms of com-
puter graphics primitives. This results in a high-speed implementation
with significant runtime savings on a commodity graphics card.

1 Introduction

Dynamic programming (DP) is often used to compute the optimal local align-
ment of a pair of sequences [1]. However the extension of the DP method for si-
multaneous alignment of multiple sequences is impractical as the time and space
complexities are in the order of the product of the lengths of the sequences. Thus,
many heuristics to compute multiple sequence alignments (MSAs) in reasonable
time have been developed.

Progressive alignment is a widely used heuristic [2]. Examples of popular tools
which are using this approach include ClustalW [3], PRALINE [4], MUSCLE [5],
and T-Coffee [6]. Typically, progressive alignment methods consist of three steps.
Firstly, a distance value between each pair of sequences is computed. Secondly,
a phylogenetic tree is calculated based on this distance matrix. Finally, pair-
wise alignment of various profiles is done following the branching order in the
phylogenetic tree to form the final MSA. Unfortunately, progressive alignment
programs suffer from a high computational complexity, for instance the align-
ment of a few hundred protein sequences using ClustalW requires several hours
on a state-of-the-art workstation.

A popular technique to speedup this time consuming task is to use parallel
processing. The runtime of progressive alignment programs is typically domi-
nated by the first step (computation of pairwise sequence distances). There are
two basic approaches of parallelizing this step: one is based on the systolisation of
the pairwise distance computation algorithm (fine-grained); the other is based

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 363–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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on the distribution of the computation of pairwise distances (coarse-grained).
Several coarse-grained parallel implementations of ClustalW have been devel-
oped. The solutions presented by [7] and by [8] use message-passing on a PC
cluster. Parallel ClustalW implementations have also been designed for more
expensive shared memory machines [9]. Another fine-grained parallel solution
based on reconfigurable hardware (FPGAs) has recently been presented in [10].

In this paper, we investigate how graphics processing units (GPUs) can be
used as a computational platform to accelerate MSAs with ClustalW. The main
advantage of GPUs compared to other accelerator architectures such as FP-
GAs is that they are commodity components. In particular, most users already
have access to PCs with modern graphics cards. For these users this direction
provides a zero-cost solution. Even if a graphics card has to be bought, the in-
stallation of such a card is trivial (plug and play). However, there are still a
number of challenges to be solved in order to enable scientists other than com-
puter graphics specialists to facilitate efficient usage of these resources within
their research area. The biggest challenge in order to solve a specific problem
using GPUs is reformulating the proposed algorithms and data structures using
computer graphics primitives (e.g. triangles, textures, vertices, fragments). Fur-
thermore, restrictions of the underlying streaming architecture have to be taken
into account, e.g. random access writes to memory is not supported and no cross
fragment data or persistent state is possible (e.g. all the internal registers are
flushed before a new fragment is processed). In this paper we show how MSA
based on ClustalW can benefit from this type of computing power.

The rest of this paper is organized as follows. Section 2 provides a brief descrip-
tion of progressive alignment using ClustalW. Section 3 describes the algorithm
for pairwise sequence distance computation. Important features of the GPU ar-
chitecture are described in Section 4. Section 5 presents our mapping of the
algorithm onto the GPU architecture. The performance is evaluated in Section
6. Section 7 concludes the paper.

2 Progressive Multiple Sequence Alignment

In this Section, we briefly describe the three stages involved in progressive align-
ment using ClustalW [3] (see Figure 1).

(c)(a) (b)

Fig. 1. The three stages of progressive multiple sequence alignment (a) distance matrix,
(b) guided tree, (c) progressive alignment along the tree
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(a) Distance matrix : A distance value between each pair of sequences is com-
puted using the Smith-Waterman algorithm. These values are stored in a
so-called distance matrix.

(b) Guided tree: This step uses the distance matrix obtained from the first step
and forms a guided-tree using the neighbor-joining method [11]. The leaves
of the tree contain the various sequences. The topology of the tree is totally
dependent upon the sequences that are taken, i.e. closely related sequences
are placed together and share a common branch in the guided-tree and di-
vergent sequences are widely spaced in the tree. The guided-tree is used to
find out closely related sequences or a group of sequences that are aligned
progressively in the last step to form the final MSAs.

(c) Progressive Alignment : First closely related sequences or group of sequences
are aligned and at the end most divergent sequences are aligned to get the
final MSAs.

Profiling of the three stages of ClustalW for different numbers of globin se-
quences reveals that more than 93% of the overall runtime is spent on the first
stage (see Table 1). Hence, we have decided to map only this stage onto a GPU.

Table 1. Profiling of the three stages of ClustalW using a different number of globin
sequences on a Pentium4 3GHz (based on the code from [7])

Number of Sequences Distance matrix Guided tree Progressive alignment
200 94.4% 0.03% 5.6%
400 93.4% 0.09% 6.5%
600 93.3% 0.20% 6.4%
800 94.0% 0.20% 5.8%
1000 93.6% 0.30% 6.1%

3 Pairwise Sequence Distance Computation

Given is a set of n sequences S = S1, . . . , Sn. For two sequences Si, Sj ∈ S, their
distance d(Si, Sj) is defined as follows:

d(Si, Sj) = 1 − nid(Si, Sj)
min{li, lj}

(1)

where nid(Si, Sj) denotes the number of exact matches in the optimal local
alignment of Si and Sj (with respect to the parameters α, β and sbt, which are
explained below) and li (lj) denotes the length of Si (Sj).

The optimal local alignment of two sequences can be computed using the
Smith-Waterman algorithm [1]. The algorithm compares two sequences by
computing a distance that represents the minimal cost of transforming one seg-
ment into another. Two elementary operations are used: substitution and inser-
tion/deletion (also called a gap operation). Through series of such elementary
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operations, any segments can be transformed into any other segment. The small-
est number of operations required to change one segment into another can be
taken into as the measure of the distance between the segments. Consider two
strings S1 and S2 of length l1 and l2. To identify common subsequences, the
Smith-Waterman algorithm computes the similarity H(i, j) of two sequences
ending at position i and j of the two sequences S1 and S2. The computation of
H(i, j), for 1 ≤ i ≤ l1, 1 ≤ j ≤ l2, is given by the following recurrences:

H(i, j) = max{0, E(i, j), F (i, j), H(i − 1, j − 1) + sbt(S1[i], S2[j])}
E(i, j) = max{H(i, j − 1) − α, E(i, j − 1) − β} (2)
F (i, j) = max{H(i − 1, j) − α, F (i − 1, j) − β}

where sbt is a character substitution cost table. Initialization of these values are
given by H(i, 0) = E(i, 0) = H(0, j) = F (0, j) = 0 for 0 ≤ i ≤ l1, 0 ≤ j ≤ l2.
Multiple gap costs are taken into account as follows: α is the cost of the first gap;
β is the cost of the following gaps. This type of gap cost is known as affine gap
penalty. Some applications also use a linear gap penalty, i.e. α = β. For linear
gap penalties the above recurrence relations can be simplified to:

H(i, j) = max{0, H(i, j − 1)−α,H(i− 1, j)−α, H(i− 1, j − 1)+ sbt(S1[i], S2[j])} (3)

Each cell of the matrix H is a similarity value. The two segments of S1 and S2
producing this value can be determined by a trace-back procedure. Example 1
illustrates this procedure for the two sequences ATCTCGTATGATG and GTCTATCAC.
The value nid(S1, S2) of the two sequences S1 and S2 can then be computed by
counting the number of exact character matches during the traceback procedure
of the Smith-Waterman algorithm. For instance the nid-value for the sequences
in Figure 2 is six. Unfortunately, this procedure is not very suitable for a parallel
implementation on streaming architectures such as GPUs. Therefore, we have
formulated a new recurrence relation for the nid-value computation that is more
suitable for the GPU implementation. It facilitates nid-calculation without the
computation of actual alignment. In the rest of this section, we first explain our
idea for linear gap penalties and then generalize it for affine gap penalties. Its
efficient implementation on a GPU will be described in Section 4.

Given are the two sequences S1 and S2, the linear gap penalty α and the
substitution table sbt. The computation of N(i, j) is given by the following re-
currence relations:

N(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if H(i, j) = 0
N(i − 1, j − 1) + m(i, j), if H(i, j) = H(i − 1, j − 1)

+ sbt(S1[i], S2[j])
N(i, j − 1), if H(i, j) = H(i, j − 1) − α
N(i − 1, j); if H(i, j) = H(i − 1, j) − α

(4)
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Fig. 2. Example of the Smith-Waterman algorithm to compute the local alignment be-
tween two DNA sequences ATCTCGTATGAT and GTCTATCAC. The matrix H(i, j) is shown
for the linear gap cost α = 1, and a substitution cost of +2 if the characters are identical
and −1 otherwise. From the highest score (+10 in the example), a traceback procedure
delivers the corresponding alignment, the two subsequences TCGTATGA and TCTATCA.

where

m(i, j) =
{

1, ifS1[i] = S2[j]
0; otherwise

The value nid(S1, S2) is then equal to N(imax, jmax) where (imax, jmax) are
the coordinates of the maximum in matrix H . For affine gap penalties the re-
currence relation for N(i, j) is extended as follows:

N(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if H(i, j) = 0
N(i − 1, j − 1) + m(i, j), if H(i, j) = H(i − 1, j − 1)

+ sbt(S1[i], S2[j])
N(i, j − NE(i, j)), if H(i, j) = E(i, j)
N(i − FE(i, j), j); if H(i, j) = F (i, j)

(5)

where

m(i, j) =
{

1, if S1[i] = S2[j]
0; otherwise

NE(i, j) =
{

1, if E(i, j) = H(i, j − 1) − α or j = 1
NE(i, j − 1) + 1; if E(i, j) = E(i, j − 1) − β

FE(i, j) =
{

1, if F (i, j) = H(i − 1, j) − α or i = 1
FE(i − 1, j) + 1; if F (i, j) = F (i − 1, j) − β
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4 GPU Architecture

The fast increasing power of the GPU and its streaming architecture opens up
a range of new possibilities for a variety of applications. With the enhanced
programmability of commodity GPUs, these chips are now capable of perform-
ing more than the specific graphics computations they were originally designed
for. Recent work on GPGPU (General-Purpose computation on GPUs) shows
the design and implementation of algorithms for non-graphics applications. Ex-
amples include scientific computing [12], image processing [13], and bioinfor-
matics [14, 15]. Currently, the peak performance of high-end GPUs such as the
GeForce 7900 GTX 512 is approximately ten times faster than that of compa-
rable CPUs. Further, the GPU performance has been increasing from two to
two-and-a-half times a year. This growth rate is faster than Moore’s law as it
applies to CPUs, which corresponds to about one-and-a-half times a year [16].
Consequently, GPUs will become an even more attractive alternative for high
performance computing in the near future.

Vertex
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Processor

vertices (3D)

vertices
(2D)

Frag-
ments

final/
temp
pixels

Frame
Buffer

Texture
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te
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Render-to-
texture

Vertex
Program
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Program

Fig. 3. Illustration of the GPU graphics pipeline

Computation on a GPU follows a fixed order of processing stages, called the
graphics pipeline (see Figure 3). The pipeline consists of three stages: vertex pro-
cessing, rasterization and fragment processing. The vertex processing stage trans-
forms three-dimensional vertex world coordinates into two-dimensional
vertex screen coordinates. The rasterizer then converts the geometric vertex
representation into an image fragment representation. Finally, the fragment pro-
cessor forms a color for each pixel by reading texels (texture pixels) from the
texture memory. Modern GPUs support programmability of the vertex and frag-
ment processor. Fragment programs for instance can be used to implement any
mathematical operation on one or more input vectors (textures or fragments) to
compute the color of a pixel.
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In order to meet the ever increasing performance requirements set by the
gaming industry, modern GPUs use two types of parallelism. Firstly, multiple
processors work on the vertex and fragment processing stage, i.e. they operate
on different vertices and fragments in parallel. For example, a typical mid-range
graphics card such as the nVidia GeForce 7800 GTX has 8 vertex processors
and 24 fragment processors. Secondly, operations on 4-dimensional vectors (the
four channels Red/Green/Blue/Alpha (RGBA)) are natively supported without
performance loss.

Several authors have described modern GPUs as streaming processors, e.g [17].
Streaming processors read an input stream, apply kernels (filters) to the stream
and write the results into an output stream. In case of several kernels, the output
stream of the leading kernel is the input stream for the following kernel. The
vast majority of general-purpose GPU applications use only fragment programs
for their computation. In this case textures are considered as input streams and
the texture buffers are output streams. Because fragment processors are SIMD
architectures, only one program can be loaded at a time. Applying several kernels
thus means to do several passes.

kk 1k 2

Fig. 4. Data dependency relationship in the Smith-Waterman DP matrix: each cell
(i, j) depends on its left neighbor (i, j − 1), upper neighbor (i − 1, j) and upper left
neighbor (i − 1, j − 1). Therefore all cells along anti-diagonal k can be computed in
parallel from the anti-diagonals k − 1 and k − 2.

5 Mapping onto the GPU Architecture

In this section we describe how to map our algorithm onto a GPU efficiently.
We take advantage of the fact that all elements in the same anti-diagonal of
the DP matrix can be computed independent of each other in parallel (see Fig-
ure 4). Thus, the basic idea is to compute the DP matrix in anti-diagonal order.
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diagonals in the DP matrix

The anti-diagonals are stored as textures in the texture memory. The fragment
program is then used to implement the arithmetic operations specified by the
recurrence relations in E.q. (2) and (5).

Assume we are aligning two sequences of length M and K with affine gap
penalties on a GPU. As a preprocessing step both sequences and the substitution
matrix are loaded into the texture memory. We are then computing the DP
matrix in M +K −1 rendering passes, instead of the M ×K steps required on a
sequential processor. In rendering pass k, 1 ≤ k ≤ M +K −1, the values H(i, j),
E(i, j), and F (i, j) for all i, j with 1 ≤ i ≤ M , 1 ≤ j ≤ K and k = i + j − 1
are computed by the fragment processors. The new anti-diagonal is stored in the
texture memory as a texture. The subsequent rendering pass then reads the two
previous anti-diagonals from this memory.

Since diagonal k depends on the diagonals k−1 and k−2, we store these three
diagonals as separate buffers. We are using a cyclic method to change the buffer
function as follows: Diagonals k − 1 and k − 2 are in the form of texture input
and diagonal k is the render target. In the subsequent iteration, k becomes k−1,
k −1 becomes k−2, and k −2 becomes k. This is further illustrated in Figure 5.
An arrow pointing towards the fragment program means that the buffer is used
as a texture. An arrow pointing from the fragment program to a buffer means
that the buffer is used as a render target.

Considering a set of n sequences. We first sort it according to the sequence
lengths. Because in MSA each sequence in a set has to be compared to every
other sequence, there are totally n× (n− 1)/2 pairwise comparisons. In order to
take full advantage of the inherently parallelism and high memory bandwidth of
GPUs, we pack the query and subject sequences into 2D textures, thus multiple
pairwise comparisons can be done at the same time.

In our GPU application the computation of all the items in E.q. (2) and (5)
is incorporated as follows: The value max{H(i, j), H(i − 1, j), H(i, j − 1)} and
nid(S1, S2) are calculated for each cell and stored in the A-channel of an RGBA-
color pixel in two render targets separately. In the first render target, the R-,
G-, and B-channels are used for the computation of H(i, j), E(i, j) and F (i, j)
(see Figure 6a). In the second target, R-, G-, and B-channels are used for the
computation of N(i, j), NE(i, j) and FE(i, j) respectively (see Figure 6b).
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Fig. 6. Using the RGBA channels of two-dimensional texture buffers for the computa-
tion of H , E, F , max, N , NE, FE and nid

render area

Pass k ... Pass M + K - 1

the  result  row

subject sequence texture
(maximum length: K)

Pass 1 ...
query sequence texture
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Fig. 7. The rendering process of one passes loop

Figure 7 illustrates the rendering process for one passes loop. Fragment pro-
cessors write computation results of each pass to the render targets. During each
pass, the dimension of the render area on the render targets will change accord-
ing to the current pass number, the maximum length of query sequences and the
maximum length of subject sequences. The final results (nid) will be found at
the bottom row of the render targets at the last pass.
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Table 2. Comparison of runtimes (in seconds) and speedups of ClustalW running on
a single Pentium4 3GHz to our GPU-ClustalW version running on a Pentium4 3GHz
with an NVIDIA GeForce 7800 GTX 512 for 200, 400, 600, 800, and 1000 input globin
protein sequences

Number of sequences 200 400 600
(average length) (412) (408) (462)

ClustalW Overall 194.9 891.9 1818.1
(P4, 3GHz) Pairalign 183.8 (94.4%) 833.1 (93.4%) 1697 (93.3%)

Guided Tree 0.07 (0.03%) 0.8 (0.09%) 4.1 (0.2%)
Malign 11.0 (5.6%) 58.0 (6.5%) 117.0 (6.4%)

GPU-ClustalW Overall 27.2 134.1 272.4
(GeForce 7800) Pairalign 16.1 (59.2%) 75.3 (56.2%) 151.3 (55.5%)

Guided Tree 0.07 (0.3%) 0.8 (0.6%) 4.1 (1.5%)
Malign 11.0 (40.4%) 58.0 (43.3%) 117.0 (43%)

Speedups Overall 7.2 6.7 6.7
Pairalign 11.4 11.1 11.2

Number of sequences 800 1000
(average length) (454) (446)

ClustalW Overall 3157.6 4711.6
(P4, 3GHz) Pairalign 2966.6 (94%) 4409.6 (93.6%)

Guided Tree 8.0 (0.2%) 16.0 (0.3%)
Malign 183.0 (5.8%) 286.0 (6.1%)

GPU-ClustalW Overall 445.2 680.7
(GeForce 7800) Pairalign 254.2 (57.1%) 378.7 (55.6%)

Guided Tree 8.0 (1.8%) 16.0 (2.4%)
Malign 183.0 (41.1%) 286.0 (42%)

Speedups Overall 7.1 6.9
Pairalign 11.7 11.6

6 Performance Evaluation

We have implemented the proposed algorithm using the high-level GPU pro-
gramming language GLSL (OpenGL Shading Language) [18] and evaluated it
on the following graphics card:

- nVidia GeForce 7800 GTX : 627 MHz engine clock speed, 1.83 GHz memory
clock speed, 8 vertex processors, 24 fragment processors, 512 MB memory.

Tests have been conducted with this card installed in a PC with an Intel
Pentium4 3.0GHz, 1GB RAM running Windows XP.

A set of performance evaluation tests have been conducted using different
numbers of globin protein sequences, to evaluate the processing time of the GPU
implementation versus that of the original ClustalW pairwise alignment stage on
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the PC. The ClustalW application is benchmarked on an Intel Pentium4 3GHz
processor with 1GB RAM. We have used the ClustalW code from Li ([7], avail-
able online at http://web.bii.a-star.edu.sg/ kuobin/clustalw-mpi/index.html) for
our evaluation. The results for this are shown in Table 2. As can be seen, our
GPU implementation achieves speedups of almost ten compared to first stage of
ClustalW and six compared to the overall runtime.

7 Conclusion and Future Work

In this paper we have demonstrated that the streaming architecture of GPUs
can be efficiently used for MSA. To derive an efficient mapping onto this type of
architecture, we have reformulated the computationally expensive first stage of
the ClustalW algorithm in terms of computer graphics primitives. Our design is
based on a new recurrence relation for calculating the number of exact matches
in the optimal local alignment of two sequences. The evaluation of our imple-
mentation on a high-end graphics card shows a speedup of up to ten compared
to a Pentium IV 3GHz. At least the same number of PCs connected by a fast
switch is required to achieve a similar speedup using the ClustalW-MPI code
from Li [7]. A comparison of these two parallelization approaches shows that
graphics hardware acceleration is superior in terms of price/performance. Our
solution is also easily scalable to several GPUs (within the same PC or across a
network) by simply partitioning the individual pairwise sequence comparisons.

Table 2 also shows that the progressive alignment stage of ClustalW (malign)
would dominate the runtime of ClustalW if the first stage would be accelerated
by a factor of more than 16. The malign stage consists of computing several
profile-profile alignments based on dynamic programming. It will be interesting
to investigate how this can be efficiently mapped onto graphics hardware.

The first stage of several other MSA tools such as T-Coffee [6] and MUSCLE
[5] is also based on the computation of pairwise distances. Hence, these tools
could see a similar speedup form the accelerator presented in this paper.
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Abstract. Researchers use NFS (Number Field Sieve) method with Lanczos 
algorithm to analyze big-sized RSA keys. NFS method includes the integer 
factorization process and nullspace computation of huge sparse matrices. 
Parallel processing is indispensible since sequential computation requires weeks 
(even months) of CPU time with supercomputers even for 150-digit RSA keys. 
This paper presents details of improved block Lanczos algorithm based on 
previous implementation[4,10]. It includes a new load balancing scheme by 
partitioning the matrix such that the numbers of nonzero components in the 
submatrices become equal. Experimentally, a speedup up to 6 and the 
maximum of efficiency of 0.74 have been achieved using an 8-node cluster with 
Myrinet interconnection.  

Keywords: parallel/cluster computing, cryptology, RSA key, load balancing, 
sparse matrix. 

1   Introduction  

Eigenvalue problems often used in mechanical structure engineering and quantum 
mechanical engineering are very computation intensive. Sequential computing is 
never suitable since it takes days even weeks of running time. Lanczos algorithm [3,7] 
to solve eigenproblems xAx λ= is widely used when A is a large, sparse, and 
symmetric matrix. Parallelization of the algorithm has been drawn special attention of 
many people. Especially, researchers in cryptology apply Lanczos algorithm to 
factorize long integers of RSA keys [15,16] often requiring thousands of MIPS year 
to compute by known algorithms. For example, a 140-digit RSA key 
requires  4,671,181 x 4,704,451 B matrix, which demands 585Mbytes (= 4,671,181 * 
32.86 * 4bytes) if there are 32.86 nonzeros per column [1]. Thus, only a good data 
structure can store and keep track of nonzero elements, instead of storing the two 
dimensional matrix as it is. In addition, it was reported that the computation took five 
days of CPU time on Cray C916 with 100 CPUs and 810 Mbyte main memory [1]. 
Thus, parallel computing is necessary to reduce the computation time and to 
accommodate huge matrices in the main memory.  
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This paper presents a parallel block Lanczos algorithm over GF(2) for the 
factorization by NFS(number field sieve) method [1]. The algorithm is to achieve 
efficient parallelization and load balanced data partitioning. Naive partitioning by 
allocating an equal number of rows/columns of the matrices to each processor results 
in uneven work load among processors, due to uneven allocation of nonzeros in the 
sparse matrix. By rearranging rows, we distribute even work load to all processors, 
and obtain improved performance. In addition, we develop a parallel program with 
proper group communication scheduling for minimizing communication overhead on 
distributed- memory parallel machine like a cluster computer.  

2    Factorization of a Large Integer by NFS Algorithm  

Recent RSA challenge [2,16-18] shows how difficult and complex the factoring 
problems are, such as a 120-digit key solved in 1993 and a  193-digit key in 2005. 
The analytical CPU times to solve the keys are impractically long even with today’s 
very high performance computer. Many of the successful results are know to adopt 
NFS algorithm [8,9].  

To factorize a number N, NFS algorithm finds ( YX , ) integer pairs satisfying the 
following relationship: 

         )(mod12 NX ≡ , )(mod12 NY ≡ , and  1),gcd( =NXY                   (1) 

where gcd represents the greatest common divisor. The reason of finding such ( YX , ) 
pairs comes from the fact that ),gcd( NYX −  is a factor of N  [10]. In finding all 
pairs of X  and ,Y  the algorithm starts to find integer pairs of ( ba, ) that satisfies 

)(mod Nba ≡ , where a  and b  are either squares or a square times of a smooth 
number. A number M is called smooth with respect to a bound δ  if its prime factors 
are under the bound δ . 

From the set S  consisting of ,1),,( kiba ii ≤≤  we need to find nonempty subsets 
S’ such that for some integer K 

2

'),('),(

Kba
SbaSba

=ΠΠ
∈∈

 

Then, the product of the a ’s and b ’s can be written in quadratic form like (1)  
above.  

Let B  be a matrix of size 1n  x 2n  where the elements are equal to the exponent 
modulo 2 of the prime factors. 1n  is the number of prime factors of a  and b , and 2n  
is the total number of pairs found during the sieving phase.  

Now, observe that finding pairs ( YX , ) to satisfy (1) is equivalent to choosing a set 
of columns from the matrix B . Whether or not selecting a column is represented by a 
vector of size 2n  in which 1 is marked at the corresponding component if the column 
is selected, 0 otherwise. Thus, the subsets S’ are obtained by finding the nullvectors x 
satisfying the relation )2(mod0≡Bx . 
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3   Lanczos Algorithm of Finding Nullspace of 0=Bx  

NFS finds solutions of the equation 0=Bx  where B  and x  are an 21 nn ×  matrix 
and an 12 ×n  vector, respectively. In the factoring application, many elements of B 
are zeros, thus B is a sparse matrix. Numerous methods are devised to solve it 
including Gaussian elimination. Conjugate Gradient(CG) and Lanczos algorithm are 
known suitable for such a sparse B matrix [3,5]. Since Lanczos algorithm requires a 
symmetric matrix, a new symmetric matrix BBA T=  is generated. All the solutions 
of 0=Bx  also satisfy the relation of 0=Ax  in this case. Extended version of the 
algorithm is called block Lanczos algorithm, which finds N vectors at a time. 
Practically, N is chosen as the word size of a computer used. Detailed derivation and 
theoretical background can be found in [3,10]. 

The block Lanczos algorithm [4,10] has been developed for the factorization. Our 
implementation was based on the algorithm in [4], shown in Figure 1. Especially, for 
the solution of NFS, the number space is limited to }1,0{2 =Z  of GF(2), thus, the 
matrices A and B consist of 0s and 1s, and numerical computation can be converted to 
logical operations.  

Time complexity of the algorithm is introduced now.  Let d  be the average count 
of nonzeros per column in C. We assume that 21 nnn ≈=  for simplicity. Since we 
are dealing with matrices of big columns and rows, it is not unusual that  Nnn >>21,   
where N  is the word size of the computer for parallel bitwise computation to be 
explained later. Let m  denote the number of iterations of the block Lanczos 
algorithm, which is approximately Nnm /=  [10]. The overall time complexity is 
obtained as [10] 

                          ))(())(( nNmOndmOT
LanczosBlock

+≈  

Since Nn >>  and Nnm /= , the complexity of the algorithm is  

                                  )()( 2
2

nO
N

dn
OT osBlockLancz += .                                              (2) 

4   Parallel Block Lanczos Algorithm 

Parallel block Lanczos algorithm is established by including bit-parallel operations of 
the matrix computation, data partitioning with proper communication, and work load 
balancing to achieve greatest utilization of the computing resources. 

4.1   Bit-Parallel Operations by Logical Operations 

If the values in the matrix computation are restricted to {0,1} under GF(2), the matrix 
computation can be done by simple logical operations such as AND and 
XOR(exclusive-or). Computation under GF(2) of multiplication and addition/ 
subtraction can be performed by logical operations AND(&) and XOR(∧ ). Multiple 
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logical values can be computed simultaneously by packing them into one word and 
such bitwise operations speeds up by N times with better use of the main memory 
assuming an N -bit vector is stored in one integer word. 

The matrix of E = CD can be found by computing their inner products. In the 
parallel Lanczos algorithm, outer products instead of inner products are computed 
and added to the corresponding E-components, until the complete results of the 
multiplication are found as shown below. 

=

⋅=
m

k
kk dcE

1

 

where kc  and kd  represent vectors composed of the k th column of C and the k th 
row of D, respectively. While the cost is the same as the inner product method, the 
computation of outer product in each stage can be done in parallel as summarized in 
Figure 2 [4]. 

4.2   Data Partitioning and Interprocessor Communication 

Parallel algorithm shown in Figure 1 has been developed that consists of a few types 
of parallelization with associated group communication, depending on the matrix and 
vector involved as described below. After the partitioning and allocation of matrix to 
processors, data residing in separate processors are frequently needed. The broadcast, 
reduce, scatter, and so on in the algorithm are functions for the group communication. 

Input: partB : 21 )/( nnprocsn × ,Y : Nn ×2  

Output: X and mV  

 Initialize:  

012 == −
×

−
invNNinv

WW ; 0)()( 1
2

2 == −
×

− partpart
Nn VV  

0)/1(
1 =×
−

Nnprocsn
partBV ; N

NNT
ISS =

×
−1 ; 0

)/2(
=

×Nnprocsn

partX
Broadcast(Y) 

)()(0 YBBV part
T

partsome ∗∗= ; 

0V =Reduce( someV0 ); partV0 =Scatter( 0V ) 

Broadcast( 0V ) 

00 )( VBBV partpart ∗=  

part
T

partsome
NN BVBVCond )()()( 000 ∗=×  

)( 0Cond =Reduce( someCond )( 0 ) 

0=i  

While 0≠iCond  do 
if(node==0) 

],[ T
i

inv
i SSW =generateMatrixWandS( iNSSCond T

ii ,,, 1− ) 

Fig. 1. The pseudo code of parallel Block Lanczos algorithm 
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Reduce(
someiCond )( ) 

1+= ii  

if(node==0) im VV =  

X =Gather( partX ) 

Return X  and mV  

Fig. 1. (Continued) 

As the first and most fundamental way of parallelization, matrix B  is divided into 
P 21 )/( nPn ×  submatrices (each is denoted by partB ) and allocated to P processors. 

YBpart  is computed in each processor with a common (unpartitioned) matrix Y, 
where Y is supplied to every processor by a broadcast.  Figures 3 & 4 depict the 
details for such matrix multiplication, where only two processors are used for 
simplicity. Another type of parallelization is devised for the computation of 

BYBT ⋅ . Since partB  is stored in each processor, the partial computation of 
BYBT ⋅ can be done in each processor. Now matching part of BY in each processor 

is used and the partial product is evaluated. Then, since each processor retains an 
incomplete product, the complete matrix is obtained by combining them together 
using the collective communication Reduce.  



380 W. Hwang and D. Kim 

 

Description of other types of parallelization [6] is omitted here. 

 Input: C and D of sizes qp× and Nq× , respectively 
 Output: CDE = where E is a Np× vector. 
 Initialize as E = 0. 
 for pi ,,1=  do 
    for qk ,,1=  do 
         if 1=ikc then  
              kik dee ∧=  

Fig. 2. Parallel matrix multiplication by outer product computation  

4.3   Load Balancing Strategy 

Since the outer product computation in CDE =  omits XOR operation if the 
corresponding component of C is zero as shown in Figure 2, the actual work load in 
the sparse matrix multiplication  relies on the number of nonzero elements in the 
matrix. Thus, naive partitioning that allocates even rows/columns of B  to individual 
processors does not guarantee even distribution of work load. In our algorithm, an 
equal number of rows to each node is assigned, and then rows are later interchanged 
among nodes in such a way that each partition contains approximately the same 
number of nonzeros. The swapping does not alter the nullspace of 0=Bx .  Figure 5 
illustrates the scheme where an 8X6 matrix B and a 6X2 matrixY are employed. Only 
nonzero components of B  are shown, moved to the left of the corresponding rows for 
illustration. Straightforward method (called static partitioning) of B  shown in Figure 
5a, which only divides the matrix with an equal number of contiguous rows (four 
rows in this case), leaves 18 and 13 nonzeros to Node1 and Node 2, respectively. 
However, load balanced partitioning shown in Figure 5b allows 15 and 16 nonzero 
elements, thus, the computational load of two nodes is nearly equal. In the 
implementation, for both simplicity and load balancing in the remaining computation, 
an equal number of rows to each node is to be assigned at first. Then, rows are later 
interchanged among them as depicted in Figure 6. The swapping does not alter the 
nullspace of 0=Bx . 

Fig. 3. Broadcast of matrix/vector 
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Fig. 4. Parallel computation of Type-B 

We know there remains more to be done for perfect balancing. B is known at the 
start of the execution and never changes, but other matrices and vectors in the 
algorithm change while the computation is in progress; thus, it is not possible to 
partition with even load (nonzeros) in advance. Partitioning them equally during the 
iterations seems too complicated, thus, only B is equally partitioned.  

4.4   Time Complexity of the Algorithm  

Let α , β , and γ be the setup time, the inverse of bandwidth of the network, and a 
unit computation cost of one REDUCTION operation, respectively. The complexities 
of various group (collective) communications involving words under P processors 
are modeled respectively as  

βα n
P

P
PnPTscatter

1
)log(),(

−+=  

βα n
P

P
PnPTgather

1
)log(),(

−+=  

)()log(),( βα nPnPTbroadcast +=  

)()log(),( γβα nlPnPTreduce ++=  
Overall communication cost per iteration of the algorithm in Figure 1 is summed  

to  
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(a) Straightforward/naive partitioning 

 (b) Partition with even load distribution 

Fig. 5. Two data partitioning strategies 

Fig. 6. New partitioning that takes into account both the number of rows and nonzero counts 

Under the assumption of perfectly load balanced condition, pure computation cost 
can be estimated by dividing the sequential complexity by P. Thus, the execution time 
is found as [4,5]  

))(())((
P

nN
mO

P

nd
mOT compLanczos +=− . 

The total running time is estimated as  

commLanczoscompLanczoszosParrelLanc TTT −− += = 

))(log())(())(( mnnPO
P

nN
mO

P

nd
mO γβα ++++ . 
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Applying the relationship of Mnm /=  results in the total complexity as follows:  

          zosParrelLancT = )log()()(
2222

N

nnn
PO

P

n
O

NP

dn
O

γβα ++++          (3) 

Due to the term log P, the speedup may not improve linearly with the increase of 
parallel computing processors.  

5   Experimental Results with Discussion  

The experiments have been performed on two 8-node clusters; one with Gigabit 
ethernet interconnection, and another with Myrinet. Processors are 1.6GHz Intel 
Pentium 4s with 256Mbyte main memory for Gigabit cluster. Myrinet cluster consists 
of 1.83GHz AMD Athlon XP 2500+ CPUs with 1Gbyte memory. We install MPICH 
1.2.6.13 and MPICH_gm 1.2.5.12 [13,14].  

Input matrices Bs are synthetically generated by random placement of 1s with the 
restriction of d nonzeros per column. “t400k” is the largest matrix to fit to the main 
memory of a node in the cluster. Matrices have a row slightly larger than the column 
to avoid singularity like 100000 x 100100, 200000 x 200100, 400000 x 400100 for 
t100k, t200k, and t400k, respectively.  

Previous results [4] were obtained on a shared memory parallel computer of SGI 
Origin 3800 with smaller inputs, thus, they can not be directly compared with ours. 
We instead compare our results of the load balanced scheme to those of 
straightforward partitioning algorithm.  

Three sets of inputs are applied to the parallel computation with both static 
partitioning and load balanced allocation. The load balanced method always delivers 
better results with at least 6.30% up to 14.50% reduction in the execution time as shown 
in Table 1. The percentage values do not show any tendency as the matrix size grows. 
One of the reasons could be the fact that partial products computed by individual nodes 
during the matrix-matrix and matrix-vector computation have uneven number of 0s and 
1s, thus, individual processors may not consume the same amount of computing time. In 
other words, only B matrix is partitioned with equal work load in the beginning, and all 
other matrices used in the algorithm are partitioned to have same number of 
rows/columns without the knowledge of nonzero count.  

Table 1. Comparison of CPU times of static partition and load-balanced partition for t200k on 
the cluster with Myrinet (unit: hour) 

 No. of nodes 2 4 8 
Static partition 3.09 1.84 1.10 

Balanced partition 2.90 1.61 0.99 
enhancement(%) 6.30 14.50 11.03 
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Fig. 7. Speedup for t400k matrix 

 

Fig. 8. Efficiency of the balanced method 

The performance is surely affected by network speed, thus, faster networked 
Myrinet cluster always gives better results than Gigabit ethernet as observed in  
Figure 7. They also tell that the speedup increases as the increase of processors. 
However, the efficiency degrades as described below.  

A big matrix of 800,000 x 800,100 (t800k, d =35) is employed on a larger cluster 
in KISTI supercomputer center [12] to observe the performance in wide range of 
parallel execution. Cluster in KISTI consists of 2.8GHz Intel Xeon DP processors 
with 3GB main memory interconnected with Myrinet2000. From Figure 8 we can 
observe 2.37% to 8.01% improvement in the load balanced method. Although the 
speedup grows by including more processors, the efficiency degrades, because the 
communication overhead grows faster than the rate of computing time reduction. 
Thus, if we want to achieve highest efficiency (rather than speedup), either the 
network should be sufficiently fast, or only a limited number of processors must be 
used to avoid the performance loss due to the increase in communication overhead.  
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6   Conclusions  

For the factorization of recent RSA keys of over 150 decimal digits with Number 
Field Sieve, Lanczos algorithm is used. To reduce the computing time and overcome 
the limit of main memory capacity of a single processor, parallel computation is 
necessary. This paper presents an efficient method to maximize the performance of 
parallel Lanczos computation by allocating even work load to every processor taking 
into account nonzero counts of the matrix B, and by properly arranging group 
communication among processors to reduce the communication overhead. Research 
of further improvement of the algorithm on highly parallel machines is under 
progress.  
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Abstract. Support graph preconditioning is a relatively new technique
that has gained attention in recent years. Unlike incomplete factorization-
based preconditioning, this is a robust technique whose performance is
not affected significantly by domain characteristics such as anisotropy
and inhomogeneity. A major limitation of this technique is that it is appli-
cable to symmetric diagonally dominant M-matrices only. In this paper,
we outline an extension of the technique to symmetric positive definite
matrices arising from finite element discretization of elliptic problems.
An added advantage of our approach is the inherent parallelism that can
be exploited to develop efficient parallel preconditioners. Our method
allows trade-off between the preconditioner’s parallelism and the rate of
convergence of the iterative solver. In contrast, efforts to parallelize in-
complete factorization-based preconditioners often result in much slower
convergence. Numerical results show that our preconditioner achieves
good parallel speedup on distributed memory multiprocessors such as
Beowulf workstation clusters.

Keywords: Iterative methods, preconditioning, support graphs, parallel
computing.

1 Introduction

Conjugate gradient (CG) method is a widely used iterative method for solving
large sparse linear systems of the form Ax = b, where A is a symmetric positive
definite (SPD) matrix. The rate of convergence of the algorithm is proportional
to the square root of the spectral condition number of A, denoted by κ(A). To
increase the rate of convergence, one can use the preconditioned CG method
(PCG) in which a preconditioner M is used to approximate A. PCG converges
rapidly when κ(M−1A) is small (see, e.g., [10] for details). The main challenge is
to construct a preconditioner such that the linear system My = d can be solved
efficiently in every iteration and also the condition number of the preconditioned
system is reduced considerably.

Support graph preconditioners were first proposed by Vaidya [11] for symmet-
ric, positive semidefinite, diagonally dominant M-matrices. The preconditioner
M is constructed by dropping off-diagonal entries from the original matrix A.
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Since M is factored exactly, it is important to drop entries that lower the fill-in
in the factors without compromising the preconditioner’s quality. An effective
preconditioner must make a trade-off between the number of entries dropped
and the condition number of the resulting preconditioned system. Vaidya’s ap-
proach is limited to symmetric, diagonally dominant matrices with non-positive
off-diagonals. In addition, the preconditioners are not designed for paralleliza-
tion.

Variants of this approach include extensions to a larger class of matrices:
maximum weight bases preconditioner has been proposed for symmetric di-
agonally dominant matrices [2]; extensions have been proposed recently for
simple problem instances from finite element method [3]. A compilation of
algebraic tools and various results on support graph preconditioners can be
found in [8, 9, 1]. Numerical experiments in [4, 5] show that for a model two-
dimensional Poisson problem, support graph preconditioners are often supe-
rior to the incomplete Cholesky factorization preconditioners. In particular,
the former require O(n1.2) work whereas the latter require O(n1.25) work. Fur-
thermore, support graph preconditioners appear to be robust in the presence
of varying boundary conditions and domain characteristics such as anisotropy
and inhomogeneity. At present, however, numerical results for support graph
preconditioners are limited to regular grids because of the limitation imposed
on the matrix type.

Parallelizable variants of support graph preconditioners have also been pro-
posed [8, 9] in which virtual nodes and edges are added to the original system
to create a very sparse, parallelizable preconditioner for an expanded system.
The increased system size is a major drawback of this approach. Furthermore,
condition number bounds are available only for matrices derived from regular
grid discretization with constant coefficients.

Our work is an ongoing effort to extend support graph preconditioners to
matrices arising in the finite element method. Our approach uses a coordinate
transformation at the element level to approximate the coefficient matrix by a
symmetric diagonally dominant M-matrix. The quality of this approximation de-
pends only on the mesh topology and not on the problem size. A support graph
preconditioner is constructed for this approximation, and used as a precondi-
tioner for the original coefficient matrix. We also propose a novel preconditioner
which can be parallelized efficiently without compromising other desirable fea-
tures such as robustness and effectiveness on anisotropic and inhomogeneous
problems.

The rest of the paper is organized as follows: Sect. 2 outlines the technique
to extend support graph preconditioners to the finite element method; Sect. 3
describes the proposed domain partitioned support graph (DPSG) precondi-
tioner and its parallel implementation; Sect. 4 outlines strategies for anisotropic
and inhomogeneous domains; Sect. 5 presents results of numerical experiments
to highlight the characteristics of the parallel preconditioner; Sect. 6 concludes
this paper.
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2 Support Graph Preconditioners for Finite Element
Matrices

In this section, we outline a technique to convert finite element matrices to sym-
metric diagonally dominant M-matrices that can be preconditioned via support
graphs. For the sake of illustration, we consider the two-dimensional Poisson
problem. It should be noted, however, that the technique is applicable to gen-
eral three-dimensional elliptic problems.

Consider the model Poisson problem on a two-dimensional domain Ω with
Dirichlet boundary conditions on the boundary Γ :

− � · �u = f(x) in Ω , u(x) = g on Γ . (1)

A standard Galerkin finite element discretization scheme can be used with a
triangulation T to obtain the linear system

Au = b , (2)

which is solved for u. A piecewise linear approximation of the solution on element
e is given as

ue = φe · ue = ue
1φ

e
1 + ue

2φ
e
2 + ue

3φ
e
3 .

The global stiffness matrix A and the load vector b are assembled, respectively,
from element stiffness matrices Ke and element load vectors be, as shown below:

A =
∑
e∈T

Ke , b =
∑
e∈T

be ,

where Ke is a 3 × 3 matrix given by Ke(i, j) =
∫

e
�φe

i · �φe
jdx and be(i) =∫

e
fφe

idx.
It is easy to show that A is SPD but not diagonally dominant, which prevents

construction of a support graph preconditioner. Next, we describe a transforma-
tion that converts A into a symmetric diagonally dominant M-matrix. Consider
the element gradient matrix Be:

Be =
[
φe

1,x φe
2,x φe

3,x

φe
1,y φe

2,y φe
3,y

]
, (3)

where φe
j,x and φe

j,y denote the partial derivatives along x and y, respectively.
The partial derivative along two adjacent edges of an element can be expressed
as: [

φe
j,τ

φe
j,η

]
=

[
xτ yτ

xη yη

] [
φe

j,x

φe
j,y

]
= Ge

[
φe

j,x

φe
j,y

]
,

where τ and η denote the edges. The element gradient matrix along (τ, η), de-
noted by B′

e, is given below:

B′
e = GeBe =

[
φe

1,τ φe
2,τ φe

3,τ

φe
1,η φe

2,η φe
3,η

]
=

[
l12 0
0 l13

]−1 [−1 1 0
−1 0 1

]
,
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where lij denotes the length of the edge (i, j). Thus,

A =
∑
e∈T

BT
e ΔeBe =

∑
e∈T

B′T
e G−T

e ΔeG
−1
e B′

e ,

where Δe is the area of element e. Furthermore, A can be approximated by the
following matrix

A′ =
∑
e∈T

B′T
e ΔeB

′
e ,

which is a symmetric diagonally dominant M-matrix.
It can be shown that the condition number of A′−1A is bounded:

κ(A′−1A) ≤ max
e∈T

κ(GT
e Ge) = max

e∈T

1 + | cos(θe)|
1 − | cos(θe)|

,

where θe is the angle between the edges along τ and η in element e. This indicates
that the quality of the approximation can be improved by selecting pairs of
edges for which cos(θe) is as small as possible. In good quality meshes, usually
π/8 ≤ θe ≤ 7π/8 (see, e.g., [12]), which implies that κ(GT

e Ge) ≤ 26. In practice,
it is observed that π/4 ≤ θe ≤ 3π/4 and κ(GT

e Ge) ≤ 6. Our experiments shown
in Table 1 have confirmed that the quality of the preconditioner A′ is independent
of the mesh width.

Table 1. The number of iterations of PCG using preconditioner A′ for the Poisson
problem on different meshes (n denotes the number of unknowns, Iter denotes the
number of iterations)

n 229 874 3381 13440 53454 212854

Iter 9 9 10 10 10 11

Support graph preconditioners can be constructed for A′ and used as pre-
conditioners for A. Now we introduce some concepts for support graph. Let
A be an n × n symmetric M-matrix. The graph of A is the weighted undi-
rected graph GA = (VA, EA) defined on a vertex set VA = {1, 2, . . . , n} with
edges EA = {(i, j) : i �= j, Aij �= 0} and edge weights wij = |Aij |. Suppose
GM = (VA, EM ) is a graph defined on VA whose edges are a subset of EA. The
support path of an edge e ∈ GA is a path p ∈ GM whose end nodes are the end
nodes of e. GM is a support graph of GA if there exists a support path for every
edge e ∈ GA. For a support path p, the support path weight wp is defined as the
weight of the edge e which is supported by p. For an edge e ∈ GA, edge dilation
δe is the number of edges in its support path. The dilation δ of GA is the maxi-
mum edge dilation over all edges in GA. For an edge e ∈ GM , edge congestion ce

is the number of support paths through e. In weighted graphs, ce is the sum of
weights of the support paths through e divided by we. The congestion c of GM

is the maximum congestion over all edges in GM .
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Lemma 1 (Congestion-Dilation Lemma). Given two symmetric M-matrices
A and M such that GM is a support graph of GA,

κ(M−1A) ≤ δ · c . (4)

For finite element matrices, there are two sources of approximations – the first
approximation involves transformation of A to a symmetric M-matrix A′ and the
second approximation involves preconditioning A′ by the support graph matrix
M . As a result,

κ(M−1A) ≤ κ(M−1A′) · κ(A′−1A) ≤ (δ · c)max
e∈T

[
1 + | cos(θe)|
1 − | cos(θe)|

]
.

3 DPSG: Domain Partitioned Support Graphs

The graph of the matrix arising from finite element method is the same as the
mesh used to discretize the domain. The edges in the support graph must be
a subset of the mesh edges. To construct an effective and parallelizable pre-
conditioner, we divide the domain into subdomains of nearly equal size. Each
triangular element belongs to a subdomain. In contrast, nodes and edges may
be in the interior of a subdomain or at the interface between two adjacent sub-
domains. All the interface edges are included in the support graph. A maximum
weight spanning forest is generated within each subdomain to identify the in-
terior edges that should be included in the support graph (see [6] for efficient
spanning tree algorithms). The root nodes of these spanning components must be
interface nodes or Dirichlet boundary nodes. Figure 1 illustrates the scheme for
a two-dimensional square domain. The requirement to include all interface edges
may force selection of these edges during transformation of the corresponding
element gradient matrices; however, this does not appear to degrade the quality
of the preconditioner.

To estimate the quality of the preconditioner for the two-dimensional unit
square Poisson problem, we assume that the domain is partitioned into k × k
subdomains, each containing approximately n/k2 nodes distributed uniformly
within the subdomain. Note that a support path for any interior edge in a
subdomain can be constructed using the spanning forest edges and the boundary
edges of that subdomain itself. It is easy to see that dilation is O(

√
n/k). Taking

planarity into consideration, it can be shown that congestion is O(
√

n/k) as well.
Using Lemma 1 we obtain the bound κ(M−1A′) = O(n/k2). Table 2 indicates
that the asymptotic number of iterations required by PCG remains unchanged
when the mesh is refined to quadruple the number of nodes as long as the number
of subdomains is quadrupled as well.

Reordering of nodes is necessary to reduce the fill-in during sparse Cholesky
factorization of the preconditioner M . A minimum degree ordering guarantees
zero fill-in when eliminating interior nodes since they are part of spanning trees.
The interface nodes common to exactly two subdomains can be eliminated next,
with fill-in proportional to the number of interface nodes. The remaining O(k2)
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Fig. 1. A domain partitioned support graph constructed using 16 subdomains (support
graphedges are shown in bold)

Table 2. Number of iterations of PCG for DPSG (n: number of unknowns, k × k:
number of subdomains, Iter: number of iterations)

n k × k Iter

874 4 × 4 68
3381 8 × 8 103
13440 16 × 16 117
53454 32 × 32 123
212854 64 × 64 128

interface nodes form a planar graph with a topology similar to the original mesh.
Algorithms such as nested dissection and reverse CutHill-McKee [7] can be used
to order these nodes to minimize the factorization cost. It can be verified that
the cost to eliminate interior nodes is O(n) and the cost to eliminate interface
nodes between two subdomains is O(

√
nk). The remaining O(k2) interface nodes

require O(k3) operations when nested dissection is used. Thus, the overall cost
of factorization is O(n+

√
nk+k3). The additional memory required is O(

√
nk+

k2 log k).
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The cost of each iteration of the PCG algorithm is O(nnz(A)+nnz(R)) where
R is the Cholesky factor of M . Since the number of iterations is proportional
to

√
κ(M−1A), the cost of the iterative solver is O((n +

√
nk + k2 log k)

√
n/k),

which simplifies to O(n1.5/k + n +
√

nk log k). On a uniprocessor, k should be
chosen to minimize the overal computational time and memory. For example, if
we take k = n3/8, then both the iterative cost and factorization cost are O(n9/8).

3.1 Parallel Formulation

Parallelism can be exploited in several ways due to the partitioning imposed by
DPSG preconditioner. For the two-dimensional Poisson problem, we assume a
virtual two-dimensional grid of

√
P ×

√
P processors where each processor owns

a contiguous region of k/
√

P × k/
√

P subdomains. Processors can compute the
maximum weight spanning forest for their subdomains concurrently, and com-
plete the first phase of factorization involving elimination of interior nodes inde-
pendently. Next, they cooperate with neighboring processors that own adjacent
regions to eliminate interface nodes that are shared by exactly two processors.
Elimination of the remaining nodes that are shared by more than two processors
can also be parallelized; however, the gains are visible only when the number of
processors is large.

There are three types of arithmetic operations in the CG algorithm: matrix-
vector multiplication, vector inner products, and vector updates. These opera-
tions can be parallelized at the subdomain level with minimal communication
overhead. The preconditioning step in PCG involves triangular solves with the
factors of M which can be a bottleneck for parallelization. When using the DPSG
preconditioner, we exploit the concurrency available in the factorization phase
to parallelize the triangular solves. The lower triangular solve proceeds in three
steps: the first step is a fully parallelizable step involving interior nodes only; the
second step involves interface nodes that are shared by two processors only; the
third step requires a global triangular solve involving the remaining nodes and
is the least parallelizable. The steps are reversed for the upper triangular solve.
Since the amount of work in the first two steps is considerably larger for large
problems, reasonable speedup can be expected in the preconditioning step.

4 Preconditioning Variable Coefficients Problems

The preconditioning approach described earlier can be applied to a wider class
of elliptic problems. Consider the d-dimensional problem

− � · (a(x) � u) = f(x) in Ω , u(x) = g on Γ . (5)

where a(x) is a d × d symmetric positive definite matrix that represents domain
characteristics at the point x. Appropriate choices of a(x) can be used to model
a wide variety of domain properties including anisotropy and inhomogeneity. The
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coefficient matrix arising from a piecewise linear approximation on a triangular
mesh is given as

A =
∑
e∈T

BT
e ΔeDeBe ,

where De is obtained by evaluating a(x) inside element e. Using the transfor-
mation described in Section 2, we obtain an alternate expression for A

A =
∑
e∈T

B′T
e G−T

e ΔeDeG
−1
e B′

e ,

which is used to derive the following approximation of A

A′ =
∑
e∈T

B′T
e ΔeD

′
eB

′
e ,

where D′
e is a positive diagonal matrix that is chosen to minimize the approx-

imation error. It is easy to see that A′ is a symmetric M-matrix which can be
approximated by a support graph preconditioner. The quality of the approxima-
tion is determined by the following bound

κ(A′−1A) ≤ max
e∈T

κ(D′1/2GeD
−1
e GT

e D′1/2) ,

which should be minimized by appropriate choice of D′
e in each element.

Inhomogeneous Domains. For problems involving different isotropic materials,
the discontinuity is restricted to the interface between the materials. One can
use a mesh that conforms to these interfaces such that elements do not straddle
different materials. In this case, De = deI, where de is a scalar and I is the
identity matrix. By choosing D′

e = De, we guarantee that the quality of the
preconditioner is no different from that of an isotropic problem.

Anisotropic Domains. In anisotropic domains, a(x) varies continuously over the
domain. The eigenvectors and eigenvalues of a(x) give orthogonal directions and
corresponding magnitude of anisotropy, respectively, at the point x. For the
element transformation, one should choose the pair of edges closely aligned with
these eigenvectors. Consider the case when every element e has a pair of edges
aligned with the eigenvectors of De. In this case, the transformation matrix GT

e is
identical to the eigenvector matrix of De, leading to the following simplification

A =
∑
e∈T

B′T
e G−T

e Δe(GT
e ΛeGe)G−1

e B′
e =

∑
e∈T

B′T
e ΔeΛeB

′
e ,

which indicates that A is a symmetric M-matrix. When the edges in element e
do not coincide with the eigenvectors, one must choose a pair of edges that is
most closely aligned with the eigenvectors. In this case, a good choice of D′

e is
the diagonal of G−T

e DeG
−1
e .
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5 Numerical Experiments

Numerical results show that our scheme performs well on both shared memory
multiprocessors and distributed memory work stations. Due to space limitation,
we report the results of numerical experiments only on a distributed-memory
Beowulf cluster (1.4GHz 64-bit AMD Opterons, running SuSE-Linux, connected
via Gigabit Ethernet). The code was implemented in C++ and parallelized us-
ing the MPI library. Two types of parallel preconditioners are used with PCG:
diagonal preconditioner (DIAG) and DPSG. PCG iterations were terminated
when the relative residual norm was reduced below 10−6.

First we give the experimental results for the unit square Poisson Problem
with Dirichlet boundary conditions. Table 3 shows that the parallel implemen-
tation of DPSG is able to exploit inherent coarse grained parallelism to achieve
near linear speedup. The following notation has been used: P : number of pro-
cessors, Iter: number of PCG iterations, Tpart: partitioning time, Tasm: matrix
assembly time, Tmst: time to compute maximum weight spanning forest, Tfac:
factorization time, Tsolve: time spent in PCG, Ttotal: total time, and E: effi-
ciency. Time is reported in seconds. Although different components of the code
parallelize to different degree, the overall speedup is very high.

Table 3. Performance of DPSG on Beowulf Cluster (n = 424867, k = 64)

P Iter Tpart Tasm Tmst Tfac Tsolve Ttotal E

1 194 4.6 8.6 7.3 8.1 75.8 104.3 1.00
2 193 2.2 4.2 3.5 3.1 35.4 48.3 1.08
4 193 1.1 2.0 1.6 1.0 16.2 21.9 1.19
8 194 0.5 1.0 0.8 0.8 7.7 10.8 1.21
16 193 0.2 0.5 0.4 1.1 4.7 6.9 0.95

For the inhomogeneous and anisotropic problems, we consider the problem
domains as shown in Fig. 2. The inhomogeneous domain consists of two equal
parts with a(x) set to unity in the left part, and a constant μ in the right
part, which is varied between 10−5 and 10−1 to obtain various instances of the
problem. For the anisotropic problem, the anisotropic axes at a point x are along
the tangent and normal to the circle passing through x centered at the origin.
The anisotropy coefficient along the tangent is set to 1. The coefficient along the
normal direction, ν, again is varied from 10−5 to 10−1.

In Table 4, we increase the problem size as we decrease μ and ν, respectively.
The data show that DPSG is a very effective preconditioner for both problems.
Note that as ν decreases, the anisotropic problem becomes a one-dimensional
problem for which the maximum weight spanning forests constructed by DPSG
turn out to be very effective approximations.
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Fig. 2. Inhomogeneous and anisotropic problem domains

Table 4. Number of iterations of PCG for problems with varying coefficients

Inhomogeneous Problem Anisotropic Problem

μ n DIAG DPSG ν n DIAG DPSG

10−1 867 76 85 10−1 561 58 50
10−2 3426 152 128 10−2 2145 145 50
10−3 13403 301 157 10−3 8385 297 39
10−4 53335 548 183 10−4 33153 574 30
10−5 212891 1081 207 10−5 131841 1089 20

Table 5. Number of iterations of PCG for cases with fixed parameters

Inhomogeneous Problem: μ = 10−3 Anisotropic Problem: ν = 10−3

n DIAG DPSG n DIAG DPSG

867 74 90 561 67 12
3426 150 131 2145 143 21
13403 301 157 8385 297 39
53335 599 176 33153 610 76
212891 1217 192 131841 1249 150

When the parameters μ and ν are fixed and we increase the problem size,
Table 5 shows that the number of iterations required by DPSG grows slowly
with the problem size compared to DIAG. The parallel performance results are
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shown in Table 6. For both cases DPSG achieves very high parallel efficiency,
and proves to be a very effective parallel preconditioner. Low efficiency on large
processors can be traced to two sources: one is the communication overhead, e.g.
collective call such as inner product, becomes high; the other is the ratio of the
communication and the computation becomes large. By increasing the problem
size, the latter effect can be decreased and the efficiency can be improved.

Table 6. Performance comparison for problems with varying coefficients

Inhomogeneous Problem (n = 425050, μ = 10−3)

DPSG (64 × 64 subdomains) DIAG

P Iter Tpart Tasm Tmst Tfac Tsolve Ttotal E Iter Ttotal E

1 291 4.7 8.6 7.1 8.5 109.7 138.5 1.00 1537 218.2 1.00
2 289 2.3 4.2 3.4 3.0 52.3 65.3 1.06 1537 121.4 0.90
4 306 1.1 2.0 1.7 1.1 27.1 33.1 1.05 1537 63.0 0.87
8 294 0.5 1.0 0.8 0.7 13.8 16.7 1.03 1537 37.8 0.72
16 300 0.3 0.5 0.4 1.0 8.4 10.6 0.82 1536 24.2 0.56

Anisotropic Problem (n = 118503, ν = 10−3)

DPSG (16 × 2 subdomains) DIAG

P Iter Tpart Tasm Tmst Tfac Tsolve Ttotal E Iter Ttotal E

1 124 0.7 2.1 1.3 0.1 7.6 11.8 1.00 1123 36.8 1.00
2 124 0.3 1.0 0.6 0.1 4.0 6.1 0.98 1123 20.1 0.92
4 124 0.2 0.5 0.3 0.1 2.2 3.2 0.92 1123 11.5 0.80
8 124 0.1 0.3 0.1 0.1 1.3 1.8 0.84 1123 7.1 0.65
16 123 0.0 0.1 0.1 0.2 1.0 1.3 0.57 1123 5.1 0.46

6 Conclusions

In this paper, we have outlined a novel approach to transform SPD matrices
arising from the finite element discretization of a class of elliptic problems into
symmetric diagonally dominant M-matrices that can be approximated by sup-
port graph preconditioners. We have also presented an approach based on do-
main partitioning to construct support graph preconditioners that are robust
and effective in addition to being parallelizable. Preliminary numerical experi-
ments conducted on up to 16 processors of AMD-Opteron based Beowulf clus-
ter indicate that our preconditioner can achieve high parallel efficiency without
sacrificing robustness and effectiveness. The preconditioner should retain these
advantages on larger multiprocessors as well.
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Abstract. In this paper, we propose a routing protocol for disconnected ad hoc
networks where most nodes tend to move about in groups. To the best of our
knowledge, no routing protocol for disconnected ad hoc networks has been de-
signed earlier keeping in mind possible group patterns formed by the movement
of nodes. Our protocol works by identifying groups using an efficient distributed
group membership protocol, and then routing at the group level, rather than at
the node level. The protocol is designed so that existing concepts of routing in
disconnected ad hoc networks can be extended to work at the group level. Initial
simulations across a broad spectrum of parameters suggest that our protocol per-
forms better in terms of delivery ratio and latency over traditional approaches like
AODV [1], and also over disconnected routing approaches like the 2-Hop routing
protocol [2].

1 Introduction

The existence of an end-to-end path is not guaranteed in many kinds of ad hoc net-
works because of various reasons, such as nodes switching off their radios or reducing
their transmission range to conserve energy, node mobility, and application specific de-
ployment. In such situations, traditional routing protocols for ad hoc networks such as
[1, 3, 4] will fail in sending packets to destination nodes to which no path exists. An
approach to solve this problem is to exploit the buffering capacities and mobility of the
nodes participating in the network. If the nodes have sufficient mobility, then instead of
waiting for a path to the destination, messages can be forwarded to intermediate nodes,
which in turn would buffer these packets for some period of time and then forward them
to other nodes. This process can be continued until some intermediate node eventually
comes in contact with the destination node and delivers the message to it. Since such
routing intrinsically relies on waiting for intermittently available paths, there are high
latencies involved in message delivery. Applications which are able to tolerate such
levels of latencies are referred to as delay tolerant.

Many of the delay tolerant routing protocols for disconnected networks do not as-
sume any specific movement and location patterns of the nodes, and hence are unable to
exploit any opportunity that these patterns may present. Several routing protocols have
been proposed for disconnected ad hoc networks. The epidemic protocol [5] blindly
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floods each message to as many nodes as possible until the message reaches its destina-
tion. It is therefore very resource hungry with respect to energy consumption and buffer
capacity. The 2-Hop protocol [2] showed that mobility can be used to keep through-
put independent of the size of the network. However, it provides poor performance in
terms of delivery ratios within practical time limits. Sushant Jain et. al. [6] formulate
the general problem of routing in delay tolerant networks, and consider different levels
of information availability in choosing a protocol. There has recently been research into
protocols which use aggregated past information to predict future behavior ([7, 8, 9]),
and thereby hope to make better routing decisions. The message ferrying approaches in
[10] consider situations where dedicated ferry nodes are available to move around fixed
routes, collect and relay packets.

An interesting class of applications within the delay tolerant disconnected ad hoc
networking framework has to do with those in which nodes tend to move about in
groups. This clustering of nodes leads to the formation of multiple groups of nodes (see
[11, 12, 13]). Nodes are free to move about in their own groups, and also to occasionally
relocate to another group. The nodes within each group will usually form a connected
subnetwork, but the groups themselves would usually be in and out of communica-
tion range of each other. Further, the groups also have the ability to move about in the
network, often mixing and merging with the other groups in the network and splitting
into smaller groups. Some applications which work in such group environments include
sensor networks deployed in wildlife [14], vehicular networks [15], and relief and mili-
tary networks. None of the traditional routing protocols for disconnected environments
mentioned earlier exploit the underlying group structure present in such applications.

By recognizing the presence of formation of such groups in the network, it becomes
possible to combine the best ideas of both traditional ad hoc routing protocols as well
as the ideas of routing in disconnected environments. For example, if members of a
group are connected and if each node maintains routes to other members, it becomes
possible to use traditional ad hoc routing to deliver messages and exchange routing
information with nodes belonging to the same group quickly. Such a scheme would
not be possible in any of the routing protocols proposed for disconnected networks.
Moreover, if we treat each group as an entity in itself, much like an individual node in
a normal disconnected network, then it becomes possible to apply concepts of routing
for disconnected ad hoc networks to transfer messages across groups.

Our main contribution in this paper is a routing protocol for the above type of in-
termittently connected ad hoc networks, which is able to exploit the underlying group
structure formed by node locations to provide better delivery ratios at lower latencies.

The rest of this paper is organized as follows. Section 2 gives details of the proposed
routing protocol. Section 3 discusses some implementation details. In Section 4 we
demonstrate, via initial simulations across many parameters, that the proposed group
based protocol works better than existing routing protocols in many real life scenarios.

2 Protocol Overview

We define a group to be a set of connected nodes which maintain their connectivity
for a sufficiently large period of time. The proposed protocol attempts to recognize and
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exploit such group structures found in many disconnected ad hoc networks, in order to
provide better delivery ratios and lower latencies. The main design goals of the protocol
can be classified as follows:

1. Recognize groups and maintain group identities in a decentralized and efficient
manner.

2. Leverage principles of existing ad hoc routing for intra-group communication.
3. Adapt concepts of routing in disconnected environments for inter-group routing.
4. Reduce possible complexities in inter-group communication by using group lead-

ers.

The first part of our design goal is achieved by a distributed group membership pro-
tocol. Our focus is to develop an efficient protocol, and hence we do not place the
requirement that all group members have consistent views of each other at all times.
However, the algorithm is expected to converge to a consistent view for all group mem-
bers given sufficient amount of time. In Section 2.1 we discuss the first two of our
design goals. The third and fourth design goals are described in Section 2.2.

2.1 Group Membership

Let id denote a globally unique and comparable identifier of a node. Nodes belonging to
the same group are tagged with a common identifier called the gid. Groups are created
and maintained so that the gid of a group is equal to the value of the lowest id of any
member in the group. Initially, each node belongs to its own group. As time progresses,
nodes that remain together perform merge operations and form larger groups.

Within each group, a proactive routing algorithm is run. This algorithm not only
maintains up to date paths to other group members, but it also helps in timely detection
of unannounced disconnections. In this paper, we use the DSDV [3] protocol, although
any other proactive routing protocol can be used. Each update message (hereafter re-
ferred to as an Update packet) that is sent by DSDV now contains one additional field -
gid. It’s value is set to the gid of the node sending the Update packet. This helps nodes
in discarding Update packets sent by members of other groups. Specifically, a node
accepts a DSDV Update packet from its neighbor only if either

1. the gid in the Update packet has the same value as the node’s own gid, or
2. the neighbor is already present in the routing table of the receiving node, and the

gid in the Update packet has a lower value than the node’s own gid.

If the first condition is satisfied, then the node has received an Update packet from a
neighbor belonging to its group. The second condition signifies that the node’s group is
currently taking part in a merge operation. We explain the reason for these conditions in
the sections below. Since nodes maintain paths only to other group members, each node
can easily find out who the other group members are by looking at its routing table.

As time progresses, nodes of other groups may come within the communication
range of one or more members of a group, or some existing members may move out of
range from the group. The protocol should be able to adapt to these changing scenarios
quickly. Our protocol handles the first case by an explicit merge operation. It handles
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the second case by implicitly removing the disconnected members from the original
group, and by an explicit split operation on the nodes that have left the original group.
The following two subsections describe how the proposed protocol handles these two
scenarios (joining and leaving).

Group Merge. A group merge is triggered explicitly by a node if it detects that one
or more nodes belonging to another group have come within its communication range
for a sufficiently long period of time, called the minimum group merge wait time TM .
This minimum wait time ensures that groups are not merged accidentally when they
come in contact only for a very short time in the course of their movements. Each node
periodically sends beacon packets advertising its gid. A node receiving a beacon packet
from another group registers a hit corresponding to the group from which the beacon
was received. If a node stops receiving beacons from the other group for more than
some time duration TG, it resets the hit counter for that group. Once a node receives
beacons from another group for a time period greater than TM , a MergeRequest packet
is sent to the node which sent the last beacon. The merge request contains the id, gid,
and the DSDV routing table of the node. On receiving the merge request, a node takes
a local decision to accept or reject the request. If it accepts the request, then it updates
its gid to the lower value of both the gid’s, and also adds the nodes in the routing table
of the other group to its own routing table. It then propagates this information in the
form of a new DSDV Update packet to the other members of its group. It is easy to
verify that the other members of the group will accept this Update packet because of
the conditions stated at the start of Section 2.1. The other members of the group, on
receiving this Update packet from a group member, lower their gid if the new gid has a
smaller value, and update their routing tables. They also propagate a new DSDV Update
packet immediately since new nodes have been added to the group (as a result of the
merge). This process continues till all the nodes of the group have added the new nodes
to their routing tables. The node receiving the merge request also sends a MergeReply
packet to the sender of the request. The reply packet contains the id, gid, status (accept
or reject), and the routing table of the node. Similar actions as above happen on receipt
of the reply packet to update the gid if needed and the routing table of nodes in the other
group. At the end of the merge operation, a new group with a common gid is formed.

It is possible that multiple nodes of the same group may decide to merge with dif-
ferent nodes of another group at about the same time. In such a case, pairs of nodes
(one node from each group) merge initially. The gid of each node in the pair will finally
be the lower of the gid of the two groups. Each node in a pair will also initiate a fresh
round of DSDV updates within its original group. Thus, the number of fresh DSDV up-
dates that will take place due to a merge will be limited by the number of pairs of nodes
that started the merge operation. Since each such DSDV update will have the same gid
across all pairs, the routing tables of all nodes will eventually be updated consistently.

Group Split. There are two main things to be done when members leave a group.
Nodes still belonging to the group should realize quickly that such members have left
the group. Also, since the gid of a group should reflect the value of the lowest id member
in the group, the gid of the group which does not contain the lowest id node any more
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should be changed. However, nodes disconnect from a group in an unannounced fash-
ion, with no prior information as to when they will leave the group. When a node leaves
a group, the protocol depends on the underlying DSDV routing protocol to inform other
members of its departure. If a node leaves a group, then eventually its neighbor would
detect that it is no longer reachable and will remove it from its routing table. It will then
send a DSDV Update packet to inform the other group members of this. Thus, within a
short time, the node which moved out from the group will be dropped from the routing
tables of all remaining members of the group. Also, the part of the group which splits
and does not contain the lowest id node, will eventually be classified as belonging to a
separate group using the following mechanism. Among the nodes which belong to the
above split part, the node having the lowest id will eventually discover that its id is not
equal to its gid and it does not have a path to any member having id lower than it. This
node then forms a new group with itself as the leader by sending an announcement to
all other nodes to which it has a path in its routing table to change their gid to its id. On
receiving the announcement, all nodes which no longer have paths to their current gid
(because they split from the old group) and which has the node sending the announce-
ment as the lowest id member in its routing table, will change their gid to the id in the
announcement.

It may happen that two groups which have just split still linger close to each other
temporarily. This may cause nodes of the two groups to exchange Update packets in a
way that leads to corruption of routing tables. In order to prevent this, we impose the
condition that all nodes belonging to the new group (i.e. the one having the larger gid),
clear their existing routing tables and rebuild them from scratch. The two conditions
for accepting an Update packet, stated at the beginning of Section 2.1, will ensure that
the new group will no longer accept Update packets from members of the old group
(because the clearing of their routing tables will remove the old members from their
tables, and their gid is now different). The conditions will also ensure that members of
the old group will also no longer accept Update packets from the new group, because
the second condition prohibits them from accepting packets coming from nodes in their
routing tables with a higher gid than their current gid. Note that this may lead to an
occasional loss of Update packets (for example, when a node lowers its gid due to a
merge operation, and then it immediately receives an Update packet from a neighbor
which is yet to lower its gid), but this loss of information is not expected to be serious,
as it will be corrected in the next round of Update packets sent.

2.2 Routing

Once the groups are identified, any standard routing algorithm for disconnected net-
works can be used to route between groups. Here, on the assumption that groups often
move in predictable ways, we show how to adapt the PRoPHET routing protocol [7]
to work in our group scenario. Like PRoPHET, we maintain probability measures of
the delivery predictability; but instead of them being measures of successful delivery to
nodes, they indicate the chances of successful delivery to other groups. These measures
are stored at each node in a vector called probTable, which contains an entry for each
group. In order for this scheme to work, it is also necessary to have up to date informa-
tion regarding the group to which a destination node belongs. The protocol gathers this
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information in a proactive manner and stores it in a vector called the nodeInfo vector,
which contains an entry for each node. For the purpose of inter-group routing, the node
with the lowest id is chosen as the group leader. The main responsibility of the leader
is to consistently update and decay the probTable vector of a group, and to disseminate
the probTable and nodeInfo vector to the rest of the group.

Updating and Propagating Delivery Predictability and Group Information. The
method of updating the probTable vector is the same as the approach followed by
PRoPHET [7]. Let P(A,B) be the probability of group A being able to deliver a message
to group B. Each group maintains, in its probTable vector, the values P(gid,B), for all
groups B. The group leader is responsible for carrying out the update of the probTable
vector. It does so when a group member informs it that a group has become newly ad-
jacent to its group (this information is sent to the leader in the form of a GroupUpdate
packet). On receiving information that group B has become adjacent to its group, the
leader of group A will update its group’s delivery predictability value to group B as
follows (Pinit ∈ (0, 1] is an initialization constant).

P(A,B) = P(A,B)old
+ (1 − P(A,B)old

) × Pinit (1)

Also, a group A can deliver a message to group C indirectly through another group
B. To take care of this, the delivery predictability value can also be updated transitively
using the following equation (β ∈ [0, 1] is a scaling constant, deciding how large a role
transitivity should play).

P(A,C) = P(A,C)old
+ (1 − P(A,C)old

) × P(A,B) × P(B,C) × β (2)

If two groups do not meet each other for a while, they become less likely of being
able to exchange messages in the future. Hence, it is necessary for the delivery pre-
dictability values to age or decay. This is done according to the following equation,
where γ ∈ (0, 1) is an aging constant and k is the time elapsed since the last decay
operation was carried out.

P(A,B) = P(A,B)old
× γk (3)

The group leader periodically sends out the updated values of the probTable and
nodeInfo vectors to the entire group in a LeaderUpdate packet. The LeaderUpdate
packet serves two purposes. First, each node belonging to the group of the leader up-
dates its own probTable and nodeInfo vectors using the values present in the LeaderUp-
date packet. Second, these LeaderUpdate packets will also be received by nodes of
other groups which lie within communcation range of some member of the group of the
leader. These nodes, on receiving a new LeaderUpdate packet from an adjacent group,
forward it to their own group leader using a GroupUpdate packet, so that their group
leader can update the probTable vector using equations 1 and 2. Further, the group
leader, on receiving a GroupUpdate packet also updates the values in its nodeInfo vec-
tor, using information from the nodeInfo vector contained in the GroupUpdate packet.
Specifically, an entry in its nodeInfo vector is updated, if either the corresponding entry
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in the received nodeInfo vector has a higher sequence number (seqNo), or it has the
same sequence number, but has a lower gid value.

The changes in the delivery predictability values when groups merge or split depend
on the specific application scenario and the movement pattern of the new merged or
split group. For example, when two groups merge, we may use the weighted average
(according to size) of the probTable values of the two groups, or we may take the min-
imum of the two values, etc. For simplicity, we use the probTable values of the group
having the lower gid. In the case of a split, the nodes which form a new group will start
with an empty probTable vector, whereas no change occurs for the remaining nodes.

Forwarding Strategy. The probTable and nodeInfo vectors at each node are used to
decide whether a message should be forwarded to an adjacent node belonging to an-
other group. The protocol uses the following simple greedy strategy for forwarding a
packet. A node uses the information present in its nodeInfo variable to learn the group
to which the destination node belongs. We call this group as the destination group. A
node forwards a message to an adjacent node belonging to another group, only if the
other group has a higher delivery predictability value to the destination group than the
group to which the sending node belongs. Thus messages are transferred from group to
group, until it reaches the destination group. Once the message reaches the destination
group, the message is sent to the destination node using the DSDV routing table.

3 Implementation Overview

The essential data structures maintained by each node is shown in Table 1. Some of
these members (like id,gid,seqNo,leaderSeqNo) are simple data types, while the rest
are multi-valued compound data structures. Not shown in the table are additional fields
(like settling time etc.) in rTable (the routing table) that will be necessary for DSDV. The
data structure groupInfo is maintained at each node to keep track of groups which are
currently adjacent to it. Each entry has a field called active, which indicates whether the
group corresponding to that entry is currently adjacent to the node. If an entry remains
active for more than TM time, then the node initiates a merge request (as explained
in Section 2.1) with the group corresponding to that entry. The field leaderSeqNo in
the groupInfo structure is used to discard old LeaderUpdate packets received from an
adjacent group. In a similar fashion, the field processedSeqNo is used by a group leader
to discard GroupUpdate packets that it has already processed.

All packet types that are used by our protocol are listed in Table 3. The Update packet
corresponds to the DSDV update packet. The LeaderUpdate packet is sent periodically
by each group leader to inform group members of updated probTable and nodeInfo
values.

Since it is sent periodically, it also acts as a beacon packet, advertising the presence
of its group to other groups. A node, on receiving a new LeaderUpdate packet from
another group, sends out its contents in a GroupUpdate packet (which has the same
fields as a LeaderUpdate packet) to its own leader and carries out the actions that were
outlined in Section 2.1. The MergeRequest and MergeReply packets are used for send-
ing merge requests and replying to them. The rTable member shown in the Update,
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Table 1. Essential Node Structures

Name Fields (if any)
id -

gid -
seqNo -

leaderSeqNo -
rTable dst,nextHop,seqNo

hopCount,nInfoTimer
groupInfo gid,active,gInfoTimer,

leaderSeqNo,processedSeqNo
nodeInfo id,gid,seqNo
probTable gid,deliveryPredictability

Table 2. Constants Used

Name Description Value
Pinit Initial delivery predictability value 0.5

β Transitivity constant 0.5
γ Aging constant 0.98

TM Merge wait period 50 sec
TU Interval for sending Updates 15 sec
TL Interval for sending LeaderUpdate 10 sec
TN Timeout period for rTable entry 45 sec
TG Timeout period for groupInfo entry 15 sec

TMR Min span between two merge request’s 5 sec

Table 3. Type of Packets

Name Members
Update id,gid,rTable

LeaderUpdate id,leaderSeqNo,probTable,nodeInfo
GroupUpdate gid,leaderSeqNo,probTable,nodeInfo
MergeRequest id,gid,gidOther,rTable
MergeReply id,gid,status,rTable

MergeRequest, and MergeReply packets is essentially the routing table of the sending
node, with only the following fields - dst, seqNo, hopCount. Table 2 lists some constants
that are used in the protocol. These values were chosen based on estimates from initial
simulation results.

It is possible that, during a merge operation, the gid of the node receiving the merge
request may change even before it processes the merge request (due to another merge
operation initiated elsewhere). In that case, the merge reply sent back would confuse
the node which initiated the merge request, since the gid of the replying group is dif-
ferent from what it is expecting. To circumvent this, the MergeRequest packet contains
a field called gidOther, which is the gid value of the adjacent group at the time the
merge request is being sent. The node which sends the MergeReply copies the gidOther
from the MergeRequest packet into the gid field of the MergeReply packet. The node
receiving the MergeReply is then able to easily find out the group it had originally sent
the MergeRequest to. The fact that the other group possibly has a different gid even
after the merge operation is not significant, because as soon as the next round of DSDV
updates are triggered, all nodes of the merged group will have a common gid.

4 Simulation and Results

We verify the effectiveness of our protocol through simulations across a wide range of
scenarios on the NS-2 simulator [16]. The input parameters varied included mobility
pattern, communication range, and the size of the network. We compare the perfor-
mance of our protocol with that of the 2-Hop protocol and AODV. Results for AODV
are included in order to highlight the ineffectiveness of standard routing protocols in
disconnected environments. The performance metrics used for the comparison are de-
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livery ratio and delay in receiving messages. We first discuss the simulation setup and
then present results of our simulations.

Three different mobility patterns are chosen in the simulations - Random Waypoint
Model [11], Inplace Model [12], and Community Model [7]. In Inplace Model, the topol-
ogy is divided into different grids. Each group is assigned a specific grid, which it never
moves out of. Groups are able to interact when they meet along grid boundaries. In
Community Model, the topology is again divided into grids. There are some designated
grids called the gathering grids. Each group is assigned a home grid and also a gath-
ering grid. The movement of groups is such that they tend to travel to and fro between
the home and gathering grids, even though there is a slight chance that they may move
to some other grids temporarily.

For the Community model, each grid has dimensions 200m×200m. Each scenario
has 3 randomly chosen gathering grids. If a group is in its home grid, it moves to its
gathering grid with a probability of 0.90, while if it is in its gathering grid, it moves to its
home grid with a probability of 0.95. For the Inplace model, each grid has dimensions
250m×250m. Node assignments to groups are generated using the model in [13]. About
3% of the nodes are not placed in any group at the beginning of the simulation. In
[13], nodes have to choose a new destination after reaching their current goal. The new
destination can be within its group, within another group, or can also be outside of
all groups. The probability of choosing these 3 types of destinations are set to 0.98,
0.01 and 0.01 respectively. For all scenarios, nodes belonging to a group move in a
bounding box of 100m×100m. Further, each group moves to its destination with a
uniform random speed of (0,10] m/s. Likewise, each node within a group moved to its
destination within the group with a uniform random speed (relative) of (0,5] m/s. The
pause time for node movement within a group is set to 5 seconds, while the pause time
for the group movement is set to 25 seconds.

We tested 3 scenarios having different network sizes. The first scenario has 50 nodes,
7 groups, a 1000m×1000m topology, 30 randomly established communicating pairs
and a simulation time of 1000 seconds. The second scenario has 100 nodes, 13 groups,
a 2000m×2000m topology, 50 randomly established communicating pairs and a sim-
ulation time of 2000 seconds, while the third scenario has 200 nodes, 25 groups, a
3000m×3000m topology, 70 randomly established communicating pairs and a simu-
lation time of 3000 seconds. In all scenarios, each node has a buffer capacity of 1000
messages. All messages are generated as CBR traffic over a UDP connection. The un-
derlying MAC protocol that used in our simulations is the IEEE 802.11 protocol. No
measurements are taken during the first 50 seconds of the simulation to allow the pro-
tocols to stabilize.

We present results of simulation for scenario 2 (100 node case) in Figures 1 and 2.
The results for the other two scenarios look similar, and due to lack of space, we do
not include them here. Figure 1 shows the delivery ratio v/s communication range for
different mobility models. Each point on the plot is the average value taken over 5
simulation runs. The plots also show best fit bezier curves and 95% confidence intervals.
Figure 2 gives the CDF of the message delivery delays, when the communication range
is 100m.
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Fig. 1. Delivery Ratio % v/s Communication Range for 100 nodes, 13 groups and various mobility
models

From Figure 1, we see that our protocol provides much better delivery ratios than
the other two protocols for the Inplace model. Moreover, from Figure 2, we see that the
delay our protocol incurs is significantly less than the 2-Hop protocol for the last set of
delivered messages. This is expected , as in the Inplace model, groups move in more or
less predictable ways, and our protocol is able to exploit this property effectively.

For the case of the Community model also, it is seen that our protocol performs
better than the 2-Hop protocol, although the improvement is not as drastic as in the
case of the Inplace model. One reason for this is that the movement of the groups is
less predictable in the Community model than in the case of the Inplace model. For
example, this can happen due to groups moving to grid locations which are neither their
home grid nor their gathering grid. Another reason for this is that in the Community
model, groups have more freedom to overlap and mingle with each other. This causes
merging of some groups, even when they are not actually going to stay as a merged
group in the near future. Due to this, there would be instances where groups merge,
followed by a split very soon. This in turn, would cause otherwise unnecessary delays
in rebuilding routing tables, and also a temporary loss of information regarding delivery
predictability values.

For the case of the Random Waypoint model, we see that our protocol performs
quite well in comparison to the 2-Hop protocol. However, in general, it is observed
that the delivery ratio performance of our protocol varies and lies close to the delivery
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Fig. 2. CDF of message delivery delay for 100 nodes, 13 groups, various mobility patterns and
100m communication range

ratio curves for the 2-Hop protocol. This reasonably good performance of our protocol
in the Random Waypoint model is slightly unexpected. This was also reported in the
PRoPHET protocol simulations [7], and can be due to the fact that even in random
motion, two groups that have met each other may not have moved far away from each
other. In such cases, the delivery predictability values will still be useful.

5 Conclusion

In this paper, we proposed a routing protocol for disconnected networks where nodes
tend to move in groups following particular mobility patterns. Initial simulations have
shown that for the Inplace and Community model, our group protocol is able to deliver
more messages than the 2-Hop protocol at comparable or better latencies.

References

1. Perkins, C.E., Belding-Royer, E.M.: Ad-hoc on-demand distance vector routing. In: WM-
CSA. (1999) 90–100

2. Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad hoc wireless networks.
IEEE/ACM Trans. Netw. 10 (2002) 477–486



410 M. Thomas, A. Gupta, and S. Keshav

3. Perkins, C., Bhagwat, P.: Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers. In: ACM SIGCOMM’94 Conference on Communications
Architectures, Protocols and Applications. (1994) 234–244

4. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. In: Mobile
Computing. Volume 353. Kluwer Academic Publishers (1996)

5. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Technical
Report CS-200006, Duke University (2000)

6. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: SIGCOMM ’04: Pro-
ceedings of the 2004 conference on Applications, technologies, architectures, and protocols
for computer communications, New York, NY, USA, ACM Press (2004) 145–158

7. Lindgren, A., Doria, A., Schelen, O.: Probabilistic routing in intermittently connected net-
works. In: SAPIR. (2004) 239–254

8. Musolesi, M., Hailes, S., Mascolo, C.: Adaptive routing for intermittently connected mobile
ad hoc networks. In: Proceedings of the IEEE 6th International Symposium on a World
of Wireless, Mobile, and Multimedia Networks (WoWMoM 2005). Taormina, Italy., IEEE
press (2005)

9. Jones, E.P.C., Li, L., Ward, P.A.S.: Practical routing in delay-tolerant networks. In: WDTN
’05: Proceeding of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, New
York, NY, USA, ACM Press (2005) 237–243

10. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier architecture for
sparse sensor networks. In: Proceedings of the First IEEE International Workshop on Sensor
Network Protocols and Applications. (2003) 30–41

11. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research.
Wireless Communications and Mobile Computing (WCMC): Special issue on Mobile Ad
Hoc Networking: Research, Trends and Applications 2 (2002) 483–502

12. Hong, X., Gerla, M., Pei, G., Chiang, C.: A group mobility model for ad hoc wireless
networks. In: Proceedings of ACM/IEEE MSWiM’99, Seattle, WA. (1999) 53–60

13. Musolesi, M., Hailes, S., Mascolo, C.: An ad hoc mobility model founded on social network
theory. In: Proceedings of ACM/IEEE MSWiM ’04, Venice, Italy, New York, NY, USA,
ACM Press (2004) 20–24

14. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., Rubenstein, D.: Energy-efficient com-
puting for wildlife tracking: Design tradeoffs and early experiences with zebranet. In: ASP-
LOS, San Jose, CA. (2002)

15. Franz, W., Eberhardt, E., Luchenbach, T.: Fleetnet - Internet on the road. In: Proceedings of
8th World Congress on Intelligent Transport Systems. (2001)

16. McCanne, S., Floyd, S.: ns network simulator. http://www.isi.edu/nsnam/ns (2005)



Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 411 – 423, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Hybrid Routing Scheme for Mobile Ad Hoc 
Networks with Mobile Backbones 

Ashish Pandey, Md. Nasir Ahmed, Nilesh Kumar, and P. Gupta 

Department of Computer Science and Engineering 
Indian Institute of Technology Kanpur 

Kanpur – 208016, India 
{pandey.ashish, nileshkb, nasir.ahmed}@gmail.com, 

pg@cse.iitk.ac.in 

Abstract. A flat mobile ad hoc network has an inherent scalability limitation. 
When the network size increases, per node throughput of an ad hoc network 
rapidly decreases. This is due to the act that in large scale networks, flat struc-
ture of networks results in long hop paths which are prone to breaks. These long 
hop paths can be avoided by building a physically hierarchical backbone net-
work. These networks have some specific backbone capable nodes that have 
powerful radios and are functionally more capable than ordinary nodes.  

In this paper, a hybrid routing protocol for large scale networks with mobile 
backbones has been proposed. This routing protocol uses different types of 
routing schemes in different layers of hierarchical network which makes it eas-
ily extendable to support QoS as well. Along with hierarchical structure, a low-
overhead clustering scheme to elect backbone nodes has been proposed and 
works with our routing protocol without causing any extra overhead. 

Keywords: MANET, clustering, hierarchical routing, quality of service. 

1   Introduction 

Mobile Ad-Hoc Networks (MANETs) are self-organizing, rapidly deployable, and 
require no fixed infrastructure. MANETs are multi-hop networks where nodes co-
operate with each other in forming routes and forwarding data (i.e, nodes behave as 
routers) to respective source and destination. Nodes in such networks are highly mo-
bile, or stationary, and may vary widely in terms of their capabilities and uses.  
MANETs may operate autonomously or may be used to expand the present Internet. 
Collaborative computing and communications in smaller areas (building organiza-
tions, conferences, etc.) can be set up using MANETS. Communications in battle-
fields and disaster recovery areas are further examples of application environments. 

With the evolution of Multimedia Technology, Quality of Service in MANETs has 
become an area of great interest. Besides the problems that exist for QoS in wire-
based networks, MANETS impose new constraints because of the dynamic behavior 
and the limited resources of such networks. Since MANET is a highly dynamic multi-
hop wireless network, the effective working of routing protocols plays the most 
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important role in making such network useful. The main aim of this work to provide a 
routing protocol which works for a large scale network. The proposed protocol is 
easily extendible to support quality of service (QoS) requirements of applications. 
The target network may comprise hundreds or even thousands of nodes. Providing 
efficient routing protocol in such a network raises the need of physical hierarchical 
network namely, mobile backbone network. These networks have some specific 
backbone capable nodes (BCNs) having powerful radios and functionally more capa-
ble than regular nodes. For hierarchical network, there is a need to form clusters of 
nodes using these BCNs as cluster-head. But existing clustering schemes like lowest 
ID results in instability of clusters under the high mobility condition. Further, applica-
tions demanding quality of service in such a large scale network raises the need of 
protocols this supports QoS inherently and can easily be extended to achieve QoS if 
needed. In this paper a scalable routing protocol for large scale networks which is 
easily extendible to support quality of service has been proposed. 

Section 2 presents a review of significant contribution in the area of hierarchical 
and non-hierarchical routing for Ad Hoc networks and their limitations. In Section 3, 
the design philosophy and the Methodology of our routing scheme have been pre-
sented. Section 4 discusses the clustering algorithm to evaluate cluster-head as well as 
formation of clusters. Simulation results and performance evaluation are given in 
section 5. Conclusions are given in the last section. 

2   Related Works 

It is well known fact that proactive protocols incur too much overhead in maintaining 
topology information and perform very badly in large networks (not scalable). On the 
other hand reactive protocols are good candidate for scalability but because of mobil-
ity their performance degrades very heavily, which is the main reason why this type 
of protocols are not suitable for scalability in high mobility conditions. To target the 
scalability of the network many hierarchical and non-hierarchical protocols have been 
purposed. 

The Zone Routing Protocol [13] is a non-hierarchical protocol designed for large 
networks. In this protocol each node has a zone that is defined as all nodes that are 
within hops of the node. Routing within a zone uses a protocol such as Dynamic 
Source Routing (DSR) [14]. For sending a packet to a node outside the zone, the 
source sends a route request packet to nodes at the periphery of its zone. These nodes 
query their zones or their peripheral nodes, etc. 

Another non-hierarchical protocol can be found in [1]. This protocol uses hybrid 
approach of proactive and reactive protocols. When the destination is within K-hop 
distance of the source node it uses predictive location based routing (PLB) [25], a 
proactive routing protocol. Otherwise, it uses ad hoc on-demand routing (AODV) 
[22], a reactive routing protocol. The idea of using proactive protocol in localized 
network and reactive protocol for the rest of the network is good as it results in the 
low overhead, but still, when the network size is large, flat structure of routing proto-
col results in frequent route breaks due to node mobility.  

Many hierarchical routing protocols have been proposed, which rely on the con-
struction and maintenance of a hierarchy in the ad hoc network. One set of protocols 
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use a clustering algorithm at the lowest level. Communication between nodes from 
two different clusters takes place via the cluster- heads (CBRP [19] Landmark 
[18]).The problem with clustering algorithm is that it results in too much control 
overheads to maintain the cluster structure (cluster-head election, node leaving, node 
joining, cluster-head failures etc). Another problem is that the cluster-heads become 
the center of all outgoing routing traffic which results in increase in delay and drop-
ping of packets because of overflow of buffer. 

3   Proposed Routing Protocol 

The objective of the proposed routing protocol is to design a scalable routing protocol 
for large scale networks and which is easily extendible to support quality of service 
parameters. 

3.1   Mobile Backbone Networks (MBNs)  

A mobile backbone network (MBN) is a hierarchical network consisting of a large 
area with hundreds or thousands of nodes [28]. There are two types of nodes in these 
networks: backbone capable nodes (BCNs) and regular nodes (RNs). The BCNs have 
an additional powerful radio and are functionally more capable than the RNs. Some of 
the BCNs are elected to function as backbone nodes (BNs) which form a network 
among themselves using long range radios. This higher level network is called back-
bone network. Since the BNs are also mobile and keep joining and leaving the back-
bone network in an ad hoc manner, the backbone network is actually a MANET. 
Thus, there are multiple MANETs in a multi-level MBN. All nodes in a network 
operate in the same channel but these networks operate in different channels to mini-
mize the interference across levels. Thus, in two levels, two independent ad hoc net-
works run simultaneously at different channels. In underlying network, all nodes 
including BNs use low power radios while in backbone network, all nodes (i.e. BNs) 
use high power radios. The RNs, which are in underlying network, are generally lim-
ited in their battery, storage, and processing power. They use just a single low power 
radio. In order to access the complete network, every node associates itself to a BN. 
The backbone nodes (BNs) are part of both networks and use two different radios, 
low power in underlying network and high power in backbone network, for commu-
nication in different networks simultaneously.  

3.2   Proposed Scheme 

In two-level MBNs, there are two independent ad hoc networks running at different 
levels. There exists some work on routing protocol for providing scalability using 
MBNs which uses extended LANMAR routing protocol [28]. But LANMAR uses 
proactive protocols in both intra and inter cluster routing, and hence suffers from 
drawbacks of proactive protocols. It is known that proactive protocols result in too 
much overhead in maintaining topology information and hence perform very badly in 
large networks. On the other hand, a reactive protocol is a better candidate for scal-
ability but in the long hop paths due to mobility of nodes; paths are prone to break 
quite frequently and lead to degrade the performance. The proposed scheme is a 
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hybrid approach of reactive and proactive protocol, which exploits the advantages of 
each at the appropriate place. Two-level MBN is used to make the protocol work in 
large scale network. A new stable clustering scheme has been designed for backbone 
nodes election. This clustering scheme elects BNs from available BCNs using K-hop 
clustering, i.e. a BN will be at least at K-hop distance from another BN. These BNs 
form the backbone network using high power radios.  

In underlying network Predictive Location Based Routing (PLB), a proactive pro-
tocol is used while Ad Hoc On-Demand Distance Vector Routing (AODV), a reactive 
protocol, is used in backbone network.  

The algorithm to send a packet to a destination is given below: 

1. When a node has to send a packet, it checks if there is an entry in the update table 
for that destination.  

2. If there is an entry then it calculates the route to that destination using PLB, sends 
the packet to it and it is done.  

3. If there is no such entry that means that destination is not in the K-hop distance of 
this node; the node sends that packet using PLB routing to the BN which is 
within K-hop of it.  

4. This BN stores the packet and uses AODV routing protocol to establish and to 
maintain the route to the destination. For this, it sends a route request (RREQ) for 
the destination node in backbone network.  

5. When a node in the backbone network receives this RREQ it checks if the desti-
nation node is within its K-hop. If not, then it forwards the RREQ. Else it sends 
RREP.  

6. When the BN which initiated the query receives this RREP, an AODV path to 
destination is established. Then, the BN sends all stored packets to destination us-
ing AODV routing.  

7. When a node in the backbone network receives this data packet, it checks if the 
destination node is within its K-hop. If not, then it forwards the packet, otherwise 
it sends the packet to destination node using PLB routing.  

 
Apart from the capable of working in large scale networks, the proposed routing 

protocol is very effective in high mobility conditions and can be easily extended to 
support QoS. Firstly, it uses PLB an update based predictive location routing protocol, 
in localized network. Hence, every node has not only latest information about the 
locations of other nodes in its K-hop but it can predict their locations when the packet 
reaches to them. Secondly, a reactive protocol like AODV is vulnerable to mobility 
but proposed protocol uses that in high power links. The transmission range of these 
high power links is chosen such that it allows the mobility of BNs without causing the 
existing routes in AODV to break. Apart from the advantages of PLB and high power 
mobile backbones, the proposed routing algorithm also supports mobility to some 
extent using the step 7 of the mentioned algorithm. If a destination node moves out of 
the K-hops of its BN and enters in the K-hop of another BN which is in the route to 
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this destination, then data packets are delivered to the destination using the new BN 
without causing the existing route to break.  

Further, the proposed protocol is easily extendible to support QoS because of PLB 
and MBN. PLB, used in the localized network, assists QoS routing inherently. Hence, 
for a destination lying within K-hop of a node, PLB works efficiently to support QoS. 
For a destination lying outside the local network of a node, that node uses MBN to 
route packets. This MBN usually has large bandwidth and high power mobile back-
bone. This mobile backbone results in very low delay and high bandwidth which are 
the most important parameters for applications requiring QoS.  

4   Proposed Clustering Scheme  

There are three most desired properties of a clustering algorithm: simplicity, stability, 
and low overhead. Clustering algorithms available in [2] [17] [11] [16]. The Lowest 
ID (LID) [17] and Highest Degree (HID) [11] are the most widely used algorithms 
due to their low overhead and simplicity. For hierarchical structure, where clustering 
is often used to support routing, stability of the clustering algorithm is the most cru-
cial property. Any overhead incurred by clustering algorithm may add delay and con-
sume the bandwidth of network which is a very scarce resource in MANETs. This 
paper presents a new clustering scheme that provides stability and works with pro-
posed routing protocol without causing any extra overhead. The scheme is basically a 
modified version of Lowest ID algorithm with enhanced cluster maintenance for 
greater stability and low overhead. The Lowest ID algorithm is extended to support 
multi-hop clustering as well.  

4.1   Enhanced Lowest ID Clustering (ELIDC)  

The proposed enhanced lowest ID clustering (ELIDC) scheme is an enhanced version 
of existing lowest ID clustering algorithm (LID) [17]. In this scheme, firstly, it is not 
necessary for nodes to know the IDs of its K-hop neighbors beforehand. They wait for 
a certain amount of time for getting the message from K-hop distanced nodes before 
participating in the cluster-head election process. Even if they don't get a message 
from their all K-hop neighbors, proposed scheme works fine. Secondly, if a message 
sent by a node does not reach to a particular destination node in certain period of time 
then destination stops considering that node as its K-hop neighbor for cluster-head 
election process. Thirdly, there is no restriction on network topology to be static dur-
ing the execution of the algorithm.  

These timers are set considering the K-hop propagation delay and certain number 
of retries. In the proposed routing protocol, nodes send PLB update packets to their k-
hop neighbors. All messages required for our clustering scheme are merged in the 
update packets. Hence, the clustering scheme combined with the routing scheme re-
sults in almost no extra overhead in the network. In the mobile backbone network, 
only BCNs participate in the clustering algorithm. The ELIDC algorithm works as 
follows:  
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1. At the time of system initialization, all nodes defer by a random time to avoid 
collisions after which they start sending their cluster election packets up to K-hop 
and keep sending that until the cluster-head election process is finished. 

2. Before starting cluster-head election, all nodes wait for a certain time 
(WAIT_TIME) so that they can receive cluster election packets from K-hop dis-
tanced nodes. 

3. Upon receiving a cluster election message from some node, the node join that 
cluster form which it has received first cluster election packet.  

4. After WAIT_TIME, every node starts cluster-head election algorithm using the 
set formed in previous step and associates a timer with each entry in the set. This 
timer is reset upon receiving a cluster election packet from the node correspond-
ing to the entry.   

5. When timer for any node in the set goes off, then that node is removed from the 
set, and is no more considered for cluster-head election. 

6. Whenever a node becomes the smallest in the set, it makes itself a cluster-head, 
terminates the algorithm and starts sending cluster-head claims (beacons) to its 
K-hop neighbors continually. 

7. Upon receiving cluster-head claim packet, a node makes the source node of the 
packet its cluster-head, informs its K-hop neighbors and terminates the algorithm. 
These neighbors upon receiving this message remove this node from their clus-
ter-head election set.  

The algorithm terminates when a node becomes smallest in its set or gets a cluster-
head claim packet. We use this clustering scheme in our protocol only for selecting 
some nodes from available BCNs to act as BNs but there is as such no boundary or 
membership concept of clusters. When a regular node receives cluster-head claim 
(actually a field saying that source of this packet is a BN) in the PLB update packets 
then it makes the source of that packet its BN and uses it when the destination is not 
within its k-hop scope. 

5   Simulations and Performance Evaluation  

The proposed routing protocol has been tested on network simulator NS-2. In this 
section, the simulation environment, extension made in NS-2 to simulate proposed 
protocol, and methodology used for getting the results are explained and then evalu-
ated the performance of the proposed protocol.  

5.1   Enhancement in NS-2 Simulator  

The current implementation of NS-2 simulator supports only single network interface 
in a mobile node. This limitation restricts the NS-2 to simulate the scenario where 
mobile nodes possess multiple network interfaces, e.g. mobile backbone networks 
(MBNs). Multiple interface support has been implemented in NS-2 since it is neces-
sary for realistic simulation of the proposed routing protocol which is based on 
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MBNs. Basically the CMU's Monarch group's mobile node implementation [9] has 
been extended. This scheme does not force all nodes in the network to have same 
number of interfaces. Hence, the scenarios where only some nodes possess multi-
interface and others are single interfaced mobile nodes can be simulated. Apart from 
helping in simulating the desired scenario, this extension adds a significant feature in 
NS-2.  

5.2   Simulation Methodology  

This section discusses the simulation methodology used to compare the performance 
of our proposed protocol with other existing protocols. It comprises the topography, 
traffic model, protocol implementation, and the performance metrics used for evaluat-
ing the results obtained through the simulation.  

5.2.1   Simulation Topography  
Extensive simulation experiments have been performed to measure the performance 
of the protocols. The experiment has been divided in two parts, one for different mo-
bility conditions and the other for scalability of the network for different network 
sizes. For all simulations, 25% of the mobile nodes are backbone capable. Every 
backbone capable node had two IEEE 802.11 radios. One was the low power radio 
same to the ordinary node with transmission range 200m. The other is the high power 
radio with transmission range 800m. All nodes in the network use same mobility 
model, random waypoint model. For mobility, the performance of proposed protocol 
has been evaluated in a large scale network under different mobility speeds. Network 
size is kept fixed as 400 nodes. These nodes are randomly distributed in a rectangular 
area of 4000m by 2500m. Simulation has been done for different mobility speeds as 
high as {1, 5, 10, 15 and 20} with two different movement patterns for 600sec. Each 
node in the simulation has different pause time randomly distributed between 0 to 600 
seconds. The scalability of the proposed protocol has been evaluated with different 
network size. For each network size, the node density to 40 nodes/km2 has been kept. 
The mobility speed of the nodes was fixed to as high as 20m/s. 

5.2.2   Traffic Model  
For all simulation, the traffic sources used are 30 CBR (Constant Bit rate). Data 
packet size is fixed as 64 bytes and packet sending rate was 4packets/second. The 
clustering scheme for backbone nodes election has been used. The K in K-hop clus-
tering was chosen as 2. The implementation of the AODV has been used as provided 
with the NS-2 simulator and implementation of PLB-AODV has been used as  
provided by Ahmed et al [1] on NS-2. Multiple interface support in NS-2 has been 
implemented since it is necessary for realistic simulation of the proposed routing 
protocol which is based on MBNs. Basically the CMU's Monarch group's mobile 
node implementation [9] has been extended.  

5.2.3   Performance Metrics  
For evaluating the performance of the proposed protocol against other protocols, a set 
of metrics has been chosen. The following three metrics capture the most basic over-
all performance of the protocol:  
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Packet delivery ratio: The ratio of the total number of data packets received by all 
nodes to the total number of packets originated by all nodes. The packet delivery ratio 
is similar to network throughput.  

Average End-to-End delay: It is the delay experienced by the successfully deliv-
ered packets in reaching their destinations. This is a good metric for comparing proto-
cols supporting real time application and QoS. This metric is a measure of how  
efficient the underlying routing algorithm is, because primarily the delay depends upon 
optimality of path chosen, the delay experienced at the interface queues and delay 
caused by the retransmissions at the physical layer due to collisions. This is a direct 
measure, which shows how well a routing protocol could handle the real time traffic.  

Routing Overhead: Routing Overhead is the number of routing packets sent by 
the routing protocol to deliver the data packets to destinations.  

5.3   Results and Analysis 

5.3.1   Packet Delivery Ratio 
Mobility: Figure 1 shows the graph obtained for packet delivery ratio under different 
mobility conditions. For 1m/s mobility, all three protocols have packet delivery ratio 
almost equal to 1. But as the mobility increases, the packet delivery ratio of our pro-
posed protocol, PLB-AODV with MBN, clearly outperforms AODV and PLB-
AODV. This happens because when the mobility increases, routing information at 
nodes tend to become obsolete very rapidly especially for AODV which is a reactive 
protocol. But in our protocol, topology of backbone network, which uses AODV, 
does not suffer from mobility due to high transmission range radio used in it. 
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Fig. 1. Packet delivery ratio vs. mobility 

Scalability with Network size: Figure 2 shows the graph obtained for packet deliv-
ery ratio against different network sizes. It proves the inability of non-hierarchical 
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protocols such as AODV, PLB-AODV to be scaled to work in the large ad hoc net-
work. When the size of network and hence topology (to maintain the same node den-
sity) increase, along with it average number of hops in a route also increases. This 
results in long hops paths between nodes which are inherently prone to break under 
mobility condition. This justifies the decrease in packet delivery fraction of AODV 
and PLB-AODV with the increase in network size. But the proposed protocol does 
not suffer from this since firstly, the number does not increase much and secondly, as 
seen in Figure 2, this protocol does not suffer from mobility.  

5.3.2   Average End-to-End Delay (EED)  
Mobility: Figure 3 shows the graph for average end-to-end delay against different 
mobility conditions. As shown in Figure 3, even in the low mobility there are signifi-
cant differences in the average end-to-end delays of AODV, PLB-AODV and of this 
protocol. Since end-to-end delay is directly proportional to number of hops in the 
path, non-hierarchical protocols, e.g. AODV, PLB-AODV result in greater end-to-end 
delay. Since, this protocol is physical hierarchical protocol, number of hops and hence 
end-to-end delays experienced by packets are far less than other protocols. With in-
crease in mobility, performance of AODV decrease badly as mobility causes routes 
breakage and re-computation and thereby, increases the end-to-end delay of packets 
waiting in the router's queue.  
 
Scalability with network size: Figure 4 shows the graphs obtained for average end-
to-end delay against different network sizes. The graph shows that with the increase 
in network size, average end-to-end delay incurred by all protocols increases. How-
ever, the protocol results in far less delay and hence proves its superiority over other 
protocols for real time applications in large scale network. 
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5.3.3   Routing Overhead 
Figure 5 shows the graph for number of routing packets generated by the protocols to 
route data packets against the network sizes. Figure shows that AODV produces least 
routing overhead. This is because of its reactive nature which generates the any other 
packet than data packet only when it is needed. Where as PLB-AODV and our proto-
col are combinations of proactive and reactive protocols and hence, generates more 
number of packets, most of which are update packets generated by the PLB protocol. 
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Fig. 3. Average end-to-end delay vs. Mobility 
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6   Conclusions  

This paper has proposed a new routing protocol for large scale networks using mobile 
backbones, devised a new stable and low overhead clustering scheme, and extended 
mobile node implementation of NS-2 simulator to support multi-interface. In order to 
prove the correctness and efficiency, the proposed routing protocol has been imple-
mented and simulated on NS-2 simulator. The performance of the proposed protocol 
was compared with the performances of some existing protocols under different mo-
bility conditions and different network sizes. The metrics used for performance com-
parison are packet delivery ratio, average end-to-end delay, and routing overhead. The 
results obtained through rigorous simulations have been shown superiority of the 
proposed protocol in packet delivery ratio and end-to-end delay over other protocols 
but in routing overheads, AODV outperformed the proposed protocol.  

The issue of providing quality of service (QoS) in large scale networks has been 
rarely addressed. The proposed routing protocol uses PLB and AODV which are 
capable of supporting QoS efficiently. Hence, this scheme can easily be extended to 
support quality of service in large scale networks. Further, most of the routing over-
heads are result of update packets generated by PLB. It is observed that most of them 
are redundant. Some techniques to reduce these redundant broadcasts can be applied 
which may improve the performance of the proposed scheme.  
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Abstract. In this paper, we address the problem of video multicast
over ad hoc wireless networks. Video multicasting demands high qual-
ity of service with a continuous reachability to receivers. However, the
existing multicast solutions do not guarantee this because they are not
resilient to mobility of the nodes. Uninterrupted video transmission re-
quires continuous reachability to receivers which emphasizes the usage
of path-diversity. Hence, we propose a multiple tree multicast protocol
(K-Tree) which maintains maximally node-disjoint multicast trees in the
network to attain robustness against path breaks. We further enhance
the robustness by using the error resilient Multiple Description Coding
(MDC) for video encoding. Through simulations we show how the pro-
tocol improves the video quality as we use two or three trees instead of
a single tree.

1 Introduction

Ad hoc wireless networks are defined as the category of wireless networks that
utilize multi-hop radio relaying and are capable of operating without any fixed
infrastructure, involving unrestricted mobility of the nodes. The absence of any
central coordinator or base station and also the dynamic nature of the network
makes routing a complex one compared to infrastructure based networks. The
routing model in ad hoc wireless networks is to route data through other nodes in
the network, that is nodes act as routers also. A packet that needs to reach from
a source to a destination has to pass through different nodes in the network. The
topology of the network keeps changing continuously and routing information
has to be updated. Hence unicasting data packet can cause many problems on
ad hoc wireless networks.

Video multicast is the problem of multicasting video data, that is to trans-
mit the video stream to more than one receiver simultaneously. Many cutting
edge applications like digital classrooms require robust video multicasting so-
lutions. Video multicast problem has been extensively studied and successfully
solved for infrastructure based wired and wireless networks. The solutions are
centered around utilizing central coordinators in multicasting, which are difficult
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to extend to the peculiar ad hoc networks. Multicasting using trees and meshes
involves path breaking and making due to the mobility of nodes in the tree or
mesh. Reliable delivery of video traffic is important as there is time constraint
which discourages automatic repeat request (ARQ) in case of a packet loss or
packet error. This paper addresses the issue of reliable video multicast through
multiple trees.

Uninterrupted transmission is not guaranteed by the existing multicast solu-
tions, for ad hoc networks, as they have been predominantly designed for data
multicast which is not sensitive to delay. Single tree based multicast is not well
suited for video multicast in ad hoc networks due to the movement of nodes
leading to link breaks in the tree and hence not ensuring continuous reachabil-
ity. Mesh based multicast has some amount of robustness but the overhead is
more and also mesh based protocols transmit the same data on different paths
to a receiver and also one cannot assure more than one path to a receiver. The
reception quality of video at receivers depends on the path to the source. If
the path has breakups and makeups like the transient state of not receiving the
video packets leads to interruptions. Hence to sustain path breaks we need some
redundancy. By redundancy we mean multiple paths to receivers. The source
has to multicast the video data using these redundant paths and minimize the
number of interruptions there by improving the video quality. Hence we look to
multiple tree multicast.

Multiple tree protocols not only assure more than one path to the receivers
but also provide control on what to send on each of the trees. Having the con-
trol on what to send on each of the trees is of paramount importance to video
encoding techniques. Conventional Single Description Coding (SDC) does not
utilize the path-diversity in an efficient way. It provides redundant data at re-
ceiver, receiving the stream along different paths does not improve the qual-
ity. Error-resilient video coding techniques have been proposed to alleviate the
problems of packet loss in a network. Examples of error-resilient video coding
are Layered Coding (LC) and Multiple Description Coding (MDC). The LC
encodes the video into layers of different importance. Base layer is the most
important layer without which video cannot be decoded, while there are other
layers called the enhancement layers which are not a must for video decoding.
Also, enhancement layers, which enhance the quality of the video, can be used
for decoding only if the base layer is available. Hence, base layer, which requires
more protection, can be allocated to more trees while few trees might be given to
enhancement layers. MDC generates multiple equally important, and indepen-
dent complimentary sub-streams, also called descriptions. Each description can
be independently decoded and is of equal importance in terms of quality. The
quality of the decoded frame improves with the number of descriptions that are
correctly received. This enhances the robustness of the multicast, because based
on the bandwidth availability receivers can be allocated multiple number of de-
scriptions. Many advances in MDC have made it more widely accepted than LC
for video transmission in wireless networks. Apart from continuous reachability,
continuous delivery of decodable video data is important. MDC can trivially use



426 B. Anirudh, T.B. Reddy, and C.S.R. Murthy

the continuous reachability to provide the continuous delivery of decodable video
data. On the other hand in LC, we have to ensure continuous delivery of the
base layer and only then can we use the enhancement layers. Hence use of MDC
supplements the robustness provided by the path-diversity in the multiple trees
in the simplest fashion. A more comprehensive comparative study on MDC and
LC can be found in [1].

To the best of our knowledge, multiple tree multicast of video over ad hoc
networks has not been studied extensively. Hence, we here propose multiple tree
video multicast using MDC for robustness against path breaks. The rest of the
paper is organized as follows. In section 2 we present related work. In section 3 we
describe an online heuristic solution to finding multiple maximally node-disjoint
trees. In section 4 we propose the protocol and elucidate it with graphic exam-
ples. In section 5 we present the simulation scenario and the simulation results.
Finally, in section 6 we conclude with a discussion on future work possible.

2 Related Work

Multicasting in ad hoc wireless networks has been studied extensively in the
literature. Different approaches include constructing structures like trees [2] or
meshes [3] for multicasting. But none of these solutions are robust enough for
multicasting video traffic, because they do not guarantee continuous reachabil-
ity required for an uninterrupted transmission. Some attempts were made in
the video unicasting to reduce the number of interruptions by exploiting path
diversity [4][5][6]. The approach they used was to analyze how to use multiple
paths for robust transmission of video. In [4] only base layer was transmitted
with ARQ. The authors of [5][6] describe how MDC can use multiple paths to
distribute descriptions over different paths. The emphasis in all this work has
been to use multiple paths for the video unicast.

One-to-one multipath solutions cannot be trivially extended to one-to-many
multipath transmissions without tremendous increase in the control overhead.
Robust one-to-many transmission need structures like multiple trees. But not
much work has been done in this direction. The Independent-Tree Ad Hoc Mul-
ticast Routing (ITAMAR) [7] creates multiple multicast trees simultaneously
based on different metrics in a centralized fashion. One main problem of ITA-
MAR is that routing overhead might be very large to get enough information of
the network to build multiple trees, and the authors only show how ITAMAR
works based on perfect network information. The Multiple Disjoint Trees Mul-
ticast Routing (MDTMR) [8] protocol creates two node disjoint trees one after
the other in a serial fashion. However, the authors of [8] themselves point out
that unless the network is dense all receivers might not participate in the trees
leading to a drastic increase in the packet loss rate. Also the frequent flood of
the network with JoinReq control packets leads to a tremendously high over-
head. Our protocol is aimed at finding multiple maximal node disjoint multicast
trees with lesser overhead in a distributed fashion ensuring connectivity to all
the receivers.
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3 Online Heuristic

In this section we look into an online heuristic solution to finding a given number
of node-disjoint multicast trees. We seek to find out maximally node-disjoint
multicast trees (allowing some amount of overlap) in the network and maintain
them for our use. This overlap leads to reduction in robustness but finding
node-disjoint trees might bring in the problems of feasibility. Moreover it is
well known that maintaining network topology in ad hoc networks involves very
high overhead as the topology keeps continuously changing due to unrestricted
mobility of the nodes. Hence we need a distributed approach to finding the
trees. Also in a realistic multicast scenario receivers keep joining and leaving
the multicast group as time progresses. Hence a centralized heuristic approach
would not work efficiently as the heuristic has to be applied again and again to
account for receivers joining and leaving. The heuristic has to be online where
requests are to join and to leave. These two requests are sufficient to model
such a network where there is no mobility. Mobility is a characteristic feature of
ad hoc networks and hence the topology of the network keeps changing. Hence to
model this kind of system, we need to also include a request called the movement
request. This request changes the network, in a certain way. The change might
be reflected in the multiple multicast tree system, that is, it might lead to tree
break or it might create possibilities for a better system (lesser overlap).

Heuristic approaches can minimize the overlap by minimizing the number of
common nodes among different trees. Hence we propose a distributed online
heuristic solution to minimize the number of intersections, while serving the
requests online. Let us henceforth call such a system as K-Tree system where we
are trying to maintain K maximally node-disjoint multicast trees. A join request
would involve passing some control messages in the network and getting the new
K-Tree system. A leave request would involve percolating up the trees a delete
message until a node with degree more than two in that tree is met.

A movement request would involve changing a node position according to the
request. For simplicity let us assume movements occur in bursts. The reason
for this assumption is that it would be difficult to model a continually moving
node theoretically. Hence we assume that a node moves in bursts of distance
and these movement bursts are instantaneous to account for the fact that even
mobile nodes participate in tree formations and repairs.

It is already easy to see that, that online algorithm is the best one which serves
the request with minimum message passing, adding the least possible number
of forwarding nodes, and making the least number of increase in the number of
intersections among the trees in the system. But some thought would directly
prompt us to the fact that there is mobility. Minimization of forwarding nodes
can lead to a problem. When a node moves from one place to another, in the
system, it might lead to a substantial number of receivers dependent on this to
go orphan for the time until the system takes care of them. At the same time
it would not be appropriate to include many forwarding nodes. This is because
a tree system with more forwarding nodes leads to more movement requests
leading to maintenance requests. This observation comes from the fact that not
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all movement requests can lead to maintenance requests. But as number of nodes
increases, the fraction of movement requests leading to maintenance requests also
increases.

Hence the problem now boils down to finding an algorithm which serves the
requests by minimizing the control overhead and also the number of intersections
among the trees. We try to solve this problem by a weight (a positive quantity
used to judge a node) model.

Weight Model: To attain node disjointedness with a weight model we incor-
porate a penalty system. We penalize a node for participating in more than one
tree. We associate a weight with each node. The penalty increases the weight of
the node as the number of trees it participates in increases. The system, for each
request, has to reduce the total increase in weight of the nodes in the network.

In assigning weights to the nodes it must be noted that a single node serving
2 trees must weigh more than 2 nodes, which are each serving a tree. In a similar
way, it has to be noted that choosing a single node for l trees should increase
the weight more than the case when l different nodes are chosen for the l trees.
Hence the minimum weight of a node participating in l trees should be at least l
times the weight of a node participating in l − 1 trees. The following cost model
satisfies these conditions.

– The weight of a node in the graph is zero if it participates in no trees.
– The weight of a node in the graph which participates in one tree is x, for

some x > 0.
– The weight of a node in the graph which participates in l trees, wl, l ≤ k is

l ∗ wl−1 + y for some y > 0.
– The cost of a path is the sum of the weights of the nodes in the path.
– The cost of an operation on the graph is the positive change in the total

weight of the graph.

The term y can be used to quantify the number of intersections among the trees
while node participations can be captured by the term x. If x is large compared
to y then, in the total weight of a path, the contribution made by node partici-
pations will dominate the contribution made by the number of intersections and
vice-versa.

4 The K-Tree Protocol

In this section we define the protocol which is modeled as an online algorithm
based on the weight model mentioned in the previous section. The protocol
defines how each of the above mentioned requests is handled while trying to
minimize the total weight of the nodes. Minimizing the weight is the heuristic
idea behind reducing the number of shared nodes among the trees. A scenario
for the protocol would be to maintain maximal node-disjoint multicast trees
according to a request sequence having the requests mentioned in the previous
section. Each request in the sequence triggers an operation on the network which
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determines the changes that need to be done to the network in order to serve
the request and maintain the multiple tree system. The changes are usually
accomplished by passing messages in the network. These messages measure the
overhead of the protocol. In order to reduce this overhead we relax our condition
that each receiver should be a leaf in the subtree that it wants to participate in.
By allowing a receiver to be a forwarder overhead can be reduced to an extent
in realistic scenarios. For example, a forwarder who wants to later become a
receiver can directly become so without any message passing.

We elucidate the protocol by partitioning it into two phases. The first phase
describes how a receiver joins the multiple tree system. The next phase describes
how a maintenance of the tree system is done.

4.1 Multiple Tree Initialization Phase

The tree initialization phase is initiated by the receivers. Each node in the net-
work can participate in the K-Tree system either as a receiver or a forwarder.
Hence each node represents its participation in the K-Tree system using a K-bit
vector kvp. If the jth bit in kvp is set then the node is either a receiver or a
forwarder for the jth tree, Xj . When some node wishes to become a receiver,
it uses a K-bit vector to represent the trees that it wishes to join, kvj. If the
jth bit is set in kvj then the node wishes to be a receiver in tree Xj . A node
which wishes to become a receiver in Xj can trivially become so, if it is already
a forwarder in Xj . Thus the receiver needs to join only those trees where it is
not currently participating as a forwarder. Hence it forms a K-bit vector, kvs,
which represents the trees for which it is not a forwarder but it wants to join. It
then floods the network with a Join control packet expressing its wish to join in
the trees represented by kvs.

The flooded Join control packet reaches different nodes in the network. A
node when receives a Join control packet has to check if the packet has been
already processed by the node before. To make this identification, each Join
control packet carries the full path that it has traversed. If the node is in the
path traversed by the packet, then the packet is dropped. Otherwise the node
has to check if it can reply to the sender of this Join control packet. A reply can
be sent only in the case when the node receiving the packet participates in any
of the trees sought by the Join control packet. The receiving node has to check
to find out to how many trees it can send a reply. The node then replies using a
K-bit vector, kvr to the sender of Join control packet using the Reply control
packet. If jth bit in kvr is set then the node is replying for the tree Xj, meaning
the node participates in Xj and also that the Join control packet sender wants
to join Xj . The Reply control packet contains the complete path information to
the source, that is, the nodes and their participation vectors in the path to the
source for each of the trees represented by kvr.

As long as there are trees for which the node cannot reply (as it may not
be participating in them at the moment), the Join control packet has to be
forwarded to other nodes. That is, even if there is one tree for which a reply has
not been sent by this node then the node needs to forward the Join control packet
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with the vector kvf . If the jth bit in kvf is set then it means the node cannot
reply to the Join control packet sender for tree Xj as it does not participate
in it.

The receiver when receives a Reply packet has to collect the reply and store
all the paths that are obtained due to this reply. For each tree Xj , for which a
Join control packet was sent, the receiver stores all paths that are obtained. A
receiver that has a Join control packet which has been sent whose timer has not
expired yet, maintains a cache called ReplyBuf which stores a certain number of
replies per tree.

After the timer initiated while sending the Join packet expires, the receiver
has to choose those paths to each of the trees that it sought, which add the
least amount of weight to the multiple tree system, as this would be intuitively
minimizing the number of intersections among the trees. The receiver collects
a set of paths to each of the trees and now it has to choose one path to each
of the trees. The heuristic we apply is to choose those paths to trees that add
the minimum number of intersections that is the minimum amount of weight
to the system. For doing this, it evaluates all possible path combinations that
can be chosen to reach each of the trees. Then it chooses those paths which add
the least amount of weight to the system. The weights are calculated using the
weight model described in the section 3. Any combination of paths has a certain
number of new overlaps created among the trees. These new overlaps increase the
weights according to the weight model. Evaluating possible combinations gives
the combination with the least increase in weight which intuitively minimizes
the added number of intersections.

The receiver now finally has to send the Ack control packets to acknowl-
edge the nodes in the paths chosen. It simply unicasts Ack control packets
to its immediate parents in each of the trees and they in turn percolate it
up. The nodes receiving Ack packets establish forwarding states and initial-
ize timers for tree maintenance and tree tear down. Tree maintenance is trig-
gered when a KeepAlive control packet does not arrive from the parent in time
KEEP ALIVE TIME. And a forwarder discards the forwarding state when it
does not receive passive KeepAlive control packets from the downstream nodes
for TREE TEAR DOWN TIME. Source starts sending KeepAlive control pack-
ets, passively in data packets or exclusively for every SEND KEEP ALIVE time
units. Forwarders in turn keep forwarding it down the trees. The KeepAlive
packet also has a K-bit vector representing the trees it wishes to refresh, it car-
ries along with it the path information for these trees, that is, the nodes and their
participation vectors. KeepAlive control packets are also used to update the path
information by the nodes in the trees. It must be noted that for the protocol to
work KEEP ALIVE TIME must be more than SEND KEEP ALIVE.

An example of tree initialization is shown in Figure 1(a). It shows a multicast
session in which 4 receivers (nodes 3, 8, 12, and 18) have already joined along
the 2 trees. It also shows weights of the nodes, determined based on nodes’
current participation vectors. Node 5 is a new receiver who wants to join into
the session. It broadcasts a combined join request which is replied by node 3 for
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Fig. 1. The K-Tree protocol, K=2, (a) depicts tree initialization phase and (b) depicts
tree maintenance phase
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both trees and by node 2 for tree 2 and by node 1 for tree 1 and by node 8 for
both trees. Each reply packet carries the complete path information to the source
S. Let paths retrieved from reply packets be p11, p31, p81, p22, p32, p82 where pij

represents the path to the source S via node i for tree j. Hence now the new
receiver (node 5) has 9 combinations (i.e., 3 replies for tree 1 multiplied by
3 replies for tree 2) of paths to choose from. These possible combinations are
evaluated (refer Table 1) and the set of paths p31 and p22 is chosen as the one
adding the least weight (according to the weight model given in section 3).

Table 1. Comparison of Path Combinations

S. No. Combination Added Weight
1 p11 and p22 3x + 2y
2 p11 and p32 4x + 2y
3 p11 and p82 5x + 2y
4 p31 and p22 3x + y
5 p31 and p32 4x + 2y
6 p31 and p82 5x + y
7 p81 and p22 4x + y
8 p81 and p32 5x + y
9 p81 and p82 6x + 3y

4.2 Multiple Tree Maintenance Phase

The multiple tree maintenance is done in a soft state manner. Whenever a re-
ceiver or a forwarder gets a data packet in a tree then it refreshes its timers for
that tree, that is data packets are passive KeepAlive packets. When the timer
expires, that is if there is no data packet or a KeepAlive control packet for a
KEEP ALIVE TIME time then the node initiates this process.

The node initiating this process sends out a join request for those trees alone
which are broken. It may happen that a few trees are broken simultaneously.
Hence whenever there is a tree where there is no packet since KEEP ALIVE
TIME time, all the other trees are tested for timeouts, and all the trees that are
broken are found out and a join request for those trees is sent. This is done using
the Join packet by setting only those bits in the K-bit vector. Because it is a
maintenance operation, the tree might just be nearby, so the time out for start-
ing the processing of the received Reply packets is maintained much lesser than
the one corresponding to the tree initialization process. Further the node detect-
ing path break sends a dummy KeepAlive packet to the subtree(s) under it. The
dummy KeepAlive packet notifies the downstream nodes that a tree maintenance
is in progress and that they should not initiate their own tree maintenance.

An example of tree maintenance is shown in Figure 1(b). When the node 1
moves away, the link in tree 1 between node 10 and node 1 is broken. The
downstream node 10 detects the breakup and triggers the maintenance process.
It sends out a short timed Join control packet. This control packet is replied by
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node 12. Then an exchange of Reply and Ack packets reconnects the node 10 to
tree 1.

5 Simulation Scenario

We use the simulation model based on NS-2 simulator [9]. The IEEE 802.11
DCF is used as the underlying MAC layer protocol. The channel capacity is 11
Mbps, and a radio range of 250 meters is used. The random waypoint model
is used to model mobility of the nodes. Each node moves with some constant
speed (i.e., minimum speed is equal to maximum speed) with zero pause time.
In each run, we simulate a 65 node ad hoc network within a 1350m X 1200m
area. Each simulation is 900 seconds long and the results are averaged over 30
runs. We randomly choose one sender and 10 receivers in each simulation who
join and leave K-Tree system randomly.

5.1 Metrics

We use the following metrics to evaluate the performance of the protocol.

1. Ratio of Bad Frames (RBF): It is the ratio of number of bad frames
(totaled for all receivers) versus the number of frames that have to be received
in all, by all the receivers. We define a frame as bad if none of the multiple
descriptions of a frame are received at the receiver before the play back
deadline for the frame.

2. Normalized Packet Overhead (NPO): It is the ratio of the total number
of control and data packets exchanged in the network over the total num-
ber of data packets received by the receivers. This is used to illustrate the
forwarding efficiency and also maintenance ability.

5.2 Simulation Results

In our simulations we have chosen the following values for the parameters of
K-Tree protocol. x = 1, y = 2, MAX REPS = 4, MAX REPLIES TIMER =
200 ms, SEND KEEP ALIVE = 125 ms, and KEEP ALIVE TIME = 250 ms.

Effect of increasing K: Here we show how the protocol seamlessly scales from
one tree to two trees and three trees without doubling and tripling the overhead
and at the same time improving the video quality at the receivers. We compare
the results for K = 1 against K = 2. In this case we use a two description coding
of video. The total video transmission rate is fixed at 48 Kbps with 8 frames per
second. MDC coder generates 2 descriptions with 24 Kbps in each description.
We have kept packet rate as 8 packets per second with each packet having a
size of 3 Kb in each description. When K = 1 we send both the descriptions on
the same tree and when K = 2 we use one tree per description. Similarly we
compare K = 1 and K = 3. Here we split the video into three descriptions each
of 8 packets per second with packet size 2 Kb. In all our simulations, the play
back deadline for a frame is 120 ms after it was created.



434 B. Anirudh, T.B. Reddy, and C.S.R. Murthy

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 3  6  9  12  15  18

R
a
ti
o
 o

f 
B

a
d
 F

ra
m

e
s
 (

R
B

F
)

Mobility (m/s)

K-Tree (K=1)
K-Tree (K=2)

Fig. 2. Variation of RBF vs. Mobility
for K-Tree (K = 1) and K-Tree (K = 2)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 3  6  9  12  15  18

N
o
rm

a
li
z
e
d
 P

a
c
k
e
t 
O

v
e
rh

e
a
d
 (

N
P

O
)

Mobility (m/s)

K-Tree (K=1)
K-Tree (K=2)

Fig. 3. Variation of NPO vs. Mobility
for K-Tree (K = 1) and K-Tree (K = 2)

– Comparison of K-Tree (K = 1) and K-Tree (K = 2) : Figure 2 shows the
expected decrease in the RBF when K is increased for different mobility
values. RBF has almost fallen down by 60% when moving from K = 1 to
K = 2. As expected RBF values for both the cases decrease with increasing
mobility. Figure 3 shows the expected increase in the overhead due to increase
in the number of forwarders. But it has to be noted that the NPO has
not doubled, yet a significant improvement has been achieved in RBF. This
directly follows from the fact that the protocol, K-Tree uses bit vectors in
common join and maintenance control packets to reduce overhead.

– Comparison of K-Tree (K = 1) and K-Tree (K = 3) : Figure 4 shows the
expected decrease in the RBF when K is increased. RBF has almost fallen
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by 65% when moving from K = 1 to K = 3. Figure 5 shows the expected
increase in the overhead due to increase in the number of forwarders. NPO
has not tripled, yet there is a substantial decrease in RBF. This again shows
how important the bit vectors in control packets are in reducing the overhead.

6 Conclusion and Future Work

In this paper we designed a protocol to obtain and maintain path-diversity for
robustness for video multicast over ad hoc wireless networks. We have shown
that the protocol scales to two or three trees without doubling or tripling the
overhead, respectively. Further work may involve taking weights as functions
of battery power and bandwidth available at nodes. This would help bringing
in energy and bandwidth awareness into the protocol. Further work may also
involve finding optimal allocations of trees and partitioning of receivers according
to some good video encodings. We also would like to compare our protocol with
the existing two-tree video multicast protocols (e.g., MDTMR) to show that
the our protocol efficiently, in terms of overhead, provides high quality video as
compared to them.
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Abstract. Ad hoc wireless networks possess highly constrained energy resour-
ces. Even the energy aware protocols for ad hoc networks do not consider all
the characteristics of the underlying batteries. Hence, they fail to efficiently utilize
the available energy. Thus, a mechanism is required to measure the efficiency of
the protocols of ad hoc networks, in terms of the network lifetime. To the best of
our knowledge, there has been no reported work till date for analyzing the lifetime
of the ad hoc networks for various protocols. This paper primarily provides a
novel generalized analytical model for estimating lifetime of ad hoc networks,
in the presence of the following two kinds of MAC protocols: (i) reservation-
based TDMA protocols and (ii) a specific class of CSMA protocols that try to
follow a pattern, such as a round-robin scheduling, for packet transmission. We
prove through analytical and simulation studies that energy awareness is crucial
in deciding the performance of the MAC protocols.

1 Introduction and Related Work

The nodes of an ad hoc wireless network, a group of uncoordinated nodes which self
organize themselves to form a network, have constrained battery resources. For exam-
ple, in search-and-rescue operations, battle-fields, and in other places where setting up
of a network is difficult, it becomes difficult to replace or recharge the batteries of the
dead nodes. On the other hand, ad hoc wireless networks, with characteristics such as
the lack of a central coordinator and unrestricted mobility of the nodes, as in the case of
battle-field networks, require nodes with a very high energy reserve. In such scenarios,
there exists a need for battery/energy aware protocols at all the layers of the protocol
stack. Several protocols have been proposed, in order to improve the lifetime of the
ad hoc networks. However, not all the protocols, proposed for ad hoc networks, are en-
ergy efficient. In addition, there also exists a few energy unaware protocols, for ad hoc
networks, which unknowingly provide a better lifetime for the nodes. Hence, there ex-
ists a need for analyzing the performance of all these protocols, in terms of lifetime. The
lifetime of ad hoc networks can be defined as the time between the start of the network,
when the network becomes operational to the death of the first node [1]. In this paper,
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we focus only on the MAC layer protocols [1], [2]. This study can easily be extended
to study the effect of other higher layer protocols on the lifetime of the network.

The authors of [3] and [4] provide an analytical model that captures the behavior of
the batteries in the presence of binary and pulsed discharge. We use the battery recovery
model provided by Chiasserini and Rao in [3] for our analysis. The authors of [5] extend
the basic model for batteries provided in [4] for ad hoc wireless networks that possess
nodes powered by a dual battery setup. However, these works model a single node’s
battery discharge based on the traffic existing at that node or based on the discharge
properties of the batteries. To the best of our knowledge, there has been no reported
work till date for analyzing the lifetime of the ad hoc networks for various protocols.
We found that many of the existing MAC protocols fail drastically, to provide a higher
lifetime, in the presence of a limited energy source. Even many of the existing energy
aware protocols, such as [6] and [7] do not take into consideration all the properties of
the batteries, such as the recovery capacity effect [8]. Though they perform better than
the non-power aware protocols, in the process of energy saving, they do not provide
idle time for nodes and do not encourage battery recovery. Thus they do not exploit the
underlying battery properties efficiently. This paper proposes a novel general analyti-
cal model for estimating the lifetime of all TDMA-based MAC protocols for ad hoc
networks. The model can also be used for calculating the lifetime of ad hoc networks
that use CSMA based MAC protocols, which follow a regular pattern (a combination of
packet transmissions and idleness of the nodes) for packet scheduling, such as a round-
robin scheduling. In the discussions that follow, we use the term pattern-based CSMA
to denote these special CSMA protocols.

The rest of the paper is organized as follows. Section 2 describes the proposed an-
alytical model in detail, followed by Section 3, which discusses two MAC protocols,
BAMAC(k) [1] and RTMAC [2], to verify the proposed model. Section 4 discusses the
factors affecting the accuracy of our analytical model and analyzes the possibilities for
future work and Section 5 concludes the paper.

2 Analytical Model for Estimating Lifetime of Ad Hoc Networks

We now propose a novel theoretical model to estimate the lifetime of homogeneous
ad hoc wireless networks, in which all the nodes possess batteries with similar char-
acteristics. Our model uses discrete-time Markov chains with probabilistic recovery to
capture the behavior of the batteries of the nodes. In this section, we provide a mech-
anism to model batteries, taking into consideration the underlying MAC protocol. The
basics of batteries can be found in [8]. We assume the existence of a Smart Battery
System (SBS) [1], which provides the state of a node’s battery and hence, enables the
control of its behavior such as charging and discharging.

2.1 Description of the Model

The model used for analyzing the batteries of the nodes in a homogeneous ad hoc wire-
less network assumes all the nodes to have similar battery and traffic characteristics.
The behavior of the batteries of the nodes, using TDMA or pattern-based CSMA-based
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Fig. 1. Analytical model for estimating lifetime of ad hoc networks

protocols, is represented using a Markov model as shown in Figure 1(a). A pattern may
have combinations of packet transmissions and idleness of the nodes. This combination
then repeats itself perfectly in TDMA and with some probability in CSMA protocols.
A generalized combination of transmission and idle (recovery) state of the nodes for
all kinds of traffic is shown in Figure 1(a). Here, we assume the recovery state R to be
either receiving or the idle state of the node. Here, a set of t1 transmissions is followed
by a set of t2 recoveries, which is then followed again by a set of t3 transmissions and
so on, where ti, 1 ≤ ti ≤ Sslots and

∑i=n
i=1 ti < Sslots represents the number of trans-

missions or recoveries in the ith occurrence of Tx (transmission) or Rx (reception)
burst, respectively and Sslots is the maximum number of slots in the pattern. In TDMA
protocols, Sslots represents the number of slots available in the superframe. The state of
the battery in the Markov model represents the remaining nominal capacity of the bat-
tery. Hence, the battery can be in any of the states from 0 to N , where N is the nominal
capacity of the battery and state 0 represents its dead state. The battery model assumes
that, in any Δt time interval, the battery can remain in any one of the two main states –
transmission state (Tx) or the reception state (Rx). In Tx state, the node transmits its
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packets and discharge its battery. Whenever the node does not have packets to transmit,
it enters into the Rx state. In Rx state, the node either receive packets and discharge or
remain idle and recover charges with some probability. Here Δt, the basic time interval,
is the time taken for one packet transmission. We define a term called cycle time, which
is the time between two successive entries in to the first occurrence of the Rx or Tx
states of the successive patterns.

If the state of the battery is denoted by the tuple < N i, T i > and the initial state
is given by the tuple < N, T >, in one time interval Δt, a battery which is in state
< Ni, Ti >, goes to state < Ni−1, Ti−1 > if it discharges. If the battery remains idle
in recovery state, it reaches < Ni+1, Ti > or < Ni, Ti > with probabilities RNi,Ti

and INi,Ti respectively, where the probability to remain in the same state on being idle
is given by INi,Ti = 1 − RNi,Ti . Hence, the battery can be modeled differently in
each of these two states and the battery flip-flops between these two states. The gen-
eralized stochastic model representing the battery behavior in the network which op-
erates using TDMA or pattern-based CSMA-based MAC protocols is shown in Figure
1(a). In each time interval Δt, if the node remains in Tx state, it transmits a packet
and the battery discharges two units of its charge or, if the node remains in the Rx
state, the neighbor nodes transmit and if the node does not receive any packets, the bat-
tery recovers one unit of the charge with probability RNi,Ti , where RNi,Ti is given by
RNi,Ti = e−g×(N−Ni)−φ(Ti), if 1 ≤ Ni ≤ N, 1 ≤ Ti ≤ T and 0 otherwise, where
g is a constant value and φ(Ti) is a piecewise constant function of number of charge
units delivered which are specific to the battery’s chemical properties [1]. This value
affects the battery recovery drastically. If a node receives a packet in the Rx-state, its
battery discharges one unit of its charge. In the model shown above, Rij (Tij) repre-
sents the battery in the Rx (Tx) state at time unit i and j represents the remaining
nominal capacity of the battery. RI0 and TI0 represent the battery in its dead (absorb-
ing) state with nominal capacity 0 at any time unit I . If R and T represent the unit
transition probability matrices for a single discharge and recovery state of the battery
of a node in one basic time unit, the unit transition probability matrix for states Tx
and Rx can be calculated from Figures 1(b) and (c), respectively. While the battery
resides in Rx state, in each time unit Δt, it recovers one charge unit with probability
rΔt = RNΔt,TΔt(1 − qΔt) and enters into higher state, or remains in the same state
with probability pΔt = INΔt,TΔt(1 − qΔt). Here, qΔt is the probability that the node
receives a packet in Δt time unit. The transition probability matrices for this model can
be calculated as follows.

Tx = T t1 =

⎡⎢⎣
1 0 0 . . . 0 0
1 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0

.

.

.

.

.

.
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. . . .

.

.

.

.

.

.
0 . . . 0 1 0 0

⎤⎥⎦
t1

Rx = Rt2 =

⎡⎢⎢⎣
1 0 0 0 . . . 0 0

q1 r1 p1 0 . . . 0 0
0 q2 r2 p2 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.

.

.

.
0 0 . . . qN−1 rN−1 pN−1
0 0 0 . . . 0 qN rN

⎤⎥⎥⎦
t2

(1)

This states that whenever the battery enters in to Tx state with a nominal capacity of i,
it leaves Tx state with a nominal capacity of i − 2 ∗ t1, with a probability of 1. Here,
we assume that the nodes have at least k packets in the data buffer for transmission.
We assume the matrix index to start from 0 for the ease of denoting 0th or the dead
state. When the battery enters in to Rx state with a remaining nominal capacity of i, the
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probability that the battery will leave Rx state, after t2 slots, with a nominal capacity
of j, where j = i is given by Rxi,i. Hence, Rxi,i is the probability that the battery
does not recover any charge after spending t2 slots in Rx state and Rxi,j represents the
probability that the battery, on entering Rx state with a nominal capacity of i leaves Rx
state, after spending t2 basic time units with a nominal capacity of j.

In Figure 1(c), let the battery enter Rx state with a remaining nominal capacity of
i units. Hence, at 0th time unit, it remains in state R0i. After t2 time units, the battery
can be in any of the states from i− t2 to i+ t2 based on the number of packets received
and the probability of recovery; that is, if the node receives data in all the t2 time units,
it goes to i − t2 state and if the node does not receive any packet in Rx state, then it
remains idle for t2 time units and recovers t2 charges with a probability Rxi,t2 . Figure 1
shows two such instances. Path 1 shows that the battery remains in the same state i even
after idling for t2 time units, which is represented by the probability Rxi,i and Path 2
shows the state transitions of the battery while traversing from state i to state N in t2
idle slots. Thus the probability for this transition to happen is Rxi,N if (N − i) ≤ t2
and zero otherwise. This is because in t2 idle slots, the maximum recovery of a battery,
starting from state i, is i + t2. Path 3 shows that the node with a remaining battery
charge of i receives more than i packets and hence goes to the 0th state or the dead
state. Similarly, as shown in Path 4, if the node enters Tx state with a nominal capacity
of N , it leaves Tx state with a nominal capacity of N − 2 ∗ t1, with probability 1. The
states of the battery at different time units in Tx state is shown using Path 4.

In order to understand the battery behavior for a single occurrence of the pattern,
we should calculate the probability matrix for the Markov model representing the pat-
tern. The probability matrix is the one which differs from one MAC protocol to an-
other and characterizes them, the calculation of which is explained in detail in the
subsequent subsections for RTMAC and BAMAC(k) protocols. For the generalized
model shown in Figure 1, the probability matrix for the pattern is given by, P =
[T ]t1 [R]t2 [T ]t3 . . . [R]tn−1 [T ]tn . The time duration for which the Markov model re-
main in transient states is calculated as follows: (a) Given any probability matrix P ,
calculate matrix Q=[Q(i,j)], where i and j represent only the transient states. Remove
the rows and columns corresponding to the absorbing states of the Markov model. In
our protocol, state 0 corresponds to the absorption state or the dead state of the model.
Hence, Q(i+1,j+1) = P(i,j). The index of matrix Q starts from index 1 to represent the
absence of the state 0. (b) Calculate matrix M = (I − Q)−1, where I is the identity
matrix. (c) Now M(i,j) ×Δt represents the total number of times the battery enters state
j if the starting state is i and Δt is the time duration the Markov model spends in state
j. Based on the above steps M is calculated as follows,

M =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
0 1 . . . 0 0

.

.

.

.

.
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.

.

.

.

.

.
0 0 . . . 0 0

Z0,0 Z0,1 . . . Z0,N−1 Z0,N
Z1,0 Z1,1 . . . Z1,N−1 Z1,N

.

.
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.

.

. . . .

.

.

.

.

.

.
ZN−k−2,0 ZN−k−2,1 . . . ZN−k−2,N−1 ZN−k−2,N

⎤⎥⎥⎥⎥⎥⎥⎦

−1

Z(i,j) =
{

1 − Rxi,j if i = j

−Rxi,j otherwise

Here, since state 0 was removed, matrix starts from index 1 (representing state 1).
Hence, M is an N × N matrix starting from state 1 (index 1) whereas, P is an (N +
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1) × (N + 1) matrix starting from state 0 (index 0). Let, Tactive of a battery model
give the total active time of batteries. Here we assume that the starting state is state N ,
that is, we start with a fully charged battery system. Now the time for which it remains
active or the lifetime of the battery can be given by, Tactive =

∑N
i=1 MN,i. Hence, the

total number of discharges is given by,

Tlife =
N∑

i=1

MN,i ×
i−1∑
j=1

Pi,j (2)

where Pi,j corresponds to the entry at the ith row and jth column. Tlife corresponds to
the total number of left transitions of the model which is the total number of discharges
and hence, represents the lifetime of the network. Discharge of a node’s battery occurs
due to packet transmissions or receptions. Lifetime of a node is proportional to the
number of packets transmitted before it enters into the dead state. In order to calculate
the total number of packets transmitted, the value Tlife, which corresponds to both
transmissions and receptions of packets, has to be calculated. Then, based on the traffic
pattern, the total number of discharges caused due to transmissions alone can be derived.
Tlife cannot exceed the theoretical capacity, even if the recovery of the battery is very
high. A lesser value for Tlife than the theoretical capacity of the battery shows the
inefficient battery consumption introduced by the MAC protocol.

3 Verification of the Analytical Model

3.1 For TDMA Protocols

We use RTMAC protocol to verify our analytical model. The real-time medium ac-
cess control protocol (RTMAC) [2] provides a bandwidth reservation mechanism for
supporting real-time traffic in ad hoc wireless networks. We make the following as-
sumptions in the implementation of RTMAC protocol. We assume all the flows to be
real-time with a very long deadline. We also assume the abortion of a flow to occur only
due to the death of a node and not because of the missing of a flow deadline.We assume
one basic time unit Δt as the time taken for one packet transmission. Δt consists of
several superframe slots.

Analysis of RTMAC Protocol. As mentioned earlier, the proposed analytical model
varies with different MAC protocols, only in their probability matrices. The value of ti,
1 ≤ ti ≤ Sslots and

∑i=3
i=1 ti < Sslots varies depending on the nature of the protocol.

Thus we first calculate, from the behavior of the RTMAC protocol, the unit probability
matrix of the analytical model for a single occurrence of the pattern. In RTMAC pro-
tocol, this time duration is the superframe time duration. The cycle time in RTMAC
protocol is also the superframe time. In one superframe, each node reserves a set of
slots and then transmit its packets. Once the reservation is made in the first superframe,
the same reservation is carried for the subsequent superframes. The Markov model rep-
resenting the behavior of RTMAC protocol is shown in Figure 2. The probability matrix
for each of the superframes remains the same. In RTMAC protocol for every node, the
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probability matrix is given by P = [R]t1 [T ]t2 [R]t3 , where 0 ≤ t1, t2, t3 ≤ Sslots and
Sresv is the total number of slots reserved by that node. Here Sslots is the total num-
ber of superframe slots and Tx and Rx are given in Equation 1, respectively. Once
the probability matrix is calculated, we use Equation 2 to calculate Tlife. Based on the
traffic in the network, we calculate the maximum number of packets transmitted by the
node, which is the parameter used to define the lifetime of the network. We now discuss
the lifetime calculation of the network, for the following cases.

(1) In general the total number of discharges by a battery (both due to transmissions
and receptions) correspond to its lifetime. We assume that the set of receivers and trans-
mitters of the network form a disjoint set and all the nodes reserve equal number of
slots per superframe because of the uniform traffic characteristics. We also assume that
more than one node does not transmit to the same receiver. Thus, the transmitters of
these networks are the first ones to die, because they discharge twice the charge as the
receivers. Thus the lifetime of the transmitters become the lifetime of the network. If a
node encounters Tlife discharges, and if we assume each packet transmission (recep-
tion) to correspond to two (one) units battery discharges the total number of packets
transmitted by the node is given by, Tpkts = Tlife

2 . If the node is the receiver, the total
number of packets received by the nodes is given by, Tpkts = Tlife.
(2) If we assume each node in the network to transmit and receive equal number of
packet per superframe, the total number of packets transmitted and received by the
node is given by Tpkts = Tlife

3 .

Comparative Study of Theoretical and Simulation Results. We now provide a com-
parative study of the analytical results with those of simulations. All the protocols dis-
cussed were implemented using GloMoSim simulator. All the nodes were assumed to
be sending packets with the same transmission power. We used the following simu-
lation parameters: simulation area - 2000m × 2000m, number of nodes - 10 to 40,
transmission power - 12dB, channel bandwidth - 2Mbps, C - 2000, N - 250, and bat-
tery parameter g - 0.05. The routing protocol used was Dynamic Source Routing (DSR)
protocol. In the following discussion, capacity of a battery refers to nominal battery
capacity unless otherwise specified. We have assumed the data packet size to be 512
bytes. In the discussions that follow, we assume a static ad hoc wireless networks. All
the results in this section have been obtained at 95% confidence level. We make the
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following assumptions in the implementation of RTMAC protocol. (a) We assume only
one flow in the network. In the discussions of the results, we also show that the re-
laxation of this assumption has no significance on the performance of the protocol, in
terms of lifetime. (b) We assume listening to the channel by a node as idling of the node
and thus to consume zero power. (c) As mentioned in the analysis, we assume that the
set of receivers and transmitters of the network form a disjoint set and all the nodes
reserve equal number of slots per superframe because of the uniform traffic character-
istics. (d) Similarly a node does not receive packets from more than one source node.
(e) We assume the nodes’ data buffer to have at least k packets.

In the RTMAC protocol, every node reserves a set of slots in the superframe. The
time between two transmissions and recoveries is shown in Figure 3. An increase in
the number of nodes in the network does not affect the network lifetime. Thus the
time durations T and R are affected only by duration of superframe and number of
slots reserved per node per superframe. Figure 4 shows the theoretical estimation and
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Fig. 5. Effect of k on network lifetime

simulation results of the lifetime of the network for varying recovery slots, which is
introduced by varying the superframe duration. As shown in the figure, the lifetime
increases as the superframe time (number of recovery slots) increases, which can be
observed from Figure 3(a) where R1 > R2. Thus, as the superframe time increases,
the nodes get more time for recovery, which increases the nominal capacity of their
batteries. In addition, recovery capabilities of the battery increases with the increase in
the nominal capacity. Hence, a burst of recovery slots is favorable than an equivalent
amount of discrete recovery slots. The maximum lifetime is attained when whole of the
theoretical capacity is utilized. Similarly, Figure 5 shows the lifetime of the network for
varying values of k, where k is the number of packets transmitted continuously or the
number of slots reserved by the node for packet transmission. It is clear from Figure
3(b) that as k increases, the lifetime of the network decreases because of the increase in
the number of slots. A continuous discharge decreases both the theoretical and nominal
capacities of the battery, which reduces the recovery capacity effect drastically. Hence,
a continuous burst of transmission is highly unfavorable for batteries. The discrepancies
between the theoretical and the simulation results are in due to the randomness involved
in the probabilistic recovery of the batteries of the nodes.
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3.2 For Pattern-Based CSMA Protocols

We use BAMAC(k) protocol [1], a round-robin MAC scheduling protocol, to verify
our analytical model. Battery Aware MAC (BAMAC(k)) protocol, an energy-efficient
contention-based MAC protocol, tries to increase the lifetime of the nodes by exploiting
the recovery capacity effect of the battery.

R  R  R ... R

T  T  T ... T

State Rx

n x k time units

k time units

State Tx

Fig. 6. Illustration of BAMAC
Protocol
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Rx N−k−2,i

Fig. 7. Markov model representing battery behavior

Analysis of BAMAC Protocol. Figure 6 shows the Markov model for BAMAC(k)
protocol. Here, R is the probability matrix of the battery for one basic time unit in
Rx state. In the BAMAC(k) protocol, assuming a perfect round-robin scheduling, each
node transmits for k basic time units and remains in the receiving or recovery state for
n×k basic time units where n is the number of neighbors. Here, (nk+k)Δt corresponds
to one cycle time for BAMAC protocol. Hence, in the battery model, whenever the node
enters Tx state, it remains there for k units of time and in each basic time unit discharges
two units of its charge with probability 1. The battery, then, enters Rx state and remains
there for n × k units of time. The transition probability matrix for Rx state is given by
Rx = Rnk. As in RTMAC, we assume the matrix index to start from 0 for the ease of
denoting 0th or the dead state. When the battery enters in to Rx state with a remaining
nominal capacity of i, the probability that the battery will leave Rx state, after nk
slots, with a nominal capacity of j, where j = i is given by Rxi,i. Hence, Rxi,i is the
probability that the battery does not recover any charge after spending nk slots in Rx
state and Rxi,j represents the probability that the battery, on entering Rx state with a
nominal capacity of i leaves Rx state, after spending nk basic time units with a nominal
capacity of j. The transition probability matrix for Rx = Rnk and Tx = T k states are
given as follows.

Rx =

⎡⎢⎣
1 0 0 0 . . . 0 0

q1 r1 p1 0 . . . 0 0
0 q2 r2 p2 0 . . . 0
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where, T is the probability matrix for one basic time unit in Tx state. This states that
whenever the battery enters in to Tx state with a nominal capacity of i, it leaves Tx state
with a nominal capacity of i−2k, with a probability of 1. Here we assume that the data
buffer for all the nodes remains always full. That is the nodes always have packets for
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transmission. Hence, the one-step transition probability matrix for the Markov model
for one cycle time of BAMAC(k) is given by

P = Tx × Rx = T k × Rnk =

⎡⎢⎢⎢⎣
1 0 . . . 0 0

.

.

.

.

.

. . . .

.

.

.

.

.

.
1 0 . . . 0 0

Rx0,0 Rx0,1 . . . Rx0,N−1 Rx0,N

.

.

.

.

.

. . . .

.

.

.

.

.

.
RxN−k−2,0 RxN−k−2,1 . . . RxN−k−2,N−1 RxN−k−2,N

⎤⎥⎥⎥⎦
Hence, the final Markov model, for one cycle time unit ((nk+k)Δt) is shown in Figure
7. Figure 7 shows that a battery in state i, at the end of 1 cycle, can be in any of the
states from i − 2k − nk (after discharging 2k charge units in the transmission of k
packets and discharging nk units in the reception nk packets from all the n neighbors)
to i − 2k + nk (after discharging 2k charge units and recovering for the whole nk time
units). The probability value Rxi−k−2,j (Pi,j) refers to the probability that the battery
goes to state j from state i. Once the probability matrix is calculated, the steps discussed
in Section 2.1 are used to calculate the values of Tactive and Tlife. In general, Tlife

represents the lifetime of the network. However, as in RTMAC, we assume the lifetime
of the transmitter as the lifetime of the network and thus the total number of packets
transmitted represent the lifetime of the network. As mentioned earlier, based on the
traffic pattern, the total number of discharges caused due to transmissions alone can be
derived. We now explain a method to calculate the number of packets transmitted, for
one such traffic pattern. In our theoretical model, two discharges of a battery correspond
to either a packet transmission or reception of 2 packets. Calculation of total number of
packet transmission depends on the value of qΔt. For example, if we assume that in nk
time units spent by the battery in Rx state, each node receives k packets from one out
of n neighbors, the probability that a packet is received in one time unit of Rx state is
given by qΔt = k

nk = 1
n . Thus, the total number of packets transmitted, in this case, is

given by, Total number of transmissions = 2×Tlife

3 . Similarly, if a node does
not receive any packet in nk time units, the total number of packets transmitted is equal
to Tlife

2 . Hence, the total number of packets transmitted can be calculated based on the
value of Tlife and the traffic pattern.

Comparative Study of the Simulation and Theoretical Results. We now discuss the
effect of k value on the performance on the system. Figures 8 and 9 show the number
of packets transmitted as k value increases from 1 to 20 and 1 to 250, respectively. The
corresponding graphs obtained using theoretical analysis are provided in Figures 10 and
11. As shown in the Figure 8-11, an increase in the number of neighbors (n) corresponds
to an increase in the number of recovery slots (nk). This ultimately increases the number
of packets transmitted because of an increase in the recovery probability. Thus, if longer
battery lifetime and higher number of packet transmissions are favored, a smaller value
of k, that is k = 1, is preferred. Whereas, if higher throughput is preferred, higher
values of k is chosen. The discrepancy between the theoretical and the simulation results
is mainly because, in the theoretical analysis, a perfect round-robin scheduling of the
nodes is assumed. Hence, there exists exactly nk recovery slots and k transmission
slots, whereas, in the simulations, we assume a random back-off.
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4 Limitations of the Model and Directions for Future Work

The model discussed so far assumes that all the nodes in the network possess similar
battery and traffic characteristics. However, in real scenario, end users (mobile nodes)
of the ad hoc wireless network may have heterogeneous nodes, which may vary in
voltages, recovery capacity effect, current rating, lifetime, operational environment, and
weight. Hence, heterogeneity has to be taken into consideration in the proposed model.

As mentioned in Section 3.1, we assume that the nodes to consume zero power when
they listen to the channel. However, listening consumes a sizable amount of power,
which is almost equal to that for packet reception, in the case of sensor networks. The
power consumption in the listen state of a node can easily be incorporated in the pro-
posed analytical model, by assuming the listening of node to consume battery charge. In
future, we plan to propose a generalized analytical model to analyze the lifetime of both
homogeneous and heterogeneous ad hoc wireless networks, for all types of MAC proto-
cols. The problems with CSMA protocols is that they do not follow a specific pattern in
transmitting their packets because they follow a random back-off scheme. The behavior
of a node’s battery recovery and discharge is affected by the activities at all the higher
layer protocols. However, since this paper is the first attempt towards constructing a
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model for estimating lifetime of ad hoc networks, we assumed only the effect of MAC
layer to be present on the discharge and recovery of the underlying nodes’ batteries.

5 Conclusions

Ad hoc wireless networks are characterized by highly constrained energy resources. All
the layers of the protocol stack should possess energy efficient protocols. Thus, there
exists a need for analyzing the lifetime of ad hoc networks, in the presence of these
protocols. We, in this paper, proposed a general analytical model using discrete-time
Markov chain with probabilistic recovery to analyze the lifetime of the homogeneous
ad hoc wireless networks, in the presence of TDMA and pattern-based CSMA-based
MAC protocols. We also verified the model using two MAC protocols, RTMAC and
BAMAC(k). Finally, we have discussed a general mechanism to extend the proposed
basic model to estimate the efficiency of all CSMA protocols.

References

1. S. Jayashree, B. S. Manoj, C. Siva Ram Murthy, “On Using Battery State for Medium Access
Control in Ad hoc Wireless Networks”, Proceedings of ACM MOBICOM 2004, pp. 360-373,
September 2004.

2. B. S. Manoj and C. Siva Ram Murthy, “Real-Time Traffic Support for Ad Hoc Wireless Net-
works,” Proceedings of IEEE ICON 2002, pp. 335-340, August 2002.

3. C. F. Chiasserini and R. R. Rao, “A Model for Battery Pulsed Discharge with Recovery Effect,”
Proceedings of IEEE WCNC 1999, vol. 2, pp. 636-639, September 1999.

4. C. F. Chiasserini and R. R. Rao, “Energy Efficient Battery Management”, Proceedings of IEEE
INFOCOM 2000, vol. 2, pp. 396-403, March 2000.

5. P. Rong and M. Pedram, “Battery-Aware Power Management Based on Markovian Decision
Processes”, Proceedings of ICCAD 2002, pp. 707-713, November 2002.

6. R. Wattenhofer, L. Li, P. Bahl, and Y. M. Wang, “Distributed Topology Control for Power-
Efficient Operation in Multi-Hop Wireless Ad Hoc Networks,” Proceedings of IEEE INFO-
COM 2001, vol. 3, pp. 1388-1397, April 2001.

7. A. Srinivas and E. Modiano, “Minimum Energy Disjoint Path Routing in Wireless Ad Hoc
Networks”, Proceedings of ACM MOBICOM 2003, pp. 122-133, September 2003.

8. C. Siva Ram Murthy and B.S. Manoj, “Ad Hoc Wireless Networks: Architectures and Proto-
cols”, Prentice Hall, NJ, USA, 2004.



 

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 448 – 459, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Proxy Based Efficient Checkpointing Scheme for Fault 
Recovery in Mobile Grid System 

Imran Rao1, Nomica Imran1, PilWoo Lee2, Eui-Nam Huh1,*, and TaeChoong Chung1 

1 Department of Computer Engineering, Kyung Hee University,  
Yongin-si, Gyeonggi-do, 449-701 South Korea  

{imran, nomica}@oslab.khu.ac.kr, {johnhuh, tcchung}@khu.ac.kr  
2 Korea Institute of Science Technology and Information (KISTI) 

pwlee@kisti.re.kr  

Abstract. Mobile Grid is an emerging and prospering field of distributed 
computing where mobile devices are enjoying the benefits of Grid. Challenges 
faced by mobile Grid are unpredictable network quality, lower trust, limited 
resources (battery power, network bandwidth, storage, processing power, etc) 
and extended periods of disconnections which may result in lost of the work 
done by these devices. We, therefore, need a proper fault tolerance scheme for 
these mobile hosts. A major issue is the appropriate handling of failures with 
minimal processing and storage overhead on mobile hosts. To meet these goals, 
we propose a proxy-based coordinated checkpointing scheme for our mobile to 
Grid middleware, Mobile Access to Grid Infrastructure (MAGi). In this scheme 
mobile hosts seamlessly store checkpoints on their respective proxies running 
on the middleware. Together with the central coordinator component, these 
proxies act as a centralized checkpointing store. This approach makes it 
efficient to rollback to the latest consistent global snapshot, without direct 
involvement of the mobile hosts, which results in less processing and storage 
overhead on mobile device as compared to existing schemes. 

Keywords: Checkpointing, Fault Tolerance, Mobile Grid. 

1   Introduction 

Grid computing is based on an open set of standards and protocols that enable 
coordinated resource sharing and problem solving in dynamic, multi-institutional 
virtual organizations [2]. With Grid computing, organizations can optimally utilize 
computing and data storage by pooling them for large capacity workloads, sharing 
across networks and enabling collaboration across enterprise boundaries. Though the 
concept of Grid computing is still evolving, yet there have been a number of 
achievements in the arena of scientific applications, such as EU Grid, Particle Physics 
Grid and Bio Grid. Extending this potential of the Grid to a wider audience, 
particularly to users of wireless mobile devices, who are the prospective users of this 
technology, promises increase in productivity. 
                                                           
* Eui-Nam Huh is the corresponding author for this paper. 
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Mobile devices promote mobile communication and flexible usage, yet they bring 
along problems such as unpredictable network quality, lower trust, limited resources 
(power, network bandwidth etc) and extended periods of disconnections [3]. If such 
resource limited mobile devices could access and utilize the Grid's resources then they 
could implicitly obtain results from resource intensive tasks never thought of before. 
This bridge between the mobile devices and Grid computing is named as Mobile Grid 
in literatures, can be thought of in two possible ways [4]. First, the mobile devices can 
act as a Grid resource consumer and can initiate the use of Grid resources, monitor the 
jobs being executed remotely, and take any results from the Grid. Secondly and more 
interestingly, mobile devices can also be assumed to participate in Grid as a resource 
provider and not just a resource recipient. For an example, consider mobile health 
care system which provides immediate, inexpensive and ubiquitous medical solutions 
to the remote patients and saves the time of healthcare professionals. These health 
care services include diagnoses of diseases by symptoms matching, analysis and 
visualization of patient’s health records. Thanks to Mobile Grid technologies, now 
medical professionals and scientists can access these patients record with their hand-
held mobile devices and monitor and schedule these resource intensive tasks on the 
Grid. Doctors and nurses can access medical information, prescribe treatment and 
send patient updates from anywhere in the hospital, clinic, or patient's home, without 
needing to be physically at the site. 

Although Mobile Grid promise a lot good to the wireless mobile community and is 
an intrinsic choice to delegate resource intensive tasks to Grid, the mobility, 
unpredictable network quality, lower trust and security vulnerabilities (such as device 
theft or lost) of mobile devices hinder to make this envisage a reality. To breach this 
gap between resourceful highly available Grid resource and resource constrained 
unreliable wireless mobile world and make Mobile Grid reality, we need to overcome 
the inherited fault prone nature of the mobile devices. Traditional fault tolerance 
techniques are inadequate and unfeasible to meet the mobile Grid challenges, as 
explained in next Section. Special measures are required to be taken to ensure fault 
tolerance of the mobile devices and once the fault occurred, to roll back to the last 
correct state.  

In this paper, we present a fault tolerant scheme for our mobile to Grid middleware 
MAGi [6], enabling heterogeneous mobile devices to access Grid services in a fault 
tolerant fashion. We extend the work done by [5] and propose a proxy based 
extension of this checkpointing approach. Our proxy-based coordinated checkpointing 
scheme takes storage and processing overhead from low-power mobile devices and 
delegates it to their respective proxies running on mobile service station (MSS). 

Rest of this paper is organized as follow: In section 2, we analyze the problem in 
more details and lay down the requirements for our proposed systems. Section 3 
elaborates our proposed proxy-based checkpointing scheme in details. In section 4, 
we present the simulation results and analyze our work. Section 5 surveys the existing 
work in the field of fault tolerance, in general and in mobile Grid in specific, and 
gives a comparison with our work. In section 6, we conclude our work and highlight 
the future directions. 
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2   Problem Statement and Research Issues 

Unlike wired distributed Grid systems, availability of resources changes dynamically 
in mobile Grid system. The node may suddenly disappear due to disconnections or 
exhausted power and can lead to unpredictable results and even failure of the system 
which can further cause the loss of opportunity, financial loss or even loss of human 
lives. Since the failure probability increases with unpredictable network quality, fault 
tolerance is an essential characteristic of such mobile Grid systems. These mobile 
Grid systems must provide redundancy and mechanisms to detect and localize errors 
as well as to reconfigure the system and to recover from error states. 

Traditional fault tolerance techniques are inadequate and unfeasible to meet the 
mobile Grid challenges. To elaborate these challenges, we first explain the checkpoint 
in the conventional wireless systems and then highlight then their short comings 
which set a layout for our proposed solution. 

2.1   Overview of Checkpointing 

Checkpointing is the saving of program state, usually to stable storage, so that it may 
be reconstructed later in time. Checkpointing provides the backbone for rollback 
recovery (fault-tolerance). To be recoverable, the processing node must save its 
system states and log incoming and outgoing messages from time to time on a stable 
storage so that later it can be re-inserted by reading its most recent saved state and 
message logs. Because of possible non-determinism, a recoverable node cannot send 
the same messages it sent before its failure, other processes might need to rollback to 
ensure consistency. In this scenario, a local checkpoint is then a snapshot of the local 
state of a process and a global checkpoint is a set of all local checkpoints saved on 
nonvolatile storage. For constructing a consistent snapshot of the system, local 
snapshot is selected for each node at the time of recovery. A set of all local snapshot 
points, that together can achieve a consistent snapshot of the system, is known as 
recovery line. An important issue to recover from node failure is collection of 
consistent global snapshot. A correct and consistent global snapshot must not have 
lost or orphan messages. The problem of ensuring that the system recovers to a 
consistent state after transient failures has two components, checkpoint creation and 
rollback-recovery. 

There are two approaches to create checkpoints, coordinated and non-coordinated. 
With the first approach, processes coordinates their checkpointing actions such that 
each processes only its most recent checkpoint, and the set of checkpoints in the 
system is guaranteed to be consistent. When a failure occurs, they system restarts 
from these checkpoints [7]. In the second approach, processes takes checkpoints 
independently and save all checkpoints on stable storage, Upon a failure, processes 
must find a consistent set of checkpoints among the saved ones [8]. Many algorithms 
have been proposed to efficiently calculate the consistent global snapshot. If 
algorithm is non-intrusive and efficient, it is considered as a good snapshot collection 
algorithm. Non-intrusive algorithm doesn’t force system nodes to freeze there 
computations during snapshot collection and hence are non-blocking. Efficient 
algorithm keeps efforts required for collecting a consistent snapshot to a minimum. 
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2.2   Fault Recovery Issues in Mobile Grid 

Mobile Grid is composed of a fixed network and a wireless network that interact with 
each other. The wireless network consists of mobile hosts (MHs) which have the 
capacity to exchange messages with a mobile support station (MSS). MSS is defined 
as the infrastructure machine (usually thought to be on a fixed and wired network) 
that is rich in resources and communicates with MHs within its range. The MH may 
move from one cell to another while communicating with the fixed network (or with 
another MH through the fixed network). Cell is a logical or geographical area covered 
by an MSS. Checkpointing schemes for wired networks rely on active participation of 
nodes to process, calculate and store a local checkpoint. But mobile devices being 
light in nature cannot optimally calculate and store the checkpoints locally. The 
critical and challenging problem of mobile computing is how to cope with the special 
characteristics of the mobile wireless environment, to make balanced usage of 
computation and communication and support the user's mobility. Fault tolerance 
schemes proposed for wired distributed systems are not suitable for distributed mobile 
Grid environment because of following reasons;  

• Checkpointing includes the time and processing to trace the dependability tree 
and to save the states of the processes on the stable storage. Mobile devices are 
mostly limited in there resources like low processing power, short life battery and 
limited storage capacity. These limitations provide obstacles in implementing 
traditional checkpointing schemes on MHs. Any checkpointing scheme designed 
for mobile networks should consider these vulnerabilities. 

• Distributed checkpointing schemes, in which every node can initiate a 
checkpointing process, leads to another performance issue for the resource 
limited mobile devices. In order to keep the checkpointing sequence number 
updated, any time a process takes a checkpoint; it has to notify all the processes 
in the system, which will consequently result in network over flooding with 
control messages. 

• MHs are more prone to catastrophic failures like theft, physical damage and loss. 
To ensure security, checkpointing schemes must rely on some other alternative 
stable repositories.  

• If the network connection goes down (due to power loss, being out of range etc) 
or some other error occur in the normal execution of the system, user would lose 
his connection and would have to start mediating with the Grid service from 
scratch which would result in loss of precious time and resources. 

3   Proposed Solution 

Due to the intrinsic limitations of the non-coordinated checkpointing, such as 
considerably large amount of time, processing and stable storage is required to 
calculate and save frequent checkpoints; coordinated checkpointing is an attractive 
approach for transparently adding fault tolerance to the wireless mobile devices. We 
present an enhanced version of [5] technique, which purposed that the checkpoint can 
be stored on any storage media, either on the MH or on MSS. But mobile devices, 
being light in processing and having limited storage, cannot efficiently store and bear 
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the calculation overhead of constructing the dependability checkpointing tree as 
suggested by [5]. To solve these issues, we propose a proxy based coordinated 
checkpointing extension of this approach. Our scheme is based upon the assumption 
that in our system, all the interaction of concern is only between a MH and MSS, that 
is no two MH can communicate with each other directly. This assumption is very 
practical and acceptable in a middleware based mobile Grid environment. Please note, 
we are limiting our discussion to one wireless mobile cell. In a system with multiple 
wireless cells and MSS, the scheme can easily be extended as explained in our 
previous work [6]. We also assume that a single MH initiates the algorithm to take the 
permanent checkpointing. Again as all communication is through MSS, if there are 
concurrent invocations, it can easily be synchronized. 

In our proposed coordinated checkpointing scheme, we introduce the concept of 
mobile host proxy (MHP), which seamlessly communicates to their respective MH 
and takes storage and processing overhead from low-power mobile device. This MHP 
is the only interface to communicate to MH from MSS and vice versa. MSS 
coordinates among all the MHPs to calculate globally consistent snapshot. We 
propose that rather than calculating and storing the checkpoints at the mobile device, 
MH delegates this task to its respective MHP. MH offline stores its checkpoints on its 
respective proxy seamlessly, which subsequently participates in the global 
checkpointing calculation algorithm without direct involvement of the MH. As MHP 
is a static host and resides on the MAGi middleware, which is rich in resources and 
have access to unlimited power of Grid, at least in theory, this delegation results  
in better performance and reliability as compared to existing techniques. Fig. 1 
elaborates this scenario. 

Our proxy based checkpointing algorithm uses enhancement two-phase commit 
(2PC) protocol in which we saves two types of checkpoints on MHP; permanent 
and tentative. A permanent checkpoint can not be undone, while a tentative 
checkpoint can be undone or changed to permanent. In first phase MHP takes its 
latest local snapshots and mark it as tentative. In tentative phase, MHP refrains 
from communication with other processes.  Moreover, after receiving tentative 
checkpoints from all relevant processes, MSS will convert the tentative checkpoints 
to permanent and store in the stable storage to rollback for fault recovery. If any 
relevant process refuses to take tentative checkpoint, it will notify back to MSS 
which will notify all the participating processes to rollback the checkpointing 
activity and discard their tentative checkpoints. By relevant process we mean a 
process which received or sent a message from/to the checkpoint initiator after 
taking its last permanent checkpoint. So only affected processes are involved in the 
checkpointing process, which save the considerable overhead on the system. In 
addition to the tentative and permanent checkpoints, we employ the concept of 
mutable checkpoints [5] in our proxy based checkpointing scheme to avoid the 
checkpointing inconsistencies [16], [1]. Mutable checkpoints are neither tentative 
and nor permanent. When a MH takes a mutable checkpoints it doesn’t send the 
checkpoint requests to other MHs and don’t need to save the checkpoint on stable 
storage.  

MHP being the gateway to MH, log and number all the messages sent and received 
by MH. Moreover, MHP after a certain time quanta, request its corresponding MH to 
take a local snapshot of its processes (which includes process states, function stack). 
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This time quanta can be adjusted by the administrator and depends upon the network 
availability. Moreover every MH may have its own snapshot frequency. This process 
of taking local snapshot is an offline activity and is not synchronized with the global 
checkpointing process. After taking its local snapshot, MH sends it back to MHP. 
Subsequently MHP stores this local checkpoint in its personal storage which is readily 
available to it. After time quanta expire, MHP will repeat these steps and will update 
the local snapshots. This latest local of snapshot will enable MHP to rollback to  
an appropriate global consistent state of the system without direct involvement of  
the MH.  

It is important to note that some of the MHPs will just mark the latest as tentative 
which will save the time to connect to MH and receive the snapshot. It means that if 
the MHP got the latest snapshot, it needs not to ask MH to send again. If the snapshot 
MHP has in its personal stable storage is expired, only than it will ask MH to send the 
latest snapshot. Fig. 2 explains the process. We will use terms MHP and MH 
interchangeably when there is no ambiguity. 

 

Fig. 1. Proxy based Checkpointing Scheme for Mobile Grid 

3.1   System Model 

Any pMH  in the system can initiate the checkpointing process by sending a request 

to through its pMHP . If there are n mobile hosts, system can be modeled as; 

},...,3,2,1{}),,{( npMSSMHPMH pp ∈∀  

Let pMH  has its mobile host proxy pMHP  residing on the resourceful fixed MSS. 

pMHP  maintain two array pR  and pcsn  of n bits where 1][ =jRp  means that 

pMHP  receive a message from jMHP  in the current checkpoint interval and ][ jcsnp  

represents the checkpoint sequence number of jMHP  known at pMHP . Besides that 
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pMHP  maintains two boolean variables statecp _  and psent  to indicate if pMHP  is 

in checkpointing state and if it has sent a message during its current checkpointing 
interval respectively. pMHP  uses variables pcsnold _  to save the csn  of  the current 

tentative checkpoint. It also uses a tuple ),( inumpidtrigger  of checkpointing initiator 

identifier pid and csn number at pid . In our algorithm we use a non-negative 

variable which is used to detect the termination of checkpointing algorithm. Initially 
array ][ jcsnp , statecp _ , ω  are all initialized to 0s. ),( inumpidtrigger  is initialized 

to )0,( p  at pMHP . When pMHP  sends a message, it appends its ][ pcsnp  to the 

message. Also pMHP  checks if statecp _  is equal to one. If so, pMHP  also 

piggybacks its trigger with the message. If pMHP  receives a message from qMHP , 

pMHP  takes a tentative checkpoint if and only if  csnreqcsnold p __ ≤  (where 

csnreq _  is appended with the checkpointing request). Note that pcsnold _  is 

literarily used to instead of ][ pcsnp . 

3.2   Checkpointing Scheme 

Let qMH initiate the checkpointing process proxy qMHP  at time 2t  such 

that ptt Δ+< 12  and resumes its working. The checkpointing initiation process 

includes incrementing its ][qcsnq , setting its  to 1, setting its qstatecp _  to 1 and 

storing its own identifier, the new ][qcsnq  in its trigger and sending this information 

along with its latest snapshot to its MHP, that is qMHP in this case. After receiving 

this information from qMH , qMHP marks the received snapshot as tentative and saves 

it on its personal local storage. Subsequently qMHP notify MSS for its willingness to 

take a checkpoint by sending checkpointing request. Request carries the trigger of the 
initiator, qR and . MSS multicasts this request to all iMHP connected such 

that 1][ =iRq and where qi ≠ .  

Upon receipt of the checkpointing request from qMHP , pMHP will decide its 

willingness to take the checkpoint by evaluating if this checkpoint is relevant by 
comparing csnreq _ with its csnold _ , that is if and only if csnreqcsnold p __ ≤ .  If 

any of pMHP is not dependant upon the initiator, it will simply discard the request 

and will continue working as normal. Otherwise, pMHP , on behalf of pMH , updates 

its csn and statecp _ and compares checkpointing request message trigger with its 

own trigger. If message trigger is equal to its own trigger (implying that pMHP has 

already taken a checkpoint for this checkpointing), pMHP checks if it has a mutable 
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checkpoint which has a trigger identical to message trigger. If not, pMHP sends the 

appended to the initiator; otherwise, pMHP turns the status of mutable checkpoint 

as tentative and then propagates the request. 

 

Fig. 2. (a) Calculating local snapshot (b) Calculating global consistent checkpoint 

If pMHP propagates the request to all MHs on which it depends, it may result in a 

large number of redundant system messages since some MH on which pMHP depends 

may have received the request from other MH. The [8] algorithm uses this approach 

and its system message overhead can be as large as )( 2NO , where N is the number of 

MH in the system. On the other hand, only propagating the request to MHs on 
which pMHP depends, but qMHP  (the sender) does not, may not work since receiving 

a request does not necessarily mean that the MH inherits the request. We solve this 
problem by attaching some information (csn and R which are saved in a structure 
called MR in the algorithm) to the request as does [9]. pMHP only propagates the 

request to each kMHP on which pMHP depends, but kMHP may not have inherited the 

request; that is, if pMHP knows (by MR) some other process has sent the request 

to kMHP with ][_ kscncsnreq p≥ ( csnreq _  is appended with the request and saved 

in csnkMR ].[ ), it does not need to send the request to kMHP ; otherwise, it has to send 

the request since kMHP may inherit the request from pMHP . Also, pMHP appends the 

initiator's trigger and a portion of the received weight to all those requests. Then, 

pMHP sends a reply to the initiator with the weight equal to the remaining weight and 

resumes its underlying computation. 
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If triggerowntriggermsg __ ≠ , pMHP  takes a tentative checkpoint, increases its 

pcsn , and propagates the request as above. At last, pMHP clears pR and psent , sends 

a reply to the initiator with the remaining weight, and then resumes its underlying 
computation. 

3.3   The Algorithm 

 

4   Simulation and Analysis of Results 

We simulated our enhancement on [5] to gauge the performance effects due  
to the mobile host-proxies inclusions in the systems. After every fixed time 
interval pΔ , pMH takes its local snapshot, describing current state of pMH , and sends 

to pMHP . We define )( 1tS p as local snapshot of pMH at time 1t . Letϕ is the time  

to calculate local snapshot at pMH . If λ is the wireless network bandwidth 

between pMH and pMHP  and θ  is the data load associated with )( 1tS p  then Γ , time 

taken to transfer snapshot from pMH to pMHP , can be calculated as follows;  

λθ /=Γ  
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Note that pΔ must be set greater then Γ . Let later at some time cpt , pMHP  receive a 

checkpointing request from qMH .  The total time to take a checkpoint is; 

φϕ ++Γ=Θ  

Whereφ is the time taken to participate in the checkpoint process.  

Now note that pMHP  will only request a new local snapshot from pMH if there 

was some message exchange to and from pMH  otherwise pMHP  will use locally 

stored snapshot of pMH  which will save considerable time. As shown in the Fig. 3. 

Every time the local snapshot is used from the personal storage of the pMHP , the total 

time taken to calculate the snapshot is less as compared. When the, locally stored 
snapshot is invalid, pMHP requests a new snapshot from pMH . In that case the time 

taken to take a checkpoint is equal to the system without proxies as seen in the case 6, 
11 and 18. 

 

Fig. 3. Time comparison to take a checkpoint using proxies and without proxies 

5   Related Work 

The characteristics of MH and its specific errors prevent traditional error recovery 
techniques to be directly applicable and efficient for building fault-tolerant mobile 
applications. We surveyed existing fault-recovery techniques proposed for both 
traditional distributed systems and mobile Grid systems. 

First coordinated checkpointing algorithm was presented by [10]. They assume that 
all communications between processes are atomic, which is too restrictive. [8] 
algorithm relaxes there assumption by allowing only those processes need to take the 
checkpoint that have communicated with the checkpoint initiator either directly or 
indirectly, thus reducing the number of synchronization messages and the number of 
checkpoints. In this algorithm if any of the involved processes is not able to or not 
willing to take a checkpoint, the entire checkpointing process is aborted. 
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All of the above coordinated checkpointing algorithms are blocking in nature as 
they require processes to be blocked during checkpointing. Checkpointing includes 
the time to trace the dependency tree and to save the state of processes on the stable 
storage, which may be long. Therefore, blocking algorithms may dramatically reduce 
the performance of the system and are not good for mobile devices. 

One of the earliest works done in the category of non-blocking checkpointing was 
by [11], which deals with static nodes and system messages are sent along all the 
links in network during snapshot collection. This leads to a message complexity 

of )( 2nO . Authors in [12] use the checkpoint sequence number to identify orphan 

messages. This sequence number avoids the need for processes to be blocked during 
checkpointing. However, this approach is centralized in nature as it requires the 
initiator to communicate with all processes in the computation. The algorithm 
proposed by [13] uses a similar idea as [14] with an exception that the processes 
which did not communicate with others during the previous checkpoint interval 
change do not need to take new checkpoints. Both algorithms [13] and [14] suffers 
because of there centralized nature which assume that a distinguished initiator decides 
when to take a checkpoint. Therefore, they suffer from the disadvantages such as one-
site failure, traffic bottle-neck, etc. 

The above mention algorithm doesn’t deal with the mobile devices. Ref [15] was 
the pioneers in presenting a checkpointing algorithm for mobile computing systems. 
They use uncoordinated checkpointing technique in which a MH takes a local 
checkpoint whenever a message reception is preceded by a message sent at that MH. 
If the send and receive of messages are interleaved, the number of local checkpoints 
will be equal to half of the number of computation messages this may degrade the 
system performance.  

Ref [5] introduces the concept of mutable checkpoint, which is neither a tentative 
checkpoint nor a permanent checkpoint, to design efficient checkpointing algorithms 
for mobile computing systems. Mutable checkpoints need not be saved on the stable 
storage and can be saved anywhere, e.g., the main memory or local disk of MHs. 
Taking a mutable checkpoint avoids the overhead of transferring large amounts of 
data to the stable storage at MSSs over the wireless network. This scheme, however, 
fails to overcome the storage overhead on mobile devices. Our scheme overcomes this 
drawback by delegating resource intensive tasks to the MHPs residing on the resource 
rich MSS. 

6   Conclusion and Future Work 

In this paper, we presented a proxy based checkpointing scheme for mobile Grid 
environment. First we highlighting the checkpointing in general and then we 
discussed how traditional checkpointing scheme are not suitable for mobile Grid 
environment. We also listed the main research issues faced by mobile Grid in the field 
of fault tolerance and fault recovery. In this paper, we extend the work done by [5] 
and propose a proxy based extension of this checkpointing approach. Our proxy-
based coordinated checkpointing scheme takes storage and processing overhead from 
low-power mobile devices and delegates it to their respective proxies running on 
mobile service station (MSS).  
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In future we plan to implement our proposed scheme and accumulate the 
experiment result to find correctness of our scheme. We also intend to investigate the 
performance and storage overhead our scheme as compared to the other existing 
solutions. 
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Abstract. It is increasingly becoming evident that operating system interference
in the form of daemon activity and interrupts contribute significantly to perfor-
mance degradation of parallel applications in large clusters. An earlier theoretical
study has evaluated the impact of system noise on application performance for
different noise distributions [1]. Our work complements the theoretical analysis
by presenting an empirical study of noise in production clusters. We designed a
parallel benchmark that was used on large clusters at SanDeigo Supercomputing
Center for collecting noise related data. This data was fed to a simulator that pre-
dicts the performance of collective operations using the model of [1]. We report
our comparison of the predicted and the observed performance. Additionally, the
tools developed in the process have been instrumental in identifying anomalous
nodes that could potentially be affecting application performance if undetected.

1 Introduction

Scaling of parallel applications on large high-performance computing systems is a well
known problem [2–4]. Prevalence of large clusters, that uses processors in order of thou-
sands, makes it challenging to guarantee consistent and sustained high performance. To
overcome variabilities in cluster performance and provide generic methods for tuning
clusters for sustained high performance, it is essential to understand theoretically, as
well as using empirical data, the behavior of production mode clusters. A known source
of performance degradation in large clusters is the noise in the system in the form of
daemons and interrupts [2, 3]. Impact of OS interference in the form of interrupts and
daemons can even cause an order of magnitude performance degradation in certain op-
erations [2, 5].

A formal approach to study the impact of noise in these large systems was initiated
by Agarwal et al. [1]. The parallel application studied was a typical class of kernel that
appears in most scientific applications. Here, each node in the cluster is repetitively
involved in a computation stage, followed by a collective operation, such as barrier.
This scenario was modeled theoretically, and impact of noise on the performance of the
parallel applications was studied for three different types of noise distributions.

In this paper, our goal is to validate the theoretical model with data collected from
large production clusters. Details revealed through empirical study helps in fine-tuning
the model. This allows us to establish a methodology for predicting the performance of
large clusters. Our main contributions are: (i) We have designed a parallel benchmark
that measures the noise distribution in the cluster; (ii) Using data collected from the
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production clusters we make performance predictions made by the theoretical model
proposed earlier. This validation step enables us to predict the performance of large
clusters. We report the prediction accuracy against measurements at the SanDiego Su-
percomputing Center (SDSC). We discovered that measurements of noise distributions
also help in identification of misbehaving nodes or processors.

In addition to making performance predictions, our study could be useful in perfor-
mance improvements. Traditional techniques for performance improvement either fall
in the category of noise reduction or noise synchronization. Noise reduction is achieved
by removing several system daemons, dedicating a spare processor to absorb noise,
and reducing the frequency of daemons. Noise synchronization is achieved by explicit
co-scheduling or gang scheduling [6–8]. Most of these implementations require chang-
ing the scheduling policies. Our work gives insight into another technique for improv-
ing performance, that can be called noise smoothing. If the model predicts the actual
performance reasonably well, then the systems can be tuned to ensure that the noise
does not have heavy tail (i.e. infrequent interruptions that take long time). This tech-
nique may complement the other approaches currently used in large high-performance
systems.

The rest of the paper is organized as follows. The theoretical model for capturing
the impact of noise on cluster performance, based on [1], is presented in Section 2.
In Section 3, we present the details of the parallel benchmark that we have designed.
Section 4 presents the analysis of the data collected on the SDSC clusters. Finally, we
conclude in Section 5.

pre−barrier

do_work ()

for i = 1 to M

barrier ()

compute

noise

endfor
post−barrier

Fig. 1. Typical code block in a parallel scientific application

2 Theoretical Modeling of System Noise

In this section, we briefly introduce the theoretical model of collective communication,
as described earlier in [1]. In this model, a parallel program consists of a sequence of
iterations of a compute phase followed by a communicate phase, as shown in Figure 1.
In the compute phase, all the threads of the program locally carry out the work assigned
to them. There is no message exchange or I/O activity during the compute phase. The
communicate phase consists of a collective operation such as a barrier. We are interested
in understanding the time it takes to perform the collective operation as a function of
the number of threads in the system.

Consider a parallel program with N threads running on a system that has N pro-
cessors. We assume, for simplicity of analysis, that N = 2k − 1 for some positive
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Fig. 2. The diagram shows a typical computation-barrier cycle, along with pre-barrier and post-
barrier phases for a barrier call, and interruptions in compute phase due to system noise

integer k. Figure 2 shows the sequence of events involving one iteration of the loop in
Figure 1. In this figure, we used 7 processors which are logically organized as a binary
tree to demonstrate the operation of one iteration of the parallel code. Figure 2 shows
the decomposition of the communicate phase into pre-barrier and post-barrier stages,
and the interruptions introduced during compute phase by the triggering of noise. In the
figure, tsij denotes the start time of the compute phase, tfij denotes the finish time of the
compute phase, and teij denotes the end of the barrier phase of the iteration.

2.1 Modeling the Communication Phase

The barrier operation comprises of two stages: a pre-barrier stage succeeded by a post-
barrier stage. We assume that these stages are implemented using message passing
along a complete binary tree, as shown in Figure 2. The basic structure does not change
for any implementation based on a fixed tree of bounded degree, such as a k-ary tree. A
process is associated to each node of the binary tree. A special process, called the root
(Process 1 in Figure 2) initiates the post-barrier stage and concludes the pre-barrier
stage. In the post-barrier stage, a start-compute-phase message initiated by root is per-
colated to all leaf nodes. At the end of computation each node notifies its parents of
completion of work. This stage ends when the root finishes its computation and re-
ceives a message from both its children indicating the same. An iteration of the loop in
Figure 1 would thus consist of a compute stage, followed by a pre-barrier and a post
barrier stage. Let tpj denote the start of the post-barrier stage just preceding the j-th
iteration, and tqj denotes the time at which the post-barrier stage of the j-th iteration
concludes, as shown in Figure 2. Following tqj , the iteration can continue with other
book-keeping operations before beginning the next iteration. Also, the time taken by a
barrier message to reach node i in the post-barrier phase is denoted by aij .

For simplicity, we assume that each message transmission between a parent and a
child node takes time τ, which is referred to as the one-way latency. Thus, for the
root process (process id 1) this value is zero, i.e. a1j = 0 in Fig 2. For all the leaves i,



Impact of Noise on Scaling of Collectives: An Empirical Evaluation 463

aij = τ(log(N +1)−1)1. Thus, for the case of N = 7 in the figure, a2j = 2τ , a3j = τ ,
a4j = 2τ , a5j = 2τ , a6j = τ , and a7j = 2τ , for all j.

2.2 Modeling the Compute Phase

Let Wij represent the amount of work, in terms of number of operations, carried out by
thread i in the compute phase of j-th iteration. If the system is noiseless, time required
by all processors to finish the assigned work will be constant, i.e. time to complete
work Wij is wij . The value of the constant typically depends on the characteristics of
the processor, such as clock frequency, architectural parameters, and the state of the
node, such as cache contents. Therefore, in a noiseless system the time taken to finish
the computation is, tfij − tsij = wij .

Due to presence of system level daemons that are scheduled arbitrarily, the wall-
clock time taken by processor i to finish work Wij in an iteration varies. The time
consumed to service daemons and other asynchronous events, like network interrupts,
can be captured using a variable component δij for each thread i in j-th iteration. Thus,
the time spent in computation in an iteration can be accurately represented as,

tfij − tsij = wij + δij

where δij is a random variable that captures the overhead incurred by processor i in
servicing the daemons and other asynchronous events. Note that δij also includes con-
text switching overheads, as well as, time required to handle additional cache or TLB
misses that arise due to cache pollution by background processes. The characteristics
of the random variable δij depends on the work Wij , and the system load on processor
i during the computation. The random variable δij models the noise on processor i for
j-th iteration, shown as the noise component in Figure 2.

2.3 Theoretical Results

The theoretical analysis of [1] provides a method to estimate the time spent at the barrier
call. We will show here that the time spent at the barrier can be evaluated indirectly by
measuring the total time spent by a process in an iteration, that consists of the compute
and communicate phases. The time spent by a process in an iteration may be estimated
by the amount of work, noise distributions and the network latencies.

In this analysis we make two key assumptions of stationarity and spatial indepen-
dence of noise. Since we assume that our benchmark is run in isolation, therefore only
noise present is due to system activity. This should stay constant over time, giving sta-
tionarity of the distribution. Secondly, the model in [1] assumes that the noise across
processors is independent (i.e. δij and δkj are independent for all i, j, k). Thus there
cannot be any co-ordinated scheduling policy to synchronize processes across different
nodes.

The time spent idling at the barrier call is given by,

bij = teij − tfij (1)

1 From here on, log refers to log2 and ln refers to loge.
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We first derive the distribution of (tqj − tpj ), and then use it to derive the distribution of
bij . From the figure it can be noted that, (tqj − tpj ) depends on aij , wij , and the instances
of the random variable δij . Now, if the network latencies are constant (τ ), it is easy to
verify that, if aij ≤ τ log((N + 1)/2), ∀(i, j),. Thus we have,

Lemma 1. For all j, maxi∈[1...N ] t
f
ij − tsij ≤ tqj − tpj ≤ maxi∈[1...N ](t

f
ij − tsij) +

2τ log((N + 1)/2).

We model (tqj − tpj ) as another random variable θj . Now, Lemma 1 yields,

Theorem 1. For all iterations j, the random variable θj may be bounded as2,

max
i∈[1...N ]

(wij + δij) ≤ θj ≤ max
i∈[1...N ]

(wij + δij) + 2τ log((N + 1)/2).

For a given j, all δij are independent for all i. Thus if we know the values of wij

and the distributions of δij , then the expectations as well as the distributions of θj

may be approximately computed as given by Theorem 1. For this, we independently
sample from the distributions of wij + δij for all i and take the maximum value to
generate a sample. Repeating this step a large number of times gives the distribution of
maxi∈[1...N ](wij + δij). Now, bij can be decomposed as (see Figure 2)

bij = (tqj − tpj ) − (tfij − tsij) − (ai(j+1) − aij) (2)

Since we have assumed a fixed one-way latency τ , aij = ai(j+1) = τ , therefore distri-
bution of barrier time bij is given by,

θj − (wij + δij)

Using Theorem 1, θj can be approximately computed to within 2τ log((N + 1)/2)
just by using wij and δij . Therefore, the barrier time distribution can be computed just
by using noise distribution and wij . If wij are set to be equal for i, then wij cancels out,
and barrier time distribution can be approximated just by using δij .

In this paper we attempt to validate the above model by comparing the measured and
predicted performance of the barrier operations on real systems. We evaluate if Theo-
rem 1 can be used to give a reliable estimate of collectives performance on a variety of
system. For this, we designed a micro-benchmark that measures the noise distributions
δi(w). The benchmark also measures the distribution of θj , by measuring teij − tsij . We
implemented a simulator that takes the distributions of wij + δij as inputs, and outputs
the distribution of maxi∈[1...N ](wij + δij). We compare the simulation output with the
actual distribution of θj obtained by running the micro-benchmark. We carry out this
comparison on the Power 4 cluster at SDSC with different values of work quanta, wi.

3 Methodology for Empirical Validation

Techniques to measure noise accurately is critical for our empirical study. This section
presents the micro-benchmark kernel used to measure the distributions. We first tested
this benchmark on a testbed cluster and then used it to collect data on the SDSC cluster.

2 For random variables, X and Y , we say that X ≤ Y if P (X ≤ t) ≥ P (Y ≤ t),∀t.



Impact of Noise on Scaling of Collectives: An Empirical Evaluation 465

Algorithm 1 The Parallel Benchmark kernel
1: while elapsed time < period do
2: busy-wait for a randomly chosen period
3: MPI Barrier
4: tsij = get cycle accurate time
5: do work ( iteration count )
6: tfij = get cycle accurate time
7: MPI Barrier
8: teij = get cycle accurate time

9: store (tfij − tsij), (t
e
ij − tfij), (t

e
ij − tsij)

10: MPI Bcast (elapsed time);
11: end while

3.1 Parallel Benchmark (PB)

The Parallel Benchmark (PB)3 aims to capture the compute-barrier sequence of Figure
1. The kernel of PB is shown in Algorithm-1. The PB executes a compute process
(Line 5) on multiple processors assigning one process to each processor. The do work
can be any operation. We have chosen it to be a Linear Congruential Generator (LCG)
operation defined by the recurrence relation,

xj+1 = (a ∗ xj + b) mod p. (3)

A barrier synchronization call (Line 7) follows the fixed work (Wi). The time spent in
different operations are collected using cycle accurate timers and stored in Line 9. In
the broadcast call in Line 10 rank zero process sends the current elapsed time to all
other nodes ensuring that all processes terminate simultaneously. Daemons are usually
invoked with a fixed periodicity which may lead to correlation of noise across iter-
ations. The random wait (Line 2) is intended to reduce this correlation. The barrier
synchronization in Line 3 ensures that all the processes of the PB commence simulta-
neously.

Since the benchmark measures the distributions δi(W ) for a fixed W we omit the
subscript j that corresponds to the iteration number in the subsequent discussion.

3.2 Testing the Parallel Benchmark

We first study the PB on a testbed cluster. The testbed cluster has 4 nodes with 8 pro-
cessors on each node. It uses identical Power-4 CPUs on all nodes. IBM SP switch
is used to connect the nodes. The operating system is AIX version 5.3. Parallel jobs
are submitted using the LoadLeveler4 and uses IBM’s Parallel Operating Environment
(POE). The benchmark uses MPI libraries for communicating messages across
processes.

3 We refer this benchmark as PB, acronym for Parallel Benchmark, in the rest of the paper.
4 The LoadLeveler is a batch job scheduling application and a product of IBM.
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Fig. 3. Distribution of time taken in an iter-
ation for computation and barrier using the
Parallel Benchmark code shown in Fig 1
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Fig. 4. Distribution of time taken in an iter-
ation for computation and barrier operation
using random wait, but no broadcast during
execution

The goal in running on the testbed cluster was to fine-tune the PB for use on larger
production clusters. We first execute the code block as shown in Algorithm 1 on the
testbed cluster, and record the distributions of (tfi − tsi ) ∼ wi + δi, tei − tfi = bi, and
(tei − tsi ) ∼ θ. Figure 3 shows the distribution of θ ∼ (tej − tsj) (Section 2.3) for PB.
Ideally, the distributions for all processes (i.e. for all i) should exactly match, assuming
ai(j+1) = aij , ∀i, j. Interestingly, whenever broadcast was enabled in our experiment,
the distributions were different. There were 4 bands formed, which we correspond to
the 4 different nodes of the cluster. Figure 4 shows the distributions are identical when
the broadcast in Line 10 of Figure 1 was omitted.

Work

Process 2

Process 1

Barrier

Broadcast

B
ar

rie
r

Barrier B
ar

rie
r

Fig. 5. Sequence of message exchange in a work-barrier-broadcast loop

In order to explain this discrepancy we closely looked at the implementation of bar-
rier. Barrier is implemented in two steps: a shared memory barrier which synchronizes
all the processes on a node, followed by message passing implementation that synchro-
nizes across nodes. The message passing implementation across the nodes is not based
on binary tree as assumed in the model described earlier. We illustrate the message pass-
ing mechanism for barrier synchronization in Figure 5 for a case with two processes.
As soon as a barrier is called on a process, a message is sent to the other process. The
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barrier call ends when the process receives a message from the other process. Broadcast
is implemented by sending a single message. Figure 5 shows the message exchange
between the two processes, and the calculation of total time for an iteration. It can be
seen that if process 2 starts its work after process 1 then it consistently measures smaller
time per iteration. Adding random wait, desynchronizes the start time and mitigates the
above anomaly.

Finally, we also verified the stationarity assumption by executing PB multiple times
at different times of the day. As long as the PB is executed in isolation without any other
user process interrupting it the results stay unchanged.

3.3 Predicting Cluster Performance

We implemented a simulator that repeatedly collects independent samples from N
distributions of wi + δi (as measured by the PB), and computes the distribution of
maxi∈[1...N ](wi + δi).

(a) (b)

Fig. 6. Comparing distribution of maxi∈[1...N](wi +δi) against distributions of te
i −ts

i computed
from empirical data on 32 processors of a testbed cluster, for (a) w = 300μs and (b) w = 83ms

Figure 6(a) and Figure 6(b) show the distributions of the time taken by an itera-
tion (θ) on 32 processors in our testbed cluster, along with the output of the simulator
(maxi∈[1...N ](wi + δi)). Two different quanta values (w) of 300μs and 83ms, were
used to model small and large choice of work respectively. Since, in the simulation the
communication latency involved in the collective call is not accounted, hence the output
of the simulator is lower than the real distribution.

Interestingly, the accuracy of the prediction with larger quanta values is better even
without accounting for the communication latency. This is because when the quanta
value (W ) is large, the noise component, δi(W ) is also large thereby masking the com-
munication latency part.
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4 Benchmark Results on SanDiego Supercomputing Center
(SDSC)

This section presents our observations from the data collected on the SanDiego Super-
computing Center’s DataStar cluster [9]. The DataStar compute resource at SDSC [9]
offers 15.6 TFlops of compute power. For our experiments, we used two combination of
nodes: (a) 32 8-way nodes with 1.5 GHz CPU, giving a total of 256 processors, and (b)
128 8-way nodes with a mix of 1.5 GHz and 1.7 GHz processors, giving a total of 1024
processors. The nodes are IBM Power-4 and Power-4+ processors. Each experiment is
executed for about 1 hour in order to collect a large number of samples. However, in
order to avoid storage of this large time series, we convert the data into discrete prob-
ability distributions with fixed number of bins. The distributions are used to compute
different statistics related to each experiment.

4.1 Benchmark Results on SDSC (256 Processors on 32 Nodes)

The PB was run on 256 processors spawning 32 nodes. All nodes and processors in this
experiment were identical.
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Fig. 7. This plot shows the values corre-
sponding to 99-th percentile in the distribu-
tion of wi + δi for w = 300μs
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Fig. 8. The plot shows the mean for three
distributions for each process: wi+δi, which
is the work-avg, te
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i , which is the to-

tal time for iterations including barrier wait,
and maxi∈[1...N](wi + δi), for a quanta of
300μs

The value corresponding to 99-th percentile in the distribution of wi + δi with w =
300μs is plotted in Figure 7. Next, we plotted the distribution of tei − tsi for all the
processes in Figure 9, along with the (predicted) distribution of maxi∈[1...N ](wi + δi)
obtained using the simulator. It is seen that the simulation predicts the real distribution
very closely on this production cluster, except in the tail part of the distribution.

Further insight is revealed in Figure 8, which shows the average time for the distri-
butions of (wi + δi), tei − tsi , and maxi∈[1...N ](wi + δi). It shows that the mean value
of maxi∈[1...N ](wi + δi) is about 50μs less than the mean of tei − tsi distributions. This
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Fig. 9. Comparing distribution of maxi∈[1...N](wi + δi) against distributions of te
i − ts

i for 256
processes, for wi = 300μs

is accounted by the communication latency, 2 ∗ τ ∗ log(N + 1)/2, which is calculated
to be 2 ∗ 5μs ∗ log(32)/2 = 40μs for the 32 node cluster in DataStar.

4.2 Benchmark Results on SDSC (1024 Processors on 128 Nodes)

We repeated the experiments on a larger cluster of 128 nodes with 1024 processors.
However, in this experiment there were 2 different sets of processor types.

In Figure 10(a), we have plotted the 99-th percentile of (wi + δi) distribution for
each processor. It shows a spike around processor id 100. A zoom-in of the region be-
tween processor id 75 and 100 is shown in Figure 10(b). There are a set of 8 processors
starting from id 89 to 96 which takes significantly longer to complete its workload.
All these processors belong to a single node. This indicates that one node is anoma-
lous and slowing down rest of the processes in this cluster. We discussed this with
the SDSC system administrator who independently discovered problems with the same
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(a) The graph shows the 99-th percentiles from
the distributions of (wi + δi) for 1024 pro-
cessors. There is a noticeable spike indicating
that some processors take significantly longer
to complete the computation phase.
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(b) Zooming into the spiked area of Figure
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longer to finish the work.
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node (possibly after receiving user complaint). Our run on the 256 processor system
had the same problem (see Figure 7) due to the same node.

Finally, in Figures 11(a) and Figures 11(b) the prediction made by the simulator
is compared against the observed distribution. In this experiment, the match between
the predicted distribution of maxi∈[1...N ](wi + δi) and the observed distribution is not
as good as in the previous experiment (for both the values of w = 300μs and w =
13ms). For the 300μs case, the mean of the maxi∈[1...N ](wi + δi) was found to be
1.93ms, while the mean of the tei − tsi was in the range 2.54ms to 2.93ms (for different
processes i); while, for the 13ms case, the mean for maxi∈[1...N ](wi + δi) distribution
was 23.191ms and the mean of the tei − tsi ranged from 24ms to 28.36ms. At present,
we are unable to explain this anomaly. We are conducting more experiments on different
systems to pinpoint the cause of this.

(a) (b)

Fig. 11. Comparing distribution of maxi∈[1...N](wi + δi) against distributions of (te
i − ts

i ) for
1024 processes for wi = 300μs and wi = 13ms on SDSC cluster

5 Conclusion

High performance computing systems are often faced with the problem performance
variability and lower sustained performance compared to the optimal. It has been no-
ticed that system activities, like periodic daemons and interrupts, behave as noise for the
applications running on the large clusters and slows down the performance. If a single
thread of a parallel application is slowed down by the Operating System interference,
the application slows down. Hence it is important to understand the behavior of noise
in large clusters in order to devise techniques to alleviate them. A theoretical analysis
of the impact of noise on cluster performance was carried out by Agarwal et al. [1]. A
model for the behavior of noise was designed to predict the performance of collective
operations in cluster systems. In this paper, we have attempted to validate the model
using empirical data from a production cluster at SanDiego Supercomputing Center.
We have designed a benchmark for collecting performance statistics from clusters. Be-
sides providing the means to validate the model, the measurements from the benchmark
proved useful in identifying system anomalies, as shown in the the case of the SDSC
cluster.



Impact of Noise on Scaling of Collectives: An Empirical Evaluation 471

Acknowledgment

Firstly, we would like to thank SanDeigo Supercomputing Center (SDSC) who pro-
vided us substantial time on their busy system for our experiments. We would like to
thank Marcus Wagner for helping us in collecting the data from the SanDiego Super-
computing Center. Thanks to Rama Govindaraju and Bill Tuel for providing us with
insights on the testbed cluster we have used for fine-tuning the parallel benchmark and
helping us in collecting the data.

References

1. S. Agarwal, R. Garg, and N. K. Vishnoi, “The Impact of Noise on the Scaling of Collectives,”
in High Performance Computing (HiPC), 2005.

2. T. Jones, L. Brenner, and J. Fier, “Impacts of Operating Systems on the Scalability of Parallel
Applications,” Lawrence Livermore National Laboratory, Tech. Rep. UCRL-MI-202629, Mar
2003.

3. R. Giosa, F. Petrini, K. Davis, and F. Lebaillif-Delamare, “Analysis of System Overhead on
Parallel Computers,” in IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT), 2004.

4. F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing Supercomputer Perfor-
mance: Achieving Optimal Performance on the 8192 Processors of ASCI Q,” in ACM Super-
computing, 2003.

5. D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System Noise, OS Clock Ticks, and
Fine-grained Parallel Applications,” in ICS, 2005.

6. J. Moreira, H. Franke, W. Chan, L. Fong, M. Jette, and A. Yoo, “A Gang-Scheduling System
for ASCI Blue-Pacific,” in International Conference on High performance Computing and
Networking, 1999.

7. A. Hori and H. Tezuka and Y. Ishikawa, “Highly Efficient Gang Scheduling Implementations,”
in ACM/IEEE Conference on Supercomputing, 1998.

8. E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll, “STORM: Lightning-Fast
Resource Management,” in ACM/IEEE Conference on Supercomputing, 2002.

9. “DataStar Compute Resource at SDSC.” [Online]. Available: http://www.sdsc.edu/user
services/datastar/



DDSS: A Low-Overhead Distributed Data Sharing
Substrate for Cluster-Based Data-Centers over Modern

Interconnects

Karthikeyan Vaidyanathan, Sundeep Narravula, and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

{vaidyana, narravul, panda}@cse.ohio-state.edu

Abstract. Information-sharing is a key aspect of distributed applications such as
database servers and web servers. Information-sharing also assists services such
as caching, reconfiguration, etc. In the past, information-sharing has been im-
plemented using ad-hoc messaging protocols which often incur high overheads
and are not very scalable. This paper presents a new design for a scalable and a
low-overhead Distributed Data Sharing Substrate (DDSS). DDSS is designed to
support efficient data management and coherence models by leveraging the fea-
tures of modern interconnects. It is implemented over the OpenFabrics interface
and portable across multiple interconnects including iWARP-capable networks
in LAN/WAN environments. Experimental evaluations with networks like Infini-
Band and iWARP-capable Ammasso through data-center services show an order
of magnitude performance improvement and the load resilient nature of the sub-
strate. Application-level evaluations with Distributed STORM achieves close to
19% performance improvement over traditional implementation, while evalua-
tions with check-pointing application suggest that DDSS is highly scalable.

1 Introduction

Distributed applications in the fields of nuclear research, biomedical informatics, satel-
lite weather image analysis etc., are increasingly getting deployed in cluster environ-
ments due to their high computing demands. Advances in technology have facilitated
storing and sharing of the large datasets that these applications generate, typically
through a web interface forming web data-centers [1]. A web data-center environment
(Figure 1) comprises of multiple tiers; the first tier consists of front-end servers such
as the proxy servers that provide services like web messaging, caching, load balancing,
etc. to clients; the middle tier comprises of application servers that handle transaction
processing and implement business logic, while the back-end tier consists of database
servers that hold a persistent state of the databases and other data repositories. In order
to efficiently host these distributed applications, current data-centers also need scalable
support for intelligent services like dynamic caching of documents, resource manage-
ment, load-balancing, etc. Apart from communication and synchronization, these appli-
cations and services exchange some key information at multiple sites (e.g, timestamps
of cached copies, coherency and consistency information, current system load). How-
ever, for the sake of availability, high-performance and low-latency, programmers use

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 472–484, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Web data-centers

ad-hoc messaging protocols for maintaining this shared information. Unfortunately, as
mentioned in [2], the code devoted to these protocols accounts for a significant frac-
tion of overall application size and complexity. As system sizes increase, this fraction
is likely to increase and cause significant overheads.

On the other hand, System Area Network (SAN) technology has been making rapid
progress during the recent years. SAN interconnects such as InfiniBand (IBA) [3] and
10-Gigabit Ethernet (10GigE) have been introduced and are currently gaining momen-
tum for designing high-end computing systems and data-centers. Besides high perfor-
mance, these modern interconnects provide a range of novel features and their sup-
port in hardware, e.g., Remote Direct Memory Access (RDMA), Atomic Operations,
Offloaded Protocol support and several others. Recently OpenFabrics [4] has been
proposed as the standard interface that allows protable implementations over several
modern interconnects like IBA, and iWARP capable ethernet interconnects including
[5] Chelsio, Ammasso [6], etc., both in LAN/WAN environments.

In this paper, we design and develop a low-overhead distributed data sharing
substrate (DDSS) that allows efficient sharing of data among independently deployed
servers in data-centers by leveraging the features of the SAN interconnects. DDSS is
designed to support efficient data management and coherence models by leveraging
the features like one-sided communication and atomic operations. Specifically, DDSS
offers several coherency models ranging from null coherency to strict coherency.

Experimental evaluations with IBA and iWARP-capable Ammasso networks through
micro-benchmarks and data-center services such as reconfiguration and active caching
not only show an order of magnitude performance improvement over traditional im-
plementations but also show the load resilient nature of the substrate. Application-level
evaluations with Distributed STORM using DataCutter achieves close to 19% perfor-
mance improvement over traditional implementation, while evaluations with check-
pointing application suggest that DDSS is scalable and has a low overhead. The
proposed substrate is implemented over the OpenFabrics standard interface and hence
is portable across multiple modern interconnects.

2 Constraints of Data-Center Applications

Existing data-center applications such as Apache, MySQL, etc., implement their
own data management mechanisms for state sharing and synchronization. Databases
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communicate and synchronize frequently with other database servers to satisfy the co-
herency and consistency requirements of the data being managed. Web servers im-
plement complex load-balancing mechanisms based on current system load, request
patterns, etc. To provide fault-tolerance, check-pointing applications save the program
state at regular intervals for reaching a consistent state. Many of these mechanisms are
performed at multiple sites in a cooperative fashion. Since communication and synchro-
nization are an inherent part of these applications, support for basic operations to read,
write and synchronize are critical requirements from the DDSS. Further, as the nodes in
a data-center environment experience fluctuating CPU load conditions the DDSS needs
to be resilient and robust to changing system loads.

Higher-level data-center services are intelligent services that are critical for the ef-
ficient functioning of data-centers. Such services require sharing of some state in-
formation. For example, caching services such as active caching [7] and cooperative
caching [8], [9] require the need for maintaining versions of cached copies of data and
locking mechanisms for supporting cache coherency and consistency. Active resource
adaptation service requires the need for advanced locking mechanism in order to recon-
figure nodes serving one website to another in a transparent manner and needs simple
mechanism for data sharing. Resource monitoring services, on the other hand, require
efficient, low overhead access to the load information on the nodes. The DDSS has to
be designed in a manner that meets all of the above requirements.

3 Design Goals of DDSS

To effectively manage information-sharing in a data-center environment, the DDSS
must understand in totality, the properties and the needs of data-center applications
and services and must cater to these in an efficient manner.

Caching dynamic content at various tiers of a multi-tier data-center is a well known
method to reduce the computation and communication overheads. Since the cached
data is stored at multiple sites, there is a need to maintain cache coherency and con-
sistency. Broadly, to accommodate the diverse coherency requirements of data-center
applications and services, DDSS supports a range of coherency models. The six basic
coherency models [10] to be supported are: 1) Strict Coherence, which obtains the most
recent version and excludes concurrent writes and reads. Database transactions require
strict coherence to support atomicity. 2) Write Coherence, which obtains the most recent
version and excludes concurrent writes. Resource monitoring services [11] need such a
coherence model so that the server can update the system load and other load-balancers
can read this information concurrently. 3) Read Coherence is similar to write coher-
ence except that it excludes concurrent readers. Services such as reconfiguration [14]
are usually performed at many nodes and such services dynamically move applications
to serve other websites to maximize the resource utilization. Though all nodes perform
the same function, such services can benefit from a read coherence model to avoid two
nodes looking at the same system information and performing a reconfiguration. 4)
Null Coherence, which accepts the current cached version. Proxy servers that perform
caching on data that does not change in time usually require such a coherence model. 5)
Delta coherence guarantees that the data is no more than x versions stale. This model is
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particularly useful if a writer has currently locked the shared segment and there are sev-
eral readers waiting to the read the shared segment. 6) Temporal Coherence guarantees
that the data is no more than t time units stale.

Secondly, to meet the consistency needs of applications, DDSS should support ver-
sioning of cached data and ensure that requests from multiple sites view the data in a
consistent manner. Thirdly, services such as resource monitoring require the state in-
formation to be maintained locally since the data is updated frequently. On the other
hand, services such as caching and resource adaptation can be cpu-intensive and hence
require the data to be maintained at remote nodes distributed over the cluster. Hence,
DDSS should support both local and remote allocation in the shared state. Due to the
presence of multiple threads on each of these applications at each node in the data-
center environment, DDSS should support the access, update and deletion of the shared
data for all threads in a transparent manner. DDSS should also provide asynchronous
interfaces for reading and writing the shared information Further, as mentioned in Sec-
tion 2, DDSS must be designed to be robust and resilient to load imbalances and should
have minimal overheads and provide high performance access to data. Finally, DDSS
must provide an interface that clearly defines the mechanism to allocate, read, write and
synchronize the data being managed.
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anism (b) Coherent Distributed Data Sharing Mechanism

4 Proposed DDSS Framework and Implementation Issues

The basic idea of DDSS is to allow efficient sharing of information across the cluster by
creating a logical shared memory region. It supports two basic operations, get operation
to read the shared data segment and put operation to write onto the shared data segment.
Figure 2a shows a simple distributed data sharing scenario with several processes (proxy
servers) writing and several application servers reading certain information from the
shared environment simultaneously. Figure 2b shows a mechanism where coherency
becomes a requirement. In this figure, a set of master and slave servers access different
portions of the shared data. All master processes waits for the lock since the shared data
is currently being read by multiple slave servers.

In order to efficiently implement distributed data sharing, several components need
to be built. Figure 3 shows the various components of DDSS that help in satisfying
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the needs of the current and next generation data-center applications. Broadly, in the
figure, all the colored boxes are the components which exist today. The white boxes
are the ones which need to be designed to efficiently support next-generation data-
center applications. In this paper, we concentrate on the boxes with the dashed lines by
providing either complete or partial solutions. In this section, we describe how these
components take advantage of advanced networks in providing efficient services.
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Fig. 3. Proposed DDSS Framework

4.1 IPC and Connection Management

In order to support multiple user processes or threads in a system to access the DDSS,
we optionally provide a run-time daemon to handle the requests from multiple pro-
cesses. We use shared memory channels and semaphores for communication and
synchronization purposes between the user process and the daemon. The daemon es-
tablishes connections with other data sharing daemons and forms the distributed data
sharing framework. Any service which is multi-threaded or the presence of multiple
services need to utilize this component for efficient communication. Connection man-
agement takes care of establishing connections to all the nodes participating in either
accessing or sharing its address space with other nodes in the system. It allows for new
connections to be established and existing connections to be terminated.

4.2 Memory Management and Data Access

Each node in the system allocates a large pool of memory to be shared with DDSS. We
perform the allocation and release operations inside this distributed memory pool. One
way to implement the memory allocation is to inform all the nodes about an allocation.
However, informing all the nodes may lead to large latencies.Another approach is to
assign one node for each allocation (similar to home-node based approach but the node
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can maintain only the metadata and the actual data can be present elsewhere). This ap-
proach reduces the allocation latency. The nodes maintain a list of free blocks available
within the memory pool. During a release ss() operation, we inform the designated
remote node for that allocation. During the next allocation, the remote node searches
through the free block list and informs the free block which can fit the allocation unit.
While searching for the free block, for high-performance, we get the first fit free block
which can accommodate the allocation unit. High-speed networks provide one-sided
operations (like RDMA read and RDMA write) that allow access to remote memory
without interrupting the remote node. In our implementation, we use these operations
to perform the read and write. All the applications and services mentioned in Figure 3
will need this interface in order access/update the shared data.

4.3 Data Placement Techniques

Though DDSS hides the placement of shared data segments, it also exposes interfaces
to the application to explicitly mention the location of the shared data segment (e.g.
local or remote node). For the remote nodes, the interface also allows the application to
choose a specific node. In our implementation, each time a data segment is allocated,
the next data segment is automatically allocated on a different node. This design allows
the shared data segments to get well-distributed among the nodes in the system and
accordingly help in distributing the load in accessing the shared data segments for data-
center environments. This is particularly useful in reducing the contention at the NIC in
the case where all the shared segment resides in one single node and several nodes needs
to access different data segment residing on the same node. In addition, distributed
shared segments also help in improving the performance for applications which use
asynchronous operations on multiple segments distributed over the network.

4.4 Basic Locking Mechanisms

Locking mechanisms are provided using the atomic operations which is completely
handled by modern network adapters. The atomic operations such as Fetch-and-Add
and Compare-and-Swap operate on 64-bit data. The Fetch-and-Add operation performs
an atomic addition at a remote node, while the Compare-and-Swap compares two 64-bit
values and swaps the remote value with the data provided if the comparison succeeds. In
our implementation, every allocation unit is associated with a 64-bit data which serves
as a lock to access the shared data and we use the Compare-and-Swap atomic operation
for acquiring and checking the status of locks. If the locks are implicit based on the co-
herence model, then DDSS automatically unlocks the shared segment after successful
completion of get() and put() operations. Each shared data segment has an associated
lock. Though we maintain the lock for each shared segment, the design allows for main-
taining these locks separately. Similar to the distributed data sharing, the locks can also
be distributed which can help in reducing the contention at the NIC if too many pro-
cesses try to acquire different locks on the same node.
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4.5 Coherency and Consistency Maintenance

As mentioned earlier, we support six different coherence models. We implement these
models by utilizing the RDMA and atomic operations of advanced networks. How-
ever, for networks which lack atomic operations, we can easily build software-based
solutions using the send/receive communication model. In the case of Null coherence
model, since there is no explicit requirement of any locks, applications can directly
read and write on the shared data segment. For strict, read, write coherence models,
we maintain locks and get() and put() operations internally acquire locks to DDSS be-
fore accessing or modifying the shared data. The locks are acquired and released only
when the application does not currently hold the lock for a particular shared segment.
In the case of version-based coherence model, we maintain a 64-bit integer and use
IBV WR ATOMIC FETCH AND ADD atomic operation to update the version for ev-
ery put() operation. For get() operation, we perform the actual data transfer only if the
current version does not match with the version maintained at the remote end. In delta
coherence model, we split the shared segment into memory hierarchies and support up
to x versions. Accordingly, applications can ask for up to x previous versions of the data
using the get() and put() interface. Basic consistency is achieved through maintaining
versions of the shared segment and applications can get a consistent view of the shared
data segment by reading the most recently updated version. We plan to provide several
consistency models as a part of future work.

4.6 DDSS Interface

Table 1 shows the current interface that is available to the end-user applications or
services. The interface essentially supports six main operations for gaining access to
DDSS: allocate ss(), get(), put(), release ss(), acquire lock ss(), release lock ss() op-
erations. The allocate ss() operation allows the application to allocate a chunk of mem-
ory in the shared state. This function returns a unique shared state key which can be
shared among other nodes in the system for accessing the shared data. get() and put()
operations allow applications to read and write data to the shared state and release ss()
operation allows the shared state framework to reuse the memory chunk for future al-
locations. acquire lock ss() and release lock ss() operations allow end-user application
to gain exclusive access to the data to support user-defined coherency and consistency
requirements. In addition, we also support asynchronous operations such as async get(),

Table 1. DDSS Interface

DDSS Operation Description
int allocate ss(nbytes, type, ...) allocate a block of size nbytes in the shared state
int release ss(key) free the shared data segment
int get(key, data, nbytes, ...) read nbytes from the shared state and place it in data
int put(key, data, nbytes, ...) write nbytes of memory to the shared state from data
int acquire lock ss(key) lock the shared data segment
int release lock ss(key) unlock the shared data segment
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async put(), wait ss() and additional locking operations such as try lock() operation to
support a wide range of applications to use such features.

DDSS is built as a library which can be easily integrated into distributed applications
such as checkpointing, DataCutter [12], web servers, database servers, etc. For applica-
tions such as datacutter, several data sharing components can be replaced directly using
the DDSS. Further, for easy sharing of keys, i.e., the key to an allocated data segment,
DDSS allows special identifiers to be specified while creating the data sharing segment.
Applications can create the data sharing segment using this identifier and DDSS will
make sure that only one process creates the data segment and the remaining processes
will get a handle to this data segment. For applications such as web servers and database
servers, DDSS can be integrated as a dynamic module and all other modules can make
use of the interface appropriately. In addition, DDSS can also be used to replace tra-
ditional communication such as TCP/IP. In our earlier work, cooperative caching [9],
we have demonstrated the capabilities of high-performance networks for data-centers
with respect to utilizing the remote memory and support caching of varying file sizes.
DDSS can also be utilized in such environments. However, for very large file sizes
which cannot fit in a cluster memory, applications will need to rely on the file system
to store and retrieve the data. Another aspect of DDSS that is currently not supported is
fault-tolerance. This is especially required for applications such as databases. If appli-
cations can explicitly inform DDSS for taking frequent snapshots, this feature can be
implemented as a part of DDSS. We plan to implement this as a part of future work.

5 Experimental Results

In this section, we analyze the applicability of DDSS with services such as reconfigura-
tion and active caching and with applications such as Distributed STORM and check-
pointing. We evaluate our DDSS framework on two interconnects IBA and Ammasso
using the OpenFabrics implementation. The iWARP implementation of OpenFabrics
over Ammasso was available only at the kernel space. We wrote a wrapper for user
applications which in turn calls the kernel module to fire appropriate iWARP functions.
Our experimental testbed consists of a 12 node cluster with dual Intel Xeon 3.4 GHz
CPU-based EM64T systems. Each node is equipped with 1 GB of DDR400 memory.
The nodes were connected with MT25128 Mellanox HCAs (SDK v1.8.0) connected
through a InfiniScale MT43132 24-port completely non-blocking switch. For Ammasso
experiments, we use two node dual Intel Xeon 3.0 GHz processors with a 512 kB L2
cache and a 533 MHz front side bus and 512 MB of main memory.

5.1 Microbenchmark

Measuring Access Latency: The latency test is conducted in a ping-pong fashion and
the latency is derived from round-trip time. For the measuring the latency of put() oper-
ation, we run the test performing several put() operations on the same shared segment
and average it over the number of iterations. Figure 4a shows the latencies of differ-
ent coherence models by using the put() operation of DDSS using OpenFabrics over
IBA through a daemon process. We observe that the 1-byte latency achieved by null
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and read coherence model is only 20μs and 23μs. We observed that the overhead of
communicating with the daemon process is close to 10-12μs which explains the large
latencies with null and read coherence models. For write and strict coherency model,
the latencies are 54.3μs and 54.8μs respectively. This is due to the fact both write and
strict coherency models use atomic operations to acquire the lock before updating the
shared data. Version-based and delta coherence models report a latency of 37μs and
41μs respectively, since they both need to update the version status maintained at the
remote node. Also, as the message size increases, we observe that the latency increases
for all coherence models. We see similar trends for get() operations with the basic 1-
byte latency of get being 25μs. Figure 4b shows the performance of get() operation
with several clients accessing different portions from a single node. We observe that
DDSS is highly scalable in such scenarios and the performance is not affected for in-
creasing number of clients. Figure 4c shows the performance of get() operation with
several clients accessing the same portion from a single node. Here, we observe that
for relatively lesser contention-levels of up to 40%, the performance of get() and put()
operations do not seem to be affected. However, for contention-levels more than 40%,
the performance of clients degrades significantly in the case of strict and write coher-
ence model mainly due to the waiting time for acquiring the lock. We see similar trends
in the performance of latencies using OpenFabrics over Ammasso. We have included
these results in [13].
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Fig. 4. Basic Performance using OpenFabrics over IBA: (a) put() operation (b) Increasing Clients
accessing different portions (get()) (c) Contention accessing the same shared segment (put())

Measuring Substrate Overhead: One of the critical issues to address on support-
ing DDSS is to minimize the overhead of the middle-ware layer for applications. We
measure the overhead for different configurations (i) Direct scheme allows application
to directly communicate with underlying network through DDSS library, (ii) Thread-
based scheme allows application to communicate through a daemon process for access-
ing DDSS and (iii) Thread-based asynchronous scheme is same as thread-based scheme
except that applications use asynchronous calls. We see that the overhead is less than
a microsecond (0.35μs) through the direct scheme. If the run-time system needs to
support multiple threads, we observe that the overhead jumps to 10μs using the thread-
based scheme. The reason being the overhead of round-trip communication between
the application thread and the DDSS daemon consumes close to 10μs. If the applica-
tion uses asynchronous operations (thread-based asynchronous scheme), this overhead
can be significantly reduced for large message transfers. However, in the worst case
scenario, for small message sizes and scheduling of asynchronous operations followed
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by a wait operation can lead to an overhead of 12μs. The average synchronization time
observed in all the schemes is around 20μs.

5.2 Data-Center Service Evaluation

Dynamic Reconfiguration: In our previous work [14] we have shown the strong
potential of using the advanced features of high-speed networks in designing recon-
figuration techniques. In this section, we use this technique to illustrate the overhead of
using DDSS for such a service in comparison with implementations using native pro-
tocols. We modified our code base to use the DDSS and compared it with the previous
implementation. Also, we emulate the loaded conditions of a real data-center scenario
by firing client requests to the respective servers. As shown in Figure 5a, we see that the
average reconfiguration time is only 133μs for increasing loaded servers. The x-axes
indicates the number of servers that are currently heavily loaded. The y-axes shows the
reconfiguration time using the native protocol (white bar) and using DDSS (white bar
+ black bar). We observe that the DDSS overhead (black bar) is only around 3μs for
varying load on the servers. Also, as the number of loaded servers increase, we see no
change in the reconfiguration time. This indicates that the service is highly resilient to
the loaded conditions in the data-center environment. Further, we see that the number
of reconfigurations increase linearly as the number of loaded servers increase from 5%
to 40%. Increasing the loaded servers further does not seem to affect the reconfigura-
tion time and when this reaches 80%, the number of reconfiguration decreases mainly
due to insufficient number of free servers for performing the reconfiguration. Also,
for increasing number of reconfigurations, several servers get locked and unlocked to
perform efficient reconfiguration. The figure clearly shows that the contention for ac-
quiring locks on loaded servers does not affect the total reconfiguration time showing
the scalable nature of this service. In this experiment, since we have only one process
per node performing the reconfiguration, we use the direct model for integrating with
the DDSS.
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Fig. 5. Software Overhead on Data-Center Services (a) Active Resource Adaptation using Open-
Fabrics over IBA (b) Dynamic Content Caching using OpenFabrics over Ammasso

Strong Cache Coherence: In our previous work [7], we have shown the strong poten-
tial of using the features of modern interconnects in alleviating the issues of providing
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strong cache coherence with traditional implementations. In this section, we show the
load resilient nature of the one-sided communication in providing such a service using
DDSS over Ammasso. Figure 5b, we observe that as we increase the number of server
compute threads, the time taken to check for the version increases exponentially for a
two-sided communication protocol such as TCP/IP. However, since DDSS is based on
one-sided operations (RDMA over iWARP in this case), we observe that the time taken
for version check remains constant for increasing number of compute threads.

5.3 Application-Level Evaluation

STORM with DataCutter: STORM [12] is a middle-ware service layer developed by
the Department of Biomedical Informatics at The Ohio State University. It is designed
to support SQL-like select queries on datasets primarily to select the data of interest
and transfer the data from storage nodes to compute nodes for processing in a clus-
ter computing environment. In distributed environments, it is common to have several
STORM applications running which can act on same or different datasets serving the
queries of different clients. If the same dataset is processed by multiple STORM nodes
and multiple compute nodes, DDSS can help in sharing this dataset in a cluster environ-
ment so that multiple nodes can get direct access to this shared data. In our experiment,
we modified the STORM application code to use DDSS in maintaining the dataset so
that all nodes have direct access to the shared information. We vary the dataset size
in terms of number of records and show the performance of STORM with and without
DDSS. Since larger datasets showed inconsistent values, we performed the experiments
on small datasets and we flush the file system cache to show the benefits of maintaining
this dataset on other nodes memory. As shown in Figure 6a, we observe that the perfor-
mance of STORM is improved by around 19% for 1K, 10K and 100K record dataset
sizes using DDSS in comparison with the traditional implementation.
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Fig. 6. Application Performance over IBA (a) Distributed STORM application (b) Check-pointing

Check-pointing: We use a check-pointing benchmark to show the scalability and the
performance of using DDSS. In this experiment, every process attempts to checkpoint
a particular application at random time intervals. Also, every process simulates the
application restart, by attempting to reach a consistent check-point and informing all
other processes to revert back to the consistent check-point at other random intervals. In
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Figure 6b, we observe that the average time taken for check-pointing is only around
150μs for increasing number of processes. As this value remains almost constant with
increasing number of clients and application restarts, it suggests that the application
scales well using DDSS. Also, we see that the average application restart time to reach
a consistent checkpoint increases with the increase in the number of clients. This is
expected as each process needs to get the current checkpoint version from all other
processes to decide the most recent consistent checkpoint. Further, we noticed that the
DDSS overhead for checkpointing in comparison with native implementation is only
around 2.5μs.

6 Related Work

Several distributed data sharing models have been proposed in the past for a variety of
environments. The key aspects that distinguish DDSS from previous work is its ability
to exploit features of high-performance networks, its portability over multiple intercon-
nects, its support for relaxed coherence protocols and its minimal overhead. Further, our
work is mainly targeted for real data-center environment on very large scale clusters.

Run-time data sharing models such as InterWeave [15], Khazana [16], InterAct [17]
offer benefits to applications in terms of relaxed coherency and consistency protocols.
Khazana proposes the use of several consistency models. InterWeave allows users to
define application-specific coherence models. Many of these models are implemented
using traditional two-sided communication protocols targeting the WAN environment
addressing issues such as heterogeneity, endianness, etc. Such protocols have been
shown to have significant overheads in a real cluster-based data-center environment
under heavy loaded conditions. Also, none of these models take advantage of high-
performance networks for communication, synchronization and efficient data manage-
ment. Though many of the features of high-performance networks are applicable only in
a cluster environment, with the advent of advanced protocols such as iWARP included
in the OpenFabrics standard, DDSS can also work well in WAN environments.

7 Conclusion and Future Work

This paper proposes and evaluates a low-overhead distributed data sharing substrate
(DDSS) for data-center environments. Traditional data-charing implementations us-
ing ad-hoc messaging often incur high overheads and are not very scalable. DDSS
on the other hand, is designed to support efficient data management and coherence
models while minimizing overheads by leveraging the features of modern intercon-
nects. DDSS is implemented over the OpenFabrics interface and is portable across
multiple interconnects including iWARP-capable networks both in LAN/WAN envi-
ronments. Application-level evaluations with Distributed STORM using DDSS show
close to 19% performance benefit over traditional implementation, while evaluations
with check-pointing application suggest that DDSS is scalable and has a low overhead.

We plan to enhance DDSS to support advanced locking mechanisms and study the
benefits of DDSS for services and applications like meta-data management, storage of
BTree data structures in database servers and advanced caching techniques.
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Abstract. Failures are likely to be more frequent in systems with thousands
of processors. Therefore, schemes for dealing with faults become increasingly
important. In this paper, we present a fault tolerance solution for parallel appli-
cations that proactively migrates execution from processors where failure is im-
minent. Our approach assumes that some failures are predictable, and leverages
the features in current hardware devices supporting early indication of faults. We
use the concepts of processor virtualization and dynamic task migration, pro-
vided by Charm++ and Adaptive MPI (AMPI), to implement a mechanism that
migrates tasks away from processors which are expected to fail. To demonstrate
the feasibility of our approach, we present performance data from experiments
with existing MPI applications. Our results show that proactive task migration is
an effective technique to tolerate faults in MPI applications.

1 Introduction

High-performance systems with thousands of processors have been introduced in the
recent past, and the current trends indicate that systems with hundreds of thousands
of processors should become available in the next few years. In systems of this scale,
reliability becomes a major concern, because the overall system reliability decreases
with a growing number of system components. Hence, large systems are more likely to
incur a failure during execution of a long-running application.

Many production-level scientific applications are currently written using the MPI
paradigm [1]. However, the original MPI standards specify very limited features related
to reliability or fault tolerance [2]. In traditional MPI implementations, the entire appli-
cation has to be shutdown when one of the executing processors experiences a failure.
Given the practical problem of ensuring application progress despite the occurrence
of failures in the underlying environment, some alternative MPI implementations have
been recently proposed (we discuss representative examples in Section 5). Most of these
solutions implement some form of redundancy, forcing the application to periodically
save part of its execution state. In our previous work, we have demonstrated solutions
following this general scheme, using either checkpointing/restart mechanisms [3, 4] or
message-logging approaches [5].

In this paper, we present a new solution that goes one significant step further: instead
of waiting for failures to occur and reacting to them, we proactively migrate the exe-
cution from a processor where a failure is imminent, without requiring the use of spare
processors. We build on our recent work on fault-driven task migration [6], and develop
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a scheme that supports MPI applications transparently to the user. Based on processor
virtualization and on the migration capabilities of AMPI, our runtime system handles
imminent faults by migrating the MPI tasks to other processors.

To be effective, this approach requires that failures be predictable. We leverage the
features in current hardware devices supporting early fault indication. As an example,
most motherboards contain temperature sensors, which can be accessed via interfaces
like ACPI [7]. Meanwhile, recent studies have demonstrated the feasibility of predicting
the occurrence of faults in large-scale systems [8] and of using these predictions in
system management strategies [9]. Hence, it is possible, under current technology, to
act appropriately before a system fault becomes catastrophic to an application. In this
paper we focus on handling warnings for imminent faults and not on the prediction of
faults. For unpredictable faults, we can revert back to traditional recovery schemes, like
checkpointing [3] or message logging [5].

Our strategy is entirely software based and does not require any special hardware.
However, it makes some reasonable assumptions about the system. The application is
warned of an impending fault through a signal to the application process on the pro-
cessor that is about to crash. The processor, memory and interconnect subsystems on a
warned node continue to work correctly for some period of time after the warning. This
gives us an opportunity to react to a warning and adapt the runtime system to survive a
crash of that node. The application continues to run on the remaining processors, even
if one processor crashes.

We decided on a set of requirements before setting out to design a solution. The
time taken by the runtime system to change (response time), so that it can survive the
processor’s crash, should be minimized. Our strategy should not require the start up
of a new “spare” [4, 5] process on either a new processor or any of the existing ones.
When an application loses a processor due to a warning, we expect the application to
slow down in proportion to the fraction of computing power lost. Our strategy should
not require any change to the user code. We verify in Section 4 how well our protocol
meets these specifications.

2 Processor Virtualization

Processor virtualization is the key idea behind our strategy for proactive fault tolerance.
The user breaks up his computation into a large number of objects without caring about
the number of physical processors available. These objects are referred to as virtual
processors. The user views the application in terms of these virtual processors and their
interactions. Charm++[10] and Adaptive-MPI (AMPI) [11] are based on this concept of
processor virtualization. The Charm++ runtime system is responsible for mapping the
virtual processors to physical processors. It can also migrate a virtual processor from
one physical processor to another at runtime. Charm++ supports message delivery to
and creation, deletion, migration of the virtual processors in a scalable and efficient
manner. It also allows reductions and broadcasts in the presence of migrations.

Coupling the capability of migration with the fact that for most applications the com-
putation loads and communication patterns exhibited by the virtual processors tend
to persist over time, one can now build measurement based runtime load balancing
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techniques. Dynamic load balancing in Charm++ has been used to scale diverse appli-
cations such as cosmology[12] and molecular dynamics [13] to thousands of processors.

Adaptive MPI (AMPI) [11] is an implementation of the Message Passing Interface
(MPI) on top of Charm++. Each MPI process is a user-level thread bound to a Charm++
virtual processor. The MPI communication primitives are implemented as communica-
tion between the Charm++ objects associated with each MPI process. Traditional MPI
codes can be used with AMPI after no or slight modifications. These codes can also
take advantage of automatic migration, automatic load balancing and adaptive overlap
of communication and computation.

3 Fault Tolerance Strategy

We now describe our technique to migrate tasks from processors where failures are im-
minent. Our solution has three major parts. The first part migrates the Charm++ objects
off the warned processor and ensures that point-to-point message delivery continues to
function even after a crash. The second part deals with allowing collective operations
to cope with the possibility of the loss of a processor. It also helps to ensure that the
runtime system can balance the application load among the remaining processors after
a crash. The third part migrates AMPI processes away from the warned processor. The
three parts are interdependent, but for the sake of clarity we describe them separately.

3.1 Evacuation of Charm++ Objects

Each migratable object in Charm++ is identified by a globally unique index which is
used by other objects to communicate with it. We use a scalable algorithm for point-
to-point message delivery in the face of asynchronous object migration, as described
in [14]. The system maps each object to a home processor, which always knows where
that object can be reached. An object need not reside on its home processor. As an
example, an object on processor A wants to send a message to an object (say X) that
has its home on processor B but currently resides on processor C. If processor A has
no idea where X resides, it sends the message to B, which then forwards it to C. Since
forwarding is inefficient, C sends a routing update to A, advising it to send future X-
bound messages directly to C.

The situation is complicated slightly by migration. If a processor receives a message
for an object that has migrated away from it, the message is forwarded to the object’s
last known location. Figure 1 illustrates this case as object X migrates from C to another
processor D. X’s home processor (B) may not yet have the correct address for X when
it forwards the message to C. However, C forwards it to D and then D sends a routing
update to A. B also receives the migration update from C and forwards any future
messages to D. [14] describes the protocol in much greater detail.

When a processor (say E) detects that a fault is imminent, it is possible in Charm++
to migrate away the objects residing there. However, this crash would disrupt message
delivery to objects which have their homes on E, due to the lack of updated routing
information. We solve that problem by changing the index-to-home mapping such that
all objects mapped to E now map to some other processor F. This mapping needs to
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Fig. 1. Message from object Y to X while X migrates from processor C to D

change on all processors in such a way that they stop sending messages to E as soon as
possible. The messages exchanged for this distributed protocol are shown in Figure 2.
As previously described, objects which had their home on E now have their home on F.

Fig. 2. Messages exchanged when processor E is being evacuated

The index-to-home mapping is a function that maps an object index and the set of
valid processors to a valid processor. If the set of valid processors is given by the bitmap
isValidProcessor, the initial number of processors is numberProcessors and sizeOfNode
is the number of processors in a node, then an index-to-home mapping is given by:

start ← possible ← (index mod numberProcessors)
while !isV alidProcessor[possible]do

possible ← (possible + sizeOfNode)modnumberProcessors
if inSameNode(start, possible)then

abort(“No valid node lef t′′)
end

end
return possible;
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For efficiency, we derive the mapping once and store it in a hashtable for subsequent
accesses. When an evacuation message is received, we repopulate the hashtable. An
analysis of the protocol (omitted here due to space constraints) shows that the only
messages that E needs to process after being warned were sent to it by processors which
had not yet received the evacuation message from E. Once all processors receive the
evacuation message, no messages destined for Charm++ objects will be sent to E.

This protocol is robust enough to deal with multiple simultaneous fault warnings.
The distributed nature of the algorithm, without any centralized arbitrator or even a
collective operation, makes it robust. The only way two warned processors can interfere
with each other’s evacuation is if one of them (say H) is the home for an object existing
on the other (say J). This might cause J to evacuate some objects to H. Even in this case
once J receives the evacuation message from H, it changes its index-to-home mapping
and does not evacuate objects to H. Only objects that J evacuates before receiving an
evacuation message from H are received by H. Though H can of course deal with these
by forwarding them to their new home, this increases the evacuation time. This case
might occur if H receives J’s evacuation message before it receives its own warning
and so does not send an evacuation message to J. We reduce the chances of this by
forcing a processor to send an evacuation message to not only all valid processors but
also processors that started their evacuation recently.

3.2 Support for Collective Operations in the Presence of Fault Warnings

Collective operations are important primitives for parallel programs. It is essential that
they continue to operate correctly even after a crash. Asynchronous reductions are im-
plemented in Charm++ by reducing the values from all objects residing in a processor
and then reducing these partial results across all processors [14]. The processors are
arranged in a k-ary reduction tree. Each processor reduces the values from its local ob-
jects and the values from the processors that are its children, and passes the result along
to its parent. Reductions occur in the same sequence on all objects and are identified by
a sequence number. If a processor were to crash, the tree could become disconnected.
Therefore, we try to rearrange the tree around the tree node corresponding to the warned
processor. If such node is a leaf, then the rearranging involves just deleting it from its
parent’s list of children. In the case of an internal tree node, the transformation is shown
in Figure 3. Though this rearrangement increases the number of children for some nodes
in the tree, the number of nodes whose parent or children change is limited to the node
associated to the warned processor, its parent and its children.

Since rearranging a reduction tree while reductions are in progress is very compli-
cated, we adopt a simpler solution. The node representing the warned processor polls
its parent, children and itself for the highest reduction that any of them has started.
Because the rearranging affects only these nodes, each of them shifts to using the new
tree when it has finished the highest reduction started on the old tree by one of these
nodes. If there are warnings on a node and on one of its children at the same time, we
let the parent modify the tree first and then let the child change the modified tree. Other
changes to the tree can go on simultaneously in no specific order.

The Charm++ runtime provides support for asynchronous broadcasts to its objects
[14]. It simplifies the semantics of using broadcasts by guaranteeing that all objects
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Fig. 3. Rearranging of the reduction tree, when processor 1 receives a fault warning

receive broadcasts in the same sequence. All broadcasts are forwarded to an appointed
serializer. This processor allots a number to a broadcast and sends it down the broadcast
tree to all other processors. Each processor delivers the broadcast messages to the resi-
dent objects in order of the broadcast number. Contrary to intuition, this does not create
a hotspot since the number of messages received and sent by each processor during a
broadcast is unchanged.

We can change the broadcast tree in a way similar to the reduction tree. However, if
the serializer receives a warning we piggyback the current broadcast number along with
the evacuation message. Each processor changes the serializer according to a predeter-
mined function depending on the set of valid processors. The processor that becomes
the new serializer stores the piggybacked broadcast count. Any broadcast messages re-
ceived by the old serializer are forwarded to the new one.

It is evident from the protocol that evacuating a processor might lead to severe load
imbalance. Therefore, it is necessary that the runtime system be able to balance the
load after a migration caused by fault warning. Minor changes to the already existing
Charm++ load balancing framework allow us to map the objects to the remaining subset
of valid processors. As we show in Section 4, this capability has a major effect on
performance of an application.

3.3 Processor Evacuation in AMPI

We modified the implementation of AMPI to allow the runtime system to migrate AMPI
threads even when messages are in flight, i.e. when there are outstanding MPI requests
or receives. This is done by treating outstanding requests and receives as part of the
state of an AMPI thread. When a thread migrates from processor A to B, the queue of
requests is also packed on A and sent to processor B. At the destination processor B,
the queue is unpacked and the AMPI thread restarts waiting on the queued requests.
However, just packing the requests along with the thread is not sufficient. Almost all
outstanding requests and receives are associated with a user-allocated buffer where the
received data should be placed. Packing and moving the buffer from A to B might cause
the buffer to have a different address on B’s memory. Hence the outstanding request that
was copied over to the destination would point to a wrong memory address on B.

We solve this problem by using the concept of isomalloc proposed in PM2 [15].
AMPI already uses this to implement thread migration. We divide the virtual address
space equally among all the processors. Each processor allocates memory for the user
only in the portion of the virtual address space alloted to it. This means that no two
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buffers allocated by the user code on different processors will overlap. This allows all
user buffers in a thread to be recreated at the same address on B as on A. Thus, the
buffer addresses in the requests of the migrated thread point to a valid address on B
as well. This method has the disadvantage of restricting the amount of virtual address
space available to the user on each processor. However, this is a drawback only for 32-
bit machines. In the case of 64-bit machines, even dividing up the virtual address space
leaves more than sufficient virtual address space for each processor.

4 Experimental Results

We conducted a series of experiments to assess the effectiveness of our task migration
technique under imminent faults. We measured both the response time after a fault is
predicted and the overall impact of the migrations on application performance. In our
tests, we used a 5-point stencil code, written in C and MPI, and the Sweep3d code,
which is written in Fortran and MPI. The 5-point stencil code allows a better control of
memory usage and computation granularity than a more complex application. Sweep3d
is the kernel of a real ASCI application; it solves a 3D Cartesian geometry neutron
transport problem using a two-dimensional processor configuration.

We executed our tests on NCSA’s Tungsten system, a cluster of 3.2 GHz dual-Xeon
nodes, with 3 GBytes of RAM per node, and two kinds of interconnects, Myrinet and
Gigabit-Ethernet. Each node runs Linux kernel 2.4.20-31.9. We compiled the stencil
program with GNU GCC version 3.2.2, and the Sweep3d program with Intel’s Fortran
compiler version 8.0.066. For both programs, we used AMPI and Charm++ over the
Myrinet and Gigabit interconnects. We simulated a fault warning by sending the USR1
signal to an application process on a computation node.

4.1 Response Time Assessment

We wanted to evaluate how fast our protocol is able to morph the runtime system such
that if the warned processor crashes, the runtime system remains unaffected. We call
this the processor evacuation time. We estimate the processor evacuation time as the
maximum of the time taken to receive acknowledgments that all evacuated objects have
been received at the destination processor and the last message processed by the warned
processor. It should be noted that these acknowledgment messages are not necessary for
the protocol; they are needed solely for evaluation. The measured value is, of course,
a pessimistic estimate of the actual processor evacuation time, because it includes the
overhead of those extra messages.

The processor evacuation time for the 5-point stencil program on 8 and 64 proces-
sors, for different problem sizes and for both interconnects, is shown in Figure 4(a).
The evacuation time increases linearly with the total problem size until at least 512 MB.
This shows that it is dominated by the time to transmit the data out from the warned
processor. Thus, the evacuation time in Myrinet is significantly smaller than in Gigabit.

Figure 4(b) presents the processor evacuation time for two problem sizes, 32 MB and
512 MB, of the 5-point stencil calculation on different numbers of processors. For both
interconnects, the evacuation time decreases more or less linearly with the data volume
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(a) Scaling Evacuation time with data size (b) Scaling Evacuation time with processors

Fig. 4. Processor evacuation time for MPI 5-point stencil calculation

per processor. Myrinet has a significantly faster response time than Gigabit. Table 1
shows similar data corresponding to the evacuation time for Sweep3d, for a problem
size of 150×150×150. These experiments reveal that the response to a fault warning is
constrained only by the amount of data on the warned processor and the speed of the
interconnect. In all cases, the evacuation time is under 2 seconds, which is much less
than the time interval demanded by fault prediction as reported by other studies [8]. The
observed results show that our protocol scales to at least 256 processors. In fact, the only
part in our protocol that is dependent on the number of processors is the initial evacuate
message sent out to all processors. The other parts of the protocol scale linearly with
either the size of objects or the number of objects on each processor.

4.2 Overall Application Performance

We evaluated the overall performance of the 5-point stencil and Sweep3d under our task
migration scheme in our second set of experiments. We were particularly interested in
observing how the presence of warnings and subsequent task migrations affect appli-
cation behavior. For two executions of the 5-point stencil on 8 processors and a dataset
size of 288 MB, we observed the execution profiles shown in Figure 5(a). We gener-
ated one warning in both executions. In the first execution, the evacuation prompted
by the warning at iteration 85 forces the tasks in the warned processor to be sent to
other processors. The destination processors become more loaded than the others, re-
sulting in much larger iteration times for the application. In the second execution, we

Table 1. Evacuation time for a 1503 Sweep3d problem on different numbers of processors

Number of Processors 4 8 16 32 64 128 256
Evacuation Time (s) 1.125 0.471 0.253 0.141 0.098 0.035 0.025
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(a) 5-point stencil with 288MB of data on 8 pro-
cessors

(b) 1503 Sweep3d problem on 32 processors

Fig. 5. Time per iteration for different applications in the presence of warnings

used AMPI’s dynamic load balancing capabilities to re-balance the load among the re-
maining processors after an evacuation at iteration 70. After the re-balancing occurs (at
iteration 100), the remaining processors have nearly the same load, and performance
improves significantly. In this phase, the performance drop relative to the beginning
of the execution is exactly proportional to the computational capability that was lost
(namely, one processor in the set of eight original processors).

We evaluated the effects of evacuation and load balancing on Sweep3d executions
on 32 processors that solved a 1503 sized problem. Figure 5(b) shows the application
behavior, in terms of iteration durations, for the cases when no processor is evacuated,
one processor is evacuated and when an evacuation is followed by a load balancing
phase. The evacuations are triggered by externally inserted fault warnings. The perfor-
mance of the application deteriorates after a warning in both cases. The performance
hit of around 10% increase in time per iteration is far more than the loss in computa-
tion power of 3%. This is probably caused by computation and communication load
imbalance among processors. After load balancing the performance improves signifi-
cantly and the increase in time per iteration relative to the warning-free case is around
4%. Thus the loss in performance is very similar to the loss in computation power once
AMPI has performed load balancing.

The Projections analysis tool processes and displays trace data collected during ap-
plication execution. We use it to assess how parallel processor utilization changes across
a Sweep3d execution of a 1503 problem on 32 processors. We trigger warnings on Node
3 which contains two processors: 4 and 5. This tests the case of multiple simultaneous
warnings by evacuating processors 4 and 5 at the same time. Before the warnings oc-
cur, processors have nearly uniform load and similar utilization (Figure 6(a)). After
evacuation takes place, processors 4 and 5 quit the execution and their objects get dis-
tributed among the other processors. However, this creates a load imbalance among the
processors, with some taking longer than others to finish iterations. The redistribution
of objects can also increase communication load by placing objects that communicate



494 S. Chakravorty, C.L. Mendes, and L.V. Kalé

(a) Before warnings (b) After warnings (c) Post load balancing

Fig. 6. Utilization per processor for the 1503 Sweep3d on 32 processors

frequently on different processors. This reduces the utilization significantly on all pro-
cessors (Figure 6(b)). Finally, after load balancing, the remaining processors divide the
load more fairly among themselves and objects that communicate frequently are placed
on the same processor, resulting in a much higher utilization (Figure 6(c)). These ex-
periments verify that our protocol matches the goals laid out in Section 1.

5 Related Work

The techniques for fault tolerance in message-passing environments can be broadly di-
vided in two classes: checkpointing schemes and message-logging schemes. In check-
point based techniques, the application status is periodically saved to stable storage, and
recovered when a failure occurs. The checkpointing can be coordinated or independent
among the processors. However, due to the possible rollback effects in independent
schemes, most implementations use coordinated checkpointing. Representatives of this
class are CoCheck [16], Starfish [17] and Clip [18].

In message-logging techniques, the central idea is to retransmit one or more mes-
sages when a system failure is detected. Message-logging can be optimistic, pessimistic
or causal. Because of the complex rollback protocol, optimistic logging [19] is rarely
used; instead, pessimistic logging schemes are more frequently adopted, like in FT-
MPI [20], MPI/FT [21], MPI-FT [22] and MPICH-V [23]. Causal logging (such as
in [24]) attempts to strike a balance between optimistic and pessimistic logging; how-
ever, its restart is also non-trivial.

In all of these proposed fault-tolerant solutions, some corrective action is taken in
reaction to a detected failure. In contrast, with the proactive approach that we present in
this paper, fault handling consists in migrating a task from a processor where failures are
imminent. Thus, no recovery is needed. In addition, both checkpointing and message-
logging impose some execution overhead even in the case of no faults, whereas our
technique incurs no overhead if faults are not present. Other studies have proposed
proactive fault-tolerant schemes for distributed systems [25], but no previous study has
considered MPI applications.



Proactive Fault Tolerance in MPI Applications Via Task Migration 495

6 Conclusion and Future Work

We have presented a new technique for proactive fault tolerance in MPI applications,
based on the task migration and load balancing capabilities of Charm++ and AMPI.
When a fault is imminent, our runtime system proactively attempts to migrate execu-
tion off that processor before a crash actually happens. This processor evacuation is im-
plemented transparently to the application programmer. Our experimental results with
existing MPI applications show that the processor evacuation time is close to the limits
allowed by the amount of data in a processor and the kind of interconnect. The migra-
tion performance scales well with the dataset size. Hence, the fault response time is
minimized, as required in our specifications in Section 1. Our experiments also demon-
strated that MPI applications can continue execution despite the presence of successive
failures in the underlying system. Load balancing is an important step to improve paral-
lel efficiency after an evacuation. By using processor virtualization combined with load
balancing, our runtime system was able to divide the load among the remaining fault-
free processors, and application execution proceeded with optimized system utilization.

We are currently working to enhance and further extend our technique. We plan to
bolster our protocol so that in the case of false positives it can expand the execution back
to wrongly evacuated processors. We will also extend our protocol to allow recreating
the reduction tree from scratch. We plan to investigate the associated costs and benefits
and the correct moment to recreate the reduction tree. In addition, we will generate our
fault warnings with information derived from temperature sensors in current systems.

Acknowledgments. This work was supported in part by the US Dep. of Energy under
grant W-7405-ENG-48 (HPC-Colony) and utilized parallel machines of NCSA.
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Abstract. Clustered architecture processors are preferred for embed-
ded systems because centralized register file architectures scale poorly in
terms of clock rate, chip area, and power consumption. Although cluster-
ing helps by improving clock speed, reducing energy consumption of the
logic, and making the design simpler, it introduces extra overheads by
way of inter-cluster communication. This communication happens over
long global wires which leads to delay in execution and significantly high
energy consumption.

In this paper, we propose a new instruction scheduling algorithm that
exploits scheduling slacks of instructions and communication slacks of
data values together to achieve better energy-performance trade-offs for
clustered architectures with heterogeneous interconnect. Our instruction
scheduling algorithm achieves 35% and 40% reduction in communication
energy, whereas the overall energy-delay product improves by 4.5% and
6.5% respectively for 2 cluster and 4 cluster machines with marginal in-
crease (1.6% and 1.1%) in execution time. Our test bed uses the Trimaran
compiler infrastructure.

1 Introduction

ILP architectures have been developed to meet the need for high performance
in embedded and other applications. Two major ILP design philosophies are su-
perscalar architecture and VLIW architecture. Superscalar processors have dedi-
cated hardware responsible for scheduling instructions at runtime to improve the
performance. The high power consumption, chip area, and cost of these architec-
tures make them less suitable for embedded systems. Another design philosophy
is the VLIW architecture, where the compiler is responsible for scheduling. This
simplifies the hardware but in order to exploit the ILP in emerging embedded
applications, more functional units that can operate in parallel are required. This
in turn requires more number of read and write ports and hence increased chip
area, cycle time, and power consumption.

A clustered VLIW architecture [5] has more than one register file and connects
only a subset of functional units to a register file. Groups of small computation
clusters can be fully or partially connected using either a point-to-point network
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or a bus-based network. Clustering avoids area and power consumption problems
of centralized register file architectures while retaining high clock speed, and can
be leveraged to get better performance. Texas Instrument’s VelociTI, HP/ST’s
Lx, Analog’s TigerSHARC, and BOPS’ ManArray are examples of the recent
commercial clustered micro-architectures. IBM’s eLite is a research proposal for
a novel clustered architecture. A compiler for these architectures is responsible
for distributing the operations to the resources in different clusters.

Communication of data values in clustered VLIW architectures happens over
long wires having high load capacitance which in effect takes more time and con-
sumes more energy. Earlier Studies report that a very high percentage (30% to
40%) of total processor energy consumption is attributed to interconnects [14].
Clearly, clustered architectures are attractive only if their benefits outweigh the
performance and energy penalties due to interconnections. Thus efficient means
of using interconnects are important for clustered VLIW architectures. The pri-
mary goal so far has been reduction in the latency of communication to minimize
communication delays [6]. It has been shown that using 50nm technology, it is
possible to design wires consuming 1/5 the energy but having twice the delay [2].
Though VLSI technology enables design of interconnects with wires having dif-
ferent energy characteristics, to the best of our knowledge, there has been no
effort in the direction of using energy-efficient interconnects for clustered VLIW
architectures.

In this paper, we propose and evaluate a new energy-aware instruction schedul-
ing algorithm which exploits multiple interconnects of different energy and de-
lay characteristics in the context of clustered VLIW architectures. The proposed
algorithm takes into consideration the interconnect characteristics, and commu-
nication slacks of data values together with the scheduling slacks of instructions
while steering the communication to an appropriate interconnect, thereby reduc-
ing energy consumption without much performance degradation. We consider dif-
ferent flavors of homogeneous interconnects such as latency-optimized and
energy-optimized as well as heterogeneous interconnects together with the varia-
tion in degree of clustering (no clustering, 2-clustered and 4-clustered) to perform
a detailed performance evaluation. Our evaluation uses the Trimaran compiler
infrastructure.

The rest of the paper is organized as follows. In section 2, we present the
motivation for this work and section 3 gives a detailed description of our energy-
aware instruction scheduling algorithm. Section 4 presents a detailed perfor-
mance evaluation of proposed algorithm and section 5 presents the related work.
We conclude in section 6 with pointers to future directions.

2 Motivation

Previous studies have reported that the performance degrades by approximately
12% when the latency of communication is doubled for a four clustered archi-
tecture, and that increasing the interconnection bandwidth from one to two
improves the performance by as much as 10% [7]. A high speed path for com-
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Fig. 1. Communication Slack for 2 Cluster Machine Model

munication of data values among clusters indeed enables better performance.
But we argue that not all data values need to be communicated on a high speed
path, and that many communications are non-critical and can still happen on
a slow path without affecting performance. We define the communication slack
of a data value on clustered architectures as the number of cycles between the
time when the data value to be communicated becomes available (due to com-
pletion of execution of the producing instruction) and when the instruction that
requires the data value is actually scheduled. The available communication slack
of a data value on clustered architecture is affected by data dependencies among
instructions, limitation on the available number of functional units, and the limi-
tations on the number of available cross-paths, their bandwidth, and the latency
of cross-path communication.

Figure 1 presents quantitative results to substantiate our arguments. This fig-
ure presents the percentage of required communication that has a slack of three
cycles (two cycles and four cycles) or more for a two-cluster machine with two
high speed bidirectional cross-paths between clusters. We observe that all the
benchmarks have many communications with high slack values. In particular
djpeg, g721encode, des, and crc have 70% to 75% of communications with slack
value of three cycles or higher. On an average, we observe that 60.88% (82.51%
and 43.16%) of communications can sustain a latency of three cycles (two cycles
and four cycles respectively) or higher. Thus, having both the cross-path wires
optimized for low latency (resulting in high energy consumption) is an overkill.
This is because improving the latency of communication channel requires closely
spaced repeaters which increase the area and energy overheads of repeaters [2]. A
more suitable option that we propose is to design interconnects between clusters
with some paths optimized for latency and others for energy. Thus, critical com-
munication can take place over the fast but more energy-consuming wires, and
the other not-so-critical communication can happen over the slower but energy-
efficient wires. Further mechanisms (software or hardware) that can steer the
communications to the appropriate cross-path depending on the communication
slack of the data value should be available. Our instruction scheduler is one such
software mechanism.
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3 The Scheduling Algorithm

The Elcor backend of the Trimaran infrastructure has a list scheduling algorithm
designed and implemented for flat VLIW architectures. We have extended this
algorithm to perform cluster scheduling in an integrated fashion and it (Refer
Algorithm 1) consists of following main steps :

1. Prioritizing the ready instructions
2. Assignment of a cluster to the selected instruction
3. Assignment of cross-paths for transferring data values to the target cluster.

3.1 Prioritizing the Ready Instructions

Instructions in the ReadyList are prioritized using a priority function that uses
instruction slack and number of consumers of the instruction respectively. In-
structions with less slack should be scheduled early and are given higher priority
over instruction with more slack to avoid unnecessary stretching of the schedule.
Instructions with the same slack values are further ordered in decreasing order
of the number of consumers. An instruction with more successors is more con-
strained in the sense that its spatial and temporal placement affects scheduling of
more instructions and hence should be given higher priority. Giving preference to
an instruction with more dependent instructions also enables better scheduling
decisions by uncovering a larger portion of the graph.

3.2 Cluster Assignment

Once an instruction has been selected for scheduling, we make a cluster assign-
ment decision. The primary constraints are :

– The chosen cluster should have at least one free resource of the type needed
to perform this operation

– Given the bandwidth of the channels among clusters and their usage, it
should be possible to satisfy the communication needs of the operands of
this instruction on the cluster by scheduling these communications in the
earlier cycles

Selection of a cluster from the set of the feasible clusters is done as follows. We
determine the earliest time when we can schedule the operation under consid-
eration on each of the clusters in the feasible cluster list while adhering to all
the resource and communication constraints. The operation is primarily assigned
to that cluster where it can be scheduled at the earliest after accommodating
all the communications. In the case of a tie, the operation is assigned to the
cluster that minimizes communication requirements. The communication cost is
computed by determining the number and type of communications needed by a
binding in the earlier cycles as well as the communication that will happen in the
future. Future communications are determined by considering the successors of
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Algorithm 1. The Main Scheduling Loop
Initialize Early Cycle, Late Cycle and Priorities of the operations
ReadyList=Start Operation
while (CurrentOperations =UnSchedList.pop()) do

Compute EarlyCycle of the CurrentOperation
Initialize MinCycle, MinCommCost, and MinCommOption
for (CurrentCluster ranging from FirstCluster through LastCluster) do

for (CurrentClusterCycle ranging from EarlyCycle through MaxScheduledCycle) do
Compute the Cross-path Requirements in CurrentCommOption
Compute the Communication Cost in CurrentCommCost
if (FU and Cross-paths required by CurrentOperation are available in CurrentCycle for
CurrentCluster) then

break
end if

end for
if ((CurrentClusterCycle < MinCycle) || (CurrentClusterCycle ==
MinCycle && CurrentCommCost <= MinCommCost)) then

MinCycle=CurrentClusterCycle
MinCommCost=CurrentCommCost
MinCommOption=CurrentCommOption
TargetCluster=CurrentCluster

end if
end for
while (CurrentComm=CurrentCommOption.pop()) do

Determine the EarlyCommCycle, LateCommCycle and the CommSlack for CurrentComm
Schedule the CurrentComm using minimum energy consuming cross-path between Early-
CommCycle and LateCommCycle

end while
Schedule CurrentOperation on TargetCluster in MinCycle

end while

this instruction which have one of their parents bound on a cluster different from
the cluster under consideration. This is due to the fact that if the instruction is
bound to the cluster under consideration, it will surely lead to communication(s)
in the future while scheduling the successors of the instructions.

3.3 Cross-Path Binding

The cross-path assignment scheme is designed to minimize the energy consump-
tion due to inter-cluster communication without affecting runtime performance.
To schedule a communication, its earliest scheduling cycle, latest scheduling
cycle, and slack values are determined first. The earliest scheduling cycle for
a communication is the cycle in which the data value to be communicated is
produced in the source cluster, plus one. The latest scheduling time for commu-
nication is the scheduling cycle of first consuming instruction, minus one. The
difference between the earliest scheduling cycle and the latest scheduling cycle is
the communication slack. In order to avoid delaying the consuming instruction
and the consequent possible stretch of the schedule, a communication is assigned
to a least energy consuming cross-path that can transfer the data value within
the available slack for communication. Thus the cross-path assignment scheme
maximizes the usage of low power cross-paths subject to the availability of slack
in the communication, and thus, as far as possible, performance degradation is
minimized and energy saving is maximized.
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Fig. 2. An Example (a) Data Dependency Graph (b) Schedule 1 (c) Schedule 2

3.4 An Example

Figure 2 shows a portion of a data dependency graph and two possible schedules
for this dependency graph. We assume a two-clustered machine with each clus-
ter having an adder, a multiplier, and a fast communication bus. Schedule 1 has
ADD1 and ADD2 scheduled on adders of cluster 1 and cluster 2 respectively in
cycle 1. To perform multiplication, the results of these operations are transferred
to the other cluster in cycle 2. The remaining addition operation ADD3 is also
initiated in cycle 2 on cluster 1. The results of ADD1 and ADD2 can be used in
cycle 3 on cluster 1 and cluster 2 respectively to perform MPY2 and MPY1 on
multipliers. Though MPY3 does not require any inter-cluster communication, it
is still executed in cluster 1 at cycle 4 because of non-availability of a multiplier
in cycle 3. The scheduler decides to schedule MPY2 ahead of MPY3 in schedule
1 assuming that MPY2 is on the critical path. However, MPY3 gets preference
if it is on the critical path as shown in schedule 2. Note that in this case, MPY2
needs to be scheduled in cycle 4 on cluster 1 again because cluster 1 has only one
multiplier. The important point to note here is that the scheduler when schedul-
ing MPY2 in cycle 4 in cluster 2 has the knowledge that it can take two cycles
to transfer the result of ADD2 over the communication channel without stretch-
ing the schedule. In such a situation if a slow but more energy-efficient bus is
available, our schedulers decide to steer communication to such a bus (as shown
with darker arrow in schedule 2).

Notably, even though three additions are ready to be scheduled in the first
cycle only two of them can be scheduled (only two adders are available in this
case). Similarly though the addition operations finish in opposite clusters in cycle
one the results can not be utilized for multiplications in cycle 2 because it takes
at least one cycle to transfer the results to the other clusters. This shows how
contention among computation and communication resources in clustered archi-
tectures manifests itself in the form of greater computation and communication
slack. The contention for resources is more in clustered architectures as com-
pared to flat architectures because of distribution of resources. Our scheduling
algorithm leverages this increased slack and takes into consideration the criti-
cality of an instruction and the available cycles to communicate requisite data
values while scheduling an instruction in a given cycle. Accordingly, communi-
cation is assigned to the most energy-efficient cross-path that can transfer the
value in the available communication cycles.
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4 Experimental Evaluation

4.1 Setup

We have modified the Trimaran suite1 to generate and simulate code for a variety
of clustered VLIW configurations. We have used twelve benchmarks out of which
nine are from mediabench (viz. cjpeg, djpeg, rawcaudio, rawdaudio, g721encode,
g721decode, md5, des, and idea), two from netbench(viz. crc, and dh), and one
(susan) is from MiBench. We have adapted the Epic-Explorer2 to determine
the energy consumption in the different components of the data-path. Epic-
Explorer is a collection of well known activity based power models. The energy
parameters used for heterogeneity in interconnects are the same as the one used
in [1] which are based on the circuit level analysis presented in [2] [3]. It takes
into account wires with different latency and energy profiles to determine the
overall energy consumption of the interconnect. In our simulations, we consider
a latency of one cycle and three cycles for latency optimized (L) bus and energy
optimized (P) bus respectively. The dynamic and the leakage energies of the L
bus are 2.80 times and 2.64 times the dynamic and the leakage energies of the P
bus respectively [1] [2] [3]. A detailed description of our experimental setup and
energy models used is available in the associated technical report [11].

We present results for a two-cluster machine and a four-cluster machine with
each machine having one integer unit, one floating unit, one branch unit, and
one load store unit in each cluster. To ensure a fair comparison and to deter-
mine the exact trade-offs, results are presented in comparison with an equivalent
BASE machine with no clustering but with the same number of functional units
and registers. Thus, the BASE VLIW machine has two functional units and four
functional units of each type for 2-clustered and 4-clustered VLIW. Both the
BASE machines have 64 integer and 64 floating point registers. These registers
are evenly divided among clusters. Thus the 2-clustered machine has 32 regis-
ters of each type and the 4-clustered machine has 16 registers of each type in
each cluster. Each configuration has two bidirectional buses between each pair
of clusters. The first configuration called LL, has both the buses implemented
with delay-optimized wires (one cycle transfer time). The second configuration
called PP, has both the buses implemented with the energy-optimized wires
(three cycles transfer time). The third configuration represents a heterogeneous
interconnect called LP, and has one L bus (one cycle transfer time) and one P
bus (three cycle transfer time).

4.2 Results

We have performed a detailed experimental evaluation of the proposed scheme in
terms of run-time performance, energy, and energy-delay product. These results
are discussed in detail in the following subsections.
1 http://www.trimaran.org/
2 http://epic-explorer.sourceforge.net/
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Fig. 3. Speedup w.r.t. the BASE Machine

Performance. We compare the number of cycles taken to execute the pro-
gram on different configurations. Figure 3(a) shows speedup for a two-cluster
machine with different interconnect configurations with respect to the corre-
sponding BASE machine. We observe that the LL configuration achieves the
best performance among all the clustered configurations as expected. The aver-
age performance degradation while going from a BASE machine to a 2-clustered
machine with the LL configuration is 8.65% whereas the average performance
degradation for the PP and the LP configurations is 17.74% and 10.11% with
respect to the BASE configuration. The results for a 4-cluster configuration
(Figure 3(b)) show similar trends.

It is clear that heterogeneous interconnects (LP-with a fast and a slow bus)
offer nearly the same performance as that of a homogeneous interconnect (LL-
with two fast buses) as the performance degradation is only marginal (1.64%
and 1.11% for two-cluster and four-cluster machines respectively). However, an
energy optimized homogeneous interconnect (having two slow buses) suffers an
intolerably high performance degradation of 10.08% and 9.56% for two and four
cluster machines respectively.

Energy Consumption. We observe that the PP configuration shows about
64.66% reduction in communication energy as compared to the LL. The average
communication energy reduction for the LP configuration is 35.54% with respect
to the LL configuration (Refer Figure 4 (a)). Unlike PP configuration, there is
much more variation here in communication energy saved for different bench-
marks depending upon the available communication slack for the benchmark and
the effectiveness of the proposed scheme in terms of mapping the communication
to appropriate bus. We observed 69.74% (PP over LL) and 39.98% (LP over LL)
reduction in communication energy while going from the LL to the PP and the
LP configuration respectively for a 4-clustered configuration.

The simplification of components and a high degree of communication in the
context of clustered VLIW architectures lead to a higher contribution of com-
munication energy to the overall processor energy consumption. An earlier study
attributes 36% of energy consumption in interconnects [14]. Conservatively as-
suming interconnect energy consumption as 20% of the overall processor energy
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Fig. 4. % Reduction in Communication Energy w.r.t. the LL Configuration

consumption 3, Figures 5(a) presents total energy consumption for two cluster
machine. We observe 25.44%, 22.14%, and 20.81% increase in energy for the LL,
PP, and the LP configuration compared to the BASE configuration. Energy con-
sumptions of the PP and the LP configurations are 4.32% and 6.15% less than
the LL configuration respectively. The corresponding figures for a four cluster
machine are slightly higher but show similar trends. There are two reasons of high
energy consumption in clustered architectures apart from energy consumption
due to interconnects. Firstly, the communication delays prolong the execution on
clustered architectures which in turn increases the leakage energy consumption
in components. Secondly, clustering causes execution of extra move instructions
due to inter-cluster communication which cause extra dynamic energy consump-
tion. Huge saving in communication energy in the PP configuration offsets the
increase in processing energy in all the benchmarks except idea, md5, and su-
san. These benchmarks have exceptionally high increase in processing energy
because they have fewer communications with high slack values compared to
other benchmarks. The LP configuration performs the best in terms of energy
consumption. This is because of significant savings in communication energy in
the LP configuration with only marginal increase in the processing energy com-
pared to the LL configuration. Clustering reduces the complexity of components
and gives additional benefits in terms of energy consumption. However, these
benefits can not be attributed to our scheduling algorithm. Therefore, to fairly
quantify the benefits due to scheduling algorithm alone, we have conservatively
used the same technology parameters for determining the energy consumption in
flat BASE and clustered configurations. In reality, the energy benefits of cluster-
ing will be more because of reduction in processing energy due to simplification
of components.

Energy-Delay Product. Figure 6(a) presents the total energy-delay product
for different configurations of a 2-cluster machine as compared to the BASE
machine. We observe that the total energy-delay product increases by 31.83%,
35.59%, 28.67% for the LL, PP, and the LP configurations respectively. The
average increase in total energy-delay product while going form the LL to the
3 Refer to associated technical report [11] for a detailed sensitivity analysis.
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Fig. 5. % Increase in Energy w.r.t. the BASE Machine

PP and the LP configurations is 5.96% and -4.45% (actually decrease for the
LP) respectively. Notably the LP configuration provides an improvement over
the PP configuration by 10.12%. The results for 4-cluster machine is depicted in
Figure 6(b).

The PP configuration, having both interconnects optimized for energy,
achieves huge reduction in communication energy. However, the performance
degradation due to slow interconnects leads to large performance penalties and
the resulting increase in processing energy annuls the benefits obtained due to re-
duction in communication energy. On the other hand, the LL configuration offers
the best performance but at the cost of high energy penalty of delay-optimized
interconnects. The LP configuration performs extremely well in terms of energy-
delay product. The proposed selective scheduling steers only critical communi-
cations to the high speed interconnect. Thus, it maximizes the usage of the low
energy interconnect. As a result, it incurs only slight performance and energy
penalties as compared to the delay-optimized LL configuration, but is still able
to obtain a significant reduction in communication energy. Programs in which
more communications have high communication slacks, viz., djpeg, g721encode,
des, and crc suffer less performance degradation and consequently less increase
in processing energy in the LP configuration as compared to the LL configu-
ration. These programs also achieve significant reduction in energy in the LP
configuration because of usage of the P bus whenever possible. As a result, the
energy-delay product for these programs is significantly better in the LP con-
figuration. Even programs in which moderate number of communications have
high slack values yield significant benefit in energy-delay product in the LP con-
figuration as compared to the LL configuration because of a selective choice of
the bus. Reader is referred to the associated technical report [11] for detailed
analysis of results.

5 Related Work

Earlier proposals for scheduling on clustered VLIW architectures can be classi-
fied into two main categories, viz., phase-decoupled approaches [9] [4] and phase-
coupled approaches [12] [7] [10]. A phase-decoupled approach partitions a data
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Fig. 6. % Increase in Energy-Delay Product w.r.t the BASE Machine

flow graph (DFG) into clusters to reduce inter-cluster communication while ap-
proximately balancing the load among clusters. The annotated DFG is then
scheduled using a traditional list scheduler. However, the phase-decoupled ap-
proach is known to suffer from the phase ordering problem. An integrated ap-
proach to scheduling combats the phase-ordering problem by combining spatial
and temporal scheduling decisions in a single phase.

Zhang et al., [15] have proposed a scheme to reduce dynamic and leakage
energy in the functional units of VLIW processor, that exploits the slacks in al-
ready scheduled code to remap the functional units. Kim et al., [8] have proposed
a leakage energy management scheme for VLIW processors that determines the
ILP available in the program at a loop level granularity and keeps only the
canonical set of functional units sufficient to exploit this ILP in active mode.
Andrei et al., [13] have proposed various inter-cluster communication model for
clustered architecture and performed a quantitative analysis to compare their
benefits. Gonzalez et al., [6] have evaluated different kinds of interconnects from
performance perspective and concluded that a point-to-point interconnect with
an effective latency-aware steering scheme is more efficient than a bus-based in-
terconnect. Balasubramonian et al., [1] have evaluated techniques such as cache
pipelining, exploiting narrow bit-width operands, and interconnect load balanc-
ing in the context of superscalar architectures with heterogeneous interconnect.

6 Conclusions and Future Directions

In this work, we have proposed a new energy-aware instruction scheduling
algorithm for clustered VLIW architectures that is capable of exploiting inter-
connect characteristics to get energy benefits without showing much performance
degradation. The major conclusion that we draw form this work is that clustered
architecture with heterogeneous interconnect offers better energy-performance
trade-offs when used with an effective scheduling algorithm as compared to
a cluster VLIW architecture with homogeneous interconnect (which is either
optimized or latency or power). In future, we would like to develop an inte-
grated algorithm for reducing energy consumption in functional units as well
as interconnects.
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Abstract. Performance of large memory applications degrades rapidly
once the system hits the physical memory limit and starts paging to
local disk. We present the design, implementation and evaluation of Dis-
tributed Anemone (Adaptive Network Memory Engine) – a lightweight
and distributed system that pools together the collective memory re-
sources of multiple machines across a gigabit Ethernet LAN. Anemone
treats remote memory as another level in the memory hierarchy between
very fast local memory and very slow local disks. Anemone enables ap-
plications to access potentially “unlimited” network memory without
any application or operating system modifications. Our kernel-level pro-
totype features fully distributed resource management, low-latency pag-
ing, resource discovery, load balancing, soft-state refresh, and support for
’jumbo’ Ethernet frames. Anemone achieves low page-fault latencies of
160μs average, application speedups of up to 4 times for single process
and up to 14 times for multiple concurrent processes, when compared
against disk-based paging.

1 Introduction

Performance of large-memory applications (LMAs) can suffer from large disk ac-
cess latencies when the system hits the physical memory limit and starts paging
to local disk. At the same time, affordable, low-latency, gigabit Ethernet is be-
coming commonplace with support for jumbo frames (packets larger than 1500
bytes). Consequently, instead of paging to a slow local disk, one could page over
a gigabit Ethernet to the unused memory of remote machines and use the disk
only when remote memory is exhausted. Thus, remote memory can be viewed
as another level in the traditional memory hierarchy, filling the widening per-
formance gap between low-latency RAM and high-latency disk. In fact, remote
memory paging latencies of about 160μs or less can be easily achieved whereas
disk read latencies range anywhere between 6 to 13ms. A natural goal is to enable
unmodified LMAs to transparently utilize the collective remote memory of nodes
across a gigabit Ethernet LAN. Several prior efforts [1, 2, 3, 4, 5, 6, 7, 8] have ad-
dressed this problem by relying upon expensive interconnect hardware (ATM or
Myrinet switches), slow bandwidth limited LANs (10Mbps/100Mbps), or heavy-
weight software Distributed Shared Memory (DSM) [9, 10] systems that require
intricate consistency/coherence techniques and, often, customized application

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 509–521, 2006.
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programming interfaces. Additionally, extensive changes were often required to
the LMAs or the OS kernel or both.

Our earlier work [11] addressed the above problem through an initial proto-
type, called the Adaptive Network Memory Engine (Anemone) – the first
attempt at demonstrating the feasibility of transparent remote memory access for
LMAs over commodity gigabit Ethernet LAN. This was done without requiring
any OS changes or recompilation, and relied upon a central node to map and ex-
change pages between nodes in the cluster. Here we describe the implementation
and evaluation of a fully distributed Anemone architecture. Like the centralized
version, distributed Anemone uses lightweight, pluggable Linux kernel modules
and does not require any OS changes. Additionally, it achieves the following
significant improvements over centralized Anemone. (1) Memory resource man-
agement is distributed across the whole cluster. There is no single control node.
(2) Paging latency is reduced by over a factor of 3 – from around 500μs in
the to less than 160μs. (3) Clients can perform load-balancing across multiple
memory servers, taking into account their memory usage and paging load. (4) A
distributed resource discovery mechanism enables clients to discover newly avail-
able servers and track memory usage across the cluster. (5) A soft-state refresh
mechanism enables memory servers to track the liveness of clients and their
pages. (6) The distributed version incorporates the flexibility of whether or not
’jumbo’ frames should be used, allowing Anemone to operate in networks with
any MTU size. (7) We are currently incorporating reliability into the paging
process, where clients can replicate pages to protect against server failures. We
evaluated our prototype using unmodified LMAs such as ray-tracing, network
simulations, in-memory sorting, and k-nearest neighbor search. Results show
that average page-fault latencies reduce from 8.3ms to 160μs, single-process ap-
plications speed up by up to a factor of 4, and multiple concurrent processes by
up to a factor of 14, when compared against disk-based paging.

2 Design and Implementation

Distributed Anemone has two major software components: the client module on
low memory machines and the server module on machines with unused memory.
The client module appears to the client system simply as a block device that can
be configured as the primary swap device. Whenever an LMA needs more virtual
memory, the pager (swap daemon) in the client swaps out pages from the client
to other server machines. As far as the pager is concerned, the client module
is just a block device not unlike a hard disk partition. Internally, however, the
client module maps swapped out pages to remote memory servers.

The servers themselves are also commodity machines, but have unused mem-
ory to contribute, and can in fact switch between the roles of client and server
at different times, depending on their memory requirements. Client machines
discover available servers by using a simple distributed resource discovery mech-
anism. Servers provide regular feedback about their load information to clients,
both as a part of the resource discovery process and as a part of regular paging
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process. Clients use this information to schedule page-out requests. For instance,
a client can simply choose the least loaded server node to send a new page. Also,
both the clients and servers use a soft-state refresh protocol to maintain the
liveness of pages stored at the servers. The earlier Anemone prototype differed
in that the page-to-server mapping logic was maintained at a central Memory
Engine, instead of individual client nodes. Although simpler to implement, this
centralized architecture incurred two extra round trip times on every request
besides forcing all traffic to go through the central Memory Engine, which can
become a single point of failure and a significant bottleneck.

2.1 Client and Server Modules

Figure 1 illustrates the client module that handles paging operations. It has
four major components: (1) The Block Device Interface (BDI), (2) a basic LRU-
based write-back cache, (3) mapping logic for server location of swapped-out
pages, and (4) a Remote Memory Access Protocol (RMAP) layer. The pager
issues read and write requests to the BDI in 4KB data blocks. The BDI, in
turn, performs read and write operations to our write-back cache (for which
pages do not get transmitted until eviction). When the cache is full, a page is
evicted to a server using RMAP. Figure 2 illustrates the two major components
of the server module: (1) a hash table that stores client pages along with client’s
identity (layer-2 MAC address) and (2) the RMAP layer. The server module can
store/retrieve pages for any client machine. Once the server reaches capacity, it
responds to the requesting client with a negative acknowledgment. It is then the
client’s responsibility to select another server, if available, or to page to disk if
necessary. Page-to-server mappings are kept in small hashtables whose buckets
are allocated using the get free pages() call. Linked-lists contained within
each bucket hold 64-byte entries that are managed using the Linux slab allocator
(which performs fine-grained management of small, equal-sized memory objects).
Standard disk block devices interact with the kernel through a request queue
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mechanism, which permits the kernel to group spatially consecutive block I/Os
(BIO) together into one “request” and schedule them using an elevator algorithm
for seek-time minimization. Unlike disks, Anemone is essentially random access
with a fixed read/write latency. Thus BDI does not need to group sequential
BIOs. It can bypass request queues, perform out-of-order transmissions, and
asynchronously handle un-acknowledged, outstanding RMAP messages.

2.2 Transparent Virtualization

To enable LMAs to transparently access remote memory (no relinking or re-
compilation), the client module exports a BDI to the pager. Additionally, no
changes are required to the core OS kernel because the BDI is implemented as
a self-contained kernel module. One can invoke the standard open, read, and
write system calls on the BDI like any other block device. Although our pa-
per does not focus on this aspect, the BDI can be used as a low-latency store
for temporary files and can even be memory-mapped by applications aware of
the remote memory. The system also performs two types of multiplexing in the
presence of multiple clients and servers: (a) Any single client can transparently
access memory from multiple servers as one pool via the BDI, and (b) Any single
server can share its unused memory pool among multiple clients simultaneously.
This provides the maximum flexibility in efficiently utilizing the global memory
pool and avoids resource fragmentation.

2.3 Remote Memory Access Protocol (RMAP)

RMAP is a tailor-made, low-overhead communication protocol for remote mem-
ory access within the same subnet. It implements the following features: (1)
Reliable Packet Delivery, (2) Flow-Control, and (3) Fragmentation and Reassem-
bly. While one could technically communicate over TCP, UDP, or even the IP
protocol layers, this choice comes burdened with unwanted protocol processing.
Instead RMAP takes an integrated, faster approach by communicating directly
with the network device driver, sending frames and handling reliability issues in
a manner that suites the needs of the Anemone system. Every RMAP message
is acknowledged except for soft-state and dynamic discovery messages. Timers
trigger retransmissions when necessary (which is extremely rare) to guarantee
reliable delivery. We cannot allow a paging request to be lost, or the application
that depends on that page will fail altogether. RMAP also implements flow con-
trol to ensure that it does not overwhelm either the receiver or the intermediate
network card and switches. However, RMAP does not require TCP’s features
such as byte-stream abstraction, in-order delivery, or congestion control. Hence
we chose to implement RMAP as a light-weight window-based reliable datagram
protocol. All client nodes keep a static-size window to control the transmission
rate, which works very well for purely in-cluster communication.

The last design consideration in RMAP is that while the standard memory
page size is 4KB (or sometimes 8KB), the maximum transmission unit (MTU)
in traditional Ethernet networks is limited to 1500 bytes. RMAP implements
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dynamic fragmentation/reassembly for paging traffic. Additionally, RMAP also
has the flexibility to use Jumbo frames, which are packets with sizes greater than
1500 bytes (typically between 8KB to 16KB). Jumbo frames enable RMAP to
transmit complete 4KB pages to servers using a single packet, without fragmen-
tation. Our testbed includes an 8-port switch that supports Jumbo Frames (9KB
packet size). We observe a 6% speed up in RMAP throughput by using Jumbo
Frames. In this paper, we conduct all experiments with 1500 byte MTU with
fragmentation/reassembly performed by RMAP.

2.4 Distributed Resource Discovery

As servers constantly join or leave the network, Anemone can (a) seamlessly
absorb the increase/decrease in cluster-wide memory capacity, insulating LMAs
from resource fluctuations and (b) allow any server to reclaim part or all of
its contributed memory. This objective is achieved through distributed resource
discovery described below, and soft-state refresh described next in Section 2.5.
Clients can discover newly available remote memory in the cluster and the servers
can announce their memory availability. Each server periodically broadcasts
a Resource Announcement (RA) message (1 message every 10 seconds in our
prototype) to advertise its identity and the amount of memory it is willing to
contribute. Besides RAs, servers also piggyback their memory availability infor-
mation in their page-in/page-out replies to individual clients. This distributed
mechanism permits any new server in the network to dynamically announce
its presence and allows existing servers to announce their up-to-date memory
availability information to clients.

2.5 Soft-State Refresh

Distributed Anemone also includes soft-state refresh mechanisms (keep-alives)
to permit clients to track the liveness of servers and vice-versa. Firstly, the RA
message serves an additional purpose of informing the client that the server is
alive and accepting paging requests. In the absence of any paging activity, if a
client does not receive the server’s RA for three consecutive periods, it assumes
that the server is offline and deletes the server’s entries from its hashtables. If
the client also had pages stored on that server that went offline, it needs to
recover the corresponding pages from a copy stored either on the local disk on
on another server’s memory. Soft-state also permits servers to track the liveness
of clients whose pages they store. Each client periodically transmits a Session
Refresh message to each server that hosts its pages (1 message every 10 seconds
in our prototype), which carries a client-specific session ID. The client module
generates a different and unique ID each time the client restarts. If a server does
not receive refresh messages with matching session IDs from a client for three
consecutive periods, it concludes that the client has failed or rebooted and frees
up any pages stored on that client’s behalf.
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2.6 Server Load Balancing

Memory servers themselves are commodity nodes in the network that have
their own processing and memory requirements. Hence another design goal of
Anemone is to a avoid overloading any one server node as far as possible by
transparently distributing the paging load evenly. In the earlier centralized ar-
chitecture, this function was performed by the memory engine which kept track
of server utilization levels. Distributed Anemone implements additional coordi-
nation among servers and clients to exchange accurate load information. Sec-
tion 2.4 described the mechanism to perform resource discovery. Clients utilize
the server load information gathered from resource discovery to decide the server
to which they should send new page-out requests. This decision process is based
upon one of two different criteria: (1) The number of pages stored at each active
server and (2) The number of paging requests serviced by each active server.
While (1) attempts to balance the memory usage at each server, (2) attempts
to balance the request processing overhead.

2.7 Fault-Tolerance

The ultimate consequence of failure in swapping to remote memory is no worse
than failure in swapping to local disk. However, the probability of failure is
greater in a LAN environment because of multiple components involved in the
process, such as network cards, connectors, switches etc. Although RMAP pro-
vides reliable packet delivery as described in Section 2.3 at the protocol level, we
are currently implementing two alternatives for tolerating server failures: (1) To
maintain a local disk-based copy of every memory page swapped out over the
network. This provides same level of reliability as disk-based paging, but risks
performance interference from local disk activity. (2) To keep redundant copies of
each page on multiple remote servers. This approach avoids disk activity and re-
duces recovery-time, but consumes bandwidth, reduces the global memory pool
and is susceptible to network failures.

3 Performance

The Anemone testbed consists of one 64-bit low-memory AMD 2.0 GHz client
machine containing 256 MB of main memory and nine remote-memory servers.
The DRAM on these servers consist of: four 512 MB machines, three 1 GB
machines, one 2 GB machine, one 3 GB machine, totaling to almost 9 gigabytes
of remote memory. The 512 MB servers range from 1.7 GHz to 800 MHz Intel
processors. The other 5 machines are all 2.7 GHz and above Intel Xeons, with
mixed PCI and PCI express motherboards. For disk based tests, we used a
Western Digital WD800JD 80 GB SATA disk, with 7200 RPM speed, 8 MB
of cache and 8.9ms average seek time, (which is consistent with our results).
This disk has a 10 GB swap partition reserved on it to match the equivalent
amount of remote memory available in the cluster, which we use exclusively when
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Fig. 3. Comparison of latency distributions for random and sequential reads
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Fig. 4. Comparison of latency distributions for random and sequential writes

comparing our system against the disk. Each machine is equipped with an Intel
PRO/1000 gigabit Ethernet card connected to one of two 8-port gigabit switches,
one from Netgear and one from SMC. The performance results presented below
can be summarized as follows. Distributed Anemone reduces read latencies to
an average 160μs compared to 8.3ms average for disk and 500μs average for
centralized Anemone. For writes, both disk and Anemone deliver similar latencies
due to write caching. In our experiments, Anemone delivers a factor of 1.5 to
4 speedup for single process LMAs, and delivers up to a factor of 14 speedup
for multiple concurrent LMAs. Our system can successfully operate with both
multiple clients and multiple servers. Due to space constraints, we omit the
speedup results for multiple clients, which emulates the single-client speedups.

3.1 Paging Latency

Figures 3 and 4 show the distribution of observed read and write latencies for
sequential and random access patterns with both Anemone and disk. Though
real-world applications rarely generate purely sequential or completely random
memory access patterns, these graphs provide a useful measure to understand
the underlying factors that impact application execution times. Most random
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Table 1. Average application execution times and speedups for local memory, Dis-
tributed Anemone, and Disk. N/A indicates insufficient local memory.

Size Local Distr. Speedup
(GB) Mem Anemone Disk Disk

Anemone

Povray 3.4 145 1996 8018 4.02
Quicksort 5 N/A 4913 11793 2.40

NS2 1 102 846 3962 4.08
KNN 1.5 62 721 2667 3.7

read requests to disk experience a latency between 5 to 10 milliseconds. On the
other hand most requests in Anemone experience only around 160μs latency.
Most sequential read requests to disk are serviced by the on-board disk cache
within 3 to 5μs because sequential read accesses fit well with the motion of disk
head. In contrast, Anemone delivers a range of latency values, most below 100μs.
This is because network communication latency dominates in Anemone even
for sequential requests, though it is masked to some extent by the prefetching
performed by the pager and the file-system. The write latency distributions for
both disk and Anemone are comparable, with most latencies being close to 9μs
because writes typically return after writing to the buffer cache.

3.2 Application Speedup

Single-Process LMAs: Table 1 summarizes the performance improvements seen
by unmodified single-process LMAs using the Anemone system. The first appli-
cation is a ray-tracing program called POV-Ray. The memory consumption
of POV-Ray was varied by rendering different scenes with increasing number of
colored spheres. Figure 5 shows the completion times of these increasingly large
renderings up to 3.4 GB of memory versus the disk using an equal amount of



Distributed Anemone: Transparent Low-Latency Access to Remote Memory 517

0 1 2 3 4 5 6 7

Number of Concurrent Processes

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

R
en

de
r 

T
im

e 
(s

ec
on

ds
)

Anemone
Local Disk

Multiple Process ’POV’ Ray Tracer

Fig. 7. Execution times of multiple con-
current processes executing POV-ray

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of Concurrent Processes

0

400

800

1200

1600

2000

2400

2800

So
rt

 T
im

e 
(s

ec
on

ds
)

Anemone
Local Disk

Multiple Process Quicksort

Fig. 8. Execution times of multiple con-
current processes executing STL Quick-
sort

local swap space. The figure clearly shows that Anemone delivers increasing ap-
plication speedups with increasing memory usage and is able to improve the
execution time of a single-process POV-ray by a factor of 4 for 3.4 GB mem-
ory usage. The second application is a large in-memory Quicksort program
that uses a C++ STL-based implementation, with a complexity of O(N log N)
comparisons. We sorted randomly populated large in-memory arrays of integers.
Figure 6 shows that Anemone delivers a factor 2.4 speedup for a single-process
Quicksort using 5 GB of memory. The third application is the popular NS2 net-
work simulator. We simulated a delay partitioning algorithm [12] on a 6-hop
wide-area network path using voice-over-IP traffic traces. Table 1 shows that,
with NS2 requiring 1GB memory, Anemone speeds up the simulation by a factor
of 4 compared to disk based paging. The fourth application is the k-nearest
neighbor (KNN) search algorithm on large 3D datasets, which are useful in
applications such as medical imaging, molecular biology, CAD/CAM, and mul-
timedia databases. Table 1 shows that, when executing KNN search algorithm
over a dataset of 2 million points consuming 1.5GB memory, Anemone speeds
up the simulation by a factor of 3.7 over disk based paging.

Multiple Concurrent LMAs: In this section, we test the performance of Anemone
under varying levels of concurrent application execution. Multiple concurrently
executing LMAs tend to stress the system by competing for computation, mem-
ory and I/O resources and by disrupting any sequentiality in paging activity.
Figures 7 and 8 show the execution time comparison of Anemone and disk
as the number of POV-ray and Quicksort processes increases. The execution
time measures the time interval between the start of the execution and the
completion of last process in the set. We try to keep each process at around
100 MB of memory. The figures show that the execution times using disk-
based swap increases steeply with number of processes. Paging activity loses
sequentiality with an increasing number of processes, making the disk seek and
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rotational overheads dominant. On the other hand, Anemone reacts very well
as execution time increases very slowly, due to the fact that network latencies
are mostly constant, regardless of sequentiality. With 12–18 concurrent LMAs,
Anemone achieves speedups of a factor of 14 for POV-ray and a factor of 6.0 for
Quicksort.

3.3 Tuning the Client RMAP Protocol

One of the important knobs in RMAP’s flow control mechanism is the client’s
transmission window size. Using a 1 GB Quicksort, Figure 9 shows the effect of
changing this window size on three characteristics of the Anemone’s performance:
(1) the number of retransmissions, (2) paging bandwidth, which is represented
in terms of “goodput”, i.e. the amount of bandwidth obtained after excluding
retransmitted bytes and header bytes, and (3) completion time. As the window
size increases, the number of retransmissions increases because the number of
packets that can potentially be delivered back-to-back also increases. For larger
window sizes, the paging bandwidth is also seen to increase and saturates because
the transmission link remains busy more often, delivering higher goodput in spite
of an initial increase in the number of retransmissions. However, if driven too
high, the window size will cause the paging bandwidth to decline considerably
due to increasing number packet drops and retransmissions. The application
completion times depend upon the paging bandwidth. Initially, an increase in
window size increases the paging bandwidth and lowers the completion times.
Similarly, if driven too high, the window size causes more packet drops, more
retransmissions, lower paging bandwidth and higher completion times.

3.4 Control Message Overhead

To measure the control traffic overhead due to RMAP, we measured the per-
centage of control bytes generated by RMAP compared to the amount of data
bytes transferred while executing a 1GB POVRay application. Control traffic
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refers to the page headers, acknowledgments, resource announcement messages,
and soft-state refresh messages. We first varied the number of servers from 1
to 6, with a single client executing the POV-Ray application. Next, we varied
the number of clients from 1 to 4 (each executing one instance of POV-Ray),
with 3 memory servers. The percentage control traffic overhead was consistently
measured at 1.74% – a very small percentage of the total paging traffic.

4 Related Work

To the best of our knowledge, Anemone is the first system that provides
unmodified LMAs with a completely transparent and virtualized access to cluster-
wide remote memory over commodity gigabit Ethernet LANs. The earliest ef-
forts [13, 14] in using remote memory aimed to improve memory management,
recovery, concurrency control, and read/write performance for in-memory
database and transaction processing systems. The first two remote paging sys-
tems [1, 2] incorporated extensive OS changes to both the client and the mem-
ory servers and operated upon 10Mbps Ethernet. The Global Memory System
(GMS) [3] was designed to provide network-wide memory management support
for paging, memory mapped files, and file caching. This system was also closely
built into the end-host operating system and operated upon a 155Mbps DEC Al-
pha ATM Network. The Dodo project [4, 15] provides a user-level library based
interface that a programmer can use to coordinate all data transfers to and from
a remote memory cache, requiring legacy applications to be modified. Work
in [5] implements a remote memory paging system in the DEC OSF/1 oper-
ating system as a customized device driver over 10Mbps Ethernet. A remote
paging mechanism [7] specific to the Nemesis operating system was designed
to permit application-specific remote memory access and paging. The Network
RamDisk [6] offers remote paging with data replication and adaptive parity
caching by means of a device driver based implementation. Other remote mem-
ory efforts include software distributed shared memory (DSM) systems [9, 10],
which allow a set of independent nodes to behave as a large shared memory multi-
processor, often requiring customized programming to share common data across
nodes. This goal is different from that of Anemone which allows unmodified ap-
plication binaries to execute and use remote memory transparently. Samson [8]
is a dedicated memory server with a highly modified OS over a Myrinet inter-
connect that actively attempts to predict client page requirements and delivers
the pages just-in-time to hide the paging latencies. The NOW project [16] per-
forms cooperative caching via a global file cache in the xFS file system, while
[17] attempts to avoid inclusiveness within the cache hierarchy.

5 Conclusions

In this paper, we presented Distributed Anemone – a system that enables un-
modified large memory applications to transparently utilize the unused mem-
ory of nodes across a gigabit Ethernet LAN. Unlike its centralized predecessor,
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Distributed Anemone features fully distributed memory resource management,
low-latency remote memory paging, distributed resource discovery, load balanc-
ing, soft-state refresh to track liveness of nodes, and the flexibility to use Jumbo
Ethernet frames. We presented the architectural design and implementation
details of a fully operational Anemone prototype. Evaluations using multiple
real-world applications, include ray-tracing, large in-memory sorting, network
simulations, and nearest neighbor search, show that Anemone speeds up single
process application by up to a factor of 4 and multiple concurrent processes by
up to a factor of 14, compared to disk-based paging. Average page-fault latencies
are reduced from 8.3ms with disk based paging to 160μs with Anemone. There
are several exciting avenues for further research in Anemone. We are incorpo-
rating fault-tolerance mechanisms into Anemone using page replication across
servers as well as local disk. Additionally, compression of pages holds the poten-
tial to further reduce communication overhead and increase the effective storage
capacity.
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Abstract. Localization, an important challenge in wireless sensor net-
works, is the process of sensor nodes self-determining their position. The
difficulty encountered is in cost-effectively providing acceptable accu-
racy in localization. The potential for the deployment of high density
networks in the near future makes scalability a critical issue in localiza-
tion. In this paper we propose Cluster-based Localization (CBL), which
provides effective localization suitable for large and highly-dense net-
works. CBL utilizes both a computationally-intensive localization tech-
nique (non-metric multidimensional scaling (MDS)) and a less intensive
trilateration to achieve balance between performance and cost. Cluster-
ing is utilized to select a subset of nodes to perform MDS and then extend
their localization to the remaining network. Besides providing scalabil-
ity clustering overcomes local irregularities and provides good accuracy
even in irregular networks with or without obstacles. Simulation results
illustrate that CBL reduces both computation and communication, while
still yielding acceptable accuracy.

1 Introduction

Wireless sensor networks (WSN) are typically densly populated ad-hoc networks
composed of small, resource-constrained, immobile nodes. The ability for a sensor
to self-determine its own position, enabling the node to correlate its data with a
location, is critical in many domains [1]. Minimizing the cost of nodes is a critical
consideration, which makes equipping all sensor nodes with GPS capabilities
infeasible [2]. Furthermore, the number of sensor nodes deployed in a sensor
network is typically high, e.g., on the order of thousands and possibly even
millions, and the network density can reach a few hundred nodes per square
meter [3],[4]. The need for position information in high-density WSN motivates
the need for scalable localization.

In this paper we propose a scalable hop-based localization technique called
Cluster-based Localization (CBL). CBL’s use of clustering is motivated by the
need for scalability and efficiency. Scalability is gained by, first using an expen-
sive but accurate localization technique on a small subset of the nodes in the
� This work was supported in part by NSF grant CNS-0454416.

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 522–533, 2006.
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network. The derived position estimates for the chosen subset will be used as ref-
erences when localizing the remaining nodes. This approach leads to a significant
reduction in the computation required to localize the entire network.

Although scalability was the primary goal for performing the localization in
different stages in CBL, employing clustering has also provided the benefit of
smoothing over local variations within the network. This smoothing effect pre-
vents the global localization results from being skewed by the affects of local
aberrations. In particular, CBL is able to maintain accuracy even in the pres-
ence of RF-opaque obstacles and irregular network topologies. Although our
CBL implementation uses non-metric MDS in localization of the representative
nodes, this technique could be replaced so that CBL could benefit from other
localization ones.

The rest of this paper is organized as follows. Section 2 presents related work in
the area of sensor network localization. CBL is described in Section 3. Section 4
contains performance evaluation and comparisons of CBL and Section 5 provides
some concluding remarks.

2 Related Work

Previous attempts at localization in sensor networks can be categorized into
two groups: range-aware and hop-based. In range-aware techniques a distance
measure between neighboring nodes is used to estimate node positions. In hop-
based ones ranging equipment is not necessary, and the estimated distances
between nodes are typically approximated to the hops in the shortest path.

Range-aware localization techniques typically derive inter-node distances based
on received signal strength. APS [5], a distributed localization technique, extends
both distance vector routing and GPS positioning. Similiar distance estimates are
used in [6]. In [7], a similiar, but more coarse estimation process is described, in
which nodes adjacent to at least one anchor are localized first. Received signal
strength measurements of broadcasts from a single mobile beacon node are used
in [8]. The beacon’s current position, will place constraints on the possible po-
sition of a node. Another technique using a mobile beacon node, utilizing time-
of-arrival measurements and probablistic estimation, is proposed in [9]. In [10],
four mobile beacons are used, creating a rectangle with the “un-localized” node
in the middle, allowing for trilateration. PRI [11] provides improved performance
by augmenting hop information with any available ranging information. In [12],
known peer-to-peer communications are modeled as a set of geometric constraints
on nodes’ positions. In [13], the Approximate Maximum-Likelihood method and
Direction of Arrival estimation are reviewed. In [14], sensing constraints caused by
mobile objects at several nodes are utilized to improve the accuracy of localization.
RangeQ determines node positions by means of a distributed range quantization
technique which is similar to quantization in image processing [11]. Ji and Zha
present a distributed localization technique based on the estimation-comparison-
correctionparadigm. It applies multidimensional scaling (MDS) [15] to merge each
individual node’s map of the network topology into one global map of the network
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[16]. In [17], previous work from rigidity theory is extended to networks where not
all nodes are localizable. Chan, Luk and Perrig [1] propose a scalable localization,
where a complex clustering is used to produce a highly regular structure. This reg-
ularity can then be utilized, along with arbitrarily positioned anchor nodes, in the
localization.

The problem with calculating distances by means of signal strength mea-
surements is that since all possible sources of signal interference cannot be ac-
curately anticipated prior to sensor deployment, the estimated distances can
become inaccurate due to multi-path interference, line-of-sight obstructions, etc.
Hop-based localization techniques aim to remove the dependency on any form of
ranging equipment. A theoretical analysis of network connectivity for node self-
localization is presented in [18]. An extension of the algorithm proposed in [5]
is the differential Ad-Hoc Positioning System [19], which describes a differential
error correction scheme designed to reduce the cumulative distances and posi-
tioning error over multiple hops. HOP-TERRAIN [20], similar to [5], utilizes an
additional refinement phase to improve the localization accuracy. A low-power-
dedicated hardware localization technique utilizing the HOP-TERRAIN is pro-
posed in [21]. SHARP [22] technique adopts a hybrid hop-based and range-aware
approach for localization. SHARP attempts to perform localization on a subset
of the nodes in a network using inter-node distance estimates. This subset of
nodes will be localized using MDS [2], and are then used to localize the remain-
ing nodes with APS [5]. Shang et al. proposed MDS-MAP [23], an algorithm that
utilizes MDS to perform global localization. Since MDS-MAP, there have been
notable extensions of this technique: MDS-MAP(P)[2] and MDS-MAP(R)[24].
MDS-MAP(P) is a distributed algorithm that uses patches of relative maps, that
can be computed in parallel, to estimate the absolute positions of nodes. On the
otherhand, the distributed MDS-MAP(R) estimates the relative positions. A
similar algorithm based on the estimation-comparison-correction paradigm and
MDS [15] is described in [16].

3 Cluster-Based Localization

To localize all sensor nodes accurately, the localization process usually involves
computationally-intensive procedures, e.g., MDS that has O(n3) computational
complexity [2],[25]. Since sensor nodes are expected to be resource-constrained
and networks to be large and dense, light-weight localization algorithms that
achieve decent accuracy and high scalability are desirable. Therefore, we attempt
to address the trade-offs between accuracy and scalability, so as to make our
localization algorithm, CBL, a practical solution for sensor network applications.

CBL adopts a hierarchical idea to perform the whole localization procedure,
i.e., instead of regarding the whole network as a flat topology in which all nodes
share the same localization procedure as in most existing localization algorithms,
we deliberately separate the nodes into two types, and apply different localiza-
tion approaches on them to improve scalability as well as ensure accuracy. The
first type of nodes are representatives that account for a small portion of the
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nodes in the whole network. Representatives will be selected to reflect a good
abstraction of the network and localized by using complex but accurate local-
ization algorithms, which essentially improves the overall localization accuracy.
The remaining nodes, which account for the majority of the network, can em-
ploy a lighter-weight localization process that uses the representatives as refer-
ence nodes. By applying this mechanism, CBL achieves decent accuracy with
relatively low computation and communication overhead.

3.1 Representative Selection

Since representatives will be localized first and used as reference nodes for esti-
mating the remaining nodes’ positions, they should provide a good abstraction
of the whole network. Further, the representative selection process itself should
be light-weight to ensure the overall scalability. Therefore, in CBL we apply
a simple single-hop and size-bounded clustering algorithm to select representa-
tives, or Cluster Heads (CHs), from the network. The single-hop feature of the
clustering algorithm ensures the algorithm’s efficiency, and the size-bounded fea-
ture enables each cluster to be formed fairly uniformly and makes cluster heads
represent a good abstraction of the whole network.

We assume each node has a unique ID. To prepare for clustering, initially
each node performs neighbor discovery to become aware of its single-hop neigh-
borhood information. After that, a node either assumes to be a CH if it has the
largest ID among its neighbors, or waits to be contacted if any of its neighbors
have larger IDs. A CH will start to contact its neighbors to build its own clus-
ter whose size is bounded by a threshold θ. A node becomes a Cluster Member
(CM) of the first neighboring CH that contacts it, or becomes a CH if all its
larger-ID neighbors have already spoken by either becoming a clusterhead with
full size-bounded cluster or becoming a CM in some other cluster. To enable
the network formed by CHs to provide a good abstraction of the whole network,
a CH c will attempt avoiding CMs that cover overlapping transmission areas
with c’s existing CMs. After deciding its own role (CH/CM), a node informs
its neighbors about its decision. Eventually, within a few rounds each node will
finish determining its role (CH/CM) and each cluster forms a star topology with
a CH at the center. In Fig. 1(a), we illustrate a random network and the con-
nectivity between nodes. In Fig. 1(b), we show the resulting clusters in which a
CM is represented as a line from its CH to itself, and in Fig. 1(c) we show the
connectivity for each cluster. It can be observed that the CMs of each cluster are
reasonably well distributed around the CH; and these CHs, or representatives,
provide a good abstraction of the original topology.

3.2 Cluster Head Localization

CHs are taken as representatives and their localization accuracies have great im-
pact on the overall localization accuracy. Since CHs usually account for a small
portion of the whole network, it is affordable to apply complex localization al-
gorithms to estimate CHs’ positions. Further, we want to apply a hop-based



526 M. Medidi et al.

(a) Network topology (b) Resulting clusters (c) Cluster network

Fig. 1. Example clustering

algorithm to localize CHs so as to improve CBL’s applicability. Based on these
three considerations, we chose MDS as the basic technique to localize CHs, since
hop-based MDS localization algorithm MDS-MAP(P) [2] was shown to achieve
a good accuracy. CBL uses similar approaches to localize CHs, however, in CBL
only CHs are involved in the MDS computation, therefore the computation over-
head is contained. CBL does not involve any pre-installed anchor nodes as op-
posed to MDS-MAP(P), which reduces the cost of sensor hardware. Further, in
CBL we employ the non-metric MDS technique that has a weaker requirement
on the input data than the classical MDS used in MDS-MAP(P).

To apply MDS for local map construction, each CH c needs to collect the dis-
tance information from its “two-step” clusters’ CHs (we call neighboring clusters
“one-step” clusters). After that, c computes shortest distances (in hops) between
each pair of the involved CHs, which will be taken as the input for the MDS
algorithm to estimate positions of the involved CHs and to create a local map.
MDS is a set of well-known data analysis techniques for geometrical position
estimation and information visualization; see [15] for details. In our localization,
we utilize the non-metric MDS, which assumes a less-stringent monotonicity
constraint than the classical metric MDS deployed in [2].

After obtaining a local map through MDS calculation, each CH will attempt
to merge its local map with its neighboring CHs’. Similar to MDS-MAP(P),
the merging is a completely distributed process, in which the CHs with larger
IDs will have higher priorities to choose one of their neighboring CHs to merge.
Further, neighboring maps will be merged based on their common nodes, i.e. the
maps with the highest number of common nodes should be merged first. When
merging, we apply the best linear transform technique to transform one map
onto another, and the new coordinates are computed based on the average of
the common nodes’ coordinates.

3.3 Cluster Member Localization

After determining each CH’s coordinates, we will take CHs as reference nodes to
estimate the remaining nodes’, or CMs’, positions. We choose the least-square
triangulation technique for CMs’ localization to obtain decent accuracy with
low computation overhead. In particular, each CH first calculates the euclidean
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distances to the CHs in its neighboring clusters, then estimates the average hop
distance by using these euclidean distances and corresponding hop length. After
that, each CH broadcasts a LOCATION message, which contains its coordinates
and the estimated hop distance, to the CMs within α hops (α should be chosen
to balance the message overhead and the localization accuracy). Each CM waits
for at least three LOCATION messages from different CHs, and then perform
a triangulation to determine its own coordinates. If a CM receives more than
three LOCATION messages, a least square error technique is applied.

4 Performance Evaluation

CBL was implemented in ns-2 [26], and our main goals when evaluating its
performance were to determine the accuracy, scalability, and how irregularities
in a network topology will affect performance. The simulation environment pa-
rameters are: ns2 version 2.29; area = 100 × 100m2; 100 nodes; transmission
range = 15m and cluster size varied from 1 to 10. We utilize a commonly used
metric, accuracy, to measure how much estimated positions deviate from actual
positions. Two maps, estimated and actual, are compared by finding the best
linear transformation (rotating, shifting and/or scaling) of the estimated map
onto the actual and calculating the average Euclidean difference between each
corresponding point. In the simulations the node-density is controlled by varying
the enclosing network area while maintaining the same number of nodes. We also
varied the upper-bound for cluster-size θ to determine how changes in cluster-
sizes affect the performance of CBL. For comparison, we have included both
MDS-MAP(P) and DV-hop results at similar densities for reference. The data
for MDS-MAP(P) is obtained from [2] and are based on MATLAB simulations;
a CAML implementation of DV-hop was used to obtain results for comparison.

During cluster-head (CH) localization, all hop values used are perturbed by
adding noise σ (0 ≤ σ ≤ 10−5) before the non-metric MDS is employed to
eliminate ties and help the non-metric MDS converge, because the non-metric
MDS technique is dependent on the differences in the distance estimations.

4.1 Random Network

The topologies in our random networks are square-shaped n × n ( n controls
density ) networks, with 100 randomly placed nodes. As a key step, the clustering
we deployed directly affects the quality of localization as well as the computation
overhead. We observed that the average cluster-size stays close to the given
upper-bound, which reflects the clusters’ high quality in spite of our lightweight
clustering. Further, as expected, cluster-density drops significantly given a larger
upper bound.

In Figure 2 we show the resulting localization accuracy for random networks.
Because we extend cluster-head (CH) localizations to obtain member (CM) local-
izations, we present CHs’ accuracy results in Figure 2(a) and all nodes’ accuracy
results in Figure 2(b). Our results show that increasing the cluster size does
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not lead to significant performance degradation. Although MDS-MAP(P) and
DV-hop achieve slightly better accuracy than CBL, CBL does not utilize nor
depend on any anchor nodes or extra refinement of the estimates as DV-hop and
MDS-MAP(P) require. Furthermore, it should also be observed that the differ-
ence between the accuracy of all nodes and that of only cluster-heads is very
small. This reflects the effectiveness of the clustering technique we applied, and
shows that if the CH localization is accurate enough the low cost trilateration
technique provides good results.
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Fig. 2. Accuracy for localization random topologies
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Fig. 3. Accuracy for localization in C-shaped topologies

4.2 C-Shaped Network

C-shaped topologies are commonly employed to stress any localization technique
[2],[5]. In this irregular topology the estimated distances between nodes can
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deviate greatly fromthe actualEuclideandistances. The resulting cluster-densities
and average cluster-size are very similar to those for random networks.

In Figure 3, we show the resulting accuracy for both the cluster-heads Fig. 3(a)
and all nodes Fig. 3(b). As in the random topologies, changes in cluster-sizes
do not affect the resulting accuracy. Furthermore, compared to MDS-MAP(P),
CBL’s accuracy is only slightly worse, while providing the same lowered compu-
tation as in the random networks. Compared to DV-hop, CBL provides better
accuracy for irregular topologies. This is mostly because of DV-hop’s dependence
on the uniformity and regularity of the network.

4.3 Irregular Node Densities

To test how well CBL will perform in topologies with changing node densities,
we created an irregular topology. The irregular topologies, also referred to as
biased in the literature, are another fairly common test. An illustration of an
irregular topology can be found in Figure 5(a), where the area containing the
higher node-density is indicated by the square in the lower left corner. We can see
from Figure 4 that, as expected, CBL is not greatly affected by the irregularity
in node-densities; verifying that in CBL innacurate estimates do not propagate
and affect a significant part of a network.
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4.4 Obstacles

Obstacles usually create great difficulty for any localization technique because
any network with obstacles will have a much more irregular structure and
the inter-node distance estimates are likely to be more inaccurate than those
without obstacles. We performed simulations on random topologies with two
different types of RF-opaque obstacles; four line-shaped (Figure 5(b)) and one
H-shaped (Figure 5(c)) obstacle similar to the ones used in literature. As shown
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in Figure 5(c) the nodes close to the horizontal line of the H-shaped obstacle will
be ones most affected and these nodes will derive severely overestimated inter-
node distances between themselves and nodes on the other side of the horizontal
line.

(a) Irregular node-densities (b) With obstacles (c) With H-shaped obstacle

Fig. 5. Irregular network topologies

Figure 6 shows the resulting accuracy for the entire network with both four
obstacles Fig. 6(a) and one H-shaped obstacle Fig. 6(b). We omit the graphs
for the cluster-heads due to space constraints, but the same trend seen in other
topologies is also evident for networks with obstacles. The localization accuracy
achieved is very similar to that of networks without obstacles. This is because the
use of clusters produces a technique that is less sensitive to any type of irregular-
ities, including obstacles, and by covering a larger geographical area the clusters
can in effect reach around many of the obstacles. Although the inter-cluster dis-
tances at times might be overestimated the overall accuracy is not significantly
affected. The same trend as in the random networks is observed, where increas-
ing node-densities improves the accuracy and there is a small degradation in
accuracy when comparing that of all nodes and that of CHs.
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4.5 Scalability and Overhead

CBL is explicitly designed to improve scalability by reducing computation over-
head. We show its time and message overhead, which are two important metrics
that reflect its scalability, in Figure 7. In Figure 7(a), we show the running-time
in seconds for ns-2 simulations with different-sized clusters. As expected, CBL
significantly reduces the running time if clustering is applied. The running-time
is reduced to 6% when using clusters of size five. The reason for this reduction
is mostly that the computation overhead of MDS techniques greatly depends
on the network density, and this density is reduced by the clustering. As shown
in Figure 7(b), we see a significant decrease in the messages needed to perform
the localization as the cluster size is increased from 1. This is mainly because
the messages exchanged when merging local maps are greatly reduced, and the
complexity of each merge is less as each local map is smaller. Because of the very
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high running-time of ns-2, when using single-node clusters, we were not able to
complete simulations at the higher densities.

In Figure 8, we plotted the accuracy of CBL as the network size increases: we
maintain the same density and increase network area and nodes correspondingly.
We have included DV-hop as a reference. For all DV-hop simulations we used 4
anchor nodes, and we can see that CBL (which uses no anchors) degrades more
gracefully in accuracy as the number of nodes and network size increases, than
DV-hop.

5 Conclusions and Future Work

In CBL, we utilized clustering to obtain an abstraction of the network, differenti-
ating between the localization of cluster-heads and that of cluster-members. This
reduces the computation and communication cost while providing decent local-
ization accuracy. The use of clustering also makes the localization more resilient
to irregularities like obstacles: CBL performed well in regular networks, irregular
networks and in networks with irregular node-densities. In all our simulations
we used a simplified transmission model with no irregularities. This model may
not be reflective of all realistic scenarios and the irregular transmission model
may create more complex topologies, which might reduce the accuracy of any
localization technique. We have shown that localizing only a small subset of
nodes and using this to quickly and efficiently localize the remaining nodes is
feasible and produces good results with lower computation complexity. Our goal
was to create a scalable and more feasible localization algorithm; CBL achieves
this scalability, even when using a high-cost technique such as non-metric MDS
for localizing cluster-heads. CBL can provide a parameterized (by controlling
the upper bound of cluster size) abstraction of networks. Although CBL utilizes
non-metric MDS, a computationally-expensive but accurate localization, other
localization techniques can also be used in CBL instead; the effect of changing
the technique needs further investigation. Feasible localization is achieved by not
introducing any new constraints on the network or sensor nodes: CBL does not
rely on any kind of specialized, extra capable nodes such as anchors or beacons,
or predetermined information about distributions, size, etc.
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Abstract. Wireless technology is increasingly finding its way into indus-
trial communication because of the tremendous advantages it is capable
of offering. However, the high bit error rate characteristics of wireless
channel due to conditions like attenuation, noise, channel fading and in-
terference seriously impact the timeliness and guarantee that need to
be provided for real-time traffic. Existing wired protocols including the
popular PROFIBUS perform unfavorably when extended or adapted to
the wireless context. Other wireless protocols proposed either do not
adapt well to erroneous channel conditions or do not provide real-time
guarantees. In this paper, we present a novel real-time MAC (Medium
Access Control) protocol that is specifically tailored to the message char-
acteristics and requirements of the industrial environments. The protocol
exploits both the spatial and temporal diversity of the wireless channel
to effectively schedule real-time messages in the presence of bursty chan-
nel error conditions. Simulation results show that the proposed proto-
col achieves much better loss rate compared to baseline protocols under
bursty channel conditions.

1 Introduction

The term industrial communication denotes the interaction between various
classes of devices in setups such as production control, control of chemical plants,
air control, communication systems in cars, planes and trains, power station con-
trol and so on. The applications in these setups are very complex, therefore their
functionality needs to be distributed to a number of systems or devices, which
communicate with each other. In this paper, we are concerned mainly with the
traffic generated on a network operating at the device level of factory communi-
cation systems which includes various controllers, sensors and actuators.

Industrial networks differ significantly from traditional LANs due to special
requirements of their applications like the need for hard timing and bandwidth
guarantees and supporting priorities. Predictable inter-task communication is ex-
tremely critical in such industrial real-time systems because unpredictable delays
in the delivery of messages can affect the completion time of the tasks partic-
ipating in message communication, resulting in deadline misses and eventually
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performance losses, halts/resets of manufacturing pipelines or defects in prod-
ucts. Several wired protocols like PROFIBUS are being used in industries and
factories that meet such stringent timing requirements.

Recently, the growing popularity of wireless communication in numerous fields
has led to its increased dependability, performance improvement and cost reduc-
tion. Hence wireless networks are beginning to represent a viable choice for indus-
trial applications because they can offer several attractive features like reduced
cost of cabling, ease of configuration and maintenance, extended mechanical
freedom and mobility and preventing losses arising due to potential damage of
cabling caused by mechanical moving parts, high temperatures and other hostile
conditions. Thus, it is very likely in the near future, there will be a proliferation
of wireless implementations of factory communication systems.

In spite of having such clear benefits, wireless technology has its own draw-
backs arising due to the unreliable characteristics of the wireless medium which
makes it, in its current state, unsuitable for supporting real-time communica-
tion. Effects due to fading, interference from other users and shadowing from
objects degrade the channel performance. In addition, distance dependent path
loss and co-/adjacent channel interference influence the channel. Hence the wave
propagation environment (number of propagation paths, their respective losses)
and its time varying nature (moving people, moving machines and metal sur-
faces) play a dominant role in constituting channel characteristics [1]. Also due
to heavy obstruction, the wireless medium of industrial environments are known
to suffer more serious large-scale path loss and fading than other indoor envi-
ronments [2]. Consequently, the wireless link exhibits both bit errors and packet
losses (change in bit values in a packets data part) which vary strongly over time
and tend to occur in bursts.

Since wireless networks are substantially different from their wired counter-
parts with respect to the channel conditions, technologies developed for wired
networks cannot be directly adopted. In most wired network models for real-time
systems, the communication links are assumed to have a fixed capacity over time.
This assumption may be invalid in wireless environments, where link capacities
can be temporarily degraded due to fading, attenuation, and path blockage [1].
In addition, existing wireless standards such as IEEE 802.15.1 (Bluetooth) and
IEEE 802.15.4 (Zigbee) also provide no mechanisms for supporting real-time
messages. Hence, there arises a need to design and develop special MAC pro-
tocols and techniques which take both the channel characteristics and the hard
real-time requirements of the messages into account. In the next section, we
present the related work in this area.

2 Related Work and Motivation

A number of measurement studies[1, 3, 4]reveal the time-variable and high error
rates of the wireless channel. Results published by Willig et. al.[1] indicate that
the popular Gilbert Elliot model with some modifications is a useful tool for
simulating bit errors on a wireless link, which we use in the present work.
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Several proposals have been made that extend the wired protocols used for
industrial communication over to a wireless medium. In [5], the authors explore
the use of IEEE 802.11 for industrial communication by analyzing the possibility
of implementing protocols based on master-slave architecture of traditional field
buses on a IEEE 802.11 PHY. In [6], the adaptive-intervals MAC protocol has
been proposed that uses a polling-based approach combined with group testing
feature for improving the delay in low load conditions. In [7], the authors discuss
different architectures that make use of a spread spectrum repeater to integrate
distant wireless stations with a wired segment.

In addition, many MAC protocols and schemes have been proposed to increase
the reliability offered by wireless links. In [8] and [9], the authors make use of
channel conditions while making packet dispatching decisions. However, the traf-
fic considered in [9] is best effort. In [8], a technique that estimates the channel
state beforehand and uses a centralized priority queue based scheduling mech-
anism is proposed. However, accurate estimation techniques that predict the
exact future channel state is unfeasible. In [10], the authors investigate schemes
to support combined scheduling of periodic and aperiodic real-time traffic over
master-slave Bluetooth networks. In [2], the authors explore the use of Direct
sequence spread spectrum(DSSS) CDMA technology to build Industrial Control
Wireless LAN with enhanced robustness. In [11] and [12], the authors introduce
the concept of antenna redundancy and compare it with modifications made to
the Automatic Repeat Request (ARQ) protocol. The ARQ schemes proposed do
not work well at high error rates and antenna redundancy requires additional
hardware in all communicating devices if any-to-any communication need to be
implemented.

The rest of the paper is organized as follows. In Section 3, details about the
system model are provided following which we introduce our basic framework
in section 4. In section 5, we explain in detail about the Exchange Protocol and
present the findings of the simulation studies in section 6. We conclude in section
7 providing directions for our future work.

3 Network and Channel Model

We study a single-hop industrial environment consisting predominantly of real-
time periodic message with occasional aperiodic messages/alarms being gener-
ated due to faulty or abnormal outcome of some process which require higher
priority. The communication medium is wireless characterized by high bit er-
ror rate due to phenomena like noise, attenuation, fading and interference. We
assume that messages destination is a node in the single hop.

The bursty error characteristics of the wireless environment in a typical indus-
trial setup can be captured by the Discrete-Time Gilbert-Elliot Channel Model
[1, 13, 14]. Time in the super-frame is divided into slots and the model works
with slotted time where state transitions happen at the end of each slot. The
state space of the Gilbert-Elliot model contains the following two states: GOOD
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Fig. 1. Channel model and super-frame format

and BAD. When in the GOOD state, no bit errors occur in the data sent in the
corresponding slot. Hence the transmission succeeds when done in an exclusive
manner. On the other hand, when the channel is in BAD state certain bit errors
occur in the received data unit and the data transmission is considered erroneous
since an Acknowledgement (ACK) is not received. Fig. 1(b) shows the state
diagram along with the transition probabilities. We assume that each channel
between a given source-destination pair is statistically independent. In Fig. 1(a),
each solid line between two wireless nodes represent an independent channel over
which the Gilbert-Elliot channel model is applied.

4 Basic Framework

The medium is shared by all the wireless nodes and transmissions follow a super-
frame structure that repeats itself. The super-frame is divided into slots and each
message would occupy several slots. In a slot, a sender is able to transmit a unit of
the message and receive the corresponding acknowledgment(ACK). The absence
of an ACK indicates that the channel between the source an destination is in a
bad state and the unit is marked for re-transmission.

The basic framework consists of a centralized scheduler that collects all the
messages available in the system before every super-frame. The scheduler then
prepares a schedule that is followed by all nodes in the system. To facilitate such
an approach, every super-frame is divided into the following four phases (see
Fig. 1(c)):
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– Control phase (CP): All the messages in the system are sent to the central
scheduler which performs an admission test and constructs a non-overlapping
transmission schedule for the admitted messages. The admission test checks
if the super-frame has enough free slots to accommodate the next message
and its recurring instances (for periodic messages only) before its deadline.
Consider a periodic message of size Mi occupying Ni slots of the super-
frame. Let Ndata denote the number of slots of the data transmission phase,
Nadmitted denote the number of slots of the super-frame occupied by already
admitted messages; Ntransfer denote the number of transfer slots and Nexchg

denote the number of exchange slots (more details about the usage of these
slots are provided in Section 5). The admission test checks if

Ni ≤ Ndata − Nadmitted − Ntransfer − Nexchg (1)

If the above condition is satisfied, the message is admitted to the system and
the scheduler reserves Ni slots exclusively for the message; else the message
is rejected. However, aperiodic messages are always admitted into the system
by removing an instance of the periodic message, since they require higher
priority.

– Schedule transmission phase (STP): The central scheduler broadcasts
the above constructed schedule to all the nodes in the network.

– Data transmission phase (DTP): Each wireless node begins its trans-
mission in its scheduled slot. We assume that all the messages that need
to be transmitted during the data phase become ready at the beginning of
this phase and every message needs to complete before the end of the super-
frame. In spite of allocating enough time slots in an exclusive manner, not all
messages will reach the destination without errors because of the erroneous
channel condition. Therefore, some messages might miss the deadline. The
number of deadline misses will depend on the exact data transmission proto-
col. We present two basic schemes here which would be used for transmitting
messages in this phase. However, our main contribution is the Exchange pro-
tocol which we present in Section 5 and compare it against the following two
basic schemes.
In Time Division Multiplexing with Variable number of Retransmissions
(TDMVR), when the channel is underloaded, all the unutilized slots to-
wards the end of the super frame are used for re-transmission. In Time Di-
vision Multiplexing with Constant number of Retransmissions (TDMCR),
the schedule is formed in such a way that all the unutilized slots are equally
distributed between the transmitting nodes. Although these schemes enable
full utilization of the channel in case of of an underloaded system by increas-
ing the attempts available for existing message transmissions, they do not
adapt to the bursty error conditions of the channel. The exchange protocol
presented in the next section adapts to the channel conditions thereby de-
creasing the number of deadline misses and increasing the effective system
utilization.

– Re-Transmission phase (RTP): All wireless nodes which could not suc-
cessfully transmit all their messages during the DTP in the first attempt



A Novel Real-Time MAC Protocol 539

contend for channel access (CSMA) and employ a backoff algorithm on col-
lision. A fixed percentage of slots in DTP is allocated for re-transmission.
At the end of the superframe, the slots that were unable to be successfully
transmitted are declared as deadline misses.

5 Slot Exchange Protocol

We now present the Slot exchange protocol that comes into effect during the
DTP as shown in Fig. 1(c). The exchange protocol dynamically adapts to ad-
verse channel conditions and enables effective scheduling of real-time messages
in addition to preserving the schedulability guarantees provided to existing mes-
sages. Schedulability guarantee implies the fact that when a message is admitted
into the system, it is given a certain number of slots (as is occupied by the mes-
sage) exclusively for data transmission. The scheme caches on two characteristic
features - spatial and temporal diversity of the wireless channel; temporal diver-
sity signifies the fact that when a channel is the bad state, it would eventually
move to the good state and spatial diversity indicates the condition that if one
channel is in bad state, it is possible that a different channel would be in good
state.

5.1 Basic Idea and Illustrative Example

During the DTP, each wireless node begins its transmission in its scheduled
slot. When a channel between a source destination pair is bad, transmissions be-
gin to fail. During this state, the Exchange protocol is used that works around
the occurrences of error bursts. The primary intuition behind the scheme is to
postpone the transmission on a channel in a bad state to a later time and sched-
ule transmissions on a channel in a good state with the hope that the channel
in the bad state would change into good state in the meantime. This proto-
col forms its basis on the wireless channel characteristic of correlated packet
losses i.e. on a channel which is erroneous, a single packet loss would be fol-
lowed by back-to-back packet losses. Hence the exchange protocol takes advan-
tage of this characteristic feature to perform efficient scheduling of real-time
messages.

Consider a simple network with three wireless nodes shown in Fig 2(a). Let the
messages that need to be transmitted be: 12, 23 and 13 where the first number
indicates the source and second number indicates the destination. Figure 2(b)
shows the channel condition variation with time. The shaded slots indicate that
the channel is in bad state. The original schedule given by the central scheduler
is shown in Fig. 2(c) and the schedule of the basic schemes is given in Fig. 2(d)
which would lead to 6 slots being unsuccessful.

In the exchange protocol, once a node (exchange initiator), notices that its
channel to the destination is in bad state, it exchanges its slots (as many as
possible) with a different node(exchanged sender). As a result of the exchange,
the exchange initiator performs its transmissions in the slots of the exchanged
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sender and vice versa. This basic idea is depicted in Fig. 2(e), where the ex-
change initiator, node 2 exchanges its 6 slots with the exchanged sender 1. The
final schedule due to the exchange is shown in Fig. 2(f) where only 1 slot is
unsuccessful.

Several different heuristics can be applied for a choice of the exchanged sender,
based on channel correlation, estimation of the burst length and priority. In this
paper, for simplicity, we use the next node in the trasnmission schedule which
has a message to transmit for exchange.

Fig. 2. Illustrative Example

5.2 Protocol Details

The basic idea of the exchange protocol is to avoid transmissions on a channel
in the bad state by passing control to a different transmitter-receiver pair whose
channel is in good state. In order to preserve the schedulability guarantee, the
exchange protocol incurs some control overhead.

When a exchange initiator wants to exchange its slots with an exchanged
sender, a slot called the exchange slot (slot 7 indicated as E in Fig. 2(h)) is used
in which a two way handshake is performed. The exchange initiator sends an
exchange request (Nreq) along with the maximum slots it want to exchange which
is typically till the end of its data transmission phase and the exchanged sender
replies with an ACK that denotes the actual number of slots it has available for
exchange (Navailable). In the example, Nexchg = Navailable = 6.
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Fig. 3. (a) Timing diagram for the offline schedule (b) Timing diagram with
exchange

Since for every exchange initiated, an exchange slot is being consumed, the
number of exchanges that can be performed is limited to Nexchg in every super-
frame. The scheduler broadcasts the Nexchg value to all nodes during the STP.
To compensate for the exchange slot (to maintain the schedulability guarantee)
which are being used by the exchange initiator from the scheduled slots that it
has been allocated for transmission, Nexchg number of slots are reserved at the
end of the super-frame (indicated by R in Fig. 2g). From this pool of reserved
slots, every exchange initiator exclusively gets a slot for every exchange it has
performed. To enable these functions, an exchange counter, Nctr, is maintained
that denotes the number of exchanges that has been performed in the super-
frame until the current time. This exchange counter is passed on between the
transmitting nodes by means of the transfer slot (indicated by T in Fig. 2g)
occurring at the end of every message transmission. Therefore at the beginning of
the transmission, each node knows how many more exchanges can be performed.
Each time an exchange is performed, the exchange counter is decremented by
the exchange initiator and the value of the exchange counter is passed onto the
exchanged sender in the exchange slot. In this way, the exchanged sender knows
how many more exchanges it can perform during the exchange period. After
its exchange period, it passes on the value of the exchange counter to the next
transmitting station in the transfer slot. If the exchange counter becomes 0,
no more exchanges are performed. If any of the transfer or exchange slots are
completed the exchange counter is reset to zero and the transmissions proceed
as per the offline schedule.

Let Nctr denote the current value of the exchange counter. When a node uses
up an exchange slot for performing exchange, it decrements the exchange counter
to Nctr − 1 and Nexchg − Nctrth slot is used by this exchange initiator from the
reserved slots. In the above example, assume that Nexchg = 2. Therefore node 2
has the exchange counter of 2 before performing the exchange. During exchange,
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it decrements the exchange counter to 1 and uses the (2-1) = 1st slot from among
the slots reserved for exchange(slot 21 in the example) since it is the first node
performing the exchange. Note that when an exchange initiator performs an
exchange, it is limited to its message boundary and it does not spill over into
other transmissions.

Hence, by using the transfer slots and the exchange slots, the exchange counter
is maintained in a distributed manner. This enables limiting the number of
exchanges in every super-frame and thus enables controlling the number of actual
slots available for data transmission. In addition, it allows for reclaiming the
slots used up for exchange in a exclusive manner; thus preserving the actual
number of slots allotted to each node for performing data transmission. Thus
the protocol preserves the schedulability guarantee given for messages at the
time of admission and effectively uses the channel resources.

The timing diagrams shown in the Fig. 3 explain the exact transmissions that
take place for the above example during the working of the Exchange protocol.

6 Simulation Studies

We simulated a single hop wireless network with 10 nodes over a 1Mbps channel
with periodic messages of size 1050 bits and aperiodic of size 450 bits. Each
slot has a time duration equal to the transmission time of 150 bits. Approxi-
mately 10% of slots in every super-frame is allocated for re-transmission. We
simulated the different channel conditions using the Gilbert-Elliot model for dif-
ferent values of the model parameters. In our simulation studies we compared
the performance of the above proposed protocols. The performance metric for
all our simulation studies is the loss rate defined as the ratio of number of dead-
line violated to the number of messages admitted. Pbb represents the probability
that the channel remains in a bad state given that it is in a bad state. Pgg repre-
sents the probability that the channel remains in the good state, given that the
channel is in a good condition. Ne denotes the number of exchanges that can
be performed in a given super-frame. Ms is the number of slots required for the
complete transmission of a message. Total number of messages per super-frame
is given by Nm.

6.1 Results and Discussions

Effect of bad state probability (Pbb): Figure 4(a) compares the loss rates
incurred by the above three protocols by varying Pbb. The other parameters
are assumed as follows: Pgg = 0.9, Sl = 1, Ne = 11, Ms = 7, Nm = 10. The
graph has two distinct regions of interest corresponding to Pbb < 0.8 (small burst
region) and Pbb ≥ 0.8 (large burst region). In the small burst region, with low
values of Pbb the channel quickly switches to the good state and the benefits of
the exchange protocol are not very significant. In fact the overhead due to the
exchange scheme overshadows the benefits of the protocol. On the other hand,
in the large burst region (shown enlarged in Fig. 4(b))which depicts the typical
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Fig. 4. (a) Effect of Pbb (b) Effect of the high Pbb

industrial environment, the exchange protocol performs better than the basic
schemes due to the fact that the exchange protocol exchanges the slots of a bad
channel at the beginning of the bad burst with a good channel which is not
noisy. At Pbb = 0.9, the exchange protocol gives an improvement of 10.6% over
TDMCR and 10.5 % over TDMCR. Interestingly, towards the end of the large
burst region where Pbb ≥ 0.96, exchange protocols behave similar to the basic
protocols due to the fact that the channel experiences significantly long bursts
that deferred transmissions also encounter the erroneous channel condition.

Effect of good state probability (Pgg): Fig. 5(a) compares the loss rates in-
curred by the three protocols by varying Pgg. The other parameters are assumed
as follows: Pbb = 0.9, Sl = 1, Ne = 11, Ms = 7, Nm = 10. The graph has two
distinct regions of interest corresponding to Pgg < 0.8 and Pgg ≥ 0.8. At low
values of Pgg the channel quickly switches to the bad state and hence experiences
frequent bad state bursts whose size is depicted by the Pbb value. This results in
an exchange being performed from a bad channel to another channel that also
moves into bad state frequently; hence the benefits of the exchange protocol are
not very significant. At high Pgg (shown enlarged in Fig. 5(b)), which is the typi-
cal scenario in an industrial environment, the exchange protocol performs better
than the basic schemes because the channels are in good state for a longer time
and when the channel is erroneous,the exchange protocol exchanges its slots with
a good channel. At Pgg = 0.91, the exchange protocol gives an improvement of
14% over the basic schemes.Therefore, at very large values of Pgg the exchange
protocol performs better than the others and at Pgg = 1, all the schemes show
similar results.

Effect of number of exchange slots (Ne): We study the effect of the Ne

by varying the message sizes and number of messages per super-frame. We have
chosen Pgg = Pbb = 0.9 for these simulations.
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– Effect of message size (Ms): Fig. 6(a) shows the effect of the Ne for different
Ms values keeping Nm fixed at 10 . With the increasing Ne, the loss rate
for all message sizes decrease due to the benefits of the exchange protocol.
However, after a point, Ne becomes more than the maximum number of ex-
changes that need to be performed and hence the loss rate saturates beyond
that point. The saturation point depends on the message size, number of
messages and channel parameters. For large message sizes, the saturation
point is higher (12 for message of size 10 while it is 8 for message of size 4)
since more exchanges can be performed.

– Effect of number of messages (Nm): Fig. 6(b) shows the effect of the Ne for
different Nm values keeping Ms fixed at 7 . With increasing Ne, the loss

0 5 10 15 20 25
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

Number of Exchanges allowed (Exchange slots)

L
o
s
s
 r

a
te

 (
v
io

la
te

d
/a

d
m

it
te

d
)

Effect of exchange slots on varying message sizes

Msg of size 10 slots each
7 slots
6 slots
4 slots

0 5 10 15 20 25
0.35

0.4

0.45

0.5

0.55

Number of Exchanges allowed (Exchange slots)

L
o
s
s
 r

a
te

 (
v
io

la
te

d
/a

d
m

it
te

d
)

Effect of exchange slots on different number of messages

10 msg in each superframe
7 messages
6 messages
2 messsages

Fig. 6. (a) Effect of Ne for different Ms (b) Effect of Ne for different Nm



A Novel Real-Time MAC Protocol 545

rate for all Nm values decrease due to the benefits of the exchange proto-
col. However, after a point, Ne becomes more than the maximum number
of exchanges that need to be performed and hence the loss rate saturates
beyond that point. As in the previous case, the saturation point is higher
for large number of messages (2 for Nm= 2 while it is 12 for Nm= 10) since
the number of exchanges that can be performed is more when the number
of messages increase.

7 Conclusions

In this paper, we proposed a novel MAC protocol for real-time message schedul-
ing which adapts to the channel conditions by exploiting spatial and temporal
channel diversity characteristics of the wireless medium. Our simulation results
show that the proposed exchange protocol provides better loss rate as compared
to the generic protocols. In our future work, we would like to make the protocol
distributed and extend it to multi-hop networks. We also plan to improve the
protocol through channel estimation techniques.
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Abstract. Users of parallel machines need to have a good grasp for
how different communication patterns and styles affect the performance
of message-passing applications. MPI Collective communications involve
multiple processors, and their performance prediction is a tricky task to
perform. In order to evaluate the performance of collective communica-
tions, we attempt to extend LogGP and P-LogP standard point-to-point
models. Our objective is to compare these models with the empirical
data, and identify the most suitable for performance characterization of
collective communications. The models proposed are related with the
implemented algorithms in MPICH. The experimental results performed
on clusters of 16 and 64 processors connected by Infiniband and Gigabit
Ethernet networks respectively, show the same trend. For any collective
operation, given a number of processors and a range of message sizes,
there is at least one model that predicts the performance precisely.

1 Introduction

MPI (Message Passing Interface) is a set of specifications of functions for com-
munications and managements on parallel computing. It has become one of the
most popular method of programming many type of parallel computers. The
communication routines of MPI can be classified into point-to-point communi-
cations and collective communications. The last one involves multiple processes
to collaborate on solving a problem, and their performance prediction is a tricky
task to perform.

Moreover, since the library routines are implemented before the topology in-
formation is known, it is impossible for the library to utilize topology specific
algorithms. Various forms of software adaptability are supported in most MPI
implementations. For example in MPICH-1.2.5, an implementation of MPI, the
algorithm for the Broadcast operation with large message sizes is different from
that of the operation with small message sizes. Still, the implementation algo-
rithms continue to be adapted in order to realize the communication efficiently
and achieve high performance. These adaptations lead to new models for per-
formance estimation.
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In addition, for any communication algorithm, there are many system pa-
rameters that can affect the performance of the algorithm. These parameters,
which include operating system context switching overheads, the ratio between
the network and the processor speeds, the synchronization of the processor’s
clock, the number of processes involved in the communication, the switch de-
sign, the amount of buffer memory in switches, and the network topology, are
very difficult to combine, in order to make efficient performance prediction with
models.

MPI developers have long recognized the need for the communication rou-
tines to be adaptable to the system architecture and the application commu-
nication pattern in order to achieve high performance on a system. However
the software adaptability supported in the current MPI libraries is insufficient
and these libraries are not able to achieve high performance on many platforms.
Furthermore, the existing performance prediction models of collective commu-
nications are not enough accurate. Thus, the problem to choose the best model
that can accurately predict the collective operations within a wide area network
still provide opportunities to be improved.

This paper gives a simple approach that is directly based on the algorithms
used in the MPI implementation evaluated, that is MPICH-1.2.5. Using these
algorithms, we attempt to extend standard point-to-point models that also are
message size dependent, such as LogGP [2] and P-LogP [3], in order to predict the
performance of collective communications. We compare these extended models
with the empirical run-time data of respective operation, collected by using Intel
MPI Benchmarks 2.3 [7].

The rest of this paper proceeds as follows. Section 2 discusses the related
work. Section 3 gives an overview of the standard models evaluated, LogGP and
P-LogP performance models. Section 4 describes our method of performance
modeling, with all the algorithms used. Section 5 presents and evaluate the ex-
perimental results. Section 6 discusses some potential communication problems
on performance prediction. Section 7 relates the conclusions and future work.

2 Related Work

The message passing interface still provides critical issues of research regarding
the performance of collective communication area. The communication models
optimization follows a real understanding of implemented algorithms and the
network topology. Several approaches to model the communication performance
of a multicomputer have been proposed in the literature.

R. Thakur et al. [4] and R. Rabenseifner et al. [5] used Hockney model to
analyze the performance of different collective operation algorithms. Vadhiyar
et al. used a modified LogP model which took into account the number of pending
requests that had been queued [6].

More recently,Dongara et al. [8]have evaluatedHockney [9], LogP [1], LogGP [2]
and P-LogP [3] standard models applied to MPI collective operations. Their ap-
proach consists of modeling each collective communication using many different



Collective Communication Costs Analysis 549

algorithms, and try to give an optimized algorithm on different communication
models.

Instead of developing a new implementation with its own library, or using
many algorithms to predict the performance, this paper gives another estimation
approach based directly on the algorithms of the MPI implementation evaluated.
We extend the models most frequently used by the message passing commu-
nity,and that also are message size dependent, such as LogGP and P-LogP. Our
approach assumes that the first two performance model parameters are derived
from P-LogP parameters as explained in [3].

3 Characteristics of LogGP and P-LogP

LogGP [2] and P-LogP [3] are standard point-to-point performance models that
reflect important parameters required to estimate the network communication
performance for parallel computers. They are frequently used to predict the
run-time of parallel algorithms. Both also are message size dependent. Their
parameters calculations are in some cases time consuming. This section provides
a brief summary characteristics of all these models.

3.1 LogGP

The LogGP model addresses the performance of a parallel machine in terms of
five parameters, as follows : (1) L = latency or the upper bound on the time
to transmit a message from its source to destination, (2) o = overhead or the
time period during which the processor is busy sending or receiving a message,
(3) g = gap per message or the minimum time interval between consecutive
sends and receives, (4) P = the number of processors involved in the operation,
(5) the G parameter introduces the Gap per byte or the time per byte. Its
inverse characterizes the available per processor communication bandwidth for
long messages. LogGP model predicts the time to send a message of size m
between two nodes as L + (m-1)G + 2 * o.

3.2 P-LogP

The P-LogP model, or Parameterized-LogP, is also based on five parameters; the
number of processor P, the process-to-process latency L, overhead send Os(m),
overhead receive Or(m) and the gap per message g(m). This model distinguishes
between the send overhead, Os(m), and the receive overhead Or(m). Further-
more, these overheads and the gap g(m) are all defined as a function of the
message size m.

For sufficiently long messages, receiving may already start while the sender
is still busy, thus, Os and Or may overlap. g(m) is the reciprocal value of the
end-to-end bandwidth from process to process for messages of a given size m.
P-LogP model predicts the time elapsed to send a message of size m between
two distinct nodes as L + g(m).
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4 Implementation and Performance Modeling

MPICH-1.2.5 implements collective communications using several algorithms
based on MPI point-to-point functions. After checking the source code of this im-
plementation, we have applied and extended LogGP and P-LogP performance
models on each collective routine, in order to estimate the cost of the collec-
tive communication algorithms in terms of latency and bandwidth usage. This
section introduces the methodology used, and presents the models we have
built for some collective operations; MPI Bcast, MPI Reduce, MPI Allgather
and MPI Allreduce.

4.1 General Assumptions

We assume that the time taken to send a message between any two distinct
nodes can be modeled as α + mβ, where α is the latency ( or startup time) per
message, independent of message size, β is the transfer time per byte, and m is
the total number of bytes transferred. Thus, this time is the same as modeled
by LogGP and P-LogP standard models between two distincts nodes in the
previous section. We assume further that the time taken is independent of how
many pairs of processes are communicating with each other, independent of the
distance between the communicating nodes , and that the communication links
are bidirectional; that is, a message can be transfered in both directions on the
link in the same times as in one direction. The node of the network interface
is assumed to be single ported; that is, at most one message can be sent and
one message can be received simultaneously. In the case of reduction operations,
we will use ta to represent the computation cost per byte for performing the
reduction operation locally on any process. This experiment uses single precision
floating point data (4 bytes) for the computation operations. In this work we also
assume that LogGP model basic parameters are derived from P-LogP parameters
as explained in [3].

4.2 Broadcast Models

MPI Bcast is an operation that sends a message from the root process to all
processes of a group communicator. Since all nodes need to receive the same
data, node that already received the data can be used as a new data source.
After the broadcast is completed, the data of the communication buffer of the
root is copied to all other processes. MPICH-1.2.5 implements MPI Bcast with
two different algorithms according to the message sizes.

For short message size, it uses a minimum spanning tree (MST) algorithm,
also called binary tree. This uses a fairly basic recursive subdivision algorithm.
The root process sends to the process size/2 away; the receiver becomes a root
for a subtree and applies the same process. With also handling for subtrees that
are not a power of two in size, the cost of this algorithm is
Ttree = �log2 P �(α + mβ).
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For long message size, it does a scatter followed by an allgather. it first scatter
the buffer into m

P data, using an MST algorithm. This costs Ttree = �log2 P �α+
P−1

P mβ.
For the allgather, it uses a recursive doubling algorithm. This takes also

�log2 P � steps. In each step, pairs of processes exchange all the data they have,
and we take care of non-power-of-two situations by using the ceiling function.
This costs approximately Tdouble = �log2 P �α + P−1

P mβ.
Therefore for long message, the total cost is : Ttotal = 2�log2 P �α + 2P−1

P mβ.
This algorithm has twice the latency as the MST algorithm used for short

message, but requires lower bandwidth : 2 · m · β versus m · log2 P · β. Therefore,
for long messages and when log2 P > 2, this algorithm will perform better.

Hence, applied to LogGP and P-LogP performance models with respect of
the latency and the bandwidth parts, the result costs are given in Table 1.

Table 1. Broadcast Cost Estimation

Broadcast
Standard Short message size Large message size
models (Binary tree) (Binary tree

+ Recursive doubling)

LogGP �log2 P (L + 2o + (m − 1)G)
2�log2 P (L + 2o)

+ 2(P−1)
P

(m − 1)G)

P-LogP �log2 P (L + g(m)) 2�log2 P L + 2(P − 1)g(
⌈

m
P

⌉
)

4.3 Reduce Models

This function distinguishes a communication and a local computation part. The
reduction operation combines the data stored in the input buffer of each process
in the group communicator, using a specified operation, and returns the com-
bined value in the output buffer of the root process. As in the case of the short
message size part of MPI Bcast, MPI Reduce is implemented using the binary
tree algorithm for both short and long size messages. We consider single pre-
cision floating point datatype, and ta stands for the time cost of an arithmetic
operation. By the same analogy and logic used with Broadcast function, we have
derived the resulting cost of reduce, and the extended models are discribed in
Table 2.

4.4 Allgather Models

MPI Allgather is a gather operation in which the data contributed by each process
is gathered on all processes, instead of just the root process as in MPI Gather.
Allgather is implemented in MPICH using the recursive doubling algorithm. The
full description of this algorithm can be found in [4]. As with MPI Bcast logic, we
have derived the cost of Allgather, and the resulted models are given in Table 3.
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Table 2. Reduce Cost Estimation

Standard Reduce
models (Binary tree)

LogGP �log2 P (L + 2o + (m − 1)G + m
4 × ta)

P-LogP �log2 P (L + g(m) + m
4 × ta)

Table 3. Allgather Cost Estimation

Standard Allgather
models (Recursive doubling)

LogGP �log2 P (L + 2o) +
P − 1

P
× (m − 1) × G)

P-LogP �log2 P L +
P − 1

P
× g(m)

4.5 Allreduce Models

This function also distinguishes a communication and a local computation part.
It applies a reduction operation that combines the data stored in the input
buffer of each process in the communicator group, using a specified operation,
and returns the combined value in the output buffer of all the processes in that
communicator.

MPI Allreduce is implemented using recursive doubling algorithm for both,
short and long size messages. Using the same logic as the previous functions, the
resulting models of Allreduce can be found in Table 4.

Table 4. Allreduce Cost Estimation

Standard Allreduce
models (Recursive doubling)

LogGP �log2 P (L + 2o + (m − 1)G +
m

4
× ta)

P-LogP �log2 P (L + g(m) +
m

4
× ta)

5 Results Evaluation

This section presents the environment and tools of the experiments, then evalu-
ates the empirical results of the collective communication operations.

5.1 System Configuration and Tools of the Experiments

Our experiment was carried out on two different platforms. One is a GbE(Gigabit
Ethernet) Cluster at the Center for GRID Research and Development of the
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National Institute of Informatics in Tokyo. Another one is an IB(InfiniBand)
Cluster at the Computing and Communications Center of Kyushu University.
Table 5 illustrates their respective system configurations.

Table 5. GbE and IB System Configurations

GbE System Configuration IB System Configuration
Number of nodes 64 16

CPU
Intel Xeon 3.06GHz
(2CPUs per node)

Intel Xeon 3.06GHz
(2CPUs per node)

RAM 1 GB 7 GB

O.S RedHat Linux 9
RedHat Enterprise

Linux2.4.21 + SCore5.8
Compiler gcc 3.2.2 Fujitsu C compiler 5.0
Interconnect Gigabit Ethernet Switches Infiniband Switch
MPI Implementation Mpich-1.2.5 Fujitsu MPI

Our methodology assumes that the parameters of LogGP standard model
are derived from P-LogP basic parameters. Hence, one of the key points of this
experiment is to accurately measure the parameters of P-LogP standard model.
For this reason, we have used the procedure called MPI LogP Benchmark [3].
We have also used the Intel MPI Benchmarks version 2.3 [7] to measure the
algorithm run-time of all collective communications implemented in MPICH-
1.2.5. These programs consist of taking the time between conventional pairs of
sending and receiving messages. We achieved the experiments using only one
CPU per node.

5.2 Gigabit Ethernet vs InfiniBand

Gigabit Ethernet and InfiniBand are two distincts network technologies in high
performance computing environment that we have evaluated in these experi-
ments. The latencies obtained after using the MPI LogP Benchmark are 16.52 μs
and 3.75 μs respectively. Table 6 describes the data of the parameters of P-LogP
standard model for both networks, also gathered with the same Benchmark.

5.3 Empirical Data Evaluation

The following are the empirical results of the collective communication we have
evaluated.

Reduce. The experimental results of MPI Reduce using 16 processors on the
GbE cluster, are illustrated by the Fig.1. This graph shows that the related P-
LogP model performs better on prediction than other models in many cases of
the message sizes.
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Table 6. P-LogP parameters

GbE Cluster IB Cluster
Message Size
(Bytes)

Overhead
send (μs)

Overhead
recv (μs)

gap (μs) Overhead
send (μs)

Overhead
recv (μs)

gap (μs)

1 4.70 5.57 6.37 1.30 1.50 7.30
4 4.83 5.60 6.67 1.40 1.50 7.30

16 4.74 5.70 7.32 1.30 1.50 7.20
64 4.92 5.34 8.60 1.30 1.45 7.40

256 4.95 6.36 17.82 1.60 1.45 7.30
1024 5.32 7.14 53.87 2.00 2.20 10.97
4096 21.90 18.32 100.54 4.50 3.62 20.67

16384 115.20 266.98 259.00 30.55 58.97 64.00
65536 295.29 690.45 694.27 54.14 136.99 139.80

262144 1567.61 2389.61 2395.21 136.15 462.41 463.33
524288 3806.80 4712.00 4628.50 291.90 899.60 896.80

Fig. 1. Reduce using 16 processors of GbE Cluster

Moreover, the percentage of the relative gap is given in the graph of Fig.2.
This gap represents the ratio of the difference between the real run-time and the
best prediction time of all related new models, to the measured runtime. The
figure presents that we have achieved a relative gap average around 5% for a
large interval of the messages. We can also notice in this figure that, when the
message size increases, the gap between the prediction and the measured time
also increases.

Allreduce. The evaluation results of MPI Allreduce executed with 8 processors
on the GbE and IB clusters, are presented in Fig.3 and Fig.4 respectively. The
two figures show all the models predict quite well the real performance of this
collective communication operation. With a deep observation of the graphs, we
can assess that P-LogP has the best performance prediction on a large intervalle
of the message sizes in IB system; while LogGP predicts the best on almost all
cases of the message sizes in GbE system.
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Fig. 2. Relative Gap Ratio on 16 Processors of GbE Cluster

Broadcast and Allgather. Fig.5 and Fig.6 show respectively, the MPI Bcast
and MPI Allgather experiment results using 64 and 16 processors on the GbE
and IB Clusters, which is the maximum. number of nodes of each cluster.

We see that, in Fig.5, the related P-LogP model predicts better than the
extended LogGP. Although that prediction is fairly well for short message sizes
up to 512 bytes; from 1 KB the gap between the prediction and the measured
time increases according to the message size.

On the other hand, LogGP has the best performance prediction for short
message sizes up to 256 bytes in Fig.6.

These two Figures illustrate clearly the fact that, when the message sizes or
the number of processors increase, the gap between the prediction datas and
the real performance runtimes increases accordingly. In all cases, the measured
runtime is larger than the prediction time. This can be caused by many factors
that we attempt to discuss some in the next section.

6 Discussion

This section discusses important points of the standard models evaluated. It also
presents some potential problems that could significantly affect the performance
estimation.

6.1 Performance Models

The results of the experiments show that, for small message sizes, there is at
least one model that precisely predicts the performance of the collective com-
munications. However, it is difficult to predict accurately the run-time of all the
routines with only one model. For example the related P-LogP predicts better
than the extended LogGP model using 16 processors on the reduction opera-
tion. For all the routines, when the number of processors is less than 16, the
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Fig. 3. Allreduce using 8 processors of GbE Cluster

Fig. 4. Allreduce using 8 processors on IB Cluster

gap between the predicted time with the most precise model and the empirical
run-time was under 15%.

The accurate measurements of P-LogP model parameters are also very im-
portant in this work. As written earlier, we used a procedure described in [3],
and which presents an efficient method to determine these parameters on mes-
sage passing platforms. That MPI Benchmark first measures the parameters of
P-LogP model, then derives LogGP model parameters. Although the related P-
LogP model predicts better in many cases, the measurement of its parameters
is more complicated and time consuming.

From these facts we can advice two important ways to predict well the per-
formance of collective routines.

Firstly, choose only one standard model to estimate the time cost of each col-
lective communication, which is P-LogP performance model, since it is the one
that predicts well in most of the cases compared to LogGP model. The demerit
of this model is its complexity. P-LogP model is defined as (L, P, Os(m), Or(m),
g(m)) five tuples network, where three are message size dependent, and the
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Fig. 5. Broadcast with 64 processors of GbE Cluster

Fig. 6. Allgather with 16 processors of IB Cluster

measurements of these parameters are also more complicated and time consum-
ing compared to LogGP.

Secondly, we can choose to change the model within LogGP or P-LogP, de-
pending on the situations. In this case, for the collective routine to evaluate,
the number of processors involved and the message size will represent the vari-
able parameters, to determine the optimized situation. Obviously, the number
of models represents the drawback of this solution.

6.2 Potential Performance Prediction Problems

So far we have developed a theoretical underpinning for performance prediction
of collective communication operations. Our method of modeling collective com-
munications is simple, since it focuses only on the algorithms used to implement
those functions. Also using a single Benchmark to determine the parameters of
all the standard models leads to a reliable experimental environment.

A general observation is that when the message size or the number of proces-
sors involved in the communication increases, the gap between the prediction and
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the real performance run-time also increases. This can be caused by many fac-
tors of the evaluated systems. For any communication and computation system,
there are many system parameters that can affect the performance estimation
algorithms of collective communications. These parameters, which include op-
erating system context switching overheads, the ratio between the network and
the processor speeds, the synchronization of the processor’s clock, the number
of processes involved in the communication, the switch design, the amount of
buffer memory in switches and the network topology, are not so easily remedied
and are difficult to model.

7 Conclusions and Future Work

Using some variants of LogP model, such as LogGP and P-LogP, we constructed
a set of models, based on the implemented algorithms, to predict the performance
of MPI collective communications. Their comparison with the empirical data on
Gigabit Ethernet and Infiniband clusters has provided useful informations. All
the models have given satisfaction into various aspects of different algorithms,
and their relative performance. For a given number of processors and an inter-
val of message size, it is always possible to identify a performance model that
estimates precisely the collective operation. We could achieve a relative gap per-
centage up to 10% in many cases. However, for large message size using large
number of processors, the relative gap percentage is still very high. Furthermore,
neither of the models was able to completely handle all the situations, in terms
of the routine evaluated, the number of processors and the message size.

The experimental results have introduced many insights. There are a lot of
directions in which the work in this paper should be extended. The result of the
evaluation clearly shows that, for a relatively small number of processors inter-
communicating with each other using short messages, the prediction time and
the real performance run-time of collective operations, are close enough. When
the number of nodes are increasing, the relative gap also increases. Hence, the
main future work include a deep investigation of the factors that lead to such
variations especially the network contention problem. For collective communica-
tions with large size messages, the network contention problem can significantly
affect the communication performance. This is particularly true when the num-
ber of nodes is large enough that not all nodes are connected by a single switch.

References

1. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eiken. LogP : Towards a realistic model of parallel computation.
In Proceedings of the 4th ACM SIGPLAN symposium on principles and pratice of
parallel programming,ACM 1993.

2. A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C.Scheiman. LogGP : Incorpo-
rating long messages into the LogP model - one step closer towards a realistic model
for parallel computation. In Proceedings of the seventh annual ACM symposium on
Parallel algorithms and architectures, pages 95-105. ACM Press, 1995.



Collective Communication Costs Analysis 559

3. T. Kielmann, H. Bal, and K. Verstoep. Fast measurement of LogP parameters for
message passing platforms. In J. D. P. Rolim, editor, IPDPS Workshops, volume
1800 of Lecture Notes in Computer Science, pages 1176-1183, Cancun, Mexico, May
2000. Springer-Verlag. http://www.cs.vu.nl/albatross/.

4. R. Thakur and W. Gropp. Improving the performance of collective operations in
MPICH. In J. Dongara, D. Laforenza, and S. Orlando, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, number LNCS2840 in
Lecture Notes in Computer Science, pages 257-267. Springer Verlag, 2003. 10th
European PVM/MPI User’s Group Meeting, Venice, Italy.

5. R. Rabenseifner and J. L. Traff. More efficient reduction algorithms for non-power-
of-two number of processors in message-passing parallel system. In Proceedings of
EuroPVM/MPI, Lecture Notes in Computer Science. Springer-Verlag, 2004.

6. S.S. Vadhiyar, G.E. Fagg, and J. J. Dongara. Automatically tuned collective com-
munications. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), page 3. IEEE Computer Society, 2000.

7. Intel MPI Benchmarks version 2.3. http://www.intel.com/cd/software/
products/asmo-na/eng/cluster/mpi/219848.htm

8. Jelena P. Sivac-Grbovi’c, T. Angskun, G. Bosilca, G. E. Fagg, E.Gabriel Jack J.
Dongarra. Performance Analysis of MPI Collective Operations. 4th International
Workshop on Performance Modeling Evaluation and Optimization, April 2005.

9. R.Hockney. The communication challenge for MPP: Intel Paragon and Meiko CS-2.
Parallel computing, 20(3):389-398, March 1994.



 

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 560 – 571, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

An Efficient MAP Classifier for Sensornets 

Zille Huma Kamal1, Ajay Gupta1, Leszek Lilien1, and Ashfaq Khokhar2 

1 Dept. of Computer Science, Western Michigan University, Kalamazoo, MI 
{zkamal, gupta, llilien}@cs.wmich.edu 

2 Dept. Computer Science, Dept. Electrical & Computer Eng., University of Illinois, Chicago 
ashfaq@uic.edu 

Abstract. The classification phase is computationally intensive and frequently 
recurs in tracking applications in sensor networks. Most related work uses tra-
ditional signal processing classifiers, such as Maximum A Posterior (MAP) 
classifier. Naïve formulations of MAP are not feasible for resource constraint 
sensornet nodes. In this paper, we study computationally efficient methods for 
classification. We propose to use one-sided Jacobi iterations for eigen value 
decomposition of the covariance matrices, the inverse of which are needed in 
MAP classifier. We show that this technique greatly simplifies the execution 
of MAP classifier and makes it a feasible and efficient choice for sensornet 
applications.  

Keywords: Classification, Jacobi Iterations, Sensor Networks, Collaborative 
Processing. 

1   Introduction 

Sensornets have been envisioned as a cost effective paradigm for monitoring, control-
ling or sensing in military, agricultural, or commercial applications. In any of these 
applications, the fundamental criterion for detecting the presence or absence of an ob-
ject or an environmental condition requires ‘sensing’ of the features or modalities pre-
sent in the environment. After detecting a stimulus, classification algorithms process 
the sensed data to categorically determine and identify the event (stimulus), results of 
this classification phase can be used to decide whether a reaction/response is war-
ranted. In monitoring/surveillance applications—[1], [2], [3], [4], to mention a few, 
the classification phase is followed by a tracking phase, where the sensornet nodes 
work collaboratively to track the stimulus, which could be an enemy combat vehicle 
or the spread of hazardous chemicals in the environment.   

The classification process is a computationally intensive process, repeatedly initi-
ated for every measurable disturbance in the environment that the sensornet is trained 
to observe. A traditional approach to classification in sensornets is to use classifiers 
that are commonly employed in signal-processing applications, such as Linear Vector 
Quantization, Support Vector Machines (SVM), k–Nearest Neighbor (kNN) and 
Maximum Likelihood (ML), among which ML is considered most feasible for sen-
sornets due to its minimal storage and computation requirements [4].  
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When all categories are equally probable, the Maximum A Posterior (MAP) classi-
fier is the same as ML ([22], [23]). In most cases, we can easily hold and justify this 
assumption. Thus, we critically review the computations and communications re-
quired in a distributed MAP classifier and its feasibility in resource constraint sensor-
net applications.  

Computation of the MAP classifier requires the inverse of the covariance matrices 
that represent the pre-determined categories. Often inverse computation is avoided, 
due to the numerical instability [18].  Instead, techniques that approximate the in-
verse, decompose the inverse computation, or perform orthogonal transformations, 
are preferred [16]. Therefore, we instigate the use of stable, parallelizable and effi-
cient one-sided Jacobi iterations and transform the problem of computing the inverse 
of the covariance, into computing its Eigen Value Decomposition (EVD). We will 
show that the substitution of EVD of covariance matrix in place of its inverse, in 
MAP can greatly reduce the cost of this classifier. To the best of our knowledge, us-
ing Jacobi in MAP has not been considered previously.  

The main contributions of this paper are to show how to use one-sided Jacobi itera-
tions in sensornets and consequently minimize the cost of executing the MAP classi-
fier in sensor networks.  

We begin by summarizing related work in this area in section 2. In section 3 we 
give an overview of the MAP classifier. In Section 4, we review the one-sided Jacobi 
iterations and its computation and communication costs. We present computational 
and communicational costs of MAP with Jacobi and MAP with LU decomposition 
(previous work [21]] in Section 5 and compare the power consumption in Section 6. 
We conclude with our findings and contributions in Section 7. 

2   Related Work 

Authors in [1], [3] and [4] have proposed the use of classifiers such as kNN and MAP 
in classification applications of sensornets. However, their test-bed and sensing plat-
form is composed of WINS 3.0 Sensoria [9], [10] nodes that are more powerful in 
terms of energy, processor speed and power, and memory capacity, compared to the 
more constraint Crossbow’s MICA2 Motes [11], Intel Motes [14] or the envisioned 
dust size COTS Dust [12], [13]. In this paper, we use sensors or nodes interchangea-
bly to generalize small resource constrained motes, like MICA2 or Intel Motes. An 
analytical study conducted in [5] concluded that there was an acute trade-off between 
accuracy and efficiency of classifiers in sensornets and it became apparent that tradi-
tional classifiers were computationally and communicationally intensive and unprac-
tical for today’s resource constraint sensornet (mote-like) nodes. 

Some alternate approaches to conventional classification include novel, computa-
tionally efficient influence field patterns [7] to classify objects, but its accuracy is 
shown to be directly dependent on the reliability of the underlying sensornet, a tough 
characteristic to build into a dynamic sensornet. Gu et. al. [24] considers hierarchical 
classification, first on node level, then group level followed by a base level, which has 
been shown to be feasible and accurate for sensornets. In [6], power conservation is 
built into sensornet surveillance application by differentiating the sensing coverage of 
the region monitored based on the proximity to the highly sensitive area, e.g. the army 
base station in a military application.   
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Other alternate techniques [8] use mobile agents (robots or humans) to gather and 
transfer data from sensornet to a more powerful command/base station for processing. 
While this approach may be appropriate in certain situations, it seems infeasible for 
applications that are envisioned to be deployed in monitoring impermeable, insecure 
regions.  

Though, it seems that traditional signal processing classifiers, like MAP, are inap-
propriate for sensornets that are resource constraint [24], in terms of processing 
power, small storage and absence of floating point hardware [24], [25], [29]. Our goal 
is to avoid reinventing the wheel and adapt these existing tested classifiers, specifi-
cally, the MAP classifier, and try to make it feasible for these sensornets.  

3   Background 

3.1   Classification 

Classification consists of three phases: training, testing and deployment. In the train-
ing phase, the sensors in the sensornet are exposed to N known sample event feature 
matrices from each of the k predetermined categories. The user interactively classifies 
the events for the sensors. An event is an f×d feature matrix, where f is the number of 
features monitored in the environment and d is the temporal dimension. Based on 
these sample feature matrices, each sensor can locally compute the mean (μ) and co-

variance (δ) matrix for a category as in Eq. 1 and 2. α
jiM ,  is the event feature matrix 

from the training phase (indicated by α) at sensor i for category j, for 1  i  n0, where 
n0 is the total number of sensors in the sensornet and 1  j  k.  
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In the testing phase, probability of false positives and false negatives are computed 
to determine a belief probability for the sensor’s accuracy, by allowing the sensors to 
classify the test sample events. In the deployment phase, sensors are deployed in the 
region to be monitored, unmonitored themselves, and repeat the classification process 
to decide whether a detected object is of interest or not.  

3.2   MAP Classifier 

In this paper we study the Maximum A Posterior (MAP) classifier, the computation of 
which may be complex for resource constraint sensornets. However, by removing 
terms that are constant across the categories, computation of MAP can be simplified 
([5], [22], [23]), to the computation of the Mahalanobis distance [22] between the 
mean of a category and the event/object detected (Eq. 3). The detected object is clas-
sified into the category that minimizes the Forbenius norm [26] of the Mahalanobis 
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distance (Eq. 4), where jiM , represents event recorded at sensor i for some unknown 

category j, and 
FjiMAP ,  represents the Frobenius norm of the d×d MAP matrix. 

Here, β is used to indicate event feature matrices that are collected during the testing 
phase, however, same computations are performed during deployment phase.  
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Generally, sensornet ‘surveillance’ applications decompose the region monitored 
into logically or physically disparate cells, clusters or sub regions. We design clusters 
of size d sensors where d is the larger dimension of the events. These dense clusters 
enable us to exploit parallelism to run the computationally-intensive MAP quickly, ef-
ficiently and in a load balanced manner.  

We assume for brevity that the distributed FFT ([27], [34]) for sensornets can be 
extended to perform efficient d-point temporal processing of the f×d matrix, distribu-
tively across the d sensors. So, each sensor holds a column of the mean and covari-
ance matrices, as in Fig. 1, which illustrates the clustering and data distribution.  

1, x
2, x 

. 

. 

. 
f, x 

Sensor x in cluster 
holds column x of 
event feature matrix x

cluster has d sensors
 

Fig. 1. Data distribution in a cluster node  

The most complex computation in Eq. 3, is finding the inverse of ji,δ  for all k 

categories. One might consider offloading the computation of 1
,
−

jiδ to a more powerful 

node such as a personal computer. However, this would inhibit the sensornet from 
dynamically updating ji,δ and its inverse that could have increased the accuracy of the 

classification. To make MAP feasible for sensornets, we must find fast, stable and ef-
ficient algorithms for the computation or decompose it into smaller less computation-
ally intensive parts.  

Traditionally, computation of inverse of an f×f matrix requires ( )3fO operations 

[28], and is slow, inefficient, unbalanced, serial and tedious. Instead, we consider the 
eigen value decomposition (EVD) of ji,δ , such that it is decomposed into its eigen-

vectors and eigen values (Eq. 5), where Λ is a diagonal matrix, with eigen values on 
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the diagonal and E is the matrix, whose columns are eigen vectors. By substituting 
Eq. 5 in Eq. 3, we get Eq. 6.  
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Matrix algebra says, ( ) ( )( ) ( )jiji
TTT

jijijiji MEEMM ,,,,,, μμμ −=−=′−′ and multi-

plication of a matrix with Λ-1 is just a scalar multiplication of column x of the matrix 

with
xλ

1 , which is the reciprocal of the diagonal entry in column x of Λ. Using these 

rules, Eq. 6 becomes the equation of a hyper-ellipse (Eq. 7), centered at μ′ [22], 

and qpm ,′ , qp,μ′  are the p,q entry in matrix jiM ,′ and ji,μ′ and pλ is the pth eigen value in 

Λ. Eq. 7 is simpler than Eq. 6, as matrix multiplication is eliminated.  
We use the inherently parallel one-sided Jacobi iterations for EVD of the covari-

ance matrix. It has been shown that Jacobi parallelizes well [20], hence we do not in-
clude any speedup or parallelization efficiency analysis. We show how one-sided 
Jacobi can be used efficiently for MAP and its feasibility in mote-like sensornets.   

4   One-Sided Jacobi Iterations  

Jacobi Iterations gained renewed popularity with advancements in parallel computing 
[19] and are used for eigen (or spectral or singular) valued decomposition 
(EVD/SVD) of a symmetric covariance matrix. The goal is to apply similarity trans-
formations to zero-off (eliminate) the off-diagonal entries. The multipliers used for 
the transformations are accumulated, and yield the eigen vectors of the covariance 
matrix and the remaining diagonal entries represent the eigen values. The inherent 
parallelism of one-sided Jacobi iterations makes it a better choice than its two-sided 
Jacobi counterpart [15], [20], for our distributed sensornets. This parallelism will en-
able a faster and more robust application. 

The similarity transformation to eliminate entry p,q of the matrix, termed a step 
[20], only affects columns p and q of the matrix, and can be performed in parallel 
with the step for entry a,b, ∀ a ≠ p and b ≠ q. This implies f/2 steps can be performed 
in parallel, to eliminate the off-diagonal entries of an f×f matrix. A sweep [20] con-
tains f–1, if f is even, or f, if f is odd, steps that are required to eliminate all off-
diagonal entries. After every step, an exchange of columns (or rows) must occur, 
termed transition [20].  

Generally, more than one sweep may be required, since a step may introduce a 
non-zero entry in a previously zeroed off entry. Typically, f2log  sweeps converge a 
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symmetric matrix, faster convergence can be achieved with a threshold ε, ([15], [20]), 
that determines whether an entry is considered for elimination.  

The order in which the transformations are applied also affects the rate of conver-
gence [20]. Various orderings, such as row-cyclic [15] and block recursive (BR) [20] 
have been shown to achieve high convergence. Without loss of generality, we will use 
BR ordering, whose efficient implementation on hypercube has been shown in [20]. 
Therefore, for simplicity, we abstract a hypercube topology from the sensornet for 
each cluster, such that for the f×f covariance matrix, we have a hypercube with 

f2log dimensions and f/2 sensors.  

4.1   Block Recursive (BR) Ordering 

Initially in BR ordering, we distribute two columns of δi,j to each sensor, the smaller 
index value column is called top and the larger becomes the bottom column, suc-
ceeded by three phases delineated as: (i) Rotation phase, a series of parallel steps and 
transitions, (ii) Top and Bottom Exchange (TBX) phase, a step followed by a transi-
tion, and (iii) Last Exchange (X) phase, the last step and transition of a sweep. The 
Jacobi procedure is presented in the program code, One_Sided_Jacobi and the 
computations required for a step are delineated in the program code, Step. 

Initially, we let, S0′=δi,j, S0=δi,j and U0=I (the identity matrix). If we assume that the 
iterations converge in f2log sweeps, the eigen vector matrix E will be stored in the 

Ui’s, i.e. fUE
2log=  and similarly fS

2log=Λ [20]. The step computations required in 

the Rotation, TBX and X phases, iteratively update the initial matrices, S′0 and U0=I 
and consequentially Sk is updated as in line 10, in One_Sided_Jacobi procedure. 

One_Sided_Jacobi(δi,j, ε) 
(1) 0S′ = δ i,j; U0 = I; 
(2)for k = 1 to log2f       
(3)  //perform sweep 
(4)  while(p,q in kS > ε) 
(5)  //compute kS′ & kU →Step 
(6)    Rotation; TBX; X 
(9)  end while 
(10)

k
T
kk SUS ′=  

(11)end for 
end procedure 

Step( kS , kS′ , kU , p, q, ε) 

(1) 
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(5) ( ) ( ) ( )qUspUcpU kqpkqpk ,,, ,,1 •∗+•∗=•+  

(6) ( ) ( ) ( )qUcpUsqU kqpkqpk ,,, ,,1 •∗+•∗−=•+  
end procedure 

The dimensions used to exchange the columns in a transition are generated as 

>=< 01
BRD and >−=< −−

BR
r

BR
r

BR
r DrDD 11 ,1, [20], where, BR

rD  is the BR sequence of 

dimension(s) used for transitions in rotation phase r, D denotes the dimensions used 
for column exchange and is different from d used earlier to denote the points of tem-
poral processing of each feature. The dimension used for transitions of successive 
sweep, j, is a permutation of the dimensions used in the respective rotation of the first 



566 Z.H. Kamal et al. 

 

sweep, simply generated as, ( ) ( )fjk 2logmod− , for every dimension k, in the se-

quence BR
rD , for rotation r in the first sweep [20].  

4.2   Adapting One-Sided Jacobi to Sensornets  

The matrix multiplication required to update Sk (line 10, procedure 
One_Sided_Jacobi) may not be feasible for our sensornet, since the columns of 
Sk are distributed and communication is expensive. Furthermore, if all we need 
is fUE

2log= and fS
2log=Λ , then we should avoid updating Si

′(lines 3–4, procedure 

Step). Then, the computation of θ (line 1, procedure Step), can be formulated as 

the inner product of the columns of U and S (Eq. 8) ([30],[31]), where k
pu and k

ps are 

the pth columns of Uk and Sk, respectively, and 
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Then, by letting θtan, =qpt , we have 
2

,

,
1

1
cos

qp

qp
t

c
+

== θ  and 

qpqpqp tcs ,,, sin ∗== θ , which will replace lines 1–2 in procedure Step and elimi-

nate line 10 in procedure One_Sided_Jacobi. This way, the entire step can be 
computed locally, as the sensors hold the necessary columns. Moreover, to overcome 
the absence of hardware support for floating point operations, and to conserve proces-
sor cycles we can maintain a small finite table that stores values of θ and its trigono-
metric cosine and sine values. This approach has been shown to achieve accurate  
results in [17] and we refer readers to it for a detailed study of this method.  

4.3   Computational and Communicational Cost of One-Sided Jacobi Iterations 

The preceding sections review classification and one-sided Jacobi iterations, indicat-
ing the adaptations made to them to make them feasible for sensornets. We now de-
rive computational and communicational costs of one-Sided Jacobi and MAP based 
on these discussions.  

4.3.1   Cost of a Sweep - Steps and Transitions in Rotation, TBX and X Phases 
The computation costs incurred in a step are: computation of  (Eq. 8), table lookup 
operation, scalar-vector multiplications and vector-vector additions (lines 5–6,  
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procedure Step), that incur a total cost 12f + 6f + ( )mO 2log  ≈ 18f local operations 
without any additional communication, where m is the number of  values stored in 
the table for lookup. 

There are log2f rotations in a sweep and the number of steps and transitions in a 

Rotation phase, r, are 12 −r [20]. Then, the total number of steps and transitions in a 

sweep from the Rotations are fff
ff
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22

1loglog
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log12log
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12
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There is a TBX phase after every Rotation phase, with one step and transition in it, so 
there are log2f steps and transitions from the TBX phases of a sweep. Since, there is 
only one X phase in a sweep, the total number of steps and transitions in a sweep 
are ffff 21loglog12 22 =++−− . 

4.3.2   Total Cost for One-Sided Jacobi  
The step is the only and purely local computation required in the one-sided Jacobi it-

erations. The cost of a sweep is ( )( ) 236182 fff = at a sensor. So, the total computa-

tional cost incurred after log2f sweeps is ( )( ) ffff 2
2

2
2 log36log36 = across f/2 sen-

sors of the d sensors in a cluster of the sensornet. The local computation minimizes 
communication costs thereby optimizing overall MAP computation costs. Each of the 
f/2 sensors involved in the Jacobi computation do an equal amount of work and hence 
expend equal energy which increases network lifetime.  

In a transition, each sensor incurs communicational costs to send and receive a 
message, which is a column of the matrix. A TinyOS message payload is 29 bytes 
long [32], therefore, a message with f elements, assuming an element is stored in 4 

bytes, requires 
29

4 f
 messages to be sent and received. Thus, the total communica-

tional cost incurred across the sensors is the total number of messages sent and re-

ceived in log2f sweeps i.e. += 1
29

4
log2log

29

4
2 22

f
fff

f
f .  

5   Cost of Maximum a Posterior (MAP) Classifier 

5.1   MAP with Jacobi (MAP-J) 

Once ji,δ  converges, MAP can be computed as presented in Eq. 7, for which we first 

redistribute the columns held by the f /2 sensor nodes that were participating in the 
one-sided Jacobi iterations. This way, sensor node i holding column i of Mi,j, now also 

holds column i of 1−
kS (=Λ-1) and Uk, where k=log2 f. Then, each of the f sensors can 

concurrently compute one of the fraction entities of Eq. 7 locally. This requires 3 
arithmetic operations for each of the f entries in a column of the matrix, followed by 
summation of all local fractions, which implies a total of 4f–1 (i.e. 3f+f–1) operations 
at each of the d sensors in a cluster.  
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Thus, the MAP classifier incurs a total computational cost of 
( ) ( )dfddf −=− 414 . To efficiently aggregate these distributed fractions, we can use 

a tree-like structure so that all entries can be aggregated in log2d levels, where each 
level requires transmission and reception of one message. Thus, the total messages 
sent and received are d, the total communicational cost of MAP with Jacobi (MAP-J). 

5.2   MAP Using LU (MAP-LU) 

Recall the inverse of the covariance matrix in MAP can also be computed using the 
popular LU decomposition technique. Our earlier work in [21] presents this approach 
in detail. In this section, we just restate the results briefly to facilitate comparison with 
MAP classifier using one-sided Jacobi. The LU decomposition is used to decompose 
the covariance matrix into its Lower (L) and Upper (U) triangular matrices. Eq. 3 can 
now be formulated as Eq. 10, where, D is the diagonal entries of U.  

( ) ( )
( ) ( )jiji

T
jijiji

jiji
TT

jijiji

MDMPMA

MLLDMMAP

,,
1

,,,

,,
1

,,,

μμ

μμ

′−′′−′=′

−−=
−

−

. (10) 

However, this cannot be further simplified like we did in Eq. 7. This is because, LU 
decomposition is not a similarity transformation, like one-sided Jacobi that can pre-
serve the eigen values [20] of the original matrix, and allow the simplification of Eq. 7.  

Therefore, the cost of MAP with LU (MAP-LU) can be stated as follows: 

let ( ) LMZ T
jiji ,, μ−= and ( ) TT

jiji ZLM =− ,, μ , so computing Z incurs df 22 opera-

tions (i.e. fd subtractions and fd dot products) and ( )fO
f =

29

4
 message exchanges 

for interchanging columns of L. The cost of computing the norm of MAP (Eq. 4) is 
2d2f-d2 for the d2 dot products and the communicational cost for the norm 

is ( )dO
d =

29

4
.  

Thus, over the d sensor nodes of a cluster, the total computational cost of comput-
ing MAP-LU is O(2d2f +2df 2 –d2) = O(d2f) with a communicational cost of 
O(d+f)=O(d), since d >> f. 

6   Power Consumption Comparison 

We now compare the power consumption of MAP-J with MAP-LU. Various authors, 
([29], [33]), to mention a few have studied the average power consumption of a Mica 
mote-type sensor node in various modes. We use the power ratings presented in [29], 
where the power consumption for transmitting, receiving and computing (only CPU 
operational) is approximately 10 mA, 7 mA and 8mA, respectively. From Section 5.1, 
MAP-J expends a total of 8)4( ×− dfd + 10×d + 7×d = dfd 932 + mA and simi-

larly, MAP-LU, consumes
( )

34
29

68
16816 222 ++++− df

dfdfd mA.  These power 

consumptions are plotted in Fig. 2. 
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Fig. 2. Comparing power consumed by MAP-J, MAP-LU, with varying dimensions of tempo-
ral processing (d), cost of one-sided Jacobi with BR (J) and total cost of MAP-J + J 

It is evident that there are orders of magnitude saving in power consumption of 
MAP-J with MAP-LU, irrespective of temporal processing points (d). This is because 
EVD allows the simplifications of Eq. 7 that enables faster computation. Principal 
Component Analysis (PCA) [26] type of techniques can also be used in MAP-J so that 
only the first few principal or significant eigen values are computed and used and not all 
f. Although this is not further explored in this paper, it can be seen that PCA will only 
speedup the MAP-J computation more but at the possible risk of reduced accuracy.  

Fig. 2 also shows that cost of computing Jacobi (J) is not drastically expensive, as 
the total cost of MAP-J and cost of Jacobi is still magnitudes lower than MAP-LU. 
Furthermore, typically, 20-40 features are monitored, in which range, cost of Jacobi 
(J) does not exceed MAP-J, for d 256. Most importantly, note total power consump-
tion of MAP and Jacobi Iterations (MAP-J + J) is still magnitudes lower than cost of 
MAP-LU alone, irrespective of the temporal processing dimension, and not taking 
into account cost of LU, which can only increase costs. 

It is also interesting to note that we were able to overcome floating point hardware 
limitation without any explicit software modules with MAP-J. This may not be the 
case for MAP-LU, as at the least floating point emulation software would be needed.  

The significant difference of MAP-LU and MAP-J is the reduction in total cost by 
a factor of O(d), which is typically in the order of 512. Also, the computations have 
been simplified to vector additions, rather than the more complex vector multiplica-
tions of MAP-LU.  

7   Conclusion 

We presented a feasible, practical and efficient method for executing the traditional 
Maximum A Posterior (MAP) classifier distributively, in resource constraint sensor-
nets. We do so by simplifying the computation of the MAP classifier into an equation 
of a hyper-ellipse (Eq. 7) ([23],[20]). This greatly reduces the computations required 
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and significantly cuts down the communication cost, which occur when the MAP clas-
sifier uses the traditional approach of LU decomposition to overcome computation of 
inverse of covariance matrix. Not only are the one-sided Jacobi iterations efficient but 
they are also more stable than LU decomposition [28]. Furthermore, we do not have to 
compromise with any hardware limitations, with the one-sided Jacobi iterations.  

We have thus shown feasibility of executing traditional signal processing classifi-
ers such as MAP on resource constraint sensornets. Our future work includes, analyz-
ing the accuracies of these methods for classification and effect of PCA on the accu-
racy of one-sided Jacobi iterations.  
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Abstract. Shared Memory Multiprocessor (SMP) systems based on processors 
with Chip-level MultiThreading (CMT) technology are becoming mainstream 
servers in High Performance Computing (HPC) applications and commercial 
business applications as well. With multiple threads executing on a processor 
chip at the same time, CMT servers promise to deliver higher aggregate 
performance than servers without CMT technology. However, resource sharing 
among the threads executing on the same processor chip can cause conflicts and 
hurt the performance. Thus in order to obtain high performance and scalability 
on CMT servers, it is crucial to understand the performance impact that the 
CMT processors have on the target applications. In this paper, we evaluate the 
performance of an example high-end CMT server, Sun Fire E25K, using HPC 
applications parallelized with OpenMP standard, SPEC OMPL (standard 
OpenMP benchmark suite). We also study the performance impact of the 
resource conflicts on the CMT processor for each benchmark program.  

Keywords: Chip-MultiThreading, SMP, High Performance Computing, OpenMP, 
Scalability. 

1   Introduction 

Recently, microprocessor designers have been considering many design choices to 
effectively utilize the ever increasing effective silicon area with the increase of 
transistor density. Instead of employing a complicated processor pipeline with an 
emphasis on improving a single thread’s performance, incorporating multiple 
processor cores on a single chip (or Chip Multi-Processor) has become a main stream 
                                                           
*  Corresponding author. 
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design trend. As a Chip Multi-Processor (CMP), it can execute multiple software 
threads on a single chip at the same time. Thus it supports Chip-level MultiThreading 
(CMT) and provides a larger capacity of computations performed per chip for a given 
time interval (or throughput). Examples are Dual-Core Intel Xeon [3], UltraSPARC 
IV, IV+, T1 microprocessors from Sun Microsystems [11, 13]. Intel Pentium IV with 
Hyperthreading technology [4] is another form of a CMT processor. Although it is not 
a CMP, it has support for two software threads executing on a single processor chip. 
Other similar products from vendors such as IBM [5], AMD [1], and Fujitsu are also 
being developed or already in the market.  

Shared-Memory Multiprocessor (SMP) servers based on CMT processors are 
already introduced in the market (e.g., Sun Fire E25K [11] from Sun Microsystems 
based on UltraSPARC IV processors) and will become more popular. They are rapidly 
being adopted in High Performance Computing (HPC) applications as well as 
commercial business applications. CMT servers promise to deliver higher throughput 
performance than the servers based on single core processors. However, resources on 
the CMT processors such as cache, cache/memory bus, etc., are shared among the 
cores on the same chip, which can cause thrashing and hurt performance. For 
example, the pressure on the memory bus can be significantly increased as all the 
cores on the same chip generate their memory traffic on the shared bus. Thus 
exploiting the full performance potential of a CMT server is a challenging task. In 
order to obtain optimal performance on the CMT server, it is important to understand 
the performance impact that the CMT processors have on the target applications, in 
particular the effects of the resource conflicts.  

In this paper, we evaluate the performance of a high-end CMT server, Sun Fire 
E25K, using a suite of HPC applications, SPEC OMPL [9], written using OpenMP 
standard for SMP [7]. We use the Sun Studio 9 compiler suite [12] to generate fairly 
high optimized executables for SPEC OMPL programs. We use features of Solaris 10 
Operating System friendly to HPC applications and run the optimized executables of 
the SPEC OMPL on E25K. When running the SPEC OMPL, we use many threads 
(143 and 72) to evaluate the overall performance and scalability of E25K. 
Furthermore, in order to evaluate the performance impact of resource conflicts on the 
CMT, we run the programs using 72 threads with and without the CMT feature (using 
both cores of 36 processors vs. using only one core of 72 processors). The 
experimental results show a decent overall scalability of 1.66 from 72 threads to 143 
threads. Also, the results show the performance impact of the resource conflicts for 
each test program.  

The rest of the paper is organized as follows: Section 2 describes the architecture 
of a generic CMT processor and an example CMT server, Sun Fire E25K. Section 3 
describes the OpenMP programming model and our test benchmark suite, SPEC 
OMPL. Section 4 shows our methodologies to generate optimized executables for 
SPEC OMPL and to exploit other compiler, OS features for obtaining high 
performance for SPEC OMPL. Section 5 shows the experimental results on E25K. 
Section 6 wraps up the paper with conclusions.   
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2   CMT Server 

We first describe the architecture of the state-of-the-art CMT processor. We then 
describe an example high-end CMT server, Sun Fire E25K, which we used for our 
performance experiments in this paper.  

The current main design for CMT processors is based on CMP’s such as Dual-
Core Intel Xeon [3], Sun Microsystems' UltraSPARC IV, IV+, among others. Some 
CMT processors even incorporate Simultaneous MultiThreading (SMT) [14] or 
similar technologies on a core. Examples are IBM Power5 [5] and UltraSPARC T1 
microprocessor [13] from Sun. Figure 1 shows the architecture of a generic CMT 
processor [2]. On each processor chip, there are N-processor cores, with each core 
having its own cache on chip. The N-cores share a larger cache on or off the processor 
chip. Each core also has M hardware threads performing SMT or similar features. For 
example, the UltraSPARC T1 from Sun includes 8 cores, with each core supporting 4 
hardware threads. In total, 32 (= 8 x 4) threads can execute on a chip at the same time. 
Each core has 8KB private data cache. The level-2 unified cache is 3MB in size.  

Thread 0

Thread M-1

…Core 0

Cache
(for

each

core)

Shared
cache for 

all cores

Thread 0

Thread M-1

…Core N-1

Cache
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each
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…
.…

…
…

...…

System 
Interconnect

(to/from
memory, I/O, etc.)

 

Fig. 1. Architecture of a generic CMT processor 

The Sun Fire E25K server is the first generation throughput computing server from 
Sun Microsystems which aims to dramatically increase the application throughput via 
CMT technology. The server is based on the UltraSPARC IV processor and can scale 
up to 72 processors executing 144 threads (two threads per processor) simultaneously. 
The system offers up to twice the compute power of the UltraSPARC III Cu 
(predecessor to UltraSPARC IV processor) based high-end systems.  

The UltraSPARC IV is a dual-threaded CMT (see Figure 2). It contains two 
enhanced UltraSPARC III Cu cores (or Thread Execution Engines: TEE’s), a memory 
controller, and the necessary cache tag for 8 MB of external L2 cache per core. The 
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off-chip L2 cache is 16 MB in size (8 MB per core). The two cores share the 
Fireplane System Interconnect, as well as the L2 cache bus. 

The basic computational component of the Sun Fire E25K server is the UniBoard 
[11]. Each UniBoard consists of up to four UltraSPARC IV processors, their L2 
caches, and associated main memory. Sun Fire E25K can contain up to 18 UniBoards, 
thus at maximum 72 UltraSPARC IV processors. In order to maintain cache 
coherency system wide, the snoopy cache coherency protocol is used within the 
UniBoard and directory-based cache coherency protocol is used among different 
UniBoards. The memory latency, measured using lat_mem_rd ( ) routine of lmbench, 
to the memory within the same UniBoard is 240nsec and 455nsec to the memory in 
different Uniboard (or remote memory). 

Memory

Controller

To Sun Fireplane Interconnect

AR

AR

TEE 0

L2 Cache
  (8 MB)

L2 Cache
  (8 MB)

TEE 1

 

Fig. 2. UltraSPARC IV processor 

3   SPEC OMPL Benchmarks 

We first explain the underlying execution model for OpenMP. We, then, introduce the 
SPEC OMPL benchmark suite used for evaluating the performance of an example 
CMT server Sun Fire E25K.  

The underlying execution model for OpenMP is fork-join (see Figure 3) [7]. A 
master thread executes sequentially until a parallel region of code is encountered. At 
that point, the master thread forks a team of worker threads.  All threads participate in 
executing the parallel region concurrently.  At the end of the parallel region (the join 
point), the team of worker threads and the master synchronize. After then the master 
thread alone continues sequential execution. OpenMP parallelization incurs an 
overhead cost that does not exist in sequential programs: cost of creating threads, 
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Fig. 3. OpenMP execution model 

synchronizing threads, accessing shared data, allocating copies of private data, 
bookkeeping of information related to threads, and so on.  

The SPEC OMPL benchmark suite consists of nine application programs written in 
C and Fortran, and parallelized using the OpenMP API [9]. These benchmarks are 
representative of HPC applications from the areas of chemistry, mechanical 
engineering, climate modeling, and physics. Each benchmark requires a memory size 
up to 6.4 GB when running on a single processor. Thus the benchmarks target large-
scale systems with 64-bit address space. Following table lists the benchmarks and 
their application areas. 

Table 1. SPEC OMPL Benchmarks 

Benchmark 
Programs Application Areas Programming 

Languages 

311.wupwise_l   Quantum chromodynamics Fortran 

313.swim_l   Shallow water modeling Fortran 

315.mgrid_l   Multi-grid solver Fortran 

317.applu_l   Partial differential  equations Fortran 

321.equake_l   Earthquake modeling C 

325.apsi_l   Air pollutants Fortran 

327.gafort_l   Genetic algorithm Fortran 

329.fma3d_l   Crash simulation Fortran 

331.art_l   Neural network simulation C 
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4   Preparing Executables and System Environments 

Using Sun Studio 9 compiler suite [12], we've generated executables for the 
benchmarks in SPEC OMPL suite. By using a common set of compiler options 
provided by the Sun Studio 9, very high level of compiler optimizations are applied to 
the benchmarks. The common set of compiler flags are –fast –openmp –xipo=2 –
autopar –xprofile –xarch=v9a. These options provide many common and also 
advanced optimizations such as scalar optimizations, loop transformations, data 
prefetching, memory hierarchy optimizations, interprocedural optimizations, profile 
feedback optimizations, among others. The –openmp option processes openmp 
directives and generate parallel code for execution on multiprocessors. The –autopar 
option provides automatic parallelization by the compiler beyond user-specified 
parallelization. This can further improve the performance.   

The Solaris 10 Operating System provides features which help improve 
performance of HPC applications. They are Memory Placement Optimization (MPO) 
and Multiple Page Size Support (MPSS). For programs with intensive data accesses to 
localized regions of memory, efficiently utilizing MPO feature in Solaris 10 can 
significantly improve the performance. With the default MPO policy called first-
touch, memory accesses can be kept on the local board most of the time, whereas, 
without MPO, those accesses would be distributed all over the boards (both local and 
remote) which can become very expensive. For programs which use a large amount of 
memory, using large size pages (supported by MPSS feature) can significantly reduce 
the number of TLB entries needed for the program and the number of TLB misses, 
thus significantly improve the performance [8]. We are enabling both MPO and 
MPSS for our runs of SPEC OMPL executables.  

OpenMP threads can be bound to processors using the environment variable 
SUNW_MP_PROCBIND which is supported by thread library in Solaris 10. 
Processor binding, when used along with the static scheduling, benefits applications 
that exhibit a certain data reuse pattern where data accessed by a thread in a parallel 
region will either be in the local cache from a previous invocation of a parallel region, 
or in local memory due to the OS's first-touch memory allocation policy.  

5   Performance Results 

Using the compiler flags in Section 4, we’ve generated fairly high optimized 
executables for SPEC OMPL. We also enabled MPO and MPSS features in Solaris 
10. We then run the SPEC OMPL programs on Sun Fire E25K while using the 
processor binding. In the following subsections, we present the performance results.  

5.1   Overall Performance and Scalability 

While running SPEC OMPL suite on Sun Fire E25K, we’ve used both 72 threads and 
143 threads.   In both runs, both cores of the UltraSPARC IV processors (clock rate = 
1050 Mhz) were used. Thus 36 UltraSPARC IV processors were used in the 72 
threads run and 72 processors were used for the 143 threads run. One core is left idle 
to take care of system processes or daemons.   
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The performance of SPEC OMPL is computed as follows [9]:   

 For each benchmark, the run time (wall clock time) is measured. Then we 
divide the run time with the reference run time given for each benchmark. 
The resulting number is multiplied with 16,000. This is the score for each 
benchmark. 

 After computing scores for the all 9 benchmarks, we then compute their 
geometric mean. This mean is the overall performance of the benchmark 
suite.  

Table 2. Performance Comparisons for SPEC OMPL—143 threads vs. 72 threads 

Benchmark 
Programs 72 threads 143 threads Scalability:143/72  

311.wupwise_l 282508 504121 1.78 

313.swim_l 151927 287973 1.9 

315.mgrid_l 178496 302214 1.69 

317.applu_l 156009 278397 1.78 

321.equake_l 96142 120950 1.26 

325.apsi_l 106463 172362 1.62 

327.gafort_l 147356 222660 1.51 

329.fma3d_l 155068 288431 1.86 

331.art_l 1001238 1653466 1.65 

Geometric 
Mean 

186995 310772 1.66 

On 143 threads run, we’ve obtained an overall performance of 310,772. Then 
we’ve conducted 72 threads run which results in the overall performance of 186,995. 
The scalability is computed as 1.66 (310772/186995) when the number of threads is 
increased from 72 to 143. Table 2 summarizes the performance results and scalability. 
Four of the benchmarks show scalabilities greater than 1.78 (311.wupwise, 
313.swim_l, 317.applu_l, 329.fma3d_l). In the case of 313.swim_l which consumes a 
lot of memory bandwidth, the high peak aggregate memory bandwidth available on 
E25K helps obtain the high scalability. The L2 cache miss rate is high for 
329.fma3d_l in 72 threads run. When the number of threads gets doubled from 72 to 
143, the amount of data loaded onto L2 cache gets diminished significantly. This 
results in a significant reduction in L2 cache misses, due to effectively reduced 
working set sizes. 

The scalabilities for 321.equake_l and 327.gafort_l are noticeably low: 1.26, 1.51. 
In the case of 321.equake_l, the synchronization overhead increased significantly as 
the number of threads increased from 72 to 143. 327.gafort_l has two hot loops with 
critical sections inside. The critical section loops take a long time to execute, while 
performing intensive load and store operations from/to the memory. As they are 
sequential portions, they act as the “serial bottleneck” in Amdahl’s law and leads to 
low scalability. Figure 4 shows the scalability bar graph for each benchmark for better 
illustrations of the results.  
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Fig. 4. Scalability bar graph per each benchmark program 

5.2   Performance Impact of Resource Conflicts on CMT 

In order to measure the performance impact of resource conflicts on CMT (level-2 
cache bus, memory bus) on SPEC OMPL, we’ve measured the performance of 72 
threads runs in two ways:  

1. Using 36 UltraSPARC IV processors (experiments conducted in section 
5.1), thus using both cores of the processor 

2. Using 72 UltraSPARC IV processors, thus using only one core per 
processor. There are no resource conflicts between the two cores on the 
same processor chip.  

Table 3. 72 threads case—36x2 vs. 72x1 

Benchmark 
Programs 36 chip X 2 cores 72 chip x 1 core 1 core vs.  

2 cores 

311.wupwise_l 282508 299246 1.06 

313.swim_l 151927 211008 1.39 

315.mgrid_l 178496 213833 1.20 

317.applu_l 156009 160670 1.03 

321.equake_l 96142 98853 1.03 

325.apsi_l 106463 130035 1.22 

327.gafort_l 147356 187597 1.27 

329.fma3d_l 155068 155060 1.00 

331.art_l 1001238 1293218 1.29 

Geometric 
Mean 

186995 216592 1.16 
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Table 3 (and also Figure 5) shows the performance for both 1 and 2, and also 
shows the speedup of 2 over 1. Overall, 2 performs 1.16x better than 1. Benchmarks 
with greater performance gains from 2 consume high memory bandwidths and/or use 
large amounts of memory: 

 313.swim_l is a memory bandwidth-intensive benchmark as mentioned in 
section 5.1. When only one core is used per processor, it can fully utilize the 
memory bandwidth available on the processor chip, whereas when two cores 
are used the bandwidth is effectively halved between the two cores. This led 
to 1.39x gain of 2 over 1.  

 315.mgrid_l, like in 313.swim_l, requires high memory bandwidth. Thus 
using only one core can have much higher memory bandwidth which leads to 
1.20x gain. However, as seen in section 5.1, the low scalability from the 72 
threads run to the 143 threads run stems from the low iteration counts of the 
two hottest loops. The maximum iteration counts for the two hottest loops are 
512 only. The iteration count 512 is relatively small compared with the 
number of threads used (143, 72). Thus the portion for parallelization 
overheads such as synchronization also increases as the number of threads is 
increased. This prevented the benchmark from achieving high scalability in 
Section 5.1.  
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Fig. 5. Performance comparisons of 1 core vs. 2-cores 

 325.apsi_l and 331.art_l allocate large amount of memory per thread at run-
time. Thus, instead of allowing 8 threads to allocate large memory on the 
same UniBoard’s memory, allowing only 4 threads can have significant 
performance benefit.  

 327.gafort_l suffers from intensive memory loads and stores generated from 
the critical section loops. Allocating 8 threads on two different UniBoards 
reduces the pressure on the memory bandwidth significantly compared with 
allocating 8 threads on the same UniBoard.  
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Benchmarks other than the above (311.wupwise_l, 317.applu_l, 321.equake_l, 
329.fma3d_l) relatively give less pressure on the memory bandwidth and/or consume 
smaller amount of memory. Thus both 1 and 2 result in the same level of 
performance. These benchmarks are not heavily affected by the resource conflicts and 
more suitable for execution on CMT servers.  

6   Conclusions  

In this paper, we first described the architecture of a generic CMT server and an 
example CMT server, Sun Fire E25K, in detail. Then we introduced the OpenMP 
execution model along with the SPEC OMPL benchmark suite used to evaluate the 
example CMT server Sun Fire E25K. We showed our methodology to generate highly 
optimized executables for SPEC OMPL benchmarks using the options of Sun Studio 
9 compiler. We also described the features in Solaris 10 OS (MPO, MPSS) which 
help improve HPC application performance. Using the executables for SPEC OMPL 
generated by the Sun Studio 9 compilers, and also the MPO and MPSS features in 
Solaris 10, we've obtained high scalability on E25K. We've also measured the 
performance impact of the resource conflicts on CMT processor for SPEC OMPL 
using either one core or both cores of a CMT processor. It turned out that the 
benchmarks which require large memory bandwidths and/or consume large amounts 
of memory suffer when both cores are used due to the saturations on the memory bus 
and the main memory.  
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Abstract. Locality behavior study is crucial for achieving good performance for
irregular problems. Graph algorithms with large, sparse inputs, for example, of-
tentimes achieve only a tiny fraction of the potential peak performance on current
architectures. Compared with most numerical algorithms graph algorithms lay
higher pressure on the memory system. In this paper, using the minimum span-
ning tree problem as an example, we study the locality behavior of graph algo-
rithms, both sequential and parallel, for arbitrary, sparse instances. We show that
the inherent locality of graph algorithms may not be favored by the current archi-
tecture, and parallel graph algorithms tend to have significantly poorer locality
behaviors than their sequential counterparts. As memory hierarchy gets deeper
and processors start to contain multi-cores, our study suggests that architectural
support and new parallel algorithm designs are necessary for achieving good per-
formance for irregular graph problems.

Keywords: memory locality, graph algorithm, minimum spanning tree.

1 Introduction

Graph abstractions are used in many science and engineering problems, for example,
data mining, determining gene function, clustering in semantic webs, and security appli-
cations. Graph problems with large arbitrary, sparse instances are challenging to solve
on current architectures (e.g., see [3, 4]). For dense linear algebra packages near peak
performances are repeatedly reported. Yet we have not seen similar performance results
for graph problems. Graph algorithms tend to lay higher pressure on the memory sys-
tem. For architectures with deep memory hierarchy, locality features are crucial to the
performance of the algorithms. In this paper, using the minimum spanning tree (MST)
problem as an example, we study the locality behaviors of graph algorithms and com-
pare their performances with different cache configurations.

The MST problem finds a spanning tree of a connected graph G with the minimum
sum of edge weights. MST is one of the most studied combinatorial problems with
practical applications in VLSI layout, wireless communication, distributed networks
[15, 24, 26], and recent problems in biology and medicine [5, 13], and national security
[7]. MST is also often a key step in other graph problems [16, 17, 23, 25].

Moret and Shapiro give an empirical analysis of MST algorithms in [18]. Implemen-
tations of Prim’s, Kruskal’s and Cheriton-Tarjan’s algorithms on several architectures

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 583–594, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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are compared. Through extensive comparisons, Prim’s algorithm is found to be the best
candidate. Computer architectures have since evolved, and Prim’s algorithm may no
longer be the fastest on current platforms. Moreover, running times alone are generally
not sufficient to estimate the relative performance of algorithms on new architectural
configurations. As memory hierarchy gets deeper, cache performance becomes crucial
to an application. Whether the locality behavior of an algorithm fits well with the cache
configuration affects the overall performance. Understanding the locality behavior helps
the adaptation of algorithms to target platforms and dynamic configurations (e.g., shut-
down of a cache bank to reduce power consumption).

In this paper we study the locality behavior of three MST algorithms, that is, Prim’s,
Borůvka’s, and Kruskal’s, and show how cache configurations (e.g., cache size and line
size) affect their performance. We include Borůvka’s algorithm as it can be easily par-
allelized to run in poly-log time under the PRAM model. As processors increasingly
adopt multi-core designs, solving a problem in parallel is important for performance.
The locality behavior of a parallel graph algorithm can be very different from the se-
quential counterpart as the designs are drastically different. Comparison of their local-
ity behavior brings insight to efficient parallel algorithm design and better architectural
support.

Cache-friendly algorithms, for example, external memory algorithms and cache-
oblivious algorithms, abound in the literature. These algorithms assume some mem-
ory hierarchy models, and minimize the number of block transfers between hierarchy
levels. Common design techniques include divide-and-conquer and sequential scan, for
which the I/O complexity (number of blocks transfered) is relatively easy to analyze.
For other algorithms that do not employ these techniques, however, it is hard to an-
alyze for I/O complexity under these hierarchy models. Also the locality behavior of
an algorithm is an inherent property that should not depend on the memory hierarchy
of a target platform (while its performance certainly depends on how well the locality
behavior fits with the cache configuration). In our study we do not analyze the MST al-
gorithms under these existing memory models. Instead we characterize locality through
Least-Recently-Used (LRU) stack distance analysis that is discussed in Section 2.

2 Characterizing Locality Behavior

LRU stack distance was first used in the “stack processing” technique proposed by
Mattson et al. for evaluating cost-performance of storage hierarchies [14]. LRU stack
distance is also referred to as reuse distance, and the two names are used interchange-
ably in the literature. Locality of a program can be studied by computing the LRU stack
distance histogram (e.g., see [21]).

Consider a trace of k memory accesses, T = T1, T2, . . . , Tk, that access a set of c
addresses. For a storage system with Least-Recently-Used replacement policy, access
Ti is a hit if the size of the fast memory is larger than the stack distance Δ(Ti). A
histogram can be derived if we compute for each Δ ∈ [0 : c], the total number of ac-
cesses that have reuse distance Δ. The LRU stack distance histogram has been used as a
machine-independent metric of locality (e.g., see [6]). With LRU stack distance analysis
it is possible to perform various optimizations on a program (e.g., see [21, 27]).
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In our study we use the binary rewriting approach to get a memory access trace. We
intercept each load and store instruction using SIGMA [10], and compute the reuse
distance histogram on the fly to avoid dumping huge traces.

3 Comparison of Three MST Algorithms

In this section we compare the locality behavior of the three MST algorithms, that is,
Prim’s, Kruskal’s and Borůvka’s. For each algorithm the exact process of constructing
an MST is influenced by the topology, edge density, and weight distribution of the
input graph. We focus on sparse random graphs with randomly-assigned edge weights.
We choose random graphs because they are the most challenging to solve on parallel
computers. As memory access pattern is highly dependent on the inputs, the study of
arbitrary graphs can expose regular memory patterns of the algorithms. A random graph
of n vertices and m edges is generated by randomly picking a pair of vertices and
connecting them with an edge until m edges are generated.

For Prim’s algorithm (denoted as Prim), we use the implicit binary heap described
[9]. For Kruskal’s algorithm (denoted as Kruskal), we use non-recursive merge sort as
the sorting routine. The union-find data structure is used to maintain the disjoint sets of
elements. Borůvka’s algorithm (denoted as Borůvka) is composed of Borůvka iterations
that have three steps: find-min, connect-components, and compact-graph. The algorithm
iterates until only isolated vertices are left. All MST implementations run in O(m log n)
time. Fig. 1 shows the LRU stack distance histograms for each algorithm with an input
graph of 1K vertices and 4K edges (we use 1K to denote 1024).
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Fig. 1. Histograms of stack distances for three MST implementations

One common feature of the three plots in Fig. 1 is the blanks in the histogram. The
ratio of the number of observed distinct stack distances over the memory footprint size
is 40% for Prim, 54% for Kruskal, and 73% for Boruvka. In each plot, the minimum
reuse distance is 0, and the maximum is c, the size of the footprint. Large concen-
trations of distribution are observed around certain distances. For example, there are
concentrations around small reuse distances in all plots. Each plot has a different shape.
For Prim the histogram monotonously decreases with the reuse distance. For Borůvka
and Kruskal, there are concentrations of distribution around large reuse distances.

The plot on the left of Fig. 2 presents a different view of the same histogram data.
The x axis is the stack distance. The y value shows the percentage of accesses with
stack distance no bigger than x. Alternatively, y can also be viewed as a cache hit ratio
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Fig. 2. The ratio plots for three implementation of MST algorithms with an input of 1K vertices,
4K edges

for a fully associative cache of size x with the LRU replacement policy. In the rest of the
paper we refer to such plots as ratio plots. For each of the three algorithms, the shape
of the line in the ratio plots is different. Prim and Kruskal achieve fairly good cache
hit ratios with small cache sizes. The curve of Borůvka remains flat at low ratios for
a range of reuse distances, and jump abruptly at relatively large distances. The plot on
the right of Fig. 2 is a zoomed-in view for reuse distances in the range of [0:150]. Prim
achieves a hit ratio of over 80% at a cache size of only 120 words.

3.1 Locality of Prim

Starting from a single vertex, Prim grows an MST one edge at a time. Prim maintains a
heap to retrieve the lightest-weight edge. During the execution, for sparse inputs, most
memory accesses occur around accessing the heap data structure. Each heap operation
incurs O(log h) memory accesses, where h = O(n) is the size of the heap. We focus
our analysis on the heap operations.

In our experiments, for all graphs of different sizes, ranging from 1K vertices to
100K vertices, a hit ratio of more than 70% is achieved with fewer than 20 words. In
fact hit ratios of more than 80% are achieved with around 120 words (integers), for all
input sizes. Within the reuse distance range of [0, 50], the curves are nearly identical
and the hit ratio appear to be independent of the input size.

The magic numbers observed (i.e., 70% and 50 words) are dependent not only the
topology, edge density, and weight distribution of the input, but also the actual program-
ming of the algorithm. Instead of modeling the tree construction process and giving
rough bounds, we show that a significant percentage of memory accesses incur short
reuse distances.

Recall that a reuse distance is associated with each memory access. We now con-
sider the reuse distance for the memory accesses incurred by Extract Min, Insert and
Decrease Key. Extract Min removes the top element of the heap, and places the last
element as the new top. It then iteratively inspects a node and its two children starting
from the top. If the parent has larger weight, it then is swapped with one of the children.
During each iteration there are three reads (reading the weights) and two writes (swap-
ping). The parent and one of the children are accessed twice, and the second access
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has a distance of O(1). More exactly, the distance will be 1 or 2 depending on whether
the left or right child gets swapped. Here we do not consider the interference of other
auxiliary data structures, for example, a temporary location to facilitate the swap. So
at least 2

5 of the accesses generated by Extract Min are within a constant distance. In-
sert appends an element to the end of the heap and then compares iteratively from the
end whether an element is larger than its parent. If the parent is larger, it then gets
sifted down. Successive sifting incurs constant reuse distance, and 1

2 of the accesses
have distance O(1). Decrease Key works similarly as Extract Min, and about 1

2 of the
accesses have distance O(1). Note that although the distances are constant, in practice
they can take a range of values due to book-keeping activities. For example, to enable
Decrease Key, the positions of each vertex in the heap are recorded in an array. Up-
dating the positions increases reuse distances (still O(1) though) for heap accesses in
Decrease Key. According to our analysis, an estimate of 40 to 50 percent of accesses
have constant reuse distances (disregarding book-keeping activities).

In addition to constant reuse distances, some operation incur O(log n) distance. For
example, to maintain the size of the heap, after each Extract Min or Insert, a counter is
either incremented or decremented. Access to the counter generates reuse distance of
O(log n) as Extract Min and Insert incur O(log n) accesses to different memory loca-
tions. The top of the heap is accessed every time in Extract Min, and the largest reuse
distance incurred by Extract Min is O(d log n), where d is the largest degree of all ver-
tices. The distribution of reuse distances for the rest of memory operations is governed
by the random process of constructing an MST. It is easy to construct scenarios that
incur large (e.g., O(n)) reuse distances.

As the ratio plots show good locality of the simple binary heap, it is then interest-
ing to compare with other more sophisticated implementations of heaps. Heaps (and
priority queues) have been studied extensively, and quite a few data structures are pro-
posed, for example, Fibonacci heap, pairing heap, and splay trees. Sanders presents
a data structure called sequence heap [20] and shows that for a cache configuration
with size M and block size B, I insertions and I deletions can be performed with
I(2R/B + O(1/k + (log k)/m)) I/Os and I(log I + log R + log m + O(1)) compar-
isons, where m = Θ(M), k = Θ(M/B), R = [logk

I
m ]. The motivation of sequence

heap is based on the fact that merging k sequences is I/O efficient under the external
memory model. Arge et al. designed cache-oblivious priority queues based on simi-
lar observations [2]. In his study Sanders has four heap implementations, denoted as
hslow (implicit binary heap), h2 (binary heap with the “bounce” heuristic [12]), h4(4-
ary heap), and knh (the sequence heap), respectively.

In Fig. 3 are the ratio plots for the four different heap implementations. Surpris-
ingly, the textbook binary heap (hslow) has the best locality behavior in terms of reuse
distances. At each distance, the ratio for hslow is consistently higher than the ratios
for other implementations. In practice, however, hslow is found to be the slowest for
most inputs on current architectures, for example, SUN SPARC V9 and IBM Power 4.
In fact, knh are four times faster than hslow for many inputs. Although hslow tends to
make more memory accesses (about 1.5 times as many as knh), the difference does not
fully explain the observed poor performance of hslow, especially considering its good
locality behavior. The fastest implementation is knh. As it mostly works with sorted
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Fig. 3. The ratio plots for four heap implementations. The plot is for stack distance in range
[0:150]. On the left are the plots for 1000 Insert followed by 1000 Extract Min. On the right
are the plots for 1000 Insert, Extract Min, and Insert followed by 1000 Extract Min, Insert,
Extract Min.

sequences, it exhibits good spatial locality. Current architectures that typically have
long cache lines and long latency to main memory impose the requirement of spatial
locality for good performance. Unfortunately, spatial locality is scarce in hslow.

All heap operations start with a certain node v, and inspect v’s parent and/or children.
Due to the layout of the implicit binary heap in memory, whenever a block is brought
into the cache, except for node v that is currently being accessed, it is unlikely that the
rest of the block contains v’s parent or children unless v is near the top of the heap. In
this case, long cache line causes fetching data that is not used in the near future and
wastes memory bandwidth.

There is no machine-independent metric in the literature to measure the spatial local-
ity of a program. Recently Snir and Yu studied the theoretical aspects of temporal and
spatial locality [22]. While they acknowledge that LRU stack distance analysis captures
well temporal locality, they also point out that in terms of predicting cache miss band-
width, temporal locality and spatial locality can not be studied in isolation. We present
further experimental results in Section 4.

3.2 Locality of Kruskal

For Kruskal, sorting dominates the execution time, and dictates the shape of the plot.
For the implementation with merge sort, the hit ratio remains low until the distance and
hence cache size becomes very large. In fact only at a size that can hold all the data
structures used for sorting does the hit ratio reach above 90%. Fig. 4 shows the ratio
plots for Kruskal with three different inputs. The vertical line in each plot is Δ = 6m.
Recall that non-recursive merge sort employs an auxiliary buffer. For an input with
m edges, as each edge in the data structure has three elements (two vertices and the
weight), the size of the total memory usage is 2m ∗ 3 = 6m words. The plots show that
a cache has to be of size at least 6m words in order to have reasonably good hit ratios.
Otherwise the hit ratio is as low as 30%, even for cache size 6m − 1. Unfortunately,
6m is in direct proportion to the input size, and the algorithm exhibits poor temporal
locality behavior.
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In practice, for many inputs, Kruskal with merge sort is the fastest among all imple-
mentations. As long as the the data structure fits in main memory, our implementation
with merge sort beats the version with quick sort for large inputs on all tested platforms.
This is largely due to the fact that merge sort has very good spatial locality that are es-
pecially advantageous for long cache lines. For n (assuming n = 2k, k ∈ N ) elements,
merge sort takes k iterations. In iteration 1 ≤ i < k, n

2i pairs of consecutive sequences
(each of length 2i) are merged. Whenever a block is brought into cache, it contains data
that is soon to be used. We further presents experimental results in Section. 4.
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Fig. 4. The ratio plots for Kruskal with three inputs. The input sizes from left to right are 1K,
5K, and 10K vertices. m = 4n.

3.3 Locality of Borůvka

With Borůvka, the surges in the ratio plots are at distances in direct proportion to the
input size, as shown in Fig. 5. In Fig. 5 we show the ratio plots for three different input
sizes, that is, random graphs with 1K , 5K , and 10K vertices, and m = 4n edges. The
vertical line in each plot is Δ = n ∗ 3 + m ∗ 4. That is exactly the size of the input.
With our adjacency list representation, for each vertex there are three data fields. Each
data field takes a word of memory. For each edge incident to vertex v, there are two
elements: u, the other vertex, and w, the edge weight. Each edge appears twice in the
adjacency list. The size of the input is thus 3n + 4m.

Algorithms with such reuse behavior as shown in Fig. 5 generally scans through
the data structures repeatedly for multiple runs, and each run can be considered as an
algorithmic phase that may have similar or different characteristics. These algorithms
generally lend themselves to parallelization as in the case of Borůvka’s algorithm. In
fact the Borůvka iteration (find-min, connected-components and compact-graph) is em-
ployed in other parallel MST algorithms (e.g., see [8, 11]).

As shown in Fig. 5, even with a fully associative cache, the cache needs to be at
least of the size of the input in order to have good hit ratios. Otherwise, the hit ratio is
well below 90%. The vertical line on the left of each plot (Δ = 4n) crosses the curve
at about frequency=60%. The line corresponds nicely to the size of the four auxiliary
data structures used in the algorithm, that is Min, Min ind, D, Alive. Consistently, with
a cache size of 4n words, the hit ratio is around 60%. In order not to contract the graph
which is costly as it involves memory allocation and copying, we use the D and Min
arrays for each vertex (and supervertex) to record the component it belongs to and the
smallest weight of the adjacent edges. Min ind records the other vertex (or supervertex)
that is incident to the edge with smallest weight. The Alive array shows whether a vertex
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should be considered in the Borůvka iteration. With a cache size of 4n, most accesses
to D in our implementation are cache hits. We refer interested readers to [4] for details
of the algorithm.

There are two cache sizes for Borůvka that can achieve reasonable hit ratios. More
specifically, one is 4n and the second is 3n+4m. The effectiveness of caching is highly
dependent on the input size. In contrast to Prim and similar to Kruskal, Borůvka does
not exhibit good temporal locality. What is worse is that Borůvka does not exhibit good
spatial locality either, and most accesses to the arrays are irregular.
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Fig. 5. Ratio plots for Borůvka with three different inputs

The reuse distance analysis of Borůvka suggests poor temporal locality for parallel
graph algorithms (we mainly focus on PRAM algorithms since most interesting parallel
graph algorithms are based on PRAM) due to the inherent phase behavior. In addition,
the irregular nature of the input dictates poor spatial locality behavior.

3.4 Locality of Parallel MST Algorithms

In this section we consider the locality of parallel Borůvka’s algorithm. The local-
ity of parallel Borůvka’s algorithm is representative for at least some stages in the
more complex MST algorithms. In fact, the graft-and-shortcut approach used in par-
allel Borůvka’s algorithm is also frequently used in other parallel graph algorithms, for
this class of algorithms, we expect to see similar locality behavior.

The parallel implementations of find-min and connect-components are straightfor-
ward. We have two implementations of the compact-graph step. One of them contracts
the graph using parallel sorting routines, while the other adopts a data structure called
flexible adjacency list that avoids large scale sorting. We refer interested readers to [4]
for details of the implementations.

Fig. 6 shows the ratio plots for two implementations of parallel Borůvka’s algorithm.
Again the input is a random graph with 1K vertices and 4K edges. We emulate the
parallel algorithm with one thread. The locality behavior for each thread with multiple
threads should be similar. The two ratio plots of Fig. 6 look roughly like the plots in
Fig. 5, and show poor locality in terms of reuse distance. At a large distance about
130, 000 words, the hit ratio reaches above 80%. The range of the reuse distance is
significantly larger than that of the sequential implementation. This is due to the fact
in both implementations, after each iteration new instances of the graph (either fully or
partially compacted) are generated and the next iteration works on the new instances.
Fig. 6 partly explains why it is difficult to achieve good parallel speedup for sparse
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arbitrary instances on current parallel computers. The parallel algorithms have poorer
locality than the sequential algorithms, and as far as we are aware of, there are no mature
techniques for improving the locality behavior of parallel graph algorithms. As cache
performance becomes even more crucial, the gap between theoretical results and actual
performances can be increasing.
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Fig. 6. The ratio plots for two implementations of parallel Borůvka’s algorithm. The implemen-
tation labeled as compact compacts the graph using parallel sorting routines. The no-compact
version uses the flexible adjacency list representation.

4 Simulation Results

We next present our experimental results with different cache configurations that sup-
port our analysis in the prior section. We run the algorithms on the RSIM simulator [19]
that simulates modern processors and memory sub-system. Instead of giving pages of
specifications for the processor, we use similar settings as in prior studies (e.g., see [1]).
The important features include instruction-level parallelism, out-of-order scheduling,
non-blocking reads and speculative execution. As we only run sequential algorithms,
we do not use any of the multiprocessor features such as memory consistency protocols.
In our study we use directly-mapped L1 cache and 2-way set associative L2 cache, and
the input is a random graph with 1K vertices and 4K edges.

First we vary the cache line size, and measure the performance. As the cache line
size increases, each transfer brings more data into cache, and the spatial locality of an
algorithm becomes more important for performance.

In Fig. 7, the plot on the left shows how the performance varies with different cache
line sizes. The size of the cache is kept constant (1KB L1 and 4KB L2) in the experi-
ments. The smallest cache line size that can be simulated is 16 bytes. With the increase
of line size, the performance of both Prim and Borůvka decreases while that of Kruskal
improves. The results support our analysis that both Prim and Borůvka do not have
good spatial locality and is not favored by long cache lines.

The plot on the right of Fig. 7 shows the performance of the algorithms with different
cache sizes, from 1KB L1 and 4KB L2 to 128KB L1 and 512KB L2. The perfor-
mance, measured as instruction per cycle (IPC), improve as the cache size increases.
The performance curves in this plot are correlated with the ratio plots in Fig. 2. Yet it
is not straightforward to predict the performance with real cache configurations from
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Fig. 7. Performance of MST algorithms with different cache configurations. For the plot on the
left, we experiment with cache line sizes of 16 bytes, 32 bytes and 64 bytes. The plot on the right
shows performance for different cache sizes.

the ratio plots. According to the ratio plot we would expect the performance curve for
Prim’s algorithm rise sharply at a small cache size and remain somewhat flat afterwards.
This is obviously not true in the performance plot. The discrepancy is mostly due to the
associativity of the cache and the cache line size. For Kruskal the IPC increases sharply
at 32K bytes (L1 cache size), and the whole input (of size roughly 24K bytes) fits in L1.
For Borůvka, there are two sharp increases with the performance curve. The increases
correspond roughly to the sharp increases in the ratio plots.

5 Conclusion and Future Work

In this paper we studied the locality behavior of MST algorithms. As memory hierarchy
deepens, locality is becoming even more important to the performance. We show that
Prim with implicit binary heap has better temporal locality than the cache-aware imple-
mentations in our study. A significant percentage of the memory accesses incurred by
the heap operation have O(1) or O(log n) reuse distances. However, architectures with
long cache lines impose the requirement of spatial locality for good performance, and
penalize the performance of Prim with implicit binary heap. Kruskal (with non-recursive
merge sort) exhibits poor temporal locality as many reuse distances are in the order of
O(n). Due to its good spatial locality, it runs fast on current architectures. Increasing
cache line size in general improves its performance. Comparing Prim and Kruskal, it
seems that good spatial locality fits better with current cache organizations.

Both the sequential and parallel implementations of Borůvka show poor temporal
and spatial locality. In future work we will further investigate the locality behaviors of
parallel graph algorithms. This is especially meaningful as many processors adopt multi-
core designs. Our study of Borůvka’s algorithm hints that poor locality might be inherent
in the PRAM algorithms. In order to verify, we will need to find a metric for measuring
spatial locality. On one hand, it is important to design parallel algorithms with reasonable
locality behavior. On the other hand, special architectural support, for example, multi-
threaded architecture, is necessary to tolerate the memory access latency for parallel
algorithms. We will also investigate the impact of locality enhancing techniques such as
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vertex reordering on the performance of parallel algorithms. For Prim and Kruskal in our
study, from the analysis of the algorithms, we do not expect to see too big a difference in
the stack distance distribution. For Borůvka, however, there can be interesting findings,
and we expect similar results with many other parallel algorithms.
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Abstract. We propose a precomputation-based scheme offering Pareto
optimal solutions to the network optimization problem. This scheme pre-
computes bandwidth allocation (rate vector) and end-to-end paths with
QoS guarantees. It prepares a routing database, identifying an optimal
path upon each connection request. We propose a mixed-integer opti-
mization model with nonlinear utility functions. The purpose of this
work is to choose the optimal solutions and to provide decision makers a
set of solutions satisfying users’ preferences with fairness. It prepares for
a proportionally fair treatment of all competing connections. Numerical
results show that the proposed model can provide each connection with
its fair share of the bandwidth which is proportional to the target rate.

Keywords: Communication Networks, QoS Routing, Proportional
Fairness.

1 Introduction

Quality of Service (QoS) has been the major issue for telecom providers [1], [2],
and [13]. Packet-switched networks have been proposed to offer the QoS guaran-
tees in integrated-services networks. The Universal Mobile Telecommunications
System (UMTS) offers multiple services, which provide the capability for infor-
mation transfer between access points [11]. UMTS network services have differ-
ent QoS classes while connection oriented and connectionless services are offered
for point-to-point communication. The main function of the core network with
UMTS provisioning is to provide switching, routing and transit for user traffic.
A core network also contains the databases and network management functions.

QoS routing concerns the selection of a path satisfying the QoS requirements
of a connection [1], [9], [13], etc. The path selection process involves the knowl-
edge of the connection’s QoS requirements and information on the availability
of bandwidth [2]. QoS routing poses major challenges in algorithmic design [3].
Depending on the specifics and the number of QoS metrics involved, computa-
tion in real time required for path selection become prohibitively expensive as
the network size grows.

Precomputation-based methods are performed by means of a two-phase pro-
cedure [9]. The first phase is executed in advance, which is to precompute so-
lutions summarized in a database for later usage. When an event arrives, the
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second phase is activated to promptly provide an adequate solution of event’s
parameters. The key idea of precomputation is to effectively reduce the time
needed to handle an event by performing a certain amount of computations in
advance. We present an approach for the fair resource allocation problem and
QoS routing in communication networks offering multiple services for users. The
objective of the optimization problem is to determine the amount of bandwidth
for each class to maximize the sum of the users’ satisfaction.

The remainder of this paper is organized as follows. In the next section, we
describe the network optimization problem. In Section 3, a precomputation-
based scheme for bandwidth allocation and QoS routing are formally introduced.
Numerical results are given in Section 4. Finally, we remark results of our work.

2 Network Optimization Problem

2.1 Problem Definition

Consider a directed network topology G = (V, E) as shown in Figure 1, where
V and E denote the set of nodes and the set of links in the network respec-
tively. There are m different QoS classes of connections in the network. Let
I = {1, . . . , m} be an index set which consists of m different QoS classes. The
specific QoS requirements, for each class i, include minimal bandwidth require-
ment bi and maximal end-to-end delay constraint Di. We denote the total num-
ber of connections, for each class i, by Ki. Let Ji, for each class i, be an index
set consisting of Ki connections, that is, Ji = {1, . . . , Ki}. All connections are
delivered between the same source o and destination d in this (core) network.
Every connection in the same class i expects the same bandwidth θi and has the
same QoS requirement.

Definition 1. A bandwidth allocation (θ1, . . . , θm) is called a feasible band-
width allocation if the bandwidth requirements are satisfied for all classes.

Suppose, for each link e, we have a mean delay �e related to the link’s speed,
propagation delay, and maximal transfer unit. The maximal possible link capac-
ity is Ue on each link e ∈ E, and the link cost is κe of using one unit bandwidth.
A connection j in each class i should be routed through a path pi,j between o
and d. Under a limited available budget B, we plan to allocate the bandwidth
in order to provide each class with maximal possible QoS and determine the
optimal path from o to d under guaranteed service. Decision variables are listed
as follows: Ai,j(e) is the bandwidth allocated to link e ∈ E for connection j in
class i, θi denotes the bandwidth allocated to each connection in class i, and
χi,j(e) is a binary variable which determines whether the link e is chosen for
connection j in class i. The purpose of this work is to present an mathematical
model that provides the decision maker to explore a set of solutions satisfying
users’ preferences with fairness.

Definition 2. A feasible path pi,j = {e ∈ E| χi,j(e) = 1} is called a Pareto
optimal path, for a connection j of class i, if no other feasible path is as less
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Fig. 1. A sample network topology

as pi,j with respect to two evaluations, path cost and o-to-d delay, and strictly
less than pi,j with respect to at least one evaluation.

Definition 3. The set of all Pareto optimal paths is called the routing database
P . That is, P = {pi,j| pi,j is the Pareto optimal path from o to d, ∀ j ∈ Ji, i ∈ I}.

Definition 4. A link e is called bottleneck link if the usage of bandwidth
achieves its link capacity, i.e.,

∑
i∈I

∑
j∈Ji

Ai,j(e) = Ue.

2.2 Proportional Fairness

Kelly et al. [4] advocated proportional fairness characterized by log(θi). This log
utility function is strictly concave. The proportional fair bandwidth allocation
is determined by the following objective function:

max
∑
i∈I

Ki log(Kiθi). (1)

Determining the maximizer of (1) can be done explicitly for simple networks. A
proportionally fair bandwidth allocation (rate vector) is defined in [7] as follows:

Definition 5. A feasible bandwidth allocation (θ1, . . . , θm) is called propor-

tionally fair if and only if, for any other feasible allocation (θ̂1, . . . , θ̂m), we
have:

m∑
i=1

θ̂i − θi

θi
≤ 0. (2)

In this case Kelly et al. [4] have shown that the maximizer of (1) corresponds to
a proportionally fair bandwidth allocation.
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Mo and Walrand [8] characterized the class of (w, α)- proportionally fair band-
width allocation, for any given number α (α > 0, α �= 1), as the following
objective function:

max
∑
i∈I

wiK
α
i

(Kiθi)1−α

1 − α
, (3)

where wi is a fixed parameter.
In equilibrium, connections that share the same links do not necessarily equally

share the available bandwidth [5], [14]. Their shares reflect how they value the
bandwidth as expressed by their utility functions and how their use of the band-
width implies a cost on others. This could be a basis to provide differentiated ser-
vices in terms of different bandwidth allocations.

3 A Precomputation-Based Scheme for Network
Management

In this section we propose a precomputation-based scheme offering optimal so-
lutions to the network optimization problem, which precomputes paths under
network constraints.

3.1 Network Optimization Model

We transform the different measurements onto a normalized scale by using
achievement functions [12]. Since pages are limited, proofs of the following re-
sults are skipped and will be provided under request. First, we give the following
lemma on the limits of the achievement function.

Lemma 1. Let κ be the cheapest cost per unit bandwidth given in an end-to-end
path. Suppose the total budget is B. There exists a finite number Mi ≤ B/κKi

such that θi ≤ Mi, ∀ i, where Ki is the number of connections in class i.

Depending on the specified aspiration and reservation levels, ai and ri, respec-
tively, we construct our achievement function of θi as follows [12]:

fi(θi) = logαi

θi

ri
, (4)

where αi = ai/ri. Formally, we define fi(·) over the range [0, Mi], with fi(0) =
−∞ and f ′

i(0) = ∞. It is a strictly increasing function of θi, having value 1 if
θi = ai, and value 0 if θi = ri. Next, we present an appealing property of the
achievement function (4), which holds in the bandwidth allocation problem we
are studying.

Proposition 1. The achievement function fi(θi) is continuous, increasing, and
concave.
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These results are entirely consistent with those assumptions on the utility func-
tions for end-to-end flow control in [6], where the objective is to maximize the
aggregated source utility over their transmission rates. Obviously, the maximizer
of (4) corresponds to a proportionally fair bandwidth allocation.

Let Eo ⊆ E and Ed ⊆ E be subsets of links connected with the source o
and destination d respectively. We denote Ein

ν ⊆ E a subset of incoming links
to the node ν ∈ V , and we also denote Eout

ν ⊆ E a subset of outgoing links
from the node ν ∈ V . When adopting the achievement function (4) interpreted
as a measure of QoS on networks, we may formulate the mathematical model of
the fair bandwidth allocation. The precomputation-based maximization model
is formulated as follows:

max
∑
i∈I

wifi(θi) (5)

s.t.
∑
e∈E

∑
i∈I

∑
j∈Ji

κeAi,j(e) ≤ B (6)

∑
i∈I

∑
j∈Ji

Ai,j(e) ≤ Ue, ∀e ∈ E (7)

∑
e∈E

�eχi,j(e) ≤ Di, ∀ j ∈ Ji, i ∈ I (8)

Ai,j(e) − M · χi,j(e) ≤ 0, ∀e ∈ E, j ∈ Ji, i ∈ I (9)
θi − Ai,j(e) ≤ M(1 − χi,j(e)), ∀e ∈ E, j ∈ Ji, i ∈ I (10)
Ai,j(e) − θi ≤ M(1 − χi,j(e)), ∀e ∈ E, j ∈ Ji, i ∈ I (11)
θi ≥ bi, ∀i ∈ I (12)∑
e∈Eo

Ai,j(e) = θi, ∀ j ∈ Ji, i ∈ I (13)

∑
e∈Ein

ν

Ai,j(e) =
∑

e∈Eout
ν

Ai,j(e), ∀ν ∈ V ′, j ∈ Ji, i ∈ I (14)

∑
e∈Ed

Ai,j(e) = θi, ∀ j ∈ Ji, i ∈ I (15)

Ai,j(e) ≥ 0, ∀e ∈ E, j ∈ Ji, i ∈ I (16)
θi ≥ 0, ∀i ∈ I (17)
χi,j(e) = 0 or 1, ∀e ∈ E, j ∈ Ji, i ∈ I, (18)

where M is a sufficiently large positive number, wi ∈ (0, 1) is given for each class
i, and

∑
i∈I wi = 1.

We have the budget constraint (6) due to the limited budget on network
planning. The constraint (7) says that the aggregate bandwidth of all connections
at any link does not exceed the capacity. We have the end-to-end delay constraint
(8) since every connection has the maximal end-to-end delay constraint. The
inclusion of constraints (9)-(11) is equivalent to at least one of Ai,j(e) = 0 and
Ai,j(e) = θi being satisfied by either χi,j(e) = 0 or χi,j(e) = 1. Constraints
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(10), (11), and (12) show that every connection in the same class uses the same
bandwidth and has the same bandwidth requirement. Constraints (13), (14), and
(15) express the node conservation relations indicating that flow in equals flow
out for every connection j in class i. Although Ai,j(e) are continuous variables,
constraints (13)-(15) are standard flow conservation constraints with the help of
constraints (9)-(11). Continuous decision variables and binary variables must be
nonnegative in constraints (16)-(18). Moreover, we have the following properties.

Theorem 1. This precomputation-based maximization model is bounded.

This result follows because each achievement function is bounded by Lemma 1.

Theorem 2. This precomputation-based model is NP-complete.

3.2 Pareto Optimal Solutions

After the optimization, we have the optimal solutions A∗
i,j(e) and θ∗i , which rep-

resent the optimal bandwidth allocation for each link e and for each connection
of class i. We also determine the optimal choices of links, χ∗

i,j(e). The optimal
solution θ∗i is unique, providing the proportional fairness to each class. We find
the bandwidths allocated to each class i, Kiθ

∗
i , and the maximal bandwidth,

Ri,e, by which the link e can offer for class i, i.e.,

Ri,e =
∑
j∈Ji

A∗
i,j(e). (19)

Proposition 2. A link e is the bottleneck link if
∑

i∈I Ri,e = Ue.

Bandwidth are allocated along less expensive paths that connect the origin o
and the destination d. From the optimization of these precomputation schemes,
we have the Pareto optimal path and a routing database, P .

Proposition 3. If pi,j = {e ∈ E| χ∗
i,j(e) = 1} for connection j in class i,

then path pi,j is the Pareto optimal path from the source o to the destination d.
Moreover, the Pareto optimal path pi,j is unique for connection j in class i.

Proposition 4. The unit cost for bandwidth along the optimal path pi,j is∑
e∈pi,j

κeχ
∗
i,j(e)

for connection j in class i.

Proposition 5. If link e belongs to the optimal path pi,j, then the bandwidth
by which the link e can offer for connection j in class i is the same. That is,
A∗

i,j(e) = A∗
i,j(e

′) for all e, e′ ∈ pi,j.



A Precomputation-Based Scheme for QoS Routing 601

Proposition 6. Let θi,p ≥ 0, for each class i, be the bandwidth allocated to each
optimal path p ∈ P . Then we have∑

p∈P

θi,p = Kiθ
∗
i (20)

and
0 ≤

∑
i∈I

θi,p ≤ min
e∈p

Ue. (21)

Next, we study the sensitivity to the maximal number Ki of connections for each
class i. Let

ci =

∑
j∈Ji

∑
e∈E κeA

∗
i,j(e)

Ki
(22)

be a mean budget allocated to each connection in class i. If πi denotes the
reserved budget for each class i, then the budget constraint (6) is represented as∑

i∈I

(Kici + πi) = B, (23)

where πi ≥ 0, ∀ i ∈ I.

Definition 6. The ratio
∑Ki

j=1
∑

e∈E κeA
∗
i,j(e)/B is called a budget ratio al-

located to class i.

Budget ratio is defined by proportional share of total budget with respect to
each class. Each class is given a percentage, budget ratio, of the total budget B.
It must further be noted that the budget ratio can be computed from ciKi/B.

Theorem 3. Let cp be the unit path cost along the Pareto optimal path p ∈ P ,
i.e., cp =

∑
e∈p κe. If the budget B satisfies

B ≥
∑
i∈I

πi +
∑
p∈P

cp min
e∈p

Ue, (24)

then there exists one Pareto optimal path p which contains at least one bottleneck
link. Moreover, link e is the bottleneck link if Ue =

∑
p�e

∑
i∈I θi,p.

3.3 A Routing Scheme with End-to-End QoS Guarantees

After applying the optimization model, we obtain a network G = (V, E′), where
V is the original set of nodes and E′ ⊆ E is the subset of links belonging to
each end-to-end path p ∈ P . Each link e ∈ E′ is characterized by delay �e. Let
n(pi,j) be the number of links along path pi,j and σi be the mean packet size for
each class i, i ∈ I. When a connection j in class i is routed along a path pi,j ,
the following end-to-end delay D(pi,j) applies (Atov et al. [1]):

D(pi,j) =
n(pi,j) · σi

θ∗i
+

∑
e∈pi,j

�e. (25)
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For each connection of class i, we find a feasible path p such that D(p) ≤ Di.
To balance the loads over the network, we seek a path for which the residual

bandwidth of its bottleneck link is maximal. For a path p, we denote by Ap the
residual bandwidth of its bottleneck link, that is,

Ap = min
e∈p

(Ri,e − θ∗i ). (26)

The problem is to find an optimal path p maximizing Ap from the routing
database P . For each class i, we give the following scheme with end-to-end QoS
guarantees.

max Ap

s.t. Ap ≤ Ri,e − θ∗i , ∀e ∈ p
D(p) ≤ Di

p ∈ P.

(27)

This routing scheme distributes the connection among the paths so as to
avoid overloaded links. The goal of this scheme is to enhance the performance of
IP traffic while utilizing the bandwidth on All-IP networks economically. This
QoS routing is to make more efficient use of bandwidth on the network, and its
concept is consistent with the shortest remaining processing time discipline.

4 Numerical Results

Consider a sample network (as shown in Figure 1) where V ={node o, node 1,
. . ., node d} and E = {ek, k = 1, 2, . . . , 26} denote the set of nodes and the set
of links in the network respectively. Each connection is delivered from node o
to node d. Table 1 shows the capacity Ue, mean delay �e, and the link cost κe

of bandwidth for each link e ∈ E. In Table 2, three different QoS classes are
given, where class 1 has the highest priority and class 3 has the lowest priority.

Table 1. Characteristics of each link

Characteristics e1 e2 e3 e4 e5 e6 e7 e8 e9

Capacity (kbps) 35,000 45,000 55,000 53,000 47,000 36,000 37,000 45,000 40,000
Cost ($) 7 6 5 14 11 14 7 13 8

Delay (sec) 0.03 0.032 0.035 0.012 0.02 0.012 0.03 0.015 0.027
e10 e11 e12 e13 e14 e15 e16 e17 e18

Capacity (kbps) 50,000 45,000 46,000 45,000 44,000 46,000 36,000 35,000 54,000
Cost ($) 14 7 11 5 5 10 5 7 5

Delay (sec) 0.012 0.03 0.02 0.035 0.035 0.022 0.035 0.03 0.035
e19 e20 e21 e22 e23 e24 e25 e26

Capacity (kbps) 40,000 53,000 41,000 40,000 52,000 44,000 42,000 50,000
Cost ($) 7 9 6 8 13 6 8 6

Delay (sec) 0.03 0.025 0.032 0.027 0.015 0.032 0.027 0.032
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Table 2. Characteristics of each QoS class

Class i Bandwidth Asp. Level Res. Level Mean Packet Max. Delay
Requirement bi (kbps) ai (kbps) ri (kbps) Size σi (kb) Di (sec)

1 160 334 167 35 0.89
2 80 166 83 16.6 1.02
3 25 56 28 12.5 2.34

Table 3. A database as (K1, K2, K3) = (80, 120, 150) and (w1, w2, w3) = (0.6, 0.3, 0.1)

Class Optimal Path Path No. of No. of Unit Path Delay
i p Flow θi,p Connect. Links n(p) Cost D(p)

e1 − e4 − e14 − e23 5010 15 4 39 0.511
e2 − e6 − e14 − e23 7346 22 4 38 0.513

1 e2 − e7 − e11 − e14 − e23 6009 18 5 38 0.666
e2 − e7 − e13 − e16 − e19 − e25 7015 21 6 38 0.818
e2 − e7 − e13 − e16 − e20 − e26 1334 4 6 38 0.818

e1 − e4 − e14 − e23 1826 11 4 39 0.511
e2 − e6 − e14 − e23 7301 44 4 38 0.494

2 e2 − e7 − e11 − e14 − e23 3816 23 5 38 0.642
e2 − e7 − e13 − e16 − e19 − e25 4646 28 6 38 0.789
e2 − e7 − e13 − e16 − e20 − e26 2321 14 6 38 0.789

e1 − e4 − e14 − e23 624 16 4 39 1.387
e2 − e6 − e14 − e23 1830 47 4 38 1.389

3 e2 − e7 − e11 − e14 − e23 1012 26 5 38 1.761
e2 − e7 − e13 − e16 − e19 − e25 1752 45 6 38 2.131
e2 − e7 − e13 − e16 − e20 − e26 622 16 6 38 2.131

Table 4. Change in the weight with (K1, K2, K3) = (80, 120, 150) and B = 2000, 000

Weight Bandwidth Utility Total Utility Budget Ratio
( 1
3 , 1

3 , 1
3 ) (301,166,56) (0.852,1,1) 0.951 (0.459,0.381,0.160)

(0.4, 0.3, 0.3) (301,166,56) (0.852,1,1) 0.941 (0.460,0.380,0.160)
(0.4, 0.4, 0.2) (301,166,56) (0.852,1,1) 0.941 (0.459,0.380,0.160)
(0.5, 0.3, 0.2) (334,144,56) (1,0.798,1) 0.939 (0.510,0.329,0.160)
(0.5, 0.4, 0.1) (334,166,39) (1,1,0.464) 0.946 (0.509,0.380,0.110)
(0.6, 0.2, 0.2) (334,144,56) (1,0.798,1) 0.960 (0.509,0.331,0.160)
(0.6, 0.3, 0.1) (334,166,39) (1,1,0.464) 0.946 (0.510,0.379,0.110)
(0.7, 0.2, 0.1) (334,144,56) (1,0.798,1) 0.960 (0.510,0.331,0.160)
(0.8, 0.1, 0.1) (334,143,56) (1,0.789,1) 0.979 (0.510,0.328,0.160)

We assume every connection in class i, for i = 1, 2, 3, has the same aspiration
level ai kbps (i.e. kilobits/sec), reservation level ri kbps, mean packet size σi kb,
maximal end-to-end delay Di, and bandwidth requirement bi kbps.

We assume the number of connections, Ki, are independently and identically
distributed as Poisson distribution with parameter λi, where λ1 = 80, λ2 = 120,
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Table 5. Numerical results of 35 samples from the Poisson arrivals with mean λ1 = 80,
λ2 = 120, λ3 = 150, and (w1, w2, w3) = (0.6, 0.3, 0.1)

No. of Connect. Bandwidth (kbps) Utility Total Utility Budget Ratio
(95, 115, 141) (334,134,37) (1,0.69,0.42) 0.85 (0.605,0.295,0.100)
(78, 128, 133) (334,158,47) (1,0.93,0.74) 0.95 (0.497,0.384,0.118)
(89, 124, 159) (334,138,35) (1,0.74,0.32) 0.85 (0.567,0.327,0.106)
(68, 106, 161) (352,166,56) (1.07,1,1) 1.04 (0.464,0.337,0.173)
(85, 128, 153) (334,143,37) (1,0.79,0.42) 0.88 (0.541,0.350,0.109)
(79, 119, 146) (334,166,43) (1,1,0.62) 0.96 (0.504,0.375,0.120)
(78, 123, 163) (334,165,37) (1,0.99,0.42) 0.94 (0.497,0.387,0.116)
(83, 131, 162) (334,142,37) (1,0.78,0.42) 0.88 (0.528,0.356,0.116)
(96, 126, 148) (334,118,37) (1,0.51,0.42) 0.79 (0.612,0.282,0.105)
(74, 121, 145) (334,166,53) (1,1,0.91) 0.99 (0.471,0.384,0.146)
(86, 140, 142) (334,131,37) (1,0.66,0.42) 0.84 (0.547,0.351,0.102)
(81, 112, 158) (334,166,43) (1,1,0.62) 0.96 (0.516,0.354,0.130)
(78, 111, 160) (334,166,50) (1,1,0.83) 0.98 (0.497,0.351,0.152)
(66, 128, 150) (335,166,56) (1.01,1,1) 1.00 (0.423,0.404,0.160)
(75, 118, 151) (334,166,52) (1,1,0.88) 0.99 (0.477,0.374,0.149)
(82, 133, 131) (334,142,47) (1,0.78,0.74) 0.91 (0.523,0.361,0.117)
(81, 147, 162) (334,132,37) (1,0.66,0.42) 0.84 (0.516,0.369,0.116)
(84, 114, 163) (334,160,37) (1,0.95,0.42) 0.93 (0.535,0.349,0.116)
(80, 122, 148) (334,165,37) (1,1,0.42) 0.94 (0.511,0.384,0.105)
(79, 114, 149) (334,166,48) (1,1,0.77) 0.98 (0.502,0.361,0.136)
(79, 115, 147) (334,166,47) (1,1,0.76) 0.98 (0.504,0.363,0.133)
(81, 118, 145) (334,166,40) (1,1,0.51) 0.95 (0.516,0.373,0.111)
(71, 136, 143) (334,162,47) (1,0.97,0.74) 0.96 (0.452,0.420,0.127)
(98, 123, 150) (334,115,37) (1,0.47,0.42) 0.78 (0.62,0.27,0.11)
(76, 123, 152) (334,166,44) (1,1,0.64) 0.96 (0.484,0.389,0.127)
(72, 123, 161) (334,166,49) (1,1,0.82) 0.98 (0.489,0.389,0.152)
(75, 123, 150) (334,166,46) (1,1,0.73) 0.97 (0.477,0.390,0.133)
(74, 103, 131) (351,166,56) (1.07,1,1) 1.04 (0.505,0.329,0.140)
(78, 120, 140) (334,166,46) (1,1,0.72) 0.97 (0.496,0.380,0.123)
(73, 138, 176) (334,156,37) (1,0.91,0.42) 0.91 (0.465,0.409,0.125)
(70, 125, 155) (334,166,54) (1,1,0.94) 0.99 (0.446,0.395,0.158)
(87, 132, 152) (334,134,37) (1,0.69,0.42) 0.85 (0.554,0.338,0.108)
(78, 132, 165) (334,153,37) (1,0.88,0.42) 0.91 (0.496,0.386,0.118)
(81, 127, 160) (334,153,37) (1,0.88,0.42) 0.91 (0.515,0.370,0.114)
(92, 109, 151) (334,147,37) (1,0.83,0.42) 0.89 (0.584,0.309,0.107)

(80.1, 123.1, 151.5) (335.0,154.4,43.3) (1,0.89,0.62) 0.93 (0.512,0.361,0.125)

and λ3 = 150. Under the budget B = $2, 000, 000, we plan to allocate the
bandwidths in order to provide each class with maximal utility (4). By linearizing
the achievement function (4) [12], the mathematical model is programmed in a
Mixed Integer Programming (MIP) form and ready to be solved by the popular
modelling packages CPLEX. This example led to an MIP with 31,203 variables
and 31,880 constraints. The computation time is about 809 seconds, including
10,003 iterations, and 194 nodes of the branch-and-bound tree.
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After executing the precomputation-based scheme, we provide a database as
shown in Table 3 for given parameters. In Table 3, it gives, for each path p in the
routing database P , the path flow θi,p which is computed by (20) in Proposition
6. Moreover, it gives the number of connections and number of links n(p) along
path p. These paths are the candidates for the adequate solution in a routing
scheme (27) with end-to-end QoS guarantees. By Proposition 4, we determine
the unit path cost,

∑
e∈p κe, for using one unit bandwidth along the path p ∈ P .

These paths are Pareto optimal solutions with end-to-end QoS guarantees. The
path flow θi,p in (20) and (21), for each class i, is the aggregated bandwidth
of connections along path p. The number of connections, for each class, along
path p ∈ P is also determined. We also find that, by Theorem 3, link e2 is the
bottleneck link since

∑
p�e2

∑3
i=1 θi,p = 45, 000 = U2. By the computation of

(25), we can list (in Table 3) the approximate ene-to-end delay D(p) along the
Pareto optimal path p ∈ P for all classes. The results suggest that as paths
traverse a larger number of links, the end-to-end delay becomes large. A path
pi,j between o and d is guaranteed if D(pi,j) ≤ Di for a connection j in class i.

We now explore how changes in the model’s parameters, wi and Ki, affect the
optimal allocation. First, we observe the sensitivity to the weight wi assigned to
each class. Given mean arrival numbers, we compare it by changing the weight
assigned to each class. Table 4 shows the computational result. Observe that
enlarging the difference between classes 1 and 3 will increase the total satisfac-
tion. The increase is mainly contributed by class 1 since w1, the weight assigned
to class 1, is larger than the others. Next, as the weight is fixed, we analyze it
by collecting 35 random samples from the Poisson arrivals with means λ1 = 80,
λ2 = 120, and λ3 = 150. The results are shown in Table 5. It shows that increas-
ing number of connections of classes 1, 2, and 3 will decrease the optimal value
in (5). The sample means are also listed in the last line of Table 5. Computa-
tional experiences show a different topology does not change the validity of the
model. Note, according to Definition 5, that the bandwidth allocation (θ∗1 , θ∗2 , θ

∗
3)

in tables are proportionally fair by our approach.

5 Conclusions

We present an optimization model for balancing resources with proportional fair-
ness and providing a routing scheme on networks. The precomputation-based
scheme is taken in advance, which is to precompute solutions for a routing
database. It enables decision makers to identify an optimal path upon each
connection request through a simple routing procedure. This scheme determines
the amount of required bandwidth for each class to maximize the sum of the
users’ utilities. We find the Pareto optimal bandwidth allocation under a lim-
ited budget, and this allocation can provide proportional fairness to every class.
Numerical results show that this scheme can provide each connection with its
fair share of the bandwidth which is proportional to the target rate. To design
on-line routing algorithms for dynamic traffic, an additional computation may be
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activated when connections arrive, which could select one of the optimal solutions
from the routing database.
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Abstract. Flash Dissemination is a particularly useful form of data broadcast
that arises in many mission-critical applications. The goal is rapid distribution
of medium amounts of data in as short a time period as possible. While optimal
algorithms are available for a highly constrained case (all nodes having the same
bandwidth and latency), there is relatively little work in the context of heteroge-
nous networks. Most systems and protocols today either use trees or randomized
mesh-based techniques to deal with heterogeneity and work with local knowl-
edge. We argue that a protocol with global knowledge can perform much better.
In this paper, we propose two centralized heuristics – DIM-Rank and DIM-Time
that use global knowledge to schedule data transfer between nodes. The heuris-
tics are based upon insights from broadcast theory. We perform experimental
evaluation of these two heuristics with decentralized randomized approaches and
show that DIM-Rank achieves faster dissemination than decentralized approaches
across a range of heterogeneity metrics.

1 Introduction

Fast distribution of data to multiple receivers is a basic primitive and required function-
ality in several application domains. In this paper, we study a particularly useful form of
dissemination that arises in mission-critical applications which we term as flash dissem-
ination. Such a scenario consists of rapid dissemination of medium amounts of data to a
large number of recipients in a very short period of time. Consider, for example, an or-
ganization that has geographically distributed data-centers located at various ISP points.
Periodically, the data centers need to be synchronized with a global master list (or lat-
est security patches). Fast delivery of this information to all centers is critical to avoid
loss of downtime or observable ‘glitch’ by users. As another example, from the emer-
gency management domain, consider a service such as “Shakecast” [2] of the USGS
(United States Geographical Survey). Earthquake information sent out by Shakecast is
a Shake-Map” (image-file) of 100-300KB. This information is sent to various city and
county emergency management organizations that subscribe to the USGS. The goal is
to provide accurate and timely data and information about seismic events as quickly as
possible.

At an abstract level, these applications fall under the network wide broadcast problem
where a particular node wants to broadcast some data to all other recipient nodes as fast
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as possible. While network wide broadcast is a mature area with more than 20 years of
research, the problem of high-speed dissemination in heterogenous networks is a new
problem. In the highly constrained case of all nodes with homogenous bandwidth and
latency, an optimal solution to the achievable lower bound was proposed in 1980 [6].
This was rediscovered again in 2005 [8] (in the context of overlay P2P (Peer-to-Peer)
networks) and the authors also proposed an alternative approach using a hypercube to
achieve the lower bound. However, when nodes are allowed to have varying bandwidths
and/or latency, the problem becomes NP-hard [10]. In [10], the authors only consider
a case where the data to be distributed is one single piece (or chunk). Multi-chunk
distribution in heterogenous networks adds further complexity to this scenario but leads
to faster dissemination.

Current systems either use overlay trees (Narada [12], Splitstream [4]), or more re-
cently, meshes (Bit-torrent [1], CREW [5]) or a hybrid of both (Bullet [11], Bimodal-
Multicast [3]) to deal with multi chunk distribution in heterogenous networks. Though
not mathematically proven, randomized approaches perform quite well in real world
settings and much empirical work substantiates this [8, 11]. However, many of these
systems [1, 11] are either tailored towards streaming or large amounts (GBs) of data or
small size events. In the scenario of interest to us, data size is usually in the middle range
of hundreds of KBs to tens of MBs. As we explain later, fast dissemination of medium
size data requires a protocol to do both ramp-up and sustained-throughput very well.
Ramp-up is the time needed for each node to start participating in the dissemination
process. In sustained-throughput, a node is able to sustain high transfer rates. Currently,
CREW is a protocol that addresses this special data range.

However, all these systems use some form of randomization in their protocols and
work with mostly local knowledge. We argue that when low dissemination time is of
utmost importance, centralized approaches with global knowledge can make a cru-
cial difference in performance. We propose two heuristics for multi-chunk dissemi-
nation in heterogenous networks that we call DIM-Time and DIM-Rank. The heuristics
need global knowledge and a centralized ‘scheduler’ to orchestrate data transfer be-
tween nodes. By global knowledge, we mean pair-wise bandwidth and latency measures
among all participating nodes. The heuristics are based upon the insights obtained from
the original optimal solution to homogenous data broadcast [6]. We show via experi-
ments that DIM-Rank achieves lower dissemination time as compared to randomized
approaches across a range of heterogeneity metrics. The rest of the paper is as follows.
In Sec-2, we formalize the problem of flash dissemination. In Sec-3 we present our cen-
tralized heuristics, and situate them in a taxonomy of related research. We compare the
heuristics to randomized mesh based approaches in Sec-4 and conclude in Sec-5

2 Problem Formalization

In this section, we first define the problem of flash dissemination more concretely. Let
ν be a set of N nodes ν = N1, N2, ...NN connected by an underlying fully connected
network. Let Nseed ∈ ν be the seeder node with the data item D to be disseminated.
The objective is to get D to all non-seeder nodes in ν as fast as possible.
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2.1 Chunk Based Representation of Data

We view the data item D to be disseminated as a sequence of M equal sized chunks.
A chunk is an aggregation of one or more bytes of data. Meta-information regarding
the chunks contains details on how received chunks must be ‘stitched’ to get back the
original information. A node has to receive (and verify) the whole chunk before it can
transfer it further. Chunk dissemination is advantageous and flexible because chunks
can be disseminated asynchronously, be received out-of-order and then finally assem-
bled. Furthermore, it supports increased concurrency in the dissemination process since
multiple nodes can start propagating the chunks they have received so far. In fact, [6]
showed how such a chunk-based dissemination leads to an optimal solution in a ho-
mogenous network and how an optimal chunksize for a given dissemination can be
found.

2.2 Chunk Based Dissemination over Heterogenous Networks

Each node in the network has a certain capacity or rate at which it can transmit (or
receive) data to (from) another node (also called it’s bandwidth). Additionally, there is
certain delay (or latency) defined as the time it takes for one byte of data to be transmit-
ted from the sender to the receiver. In a homogenous network all nodes have the same
bandwidth and equal inter-node latency, so the time to transmit a message between any
two peers is equal. However, this is not an accurate model to capture dissemination in
the Internet where peers have different bandwidths (T3, T1, DSL, etc.) and inter-peer
latencies vary considerably (from 1-1000 millisecs).

We use the following characterization to describe chunk-based dissemination in
heterogenous networks. Let the maximum capacity/bandwidth of a node n be
MaxBW (n). Different nodes can have different Max-bandwidths. Any pair of nodes,
(x, y) has a latency denoted as Lat(x, y). We assume Lat(x, x) can be approximated
to 0 and Lat(x, y) = Lat(y, x). A node’s bandwidth may be partially reserved for an
ongoing transfer and its leftover (or available) bandwidth is denoted as AvailBW (x).
When a pair of nodes initiates a chunk-transfer, the sustained bandwidth for the trans-
fer is denoted as SusBW (x, y) and it has the following property: SusBW (x, y) ≤
M in(AvailBW (x), AvailBW (y)). The time required to transfer a chunk of size D
between x → y is then Lat(x, y)+ D

SusBW (x,y) . This time can also be higher, if for ex-
ample, a connection needs to be established first between the two nodes. For instance,
in TCP, a 3-way handshake is needed to establish the connection and hence the time
required can be approximated as 3 ∗ Lat(x, y) + D

SusBW (x,y) . Nodes can ‘split’ their
bandwidth into any combination of uploads and downloads. Thus a node can be en-
gaged in multiple transfers, some upload and some download. Next, we present our
heuristics for flash dissemination over heterogeneous networks.

3 Centralized Flash Dissemination Heuristics

In this section, we present our heuristics, DIM-Time and Dim-Rank, for flash dissem-
ination in heterogeneous networks. However, we first provide a brief summary of the
theoretical basis for these heuristics. We conclude with a taxonomy of research on data
broadcast and situate our heuristics in it.
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3.1 Theoretical Background

The theoretical base consists of two results for scheduling data broadcast: a multi-chunk
broadcast in a homogenous network and a single-chunk broadcast in heterogenous
bandwidth network.

Homogenous Network. In a homogenous network, the optimal solution for broadcast
[6, 8], can be broken down into two main parts: Phase 1: Ramp-up phase - which en-
sures that every node receives at least one chunk and Phase 2: Sustained-throughput
phase - which ensures that the total available capacity is used to transfer chunks.

The lower bound for the first phase is Log(N) since the number of nodes that have
atleast one chunk can be doubled in every unit of time. This is achieved quite simply if
in each time unit, a node that has a chunk picks as a receiver, a node that does not have
any chunk. The lower bound for the second phase is 2M − 1 and achieving it involves
realizing some clever insights. We do not delve into the full details but only present the
main intuition here.

After the ramp-up phase, the whole set of nodes can be partitioned into two equal sets
of of {givers} and {receivers}. Then, each giver gives one chunk to one receiver.
If the right chunks are transferred, then the set of nodes can again be partitioned and
this can be continued until all nodes have all chunks. The crux of the problem, however,
is in deciding how to partition and what chunks to transfer. The intuition employed
by the optimal algorithm(s) is to make ‘rare’ chunks more ‘popular’ so that there are
no bottlenecks (where there are more receivers who want chunks than there are givers
of those chunks). The rarity or popularity of a chunk is defined by how many nodes
possess that chunk; with the crossover point being half the nodes.

Heterogeneous Network. The optimal solution in a homogenous network works be-
cause all nodes have the same bandwidth and equal inter-node latency, so that the time
to transmit a message between any two peers is equal. This is not true in practice since
individual link bandwidths and inter-peer latencies vary significantly. A recent result
[10] shows that the problem of minimizing the time for broadcasting a single mes-
sage in a heterogeneous network is a NP-hard problem; the authors also show that the
Fastest-Node-First (FNF) heuristic is optimal in many cases for single-message broad-
cast. The FNF broadcast tree problem is restricted to one message and it is not entirely
clear if it is also a good heuristic for broadcast of multiple messages. For example, when
there is only one message to transmit, then different peers are picked for reception of
message at consecutive steps from the seeder. However, if there are multiple messages,
then it is not entirely clear whether the fastest node should get all the messages first or
another scheme should be followed.

3.2 Our Heuristics: DIM-RANK and DIM-Time

Using metrics that capture the key insights of the optimal solution (in the homogenous
case), we derive two heuristics, that are better than a simple adaptation of FNF. An ele-
gant property of these heuristics is that in the case of a homogenous network, they work
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close to the optimal solution and in the case of single-message dissemination in het-
erogenous network they work like FNF. We then embed these heuristics into a demand-
driven framework, thus realizing a dynamically adaptive system for flash-dissemination
system in a heterogenous network.

Any solution that addresses the key challenge of optimal partitioning must determine
the following at each decision point: (1)the set of transmitters, (2)the set of receivers
and (3)chunks that transmitters must send to receivers. Note that(1) and (3) are inter-
twined since what chunks a node possess factors into deciding the node’s role. To aid
in optimized partitioning, we define the following metrics:

Chunk Spread: The spread of a chunk is, ci, is the total number of nodes that have ci.
More formally, spread(ci) = |{Pi}| where {Pi} = {x : x contains ci}. Spread of a
chunk thus quantifies how rare of popular a chunk is1.
Node Rank: The node’s rank is defined as Rank(n)=

∑
i

1
spread(ci)

i.e. the summed
inverse of spread of all chunks that it contains. Thus, a node’s rank is higher if it ei-
ther contains rare chunks or many chunks. Conversely, if a node only contains popular
chunks, it’s rank is low.

The choice of the above metrics is not arbitrary; it captures key insights of the optimal
solution. In the optimal solutions, the receivers were nodes that either did not have any
chunks or had chunks that were in the majority, i.e. half of the nodes already had the
same chunk. Nodes which had rare chunks were the transmitters. Thus, when deciding
which chunk to transmit among a set of chunks, a node should transmit the lower-spread
chunk. Similarly, if the rank of a node is high, it should be considered for transmitting
a chunk and if it’s rank is lower, it should instead receive a chunk. We derive two
heuristics (DIM-Time and DIM-Rank) using the metrics defined. We assume that the
heuristic is to be applied to a set of nodes that have spare capacity (called AvailNodes
henceforth) and decisions have to be made on how to split them into transmitters and
receivers and what chunks should be transferred. The operational flow of both DIM-
Time and DIM-Rank is shown in Fig-1.

The algorithms are run by a central scheduler and nodes report their initial capacity,
any change to capacity and what chunk they received to it. The scheduler, therefore
has full knowledge (about both chunks and spare bandwidth) of the network. One point
in the implementation of the scheduler is how often it should be run. If it is run too
often, then the number of nodes in availNodes may be too small at any given point of
time. If the scheduler is run too infrequently, then nodes will waste time just waiting
for the scheduler to tell them what to do. Thus, there exists an optimal periodicity of
the scheduler. We do not address this issue here though one could use a policy where
the scheduler comes into effect when the spare capacity of the system reaches a certain
threshold or a certain fraction of nodes have spare capacity.

Fig. 2 depicts an sample dissemination for 3 chunks (from Node 1) among 10 nodes
(Nodes 1 and 2 have twice the bandwidth of the remaining nodes) for 3 centralized
protocols - (i) a naive-FNF adaptation, (b) DIM-Time and (c) DIM-Rank. Transfer of a
chunk takes one unit of time between node-1 and node 2; and two units of time between

1 If so desired, spread can be normalized by the total number of nodes.
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INPUT: {AvailNodes} : List of nodes with spare capacity
BEGIN
1) While |{AvailNodes}| > 0
2) giver = getHighestRankedNode({AvailNodes})
3) {Receivers} = {AvailNodes} − giver
4) ForEach recvr ∈ {Receivers}
5) If {giver.chunks} ⊂ {recvr.chunks} # nothing to give
6) {Receivers} − recvr
7) If {Receivers} = ∅ # no receivers possible for this giver
8) {AvailNodes} − giver
9) continue # go back and pick another giver
10) While AvailableBandwidth(giver) > 0 AND |{Receivers}| > 0
11) If DIM TIME
12) recvr = getHighestSpareCapacityNode({Receivers})
13) If DIM RANK
14) recvr = getLowestRankedNode({Receivers})
15) {PossibleChunks} = {giver.chunks} − {recvr.chunks}
16) chunkToTransfer = getRarestChunk ({PossibleChunks})
17) StartTransfer : giver ��� recvr With chunk chunkToTransfer
18) {Receivers} − recvr
19) If AvailableBandwidth(giver) <= 0
20) {AvailNodes} − giver
21) If AvailableBandwidth(recvr) <= 0
22) {AvailNodes} − recvr
END

Fig. 1. DIM RANK and DIM TIME Psuedocode

any other pair of nodes. The Naive-FNF adaptation for multiple chunks works as fol-
lows: (a) the highest capacity node is the transmitter, (b)the next highest capacity node
with missing chunks is the receiver and (c) at every time step, the receiver node obtains
the next missing chunk. As Fig. 2 shows, DIM-Rank achieves the fastest dissemination
with lowest dissemination time, 11 time units. DIM-Time takes 13 units of time and
Naive-FNF takes 15 units of time.

Discussion: So far we have ignored the cost of computing the schedule in the central
coordinator. In the best case scenario, the central scheduler has to sort the list of nodes
just once, thus incurring a cost of O(NLogN). However, it is possible that the scheduler
has to sort the list for the transmitters and then sort the list again for receivers for each of
the transmitters. This can happen for all M chunks, leading to a worst case computing
cost of O(M ∗ NLogN)2. As M and N increase, therefore, the worst case computing
cost increases exponentially. We have also not considered the effect of node dynamicity.
Handling new nodes is straightforward – they report directly to the scheduler. However,
for node leaves, we can assume that either the scheduler maintains a heart-beat to each
node or other nodes detect dead nodes and report them to the scheduler.

3.3 Taxonomy of Broadcast and Our Contributions

We can view solutions to the dissemination problem along multiple dimensions as il-
lustrated in Figure-3.
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Fig. 2. Steps in Dissemination for Three Greedy Heuristics

Fig. 3. Scope of our Contributions

1. Centralized versus decentralized decision making for dissemination
2. Dissemination for Homogenous versus heterogenous networks
3. Non-chunk (single message) versus chunk-based dissemination
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We illustrate the best solutions (that we are aware of), using the taxonomy in Fig-
1. We situate our heuristics (shown in bold) in the figure. For the centralized side of
the tree, we have already described the related work. For the decentralized side, we
start with results in the homogenous case. The results obtained in decentralized case
are stochastic in nature. Gossip-based broadcast offers bounds on how long it would
take for a single chunk (message) to be broadcast to N nodes. With high probability,
it would take (O(LogN)) rounds to disseminate a single message (with high probabil-
ity) to all N nodes [9]. Theoretical results for multi-chunk gossip starting from only
one seeder are not yet proven but for M nodes each starting with a chunk, the dissem-
ination time O(LogN + M) [7]. In heterogenous networks, decentralized systems use
an overlay topology to spread chunks. Within overlay based schemes, one can divide
the systems into whether they are neighbor-oriented or not. In neighbor-oriented dif-
fusion (NOD) schemes, nodes keep track of the chunks that the neighbors have and
then setup exchanges. In case of a tree overlay, the flow of chunks is only in one di-
rection. Splitstream [4], Bullet [11] and Bit-torrent [1] are all examples of NOD based
systems. CREW, on the other hand does not maintain neighbor state but uses the over-
lay as a membership management service for its gossip-based mechanism. In [5], we
show CREW to be much faster for flash dissemination as compared to other overlay
dissemination systems.

4 Performance Evaluation

4.1 Experiments Setup

We have implemented all four approaches on top of a middleware platform that we built,
called RapID. For scalability testing of thousands of peers, we needed to run multiple
RapidPeers on a single host. Further, since we wanted to control the delay and through-
put between peers for experiments, we developed an emulation layer that intercepts all
peer-peer communications. A call to transfer a chunk to a target-peer would therefore
not actually transfer the chunk but only emulate the time taken for it; both on the sender
and receiver side. The emulation layer is quite detailed and provides the peer with all
the details that it normally would ask from the Operating System, such as the current
rate of transfer of all ongoing chunks, available bandwidth, (TCP)connection-cache of
open connections, etc. When a chunk-transfer is initiated between two peers, the emula-
tion layer on the sender side emulates an upload and the emulation layer on the receiver
emulates a download. The emulation layers on both peers do a quick handshake to de-
termine at what rate the transfer will progress. This is arrived by following the formula
of SusBW as noted in Sec-2. When the appropriate time as elapsed, the emulation
layers, readjust the availBW and send appropriate events to the Peers that the trans-
fer is complete. Control messages exchanged between peers are similarly emulated to
reflect the latency between the peers. TCP-connection setup time is also emulated if
two peers communicate for the first time. Since, there is no actual data transfer between
peers, multiple peers can be run a host without hitting the maximum NIC bandwidth.
Experiments are run in both homogenous and heterogenous settings. Default values for
experiments are shown in Figure-4. For the decentralized protocols (CREW and NOD),
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Fig. 4. Default Values Used in Experiments

we construct uniform-random overlays between the peers with average node degree of
4, since these protocols seem particularly suited to sparse random graphs.

Total time for dissemination is our primary metric and this is calculated in an ex-
periment as follows. The required instances of peers are started up and they all contact
a known server to obtain the emulation parameters. The server assigns each peer its
capacity (bandwidth) and also gives it a latency-vector to other peers. This vector con-
tains all the latencies for this peer to contact to any other peer in the system. The latency
vector is used by the emulation layer to appropriately delay inter-peer communications.
The server then tags one of the peers with all the chunks. At this point the server records
the startT ime. In the centralized heuristics, the peers contact the central scheduler who
then schedules the peers. As peers receive all chunks, they report the event to the server.
When all peers get all chunks, the server notes the (stopT ime). The total dissemination
time is calculated as stopT ime − startT ime.

4.2 Performance Results

We now show the dissemination time of the four approaches under various scenarios.
We start with a homogenous case and then progressively relax the constraints, showing
it’s impact on the four protocols.

Performance in Ideal Homogenous Network. We begin with a ‘baseline’ ideal-world
that is homogenous; all nodes have the same bandwidth (1Mbps) and inter-node latency
(2ms). The file to be disseminated is of size 128K Bytes and split into the ideal number
of chunks. (as calculated from the optimal solution). The goal is to asses how well the
protocols scale in a homogenous world. One expects the total time to complete is linear
in LogN , where N is the total number of nodes. Figure5(a) shows the total time each
protocol takes to disseminate the file to all the nodes. Note that the x-axis is a log-scale
of number of nodes and hence straight lines indicates scalability in LogN . Fig-5(b)
shows CDF plots for disseminating the file to 1000 nodes.

DIM-Rank performs the best while DIM-Time performs the worst (though all of
them scale linearly with LogN ). DIM-Time performs the worst since it optimizes for
lower transfer time. In a homogenous network with equal latencies, the seeder sends
all chunks to one node at first. The deciding factor is whether a node has an open
connection to another node or not, since the latency is longer when a new connection
has to be opened. This trend continues so that nodes get all chunks before they start
transmitting to others. Figure5(b) shows this clearly. The number of nodes that complete
in DIM-Time (rightmost plot) doubles with time but since nodes get all chunks before
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Fig. 5. Scalability Results

disseminating, DIM-Time scales as O(M ∗Log(N)) (hence the steep slope). The other
protocols scale closer to O(M + Log(N)). This case, therefore, shows how real-world
situations can affect heuristics even in the simple case of a homogenous network.

Effect of Bandwidth Heterogeneity. To the baseline model, we now introduce band-
width heterogeneity. The settings for this experiment are as follows. A network of 10
nodes with medium-bandwidth (1Mbps) is the initial baseline. To this, we first add a
varying number of low-bandwidth (100Kbps) nodes and study it’s effects (Fig-6(a)).
We now move the baseline to a network with 10 medium-bandwidth (med-bw) nodes
and 200 low-bandwidth (low-bw) nodes. We then study the effect of introducing high-
bandwidth (high-bw) nodes of 10Mbps into this network (Fig-6(b)).
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Fig. 6. Performance in Bandwidth Heterogenous Networks

Intuitively, one would expect that introducing low-bandwidth nodes increases the
dissemination time and conversely, introducing high-bandwidth nodes decreases the
dissemination time. Fig-6(a) shows that the introduction of the first low-bw node causes
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a significant jump in total dissemination time. This is because the total dissemination
time is dictated by when the low-bw node finishes. After this data point, the slope is
more linear for all four protocols and they scale linearly in LogN , where N is now the
number of low-bw nodes. When the first high-bw node is introduced (Fig-6(a)), there
is a dramatic reduction in dissemination time for the centralized protocols. It is as if
the addition of one high-bw node compensated for the addition of 200 low-bw nodes.
Dim-Time and Dim-Rank are fully able to exploit high-bandwidth nodes whereas the
effect is more limited for the decentralized protocols. Further introduction of high-bw
servers has only marginal effect. Thus, for a given network, introducing high-bw nodes
can have a significant impact initially and almost no value for later additions.
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Effect of File Size. Fig-7 shows the effect when the total data to be disseminated is
increased. DIM-Rank has a clear superior performance over all the other protocols.
Moreover, as the data size is increased, the gap widens between DIM-Rank and the
other protocols making it very desirable. However, note that when data size increases,
M increases and this in turn increases the computing need on the central scheduler. In
our experiments, we ran the scheduler on a powerful machine so that it could always
finish its computation before the next cycle. With increasing node size and file size, the
computation load can increase dramatically. Thus, while DIM-Rank may be a very good
heuristic for disseminating medium amounts of data to hundreds (or even thousands) of
peers, the cost justification for DIM-Rank has to be evaluated carefully for particular
application needs.

5 Concluding Remarks

In this paper, we presented two new heuristics, DIM-time and DIM-Rank for the flash
dissemination problem in heterogeneous networks. These heuristics were developed
using broadcast theory. Of the two, DIM-Rank offers much lower dissemination times
across a variety of metrics. In general, the centralized approaches fare better than the
randomized, local-knowledge, decentralized protocols. DIM-Rank will find most use
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when low dissemination time is of utmost necessity and a centralized coordinator who
has global knowledge can be used. The cost of computing the schedule in the cen-
tral coordinator, however, is non-trivial. It is atleast O(NLogN) and can be as bad as
O(M ∗ NLogN)2 in the worst case. An interesting course of future work would be to
investigate approximation techniques that achieve the same effect as DIM-Rank without
the high computation costs.
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Abstract. With the recent proliferation of video-on-demand services, caching in 
a multimedia streaming server is becoming increasingly important. Previous 
studies have shown that request interval based caching and its extension for 
considering different video popularity performs well for various streaming envi-
ronments. In this paper, we show that block level refinement of this existing 
scheme can further improve the performance of streaming servers. Trace driven 
simulations with real world VOD traces have shown that the proposed scheme 
improves the cache hit rate and the startup latency.  

Keywords: caching, multimedia, streaming, VOD (Video-on-Demand). 

1   Introduction 

Caching in a multimedia streaming server is an effective way to improve the per-
formance of server systems and reduce the service latency. Due to the large volume 
of multimedia objects and the strictly sequential access pattern, traditional buffer 
cache management schemes such as LRU (Least Recently Used) will not work well 
for multimedia server systems. To address this problem, request interval based cach-
ing schemes have been proposed [1-6]. By caching only the data in the interval 
between two successive requests on the same object, the following request can be 
serviced directly from the buffer cache without I/O operations. Kim et al. proposed 
the Popularity-aware Interval Caching (PIC) scheme that extends the interval cach-
ing by considering different popularity of multimedia objects [7, 11]. PIC estimates 
the popularity of multimedia objects based on the request intervals of each object 
and exploits the estimated popularity in predicting future request times. Based on 
this information, PIC extends the original interval caching by including predicted 
intervals in the candidate of caching. However, in the PIC scheme, the sliding win-
dow of a predicted interval proceeds as time progresses. As a result, the prefix of 
popular objects may not be cached though prefix caching is effective in reducing the 
startup latency.  
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In this paper, we show that the block level refinement of PIC can resolve the afore-
mentioned problem and can further improve the performance of streaming servers. 
Trace-driven simulations with real world VOD traces show that the proposed scheme 
performs better than the PIC, the IC (interval caching), the LRU (Least Recently 
Used), and the MRU (Most Recently Used) algorithms in terms of the cache hit rate 
and the start block misses. 

The remainder of this paper is organized as follows. We review some existing 
works on caching algorithms in multimedia streaming environments in Section 2. 
Section 3 presents the system architecture of the multimedia streaming server envi-
ronments. Section 4 presents a new caching scheme for multimedia streaming servers. 
We evaluate the performance of the proposed scheme in Section 5. Finally, we con-
clude this paper in Section 6. 

2   Related Works 

A variety of studies on the caching of multimedia streaming objects have recently 
been studied. Dan and Sitaram proposed a caching scheme for video-on-demand serv-
ers named interval caching that exploits the short term temporal locality of accessing 
the same multimedia object consecutively [1, 2]. The interval caching scheme organ-
izes all consecutive request pairs by the increasing order of memory requirements. It 
then allocates memory space to as many of the consecutive pairs as possible. When an 
interval is cached, the following stream does not need any disk access since it could 
be serviced directly from the memory buffer cache.  

Ozden et al. proposed a cache replacement algorithm named distance caching 
which is similar to the interval caching scheme [5, 6]. It assigns a priority value to 
each request based on its distance from the previous request and always replaces the 
block consumed by the request with the lowest priority value (longest distance from 
the previous request) over all streams.  

However, the interval caching and the distance caching schemes exploit only the 
short term temporal locality of two consecutive requests on an identical object and do 
not consider the popularity of objects. Consequently, when the size of a multimedia 
object is not sufficiently large or when the inter-arrival time of stream requests is too 
long, there is little opportunity to obtain the effectiveness of caching.  

Kim et al. proposed the Popularity-aware Interval Caching (PIC) scheme to resolve 
these problems [7, 11]. PIC estimates the popularity of multimedia objects based on 
the request intervals of each object and exploits the estimated popularity in predicting 
future request times. Based on this information, PIC incorporates the caching of pre-
dicted intervals into the original interval caching scheme.  

Some recent studies have extended the original interval caching scheme for various 
caching environments. Sarhan and Das proposed the distributed interval caching 
(DIC) scheme that extends the original interval caching for network attached disk 
(NAD) architectures [3]. Almeida et al. considered the two-level caching architecture 
for streaming objects at proxy servers. They employed the interval caching scheme at 
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the buffer cache layer and the LFU (Least Frequently Used) algorithm at the disk 
cache layer [4]. They showed that this two-level caching scheme performs better than 
previous approaches. Cho et al. presented the Hybrid Buffer cache Management 
(HBM) scheme for VOD servers [12]. In their HBM scheme, a video stream is not 
just assumed to be accessed sequentially but can form a looping pattern in some ap-
plications such as online education servers. Based on this assumption, HBM detects 
the access pattern of each multimedia file and then employs the distance caching or 
LRU algorithm appropriate for file accesses. Lee et al. showed that improving the hit 
ratio alone is not sufficient to guarantee the hiccup-free service and efficient disk 
bandwidth utilization in multimedia systems [13]. They proposed a new caching 
scheme, namely the Preemptive but Safe Interval Caching (PSIC), and showed that 
PSIC provides services to additional streams with the saved disk bandwidth.  Re-
cently, Fernandez et al. proposed the Iteration Set Caching (ISC) scheme that evolved 
from the original interval caching scheme to obtain a better performance for variable 
bit-rate streams [9]. While the relative ordering of intervals in the original interval 
caching scheme is statically determined, ISC dynamically changes the ordering of 
caching blocks to support variable bit rates.   

3   System Architecture 

In this section, we present the system architecture of the multimedia streaming serv-
ers. Our multimedia server consists of an I/O manager, a buffer manager, and a net-
work manager as shown in Fig. 1. The buffer manager divides the memory buffer into 
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Fig. 1. The multimedia streaming server architecture 
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the cache and the read-ahead buffer. The read-ahead buffer stores data to be sent 
immediately to clients while the cache stores data already sent to clients which can be 
reused when requests for the same object arrive. Note that data in the memory buffer 
do not actually move their physical positions (from the read-ahead buffer to the 
cache) but just a cache flag is used to indicate whether it is in the cache. For each 
stream request, when the requested block is not in the cache, the I/O manager acquires 
a free block, inserts it into the read-ahead buffer, and starts disk I/O. On the other 
hand, if the requested block is in the cache, the cached block is serviced directly with-
out I/O operations. Finally, the network manager reads necessary data blocks from the 
memory buffer and sends them to the client through the network. 

4   Block Level Refinement of Popularity-Aware Interval Caching 

In the interval caching scheme, for two consecutive requests for the identical stream-
ing object, the later stream will read the data brought into the memory buffer by the 
earlier stream if the data is retained in the buffer until it is read by the later stream. 
Understanding such dependencies makes it possible to guarantee the continuous de-
livery of the later stream with a small amount of buffer space. An interval denotes the 
distance of the offsets between two consecutive requests on an identical object. The 
interval caching scheme aims to maximize the number of concurrent streams serviced 
from the memory buffer. With a given buffer space, therefore, the interval caching 
scheme sorts the intervals based on their size and caches from the shortest interval. 
Kim et al. incorporated the virtual interval concept into the original interval caching 
scheme to consider the different popularity of multimedia objects [7]. A virtual inter-
val is defined as the distance of the offset between the latest request on an object and 
the virtual request on that object. A virtual request is not a real request from a client 
but a predicted request that is expected to be generated at that time based on the past 
requests on an object [7, 11].  

We estimate the popularity of multimedia objects based on past reference behaviors 
similar to PIC. However, unlike PIC, we use this popularity information in deciding 
the targets of prefix caching by the block level refinement of PIC. We use the ex-
pected reference probability concept to calculate the potential benefit of each block 
when it is cached. Expression (1) represents the calculation of the predicted inter-
arrival time (PI) based on past request times. Let I be the latest real inter-arrival time 
and PIk–1 be the (k–1)th predicted inter-arrival time. Then, the kth predicted inter-
arrival time PIk  is computed as  

PIk = α I  +  (1–α) PIk–1 (1) 

where α is a constant value between zero and one, and determines how much weight 
is put on the latest inter-arrival time. We set the default value of α as 0.6 through 
empirical analysis. We use PI in calculating the expected reference probability pi of 
multimedia object i as shown in Expression (2).  

pi = 1 / PI (2) 
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Finally, the profit of each prefix block b of object i is calculated by  

Profiti(b) = pi ⋅ 1 / tb (3) 

where tb is the remaining time until block b will be referenced assuming object i will 
be referenced from now on. For example, the first three blocks of object i have the tb 
value of 1, 2, and 3, respectively. Similarly, the profit of each block b in the real in-
terval i can be calculated as  

Profiti(b) = 1 / tb (4) 

where tb is the remaining time until block b will be referenced. pi is omitted in this 
expression because reference probability pi is equal to 1 for real intervals. Our scheme 
calculates the profit of all blocks and allocates the buffer space to block b (including 
prefix blocks) by the decreasing order of Profit(b). Fig. 2 shows an example of the 
profit calculations. In this simple example, we assume that clients consume a block 
per each time unit.    

Object A 
I = 7

File 
start

request 3 request 2

File 
endI = 2

request 1

PI = 4

b = 0    1    2     3            5            7     8     9    10 11   12          14    15

 

Fig. 2. In this example, pA = 1/PI = 0.25; Hence, the profits of prefix blocks are Profit(0) = 
0.25/1, Profit(1) = 0.25/2, Profit(2) = 0.25/3,  and Profit(3) = 0.25/4. Similarly, the profits of 
interval blocks are Profit(4) = 1/1, Profit(5) = 1/2, Profit(6) = 1/1, Profit(7) = 1/2, Profit(8) = 
1/3, Profit(9) = 1/4, etc. The caching order of blocks is determined by the profit value.  

request 1request 2request 3
virtual
request

interval 1interval 2

Object A 
at time t

request 1request 2request 3

interval 1interval 2caching

File endFile 
start

File endno 
caching

virtual 
interval 

virtual 
interval

caching

File 
start

Object A
at time t’ (>t)

virtual
request

 

Fig. 3. When the time is t, PIC caches the virtual interval that contains the prefix of object A. 
However, as time progresses, the sliding window of the virtual interval proceeds, and the prefix 
of object A is not included in the virtual interval at time t’. As a result, the prefix of object A is 
not cached, and if there comes a request on object A after time t, the prefix of this stream will 
be a miss. 
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In the original PIC scheme, as time progresses, the sliding window of the virtual 
interval also proceeds. As a result, the prefix of popular objects may not be cached in 
PIC though prefix caching is effective in reducing the startup latency. Fig. 3 shows an 
example of this problem.  

In contrast to PIC, our scheme retains the prefix blocks of popular objects in the 
memory buffer even though time progresses. This allows start blocks of popular ob-
jects to be hits from the memory buffer. Our scheme could maximize the benefits of 
caching by the block-level refinement of PIC. At the same time, through the prefix 
caching concept, it caches the prefix of popular objects before they are actually re-
quested. This could eventually reduce the startup latency of popular streams perceived 
by users.  

5   Performance Evaluation 

In this section, we present the performance evaluation results for various caching 
algorithms to assess the effectiveness of our scheme namely the Block-level Popular-
ity-aware Interval Caching (B-PIC). We gathered real world VOD traces from two 
commercial VOD servers, namely OnGameNet and Hanmir [8, 10]. The OnGameNet 
trace has 293 video files whose average playback time is 883 seconds with an average 
inter-arrival time of 6 seconds. The Hanmir trace has 1266 video files whose average 
playback time is 1078 seconds with an average inter-arrival time of 21 seconds. Table 
1 summarizes the characteristics of the traces.   

We conducted extensive simulations to compare the performance of our scheme 
with those of PIC (Popularity-aware Interval Caching), IC (Interval Caching), LRU 
(Least Recently Used), and MRU (Most Recently Used). Fig. 4 shows the number of 
start block misses for the five schemes as a function of the cache size. Since B-PIC 
caches the prefix blocks of popular stream objects before actual requests arrive, it 
performs significantly better than the other four schemes. PIC shows better perform-
ance than IC, LRU, and MRU because it also caches predicted intervals before actual 
requests arrive. However, PIC performs worse than B-PIC since PIC evicts prefix 
blocks and caches the following blocks when the sliding window of a predicted inter-
val proceeds as time progresses. Specifically, the performance improvement of B-PIC 
against original PIC is as much as 46.7% in terms of the start block misses.  

Table 1. Characteristics of the traces used in our experiments 

 OnGameNet trace Hanmir trace 

number of requests 3091 6938 

average object length 883 seconds 1078 seconds 

average inter-arrival time 6 seconds 21 seconds 

distinct number of objects 293 1266 
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Fig. 4. Comparison of the number of start block misses for the B-PIC, PIC, IC, LRU, and MRU 
as a function of the cache size 

Fig. 5 shows the hit rate of the five schemes as a function of the cache size. As 
mentioned in Section 1, traditional buffer management schemes such as LRU and 
MRU do not perform well in our experiments. For both of the traces, B-PIC shows 
consistently the best performance in terms of the hit rate irrespective of the cache size. 
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(b) Hanmir Trace. 

Fig. 5.   Comparison of the cache hit rate for the B-PIC, PIC, IC, LRU, and MRU as a function 
of the cache size 

IC also shows good performance for both of the traces though it performs slightly 
worse than B-PIC for all cases. PIC performs similarly to IC for the OnGameNet 
trace, but it performs worse than B-PIC and IC by a large margin for the Hanmir 
trace. This is because the inter-arrival times of the Hanmir trace are relatively long 
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and their variations are also large. As a result, the accuracy of the predicted intervals 
in PIC degrades severely. Unlike PIC, however, B-PIC shows consistently the best 
performance because it evaluates the profit of each block based on the expected refer-
ence probability, so the priority of a real interval block in B-PIC is relatively higher 
when compared with PIC.  

6   Conclusion 

In this paper, we presented the block-level refinement of the Popularity-aware Inter-
val Caching (B-PIC) scheme for multimedia streaming servers. By caching the prefix 
of popular streaming objects as well as the request interval in the block level, B-PIC 
performs better than PIC, IC, LRU, and MRU in terms of the cache hit rate and start 
block misses for the real world VOD traces we considered. Specifically, we have 
shown that the performance improvement of B-PIC against original PIC in terms of 
start block misses is as much as 46.7%.  
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Abstract. In a grid, data is stored in geographically-dispersed virtual
organizations with varying administrative policies and structures. Cur-
rent grid middleware provide basic data-management services including
data access, transfer and simple replica management. Grid applications
often require much more sophisticated and flexible mechanisms for ma-
nipulating data than these, including logical hierarchical namespace, au-
tomatic replica management and automatic latency management. We
propose a view-oriented framework that builds on top of existing mid-
dleware and provides global and application-specific logical hierarchical
views. Specifically, we developed mechanisms to create, maintain, and
update these views. The views are synchronized using an efficient group
communication protocol. Gvu (pronounced G-view) is built as a dis-
tributed set of synchronized servers and scales much better than the
existing grid services. We conducted experiments to measure various as-
pects of Gvu and report on the results, showing Gvu to outperform
existing grid services, thanks to its distributed nature.

1 Introduction

Grids[1] have become the favorite choice for executing data-intensive scientific
applications. Scientific applications in domains, such as high energy physics,
bio-informatics, medical image processing and earth observations, often analyze
and produce massive amounts of data (sometimes of the order of petabytes).
The applications access and manipulate data stored in various sites on the grid.
They also have to distribute and publish the derived data.

Let us consider how a typical scientific application interacts with the data
grid.

1. A physicist participating in a high-energy physics experiment would like to
execute a CMS (Compact Muon Solenoid) application.

2. The application requires various input files. It has to find the location of
files using a catalog, index or database system where information about the
location of the file is stored. The application usually uses a logical file name
(LFN) to index into the catalog and find the physical location.

3. The files may have to be replicated at various sites in the grid for the appli-
cation to find a nearby location to quickly access the file.

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 629–640, 2006.
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4. The physicist, having gathered all the information about the input files, runs
the jobs on various sites. If a site does not have the required input data, the
data is pre-fetched before the job starts.

5. The jobs execute using the input files and produce derived data.
6. The derived data needs to be distributed to various sites on the grid for

usage by other scientists and for archival purposes.
7. Finally, the output data locations have to be published in a catalog so that

other scientists can locate the data.

Using current middleware and grid file systems as they currently exist, the
above scenario requires the application to perform complex interactions with grid
services. Globus [2] middleware, one of the most popular grid toolkits, provides
data management mechanisms including GridFTP [3] and RLS (Replica Loca-
tion Service) [4]. GridFTP is an enhanced version of the popular File Transfer
Protocol (FTP) that provides high performance using parallel streams, parallel
file transfers, command pipelining, etc. To realize the above scenario, ad-hoc
mechanisms using GridFTP, RLS, and metadata catalog services (MCS) [5] can
be developed. Unfortunately, these mechanisms lack flexibility and power.

Therefore, the key research question is: What are the data management re-
quirements of typical workloads in grid environments and how do we provide flex-
ible and powerful mechanisms for manipulating data? Thain et al. [6] surveyed
six scientific application workloads run in grid environments and concluded that
traditional distributed file systems are inefficient for the batch-pipelined nature
of these workloads.

Currently there are three different data management mechanisms available in
grid environments. On one hand, data-management facilities like replica location
and metadata management can be provided by different services that can be
combined in various ways depending on the application. On the other hand,
one can develop a unified grid file system that provides a consistent file-system-
like interface to the application. Researchers [7–9] have worked on providing
a file system-like interface to the data on the grid (a detailed comparison is
provided in the next section). Although there is no consensus on the grid file
system interfaces, these efforts have succeeded in providing uniform access to
heterogeneous storage systems distributed over a grid. Certain key features that
are missing are global hierarchical name space and application- and user-specific
views of the data.

Why do we need a global hierarchical name space? If we consider the scenario
explained earlier, jobs of an application running on different sites can see others’
files as they are created in a global hierarchical tree. Why do we need a logical
name space? Data in a grid is stored in various sites at different physical lo-
cations. It would be more flexible for an application to refer to the data using
a logical name instead of a complicated physical name that might change over
time. In a single administrative domain, creating this logical hierarchical name
space is easy. NFS (Network File System) [10] already provides a simple, though
inflexible, mechanism for doing this. In a grid, the data is scattered in different
virtual organizations (VOs). Consider a grid file system that provides logical
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global hierarchical name space. Would that solve all the problems in the above
scenario? Not completely. Consider the situation where an application manipu-
lates thousands of files and produces many more files. How do we allow flexible
access by other applications which want to use the same data? With the existing
tools, this would be a nightmare. The Virtual Data System (VDS) [11] provides
a convenient way of maintaining and querying recipes for data derivations [11],
but it does not provide a way of finding and creating files. A view that contains
only the files manipulated by a particular application will solve this problem.

In this paper, we develop mechanisms for creating the global hierarchical
namespace and application-specific views on top of it. We first review the exist-
ing mechanisms for manipulating data in a grid or distributed system. We next
describe the architecture of Gvu. We then provide the details of the implementa-
tion. We conclude with experiments demonstrating the usage and performance
impact of Gvu.

2 Related Work

There is a vast volume of literature on distributed file systems solving various
problems that occur in distributed data sharing. CIFS and NFS (v2 and v3) [10]
provide a global namespace, but the naming is only at a local domain level. They
also have security weaknesses that are not suitable in wide-area grids. NFSv4 has
many enhancements and provides a global physical view of the system. An effort
called GridNFS, taken up by CITI at the University of Michigan, to customize
NFSv4 for grids is still in its infancy.

Other distributed file systems including AFS [12], Coda [13], and GFS [14] are
distributed file systems that are designed for multiple clients to access files by
using file caches, and do not perform very well in the data-intensive computing
environments that are commonly seen in grids. It is interesting to note that AFS
provides a global physical view of the distributed system. The physical view is
quite inflexible and does not allow sites to export application-specific views.

In the grid realm, the focus has been on providing high-performance data
access. Grid-specific data access mechanisms including GridFTP [3], LegionFS
[9], and Gfarm [7] succeed in this respect. Gfarm provides highly scalable and
high-bandwidth read/write operations by integrating process and data schedul-
ing. It also provides replica management and supports file fragments, but creates
a static view of the global namespace similar to AFS and leaves it to the user
to handle it. The centralized metadata database used in Gfarm might become a
bottleneck. It is also unclear how Gfarm servers interact with each other.

The Storage Resource Broker (SRB) [8] developed by SDSC provides some
interesting capabilities to grid data management. SRB provides a uniform in-
terface to heterogeneous data resources and provides replica management. The
metadata catalog (MCAT), which is a part of SRB, provides a way of accessing
the data sets using attributes. The key feature of this system with respect to our
work is the usage of logical names. SRB fails, though, in providing a hierarchical
view of the logical names, and has no concept of application-specific views.
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In [15], we provided a detailed comparison of grid file system features in a sur-
vey submitted to the GFS-WG (Grid File Systems Working Group). This work
is in progress and currently compares Gfarm and SRB, two of the most popular
grid data management mechanisms. GFS-WG recently released RNS (Resource
Namespace Service) specification, which is still in draft form. It describes many
of the features that we envisioned earlier in this work.

3 Design of Gvu

We have considered the following issues in designing Gvu.

– Distributed vs. Centralized : Since the metadata and files are distributed over
the grid, Gvu should not be centralized, but use a set of distributed servers
that are synchronized.

– View ownership: The logical view exported by a site is owned by the site
administrator, but the application and user-specific views created on top of
the global view are owned by the respective applications or users.

– Fault-tolerance: Gvu should tolerate faults in a Gvu server. Currently, Gvu
handles the crash failure of any number of Gvu servers. If a Gvu server goes
down, the user will still be able to access the metadata related to the files
on the corresponding site, but will not be able to access the files.

– Performance: Since the Gvu servers are synchronized over a wide-area net-
work, it is important to keep the communication among the Gvu servers to
minimum. We have implemented batching of metadata updates to improve
performance.

– Scalability: Gvu should be scalable with the number of clients. Currently,
Gvu provides better scalability than RLS and MCS combined because of its
distributed nature.

– Consistent, flexible and powerful API : Gvu provides a familiar file-system-
like interface. Once the view is created, the interaction with the view is very
similar to the interaction with a traditional file system.

The following subsections detail design of Gvu.

3.1 Gvu Servers

Each site on the grid runs a Gvu server that maintains the local logical view
(explained in the next section) for that site. The Gvu server usually runs on
the gatekeeper machine, which has access to local schedulers, local clusters and
local file systems. The servers communicate with each other using a reliable,
fault-tolerant group communication protocol. There has been a substantial vol-
ume of research on providing reliable, fault-tolerant group multicast. We use a
toolkit called distview developed by Litiu and Prakash, in which a server pool
(called Corona) maintains the shared information. The publishers (clients) can
submit data to the server pool and subscribers can receive the data either in
synchronous or asynchronous mode. The communication protocol provided has
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all the properties that we require for synchronizing the Gvu servers. We have
decided to use distview, because of its features, support for distributed collab-
oration and source availability.

(a) Physical and exported logical view of
site1

(b) Physical and exported logical view
of site2

(c) The merged logical view (d) Application-specific view

Fig. 1. Gvu views

3.2 Logical Views

Each administrator of the site creates a local logical view that may not nec-
essarily correspond to the physical view. The logical view is specified using a
configuration file written in XML. Note that the files and directories in the logi-
cal view can correspond to arbitrary places in the physical view. The attributes
for the files are read from the extended attributes stored by the on-disk file
system. The logical views are synchronized among the servers using distview.

Figures 1(a) and 1(b) show two sites and how their logical views are formed.
Figure 1(a) shows the physical and exported logical view of site1. Note that only
a few directories and files are exported to the grid. The administrator can also
specify attributes in the logical view. The attributes are not shown in the first
two figures for clarity. Note that the original outputs directory is exported as
data in the logical view. Similarly, site2 exports bin directory as apps. A few of
the features provided by Gvu for the creation of views are worth mentioning. The
user can create a logical directory without any corresponding physical directory,
but the files in the directory have to be specified with fully qualified physical
paths. In Figure 1(a), the data directory is a logical directory. If a directory
has a corresponding src attribute, meaning it has a physical directory, then the
files under the directory are assumed to be under the corresponding physical
directory, unless its absolute path is specified.



634 P. Padala and K. Shin

After the Gvu servers are initialized with respective configuration files, the
views are merged and a global view is formed. Figure 1(c) shows the merged
global view. For clarity, src attribute is not shown in the figure. One important
question while merging is: What should Gvu do when name conflicts occur?
There is no single answer to this question. Gvu can either provide unique names
automatically or ask the administrator to change the logical views. We leave the
decision to the site administrator.

When an application queries the Gvu to get all the files related to experiment
“phy”, Gvu returns an application-specific view as shown in the Figure 1(d),
which is formed by running the appropriate query on the global view.

3.3 View Synchronization and Security

To support distributed collaboration, views created by different users have to
be synchronized. For example, when two users run the query explained in the
previous section, they should both see the same view and any changes done by
a user should be seen by all the users sharing the view. The synchronization is
achieved using distview which provides mechanisms to share Java objects in a
distributed system.

Security is an important issue on the grid due to different administrative do-
mains and policies. GSI (Grid Security Infrastructure) [18] is the de-facto stan-
dard for providing security on the grid. How do the authentication mechanisms
affect Gvu views? There are two issues related to Gvu security: access control
of files and access control of views. We have implemented security by wrapping
Gvu calls with GSI. GSI can map an identity to a local user and Gvu can check
the permissions of files to see whether a user has enough privileges to access
the file. Adding access control to views is tricky and complicated. Some of the
issues are: How do we set the access control list for a local logical view? How can
we add access control for application or user-specific views? Where do we store
them? One possible solution is to create a security configuration file similar to
gridmap-file that specifies access control for local logical views. Access control
lists for user or application specific views can be maintained by the local Gvu
server. We leave more detailed analysis and implementation as future work.

4 Implementation and Experimental Results

We have implemented Gvu in Java, and it uses various mechanisms provided by
distview toolkit to share GvuTree objects. The GvuTree object is a self-sufficient
data structure that can identify the global tree, application, user-specific views
and respective mappings using a global hash table.

We have conducted experiments measuring various aspects of Gvu. We have
set up two separate testbeds for the experiments. The first testbed is a small grid
created in the RTCL (Real Time Computing Laboratory) at the University of
Michigan. We used this testbed for debugging and for conducting experiments
that did not depend on the wide-area nature of a real grid. We used Grid3
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(a) Results of query execution (b) GvuTree initial read results

(c) Average creation time (d) Machine set #1

(e) Machine set #2 (f) Machine set #3

Fig. 2. Experimental results

production grid for our real-world scenarios and for understanding the impact
of wide-area network on Gvu.

4.1 Experiments on the RTCL Grid

Query Execution. Figure 2(a) shows the execution time of running queries on
established trees. The X-axis shows the number of nodes (files) in the GvuTree
represented in XML. Four scenarios were run with two types of queries and two
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types of tree structure: Simple queries that check only one attribute per node,
and complex queries that check two attributes. Flat trees had one directory
filled with many nodes, and vines had many directories of increasing depth.
Ten queries were executed for each data point and the time represents only the
time needed to run the query on the server before the results are sent to the
application.

As expected, the search times were linear in the number of nodes because every
node must be checked in the current implementation. This could be improved
by caching the results and only regenerating the parts of tree that have changed
since the last query. The difference between simple and complex queries was
negligible. The vines took up twice as long to execute because of the overhead
involved in the function calls. The total time to execute a query on 1K nodes is
under 60 ms, which is an acceptable cost.

(a) Workflow-I (b) Workflow-II

Fig. 3. Application workflows

Read Time for GvuTree. Figure 2(b) shows the read time for GvuTree when
the server is initialized. One server is initialized with logical view containing
files of sizes 16, 32, . . ., and the time taken to read the GvuTree on a separate
server is recorded. The experiment is conducted on three different machines after
restarting the first server and Corona. An average of 20 runs is taken on each of
the machines.

The very first read takes a large amount of time due to Java’s initialization
and serialization of the GvuTree object. Once this is done, the read time for
subsequent GvuTree reads is minimal.

Create and Delete Time of Files. Creation and deletion time for single files
are 9.78ms and 1.34ms respectively. The low times are due to the in-memory
updates. We also ran macro benchmarks by creating a different number of files
in a single directory and results can be seen in Figure 2(c). The delay increases
as we create more files, because more time is needed to send the updated (bigger)
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tree to all the Gvu servers. This can be improved in various ways. For example,
one can send only updated parts of the tree to other Gvu servers. Another
interesting mechanism would be batching of commands. We have implemented
batching for the experiments done on Grid3.

4.2 Experiments on Grid3

Grid3 project developed under the auspices of iVDGL (International Virtual
Data Grid Laboratory) is a data grid consisting of more than 25 sites with
thousands of processors. Grid3 is used by various scientific communities including
high-energy physics, bio-chemistry, astrophysics and astronomy.

Read Time for GvuTree. We have run the GvuTree read experiment with
different sites for different number of files. Figures 2(d), 2(e) and 2(f) show the
read times for various sites. Certain sites were down during a few periods of run-
ning the experiments. Note the high latency experienced on the Korean and Tai-
wanese sites (cluster28.knu.ac.kr, grid1.phys.ntu.edu.tw) and low latencies at the
Michigan and Wisconsin sites (linat11.grid.umich.edu, cmsgrid.hep.wisc.edu).
The low latency is due to the proximity of these sites to the Corona server
in the RTCL. You can see certain anomalies in read times at the Florida site
(ufloridapg.phys.ufl.edu). This is due to the high load on the site at the time of
our experiments.

Real-World Scenarios. To better understand the behavior of Gvu, we have
run two workflows that are similar to CMS workflows in various scenarios. The
workflows we used for our experiments are shown in Figures 3(a) and 3(b). The
circles represent the jobs and the arrows show the data dependencies between the
jobs. All the jobs are similar except that they are run with different inputs and
produce different outputs. The workflows have three levels of jobs. Experiments
are conducted for a different number of first level jobs. The scheduling of the
jobs is done using a simple load-balancing mechanism with an equal number of
jobs running on each site. The third level job is run on a separate site.

The workflows are run with Gvu and MCS + RLS and the execution time of
the workflow is compared. A pseudo scientific application is written to test the
two systems. The application checks with Gvu or MCS for the existence of an
input file and if it is available it requests either Gvu or RLS for the location of
the file. It produces the output as soon as all the inputs are available.

Both the workflows are run with two different sets of sites. The first set of
sites are connected by a wide-area network with latencies on the order of 60ms.
The second set of sites are connected by a wide-area network with latencies on
the order of 20ms. The two different sets of sites are chosen to demonstrate how
Gvu copes up with the high latencies experienced in wide-area networks.

Performance of Workflow-I. As one can see in Figure 3(a), workflow I has
better data locality, since the level-1 and level-2 jobs are run on the same site.
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(a) Performance of workflow-I with
high latency network

(b) Performance of workflow-I with
low latency network

(c) Performance of workflow-II

Fig. 4. Grid3 experimental results

This is the common mechanism for submitting jobs on the grid. The execution
time of the workflow with high latency network is shown in Figure 4(a). Note
that for 128 jobs, the workflow didn’t finish when RLS and MCS are used. This
is because of the limit (100) on the number of connections to RLS. This also
shows an important aspect of Gvu with respect to the scalability. Though Gvu
servers were also highly-loaded for 128 first-level jobs, the performance degraded
smoothly, because of the distributed nature of the Gvu.

Performance of the workflow with a low latency network can be seen in Figure
4(b). As expected, the performance improvement is small with Gvu, because of
the fast response times from RLS and MCS (due to the low latency network).
However, Gvu still performs better than RLS and MCS, because most of the
stat file requests are handled locally.

Performance of Workflow-II. Workflow-II shown in Figure 3(b) is similar
to workflow I except that the level-2 jobs are submitted to different sites. This
destroys the data locality and yields poor performance. However, Gvu still per-
forms better than RLS and MCS, due to its distributed nature. Note that the
performance improvement is less than that with workflow I. Figure 4(c) shows
the performance of workflow II with sites connected with an average latency
(30ms) network. We did not run workflow II with a low latency network as we
could not find enough site that are near us.



Gvu: A View-Oriented Framework 639

5 Future Work

Gvu framework raises interesting questions for sharing data on a grid. How do
we synchronize views that share files? An efficient synchronization algorithm is
needed to update all the views that have a file when the file is updated. This is
not trivial and requires careful design.

Various optimizations can be done to improve the query execution perfor-
mance. XML databases may provide clues on how to implement the queries.
Caching can be used on the client and local Gvu servers to improve perfor-
mance. More work is needed to implement access control lists for and views.
Policies need to be developed to resolve conflicts in merging views. Real-world
scenarios have to be explored to understand the effect of conflicts and when they
occur. More work is also needed for achieving better fault-tolerance of Gvu and
Corona servers.
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