
Gathering Asynchronous Mobile Robots with

Inaccurate Compasses�
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Abstract. This paper considers a system of asynchronous autonomous
mobile robots that can move freely in a two-dimensional plane with no
agreement on a common coordinate system. Starting from any initial
configuration, the robots are required to eventually gather at a single
point, not fixed in advance (gathering problem).

Prior work has shown that gathering oblivious (i.e., stateless) robots
cannot be achieved deterministically without additional assumptions. In
particular, if robots can detect multiplicity (i.e., count robots that share
the same location) gathering is possible for three or more robots. Simi-
larly, gathering of any number of robots is possible if they share a com-
mon direction, as given by compasses, with no errors.

Our work is motivated by the pragmatic standpoint that (1) compasses
are error-prone devices in reality, and (2) multiplicity detection, while be-
ing easy to achieve, allows for gathering in situations with more than two
robots. Consequently, this paper focusses on gathering two asynchronous
mobile robots equipped with inaccurate compasses. In particular, we pro-
vide a self-stabilizing algorithm to gather, in a finite time, two oblivious
robots equipped with compasses that can differ by as much as π/4.

1 Introduction

Background. The problem of reaching agreement among autonomous robots
has attracted considerable attention within the last few years. One problem of
particular interest is the gathering problem, where robots are required to meet
at a single location not predetermined in advance, and without agreement on
a common coordinate system. This problem has been studied extensively in
the literature, under different models and various assumptions [3,4,9,17]. In
fact, several factors render this problem difficult to solve. In particular, in all
these studies, the problem has been solved only by making some additional
assumptions regarding robots’ capabilities.
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In this paper, we focus on solving the gathering problem in asynchronous
models. In the asynchronous model CORDA [12], Prencipe [13] has shown that
there exists no deterministic algorithm to solve the gathering problem in finite
time with oblivious robots. Cieliebak et al. [4] have introduced multiplicity, and
have shown that gathering is possible for three or more robots, when they are
able to detect multiple robots at a single point.

Flocchini et al. [9] have solved the gathering problem for any number of robots
when they share a common direction, as provided by a compass1. However,
their result holds when compasses are perfectly consistent (i.e., with no errors).
Yet, in practice sensors are error-prone and sensitive to magnetic interference.
Consequently, in this paper, we concentrate on the gathering of two asynchronous
mobile robots when their compasses are subject to errors.

This work is motivated by the facts that: (1) in practice, compasses are rather
inaccurate sensors, and (2) with multiplicity detection, the gathering is solvable
only for more than two robots. For example, the accuracy of compasses typically
varies from 1 degree to over 10 degrees, depending on sensor quality (cost) and
environment conditions. Therefore, our aim is to fill the gap of solving the gath-
ering problem for two robots relying on oblivious computations, and to provide
effective answers to the following two questions. First, is it possible to gather
two asynchronous mobile robots when their compasses are inaccurate by some
unknown angle? Second, what is the bound of that angle?

Contribution. The main contribution of this paper is to study the solvability
of the gathering of two asynchronous mobile robots in the face of compass in-
accuracies. In particular, we address the problem when robots are oblivious (or
memoryless), meaning that they can not remember their previous states, their
previous actions or the previous positions of the other robots. While this is a
somewhat over-restrictive assumption, developing algorithms in this model is
interesting because any algorithm that works correctly for oblivious robots is
intrinsically self-stabilizing2. We thus provide an algorithm that gathers in a
finite number of steps, two asynchronous oblivious mobile robots equipped with
compasses that can differ by as much as π/4.

Difficulty of the problem. In the asynchronous model CORDA, where robots are
equipped with inaccurate compasses, it is difficult to gather two robots or com-
pare them in a consistent manner. This is mainly due to the issue of breaking the
symmetry between these robots. Let us illustrate this point using a simple exam-
ple. Assume that there exists a naive algorithm for comparing two asynchronous
robots A and B in a consistent manner when their compasses are inaccurate.
First, consider that A and B are equipped with accurate compasses, and place
them at the two endpoints of a horizontal diameter of a unit circle. Then, a naive
algorithm can be based on the comparison of the angles that A and B form re-
spectively with some global North N (i.e., they share the same north) and the
1 A compass does not only indicate the North direction, but also gives a unified clock-

wise orientation.
2 Self-stabilization is the property of a system which, starting in an arbitrary state,

always converges toward a desired behavior [7,14].
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segment AB in clockwise direction. For instance, if the angle is less than or equal
to π/2, the robot wins. Otherwise, if the angle is greater than π/2, the robot
loses. Then, a robot, say A, wins. Then, we rotate the diameter to exchange the
positions of A and B. Now B wins. We thus, color the perimeter of the circle by
Win and Lose, where at any point which is colored Win or Lose, A wins or loses.
Then, there is a point p that is a boundary between a Win and a Lose segment.
By introducing error to their compasses, at p, we can derive a contradiction.
That is, we can not decide which robot wins, and which one loses.3

Related Work. In their SYm model [17], referred to a semi-synchronous model,
Suzuki and Yamashita proposed an algorithm to solve the gathering problem
deterministically in the case where robots have unlimited visibility. For a system
with two robots, they have proven that it is impossible to achieve the gathering of
two oblivious mobile robots that have no common orientation under their semi-
synchronous model, in a finite time. The difficulty of the problem is inherent in
breaking the symmetry between the two robots.

Using the same model, Ando et al. [2] proposed an algorithm to address
the gathering problem in systems wherein robots have limited visibility. Their
algorithm converges toward a solution to the problem, but it does not solve it
deterministically. The gathering problem also has been studied in the presence of
faulty robots by Agmon and Peleg [1] in synchronous and asynchronous settings.
In particular, they proposed an algorithm that tolerates one crash-faulty robot
in a system of three or more robots. They also showed that in an asynchronous
environment, it is impossible to perform a successful gathering in a 3-robot
system with one Byzantine4 failure. Later on, Défago et al. [6] strengthen the
impossibility of gathering in systems with Byzantine robots by showing that
it still holds in stronger models. They also show the existence of randomized
solutions for systems with Byzantine-prone robots.

In some of our recent work [15], we introduced the notion of unreliable com-
passes for robots, and we studied the solvability of the gathering problem in the
face of compass instabilities. In particular, we proposed a gathering algorithm
that solves the problem in the semi-synchronous model SYm for many robots,
with compasses that are eventually stabilizing.

Recently, Cohen and Peleg [5] addressed the issue of analyzing the effect of
errors in solving gathering and convergence problems. In particular, they studied
imperfections in robot measurements, calculations and movements. They showed
that gathering cannot be guaranteed in environments with errors, and illustrated
how certain existing geometric algorithms, including ones designed for fault-
tolerance fail to guarantee even convergence in the presence of small errors. One
of their main positive results is an algorithm for convergence under bounded
measurement, movement and calculation errors. However, their work does not
relate to compasses.
3 The argument is similar to the bi-valent argument in the impossibility result of the

consensus problem [8].
4 A robot is said to be Byzantine if it executes arbitrary steps that are not in accor-

dance with its local algorithm [18].
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While preparing the print-ready version of this manuscript, it came to our
attention that a similar result has been presented by Imasu et al. [10] at a
domestic workshop in Japan.

Structure. The remainder of this paper is organized as follows. In Sect. 2, we
describe the system model and the basic terminology. Sect. 3 describes the algo-
rithm to gather two asynchronous oblivious mobile robots under compass inac-
curacies, and Sect. 4 proves its correctness. Finally, Sect. 5 concludes the paper.

2 System Model and Definitions

2.1 System Model

In this paper, we consider the CORDA model of Prencipe [12,11], which is
defined as follows. The system consists of a set of autonomous mobile robots
R = {r1, · · · , rn}. A robot is modelled as a unit having computational capabili-
ties, and which can move freely in the two-dimensional plane. In addition, robots
are equipped with sensor capabilities to observe the positions of other robots,
and form a local view of the world. The robots are modelled and viewed as points
in the Euclidean plane.5 The local view of each robot includes a unit of length,
an origin and the directions and orientations of the two x and y coordinate axes
as given by a compass.

The robots are completely autonomous. Moreover, they are anonymous, in
the sense that they are a priori indistinguishable by appearance, and they do
not have any kind of identifiers that can be used during their computations.
Furthermore, there is no direct means of communication among them.

We further assume that the robots are oblivious, meaning that they keep
information neither on previous observations nor on past computations.

The cycle of a robot consists of four states: Wait-Look-Compute-Move.

– Wait. In this state, a robot is idle. A robot cannot stay permanently idle
(see Assumption 2) below. At the beginning all robots are in Wait state.

– Look. Here, a robot observes the world by activating its sensors, which will
return a snapshot of the positions of all other robots with respect to its local
coordinate system. Since each robot is viewed as a point, the positions in
the plane are just the sets of robots’ coordinates.

– Compute. In this state, a robot performs a local computation according to its
deterministic, oblivious algorithm. The algorithm is the same for all robots,
and the result of the compute state is a destination point.

– Move. The robot moves toward its computed destination. If the destination
is its current location, then the robot is said to perform a null movement ;
otherwise, it is said to execute a real movement. The robot moves toward the
computed destination, but the distance it moves is unmeasured; neither infi-
nite, nor infinitesimally small (see Assumption 1). Hence, the robot can only
go towards its goal, but the move can end anywhere before the destination.

5 We assume that there are no obstacles to obstruct vision. Moreover, robots do not
obstruct the view of other robots and can ”see through” other robots.
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The (global) time that passes between two successive states of the same robot
is finite, but unpredictable. In addition, no time assumption within a state is
made. This implies that the time that passes after the robot starts observing
the positions of all others and before it starts moving is arbitrary, but finite.
That is, the actual movement of a robot may be based on a situation that was
observed arbitrarily far in the past, and therefore it may be totally different from
the current situation.

In the model, there are two limiting assumptions related to the cycle of a
robot.

Assumption 1. It is assumed that the distance travelled by a robot r in a move
is not infinite. Furthermore, it is not infinitesimally small: there exists a constant
δr > 0, such that, if the target point is closer than δr, r will reach it; otherwise,
r will move towards it by at least δr.

Assumption 2. The time required by a robot r to complete a cycle (Wait-Look-
Compute-Move) is not infinite. Furthermore, it is not infinitesimally small; there
exists a constant εr > 0, such that the cycle will require at least εr time.

2.2 Definitions

Definition 1 (Absolute north). An absolute north
−→N is a vector that indi-

cates a fixed north direction. The absolute north is collocated with an absolute y
positive axis.

It is important to stress that the absolute north is not known to the robots, and
is used only for the sake of explanation.

Definition 2 (Compass). A compass is a function of robots and time. The
function outputs a relative north direction

−→
Nr(t) for some robot r at time t.

Definition 3 (γ∗-Inaccurate compasses). Informally, compasses are γ∗-
Inaccurate iff., for every robot r, the absolute difference between the north indi-
cated by the compass of r and

−→N is at most γ∗ at any time t (also referred to as
error of the compasses). In addition, for every robot r, the error of its compass
is consistent or invariant, i.e., the error of the compass does not fluctuate over
time. In other words, a pair of γ∗-Inaccurate compasses can differ by as much as
2γ∗ at any time t, and the difference is invariant. The special case when γ∗ = 0
represents perfect compasses.

Formally, compasses are γ∗-Inaccurate iff., the following two properties are
satisfied:

1. γ∗-Inaccuracy: ∀r ∈ R, ∀t, |�−→N−→
Nr(t)| ≤ γ∗,

2. Invariance: ∀r, ∀t, t′,
−→
Nr(t) =

−→
Nr(t′).
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2.3 Notations

Given some robot r, r(t) is the position of r at a time t. Let A and B be two
points, with AB, we indicate the segment starting at A and terminating at B,
and ‖AB‖ is the length of such a segment. Given three distinct points A, B, and
C, we denote by �(A, B, C), the triangle having them as corners, and by ̂BAC,
the angle formed by A, B and C, and centered at A. Finally, given a region X(t)
at time t, we denote by |X(t)|, the number of robots in that region at time t.
The parameter t is omitted whenever clear from the context.

3 Gathering with Inaccurate Compasses

The basic intuition behind the algorithm is to break the symmetry between two
robots, that is, to forbid symmetric configurations of two robots. More precisely,
with a perfect compass, it is easy to break the symmetry between two robots. For
instance, by making one robot move and the other remain stationary. However,
with inaccurate compasses, it is difficult to design an algorithm that breaks the
symmetry between the two, as they can end up in a situation in which neither
do move, which results in a deadlock situation or in situation inc which both
move in such a way they cycle forever. In order to avoid such situations, it is
first necessary to ensure that the two robots do not see each other on the same
zone.

The main idea of our algorithm is to make each robot partition the plane into
four different zones, so that two similar zones for two different robots should
not overlap. Then, depending on the different possible configurations (resulting
from the partitions) of the two robots, we design their movements such that a
configuration is transformed to gathering, or to an intermediate configuration
leading to the gathering, without introducing cycles between configurations or
deadlock situations.

Before we describe the algorithm in more detail, we will first explain how
robots divide the plane.

3.1 Partitions

First, a robot needs to partition the plane into four sectors that do not over-
lap, namely the North, South, East and West sectors. Let αN , αS , αE and
αW be the respective angular measurements of these sectors. Also, by ΛN , ΛS ,
ΛE and ΛW , we denote the rays delimiting these sectors, respectively (refer to
Fig. 1).

Now, let us assume there exits a constant γ∗ ≥ 0 that represents the maximum
angle inaccuracy between the relative north

−→
Nr of some robot r and the absolute

north
−→N . Then, the following conditions must be satisfied in order to avoid a

situation in which both robots see each other in the same sector because of
compass inconsistencies.
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Fig. 1. The four sectors North , South , East and West for robot r

αN ≤ π − 2γ∗ (1)
αS ≤ π − 2γ∗ (2)
αE ≤ π − 2γ∗ (3)
αW ≤ π − 2γ∗ (4)

We further set the following conditions on the sectors. These conditions will help
to avoid the occurrence of infinite executions, i.e., having robots looping in the
same configuration.

αE + αS ≤ π (5)
αN + αW ≤ π (6)

By summation of Equation (1) and Equation (5), we get:

αN + αE + αS ≤ 2π − 2γ∗ then,
αN + αE + αS + αW ≤ 2π − 2γ∗ + αW

2π ≤ 2π − 2γ∗ + αW

2γ∗ ≤ αW

After finding the condition in the West sector, we choose the minimal value for
αW . That is, αW = 2γ∗. Then, by summation of Equation (1), and Equation (2),
we get:

αN + αS ≤ 2π − 4γ∗ then,
αN + αS + αE ≤ 2π − 4γ∗ + αE

By hypothesis, αN + αS + αE ≤ 2π then, by subtraction, we get:
0 ≤ −4γ∗ + αE then,

4γ∗ ≤ αE

Thus, we choose αE = 4γ∗ = αS = π/2 (From Equation (5)). This means that
γ∗ = π/8. It follows that, αW = 2γ∗ = π/4. Finally, from Equation (1), and the
fact that the sum of the four sectors is equal to 2π, we get, αN = π−2γ∗ = 3π/4.



340 S. Souissi, X. Défago, and M. Yamashita

We have derived the condition that γ∗ ≤ π/8. Thus, in the remainder of the
paper, we consider the largest inaccuracy value of γ∗, i.e., γ∗ = π/8.

We now describe in more detail the features of each sector, as follows:

– East(r) sector: it is centered at r, has the East direction (indicated by its
compass)

−→
Er as bisector, and its angular sector αE is equal to 4γ∗, which

is π/2. Note that East(r) is delimited by ΛN (r) and ΛE(r). However, only
ΛE(r) is a part of East(r).

– South(r) sector: it is adjacent to East(r) in clockwise direction, and its an-
gular sector αS is equal to αE , which is equal to 4γ∗ (i.e., π/2). Note that
South(r) is delimited by ΛE(r) and ΛS(r). However, only ΛS(r) is included
in South(r).

– West(r) sector: it is adjacent to South(r) in clockwise direction and its an-
gular sector αW is equal to 2γ∗, that is π/4. Note that West(r) is delimited
by ΛW (r) and ΛN (r). However, only ΛW (r) is a part of West(r) sector.

– North(r) sector: this is the remaining sector, and its angular sector αN is
equal to 6γ∗, that is 3π/4. Note that North(r) is delimited by ΛN(r) and
ΛW (r). However, only ΛN (r) is included in North(r) sector.

In the following, we will describe the possible configurations of the two robots,
given the above partitions.

3.2 Valid Configurations

We consider two robots r and r′ that are equipped with compasses that can di-
verge by as much as 2γ∗, that is π/4. Let r and r′ divide the plane as described in
Sect. 3.1. Then, r and r′ can only be in one of the following valid configurations,
or a symmetric configuration:

1. Configuration North/South: r′ ∈ South(r) (i.e., robot r sees r′ on its South
sector) and r ∈ North(r′), or vice versa.

2. Configuration North/East : r′ ∈ East(r) and r ∈ North(r′), or vice versa.
3. Configuration North/West : r′ ∈ West(r) and r ∈ North(r′), or vice versa.
4. Configuration East/West : r′ ∈ West(r) and r ∈ East(r′), or vice versa.
5. Configuration East/South: r′ ∈ South(r) and r ∈ East(r′), or vice versa.

Based on the partitions described in Sect. 3.1, Table 1 summarizes possible and
impossible configurations when robots’s compasses are inaccurate by at most
γ∗ = π/8, with respect to some global north. By design, the partitions prevent
the occurrence of some undesirable configurations, such as North/North, that
could lead to a deadlock situation by using the algorithm6(see Sect. 3.3).

6 It is important to mention that when γ∗ is equal to zero, i.e., when the compasses
of r and r′ are consistent or, the configurations East/South and North/West are
impossible.
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Algorithm 1. Gathering Two Robots with π/8-Inaccurate Compasses
1: Robot r divides the plane into four sectors: North, South , East and West (see Sect. 3.1);
2: r′ := the other robot visible to r at some time t;
3: if (r sees only itself) then {gathering terminated}
4: Do nothing();
5: else
6: if (|South(r)| > 0) then {r′ is to the South : direct move}
7: Move(r′);
8: else if (|East(r)| > 0) then {r′ is to the East : side move up}
9: ΨE(r) := the parallel axis to ΛE(r) passing through r′;
10: H := ΛN (r) ∩ ΨE(r) (see Fig. ??);

11: Goal := p ∈ ΛN (r) such that ‖rGoal‖ > ‖rH‖ and ̂rGoalr′ ≥ ̂rr′Goal;
12: Move(Goal);
13: else if (|West(r)| > 0) then {r′ is to the West : side move down}
14: ΨW (r) := the parallel axis to ΛW (r) passing through r′;
15: H′ := ΛS(r) ∩ ΨW (r) (see Fig. ??);

16: Goal := p ∈ ΛS(r) such that ‖rGoal‖ > ‖rH′‖ and ̂rGoalr′ ≥ ̂rr′Goal;
17: Move(Goal);
18: else {r′ is to the North : no movement.}
19: Do nothing();
20: end if
21: end if

Table 1. Different configurations and movements of robot r and r′ (γ∗ = π/8)

Robot r
North South East West

Robot r′ (no movement) (direct move) (side move up) (side move down)
North no © © ©
(no movement)
South © no © no
(direct move)
East © © no ©
(side move up)
West © no © no
(side move down)

3.3 Movements

The algorithm is given in Algorithm 1, and Table 1 summarizes the different
movements of robot r and r′ (the table is symmetrical). Let us consider the
movement of robot r. First, robot r creates the four sectors, and then it de-
cides its movement based on the sector in which it has locates robot r′, as
follows:

– No movement (Algorithm1:line 18): If r′ ∈ North(r), then r does not move.
That is, if r sees r′ in its North sector, it remains stationary.

– Direct move (Algorithm1:line 6): If r′ ∈ South(r), then r moves directly in
a linear movement to r′.

– Side move up (Algorithm1:line 8): If r′ ∈ East(r), then r performs a side
move up. The need for such a move is explained as follows: given the valid
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Fig. 2. Principle of the algorithm

configurations described in Sect. 3.2, if r′ ∈ East(r), then r ∈ South(r′)
or r ∈ North(r′) or r ∈ West(r′). Robot r (also r′) cannot figure out in
which configuration they are, for instance the East/South or North/East
configuration. Then, if we let robot r make a direct move toward r′, then
in the case when both robots are in the configuration East/South, they will
swap their positions endlessly. Also, if we make robot r stay still, then, if
both robots are in the configuration North/East , none of the robots will ever
move and they will always remain in a deadlock situation. Therefore, the aim
of this side move up is to bring both robots eventually into the configuration
North/South, where one robot can move and the other remains stationary,
which can lead to gathering by our algorithm.
A side move up is computed by robot r as follows: let H be the intersection
of ΛN (r) and the axis ΨE(r), with ΨE(r) parallel to ΛE(r) passing through
robot r′. Then, the destination Goal of robot r is any point that belongs to
ΛN (r), such that the distance ‖rGoal‖ > ‖rH‖, and the angle ̂rGoalr′ is
greater than or equal to the angle ̂rr′Goal (refer to Fig. 2(a)).

– Side move down (Algorithm1:line 13): If r′ ∈ West(r), then r performs a
side move down. The aim of this move is similar to the side move up, and it
is computed by robot r as follows: let H ′ be the intersection of ΛS(r) and the
axis ΨW (r), with ΨW (r) parallel to ΛW (r) passing through robot r′ (refer to
Fig. 2(b)). Then, the destination Goal of robot r is any point that belongs
to ΛS(r), such that the distance ‖rGoal‖ > ‖rH ′‖, and the angle ̂rGoalr′ is
greater than or equal to the angle ̂rr′Goal (refer to Fig. 2(b)).

4 Correctness

In this section, we will prove that our algorithm solves the problem of gathering
two robots in a finite time, assuming π/8-Inaccurate compasses. Due to space
limitations, we only give the complete proof of two lemmas that are central to
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Configuration  
North/ East

Configuration  
 East/ West

Configuration  
North/ South

Gathering

(Lemma 5)

(Lemma 6)

(Lemma 8)

Configuration  
 East/ South

Configuration  
 North/ West

(Lemma 10)

(Lemma 11)

: possible 
transitions

:impossible 
transitions

Fig. 3. Different configurations allowed by Algorithm 1, and their transformation to
gathering

the paper. For all other lemmas, we give an outline of the idea behind the proof.
All the complete proofs can be found in the technical report version [16]. We
first state some lemmas, to illustrate that some incompatible configurations are
ruled out by the algorithm. Second, we show how any possible configuration by
the algorithm is transformed into gathering in a finite time. Fig. 3 summarizes
the different possible configurations, and their transformation to gathering.

Under the partitions described in Sect. 3.1 and by considering γ∗ = π/8,
trivially, we derive the following two lemmas:

Lemma 1. Under the partitions, and assuming π/8-Inaccurate compasses, the
system can not be in the configuration North/North or East/East or South/South
or West/West at any time t.

Lemma 2. Under the partitions, and assuming π/8-Inaccurate compasses, the
system can not be in the configuration West/South at any time t.

From the above two lemmas, we derive the following theorem:

Theorem 1. By the algorithm, the possible configurations are North/South,
North/East, North/West, East/West and East/South, and their symmetric
ones (i,e. South/North, East/North, West/North, West/East and South/East).

Lemma 3. Given a robot r and its target point H with r 
= H, r reaches its
target in a finite number of steps.

Proof (Lemma 3). The proof derives from Assumption 1. In one cycle, r travels
at least δr > 0 of the desired distance. Besides, by Assumption 2, the cycle of
a robot is finite. Thus, the number of steps required for robot r to reach its
destination H is at most �‖rH‖/δr�, which is finite, and the lemma holds.
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Lemma 4. Given two robots r and r′ that are in the configuration North/East
or East/West or East/South at some time t0, with r′ ∈ East(r) and r is either
in North(r′) or West(r′) or South(r′). Then, the destination Goal computed by
robot r (resulting from its side move up) is on the North(r′).

Proof (Lemma 4).
We will prove the North/East configuration only. The East/West and East/

South configurations can be proved in a similar way.
Assume that r′ ∈ East(r) and r ∈ North(r′) at time t0. First, observe that

if ΛN (r) ∩ ΛN (r′) = ∅ (i.e., ΛN (r) and ΛN(r′) are parallel or do not intersect),
then Goal ∈ North(r′) because r ∈ North(r′), and Goal ∈ ΛN(r).

Now assume that, ΛN (r) ∩ ΛN(r′) = M . Let H = ΨE(r) ∩ ΛN(r) (refer to
Fig. 4). To show that Goal ∈ North(r′), we will show that, always, Goal ∈
�(r, r′, M). In other words, we need to show that H ∈ �(r, r′, M) and the
distance ‖HM‖ 
= 0.

Consider the triangle �(r, r′, M). Let α, β, and μ denote the angles at r, r′

and M that are within the triangle �(r, r′, M), respectively. First, if all three
angles α, β, and μ are acute, then obviously the foot H of the perpendicular
starting from r′ is inside �(r, r′, M), and ‖HM‖ 
= 0. Second, if the angle β at
r′ is obtuse, then again the foot H of the perpendicular starting from r′ is inside
�(r, r′, M), and ‖HM‖ 
= 0. Now consider the angle α at r. By hypothesis, αE

is equal to π/2. This means that α cannot be an obtuse angle, and it is at most
π/2. In this later case where α = π/2, we have the foot H of the perpendicular
starting from r′ equal to r (in this case ΛE(r) passes by r′), and the triangle
�(r′, r, M) has a right angle at r. Consequently, ‖rM‖ = ‖HM‖ 
= 0 and
Goal ∈ �(r, r′, M).

Now, we will prove that the angle μ at M can not be an obtuse angle (because
if μ is an obtuse angle, H is outside �(r, r′, M)). Let K = ΛE(r) ∩ ΛW (r′) and
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κ be the angle at K. We also denote by β′ the angle at r′ formed by ΨE(r) and
ΛW (r′). Consider the quadrilateral formed by r, H , r′ and K. Then, we have: (1)
κ+β′ = π since the respective angles at r and H are equal to π/2. Consider now
the quadrilateral formed by r, K, r′ and M . Then, we have: (2) κ + μ = 3π/4
since αE(r) is equal to π/2, and αN (r′) is equal to 3π/4 by hypothesis. By
subtraction of (1) from (2), we get: (3) β′ −μ = π/4. By assumption, β′ < 3π/4
because ΨE(r) can not be equal to ΛN (r′) as ΛN (r′) can not be perpendicular to
ΛN(r) by the partitions described in Sect. 3.1. Consequently, the angle μ at M
is less than π/2. Thus, μ can not be an obtuse angle. As a result, in all cases the
foot H of the perpendicular starting from r′ is inside the triangle �(r, r′, M),
and ‖HM‖ 
= 0. Then, ∀p ∈ HM , p ∈ North(r′). We have by the algorithm,
̂rGoalr′ ≥ ̂rr′Goal . Since μ is not an obtuse angle and ̂rr′M can be an obtuse

angle, then the triangle �(r, r′,Goal) is included in �(r, r′, M). This proves that
Goal ∈ �(r, r′, M), and thus Goal ∈ North(r′). This completes the proof.

In the following, we will show the different possible transitions that each valid
configuration can take, in order to reach gathering in a finite time. The impossible
transitions can be derived implicitly, so we do not prove them explicitly.

4.1 Transition of North/South Configuration to Gathering

Lemma 5. Let r and r′ be two robots that are in the configuration North/South
with r′ ∈ South(r) at some time t0. Then, there is a time t̄ > t0 when r and r′

gather at the same point. Moreover, r and r′ can not shift to any other configu-
ration except gathering.

Proof (Lemma 5). By the algorithm, r will perform a direct move toward r′. Also,
during the movement of r, r′ is unable to move. Consequently, by Lemma 3, r
reaches r′ in a finite time. This terminates the proof.

4.2 Transition of North/East Configuration to Gathering

Lemma 6. Let r and r′ be two robots that are in the configuration North/East
with r′ ∈ East(r), and r ∈ North(r′) at some time t0. Then, there is a finite
time t̄ at which this configuration is transformed into North/South configuration
with r′ ∈ South(r). Moreover, r and r′ can not shift to any other configuration
except the North/South configuration.

Proof (Lemma 6). The proof is a direct consequence from Lemma 4. Let Goal be
the destination of r. Initially, r ∈ North(r′). Besides, by Lemma 4, ∀p ∈ rGoal ,
p ∈ North(r′). Then, r′ is unable to move during the movement of r to Goal .
When r reaches its destination Goal , ΛE(r) is above r′, thus r′ ∈ South(r).
Consequently, r and r′ enter the configuration North/South in a finite time.

From Lemma 5 and Lemma 6, we conclude that:

Theorem 2. Any North/East configuration of two robots equipped with π/8-
Inaccurate compasses is transformed after a finite time to gathering.
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4.3 Transition of East/West Configuration to Gathering

Lemma 7. Given two robots r and r′ at some time t0, where r and r′ are in
the configuration East/West, with r ∈ West(r′) and r′ ∈ East(r), then the
destination Goal ′ of r′ (resulting from its side move down) belongs to East(r)
or South(r).

Proof (Lemma 7). Let H ′ = ΨW (r′) ∩ ΛS(r′). Consider the triangle �(r, r′,
Goal ′), and let α, α′ and β be the angles at r, r′ and Goal ′, respectively. By
hypothesis, α′ ≤ αW = π/4. Then, α+β ≤ 3π/4. By the algorithm, α ≤ β. Thus,
α ≤ 3π/8 < π/2. Let M = ΛE(r) ∩ ΛS(r′). Then, the angle ̂r′rM ≤ π/4 since r
and r′ are in the configuration East/West . It follows that if Goal ′ ∈ H ′M , then
Goal ′ ∈ East(r). Otherwise, Goal ′ ∈ South(r).

Lemma 8. Let r and r′ be two robots that are in the configuration East/West,
with r′ ∈ East(r), and r ∈ West(r′) at some time t0. Then, there is a finite time
t̄ in which this configuration is transformed into North/East or North/South
configuration. Moreover, r and r′ cannot enter any other configuration except
the North/East or North/South configuration.

Proof (Lemma 8). We distinguish several cases depending on the movement of
each robot. We assume that both r and r′ always reach their final destinations.
All other cases where r or r′ end their moves before destination are easy to
deduce from previous lemmas.

1. r moves/ r′ does not move: By the algorithm, r will perform a side move
up. Let Goal be the destination of r and t̄ be the time when r reaches its
target. At t̄, we have r′ ∈ South(r) (since at t̄, r′ becomes below ΛE(r)). In
addition, by Lemma 4, Goal ∈ North(r′). Then, at t̄, r ∈ North(r′). Conse-
quently, r and r′ become in the configuration North/South in a finite time.

2. r′ moves/ r does not move: By the algorithm, r′ will perform a side move
down. Let Goal ′ be its destination and t̄′ be the time when r′ reaches Goal ′.
At time t̄′, r is above ΛW (r′), thus r ∈ North(r′). In addition, by Lemma 7,
r′ ∈ East(r) or r′ ∈ South(r) at t̄′. Consequently, r and r′ leave the configura-
tion East/West in a finite number of steps, and become in the configuration
East/North or North/South.

3. both r and r′ move: By the algorithm, r will perform a side move up and
r′ will perform a side move down. Let Goal and Goal ′ be their respective
destinations and t̄ and t̄′ be the time when they end their moves, respectively.
At t̄, ∀p that is below ΛE(r(t̄)), p ∈ South(r). Since, at t̄, r′ ∈ r′Goal ′, and by
Lemma 7, Goal ′ ∈ East(r(t0)) or Goal ′ ∈ South(r(t0)). Thus, r′ ∈ South(r)
at t̄ because ΛE(r(t̄)) is above Goal ′ and r′.
When r′ reaches Goal ′, r is above ΛW (r′). Consequently, at t̄′, r ∈ North(r′).
Since, r and r′ reach their respective target in a finite time, we hence con-
clude that they become in the configuration North/South in a finite time.

From Lemma 8, Lemma 5 and Theorem 2, we conclude:
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Theorem 3. Any East/West configuration of two robots equipped with π/8-
Inaccurate compasses is transformed after a finite time to the gathering.

4.4 Transition of North/West Configuration to Gathering

Lemma 9. Given two robots r and r′ at some time t0, where r and r′ are in
the configuration North/West, with r ∈ West(r′) and r′ ∈ North(r), then the
destination Goal ′ of r′ (resulting from its side move down) belongs to East(r).

The proof is very similar to the proof of Lemma 7, thus omitted here.

Lemma 10. Let r and r′ be two robots that are in the configuration North/West,
with r ∈ West(r′), and r′ ∈ North(r) at some time t0. Then, there is a finite
time t̄ in which this configuration is transformed into North/East or East/West
or North/South configuration. Moreover, r and r′ can not enter any other con-
figuration except the North/East or East/West or North/South configuration.

Proof (Lemma 10).
By the algorithm, r′ will make a side move down. Let Goal ′ be its destination.

Then, by Lemma 9, Goal ′ ∈ East(r). As long as r′ ∈ North(r), r remains station-
ary. While r′ is moving toward its target, it crosses East(r) sector. Then, r and
r′ become in the configuration East/West if ΛW (r′) is still above r. Otherwise,
they enter the configuration North/East , with r ∈ North(r′) if r′ reaches Goal ′

and r still did not move. Finally, r and r′ enter the configuration North/South
if r performs a look operation when r′ ∈ East(r), and moves to it destination.
From Lemma 3, these transformations are done in a finite time, and the lemma
holds.

From Lemma 10, Theorem 2 and Theorem 3, we conclude:

Theorem 4. Any North/West configuration of two robots equipped with π/8-
Inaccurate compasses is transformed after a finite time to gathering.

4.5 Transition of East/South Configuration to Gathering

Lemma 11. Let r and r′ be two robots that are in the configuration East/South
at some time t0, with r′ ∈ East(r) and r ∈ South(r′) Then, there is a finite time
t in which this configuration is transformed into North/South or North/East or
East/West or the gathering.

Proof (Lemma 11). By the algorithm, r′ will make a direct move toward r, and
r will make a side move up. Then, we distinguish several cases, depending on
where each robot sees the other one, and where it ends its move. By using similar
arguments as in previous lemmas, it is easy to show that r and r′ shift to the
North/South or North/East or East/West configuration or the gathering in a
finite time.

From Lemma 5, Lemma 11, Theorem 2 and Theorem 3, we conclude that:
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Theorem 5. Any East/South configuration of two robots equipped with π/8-
Inaccurate compasses is transformed in a finite time to gathering.

Theorem 6. In a system, with 2 anonymous, oblivious mobile robots relying
on inaccurate compasses, the gathering problem is solvable in a finite time for
π/8-Inaccurate compasses.

Proof (Theorem 6).
Theorem 1 states the different valid configurations by the algorithm. Also,

from Lemma 5, Theorem 2, Theorem 3, Theorem 4 and Theorem 5, any valid
configuration is transformed into gathering in a finite time (see Fig. 3), thus the
theorem holds.

5 Conclusion

In this paper, we concentrate on the gathering of autonomous mobile robots
when their compasses are subject to errors. In particular, we have studied the
solvability of the gathering of two asynchronous mobile robots in the face of
compass inaccuracies, and relying on oblivious computations. We thus provided
an algorithm that gathers in a finite number of steps, two asynchronous oblivious
mobile robots equipped with compasses that can differ by as much as π/4.

The benefit of our algorithm is that we solve the problem with inaccurate
compasses. Moreover, our algorithm is self-stabilizing and tolerates any number
of transient errors. We can also argue that even with weaker compasses that
fluctuate for some arbitrary periods, and eventually they become constant with
bounded errors that are less than or equal to π/4, our algorithm is still valid
and solves the problem in a finite time.
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