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Abstract. We consider the problem of designing an efficient and robust
distributed random number generator for peer-to-peer systems that is easy
to implement and works even if all communication channels are public. A
robust random number generator is crucial for avoiding adversarial
join-leave attacks on peer-to-peer overlay networks. We show that our new
generator together with a light-weight rule recently proposed in [4] for
keeping peers well-distributed can keep various structured overlay net-
works in a robust state even under a constant fraction of adversarial peers.

1 Introduction

Due to their many applications, peer-to-peer systems have recently received a
lot of attention both inside and outside of the research community. Most of the
structured peer-to-peer systems are based on two influential papers: a paper by
Plaxton et al. on locality-preserving data management in distributed environ-
ments [20] and a paper by Karger et al. on consistent hashing and web caching
[13]. The consistent hashing approach is a very simple and elegant approach that
assigns to each peer a (pseudo-)random point in the [0, 1)-interval. Based on this
approach, various local-control rules have been proposed to decide how to inter-
connect the peers so that they form a well-connected network with good routing
properties that is easy to maintain (see, e.g., [18] for a general framework).

In open peer-to-peer systems, the presence of adversarial peers cannot be
avoided. Hence, not only scalability but also robustness against adversarial be-
havior is an important issue. The key to scalability and robustness for peer-to-
peer networks based on the consistent hashing approach is to keep the honest
and adversarial peers well-distributed in the [0, 1)-interval. However, just assign-
ing a random or pseudo-random point to each new peer (by using some random
number generator or cryptographic hash function) does not suffice to keep the
honest and adversarial peers well-spread [2]. People in the peer-to-peer commu-
nity are aware of this problem [8,9] and various solutions have been proposed
that may help alleviating it in practice [6,7,19,26,27,29] but until recently no
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mechanism was known that can provably keep the peers in a well-distributed
state without sacrificing the openness of the system.

Various light-weight perturbation rules that can keep the honest and adver-
sarial peers well-distributed have recently been proposed in [4,10,25]. These rules
do not need to be able to distinguish between the honest and adversarial peers,
but a crucial prerequisite for them to work is a robust distributed random num-
ber generator. This random number generator has to work correctly in a system
without mutual trust relationships and must be robust against arbitrary adver-
sarial behavior to be applicable to peer-to-peer systems. Certainly, designing
such a random number generator is not an easy task.

1.1 Robust Distributed Random Number Generation

How can we generate random numbers in a peer-to-peer system with adversarial
presence? The most naive approach is to let every peer generate its own random
numbers. This approach is problematic since in a dynamic peer-to-peer system
it is impossible to collect sufficient statistical evidence to accuse a particular
peer of generating non-random numbers. Yet, somewhat surprisingly, it is still
possible to use this approach to maintain a robust peer-to-peer network, but at
the cost of losing scalability [3]. So a different approach is needed.

A more reasonable approach is the following. Suppose that we need a random
number generator that generates a number by selecting a binary string uniformly
at random out of {0, 1}s for some s. Consider the situation that a group P of the
peers wants to generate a random number. Each (honest) peer p in P may then
select a random number xp ∈ {0, 1}s and commit to it to all other peers in P
using a bit commitment scheme (a particularly secure one-way hash function h
for which h(x) does not reveal anything about x) [12,17]. Once all commitments
have been made, the peers will reveal their random numbers, and if they all
do, every peer computes x =

⊕
p∈P xp, where ⊕ is the bit-wise XOR operation.

The XOR operation has the nice property that as long as at least one xp is
chosen uniformly at random and the other numbers are independent of it, x is
distributed uniformly at random in {0, 1}s. Hence, if the scheme succeeds and
at least one honest peer participates in it, a random number x will be generated.
But the adversarial peers can easily let the scheme fail, and this not only in an
oblivious manner but also in an adaptive manner (by just waiting for enough
numbers xp to be revealed before revealing their own numbers). Thus, in order
to avoid a significant bias on the successfully generated random numbers, the
fraction of adversarial peers in the system would have to be so small that no
adversarial peer will be present in most of the groups P that are used for the
random number generation. Such an approach was pursued in [2].

To avoid the problems above, we recently proposed a distributed random
number generator that is based on verifiable secret sharing [4]. This random
number generator can still fail if the peer initiating it does not behave correctly,
but it has the advantage that if the peer initiating it is honest, then the random
number generation is guaranteed to succeed, and whenever the random number
generation succeeds, the number generated will be random.
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Yet, using this scheme is not completely satisfying. First of all, an adversary
can let it fail in an adaptive manner (i.e., it can let it fail after knowing the
final key), which is sufficient to create a significant bias, even though the ad-
versary cannot undermine the randomness of the generated key. It just has to
run sufficiently many attempts until a key is generated that falls into a desired
range. Furthermore, the scheme is not easy to implement and private channels
are needed between the peers. So the question that led to this paper was:

Is it possible to design an elementary and sufficiently unbiased distributed
random number generator that even works for public channels and a constant
fraction of adversarial peers?

Remarkably, this paper shows that this is possible.

1.2 Related Work on Random Number Generation

Surprisingly little has been published about robust random number generators
for distributed systems. Random number generators have mostly been studied
in the context of pseudo-random number generators (PRNGs) with small seed
or cryptographically secure random number generators (CSRNG). The main
difference between a PRNG and a CSPRNG is that a CSPRNG should be in-
distinguishable from random on any examination, whereas a PRNG is normally
only required to look random to standard statistical tests. For foundations and
surveys on random number generators see, e.g., [11,16,23,31].

There are many protocols for distributed systems with adversarial presence
that need random numbers for atomic broadcasting, leader election and almost-
everywhere agreement (e.g., [14,21] for recent results), but in these it is sufficient
that every peer chooses its own random numbers.

Unbiased random numbers can be computed via verifiable secret sharing or
secure multiparty computation schemes (e.g., [5,28]), but these are not easy to
implement (since they need error correction techniques), and they require private
channels.

1.3 Details of Our Random Number Generator

The basic idea behind our random number generator is the insight that gener-
ating a single random number is difficult with public channels but generating
a batch of random numbers is doable. An m-random number generator (or m-
RNG) is a random number generator that generates a batch of up to m random
numbers. We assume that every random number is represented as a binary string
in {0, 1}s for some fixed s. Given an m-RNG G and any subset S ⊆ {0, 1}s, let
EG(S) be the expected number of keys y generated by G with y ∈ S. Ideally,
G should satisfy EG(S) = m · |S|/2s for all S ⊆ {0, 1}s. Let E(S) = m · |S|/2s.
Then we define the bias β(G) of G as

β(G) = max
S⊆{0,1}s

max
{

EG(S)
E(S)

,
E(S)

EG(S)

}
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The m-RNG that we present in this paper is called round-robin random number
generator (or short round-robin RNG). Let P be the group of m peers this
protocol is applied to. The basic ideas of the protocol can be summarized as
follows:

– When correctly initiated, every peer in P will supervise the generation of
one random number in {0, 1}s. A peer whose random number generation
fails can send an accusation to the peers in P in which it can accuse exactly
one other peer. Honest peers will run the random number generation one
after the other (using a proper timing scheme) so as to maximize the effect
of the accusations and thereby minimize the number of times an adversarial
peer can cause the failure of a random number generation supervised by an
honest peer.
dealer and the others being a group of players. Both the players and the
dealer commit to a key. However, as we will see, the dealer key is a special
master key that is committed first and revealed last. In this way, the dealer
is the only one that can adaptively decide whether to let the random number
generation fail or not. However, this is the only way in which the dealer can
bias the random number generation. It cannot make its probability distri-
bution non-uniform if at least one honest player is participating in it.

More details are given in Section 2. For this protocol, the following theorem is
shown.

Theorem 1. Suppose that |P | = m and there are t < m/6 adversarial peers
in P . Then the round-robin RNG generates random keys y1, y2, . . . , yk ∈ {0, 1}s

with m − 2t ≤ k ≤ m and the property that for all subsets S ⊆ {0, 1}s with
σ = |S|/2s,

E[|{i | yi ∈ S}|] ∈ [(m − 2t)σ, m · σ]

The worst-case message complexity of the protocol is O(m2).

Hence, the bias of our m-RNG is just 1 + 2t
m−2t , which is a constant. It turns

out that this bias is small enough in order to maintain a scalable and robust
peer-to-peer network.

1.4 Application to Robust Peer-to-Peer Networks

In the area of peer-to-peer systems, work on robustness in the context of overlay
network maintenance has mostly focused on how to handle a large fraction of
faulty peers (e.g., [1,24,30]) or churn, that is, peers frequently enter and leave
the system (e.g., [15,22]). However, none of these approaches can protect a peer-
to-peer network against adaptive join-leave attacks. In an adaptive join-leave
attack, adversarial peers repeatedly join and leave a network in order to occupy
certain areas of the network. To prevent them from doing this, proper join and
leave protocols have to be found so that the honest and adversarial peers are kept
well-spread in the [0, 1)-interval. More precisely, what we would like to aim for
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is that at any time point with n peers in the system the following two conditions
can be met for every interval I ⊆ [0, 1) of size at least (c log n)/n for a constant
c > 0:

– Balancing condition: I contains Θ(|I| · n) peers.
– Majority condition: the honest peers in I are in the majority.

If this is the case, then proper region-based overlay networks and routing rules
can be defined to guarantee connectivity and correct routing (e.g., [4]). However,
maintaining the two conditions under adaptive adversarial join-leave attacks
turns out to be quite tricky. Just assigning a random or pseudo-random point to
each new peer (by using some random number generator or cryptographic hash
function) does not suffice to preserve the balancing and majority conditions [2].
Fortunately, just recently we found a join operation, called cuckoo rule, that can
solve this problem [4].

1.5 The Cuckoo Rule

In the following, a region is an interval of size 1/2r in [0, 1) for some integer r
that starts at an integer multiple of 1/2r. Hence, there are exactly 2r regions of
size 1/2r. A k-region is a region of size (closest from above to) k/n, and for any
point x ∈ [0, 1), the k-region Rk(x) is the unique k-region containing x.

Cuckoo rule: If a new node v wants to join the system, pick a random x ∈ [0, 1).
Place v into x and move all nodes in Rk(x) to points in [0, 1) chosen uniformly
and independently at random (without replacing any further nodes).

Suppose that we have n honest peers and εn adversarial peers in the system
for some ε < 1. For the situation that the adversary adaptively rejoins the
system with its peers in a one-by-one fashion, it was shown [4] that as long as
ε < 1−1/k, the k-cuckoo rule satisfies the balancing and majority conditions for
a polynomial number of rejoin operations, with high probability. However, for
the cuckoo rule to be implementable in a distributed system, a robust distributed
random number generator is needed. Furthermore, the cuckoo rule may need up
to O(log2 n) random bits in the worst case (for O(log n) peers that need to be
replaced).

1.6 The Round-Robin Cuckoo Rule

The problem with O(log2 n) bits is solved by proposing a slight adaptation of
the cuckoo rule that we call the de Bruijn cuckoo rule. The new rule has the
benefit that only O(log n) random bits are needed in the worst case (for two
random points in [0, 1)).

In order to solve the problem with the random number generator, we combine
the round-robin RNG with the de Bruijn cuckoo rule to the so-called round-
robin cuckoo rule. It works in a way that for every successful random number
generation in the round-robin RNG, the de Bruijn cuckoo rule is used. The
protocol has the following performance.
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Consider adversarial join-leave attacks in a system with n honest peers and
εn adversarial peers. Let β be the bias of the round-robin RNG. Then it holds:

Theorem 2. For any constants ε, k and β with ε < 1/β − 1/k, the round-
robin cuckoo rule satisfies the balancing and majority conditions for a polynomial
number of rounds, with high probability, for any adversarial strategy within our
model.

Hence, Theorem 2 is a natural extension of the result in [4].

1.7 Structure of the Paper

In Section 2, we present the round-robin random number generator, and in Sec-
tion 3 we show how to use it to counter join-leave attacks in peer-to-peer net-
works. The paper ends with conclusions.

2 Robust Random Number Generation

In this section we consider the situation that we have a set P of m players de-
noted p1, . . . , pm. We distinguish between honest and adversarial players. The
honest players follow the protocol in a correct and timely manner, whereas the
adversarial players may behave in an arbitrary way, including arbitrary collusion
among the adversarial players. Our goal is to find elementary protocols that con-
struct random numbers with a uniform distribution in {0, 1}s for some given s,
even under adversarial presence.

First, we state some assumptions, and then we present the round-robin ran-
dom number generator. After its analysis, we discuss some extensions for peer-
to-peer systems.

2.1 Assumptions

We assume that only point-to-point communication is available and that all
information sent out by a player can be seen by the adversary. Thus, no broad-
casting primitive and no private channels are given, which is often the case in
other robust distributed protocols like verifiable secret sharing. We just need a
mechanism that allows the players to verify the sender of a message. For this, we
assume the existence of a non-repudiable signature scheme. A message m signed
by player p will be denoted as (m)p.

Honest players are supposed to act not only in a correct but also a timely
manner (which is important to maintain dynamic systems such as peer-to-peer
networks). We assume that any message sent from one honest player to another
honest player needs at most δ time steps to be received and processed by the
recipient for some fixed δ, and we assume that the clock speeds of the honest
players are roughly the same. But the clocks do not have to be synchronized (i.e.,
show the same time) nor do we require the protocols to run in a synchronous
mode (i.e., all players must send their messages at exactly the same time). The
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latter assumption makes it hard to generate unbiased random keys even though
there is a notion of time because the adversarial players can always choose to be
the last to send out messages, thereby maximizing the control they have on the
generation of the random number.

For the random number generation, we need a bit commitment scheme h, i.e., a
scheme where h(x) does not reveal anything about x. In practice, a cryptographic
hash function might be sufficient for h so that the protocols below can be easily
implemented. Furthermore, we assume that all honest players have a perfect
random number generator. In practice, pseudo-random number generators that
pass a certain collection of statistical tests (such as the diehard tests) might be
sufficient here.

2.2 Round-Robin Random Number Generator

Suppose that we have a set P of m players, p1, . . . , pm, that mutually know each
other and the indexing, with any t of them being adversarial for some t < m/6.
The round-robin random number generator works as follows for some player
p∗ ∈ P initiating it.

1. p∗ sends a signed request to initiate the random number generation to all
players in P .

2. Once player pi ∈ P receives p∗s signed initiation request for the first time
(from anywhere), it forwards it to all other players in P . Afterwards, it sets
Pi := P \ {pi} and waits for i · 8δ time steps. Each time it receives an
accusation (pk)pj from a player pj ∈ P it has not received an accusation
from yet, it sets Pi := Pi \ {pk}. Once the i · 8δ steps are over, pi initiates
step (3). pi terminates after (m + 1)8δ steps.

3. If |Pi| ≥ 2m/3, then pi chooses a random xi ∈ {0, 1}s and sends (h(xi), Pi)pi

to all players in Pi. Otherwise, pi aborts the protocol (which will not happen
if t < m/6).

4. Each player pj ∈ Pi receiving a message (h(xi), Pi)pi for the first time from
pi with Pi ≥ 2m/3 chooses a random xj ∈ {0, 1}s and sends the message
(pi, h(xj), Pi)pj to pi. Otherwise, it does nothing.

5. If all players in Pi reply within 2δ time steps, then pi sends ({(pi, h(xj), Pi)pj |
pj ∈ Pi})pi to all players in Pi. Otherwise, pi sends an accusation (pj)pi for
any pj ∈ Pi that did not reply correctly or in time to all players in P and
stops its attempt of generating a random number.

6. Once pj ∈ Pi receives ({(pi, h(xk), Pi)pk
| pk ∈ Pi})pi from pi, pj sends

(xj)pj to pi.
7. If pi gets a correct reply back from all players in Pi within 2δ time steps,

then it sends (xi, {(xj)pj | pj ∈ Pi})pi to all players in Pi and computes
yi = xi ⊕

⊕
pj∈Pi

xj where ⊕ is the bit-wise XOR operation. Otherwise, pi

sends an accusation (pj)pi to all players in P for any pj ∈ Pi that did not
reply correctly or in time and stops.

8. Once pj ∈ Pi receives (xi, {(xk)pk
| pk ∈ Pi})pi , pj verifies that all keys are

correct. Then pj computes y
(i)
j = xi ⊕

⊕
qk∈Pi

xk and sends the message

(y(i)
j )pj to pi.
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9. If pi receives yi from at least 2m/3 players in P within 2δ time steps, it
accepts the computation and otherwise sends an accusation (pj)pi to all
players in P for any pj ∈ Pi that did not reply correctly or in time.

We define the random number generation of pi to be successful if pi receives
the same key from at least 2m/3 many players in step (9). This is important
for pi since it will need the support of at least 2m/3 other players for further
operations that we will discuss in the next section.

2.3 Analysis of the Round-Robin RNG

The round-robin RNG has the following performance.

Theorem 3. Suppose that |P | = m and there are t < m/6 adversarial players
in P . Then the round-robin RNG generates random keys y1, y2, . . . , yk ∈ {0, 1}s

with m − 2t ≤ k ≤ m and the property that for all subsets S ⊆ {0, 1}s with
σ = |S|/2s,

E[|{i | yi ∈ S}|] ∈ [(m − 2t)σ, m · σ] .

The worst-case message complexity of the protocol is O(m2).

In order to prove the theorem, we start with some simple claims.

Some basic facts. Because of the flooding strategy in step (2) and the definition
of δ it holds:

Claim. No matter whether p∗ is adversarial or not, all honest players start the
protocol within δ steps.

Since each honest player pi needs at most 7δ time steps to complete the protocol
from step (3) to (9) and starts after waiting for i · 8δ steps, the claim above
implies the following claim.

Claim. No two honest players execute their random number generation scheme
(steps (3) to (9)) at the same time.

Hence, honest player pi can make use of the accusations of all honest players pj

with j < i in order to keep its own problems with the random number generation
as small as possible.

Next, we bound the size of any Pi for an honest player pi. Recall that honest
players are supposed to work in a correct and timely manner. Hence, honest
players will never accuse other honest players of any wrongdoing but only adver-
sarial players. Since every adversarial player can issue at most one accusation,
there will be at least m−2t honest players left in every set Pi of an honest player
pi throughout the protocol. Hence, we get:

Lemma 1. If t < m/6 then |Pi| ≥ 2m/3 throughout the protocol for every
honest player pi.
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Moreover, every player pi can only be successful for one key. This is because all
players in Pi have to see commitments to the same Pi for all players in Pi and
|Pi| ≥ 2m/3 before revealing their random keys in step (6). Since t < m/6, this
means that there must be more than m/2 honest players in Pi, which can only
be possible for at most one Pi. Hence, we get.

Lemma 2. If t < m/6 then every player can be successful for at most one key.

Analysis of steps (3) to (9). Next, we focus on the execution of steps (3) to
(9) by some fixed peer pi. First, we consider the case that pi is honest, and then
we consider the case that pi is adversarial.

Lemma 3. If pi is honest and |Pi| ≥ 2m/3, then no matter how many adver-
sarial players there are in Pi, if the protocol terminates successfully, then the key
yi generated by pi is distributed uniformly at random in {0, 1}s and all honest
players in Pi compute the same key as pi.

Proof. pi will not reveal xi before the keys in Pi have all been revealed. Hence,
the probability distribution on z =

⊕
pj∈Pi

xj must be independent of xi. But
for any probability distribution on z =

⊕
pj∈Pi

xj that is independent of xi it
holds that if xi is chosen uniformly at random in {0, 1}s, then also yi = xi ⊕ z
is distributed uniformly at random in {0, 1}s. Moreover, also the decision of the
adversarial players to let the random number generation fail must be independent
of xi and can only be a function of z because xi will not be revealed before. Hence,
it holds for any adversarial strategy and any y∗ ∈ {0, 1}s that

Pr[yi = y∗ | generation of yi successful] = Pr[yi = y∗] =
1
2s

If pi succeeds with computing yi, then it informed all players in Pi about the
revealed keys, and all honest among them will accept these keys since they match
the message sent out by pi in step (5). Hence, all honest players in Pi compute
the same key as pi. ��
Notice that if the adversarial players knew about xi before deciding to let the
random number generation fail, they can create a significant bias, even if the
other keys were chosen independent of xi. A simple example for this would be:

Focus on any fixed y∗ ∈ {0, 1}s. If yi = y∗, then let the attempt fail, and
otherwise let it be successful.

It is easy to see that this would make it very unlikely for the round-robin
RNG to generate y∗ (since it would have to be generated more than t times to
be successful at least one). Hence, it is crucial that xi is only revealed after all the
other keys have been revealed. Next, we consider the case that pi is adversarial.

Lemma 4. If pi is adversarial, then no matter what pi and the other adversarial
players in Pi do, whenever an honest player pj reveals its key xj , y

(j)
i has a

uniform distribution on {0, 1}s.
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Proof. An honest player pj will only reveal xj once it receives ({(pi, h(xk), Pi)pk
|

pk ∈ Pi})pi from pi and pj ∈ Pi (so that y
(i)
j is well-defined). In this case, xj is a

random number that is independent of z = xi ⊕
⊕

pk∈Pi\{pj} xk, and since xj is

independent of z and chosen uniformly at random, y
(i)
j = xj ⊕ z has a uniform

distribution. ��
Notice, however, that pi can commit to different sets Pi to different honest players
without being detected, so the keys y

(i)
j can differ among the honest players.

Nevertheless, if pi wants to be successful (i.e., collect commitments to the same
key from at least 2m/3 many players), it must let more than m/2 honest players
pj succeed with computing the same y

(i)
j , which has a uniform distribution.

Still, the adversarial players can create a bias on the successfully computed
keys since after knowing yi, an adversarial player pi still has the option to let the
key generation be successful or not. Fortunately, this bias cannot be too large,
as shown in the following lemma.

Analysis of the entire protocol

Lemma 5. If t < m/6 then at least m − 2t of the m − t random number gen-
erations initiated by the honest players are successful, irrespective of whether
p∗ is adversarial or not. Furthermore, it holds for all subsets S ⊆ {0, 1}s with
σ = |S|/2s that E[|{i | yi ∈ S for a successful yi}|] ∈ [(m − 2t)σ, m · σ]

Proof. According to Lemma 4, every key y that an honest player p commits
to must be distributed uniformly at random in {0, 1}s. However, whereas the
adversarial players can adaptively abort the random number generation initiated
by adversarial players, it follows from Lemma 3 that they can only do this in an
oblivious way for the honest players. We know that the adversarial players can
only sabotage the random number generation of at most t honest players. Hence,
at least m−2t random number generations of honest players pi will be successful,
and their success does not depend on their values. Thus, the probability for any
of these players pi that yi ∈ S is equal to σ and, therefore, the expected number
of successful pi’s with yi ∈ S is at least (m − 2t)σ.

On the other hand, at most m key generations can be successful, and since
every successfully generated key yi is distributed uniformly at random in {0, 1}s,
the probability for any yi to be in S is equal to σ. Hence, the expected number
of successful pi’s with yi ∈ S is at most m · σ. ��
The next lemma follows immediately from the protocol.

Lemma 6. The message complexity of the round robin-random RNG is O(m2).

2.4 Extensions

In our random number generator we assumed that the players in P know each
other and the indexing. This assumption can be problematic in peer-to-peer
systems since there might be disagreement among the honest players about the
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set of adversarial players in P . However, if at least all the honest players know
each other and there are, for example, less than m/8 adversarial players in P ,
this can easily be fixed. Suppose that every honest player pi uses a threshold of
3mi/4 instead of 2m/3, where mi is the number of players that pi knows in P and
m = |P |. Then all results above still hold since 3mi/4 ≥ (3/4) · (7m/8) > m/2.

Another problem is how to fix the indexing issue. When there is disagreement
about P , it will not be possible for the honest players to agree on a common
indexing scheme. Instead, they can use the following simple trick. Each player
pi picks a random slot out of c ·mi many slots for generating a random number,
where c is a fixed constant. Then it is easy to calculate that the number of
slots occupied by the honest players is at least (1− 1/(2c))mh, where mh is the
number of honest players. Hence, the adversarial players could manage now to
let up to t + mh/(2c) random number generations of honest players fail instead
of just t, which is still acceptable if c is sufficiently large.

3 Application to Robust Peer-to-Peer Networks

In this section we show how to use the round-robin random number genera-
tor above to satisfy the balancing and majority conditions for any adversarial
join-leave strategy for a polynomial number of rejoin operations, with high prob-
ability. We start with a formal model. Then we present the de Bruijn cuckoo rule,
and afterwards we combine it with the round-robin RNG to obtain the round-
robin cuckoo rule.

3.1 Model

Recall that we want to associate all peers with points in [0, 1). These points
can be encoded as binary strings from {0, 1}s (in a sense that b = (b1, . . . , bs)
represents xb =

∑
i≥1 bi/2i) for a sufficiently large s (in SHA-1, which is used

by the Chord system, for example, s = 160).
There are n blue (or honest) nodes and εn red (or adversarial) nodes for some

fixed constant ε < 1. There is a rejoin operation that, when applied to node v,
lets v first leave the system and then join it again from scratch. The leaving is
done by simply removing v from the system and the joining is done with the help
of a join operation to be specified by the system. We assume that the sequence of
rejoin requests is controlled by an adversary. The adversary can only issue rejoin
requests for the red nodes, but it can do this in an arbitrary adaptive manner.
That is, at any time it can inspect the entire system and select whatever red
node it likes to rejoin the system. The goal is to find an oblivious join operation,
i.e., an operation that does not distinguish between the blue and red nodes, so
that for any adversarial strategy above the balancing and majority conditions
can be kept for any polynomial number of rejoin requests.

3.2 The de Bruijn Cuckoo Rule

Recall the original cuckoo rule in Section 1.5. We present a slight but crucial
modification to this rule, called the de Bruijn cuckoo rule, which only needs two
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random numbers in {0, 1}s, irrespective of k. The prefix de Bruijn was chosen
because the rule can be easily implemented in dynamic de Bruijn graphs (e.g.,
[18]).

de Bruijn cuckoo rule: If a new peer v wants to join the system, pick ran-
dom x, y ∈ [0, 1). Place v into x and replace all peers in Rk(x) in the following
way. If |Rk(x)| = 0, we are done, and if |Rk(x)| = 1, then the peer in Rk(x)
is moved to position y. Otherwise, let b = 	log |Rk(x)|
. Given that y is repre-
sented by a binary string (y1, . . . , ys) ∈ {0, 1}s, peer i ≥ 0 in Rk(x) is moved to
position ((ys−b+1, . . . , ys)⊕ (i)2)◦ (y1, . . . , ys−b) where (i)2 represents the binary
representation of i and ◦ the concatenation.

For example, suppose that y = 0100110 and |Rk(x)| = 3. Then the new
positions of the three peers are (10 ⊕ 00) ◦ 01001 = 1001001 for peer 0, (10 ⊕
01) ◦ 01001 = 1101001 for peer 1, and (10 ⊕ 10) ◦ 01001 = 0001001 for peer 2.
This rule of mapping peers to new points has the following property:

Lemma 7. Every replaced peer is moved to a position that is distributed uni-
formly at random in {0, 1}s.

Proof. Consider peer i in Rk(x) for any fixed i and suppose that y is distributed
uniformly at random in {0, 1}s. Then (ys−b+1, . . . , ys) ⊕ (i)2 is distributed uni-
formly at random in {0, 1}b and (y1, . . . , ys−b) is distributed uniformly at random
in {0, 1}s−b, resulting in the lemma. ��
Moreover, any two peers in a region Rk(x) with p peers have a distance of at
least (1/2)log p−1 ≥ 1/(2p) of each other. Hence, when looking at the analysis in
[4], it turns out that all results still hold when using a perfect random number
generator (though in Lemma 2.6 and Lemma 2.10 the independence property
of the new node positions has to be replaced by negative correlation, but the
negative correlation is so small that it is negligible).

Theorem 4. For any constants ε and k with ε < 1− 1/k, the de Bruijn cuckoo
rule with parameter k satisfies the balancing and majority conditions for a poly-
nomial number of rounds, with high probability, for any adversarial strategy
within our model. The inequality ε < 1− 1/k is sharp as counterexamples can be
constructed otherwise.

3.3 The Round-Robin Cuckoo Rule

Finally, we show how to combine the de Bruijn cuckoo rule and the round-robin
random number generator into a simple and efficient join protocol called round-
robin cuckoo rule that achieves a result similar to Theorem 4.

Recall the definition of a region in Section 1.5. Given a node v ∈ [0, 1), we
define its quorum region Rv as the unique region of size closest from above to
(γ log n)/n, for a fixed constant γ > 1, that contains v.

We demand that whenever a new node u wants to join the system, it has to
do so via a node v already in the system. v then initiates the following protocol:
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1. v initiates the round-robin RNG in Rv (i.e., v acts as p∗).
2. For each successful node vi ∈ Rv, vi initiates the de Bruijn cuckoo rule by

sending a message (yi, {(y(i)
j )pj | vj ∈ Pi})pi with 1 + 2m/3 signed keys to

all nodes in Rv.
3. Once node w ∈ Rv receives a correctly signed (yi, {(y(i)

j )pj | vj ∈ Pi})pi

containing more than 2m/3 keys, it forwards it to all other nodes in Rv and
initiates the de Bruijn cuckoo rule.

In the de Bruijn cuckoo rule, majority decision is done to execute the proper
actions (see [4] for more details). Since step (3) ensures the “all or nothing” prin-
ciple concerning the honest nodes, the de Bruijn cuckoo rule can be guaranteed
to be executed in a correct and timely manner. The new node u can choose to
assume any one of the new positions of a successfully executed de Bruijn cuckoo
rule. It just needs to commit to one to Rv. If the node v just wants to rejoin
the system (like in the adversarial strategies considered here), then we identify
v with u.

3.4 Perturbation with Biased Randomness

Recall that we consider adversarial join-leave attacks in a system with n honest
nodes and εn adversarial nodes. Let β be the bias of the round-robin RNG. Then
it holds:

Theorem 5. For any constants ε, k and β with ε < 1/β − 1/k, the round-robin
cuckoo rule with the round-robin RNG with bias β satisfies the balancing and
majority conditions for a polynomial number of rounds, with high probability,
for any adversarial strategy within our model.

Proof. (Sketch) Recall the Lemmas in Section 2 of [4]. Let δ > 0 be a small
constant. Lemma 2.4 holds as before. In Lemma 2.5, the age range of a region
R consisting of c logn k-regions has to be adjusted to [(1 − δ)(c log n)(n/k),
(1+ δ)β(c logn)(n/k)], where the age of R is the sum of the ages of its k-regions
and the age of a k-region is defined as the number of RNG attempts back in time
till that region was last hit by a new node. Lemma 2.6 still holds. In Lemma 2.9,
the range for the number of evicted honest nodes in a time interval of size T has
to be adjusted to [((1− δ)/β)T ·k, (1+ δ)T ·k], and the range for the adversarial
nodes has to be adjusted to [((1−δ)/β)T ·εk, (1+δ)T ·εk]. With these bounds, we
obtain a worst-case ratio between honest and adversarial nodes if R has an age of
(1− δ)(c log n)(n/k). In this case, there are at least ((1− δ)2/β)(c log n)k honest
nodes and at most (1−δ)(1+δ)(c logn)εk+c logn adversarial nodes in R, w.h.p.
In order to satisfy the majority condition, it must hold that ε < 1/β − 1/k. ��

4 Conclusions

In this paper, we presented a simple and robust random number generator suffi-
cient for keeping honest and adversarial peers well-distributed in [0, 1). We only
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proved our results assuming a sequential execution of rejoin operations (see our
model) though we expect that as long as not too many rejoin operations are
executed concurrently, there should be only insignificant side effects (see also
the comments in [25]).

Interesting problems for future work are, how to extend our results to general
β-biased m-RNGs and how to extend our rejoin operation so that we can even
make a peer-to-peer network robust against adaptive join-leave behavior by both
honest and adversarial peers.
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